
Security Framework Reference
Security > Carbon

2008-03-12

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk, Keychain,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

iPhone is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 5

Part I Managers 7

Chapter 1 Authorization Services C Reference 9

Overview 9
Functions by Task 9
Functions 10
Data Types 22
Constants 25
Result Codes 30

Chapter 2 Certificate, Key, and Trust Services Reference 33

Overview 33
Functions by Task 33
Functions 37
Data Types 82
Constants 86
Result Codes 95

Chapter 3 Keychain Services Reference 99

Overview 99
Functions by Task 99
Functions 104
Callbacks 156
Data Types 157
Constants 164
Result Codes 191

Part II Other References 195

Chapter 4 Secure Transport Reference 197

Overview 197
Functions by Task 198
Functions 201
Callbacks 232
Data Types 234

3
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

Constants 235
Result Codes 240

Document Revision History 245

Index 247

4
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Framework /System/Library/Frameworks/Security.framework

Header file directories /System/Library/Frameworks/Security.framework/Headers

Companion guide Secure Coding Guide

Declared in Authorization.h
AuthorizationDB.h
AuthorizationTags.h
CipherSuite.h
SecACL.h
SecAccess.h
SecBase.h
SecCertificate.h
SecIdentity.h
SecIdentitySearch.h
SecImportExport.h
SecKey.h
SecKeychain.h
SecKeychainItem.h
SecKeychainSearch.h
SecPolicy.h
SecPolicySearch.h
SecTrust.h
SecTrustSettings.h
SecTrustedApplication.h
SecureTransport.h
cssmapple.h
cssmtype.h

This collection of documents provides the API reference for the Security framework, which defines C interfaces
for protecting information and controlling access to software.

5
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

6
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

7
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Managers

8
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART I

Managers

Framework: Security

Declared in Authorization.h
AuthorizationDB.h
AuthorizationTags.h

Overview

Authorization Services is an API that facilitates access control to restricted areas of the operating system and
allows you to restrict a user’s access to particular features in your Mac OS X application. Authorization Services
is used in

Note: This document was previously titled Authorization Services Reference.

 ■ software that restricts access to its own tools

 ■ applications that call system tools

 ■ software installers that install privileged tools or require access to restricted areas of the operating system

A companion volume to Authorization Services C Reference is Performing Privileged Operations With
Authorization Services, which explains the concepts behind authorization and provides examples of how to
use Authorization Services. Objective-C methods that are equivalent to several of the functions in this
document are described in Authorization Services Objective-C Reference.

Authorization Services is available in Mac OS X v10.0 and later as part of the Security framework.

Functions by Task

Creating and Releasing Authorization References

AuthorizationCreate (page 14)
Creates a new authorization reference and provides an option to authorize or preauthorize rights.

AuthorizationFree (page 17)
Frees the memory associated with an authorization reference.

Overview 9
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Requesting Rights and Credentials

AuthorizationCopyRights (page 12)
Authorizes and preauthorizes rights.

AuthorizationCopyInfo (page 10)
Retrieves side-band data such as the user name and other information gathered during evaluation
of authorization.

AuthorizationFreeItemSet (page 18)
Frees the memory associated with an authorization set.

Externalizing and Internalizing Authorization References

AuthorizationMakeExternalForm (page 18)
Creates an external representation of an authorization reference.

AuthorizationCreateFromExternalForm (page 15)
Internalizes the external representation of an authorization reference.

Modifying the Policy Database

AuthorizationRightGet (page 19)
Retrieves a right definition as a dictionary.

AuthorizationRightSet (page 20)
Creates or updates a right entry in the policy database.

AuthorizationRightRemove (page 20)
Removes a right from the policy database.

Executing With Root Privileges

AuthorizationExecuteWithPrivileges (page 16)
Runs an executable tool with root privileges.

AuthorizationCopyPrivilegedReference (page 11)
Retrieves the authorization reference passed by the AuthorizationExecuteWithPrivileges
function.

Functions

AuthorizationCopyInfo
Retrieves side-band data such as the user name and other information gathered during evaluation of
authorization.

10 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

OSStatus AuthorizationCopyInfo (
 AuthorizationRef authorization,
 AuthorizationString tag,
 AuthorizationItemSet **info
);

Parameters
authorization

An authorization reference referring to the authorization session.

tag
An authorization string specifying the type of data the Security Server should return. Pass NULL to
retrieve all available information.

info
A pointer to an authorization set the Security Server creates. On return, this set contains side-band
authorization data. When this set is no longer needed, free the memory associated with it by calling
the function AuthorizationFreeItemSet (page 18).

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
An authorization plug-in can store the results of an authentication operation by calling the SetContextValue
function. You can use the AuthorizationCopyInfo function to retrieve this information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationCopyPrivilegedReference
Retrieves the authorization reference passed by the AuthorizationExecuteWithPrivileges function.

OSStatus AuthorizationCopyPrivilegedReference (
 AuthorizationRef *authorization,
 AuthorizationFlags flags
);

Parameters
authorization

A pointer to an authorization reference. The Security Server allocates the authorization reference for
you, so you do not need to call the function AuthorizationCreate (page 14). On return, it points
to a copy of the authorization reference used in the call to the
AuthorizationExecuteWithPrivileges (page 16) function.

flags
Reserved options. Pass the kAuthorizationFlagDefaults constant.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Functions 11
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
This function retrieves the authorization reference you pass in the function
AuthorizationExecuteWithPrivileges (page 16). The new process can use the authorization reference
to verify authorizations obtained by the calling process.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationCopyRights
Authorizes and preauthorizes rights.

OSStatus AuthorizationCopyRights (
 AuthorizationRef authorization,
 const AuthorizationRights *rights,
 const AuthorizationEnvironment *environment,
 AuthorizationFlags flags,
 AuthorizationRights **authorizedRights
);

Parameters
authorization

An authorization reference referring to the authorization session.

rights
A pointer to a set of authorization rights you create. Pass NULL if the application requires no rights
at this time.

environment
Data used when authorizing or preauthorizing rights. Not used in Mac OS X v10.2 and earlier. In Mac
OS X v10.3 and later, you can pass icon or prompt data to be used in the authentication dialog box.
In Mac OS X v10.4 and later, you can also pass a user name and password in order to authorize a user
without displaying the authentication dialog box. Possible values for this parameter are listed in
Security.framework/Headers/AuthorizationTags.h. The data passed in this parameter is
not stored in the authorization reference; it is used only during authorization. If you are not passing
any data in this parameter, pass the constant kAuthorizationEmptyEnvironment.

12 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

flags
A bit mask for specifying authorization options. Use the following option sets.

 ■ Pass the constant kAuthorizationFlagDefaults if no options are necessary.

 ■ Specify the kAuthorizationFlagExtendRights mask to request rights. You can also specify
the kAuthorizationFlagInteractionAllowed mask to allow user interaction.

 ■ Specify the kAuthorizationFlagPartialRights and kAuthorizationFlagExtendRights
masks to request partial rights. You can also specify the
kAuthorizationFlagInteractionAllowed mask to allow user interaction.

 ■ Specify the kAuthorizationFlagPreAuthorize and kAuthorizationFlagExtendRights
masks to preauthorize rights.

 ■ Specify the kAuthorizationFlagDestroyRights mask to prevent the Security Server from
preserving the rights obtained during this call.

authorizedRights
A pointer to a newly allocated AuthorizationRights structure. On return, this structure contains
the rights granted by the Security framework. If you do not require this information, pass NULL. If you
specify the kAuthorizationFlagPreAuthorizemask in the flags parameter, the method returns
all the requested rights, including those not granted, but the flags of the rights that could not be
preauthorized include the kAuthorizationFlagCanNotPreAuthorize bit.

Free the memory associated with this set by calling the function AuthorizationFreeItemSet (page
18).

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
There are three main reasons to use this function. The first reason is to preauthorize rights by specifying the
kAuthorizationFlagPreAuthorize, kAuthorizationFlagInteractionAllowed, and
kAuthorizationFlagExtendRightsmasks as authorization options. Preauthorization is most useful when
a right has a zero timeout. For example, you can preauthorize in the application and if it succeeds, call the
helper tool and request authorization. This eliminates calling the helper tool if the Security Server cannot
later authorize the specified rights.

The second reason to use this function is to authorize rights before performing a privileged operation by
specifying the kAuthorizationFlagInteractionAllowed, and kAuthorizationFlagExtendRights
masks as authorization options.

The third reason to use this function is to authorize partial rights. By specifying the
kAuthorizationFlagPartialRights, kAuthorizationFlagInteractionAllowed, and
kAuthorizationFlagExtendRights masks as authorization options, the Security Server grants all rights
it can authorize. On return, the authorized set contains all the rights.

If you do not specify the kAuthorizationFlagPartialRights mask and the Security Server denies at
least one right, then the status of this function on return is errAuthorizationDenied.

If you do not specify the kAuthorizationFlagInteractionAllowedmask and the Security Server requires
user interaction, then the status of this function on return is errAuthorizationInteractionNotAllowed.

If you specify the kAuthorizationFlagInteractionAllowedmask and the user cancels the authentication
process, then the status of this function on return is errAuthorizationCanceled.

Availability
Available in Mac OS X v10.0 and later.

Functions 13
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Related Sample Code
AuthForAll
BSDLLCTest
MoreIsBetter

Declared In
Authorization.h

AuthorizationCreate
Creates a new authorization reference and provides an option to authorize or preauthorize rights.

OSStatus AuthorizationCreate (
 const AuthorizationRights *rights,
 const AuthorizationEnvironment *environment,
 AuthorizationFlags flags,
 AuthorizationRef *authorization
);

Parameters
rights

A pointer to a set of authorization rights you create. Pass NULL if the application requires no rights
at this time.

environment
Data used when authorizing or preauthorizing rights. Not used in Mac OS X v10.2 and earlier. In Mac
OS X v10.3 and later, you can pass icon or prompt data to be used in the authentication dialog box.
In Mac OS X v10.4 and later, you can also pass a user name and password in order to authorize a user
without user interaction. Possible values for this parameter are listed in
Security.framework/Headers/AuthorizationTags.h. The data passed in this parameter is
not stored in the authorization reference; it is used only during authorization. If you are not passing
any data in this parameter, pass the constant kAuthorizationEmptyEnvironment.

flags
A bit mask for specifying authorization options. Use the following option sets.

 ■ Pass the constant kAuthorizationFlagDefaults if no options are necessary.

 ■ Specify the kAuthorizationFlagExtendRights mask to request rights. You can also specify
the kAuthorizationFlagInteractionAllowed mask to allow user interaction.

 ■ Specify the kAuthorizationFlagPartialRights and kAuthorizationFlagExtendRights
masks to request partial rights. You can also specify the
kAuthorizationFlagInteractionAllowed mask to allow user interaction.

 ■ Specify the kAuthorizationFlagPreAuthorize and kAuthorizationFlagExtendRights
masks to preauthorize rights.

 ■ Specify the kAuthorizationFlagDestroyRights mask to prevent the Security Server from
preserving the rights obtained during this call.

authorization
A pointer to an authorization reference. On return, this parameter refers to the authorization session
the Security Server creates. Pass NULL if you require a function result but no authorization reference.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

14 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
The primary purpose of this function is to create the opaque authorization reference structure associated
with the authorization reference. You use the authorization reference in other authorization functions.

You can use this function to authorize all or partial rights. Authorizing rights with this function is most useful
for applications that require a one-time authorization. By passing NULL to the authorization parameter,
the Security Server attempts to authorize the requested rights and returns the appropriate result code without
actually granting the rights. If you are not going to call any other authorization functions, use this method
to determine if a user has authorization without granting any rights.

You can also use this function to preauthorize rights by specifying the kAuthorizationFlagPreAuthorize
mask. Preauthorization is most useful when a right has a zero timeout. For example, you can preauthorize
in the application and if it succeeds, call the helper tool and request authorization. This eliminates calling
the helper tool if the user cannot later authorize the specified rights.

If you do not specify the kAuthorizationFlagPartialRights mask and the Security Server denies at
least one right, then the status of this function on return is errAuthorizationDenied.

If you do not specify the kAuthorizationFlagInteractionAllowedmask and the Security Server requires
user interaction, then the status of this function on return is errAuthorizationInteractionNotAllowed.

If you specify the kAuthorizationFlagInteractionAllowedmask and the user cancels the authentication
process, then the status of this function on return is errAuthorizationCanceled.

When your application no longer needs the authorization reference, use the function
AuthorizationFree (page 17) to free the memory associated with it.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AuthForAll
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationCreateFromExternalForm
Internalizes the external representation of an authorization reference.

OSStatus AuthorizationCreateFromExternalForm (
 const AuthorizationExternalForm *extForm,
 AuthorizationRef *authorization
);

Parameters
extForm

A pointer to the external representation of the authorization reference you retrieve from the calling
process.

Functions 15
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

authorization
A pointer to an authorization reference. On return, this points to the local copy of the authorization
reference. The Security Server allocates the authorization reference for you, so you do not need to
call the function AuthorizationCreate (page 14).

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
When passing an authorization reference between processes, use this function to internalize the external
representation of the authorization reference you created using the function
AuthorizationMakeExternalForm (page 18).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationExecuteWithPrivileges
Runs an executable tool with root privileges.

OSStatus AuthorizationExecuteWithPrivileges (
 AuthorizationRef authorization,
 const char *pathToTool,
 AuthorizationFlags options,
 char *const *arguments,
 FILE **communicationsPipe
);

Parameters
authorization

An authorization reference referring to the authorization session.

pathToTool
The full POSIX pathname of the tool to execute.

options
Reserved options. Pass the kAuthorizationFlagDefaults constant.

arguments
An argv-style vector of strings to send to the tool.

communicationsPipe
A pointer to a file structure. The Security Server creates the file, opens it for reading and writing, and
connects it to the tool’s standard input and output. On return, you must close and dispose of this file
using fclosewhen your communication is complete. Pass NULL if you do not need a communications
channel.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

16 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
This function enables you to execute the tool you specify in the pathToTool parameter as a separate,
privileged process. The new process will run with root privileges regardless of the privileges of the invoking
process. The new process can retrieve the authorization reference by calling the function
AuthorizationCopyPrivilegedReference (page 11). The arguments you pass in the arguments
parameter are relayed to the new process’s argv parameter. A set of file descriptors is linked to the new
process’s standard input and output so that your process may communicate with the new process.

To check if the user is authorized to perform this operation, you should preauthorize the
kAuthorizationRightExecute right. See AuthorizationItem (page 23) for a description of what
information is included in the authorization item for this right.

Special Considerations

You should use this function only to allow installers to run as root and to allow a setuid tool to repair its
setuid bit if lost. This function works only if the Security Server establishes proper authorization.

This function poses a security concern because it will indiscriminately run any tool or application, severely
increasing the security risk. You should avoid the use of this function if possible. One alternative is to split
your code into two parts—the application and a setuid tool. The application invokes the setuid tool using
standard methods. The setuid tool can then perform the privileged operations. If the tool loses its setuid bit,
use the AuthorizationExecuteWithPrivileges function to repair it. Factoring your program minimizes
the use of this function and reduces the risk of harm. Read Inside Mac OS X: Performing Privileged Operations
With Authorization Services.

Note that this function respects the setuid bit, if it is set. That is, if the tool you are executing has its setuid
bit set and its owner set to foo, the tool will be executed with the user foo’s privileges, not root privileges.
To ensure that your call to the AuthorizationExecuteWithPrivileges function works as intended, make
sure the setuid bit of the tool you wish to execute is cleared before calling
AuthorizationExecuteWithPrivileges to execute the tool.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationFree
Frees the memory associated with an authorization reference.

OSStatus AuthorizationFree (
 AuthorizationRef authorization,
 AuthorizationFlags flags
);

Parameters
authorization

The authorization reference to free.

Functions 17
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

flags
A bit mask. In most cases, pass the constant kAuthorizationFlagDefaults. To remove all shared
and nonshared authorizations, pass the constant kAuthorizationFlagDestroyRights.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
Call this function when your application no longer needs the authorization reference you created using the
function AuthorizationCreate (page 14).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationFreeItemSet
Frees the memory associated with an authorization set.

OSStatus AuthorizationFreeItemSet (
 AuthorizationItemSet *set
);

Parameters
set

A pointer to the authorization set to free.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
When your application no longer needs the authorization item sets created by the Security Server in the
AuthorizationCopyRights and AuthorizationCopyInfo functions, you should call this function to free it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationMakeExternalForm
Creates an external representation of an authorization reference.

18 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

OSStatus AuthorizationMakeExternalForm (
 AuthorizationRef authorization,
 AuthorizationExternalForm *extForm
);

Parameters
authorization

An authorization reference referring to the authorization session.

extForm
A pointer to an external authorization reference. On return, this points to the external representation
of the authorization reference.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
This function creates an external representation of an authorization reference so that you can transmit it
between processes. Authorizations are bound by session, process, and time limits, so you cannot store the
authorization reference for another process to use. Instead, you must create an external representation of
the authorization reference and pass it securely to the other process. Use the function
AuthorizationCreateFromExternalForm (page 15) to internalize the external representation of the
authorization reference.

If it is necessary for your application to perform some privileged operations, it is good programming practice
to isolate all of the privileged operations in a separate process, referred to as a helper tool (see Authorization
Services ProgrammingGuide for details). In this case, you must pass your authorization reference to the helper
tool so that Authorization Services can tell that the helper tool is operating on behalf of your application.
Doing so allows the authorization dialog to show your application’s path rather than the path to the helper
tool and it allows the system to determine whether the authorization dialog should have keyboard focus.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
MoreIsBetter
QISA

Declared In
Authorization.h

AuthorizationRightGet
Retrieves a right definition as a dictionary.

OSStatus AuthorizationRightGet (
 const char *rightName,
 CFDictionaryRef *rightDefinition
);

Parameters
rightName

An ASCII character string representing the rightname. Wildcard right names are valid.

Functions 19
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

rightDefinition
A reference to a dictionary. On return, this points to a dictionary of keys that define the right. Passing
NULL checks if the right is defined. You should release the memory used by the returned dictionary.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
You do not need an authorization reference to use this function because the policy database is world readable.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
AuthForAll

Declared In
AuthorizationDB.h

AuthorizationRightRemove
Removes a right from the policy database.

OSStatus AuthorizationRightRemove (
 AuthorizationRef authRef,
 const char *rightName
);

Parameters
authRef

A valid authorization reference used to authorize modifications.

rightName
An ASCII character string representing the right name. This function does not accept wildcard right
names.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
The right you remove must be an explicit right with no wildcards. Wildcard rights are for use by system
administrators for site configuration.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AuthorizationDB.h

AuthorizationRightSet
Creates or updates a right entry in the policy database.

20 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

OSStatus AuthorizationRightSet (
 AuthorizationRef authRef,
 const char *rightName,
 CFTypeRef rightDefinition,
 CFStringRef descriptionKey,
 CFBundleRef bundle,
 CFStringRef localeTableName
);

Parameters
authRef

A valid authorization reference used to authorize modifications.

rightName
An ASCII character string representing the right name. The policy database does not accept wildcard
right names.

rightDefinition
Either a CFDictionary containing keys defining the rules or a CFString representing the name of another
right whose rules you wish to duplicate. See Policy Database Constants (page 28) for some
possible values.

descriptionKey
A CFString reference used as a key for looking up localized descriptions. If no localization is found,
this is the description itself. This parameter is optional; pass NULL if you do not require it.

bundle
A bundle to get localizations from if not the main bundle. This parameter is optional; pass NULL if
you do not require it.

localeTableName
A CFString representing a table name from which to get localizations. This parameter is optional; pass
NULL if you have no localizations or you wish to use the localizations available in Localizable.strings.

Return Value
A result code. See “Authorization Services Result Codes” (page 30).

Discussion
The right you create must be an explicit right with no wildcards. Wildcard rights are for use by system
administrators for site configuration.

You can use this function to create a new right or modify an existing right. For example,

AuthorizationRightSet(NULL, "com.ifoo.ifax.send",
CFSTR(kAuthorizationRuleIsAdmin), CFSTR("Authorize sending of a fax"), NULL,
NULL);

adds a rule for letting administrators send faxes. This example creates a right named "com.ifoo.ifax.send"
and sets the rules to require the user to be an administrator by using the kAuthorizationRuleIsAdmin
constant. This example also sets a comment to let the system administrator know that the right authorizes
administrators to send a fax.

To specify additional attributes for the right, you can pass an CFDictionary type in the rightDefinition
parameter as shown in the following example.

CFStringRef keys[2] = {CFSTR(kRightRule), CFSTR(kRightComment)};
CFStringRef values[2] = {CFSTR(kAuthorizationRuleIsAdmin), CFSTR("authorizes
sending of 1 fax message")};
CFDictionaryRef aDict;

Functions 21
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

aDict = CFDictionaryCreate(NULL, (void *)keys, (void *)values, 2,
&kCFCopyStringDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks);
AuthorizationRightSet(NULL, "com.ifoo.ifax.send", aDict, CFSTR("Authorize
sending of a fax"), NULL, NULL);
CFRelease(aDict);

This call creates the same right as before, but adds a specific right comment to the rules definition.

When you specify comments, you should be specific about what you need to authorize. For example, the
means of proof required for kAuthorizationRuleAuthenticateAsAdmin (a username and password)
should not be included here since that rule might be configured differently.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
AuthForAll

Declared In
AuthorizationDB.h

Data Types

AuthorizationEnvironment
Represents a set of data about the environment, such as user name and other information gathered during
evaluation of authorization.

typedef AuthorizationItemSet AuthorizationEnvironment;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationExternalForm
The external representation of an authorization reference.

struct AuthorizationExternalForm {
 char bytes[kAuthorizationExternalFormLength];
};

Fields
bytes

An array of characters representing the external form of an authorization reference.

22 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
Authorization references are bound by session, process, and time limits, so you cannot store the authorization
references for another process to use. Use the functions AuthorizationMakeExternalForm (page 18)
and AuthorizationCreateFromExternalForm (page 15) to externalize and internalize the authorization
reference. Applications should take care not to disclose the external authorization reference to potential
attackers since any process can use this external authorization reference to access the authorization reference.

AuthorizationFlags
Represents a bit mask of authorization options.

typedef UInt32 AuthorizationFlags;

Discussion
See “Authorization Options” (page 25) for a description of masks that you can use.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationItem
Contains information about an authorization right or the authorization environment.

typedef struct {
 AuthorizationString name;
 UInt32 valueLength;
 void *value;
 UInt32 flags;
}AuthorizationItem;

Fields
name

The required name of the authorization right or environment data. The name of a right is something
that you create. You should name rights in a style similar to Java package names. For example,
"com.myOrganization.myProduct.myRight". Set this field to kAuthorizationRightExecute
when requesting a right for use in the function AuthorizationExecuteWithPrivileges (page
16).

See the Security.framework/Headers/AuthorizationTags.h header file for possible values
for environment data.

valueLength
An unsigned 32-bit integer that represents the number of bytes in the value field. Set the
valueLength field to 0 if you set the value field to NULL.

value
A pointer to information pertaining to the name field. For example, if the name field is set to the value
represented by the constant kAuthorizationRightExecute, then set the value field to the full
POSIX pathname of the tool you want to execute. In most other cases, set this field to NULL.

flags
Reserved option bits. Set to 0.

Data Types 23
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
When using an authorization item to contain a right, set the name field to the name of the right—for example,
"com.myOrganization.myProduct.myRight", the valueLength and flags fields to 0, and the value
field to NULL. For more information on naming rights, read Authorization Services Programming Guide

When using an authorization item for the AuthorizationExecuteWithPrivileges function, set the name
field to kAuthorizationRightExecute, and the flags field to 0. Set the value field to the full POSIX
pathname of the tool to execute and the valueLength field to the byte length of the value in the value
field.

When using an authorization item to contain environment data, set the name field to the name of the
environment data—for example, kAuthorizationEnvironmentUsername—and the flags field to 0. Set
the value field, in this case, to the actual user name and the valueLength field to the byte length of the
value in the value field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationItemSet
Represents a set of authorization items.

typedef struct {
 UInt32 count;
 AuthorizationItem *items;
}AuthorizationItemSet;

Fields
count

The number of elements in the items array.

items
A pointer to an array of authorization items. If count is greater than 1, items points to the first item
in an array of such items. You should set this parameter to NULL if there are no items.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationRef
Represents a pointer to an opaque authorization reference structure.

typedef const struct AuthorizationOpaqueRef* AuthorizationRef;

Discussion
This data type points to a structure the Security Server uses to store information about the authorization
session. Use the functions described in “Authorization Services Functions” (page 10) to create, access, and
free the authorization reference.

24 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationRights
Represents a set of authorization rights.

typedef AuthorizationItemSet AuthorizationRights;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

AuthorizationString
Represents a zero-terminated string in UTF-8 encoding.

typedef const char* AuthorizationString;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Authorization.h

Constants

Authorization Options
Define valid authorization options.

Constants 25
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

enum {
 kAuthorizationFlagDefaults = 0,
 kAuthorizationFlagInteractionAllowed = (1 << 0),
 kAuthorizationFlagExtendRights = (1 << 1),
 kAuthorizationFlagPartialRights = (1 << 2),
 kAuthorizationFlagDestroyRights = (1 << 3),
 kAuthorizationFlagPreAuthorize = (1 << 4),
 kAuthorizationFlagNoData = (1 << 20)
};

Constants
kAuthorizationFlagDefaults

If no bits are set, none of the following features are available.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagInteractionAllowed
If the bit specified by this mask is set, you permit the Security Server to interact with the user when
necessary.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagExtendRights
If the bit specified by this mask is set, the Security Server attempts to grant the rights requested. Once
the Security Server denies one right, it ignores the remaining requested rights.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagPartialRights
If the bit specified by this mask and the kAuthorizationFlagExtendRights mask are set, the
Security Server grants or denies rights on an individual basis and all rights are checked.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagDestroyRights
If the bit specified by this mask is set, the Security Server revokes authorization from the process as
well as from any other process that is sharing the authorization. If the bit specified by this mask is not
set, the Security Server revokes authorization from the process but not from other processes that
share the authorization.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagPreAuthorize
If the bit specified by this mask is set, the Security Server preauthorizes the rights requested.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

kAuthorizationFlagNoData
Private bits. Do not use.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

26 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Discussion
The bits represented by these masks instruct the Security Server how to proceed with the function in which
you pass them. Set all unused bits to 0 to allow for future expansion.

Authorization Rights Mask
Defines values the Security Server sets in an authorization item’s flag field.

enum {
 kAuthorizationFlagCanNotPreAuthorize = (1 << 0)
};

Constants
kAuthorizationFlagCanNotPreAuthorize

Indicates the Security Server could not preauthorize the right.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

Discussion

Empty Environment
Defines an empty environment.

#define kAuthorizationEmptyEnvironment NULL

Constants
kAuthorizationEmptyEnvironment

Indicates an empty environment. You should pass this constant in functions with an environment
parameter if you have no environment data to provide.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

External Authorization Reference Length
Defines the byte length of the external authorization reference.

enum {
 kAuthorizationExternalFormLength = 32
};

Constants
kAuthorizationExternalFormLength

Indicates, in number of bytes, the length of the array in the AuthorizationExternalForm (page
22) structure.

Available in Mac OS X v10.0 and later.

Declared in Authorization.h.

Constants 27
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Name Tags
Specify the type of environment data or right.

 #define kAuthorizationEnvironmentUsername "username"
#define kAuthorizationEnvironmentPassword "password"
#define kAuthorizationEnvironmentShared "shared"
#define kAuthorizationRightExecute "system.privilege.admin"
#define kAuthorizationEnvironmentPrompt "prompt"
#define kAuthorizationEnvironmentIcon "icon"

Constants
kAuthorizationEnvironmentUsername

Specifies a user name.

Available in Mac OS X v10.0 and later.

Declared in AuthorizationTags.h.

kAuthorizationEnvironmentPassword
Specifies a password.

Available in Mac OS X v10.0 and later.

Declared in AuthorizationTags.h.

kAuthorizationEnvironmentShared
Specifies a shared right.

Available in Mac OS X v10.0 and later.

Declared in AuthorizationTags.h.

kAuthorizationRightExecute
Specifies the name of the right associated with the function
AuthorizationExecuteWithPrivileges (page 16).

Available in Mac OS X v10.0 and later.

Declared in AuthorizationTags.h.

kAuthorizationEnvironmentPrompt
Specifies the name of the authorization item that should be passed into the environment when
specifying invocation-specific additional text. The value should be a localized UTF8 string.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationTags.h.

kAuthorizationEnvironmentIcon
Specifies the name of the authorization item that should be passed into the environment when
specifying an alternate icon. The value should be a full path to an image compatible with the NSImage
class.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationTags.h.

Discussion
These tags are possible values for the name field of an authorization item. This is not an all-inclusive set. You
determine the name of the right to request. These environment tags are for future use.

Policy Database Constants
Defines constants for use in settting rights and rules in the policy database.

28 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

#define kAuthorizationRightRule "rule"
#define kAuthorizationRuleIsAdmin "is-admin"
#define kAuthorizationRuleAuthenticateAsAdmin "authenticate-admin"
#define kAuthorizationRuleAuthenticateAsSessionUser "authenticate-session-user"
#define kAuthorizationRuleClassAllow "allow"
#define kAuthorizationRuleClassDeny "deny"
#define kAuthorizationComment "comment"

Constants
kAuthorizationRightRule

Indicates a rule delegation key. Instead of specifying exact behavior, some rules are shipped with the
system and may be used as delegate rules. Use this with any of the delegate rule definition constants.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationRuleIsAdmin
Indicates a delegate rule definition constant specifying that the user must be an administrator.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationRuleAuthenticateAsAdmin
Indicates a delegate rule definition constant specifying that the user must authenticate as an
administrator.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationRuleAuthenticateAsSessionUser
Indicates a delegate rule definition constant specifying that the user must authenticate as the session
owner (logged-in user).

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationRuleClassAllow
Indicates a delegate rule definition constant that always allows the specified right.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationRuleClassDeny
Indicates a deleage rule definition constant that always denies the specified right.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

kAuthorizationComment
Indicates comments for a rule. The comments appear in the policy database for the administrator to
understand what the rule is for. Rule comments are not the same as localized descriptions which are
presented to the user.

Available in Mac OS X v10.3 and later.

Declared in AuthorizationDB.h.

Discussion
You can use these constants when creating or modifying a rule in the policy database using the
AuthorizationRightSet (page 20) function.

Constants 29
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Result Codes

The most common result codes returned by the Security Server are listed in the table below.

DescriptionValueResult Code

The operation completed successfully.0errAuthorizationSuccess

Available in Mac OS X v10.0 and later.

The set parameter is invalid.-60001errAuthorizationInvalidSet

Available in Mac OS X v10.0 and later.

The authorization parameter is invalid.-60002errAuthorizationInvalidRef

Available in Mac OS X v10.0 and later.

The tag parameter is invalid.-60003errAuthorizationInvalidTag

Available in Mac OS X v10.0 and later.

The authorizedRights parameter is invalid.-60004errAuthorizationInvalidPointer

Available in Mac OS X v10.0 and later.

The Security Server denied authorization for
one or more requested rights. This error is also
returned if there was no definition found in
the policy database, or a definition could not
be created.

-60005errAuthorizationDenied

Available in Mac OS X v10.0 and later.

The user canceled the operation.-60006errAuthorizationCanceled

Available in Mac OS X v10.0 and later.

The Security Server denied authorization
because no user interaction is allowed.

-60007errAuthorizationInteractionNotAllowed

Available in Mac OS X v10.0 and later.

An unrecognized internal error occurred.-60008errAuthorizationInternal

Available in Mac OS X v10.0 and later.

The Security Server denied externalization of
the authorization reference.

-60009errAuthorizationExternalizeNotAllowed

Available in Mac OS X v10.0 and later.

The Security Server denied internalization of
the authorization reference.

-60010errAuthorizationInternalizeNotAllowed

Available in Mac OS X v10.0 and later.

30 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

DescriptionValueResult Code

The flags parameter is invalid.-60011errAuthorizationInvalidFlags

Available in Mac OS X v10.0 and later.

The tool failed to execute.-60031errAuthorizationToolExecuteFailure

Available in Mac OS X v10.0 and later.

The attempt to execute the tool failed to return
a success or an error code.

-60032errAuthorizationToolEnvironmentError

Available in Mac OS X v10.0 and later.

Result Codes 31
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

32 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Authorization Services C Reference

Framework: Security/Security.h

Declared in SecCertificate.h
SecIdentity.h
SecIdentitySearch.h
SecKey.h
SecPolicy.h
SecPolicySearch.h
SecTrust.h
SecTrustedApplication.h
SecTrustSettings.h

Overview

Certificate, Key, and Trust Services provides a C API for managing certificates, public and private keys, and
trust policies. You can use these services in your application to:

 ■ Determine identity by matching a certificate with a private key

 ■ Create and request certificate objects

 ■ Import certificates, keys, and identities

 ■ Create public-private key pairs

 ■ Represent trust policies

Certificate, Key, and Trust Services can be used in applications running in Aspen.

Functions by Task

Getting Type Identifiers

SecCertificateGetTypeID (page 44)
Returns the unique identifier of the opaque type to which a SecCertificate object belongs.

SecIdentityGetTypeID (page 49)
Returns the unique identifier of the opaque type to which a SecIdentity object belongs.

SecIdentitySearchGetTypeID (page 51)
Returns the unique identifier of the opaque type to which a SecIdentitySearch object belongs.

Overview 33
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecKeyGetTypeID (page 57)
Returns the unique identifier of the opaque type to which a SecKey object belongs.

SecPolicyGetTypeID (page 59)
Returns the unique identifier of the opaque type to which a SecPolicy object belongs.

SecPolicySearchGetTypeID (page 61)
Returns the unique identifier of the opaque type to which a SecPolicySearch object belongs.

SecTrustGetTypeID (page 70)
Returns the unique identifier of the opaque type to which a SecTrust object belongs.

Managing Certificates

SecCertificateAddToKeychain (page 37)
Adds a certificate to a keychain.

SecCertificateCreateFromData (page 40)
Creates a certificate object based on the specified data, type, and encoding.

SecCertificateCopyCommonName (page 38)
Retrieves the common name of the subject of a certificate.

SecCertificateCopyEmailAddresses (page 38)
Retrieves the email addresses for the subject of a certificate.

SecCertificateCopyPreference (page 39)
Retrieves the preferred certificate for the specified name and key use.

SecCertificateCopyPublicKey (page 39)
Retrieves the public key from a certificate.

SecCertificateGetAlgorithmID (page 41)
Retrieves the algorithm identifier for a certificate.

SecCertificateGetCLHandle (page 41)
Retrieves the certificate library handle from a certificate object.

SecCertificateGetData (page 42)
Retrieves the data for a certificate.

SecCertificateGetIssuer (page 42)
Unsupported.

SecCertificateGetItem (page 43)
Unsupported.

SecCertificateGetSubject (page 43)
Unsupported.

SecCertificateGetType (page 43)
Retrieves the type of a specified certificate.

SecCertificateSetPreference (page 44)
Sets the preferred certificate for a specified name, key use, and date.

34 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Managing Identities

SecIdentityCopyCertificate (page 46)
Retrieves a certificate associated with an identity.

SecIdentityCopyPreference (page 46)
Returns the preferred identity for the specified name and key use.

SecIdentityCopyPrivateKey (page 47)
Retrieves the private key associated with an identity.

SecIdentityCopySystemIdentity (page 47)
Obtains the system-wide identity associated with a specified domain.

SecIdentityCreateWithCertificate (page 48)
Creates a new identity for a certificate and its associated private key.

SecIdentitySearchCopyNext (page 49)
Finds the next identity matching specified search criteria

SecIdentitySearchCreate (page 50)
Creates a search object for finding identities.

SecIdentitySetPreference (page 51)
Sets the preferred identity for the specified name and key use.

SecIdentitySetSystemIdentity (page 52)
Assigns the system-wide identity to be associated with a specified domain.

Cryptography and Digital Signatures

SecKeyCreatePair (page 52)
Creates an asymmetric key pair and stores it in a keychain.

SecKeyGetCredentials (page 55)
Returns an access credential for a key.

SecKeyGetCSPHandle (page 56)
Returns the CSSM CSP handle for a key.

SecKeyGenerate (page 54)
Creates a symmetric key and optionally stores it in a keychain.

SecKeyGetCSSMKey (page 57)
Retrieves a pointer to the CSSM_KEY structure containing the key stored in a keychain item.

Managing Policies

SecPolicyGetOID (page 58)
Retrieves a policy’s object identifier.

SecPolicyGetTPHandle (page 58)
Retrieves the trust policy handle for a policy object.

SecPolicyGetValue (page 59)
Retrieves a policy’s value.

Functions by Task 35
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecPolicySearchCopyNext (page 60)
Retrieves a policy object for the next policy matching specified search criteria.

SecPolicySearchCreate (page 60)
Creates a search object for finding policies.

SecPolicySetValue (page 62)
Sets a policy's value.

Managing Trust

SecTrustCopyAnchorCertificates (page 62)
Retrieves the anchor (root) certificates stored by Mac OS X.

SecTrustCopyCustomAnchorCertificates (page 63)
Retrieves the custom anchor certificates, if any, used by a given trust.

SecTrustCopyPolicies (page 64)
Retrieves the policies used by a given trust management object.

SecTrustCreateWithCertificates (page 64)
Creates a trust management object based on certificates and policies.

SecTrustEvaluate (page 65)
Evaluates trust for the specified certificate and policies.

SecTrustGetCssmResult (page 67)
Retrieves the CSSM trust result.

SecTrustGetCssmResultCode (page 68)
Retrieves the CSSM result code from the most recent trust evaluation for a trust management object.

SecTrustGetResult (page 69)
Retrieves details on the outcome of a call to the function SecTrustEvaluate.

SecTrustGetTPHandle (page 70)
Retrieves the trust policy handle.

SecTrustSetAnchorCertificates (page 71)
Sets the anchor certificates used when evaluating a trust management object.

SecTrustSetKeychains (page 72)
Sets the keychains searched for intermediate certificates when evaluating a trust management object.

SecTrustSetParameters (page 73)
Sets the action and action data for a trust management object.

SecTrustSetPolicies (page 74)
Set the policies to use in an evaluation.

SecTrustSetVerifyDate (page 81)
Sets the date and time against which the certificates in a trust management object are verified.

SecTrustGetCSSMAnchorCertificates (page 67) Deprecated in Mac OS X v10.5
Retrieves the CSSM anchor certificates.

SecTrustGetUserTrust (page 71) Deprecated in Mac OS X v10.5
Retrieves the user-specified trust setting for a certificate and policy.

SecTrustSetUserTrust (page 81) Deprecated in Mac OS X v10.5
Sets the user-specified trust settings of a certificate and policy.

36 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Managing Trust Settings

SecTrustSettingsCopyCertificates (page 75)
Obtains an array of all certificates that have trust settings in a specific trust settings domain.

SecTrustSettingsCopyModificationDate (page 75)
Obtains the date and time at which a certificate’s trust settings were last modified.

SecTrustSettingsCopyTrustSettings (page 76)
Obtains the trust settings for a certificate.

SecTrustSettingsCreateExternalRepresentation (page 78)
Obtains an external, portable representation of the specified domain's trust settings.

SecTrustSettingsImportExternalRepresentation (page 78)
Imports trust settings into a trust domain.

SecTrustSettingsRemoveTrustSettings (page 79)
Deletes the trust settings for a certificate.

SecTrustSettingsSetTrustSettings (page 80)
Specifies trust settings for a certificate.

Reporting Errors

SecCopyErrorMessageString (page 45)
Returns a string describing an error.

Functions

SecCertificateAddToKeychain
Adds a certificate to a keychain.

OSStatus SecCertificateAddToKeychain (
 SecCertificateRef certificate,
 SecKeychainRef keychain
);

Parameters
certificate

The certificate object for the certificate to add to the keychain.

keychain
The keychain object for the keychain to which you want to add the certificate. Pass NULL to add the
certificate to the default keychain.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function requires a certificate object, which can, for example, be created with the
SecCertificateCreateFromData (page 40) function or obtained over a network (see Secure Transport
Reference). If the certificate has already been added to the specified keychain, the function returns

Functions 37
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

errSecDuplicateItem and does not add another copy to the keychain. The function looks at the certificate
data, not at the certificate object, to determine whether the certificate is a duplicate. It considers two certificates
to be duplicates if they have the same primary key attributes.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecCertificate.h

SecCertificateCopyCommonName
Retrieves the common name of the subject of a certificate.

OSStatus SecCertificateCopyCommonName(
 SecCertificateRef certificate,
 CFStringRef *commonName
);

Parameters
certificate

The certificate object from which to retrieve the common name.

commonName
On return, points to the common name. Call the CFRelease function to release this object when you
are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecCertificate.h

SecCertificateCopyEmailAddresses
Retrieves the email addresses for the subject of a certificate.

OSStatus SecCertificateCopyEmailAddresses(
 SecCertificateRef certificate,
 CFArrayRef *emailAddresses
);

Parameters
certificate

The certificate object from which to retrieve the email addresses.

emailAddresses
On return, an array of zero or more CFStringRef elements, each containing one email address found
in the certificate subject. Call the CFRelease function to release this object when you are finished
with it.

38 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
Not every certificate subject includes an email address. If the function does not find any email addresses, it
returns a CFArrayRef object with zero elements in the array.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecCertificate.h

SecCertificateCopyPreference
Retrieves the preferred certificate for the specified name and key use.

OSStatus SecCertificateCopyPreference(
 CFStringRef name,
 CSSM_KEYUSE keyUsage,
 SecCertificateRef *certificate
);

Parameters
name

A string containing an email address (RFC822) or other name for which a preferred certificate is
requested.

keyUsage
A key use value, as defined in Security.framework/cssmtype.h. Pass 0 to ignore this parameter.

certificate
On return, a reference to the preferred certificate, or NULL if none was found. Call the CFRelease
function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function is typically used to obtain the preferred encryption certificate for an email recipient.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecCertificateSetPreference (page 44)

Declared In
SecCertificate.h

SecCertificateCopyPublicKey
Retrieves the public key from a certificate.

Functions 39
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecCertificateCopyPublicKey(
 SecCertificateRef certificate,
 SecKeyRef *key
);

Parameters
certificate

The certificate object from which to retrieve the public key.

key
On return, points to the public key for the specified certificate. Call the CFRelease function to release
this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecCertificate.h

SecCertificateCreateFromData
Creates a certificate object based on the specified data, type, and encoding.

OSStatus SecCertificateCreateFromData (
 const CSSM_DATA *data,
 CSSM_CERT_TYPE type,
 CSSM_CERT_ENCODING encoding,
 SecCertificateRef *certificate
);

Parameters
data

A pointer to the certificate data. The data must be an X509 certificate in binary format.

type
The certificate type as defined in Security.framework/cssmtype.h. Permissible values are
CSSM_CERT_X_509v1, CSSM_CERT_X_509v2, and CSSM_CERT_X_509v3. If you are unsure of the
certificate type, use CSSM_CERT_X_509v3.

encoding
The certificate encoding as defined in Security.framework/cssmtype.h. Permissible values are
CSSM_CERT_ENCODING_BER and CSSM_CERT_ENCODING_DER. If you are unsure of the encoding,
use CSSM_CERT_ENCODING_BER.

certificate
On return, points to the newly created certificate object. Call the CFRelease function to release this
object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The certificate object returned by this function is used as input to several other functions in the API.

40 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecCertificate.h

SecCertificateGetAlgorithmID
Retrieves the algorithm identifier for a certificate.

OSStatus SecCertificateGetAlgorithmID(
 SecCertificateRef certificate,
 const CSSM_X509_ALGORITHM_IDENTIFIER **algid
);

Parameters
certificate

The certificate object from which to retrieve the algorithm identifier.

algid
On return, points to a struct that identifies the algorithm for this certificate. This pointer remains valid
until the certificate reference is released. Do not attempt to free this pointer.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The CSSM_X509_ALGORITHM_IDENTIFIER struct is defined in Security.framework/x509defs.h and
discussed in Common Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group
(http://www.opengroup.org/security/cdsa.htm). Possible algorithms are enumerated in
Security.framework/oidsalg.h.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecCertificate.h

SecCertificateGetCLHandle
Retrieves the certificate library handle from a certificate object.

OSStatus SecCertificateGetCLHandle (
 SecCertificateRef certificate,
 CSSM_CL_HANDLE *clHandle
);

Parameters
certificate

The certificate object from which to obtain the certificate library handle.

clHandle
On return, points to the certificate library handle of the specified certificate. This handle remains valid
until the certificate object is released.

Functions 41
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The certificate library handle is the CSSM identifier of the certificate library module that is managing the
certificate. The certificate library handle is used as an input to a number of CSSM functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecCertificate.h

SecCertificateGetData
Retrieves the data for a certificate.

OSStatus SecCertificateGetData (
 SecCertificateRef certificate,
 CSSM_DATA_PTR data
);

Parameters
certificate

A certificate object for the certificate from which to retrieve the data.

data
On return, points to the data for the certificate specified. You must allocate the space for a CSSM_DATA
structure before calling this function. This data pointer is only guaranteed to remain valid as long as
the certificate remains unchanged and valid.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function requires a certificate object, which can, for example, be created with the
SecCertificateCreateFromData (page 40) function, obtained from an identity with the
SecIdentityCopyCertificate (page 46) function, or obtained over a network (see Secure Transport
Reference).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecCertificate.h

SecCertificateGetIssuer
Unsupported.

42 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecCertificateGetIssuer (
 SecCertificateRef certificate,
 CSSM_X509_NAME *issuer
);

Availability
Unsupported.

Declared In
SecCertificate.h

SecCertificateGetItem
Unsupported.

OSStatus SecCertificateGetItem (
 SecCertificateRef certificate,
 SecKeychainItemRef *item
);

Availability
Unsupported.

Declared In
SecCertificate.h

SecCertificateGetSubject
Unsupported.

OSStatus SecCertificateGetSubject (
 SecCertificateRef certificate,
 CSSM_X509_NAME *subject
);

Availability
Unsupported.

Declared In
SecCertificate.h

SecCertificateGetType
Retrieves the type of a specified certificate.

OSStatus SecCertificateGetType (
 SecCertificateRef certificate,
 CSSM_CERT_TYPE *certificateType
);

Parameters
certificate

A certificate object for the certificate for which to obtain the type.

Functions 43
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

certificateType
On return, points to the type of the specified certificate. Certificate types are defined in
Security.framework/cssmtype.h. You must allocate the space for a CSSM_CERT_TYPE structure
before calling this function.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecCertificate.h

SecCertificateGetTypeID
Returns the unique identifier of the opaque type to which a SecCertificate object belongs.

CFTypeID SecCertificateGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecCertificateRef (page 83) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecCertificateRef (page 83)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecCertificate.h

SecCertificateSetPreference
Sets the preferred certificate for a specified name, key use, and date.

OSStatus SecCertificateSetPreference(
 SecCertificateRef certificate,
 CFStringRef name,
 CSSM_KEYUSE keyUsage,
 CFDateRef date
);

Parameters
certificate

The certificate object identifying the preferred certificate.

name
A string containing an email address (RFC822) or other name with which the preferred certificate is
to be associated.

44 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

keyUsage
A key use value, as defined in Security.framework/cssmtype.h. Pass 0 if you don’t want to
specify a particular key use.

date
The date after which this preference is no longer valid. If supplied, the preferred certificate is changed
only if this date is later than the currently saved setting. Pass NULL if this preference should not be
restricted by date.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function is typically used to set the preferred encryption certificate for an email recipient, either manually
(when encrypting email to a recipient) or automatically upon receipt of encrypted email.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecCertificateCopyPreference (page 39)

Declared In
SecCertificate.h

SecCopyErrorMessageString
Returns a string describing an error.

CFStringRef SecCopyErrorMessageString(
 OSStatus status,
 void *reserved
);

Parameters
status

An error result code of type OSStatus or CSSM_RETURN, as returned by a security or CSSM function.

reserved
Reserved for future use. Pass NULL in this parameter.

Return Value
A reference to an error string, or NULL if no error string is available for the specified result code. You must
release this reference when you are finished with it by calling the CFRelease function.

Discussion
The error strings returned by this function are taken from the SecBase.h header file and are therefore not
localizable.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecBase.h

Functions 45
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecIdentityCopyCertificate
Retrieves a certificate associated with an identity.

OSStatus SecIdentityCopyCertificate (
 SecIdentityRef identityRef,
 SecCertificateRef *certificateRef
);

Parameters
identityRef

The identity object for the identity whose certificate you wish to retrieve.

certificateRef
On return, points to the certificate object associated with the specified identity.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
An identity is a digital certificate together with its associated private key.

For a certificate in a keychain, you can cast the SecCertificateRef data type to a SecKeychainItemRef
for use with Keychain Services functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecIdentity.h

SecIdentityCopyPreference
Returns the preferred identity for the specified name and key use.

OSStatus SecIdentityCopyPreference(
 CFStringRef name,
 CSSM_KEYUSE keyUsage,
 CFArrayRef validIssuers,
 SecIdentityRef *identity
);

Parameters
name

A string containing a URI, RFC822 email address, DNS hostname, or other name that uniquely identifies
the service requiring an identity.

keyUsage
A key use value, as defined in Security.framework/cssmtype.h. Pass 0 if you don’t want to
specify a particular key use.

validIssuers
An array of CFDataRef instances whose contents are the subject names of allowable issuers, as
returned by a call toSSLCopyDistinguishedNames (Security.framework/SecureTransport.h).
Pass NULL if you don’t want to limit the search to specific issuers.

46 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

identity
On return, a reference to the preferred identity, or NULL if none was found. Call the CFRelease
function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
If a preferred identity has not been set for the specified name, the returned identity reference is NULL. You
should then typically perform a search for possible identities, using SecIdentitySearchCreate (page 50)
and SecIdentitySearchCopyNext (page 49) , allowing the user to choose from a list if more than one is
found.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecIdentitySetPreference (page 51)

Declared In
SecIdentity.h

SecIdentityCopyPrivateKey
Retrieves the private key associated with an identity.

OSStatus SecIdentityCopyPrivateKey (
 SecIdentityRef identityRef,
 SecKeyRef *privateKeyRef
);

Parameters
identityRef

The identity object for the identity whose private key you wish to retrieve.

privateKeyRef
On return, points to the private key object for the specified identity. The private key must be of class
type kSecAppleKeyItemClass.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
An identity is a digital certificate together with its associated private key.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecIdentity.h

SecIdentityCopySystemIdentity
Obtains the system-wide identity associated with a specified domain.

Functions 47
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecIdentityCopySystemIdentity(
 CFStringRef domain,
 SecIdentityRef *idRef,
 CFStringRef *actualDomain
);

Parameters
domain

The domain for which you want to find an identity, typically in reverse DNS notation, such as
com.apple.security. You may also pass the values defined in “System Identity Domains” (page
90).

idRef
On return, the identity object of the system-wide identity associated with the specified domain. Call
the CFRelease function to release this object when you are finished with it.

actualDomain
On return, the actual domain name of the returned identity object is returned here. This may be
different from the requested domain. Pass NULL if you do not want this information.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
If no system-wide identity exists for the specified domain, a domain-specific alternate may be returned
instead, typically (but not exclusively) the system-wide default identity (kSecIdentityDomainDefault).

Availability
Available in Mac OS X v10.5 and later.

See Also
SecIdentitySetSystemIdentity (page 52)

Declared In
SecIdentity.h

SecIdentityCreateWithCertificate
Creates a new identity for a certificate and its associated private key.

OSStatus SecIdentityCreateWithCertificate(
 CFTypeRef keychainOrArray,
 SecCertificateRef certificateRef,
 SecIdentityRef *identityRef
);

Parameters
keychainOrArray

A reference to a keychain or an array of keychains to search for the associated private key. Specify
NULL to search the user's default keychain search list.

certificateRef
The certificate for which you want to create an identity.

identityRef
On return, an identity object for the certificate and its associated private key. Call the CFRelease
function to release this object when you are finished with it.

48 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecIdentity.h

SecIdentityGetTypeID
Returns the unique identifier of the opaque type to which a SecIdentity object belongs.

CFTypeID SecIdentityGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecIdentityRef (page 83) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecIdentityRef (page 83)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecIdentity.h

SecIdentitySearchCopyNext
Finds the next identity matching specified search criteria

OSStatus SecIdentitySearchCopyNext (
 SecIdentitySearchRef searchRef,
 SecIdentityRef *identity
);

Parameters
searchRef

An identity search object specifying the search criteria for this search. You create the identity search
object by calling the SecIdentitySearchCreate (page 50) function.

identity
On return, points to the identity object of the next matching identity (if any). Call the CFRelease
function to release this object when finished with it.

Functions 49
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Return Value
A result code. When there are no more identities that match the parameters specified to
SecIdentitySearchCreate (page 50), errSecItemNotFound is returned. See “Certificate, Key, and Trust
Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecIdentitySearch.h

SecIdentitySearchCreate
Creates a search object for finding identities.

OSStatus SecIdentitySearchCreate (
 CFTypeRef keychainOrArray,
 CSSM_KEYUSE keyUsage,
 SecIdentitySearchRef *searchRef
);

Parameters
keychainOrArray

A keychain object for a single keychain to search, an array of keychain objects for a set of keychains
to search, or NULL to search the user’s default keychain search list.

keyUsage
ACSSM key use value as defined in Security.framework/cssmtype.h. (Note that, because key
recovery is not implemented, the SIGN_RECOVER and VERIFY_RECOVER constants are not supported.)
Use this parameter to filter the search by specifying the key use for the identity. Pass 0 if you want
all identities returned by this search. Pass CSSM_KEYUSE_ANY to limit the identities returned to those
that can be used for every operation.

searchRef
On return, points to the identity search object. Call the CFRelease function to release this object
when you are done with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
You can OR CSSM_KEYUSE values together to set more than one value for key use. Use the returned search
object in calls to the SecIdentitySearchCopyNext (page 49) function to obtain identities that match the
search criteria.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecIdentitySearch.h

50 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecIdentitySearchGetTypeID
Returns the unique identifier of the opaque type to which a SecIdentitySearch object belongs.

CFTypeID SecIdentitySearchGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecIdentitySearchRef (page 84) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecIdentitySearchRef (page
84) object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID
function on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecIdentitySearch.h

SecIdentitySetPreference
Sets the preferred identity for the specified name and key use.

OSStatus SecIdentitySetPreference(
 SecIdentityRef identity,
 CFStringRef name,
 CSSM_KEYUSE keyUsage
);

Parameters
identity

A reference to the preferred identity.

name
A string containing a URI, RFC822 email address, DNS host name, or other name that uniquely identifies
a service requiring this identity.

keyUsage
A key use value, as defined in Security.framework/cssmtype.h. Pass 0 if you don’t want to
specify a particular key use.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

See Also
SecIdentityCopyPreference (page 46)

Declared In
SecIdentity.h

Functions 51
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecIdentitySetSystemIdentity
Assigns the system-wide identity to be associated with a specified domain.

OSStatus SecIdentitySetSystemIdentity(
 CFStringRef domain,
 SecIdentityRef idRef
);

Parameters
domain

The domain to which the specified identity will be assigned, typically in reverse DNS notation, such
as com.apple.security. You may also pass the values defined in “System Identity Domains” (page
90).

idRef
The identity to be assigned to the specified domain. Pass NULL to delete any currently-assigned
identity for the specified domain; in this case, it is not an error if no identity exists for the specified
domain.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The caller must be running as root.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecIdentityCopySystemIdentity (page 47)

Declared In
SecIdentity.h

SecKeyCreatePair
Creates an asymmetric key pair and stores it in a keychain.

52 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecKeyCreatePair (
 SecKeychainRef keychainRef,
 CSSM_ALGORITHMS algorithm,
 uint32 keySizeInBits,
 CSSM_CC_HANDLE contextHandle,
 CSSM_KEYUSE publicKeyUsage,
 uint32 publicKeyAttr,
 CSSM_KEYUSE privateKeyUsage,
 uint32 privateKeyAttr,
 SecAccessRef initialAccess,
 SecKeyRef *publicKey,
 SecKeyRef *privateKey
);

Parameters
keychainRef

The keychain object for the keychain in which to store the private and public key items. Specify NULL
for the default keychain.

algorithm
The algorithm to use to generate the key pair. Possible values are defined in
Security.framework/cssmtype.h. Algorithms supported by the AppleCSP module are listed in
Security Release Notes. This parameter is ignored if the contextHandle parameter is not 0.

keySizeInBits
A key size for the key pair. See Security Release Notes for permissible key sizes for each algorithm
supported by the AppleCSP module.

contextHandle
A CSSM CSP handle, or 0. If this argument is not 0, the algorithm and keySizeInBits parameters
are ignored.

publicKeyUsage
A bit mask indicating all permitted uses for the new public key. The possible values for the
CSSM_KEYUSE data type are defined in Security.framework/cssmtype.h.

publicKeyAttr
A bit mask defining attribute values for the new public key. The bit mask values are equivalent to
those defined for CSSM_KEYATTR_FLAGS in Security.framework/cssmtype.h.

privateKeyUsage
A bit mask indicating all permitted uses for the new private key. The possible values for the
CSSM_KEYUSE data type are defined in Security.framework/cssmtype.h.

privateKeyAttr
A bit mask defining attribute values for the new private key. The bit mask values are defined in
CSSM_KEYATTR_FLAGS in Security.framework/cssmtype.h. Supported values are
CSSM_KETATTR_EXTRACTABLE (the key can be taken out of the keychain) and
CSSM_KEYATTR_SENSITIVE (an extractable key can be taken out of the keychain only in wrapped
form—that is, encrypted). (Note that you must set both of these bits if you want the key to be
extractable in wrapped form.) For any other value of this attribute, the key cannot be taken out of
the keychain under any circumstances.

initialAccess
An access object that sets the initial access control list for each of the keys returned. See “Creating
an Access Object” in Keychain Services Reference for functions that create an access object. For default
access, specify NULL. The default is free access to the tool or application that calls this function, with
attempted access to sensitive information by any other application causing a confirmation dialog to
be displayed.

Functions 53
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

publicKey
On return, points to the keychain item object of the new public key. Use this object as input to the
SecKeyGetCSSMKey (page 57) function to obtain the CSSM_KEY structure containing the key. Call
the CFRelease function to release this object when you are finished with it.

privateKey
On return, points to the keychain item object of the new private key. Use this object as input to the
SecKeyGetCSSMKey (page 57) function to obtain the CSSM_KEY structure containing the key. Call
the CFRelease function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function uses default values for any attributes required by specific key-generation algorithms. Algorithms
supported by the AppleCSP module are listed in Security Release Notes. For details about algorithms and
default values for key-generation parameters, download the CDSA security framework from the ADC website
at http://developer.apple.com/darwin/projects/security/ and read the file Supported_CSP_Algorithms.doc
in the Documentation folder.

If you need extra parameters to generate a key—as required by some algortihms—call
SecKeychainGetCSPHandle (page 127) to obtain a CSSM CSP handle and then call
CSSM_CSP_CreateKeyGenContext to create a context. With this context, use
CSSM_UpdateContextAttributes to add additional parameters. Finally, call CSSM_DeleteContext to
dispose of the context after calling this function.

Availability
Available in Mac OS X v10.2 and later.

See Also
SecKeyGenerate (page 54)

Declared In
SecKey.h

SecKeyGenerate
Creates a symmetric key and optionally stores it in a keychain.

OSStatus SecKeyGenerate(
 SecKeychainRef keychainRef,
 CSSM_ALGORITHMS algorithm,
 uint32 keySizeInBits,
 CSSM_CC_HANDLE contextHandle,
 CSSM_KEYUSE keyUsage,
 uint32 keyAttr,
 SecAccessRef initialAccess,
 SecKeyRef* keyRef
);

Parameters
keychainRef

The keychain in which to store the generated key. Specify NULL to generate a transient key.

54 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://developer.apple.com/darwin/projects/security/

algorithm
The algorithm to use in generating the symmetric key. Possible values are defined in cssmtype.h.
Algorithms supported by the AppleCSP module are listed in Security Release Notes. This parameter is
ignored if the contextHandle parameter is not 0.

keySizeInBits
A key size for the key pair. This parameter is ignored if the contextHandle parameter is not 0.

contextHandle
A CSSM CSP handle, or 0. If this argument is not 0, the algorithm and keySizeInBits parameters
are ignored.

keyUsage
A bit mask indicating all permitted uses for the new key. The possible values for the CSSM_KEYUSE
data type are defined in cssmtype.h.

keyAttr
A bit mask defining attribute values for the new key. The bit mask values are defined in
CSSM_KEYATTR_FLAGS in cssmtype.h.

initialAccess
An access object that sets the initial access control list for the key returned. See “Creating an Access
Object” in Keychain Services Reference for functions that create an access object. This parameter is
ignored if you specify NULL for the keychainRef parameter.

keyRef
On return, points to the keychain item object of the new public key. Use this object as input to the
SecKeyGetCSSMKey (page 57) function to obtain the CSSM_KEY structure containing the key. Call
the CFRelease function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
Key-generation algorithms supported by the AppleCSP module are listed in Security ReleaseNotes. For details
about algorithms and default values for key-generation parameters, download the CDSA security framework
from the ADC website at http://developer.apple.com/darwin/projects/security/ and read the file
Supported_CSP_Algorithms.doc in the Documentation folder.

If you need extra parameters to generate a key—as required by some algortihms—call
SecKeychainGetCSPHandle (page 127) to obtain a CSSM CSP handle and then call
CSSM_CSP_CreateKeyGenContext to create a context. With this context, use
CSSM_UpdateContextAttributes to add additional parameters. Finally, call CSSM_DeleteContext to
dispose of the context after calling this function.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecKeyCreatePair (page 52)

Declared In
SecKey.h

SecKeyGetCredentials
Returns an access credential for a key.

Functions 55
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://developer.apple.com/darwin/projects/security/

OSStatus SecKeyGetCredentials(
 SecKeyRef keyRef,
 CSSM_ACL_AUTHORIZATION_TAG operation,
 SecCredentialType credentialType,
 const CSSM_ACCESS_CREDENTIALS **outCredentials
);

Parameters
keyRef

The key for which you want an access credential.

operation
The type of operation to be performed with this key. Possible values are listed under “Authorization
tag types” in Security.framework/cssmtype.h.

credentialType
The type of credential requested. See “Key Credential Type Constants” (page 91) for possible values.

outCredentials
On return, points to an access credential for the specified key. This pointer remains valid until the key
reference is released. Do not attempt to modify or free this data.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
An access credential is required as an input to a number of CSSM functions.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecKey.h

SecKeyGetCSPHandle
Returns the CSSM CSP handle for a key.

OSStatus SecKeyGetCSPHandle(
 SecKeyRef keyRef,
 CSSM_CSP_HANDLE *cspHandle
);

Parameters
keyRef

The key for which you want a CSSM CSP handle.

cspHandle
On return, points to the CSSM CSP handle for the specified key. This pointer remains valid until the
key reference is released. Do not attempt to modify or free this data.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
A CSSM CSP handle is required as an input to a number of CSSM functions.

56 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecKey.h

SecKeyGetCSSMKey
Retrieves a pointer to the CSSM_KEY structure containing the key stored in a keychain item.

OSStatus SecKeyGetCSSMKey (
 SecKeyRef key,
 const CSSM_KEY **cssmKey
);

Parameters
key

A keychain key item object.

cssmKey
A pointer to a CSSM_KEY structure for the specified key. You should not modify or free this data,
because it is owned by the system.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The CSSM_KEY structure is used to represent keys in CSSM and is used as an input value to several CSSM
functions. The CSSM_KEY structure is valid until the keychain item object is released.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKey.h

SecKeyGetTypeID
Returns the unique identifier of the opaque type to which a SecKey object belongs.

CFTypeID SecKeyGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecKeyRef (page 84) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecKeyRef (page 84) object. You
can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on a
specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Functions 57
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Declared In
SecKey.h

SecPolicyGetOID
Retrieves a policy’s object identifier.

OSStatus SecPolicyGetOID (
 SecPolicyRef policyRef,
 CSSM_OID *oid
);

Parameters
policyRef

The policy object for which to obtain the object identifier. You can obtain a policy object with the
SecPolicySearchCopyNext (page 60) function.

oid
On return, points to the policy’s object identifier. This identifier is owned by the policy object and
remains valid until that object is destroyed; do not release it separately.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The policy’s object identifier, in the form of a CSSM_OID structure, is used in the CSSM API together with the
policy’s value. Use the SecPolicyGetValue (page 59) function to obtain the value that corresponds to this
object identifier.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicy.h

SecPolicyGetTPHandle
Retrieves the trust policy handle for a policy object.

OSStatus SecPolicyGetTPHandle (
 SecPolicyRef policyRef,
 CSSM_TP_HANDLE *tpHandle
);

Parameters
policyRef

The policy object from which to obtain the trust policy handle.

tpHandle
On return, points to the policy object’s trust policy handle. The handle remains valid until the policy
object is released.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

58 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Discussion
The trust policy handle is the CSSM identifier of the trust policy module that is managing the certificate. The
trust policy handle is uses as an input to a number of CSSM functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicy.h

SecPolicyGetTypeID
Returns the unique identifier of the opaque type to which a SecPolicy object belongs.

CFTypeID SecPolicyGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecPolicyRef (page 84) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecPolicyRef (page 84) object.
You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on
a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicy.h

SecPolicyGetValue
Retrieves a policy’s value.

OSStatus SecPolicyGetValue (
 SecPolicyRef policyRef,
 CSSM_DATA *value
);

Parameters
policyRef

The policy object for which to retrieve the value.

value
On return, points to the policy’s value. This value is owned by the policy object and remains valid
until that object is destroyed; do not release it separately.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Functions 59
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Discussion
A policy’s value is defined and interpreted by the policy. If you are using CSSM, you can specify
object-identifier–policy-value pairs as input to the CSSM_TP_POLICYINFO function. Use the
SecPolicyGetOID (page 58) function to obtain the object identifier (OID) for a policy.

Depending on how the policy uses the value, the value can be specific to a transaction. Because some other
process might be using this policy object, it is best not to assign a new value to the policy using the same
policy object. Instead, obtain a new policy object before assigning a new value to the policy.

Availability
Available in Mac OS X v10.2 and later.

See Also
SecPolicySetValue (page 62)

Declared In
SecPolicy.h

SecPolicySearchCopyNext
Retrieves a policy object for the next policy matching specified search criteria.

OSStatus SecPolicySearchCopyNext (
 SecPolicySearchRef searchRef,
 SecPolicyRef *policyRef
);

Parameters
searchRef

A policy search object specifying the search criteria for this search. You create the policy search object
by calling the SecPolicySearchCreate (page 60) function.

policyRef
On return, points to the policy object for the next policy (if any) matching the specified search criteria.
Call the CFRelease function to release this object when you are finished with it.

Return Value
A result code. When there are no more policies that match the parameters specified to
SecPolicySearchCreate (page 60), errSecPolicyNotFound is returned. See “Certificate, Key, and Trust
Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicySearch.h

SecPolicySearchCreate
Creates a search object for finding policies.

60 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecPolicySearchCreate (
 CSSM_CERT_TYPE certType,
 const CSSM_OID *policyOID,
 const CSSM_DATA *value,
 SecPolicySearchRef *searchRef
);

Parameters
certType

The type of certificates a policy uses, as defined in Security.framework/cssmtype.h. Permissible
values are CSSM_CERT_X_509v1, CSSM_CERT_X_509v2, and CSSM_CERT_X_509v3. If you are unsure
of the certificate type, use CSSM_CERT_X_509v3.

policyOID
A pointer to a BER-encoded policy object identifier that uniquely specifies the policy. See “AppleX509TP
Trust Policies” for a list of policies and object identifiers provided by the AppleX509TP module.

value
A pointer to an optional, policy-defined value. The contents of this value depend on the policy object
identifier specified. (Note that this parameter refers to the value stored in MDS and is not related to
the value parameter of the SecPolicyGetValue (page 59) function.) Currently the function does
not use this parameter; pass NULL for this pointer.

searchRef
On return, points to the newly created policy search object. Call the CFRelease function to release
this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
You use the search object created by this function in subsequent calls to the
SecPolicySearchCopyNext (page 60) function to obtain trust policy objects. Policies are stored in the
Module Directory Services (MDS) database. MDS is described in detail in “Part 8: Module Directory Service
(MDS)” of Common Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group
(http://www.opengroup.org/security/cdsa.htm).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicySearch.h

SecPolicySearchGetTypeID
Returns the unique identifier of the opaque type to which a SecPolicySearch object belongs.

CFTypeID SecPolicySearchGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecPolicySearchRef (page 85) object.

Functions 61
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://www.opengroup.org/security/cdsa.htm

Discussion
This function returns a value that uniquely identifies the opaque type of a SecPolicySearchRef (page 85)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicySearch.h

SecPolicySetValue
Sets a policy's value.

OSStatus SecPolicySetValue(
 SecPolicyRef policyRef,
 const CSSM_DATA *value
);

Parameters
policyRef

The policy object whose value you wish to set.

value
The value to be set into the policy object, replacing any previous value.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
A policy’s value is defined and interpreted by the policy. If you are using CSSM, you can specify
object-identifier–policy-value pairs as input to the CSSM_TP_POLICYINFO function. Use the
SecPolicyGetOID (page 58) function to obtain the object identifier (OID) for a policy.

Depending on how the policy uses the value, the value can be specific to a transaction. Because some other
process might be using this policy object, it is best not to assign a new value to the policy using the same
policy object. Instead, obtain a new policy object before assigning a new value to the policy.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecPolicyGetValue (page 59)

Declared In
SecPolicy.h

SecTrustCopyAnchorCertificates
Retrieves the anchor (root) certificates stored by Mac OS X.

62 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecTrustCopyAnchorCertificates (
 CFArrayRef *anchors
);

Parameters
anchors

On return, points to an array of certificate objects for trusted anchor (root) certificates, which is the
default set of anchors for the caller. Call the CFRelease function to release the CFArrayRef object
when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function retrieves the certificates in the system’s store of anchor certificates (see
SecTrustSetAnchorCertificates (page 71)). You can use the SecCertificateRef objects retrieved
by this function as input to other functions of this API, such as SecTrustCreateWithCertificates (page
64). If you want references to the anchor certificates in a form appropriate for calls to the CSSM API, use the
SecTrustGetCSSMAnchorCertificates (page 67) function instead.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustCopyCustomAnchorCertificates
Retrieves the custom anchor certificates, if any, used by a given trust.

OSStatus SecTrustCopyCustomAnchorCertificates(
 SecTrustRef trust,
 CFArrayRef *anchors
);

Parameters
trust

The trust management object from which you wish to retrieve the custom anchor certificates.

anchors
On return, a reference to an array of SecCertificateRef objects representing the set of anchor
certificates that are considered valid (trusted) anchors by the SecTrustEvaluate (page 65) function
when verifying a certificate using the trust management object in the trust parameter. Returns NULL
if no custom anchors have been specified. Call the CFRelease function to release this object when
you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
You can use the SecTrustSetAnchorCertificates (page 71) function to set custom anchor certificates.

Availability
Available in Mac OS X v10.5 and later.

Functions 63
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

See Also
SecTrustSetAnchorCertificates (page 71)

Declared In
SecTrust.h

SecTrustCopyPolicies
Retrieves the policies used by a given trust management object.

OSStatus SecTrustCopyPolicies(
 SecTrustRef trust,
 CFArrayRef *policies
);

Parameters
trust

The trust management object whose policies you wish to retrieve.

policies
On return, an array of SecPolicyRef (page 84) objects for the policies used by this trust management
object. Call the CFRelease function to release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSetPolicies (page 74)

Declared In
SecTrust.h

SecTrustCreateWithCertificates
Creates a trust management object based on certificates and policies.

OSStatus SecTrustCreateWithCertificates (
 CFArrayRef certificates,
 CFTypeRef policies,
 SecTrustRef *trustRef
);

Parameters
certificates

The certificate to be verified, plus any other certificates you think might be useful for verifying the
certificate. The certificate to be verified must be the first in the array. If you want to specify only one
certificate, you can pass a SecCertificateRef object; otherwise, pass an array of
SecCertificateRef objects.

64 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

policies
References to one or more policies to be evaluated. You can pass a single SecPolicyRef object, or
an array of one or more SecPolicyRef objects. Use the SecPolicySearchCopyNext (page 60)
function to obtain policy objects. If you pass in multiple policies, all policies must verify for the
certificate chain to be considered valid.

trustRef
On return, points to the newly created trust management object. Call the CFRelease function to
release this object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The trust management object includes a reference to the certificate to be verified, plus pointers to the policies
to be evaluated for those certificates. You can optionally include references to other certificates, including
anchor certificates, that you think might be in the certificate chain needed to verify the first (leaf) certificate.
Any input certificates that turn out to be irrelevant are harmlessly ignored. Call the SecTrustEvaluate (page
65) function to evaluate the trust for the returned trust management object.

If not all the certificates needed to verify the leaf certificate are included in the certificates parameter,
SecTrustEvaluate searches for certificates in the keychain search list (see SecTrustSetKeychains (page
72)) and in the system’s store of anchor certificates (see SecTrustSetAnchorCertificates (page 71)).
However, you should gain a significant performance benefit by passing in the entire certificate chain, in order,
in the certificates parameter.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustEvaluate
Evaluates trust for the specified certificate and policies.

OSStatus SecTrustEvaluate (
 SecTrustRef trust,
 SecTrustResultType *result
);

Parameters
trust

The trust management object to evaluate. A trust management object includes the certificate to be
verified plus the policy or policies to be used in evaluating trust. It can optionally also include other
certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 64) function to create a trust management object.

result
On return, points to a result type reflecting the result of this evaluation. See “Trust Result Type
Constants” (page 88) for descriptions of possible values.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Functions 65
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Discussion
This function evaluates a certificate’s validity to establish trust for a particular use—for example, in creating
a digital signature or to establish a Secure Sockets Layer connection. Before you call this function, you can
optionally call any of the SecTrustSet... functions (such as SecTrustSetParameters (page 73) or
SecTrustSetVerifyDate (page 81)) to set values for parameters and options.

The SecTrustEvaluate function validates a certificate by verifying its signature plus the signatures of the
certificates in its certificate chain, up to the anchor certificate, according to the policy or policies included in
the trust management object. For each policy, the function evaluates trust according to the user-specified
trust setting (see SecTrustSetUserTrust (page 81) and SecTrustGetUserTrust (page 71)). For an
example of user-specified trust settings, use the Keychain Access utility and look at any certificate.

For each policy, SecTrustEvaluate starts with the leaf certificate and checks each certificate in the chain,
in turn, for a valid user-specified trust setting. It uses the first such value it finds for the trust evaluation. For
example, if the user-specified trust for the leaf certificate is not set, the first intermediate certificate is set to
“Always Trust,” and one of the other intermediate certificates is set to “Never Trust,” SecTrustEvaluate
trusts the certificate. Thus, you can use a user-specified trust setting for a certificate closer to the leaf to
override a setting closer to the anchor.

If there is no user-specified trust setting for the entire certificate chain, the SecTrustEvaluate function
returns kSecTrustResultUnspecified as the result type. In that case, you should call the
SFCertificateTrustPanel class in the Security Interface Framework Reference to let the user specify a trust
setting for the certificate. Alternately, you can use a default value. If you use a default value, you should
provide a preference setting so that the user can change the default.

If SecTrustEvaluate returns kSecTrustResultRecoverableTrustFailure as the result type, you can
call the SecTrustGetResult (page 69) function for details of the problem. Then, as appropriate, you can
call one or more of the SecTrustSet... functions to correct or bypass the problem, or you can inform the
user of the problem and call the SFCertificateTrustPanel class to let the user change the trust setting
for the certificate. When you think you have corrected the problem, call SecTrustEvaluate again. Each
time you call SecTrustEvaluate, it discards the results of any previous evaluation and replaces them with
the new results. If SecTrustEvaluate returns kSecTrustResultFatalTrustFailure, on the other hand,
changing parameter values and calling SecTrustEvaluate again is unlikely to be successful.

If not all the certificates needed to verify the leaf certificate are included in the trust management object,
then SecTrustEvaluate searches for certificates in the keychain search list (see
SecTrustSetKeychains (page 72)) and in the system’s store of anchor certificates (see
SecTrustSetAnchorCertificates (page 71)).

By default, SecTrustEvaluate uses the current date and time when verifying a certificate. However, you
can call the SecTrustSetVerifyDate (page 81) function before calling SecTrustEvaluate to set an
other date and time to use when verifying the certificate.

Before you call SecTrustEvaluate, you can optionally use the SecTrustSetParameters (page 73)
function to set one or more actions to modify the evaluation or to pass data required by an action.

The results of the trust evaluation are stored in the trust management object. Call the
SecTrustGetResult (page 69) function to get more information about the results of the trust evaluation,
or the SecTrustGetCssmResult (page 67) function to get information about the evaluation in a form that
can be passed to CSSM functions.

Availability
Available in Mac OS X v10.2 and later.

66 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Declared In
SecTrust.h

SecTrustGetCSSMAnchorCertificates
Retrieves the CSSM anchor certificates. (Deprecated in Mac OS X v10.5.)

OSStatus SecTrustGetCSSMAnchorCertificates (
 const CSSM_DATA **cssmAnchors,
 uint32 *cssmAnchorCount
);

Parameters
cssmAnchors

On return, points to an array of anchor certificates. This array is allocated by the system; you should
not deallocate it. This data is not guaranteed to remain valid indefinitely; you should retrieve the data
immediately and either pass it to other functions or copy it for future use.

cssmAnchorCount
On return, points to the number of CSSM_DATA structures returned in the cssmAnchors parameter.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
This function returns the certificates in the system’s store of anchor certificates (see
SecTrustSetAnchorCertificates (page 71). You can use the CSSM_DATA structures returned by this
function as input to functions in the CSSM API. If you want references to the anchor certificates in a form
appropriate for calls to the Certificate, Key, and Trust API, use the SecTrustCopyAnchorCertificates (page
62) function instead.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
SecTrust.h

SecTrustGetCssmResult
Retrieves the CSSM trust result.

OSStatus SecTrustGetCssmResult (
 SecTrustRef trust,
 CSSM_TP_VERIFY_CONTEXT_RESULT_PTR *result
);

Parameters
trust

A trust management object that has previously been sent to the SecTrustEvaluate (page 65)
function for evaluation.

Functions 67
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

result
On return, points to the CSSM trust result pointer. You should not modify or free this data, as it is
owned by the system.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
After calling the SecTrustEvaluate (page 65) function, you can call the SecTrustGetResult (page 69)
function or the SecTrustGetCssmResult function to get information about the certificates in the certificate
chain and everything that might be wrong with each certificate. Whereas the SecTrustGetResult (page
69) function returns the information in a form that you can interpret without extensive knowledge of CSSM,
the SecTrustGetCssmResult function returns information in a form that can be passed directly to CSSM
functions. See Common Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group
(http://www.opengroup.org/security/cdsa.htm for more information about the
CSSM_TP_VERIFY_CONTEXT_RESULT structure pointed to by the result parameter.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustGetCssmResultCode
Retrieves the CSSM result code from the most recent trust evaluation for a trust management object.

OSStatus SecTrustGetCssmResultCode(
 SecTrustRef trust,
 OSStatus *resultCode
);

Parameters
trust

The trust management object for which you wish to retrieve a result code.

resultCode
On return, the CSSM result code produced by the most recent call to the SecTrustEvaluate (page
65) function for the trust management object specified in the trust parameter. The value of this
parameter is undefined if SecTrustEvaluate has not been called.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns
errSecTrustNotAvailable if the SecTrustEvaluate function has not been called for the specified trust.

Discussion
Whereas the SecTrustEvaluate function returns one of the Security Framework result codes (see “Certificate,
Key, and Trust Services Result Codes” (page 95)), the SecTrustGetCssmResultCode function returns the
CSSM result code as enumerated in Security.framework/cssmerr.h. Other functions that might be of
interest are the SecTrustGetResult (page 69) function, which returns detailed results for each certificate
in the certificate chain, and the SecTrustGetCssmResult (page 67) function, which returns the results in
a format that can be passed directly to CSSM functions.

Availability
Available in Mac OS X v10.5 and later.

68 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://www.opengroup.org/security/cdsa.htm

See Also
SecTrustEvaluate (page 65)

Declared In
SecTrust.h

SecTrustGetResult
Retrieves details on the outcome of a call to the function SecTrustEvaluate.

OSStatus SecTrustGetResult (
 SecTrustRef trustRef,
 SecTrustResultType *result,
 CFArrayRef *certChain,
 CSSM_TP_APPLE_EVIDENCE_INFO **statusChain
);

Parameters
trustRef

A trust management object that has previously been sent to the SecTrustEvaluate (page 65)
function for evaluation.

result
A pointer to the result type returned in the result parameter by the SecTrustEvaluate function.

certChain
On return, points to an array of certificates that constitute the certificate chain used to verify the input
certificate. Call the CFRelease function to release this object when you are finished with it.

statusChain
On return, points to an array of CSSM_TP_APPLE_EVIDENCE_INFO structures, one for each certificate
in the certificate chain. The first item in the array corresponds to the leaf certificate, and the last item
corresponds to the anchor (assuming that verification of the chain did not fail before reaching the
anchor certificate). Each structure describes the status of one certificate in the chain. This structure is
defined in cssmapple.h. Do not attempt to free this pointer; it remains valid until the trust
management object is released or until the next call to the function SecTrustEvaluate that uses
this trust management object.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
After calling the SecTrustEvaluate (page 65) function, you can call the SecTrustGetResult function
or the SecTrustGetCssmResult (page 67) function to get detailed information about the results of the
evaluation. Whereas the SecTrustGetResult function returns the information in a form that you can
interpret without extensive knowledge of CSSM, the SecTrustGetCssmResult (page 67) function returns
information in a form that can be passed directly to CSSM functions.

You can call the SFCertificateTrustPanel class in the Security Interface Framework Reference to display
these results to the user.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

Functions 69
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecTrustGetTPHandle
Retrieves the trust policy handle.

OSStatus SecTrustGetTPHandle (
 SecTrustRef trust,
 CSSM_TP_HANDLE *handle
);

Parameters
trust

The trust management object from which to obtain the trust policy handle. A trust management
object includes one or more certificates plus the policy or policies to be used in evaluating trust. Use
the SecTrustCreateWithCertificates (page 64) function to create a trust management object.

handle
On return, points to a CSSM trust policy handle. This handle remains valid until the trust management
object is released or until the next call to the function SecTrustEvaluate (page 65) that uses this
trust management object.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The trust policy handle is the CSSM identifier of the trust policy module that is managing the certificate. The
trust policy handle is used as an input to a number of CSSM functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustGetTypeID
Returns the unique identifier of the opaque type to which a SecTrust object belongs.

CFTypeID SecTrustGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecTrustRef (page 85) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecTrustRef (page 85) object.
You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on
a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

70 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecTrustGetUserTrust
Retrieves the user-specified trust setting for a certificate and policy. (Deprecated in Mac OS X v10.5.)

OSStatus SecTrustGetUserTrust (
 SecCertificateRef certificate,
 SecPolicyRef policy,
 SecTrustUserSetting *trustSetting
);

Parameters
certificate

The certificate object from which to obtain the user-specified trust setting.

policy
The policy object for the policy for which to obtain the user-specified trust setting. Use the
SecPolicySearchCopyNext (page 60) function to obtain a policy object.

trustSetting
On return, points to the user-specified trust setting for the specified certificate and policy.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
Each certificate has one user-specified trust setting per policy. For each policy, the user can specify that the
certificate is always to be trusted, is never to be trusted, or can be trusted only after permission is requested
from—and granted by—the user. It is also possible for there to be no user-specified trust setting for a policy.
See SecTrustEvaluate (page 65) for a discussion of the use of user-specified trust settings in a trust
evaluation.

The SecTrustGetUserTrust function returns the effective user trust setting for the certificate and policy
specified. You can obtain a certificate from a keychain and typecast the keychain item object (data type
SecKeychainItemRef) to a certificate object (SecCertificateRef).

See “Trust Result Type Constants” (page 88) for values and descriptions of the user-specified trust settings.
The user can set these values in the Keychain Access utility. If you provide your own UI for these settings,
you can use the SecTrustSetUserTrust (page 81) function to set them.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
SecTrust.h

SecTrustSetAnchorCertificates
Sets the anchor certificates used when evaluating a trust management object.

Functions 71
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSetAnchorCertificates (
 SecTrustRef trust,
 CFArrayRef anchorCertificates
);

Parameters
trust

The trust management object containing the certificate you want to evaluate. A trust management
object includes the certificate to be verified plus the policy or policies to be used in evaluating trust.
It can optionally also include other certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 64) function to create a trust management object.

anchorCertificates
A reference to an array of SecCertificateRef objects representing the set of anchor certificates
that are to be considered valid (trusted) anchors by the SecTrustEvaluate (page 65) function
when verifying a certificate. Pass NULL to restore the default set of anchor certificates.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The SecTrustEvaluate (page 65) function looks for an anchor certificate in the array of certificates specified
by the SecTrustSetAnchorCertificates function, or uses a default set provided by the system. In Mac
OS X v10.3, for example, the default set of anchors is in the keychain file
/System/Library/Keychains/X509Anchors. If you want to create a set of anchor certificates by modifying the
default set, call the SecTrustCopyAnchorCertificates (page 62) function to obtain the current set of
anchor certificates, modify that set as you wish, and create a new array of certificates. Then call
SecTrustSetAnchorCertificates with the modified array.

The list of custom anchor certificates is stored in the trust management object and can be retrieved with the
SecTrustCopyCustomAnchorCertificates (page 63) function.

Use the SecTrustSetKeychains (page 72) function to set the keychains searched for intermediate certificates
in the certificate chain.

Important: Calling this function without also calling SecTrustSetAnchorCertificatesOnly disables
the trusting of any anchors other than the ones specified by this function call.

Availability
Available in Mac OS X v10.2 and later.

See Also
SecTrustCopyCustomAnchorCertificates (page 63)

Declared In
SecTrust.h

SecTrustSetKeychains
Sets the keychains searched for intermediate certificates when evaluating a trust management object.

72 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSetKeychains (
 SecTrustRef trust,
 CFTypeRef keychainOrArray
);

Parameters
trust

The trust management object containing the certificate you want to evaluate. A trust management
object includes the certificate to be verified plus the policy or policies to be used in evaluating trust.
It can optionally also include other certificates to be used in verifying the first certificate. Use the
SecTrustCreateWithCertificates (page 64) function to create a trust management object.

keychainOrArray
A keychain object for a single keychain to search, an array of keychain objects for a set of keychains
to search, or NULL to search the user’s default keychain search list. To prevent the
SecTrustEvaluate (page 65) function from searching any keychains at all, pass a CFArrayRef
array with no elements.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
By default, SecTrustEvaluate (page 65) uses the user’s keychain search list to look for intermediate
certificates in the certificate chain. Use the SecTrustSetKeychains function to change the set of keychains
to be searched. If you want to modify the default set of keychains, first call the SecKeychainCopySearchList
function (see Keychain Services Reference) to obtain the current keychain search list, modify that set as you
wish, and create a new search list. Then you can call SecTrustSetKeychains with the modified list.

Use the SecTrustSetAnchorCertificates (page 71) function to set the array of anchor certificates
searched.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustSetParameters
Sets the action and action data for a trust management object.

OSStatus SecTrustSetParameters (
 SecTrustRef trustRef,
 CSSM_TP_ACTION action,
 CFDataRef actionData
);

Parameters
trustRef

The trust management object to which you want to add an action or set action data. A trust
management object includes one or more certificates plus the policy or policies to be used in evaluating
trust. Use the SecTrustCreateWithCertificates (page 64) function to create a trust management
object.

Functions 73
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

action
A CSSM trust action. Pass CSSM_TP_ACTION_DEFAULT for the default action. Other actions available,
if any, are described in the documentation for the trust policy module. For the AppleX509TP module,
see the Security Release Notes.

actionData
A reference to action data. “Action Data Flags” (page 89) lists possible values for this parameter for
the AppleX509TP trust policy module’s default action. For other actions (if any), the possible values
for the action data are specified in the Security Release Notes.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
Before you call SecTrustEvaluate (page 65), you can optionally use this function to set one or more action
flags or to set action data. Actions, where available, affect the trust evaluation for all policies being evaluated.
For example, if you set the action data for the default action to CSSM_TP_ACTION_ALLOW_EXPIRED, then
the SecTrustEvaluate function ignores the certificate’s expiration date and time.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustSetPolicies
Set the policies to use in an evaluation.

OSStatus SecTrustSetPolicies(
 SecTrustRef trust,
 CFTypeRef policies
);

Parameters
trust

The trust management object whose policy list you wish to set.

policies
An array of one or more SecPolicyRef (page 84) objects for the policies to be used by this trust
management object. A single policy object of type SecPolicyRef may also be passed, representing
an array of one policy.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
The policies you set with this function replace any already in the trust management object.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustCopyPolicies (page 64)

74 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Declared In
SecTrust.h

SecTrustSettingsCopyCertificates
Obtains an array of all certificates that have trust settings in a specific trust settings domain.

OSStatus SecTrustSettingsCopyCertificates(
 SecTrustSettingsDomain domain,
 CFArrayRef *certArray
);

Parameters
domain

The trust settings domain for which you want a list of certificates. For possible values, see “Trust
Settings Domain Constants” (page 91).

certArray
On return, an array of SecCertificateRef objects representing the certificates that have trust
settings in the specified domain. Call the CFRelease function to release this object when you are
finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns
errSecNoTrustSettings if no trust settings exist for the specified domain.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecTrustSettings.h

SecTrustSettingsCopyModificationDate
Obtains the date and time at which a certificate’s trust settings were last modified.

OSStatus SecTrustSettingsCopyModificationDate(
 SecCertificateRef certRef,
 SecTrustSettingsDomain domain,
 CFDateRef *modificationDate
);

Parameters
certRef

The certificate for which you wish to obtain the modification time. Pass the value
kSecTrustSettingsDefaultRootCertSetting to obtain the modification time for the default
root certificate trust settings for the domain.

domain
The trust settings domain of the trust settings for which you wish to obtain the modification time.
For possible values, see “Trust Settings Domain Constants” (page 91).

modificationDate
On return, the date and time at which the certificate’s trust settings were last modified. Call the
CFRelease function to release this object when you are finished with it.

Functions 75
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns errSecItemNotFound
if no trust settings exist for the specified certificate and domain.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SecTrustSettings.h

SecTrustSettingsCopyTrustSettings
Obtains the trust settings for a certificate.

OSStatus SecTrustSettingsCopyTrustSettings(
 SecCertificateRef certRef,
 SecTrustSettingsDomain domain,
 CFArrayRef *trustSettings
);

Parameters
certRef

The certificate for which you want the trust settings. Pass the value
kSecTrustSettingsDefaultRootCertSetting to obtain the default root certificate trust settings
for the domain.

domain
The trust settings domain of the trust settings that you wish to obtain. For possible values, see “Trust
Settings Domain Constants” (page 91).

trustSettings
On return, an array of CFDictionary objects specifying the trust settings for the certificate. For the
contents of the dictionaries, see the discussion below. Call the CFRelease function to release this
object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns errSecItemNotFound
if no trust settings exist for the specified certificate and domain.

Discussion
Each certificate’s trust settings are expressed as a CFArray that includes any number (including zero) of
dictionaries of type CFDictionary, each of which comprises one set of usage constraints. Each usage
constraints dictionary contains zero or one of each of the following key-value pairs:

ValueKey

A policy object (SecPolicyRef) specifying the certificate verification policy; for
example: SSL, SMIME. Use the SecPolicySearchCopyNext (page 60) function
to obtain a policy object.

kSecTrustSettings-
Policy

A trusted application reference (SecTrustedApplicationRef) for the application
checking the certificate’s trust settings. Use the
SecTrustedApplicationCreateFromPath (page 154) function to get this
reference.

kSecTrustSettings-
Application

76 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

ValueKey

ACFString containing policy-specific data. For the SMIME policy, this string
contains an email address. For the SSL policy, it contains a host name.

kSecTrustSettings-
PolicyString

ACFNumber containing an SInt32 value specifying the operations for which the
encryption key in this certificate can be used. For possible values, see “Trust
Settings Key Use Constants” (page 92).

kSecTrustSettings-
KeyUsage

A CFNumber containing an SInt32 value indicating the effective trust setting
for this usage constraints dictionary. A given usage constraints dictionary is
included in the evaluation of trust for a certificate only if the specified policy,
application, and key use match the use for which the certificate is being evaluated.
If this is the case, then the value of the kSecTrustSettingsResult key is ORed
with the results from other dictionaries to determine the overall trust setting for
the certificate.

If this key is not present, a default value of kSecTrustSettings-
ResultTrustRoot is assumed. Because only a root certificate can have this
value, a usage constraints dictionary for a non-root certificate that is missing this
key is not valid.

Possible values for this key are listed in “Trust Settings Result Constants” (page
94).

kSecTrustSettings-
Result

A CFNumber containing an SInt32 value indicating a CSSM_RETURN result code
which, if encountered during certificate verification, is ignored for that certificate.
These “allowed error” values are applied to the evaluation only if the usage
constraints dictionary meets the criteria described with the
kSecTrustSettingsResult key. A usage constraint dictionary with no
constraints but with an allowed error value causes that error to always be allowed
when the certificate is being evaluated.

kSecTrustSettings-
AllowedError

The overall trust settings for a certificate are the sum of all the usage constraints dictionaries that match the
use for which that certificate is being evaluated. Trust settings for a given use apply if any of the dictionaries
in the certificate’s trust settings array satisfies the specified use. Thus, when a certificate has multiple usage
constraints dictionaries in its trust settings array, the overall trust settings for the certificate are:

((usage constraint dictionary 0 component 0) AND (usage constraint dictionary 0 component 1) AND (...)) OR
((usage constraint dictionary 1 component 0) AND (usage constraint dictionary 1 component 1) AND (...)) OR
(...) ...

If the value of thekSecTrustSettingsResult component isnotkSecTrustSettingsResultUnspecified
for a usage constraints dictionary that has no constraints, the default value
kSecTrustSettingsResultTrustRoot is assumed. To specify a value for the
kSecTrustSettingsAllowedError component without explicitly trusting or distrusting the associated
certificate, specify a value ofkSecTrustSettingsResultUnspecified for thekSecTrustSettingsResult
component. An empty trust settings array (that is, the trustSettings parameter returns a valid but empty
CFArray) means "always trust this certificate” with an overall trust setting for the certificate of
kSecTrustSettingsResultTrustRoot. Note that an empty trust settings array is not the same as no trust
settings (the trustSettings parameter returns NULL), which means "this certificate must be verified to a
known trusted certificate". Note the distinction between the results kSecTrustSettingsResultTrustRoot
and kSecTrustSettingsResultTrustAsRoot: The former can only be applied to root (self-signed)
certificates; the latter can only be applied to non-root certificates. Therefore, an empty trust settings array

Functions 77
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

for a non-root certificate is invalid, because the default value of kSecTrustSettingsResultTrustRoot
is not valid for a non-root certificate. When making changes to the per-user trust settings, the user is prompted
with an alert panel asking for authentication (user name and password or other credentials normally used
for login). Therefore, it is not possible to modify per-user trust settings when not running in a GUI environment
(that is, when the user is not logged in via the login window). When making changes to the system-wide
trust settings, the user is prompted with an alert panel asking for an administrator's name and password
unless the calling process is running as root, in which case no futher authentication is needed.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSettingsSetTrustSettings (page 80)

Declared In
SecTrustSettings.h

SecTrustSettingsCreateExternalRepresentation
Obtains an external, portable representation of the specified domain's trust settings.

OSStatus SecTrustSettingsCreateExternalRepresentation(
 SecTrustSettingsDomain domain,
 CFDataRef *trustSettings
);

Parameters
domain

The trust settings domain for which you want an external representation of trust settings. For possible
values, see “Trust Settings Domain Constants” (page 91).

trustSettings
An external representation of the domain’s trust settings. Call the CFRelease function to release this
object when you are finished with it.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns
errSecNoTrustSettings if no trust settings exist for the specified domain.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSettingsImportExternalRepresentation (page 78)

Declared In
SecTrustSettings.h

SecTrustSettingsImportExternalRepresentation
Imports trust settings into a trust domain.

78 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSettingsImportExternalRepresentation(
 SecTrustSettingsDomain domain,
 CFDataRef trustSettings
);

Parameters
domain

The trust settings domain into which you want to import trust settings. For possible values, see “Trust
Settings Domain Constants” (page 91).

trustSettings
An external representation of the trust settings (created by the
SecTrustSettingsCreateExternalRepresentation (page 78) function) that you want to import.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSettingsCreateExternalRepresentation (page 78)

Declared In
SecTrustSettings.h

SecTrustSettingsRemoveTrustSettings
Deletes the trust settings for a certificate.

OSStatus SecTrustSettingsRemoveTrustSettings(
 SecCertificateRef certRef,
 SecTrustSettingsDomain domain);

Parameters
certRef

The certificate whose trust settings you wish to remove. Pass the value
kSecTrustSettingsDefaultRootCertSetting to remove the default root certificate trust settings
for the domain.

domain
The trust settings domain for which you wish to remove the trust settings. For possible values, see
“Trust Settings Domain Constants” (page 91).

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95). Returns errSecItemNotFound
if no trust settings exist for the certificate.

Discussion
If a certificate has no trust settings, the certificate must be verified to a known, trusted certificate.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSettingsSetTrustSettings (page 80)

Functions 79
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Declared In
SecTrustSettings.h

SecTrustSettingsSetTrustSettings
Specifies trust settings for a certificate.

OSStatus SecTrustSettingsSetTrustSettings(
 SecCertificateRef certRef,
 SecTrustSettingsDomain domain,
 CFTypeRef trustSettingsDictOrArray);

Parameters
certRef

The certificate for which you want to specify the trust settings. Pass the value
kSecTrustSettingsDefaultRootCertSetting to set the default root certificate trust settings
for the domain.

domain
The trust settings domain of the trust settings that you wish to specify. For possible values, see “Trust
Settings Domain Constants” (page 91).

trustSettings
On return, an array of CFDictionary objects specifying the trust settings for the certificate. For the
contents of the dictionaries, see the discussion below. Call the CFRelease function to release this
object when you are finished with it.

trustSettingsDictOrArray
The trust settings you wish to specify for this certificate, in the form of a CFDictionary object, a
CFArray of CFDictionary objects, or NULL. The contents of CFDictionary objects used to specify
trust settings are detailed in the SecTrustSettingsCopyTrustSettings (page 76) function
description. Pass NULL if you want to specify an empty trust settings array.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
If you pass NULL for the trustSettingsDictOrArray parameter, then the trust settings for this certificate
are stored as an empty trust settings array, indicating "always trust this root certificate regardless of use."
This setting is valid only for a self-signed (root) certificate. To instead remove all trust settings for the certificate
(interpreted as "this certificate must be verified to a known trusted certificate"), use the
SecTrustSettingsRemoveTrustSettings (page 79) function.

If the specified certificate already has trust settings in the specified domain, this function replaces them.

Availability
Available in Mac OS X v10.5 and later.

See Also
SecTrustSettingsCopyTrustSettings (page 76)
SecTrustSettingsRemoveTrustSettings (page 79)

Declared In
SecTrustSettings.h

80 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecTrustSetUserTrust
Sets the user-specified trust settings of a certificate and policy. (Deprecated in Mac OS X v10.5.)

OSStatus SecTrustSetUserTrust (
 SecCertificateRef certificate,
 SecPolicyRef policy,
 SecTrustUserSetting trustSetting
);

Parameters
certificate

The certificate object for which to set the user-specified trust settings. Use the
SecCertificateCreateFromData (page 40) function to obtain a certificate object.

policy
The policy object for the policy for which to set the user-specified trust settings. Use the
SecPolicySearchCopyNext (page 60) function to obtain a policy object.

trustSetting
The user-specified trust setting to be set. See “Trust Result Type Constants” (page 88) for possible
values.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
Each certificate has one user-specified trust setting per policy. These trust settings are used by the
SecTrustEvaluate (page 65) function when evaluating trust. See “Trust Result Type Constants” (page 88)
for values and descriptions of the user-specified trust settings. The user can set these values in the Keychain
Access utility. Under certain circumstances, it might be appropriate for an administrative application to
change a user trust setting. In that case, you can use the SecTrustSetUserTrust function to do so. You
can obtain a certificate from a keychain and typecast the keychain item object (data type
SecKeychainItemRef) to a certificate object (SecCertificateRef).

When you call the SecTrustSetUserTrust function, the user might be prompted to confirm the new
setting before it is changed.

You can use the SecTrustGetUserTrust (page 71) function to get the current user-specified trust settings
for a certificate.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Declared In
SecTrust.h

SecTrustSetVerifyDate
Sets the date and time against which the certificates in a trust management object are verified.

Functions 81
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

OSStatus SecTrustSetVerifyDate (
 SecTrustRef trust,
 CFDateRef verifyDate
);

Parameters
trust

The trust management object whose verification date you want to set. A trust management object
includes one or more certificates plus the policy or policies to be used in evaluating trust. Use the
SecTrustCreateWithCertificates (page 64) function to create a trust management object.

verifyDate
The date and time to use when verifying the certificate.

Return Value
A result code. See “Certificate, Key, and Trust Services Result Codes” (page 95).

Discussion
By default, the SecTrustEvaluate (page 65) function uses the current date and time when verifying a
certificate. However, you can use SecTrustSetVerifyDate to set another date and time to use when
verifying a certificate. For example, you can determine whether the certificate was valid when the document
was signed rather than whether it’s valid at the present time.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

Data Types

CSSM_TP_APPLE_EVIDENCE_INFO
Contains information about a certificate evaluation.

typedef struct {
 CSSM_TP_APPLE_CERT_STATUS StatusBits;
 uint32 NumStatusCodes
 CSSM_RETURN *StatusCodes;
 uint32 Index;
 CSSM_DL_DB_HANDLE DlDbHandle
 CSSM_DB_UNIQUE_RECORD_PTR UniqueRecord;
} CSSM_TP_APPLE_EVIDENCE_INFO;

Fields
StatusBits

Indicates whether the certificate is valid and where it was found; see “Certificate Status Constants” (page
87).

NumStatusCodes
The number of CSSM_RETURN structures returned in the StatusCodes field.

82 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

StatusCodes
An array of CSSM_RETURN values indicating what problems were found with the certificate.
Apple-specific values are in cssmapple.h. Standard CSSM values are defined in cssmerr.h and are
discussed in “Error Codes and Error Values” in the “Trust Policy Services API” chapter of Common
Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group (http://www.open-
group.org/security/cdsa.htm

Index
An index into the standard set of certificates or anchor certificates if the certificate came from one of
those sets.

DlDbHandle
A CSSM object that identifies a particular database. This field is used if the certificate did not come
from the standard set of certificates or anchor certificates. This value is useful only as input to functions
in the CSSM API.

UniqueRecord
A CSSM object that identifies a particular record in a database. This field is used if the certificate did
not come from the standard set of certificates or anchor certificates. This value is useful only as in
input to functions in the CSSM API.

Discussion
An array of these structures is returned by the SecTrustGetResult (page 69) function; each one describes
a certificate in the certificate chain.

Availability
Available in Mac OS X v10.2 and later.

Declared In
cssmapple.h

SecCertificateRef
Abstract Core Foundation-type object representing an X.509 certificate.

typedef struct __SecCertificate *SecCertificateRef;

Discussion
A SecCertificateRef object for a certificate that is stored in a keychain can be safely cast to a
SecKeychainItemRef for manipulation as a keychain item. On the other hand, if the SecCertificateRef
is not stored in a keychain, casting the object to a SecKeychainItemRef and passing it to Keychain Services
functions returns errors.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecIdentityRef
Abstract Core Foundation-type object representing an identity.

Data Types 83
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

typedef struct __SecIdentity *SecIdentityRef;

Discussion
A SecIdentityRef object contains a SecKeyRef object and an associated SecCertificateRef object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecIdentitySearchRef
Contains information about an identity search.

typedef struct OpaqueSecIdentitySearchRef *SecIdentitySearchRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecIdentitySearch.h

SecKeyRef
Abstract Core Foundation-type object representing an asymmetric key.

typedef struct __SecKey *SecKeyRef;

Discussion
A SecKeyRef object for a key that is stored in a keychain can be safely cast to a SecKeychainItemRef for
manipulation as a keychain item. On the other hand, if the SecKeyRef is not stored in a keychain, casting
the object to a SecKeychainItemRef and passing it to Keychain Services functions returns errors.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecPolicyRef
Contains information about a policy.

typedef struct OpaqueSecPolicyRef *SecPolicyRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

84 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

SecPolicySearchRef
Contains information about a policy search.

typedef struct OpaquePolicySearchRef *SecPolicySearchRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecPolicySearch.h

SecPublicKeyHash
Represents a 20-byte public key hash.

typedef UInt8 SecPublicKeyHash[20];

Discussion
The SecPublicKeyHash type represents a hash of a public key. You can use the constant
kSecPublicKeyHashItemAttr as input to functions in the Keychain Services API to set or retrieve a certificate
attribute value of this type. See Keychain Services Reference for information about getting and setting attribute
values.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecTrustRef
Contains information about trust management.

typedef struct __SecTrust *SecTrustRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrust.h

SecTrustUserSetting
Represents user-specified trust settings.

typedef SecTrustResultType SecTrustUserSetting;

Discussion
See “Trust Result Type Constants” (page 88) for possible values.

Availability
Available in Mac OS X v10.2 and later.

Data Types 85
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Declared In
SecTrust.h

Constants

Certificate Item Attribute Constants
Indicates certificate item attributes.

enum
{
 kSecSubjectItemAttr = 'subj',
 kSecIssuerItemAttr = 'issu',
 kSecSerialNumberItemAttr = 'snbr',
 kSecPublicKeyHashItemAttr = 'hpky',
 kSecSubjectKeyIdentifierItemAttr = 'skid',
 kSecCertTypeItemAttr = 'ctyp',
 kSecCertEncodingItemAttr = 'cenc'
};

Constants
kSecSubjectItemAttr

DER-encoded subject distinguished name.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

kSecIssuerItemAttr
DER-encoded issuer distinguished name.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

kSecSerialNumberItemAttr
DER-encoded certificate serial number.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

kSecPublicKeyHashItemAttr
Public key hash.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

kSecSubjectKeyIdentifierItemAttr
Subject key identifier.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

kSecCertTypeItemAttr
Certificate type.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

86 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecCertEncodingItemAttr
Certificate encoding.

Available in Mac OS X v10.2 and later.

Declared in SecCertificate.h.

Certificate Status Constants
Specifies the status of a certificate.

typedef uint32 CSSM_TP_APPLE_CERT_STATUS;
enum
{
 CSSM_CERT_STATUS_EXPIRED = 0x00000001,
 CSSM_CERT_STATUS_NOT_VALID_YET = 0x00000002,
 CSSM_CERT_STATUS_IS_IN_INPUT_CERTS = 0x00000004,
 CSSM_CERT_STATUS_IS_IN_ANCHORS = 0x00000008,
 CSSM_CERT_STATUS_IS_ROOT = 0x00000010,
 CSSM_CERT_STATUS_IS_FROM_NET = 0x00000020
};

Constants
CSSM_CERT_STATUS_EXPIRED

The certificate has expired.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

CSSM_CERT_STATUS_NOT_VALID_YET
The certificate is not yet valid. In addition to the expiration, or “Not Valid After,” date and time, each
certificate has a “Not Valid Before” date and time.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

CSSM_CERT_STATUS_IS_IN_INPUT_CERTS
This is one of the certificates included in the array of certificates passed to the
SecTrustCreateWithCertificates (page 64) function.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

CSSM_CERT_STATUS_IS_IN_ANCHORS
This certificate was found in the system’s store of anchor certificates (see
SecTrustSetAnchorCertificates (page 71)).

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

CSSM_CERT_STATUS_IS_ROOT
The certificate is a root certificate. If this bit is set but the CSSM_CERT_STATUS_IS_IN_ANCHORS bit
is not, then this is an untrusted anchor.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

Constants 87
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

CSSM_CERT_STATUS_IS_FROM_NET
The certificate was obtained through some mechanism other than the certificates stored by the
operating system and those passed into theSecTrustCreateWithCertificates (page 64) function.
For example, the certificate might have been fetched over a network.

Available in Mac OS X v10.3 and later.

Declared in cssmapple.h.

Discussion
If none of these bits are set, the certificate came from a standard certificate search; see the description of the
SecTrustSetKeychains (page 72) function.

Trust Result Type Constants
Specifies the trust result type.

typedef enum {
 kSecTrustResultInvalid,
 kSecTrustResultProceed,
 kSecTrustResultConfirm,
 kSecTrustResultDeny,
 kSecTrustResultUnspecified,
 kSecTrustResultRecoverableTrustFailure,
 kSecTrustResultFatalTrustFailure,
 kSecTrustResultOtherError
} SecTrustResultType;

Constants
kSecTrustResultInvalid

Invalid setting or result. Usually, this result indicates that the SecTrustEvaluate (page 65) function
did not complete successfully.

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultProceed
The user indicated that you may trust the certificate for the purposes designated in the specified
policies. This value may be returned by the SecTrustEvaluate (page 65) function or stored as part
of the user trust settings. In the Keychain Access utility, this value is termed “Always Trust.”

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultConfirm
Confirmation from the user is required before proceeding. This value may be returned by the
SecTrustEvaluate (page 65) function or stored as part of the user trust settings. In the Keychain
Access utility, this value is termed “Ask Permission.”

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultDeny
The user specified that the certificate should not be trusted. This value may be returned by the
SecTrustEvaluate (page 65) function or stored as part of the user trust settings. In the Keychain
Access utility, this value is termed “Never Trust.”

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

88 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecTrustResultUnspecified
The user did not specify a trust setting. This value may be returned by the SecTrustEvaluate (page
65) function or stored as part of the user trust settings. In the Keychain Access utility, this value is
termed “Use System Policy.” This is the default user setting.

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultRecoverableTrustFailure
Trust denied; retry after changing settings. For example, if trust is denied because the certificate has
expired, you can ask the user whether to trust the certificate anyway. If the user answers yes, then
use the SecTrustSetUserTrust (page 81) function to set the user trust setting to
kSecTrustResultProceed and call SecTrustEvaluate (page 65) again. This value may be returned
by the SecTrustEvaluate (page 65) function but not stored as part of the user trust settings.

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultFatalTrustFailure
Trust denied; no simple fix is available. For example, if a certificate cannot be verified because it is
corrupted, trust cannot be established without replacing the certificate. This value may be returned
by the SecTrustEvaluate (page 65) function but not stored as part of the user trust settings.

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

kSecTrustResultOtherError
A failure other than that of trust evaluation; for example, an internal failure of the
SecTrustEvaluate (page 65) function. This value may be returned by the SecTrustEvaluate (page
65) function but not stored as part of the user trust settings.

Available in Mac OS X v10.2 and later.

Declared in SecTrust.h.

Discussion
These constants may be returned by the SecTrustEvaluate (page 65) function or stored as one of the
user trust settings (see SecTrustSetUserTrust (page 81)), as noted. When evaluating user trust, both
SecTrustGetUserTrust (page 71) and SecTrustEvaluate start with the leaf certificate and work through
the chain down to the anchor. The SecTrustGetUserTrust function returns the user trust setting of the
first certificate for which the setting is other than kSecTrustResultUnspecified. Similarly, the function
uses the user trust setting of the first certificate for which the setting is other than
kSecTrustResultUnspecified, regardless of the user trust settings of other certificates in the chain.

Action Data Flags
Specifies options for the AppleX509TP trust policy module’s default action.

Constants 89
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

typedef uint32 CSSM_APPLE_TP_ACTION_FLAGS;
enum {
 CSSM_TP_ACTION_ALLOW_EXPIRED = 0x00000001,
 CSSM_TP_ACTION_LEAF_IS_CA = 0x00000002,
 CSSM_TP_ACTION_FETCH_CERT_FROM_NET = 0x00000004,
 CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT = 0x00000008
};

Constants
CSSM_TP_ACTION_ALLOW_EXPIRED

Ignore the expiration date and time for all certificates.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

CSSM_TP_ACTION_LEAF_IS_CA
First certificate is that of a certification authority (CA). By formal definition, a valid certificate chain
must begin with a certificate that is not a CA. Set this bit if you want to validate a partial chain, starting
with a CA and working toward the anchor, or if you want to evaluate a single self-signed certificate
as a one-certificate “chain” for testing purposes.

Available in Mac OS X v10.3 and later.

Declared in cssmapple.h.

CSSM_TP_ACTION_FETCH_CERT_FROM_NET
Enable fetching intermediate certificates over the network using http or LDAP.

Available in Mac OS X v10.3 and later.

Declared in cssmapple.h.

CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT
Ignore the expiration date and time for root certificates only.

Available in Mac OS X v10.2 and later.

Declared in cssmapple.h.

Discussion
See SecTrustSetParameters (page 73) for more information about actions.

System Identity Domains
Domains for which you can set or obtain a system-wide identity.

const CFStringRef kSecIdentityDomainDefault;
const CFStringRef kSecIdentityDomainKerberosKDC;

Constants
kSecIdentityDomainDefault

The system-wide default identity.

Available in Mac OS X v10.5 and later.

Declared in SecIdentity.h.

kSecIdentityDomainKerberosKDC
Kerberos Key Distribution Center (KDC) identity.

Available in Mac OS X v10.5 and later.

Declared in SecIdentity.h.

90 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Discussion
These constants can be used with the SecIdentitySetSystemIdentity (page 52) and
SecIdentityCopySystemIdentity (page 47) functions.

Key Credential Type Constants
The credential type to be returned by SecKeyGetCredentials (page 55).

typedef uint32 SecCredentialType;

enum
{
 kSecCredentialTypeDefault = 0,
 kSecCredentialTypeWithUI,
 kSecCredentialTypeNoUI
};

Constants
kSecCredentialTypeDefault

The default setting for determining whether to present UI is used.

The default setting can be changed with a call to SecKeychainSetUserInteractionAllowed (page
152).

Available in Mac OS X v10.5 and later.

Declared in SecKey.h.

kSecCredentialTypeWithUI
Keychain operations on keys that have this credential are allowed to present UI if required.

Available in Mac OS X v10.5 and later.

Declared in SecKey.h.

kSecCredentialTypeNoUI
Keychain operations on keys that have this credential are not allowed to present UI, and will fail if UI
is required.

Available in Mac OS X v10.5 and later.

Declared in SecKey.h.

Discussion
See the section “Servers and the Keychain” in the Keychain Services Tasks chapter of Keychain Services
Programming Guide for information on the use of UI with keychain tasks.

Trust Settings Domain Constants
The trust settings domains used by the trust settings API.

enum { kSecTrustSettingsDomainUser = 0, kSecTrustSettingsDomainAdmin,
 kSecTrustSettingsDomainSystem }; typedef uint32 SecTrustSettingsDomain;

Constants
kSecTrustSettingsDomainUser

Per-user trust settings.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Constants 91
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecTrustSettingsDomainAdmin
Locally administered, system-wide trust settings.

Administrator privileges are required to make changes to this domain.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsDomainSystem
System trust settings.

These trust settings are immutable and comprise the set of trusted root certificates supplied in Mac
OS X. These settings are read-only, even by root.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Trust Settings Key Use Constants
Allowed uses for the encryption key in a certificate.

enum {
 kSecTrustSettingsKeyUseSignature = 0x00000001,
 kSecTrustSettingsKeyUseEnDecryptData = 0x00000002,
 kSecTrustSettingsKeyUseEnDecryptKey = 0x00000004,
 kSecTrustSettingsKeyUseSignCert = 0x00000008,
 kSecTrustSettingsKeyUseSignRevocation = 0x00000010,
 kSecTrustSettingsKeyUseKeyExchange = 0x00000020,
 kSecTrustSettingsKeyUseAny = 0xffffffff
};
typedef uint32 SecTrustSettingsKeyUsage;

Constants
kSecTrustSettingsKeyUseSignature

The key can be used to sign data or verify a signature.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsKeyUseEnDecryptData
The key can be used to encrypt or decrypt data.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsKeyUseEnDecryptKey
The key can be used to encrypt or decrypt (wrap or unwrap) a key.

Private keys must be wrapped before they can be exported from a keychain.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsKeyUseSignCert
The key can be used to sign a certificate or verify a signature.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

92 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecTrustSettingsKeyUseSignRevocation
The key can be used to sign an OCSP (online certificate status protocol) message or CRL (certificate
verification list), or to verify a signature.

OCSP messages and CRLs are used to revoke certificates.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsKeyUseKeyExchange
The key is a private key that has been shared using a key exchange protocol, such as Diffie-Hellman
key exchange.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsKeyUseAny
The key can be used for any purpose.

This is the default key-use setting if no other key use is specified.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Trust Settings Usage Constraints Dictionary Keys
The keys in one usage constraints dictionary.

#define kSecTrustSettingsPolicy CFSTR("kSecTrustSettingsPolicy")
#define kSecTrustSettingsApplication CFSTR("kSecTrustSettingsApplication")
#define kSecTrustSettingsPolicyString CFSTR("kSecTrustSettingsPolicyString")
#define kSecTrustSettingsKeyUsage CFSTR("kSecTrustSettingsKeyUsage")
#define kSecTrustSettingsAllowedError CFSTR("kSecTrustSettingsAllowedError")
#define kSecTrustSettingsResult CFSTR("kSecTrustSettingsResult")

Constants
kSecTrustSettingsPolicy

A policy object (SecPolicyRef) specifying the certificate verification policy.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsApplication
A trusted application reference (SecTrustedApplicationRef) for the application checking the
certificate’s trust settings.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsPolicyString
ACFString containing policy-specific data.

For the SMIME policy, this string contains an email address. For the SSL policy, it contains a host name.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Constants 93
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecTrustSettingsKeyUsage
ACFNumber containing an SInt32 value specifying the operations for which the encryption key in
this certificate can be used.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsAllowedError
A CFNumber containing an SInt32 value indicating a CSSM_RETURN result code which, if encountered
during certificate verification, is ignored for that certificate.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsResult
A CFNumber containing an SInt32 value indicating the effective trust setting for this usage constraints
dictionary.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Trust Settings Result Constants
Effective trust settings for usage constraints dictionaries used by the
SecTrustSettingsCopyTrustSettings (page 76) and SecTrustSettingsSetTrustSettings (page
80) functions.

enum {
 kSecTrustSettingsResultInvalid = 0,
 kSecTrustSettingsResultTrustRoot,
 kSecTrustSettingsResultTrustAsRoot,
 kSecTrustSettingsResultDeny,
 kSecTrustSettingsResultUnspecified
};
typedef uint32 SecTrustSettingsResult;

Constants
kSecTrustSettingsResultInvalid

Never valid in a trust settings array or in an API call.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsResultTrustRoot
This root certificate is explicitly trusted.

If the certificate is not a root (self-signed) certificate, the usage constraints dictionary is invalid.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsResultTrustAsRoot
This non-root certificate is explicitly trusted as if it were a trusted root.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

94 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

kSecTrustSettingsResultDeny
This certificate is explicitly distrusted.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

kSecTrustSettingsResultUnspecified
This certificate is neither trusted nor distrusted. This value can be used to specify an "allowed error"
without assigning trust to a specific certificate.

This value can be used to specify an allowed error without assigning trust to the certificate.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Default Root Certificate Trust Settings
A value indicating the default root certificate trust settings when used for a SecCertificateRef object in
a trust settings API function.

#define kSecTrustSettingsDefaultRootCertSetting ((SecCertificateRef)-1)

Constants
kSecTrustSettingsDefaultRootCertSetting

Default trust settings for root certificates.

Available in Mac OS X v10.5 and later.

Declared in SecTrustSettings.h.

Discussion
Use this value with the SecTrustSettingsSetTrustSettings (page 80) function to set the default trust
settings for root certificates. When evaluating trust settings for a root certificate in a given domain, if no
matching explicit trust settings exist for that certificate, then the default value for the effective trust setting
is returned (assuming that a default has been set and that the result is not
kSecTrustSettingsResultUnspecified).

Result Codes

The most common result codes returned by Certificate, Key, and Trust Services are listed in the table below.
The assigned error space is discontinuous: –25240..–25279 and –25290..–25329.

DescriptionValueResult Code

No keychain is available.–25291errSecNotAvailable

Available in Mac OS X v10.2 and later.

A read-only error occurred.–25292errSecReadOnly

Available in Mac OS X v10.2 and later.

Authorization or authentication failed.–25293errSecAuthFailed

Available in Mac OS X v10.2 and later.

Result Codes 95
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

DescriptionValueResult Code

The keychain does not exist.–25294errSecNoSuchKeychain

Available in Mac OS X v10.2 and later.

The keychain is not valid.–25295errSecInvalidKeychain

Available in Mac OS X v10.2 and later.

A keychain with the same name already exists.–25296errSecDuplicateKeychain

Available in Mac OS X v10.2 and later.

An item with the same primary key attributes already exists.–25299errSecDuplicateItem

Available in Mac OS X v10.2 and later.

The item cannot be found.–25300errSecItemNotFound

Available in Mac OS X v10.2 and later.

The buffer is too small.–25301errSecBufferTooSmall

Available in Mac OS X v10.2 and later.

The data is too large for the particular data type.–25302errSecDataTooLarge

Available in Mac OS X v10.2 and later.

The attribute does not exist.–25303errSecNoSuchAttr

Available in Mac OS X v10.2 and later.

The item object is invalid.–25304errSecInvalidItemRef

Available in Mac OS X v10.2 and later.

The search object is invalid.–25305errSecInvalidSearchRef

Available in Mac OS X v10.2 and later.

The specified item does not appear to be a valid keychain
item.

–25306errSecNoSuchClass

Available in Mac OS X v10.2 and later.

A default keychain does not exist.–25307errSecNoDefaultKeychain

Available in Mac OS X v10.2 and later.

Interaction with the user is required in order to grant access
or process a request; however, user interaction with the
Security Server has been disabled by the program.

–25308errSecInteractionNotAllowed

Available in Mac OS X v10.2 and later.

The attribute is read-only.–25309errSecReadOnlyAttr

Available in Mac OS X v10.2 and later.

96 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

DescriptionValueResult Code

The version is incorrect.–25310errSecWrongSecVersion

Available in Mac OS X v10.2 and later.

The key size is not allowed.–25311errSecKeySizeNotAllowed

Available in Mac OS X v10.2 and later.

No storage module is available.–25312errSecNoStorageModule

Available in Mac OS X v10.2 and later.

No certificate module is available.–25313errSecNoCertificateModule

Available in Mac OS X v10.2 and later.

No policy module is available.–25314errSecNoPolicyModule

Available in Mac OS X v10.2 and later.

Interaction with the user is required in order to grant access
or process a request; however, user interaction with the
Security Server is impossible because the program is
operating in a session incapable of graphics (such as a root
session or ssh session).

–25315errSecInteractionRequired

Available in Mac OS X v10.2 and later.

The data is not available.–25316errSecDataNotAvailable

Available in Mac OS X v10.2 and later.

The data is not modifiable.–25317errSecDataNotModifiable

Available in Mac OS X v10.2 and later.

One or more certificates required in order to validate this
certificate cannot be found.

–25318errSecCreateChainFailed

Available in Mac OS X v10.2 and later.

The preference domain specified is invalid. This error can
occur in Mac OS X v10.3 and later.

–25319errSecInvalidPrefsDomain

Available in Mac OS X v10.3 and later.

The access control list is not in standard simple form.–25240errSecACLNotSimple

Available in Mac OS X v10.2 and later.

The policy specified cannot be found.–25241errSecPolicyNotFound

Available in Mac OS X v10.2 and later.

The trust setting is invalid.–25242errSecInvalidTrustSetting

Available in Mac OS X v10.2 and later.

Result Codes 97
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

DescriptionValueResult Code

The specified item has no access control.–25243errSecNoAccessForItem

Available in Mac OS X v10.2 and later.

An invalid attempt has been made to change the owner of
an item.

–25244errSecInvalidOwnerEdit

Available in Mac OS X v10.2 and later.

No trust results are available.–25245errSecTrustNotAvailable

Available in Mac OS X v10.3 and later.

98 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Certificate, Key, and Trust Services Reference

Framework: Security/Security.h

Declared in SecItem.h
SecAccess.h
SecACL.h
SecBase.h
SecKeychain.h
SecKeychainItem.h
SecKeychainSearch.h

Overview

Keychain Services is a programming interface that enables you to find, add, modify, and delete keychain
items.

Functions by Task

Getting Information About Keychain Services and Types

SecKeychainGetVersion (page 130)
Determines the version of Keychain Services installed on the user’s system.

SecKeychainGetTypeID (page 129)
Returns the unique identifier of the opaque type to which a SecKeychainRef object belongs.

SecKeychainItemGetTypeID (page 139)
Returns the unique identifier of the opaque type to which a SecKeychainItemRef object belongs.

SecKeychainSearchGetTypeID (page 148)
Returns the unique identifier of the opaque type to which a SecKeychainSearchRef object belongs.

SecAccessGetTypeID (page 108)
Returns the unique identifier of the opaque type to which a SecAccessRef object belongs.

SecACLGetTypeID (page 111)
Returns the unique identifier of the opaque type to which a SecACLRef object belongs.

SecTrustedApplicationGetTypeID (page 155)
Returns the unique identifier of the opaque type to which a SecTrustedApplication object belongs.

Overview 99
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Creating and Deleting a Keychain

SecKeychainCreate (page 121)
Creates an empty keychain.

SecKeychainDelete (page 123)
Deletes one or more keychains from the default keychain search list, and removes the keychain itself
if it is a file.

Managing Keychains

SecKeychainOpen (page 145)
Opens a keychain.

SecKeychainSetDefault (page 149)
Sets the default keychain.

SecKeychainCopyDefault (page 119)
Retrieves a pointer to the default keychain.

SecKeychainGetStatus (page 129)
Retrieves status information of a keychain.

SecKeychainGetPath (page 127)
Determines the path of a keychain.

SecKeychainSetSettings (page 151)
Changes the settings of a keychain.

SecKeychainCopySettings (page 121)
Obtains a keychain’s settings.

Locking and Unlocking Keychains

SecKeychainLock (page 144)
Locks a keychain.

SecKeychainLockAll (page 145)
Locks all keychains belonging to the current user.

SecKeychainUnlock (page 153)
Unlocks a keychain.

Managing User Interaction

SecKeychainSetUserInteractionAllowed (page 152)
Enables or disables the user interface for Keychain Services functions that automatically display a user
interface.

SecKeychainGetUserInteractionAllowed (page 130)
Indicates whether Keychain Services functions that normally display a user interaction are allowed to
do so.

100 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Managing Keychain Access

SecKeychainSetAccess (page 148)
Sets the application access for a keychain.

SecKeychainCopyAccess (page 118)
Retrieves the application access of a keychain.

Storing and Retrieving Passwords

SecKeychainAddInternetPassword (page 116)
Adds a new Internet password to a keychain.

SecKeychainFindInternetPassword (page 124)
Finds the first Internet password based on the attributes passed.

SecKeychainAddGenericPassword (page 114)
Adds a new generic password to a keychain.

SecKeychainFindGenericPassword (page 123)
Finds the first generic password based on the attributes passed.

Searching for Keychain Items

SecKeychainSetSearchList (page 151)
Specifies the list of keychains to use in the default keychain search list.

SecKeychainCopySearchList (page 120)
Retrieves a keychain search list.

SecKeychainSearchCreateFromAttributes (page 147)
Creates a search object matching a list of zero or more attributes.

SecKeychainSearchCopyNext (page 146)
Finds the next keychain item matching the given search criteria.

Creating and Deleting Keychain Items

SecKeychainItemCreateFromContent (page 135)
Creates a new keychain item from the supplied parameters.

SecKeychainItemCreateCopy (page 134)
Copies a keychain item from one keychain to another.

SecKeychainItemDelete (page 136)
Deletes a keychain item from the default keychain’s permanent data store.

Exporting and Importing Keychain Items

SecKeychainItemExport (page 136)
Exports one or more certificates, keys, or identities.

Functions by Task 101
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainItemImport (page 140)
Imports one or more certificates, keys, or identities and adds them to a keychain.

Managing Keychain Items

SecKeychainItemCopyAttributesAndData (page 131)
Retrieves the data and/or attributes stored in the given keychain item.

SecKeychainItemModifyAttributesAndData (page 142)
Updates an existing keychain item after changing its attributes or data.

SecKeychainItemFreeAttributesAndData (page 137)
Releases the memory used by the keychain attribute list and/or the keychain data retrieved in a call
to SecKeychainItemCopyAttributesAndData.

SecKeychainItemCopyContent (page 132)
Copies the data and attributes stored in the given keychain item.

SecKeychainItemModifyContent (page 142)
Updates an existing keychain item after changing its attributes and/or data.

SecKeychainItemFreeContent (page 138)
Releases the memory used by the keychain attribute list and/or the keychain data retrieved in a call
to the SecKeychainItemCopyContent (page 132) function.

SecKeychainAttributeInfoForItemID (page 117)
Obtains tags for all possible attributes of a given item class.

SecKeychainFreeAttributeInfo (page 126)
Releases the memory acquired by calling the SecKeychainAttributeInfoForItemID function.

SecKeychainItemCopyKeychain (page 133)
Returns the keychain object of a given keychain item.

SecKeychainItemSetAccess (page 143)
Sets the access of a given keychain item.

SecKeychainItemCopyAccess (page 131)
Copies the access of a given keychain item.

Creating an Access Object

SecAccessCreate (page 105)
Creates a new access object.

SecAccessCreateFromOwnerAndACL (page 106)
Creates a new access object using the owner and access control list you provide.

Managing Access Objects

SecAccessCopyACLList (page 104)
Retrieves all the access control list entries of a given access object.

SecAccessCopySelectedACLList (page 105)
Retrieves selected access control lists from a given access object.

102 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecAccessGetOwnerAndACL (page 107)
Retrieves the owner and the access control list of a given access object.

Managing Access Control List Objects

SecACLCreateFromSimpleContents (page 109)
Creates a new access control list entry from the application list, description, and prompt selector
provided and adds it to an item’s access object.

SecACLRemove (page 111)
Removes the specified access control list entry.

SecACLCopySimpleContents (page 108)
Returns the application list, description, and CSSM prompt selector for a given access control list entry.

SecACLSetSimpleContents (page 113)
Sets the application list, description, and prompt selector for a given access control list entry.

SecACLGetAuthorizations (page 110)
Retrieves the CSSM authorization tags of a given access control list entry.

SecACLSetAuthorizations (page 112)
Sets the CSSM authorization tags for a given access control list entry.

Managing Trusted Applications

SecTrustedApplicationCopyData (page 154)
Retrieves the data of a trusted application object.

SecTrustedApplicationCreateFromPath (page 154)
Creates a trusted application object based on the application specified by path.

SecTrustedApplicationSetData (page 155)
Sets the data of a given trusted application object.

Managing Preference Domains

SecKeychainGetPreferenceDomain (page 128)
Gets the current keychain preference domain.

SecKeychainSetPreferenceDomain (page 150)
Sets the keychain preference domain.

SecKeychainCopyDomainDefault (page 119)
Retrieves the default keychain from a specified preference domain.

SecKeychainSetDomainDefault (page 149)
Sets the default keychain for a specified preference domain.

SecKeychainCopyDomainSearchList (page 120)
Retrieves the keychain search list for a specified preference domain.

SecKeychainSetDomainSearchList (page 150)
Sets the keychain search list for a specified preference domain.

Functions by Task 103
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

CSSM Bridge Functions

SecKeychainGetCSPHandle (page 127)
Returns the CSSM CSP handle for the given keychain object.

SecKeychainGetDLDBHandle (page 127)
Returns the CSSM database handle for a given keychain object.

SecKeychainItemGetDLDBHandle (page 139)
Returns the CSSM database handle for a given keychain item object.

SecKeychainItemGetUniqueRecordID (page 139)
Returns a CSSM unique record for the given keychain item object.

Adding and Removing Callbacks

SecKeychainAddCallback (page 114)
Registers your keychain event callback function

SecKeychainRemoveCallback (page 146)
Unregisters your keychain event callback function.

Functions

SecAccessCopyACLList
Retrieves all the access control list entries of a given access object.

OSStatus SecAccessCopyACLList (
 SecAccessRef accessRef,
 CFArrayRef *aclList
);

Parameters
accessRef

The access object from which to retrieve the information.

aclList
On return, a pointer to a reference of a newly created CFArray of SecACLRef instances. You should
call the CFRelease function on this array when you are finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
An access object can have any number of access control list (ACL) entries for specific operations or sets of
operations. To retrieve ACL entries for specific operations, use the SecAccessCopySelectedACLList (page
105) function.

Availability
Available in Mac OS X v10.2 and later.

104 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecAccess.h

SecAccessCopySelectedACLList
Retrieves selected access control lists from a given access object.

OSStatus SecAccessCopySelectedACLList (
 SecAccessRef accessRef,
 CSSM_ACL_AUTHORIZATION_TAG action,
 CFArrayRef *aclList
);

Parameters
accessRef

The access object from which to retrieve the information.

action
An access control list authorization tag; the function returns only those access control list entries that
apply to the operation indicated by this tag.

aclList
On return, a pointer to the selected access control lists. Release this by calling the CFRelease function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
An access object can have any number of access control list (ACL) entries for specific operations or sets of
operations. To retrieve all the ACL entries for an access object, use the SecAccessCopyACLList (page 104)
function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecAccess.h

SecAccessCreate
Creates a new access object.

OSStatus SecAccessCreate (
 CFStringRef descriptor,
 CFArrayRef trustedlist,
 SecAccessRef *accessRef
);

Parameters
descriptor

A CFString object representing the name of the keychain item as it should appear in security dialogs.
Note that this is not necessarily the same name as appears for that item in the Keychain Access
application.

Functions 105
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

trustedlist
A reference to an array of trusted application objects (values of type SecTrustedApplicationRef)
specifying which applications should be allowed to access the item without triggering confirmation
dialogs. Use the SecTrustedApplicationCreateFromPath (page 154) function to create trusted
application objects. If you pass NULL for this parameter, the access control list is automatically set to
the application creating the item. To set no applications, pass a CFArrayRef with no elements.

accessRef
On return, points to the new access object. Release this object by calling the CFRelease function
when you no longer need it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Each protected keychain item (such as a password or private key) has an associated access object. The access
object contains access control list (ACL) entries, which specify trusted applications and the operations for
which those operations are trusted. When an application attempts to access a keychain item for a particular
purpose (such as to sign a document), the system determines whether that application is trusted to access
the item for that purpose. If it is trusted, then the application is given access and no user confirmation is
required. If the application is not trusted, but there is an ACL entry for that operation, then the user is asked
to confirm whether the application should be given access. If there is no ACL entry for that operation, then
access is denied and it is up to the calling application to try something else or to notify the user.

This function creates an access object with three ACL entries: The first, referred to as owner access, determines
who can modify the access object itself. By default, there are no trusted applications for owner access; the
user is always prompted for permission if someone tries to change access controls. The second is for operations
considered safe, such as encrypting data. This ACL entry applies to all applications. The third ACL entry is for
operations that should be restricted, such as decrypting, signing, deriving keys, and exporting keys. This ACL
entry applies to the trusted applications listed in the trustedlist parameter.

To retrieve all the ACL entries of an access object, use the SecAccessCopyACLList (page 104) function. To
retrieve specific ACL entries, use the SecAccessCopySelectedACLList (page 105) function. To create a
new ACL entry and add it to an access object, use SecACLCreateFromSimpleContents (page 109). To
modify an existing ACL entry, use SecACLSetSimpleContents (page 113). To modify the operations for
which an ACL entry is used, call the SecACLSetAuthorizations (page 112) function.

Because an ACL object is always associated with an access object, when you modify an ACL entry, you are
modifying the access object as well. Therefore, there is no need for a separate function to write a modified
ACL object back into the access object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecAccess.h

SecAccessCreateFromOwnerAndACL
Creates a new access object using the owner and access control list you provide.

106 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecAccessCreateFromOwnerAndACL (
 const CSSM_ACL_OWNER_PROTOTYPE *owner,
 uint32 aclCount,
 const CSSM_ACL_ENTRY_INFO *acls,
 SecAccessRef *accessRef
);

Parameters
owner

A pointer to a CSSM access control list owner.

aclCount
An unsigned 32-bit integer representing the number of items in the access control list.

acls
A pointer to the CSSM access control list.

accessRef
On return, points to the new access object. Release this by calling the CFRelease function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function creates an access object from CSSM structures. You can use this function to create an access
object for use with other Certificate, Key, and Trust API functions if you want to use CSSM to create the access
control list. CSSM allows more complex access controls than you can construct with the Certificate, Key, and
Trust API. For more information about the CSSM API, see Common Security: CDSA and CSSM, version 2 (with
corrigenda) from The Open Group (http://www.opengroup.org/security/cdsa.htm).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecAccess.h

SecAccessGetOwnerAndACL
Retrieves the owner and the access control list of a given access object.

OSStatus SecAccessGetOwnerAndACL (
 SecAccessRef accessRef,
 CSSM_ACL_OWNER_PROTOTYPE_PTR *owner,
 uint32 *aclCount,
 CSSM_ACL_ENTRY_INFO_PTR *acls
);

Parameters
accessRef

An access object from which to retrieve the owner and access control list.

owner
On return, a pointer to a CSSM access control list owner.

aclCount
On return, a pointer to an unsigned 32-bit integer representing the number of items in the access
control list.

Functions 107
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

http://www.opengroup.org/security/cdsa.htm

acls
On return, a pointer to the CSSM access control list.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function returns CSSM structures for use with CSSM API functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecAccess.h

SecAccessGetTypeID
Returns the unique identifier of the opaque type to which a SecAccessRef object belongs.

CFTypeID SecAccessGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecAccessRef (page 157) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecAccessRef (page 157) object.
You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on
a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecAccess.h

SecACLCopySimpleContents
Returns the application list, description, and CSSM prompt selector for a given access control list entry.

OSStatus SecACLCopySimpleContents (
 SecACLRef acl,
 CFArrayRef *applicationList,
 CFStringRef *description,
 CSSM_ACL_KEYCHAIN_PROMPT_SELECTOR *promptSelector
);

Parameters
acl

An ACL object that identifies the access control list entry from which you want information.

108 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

applicationList
On return, points to an array of SecTrustedApplication instances identifying applications that
are allowed access to the keychain item without user confirmation. If this parameter returns NULL,
then any application can use this item. If this parameter returns a valid pointer but the array is empty,
then there are no trusted applications. Call CFRelease for this object when you no longer need it.

description
On return, the name of the keychain item that appears in the dialog box when the user is prompted
for permission to use the item. Note that this name is not necessarily the same as the one displayed
for the item by the Keychain Access application. Call CFRelease for this object when you no longer
need it.

promptSelector
On return, points to the prompt selector flag for the given access control list entry. If the
CSSM_ACL_KEYCHAIN_PROMPT_REQUIRE_PASSPHRASEbit is set, the user is prompted for the keychain
password each time a non-trusted application attempts to access this item, even if the keychain is
already unlocked.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
An access control list entry applies to a specific use or set of uses for a specific keychain item. The ACL object
includes a list of trusted applications (see SecTrustedApplicationCreateFromPath (page 154)), the name
of the keychain item as it appears in user prompts, the prompt selector flag, and a list of one or more operations
to which this ACL object applies. Use the SecACLGetAuthorizations (page 110) function to get the list of
operations for an ACL object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLCreateFromSimpleContents
Creates a new access control list entry from the application list, description, and prompt selector provided
and adds it to an item’s access object.

OSStatus SecACLCreateFromSimpleContents (
 SecAccessRef access,
 CFArrayRef applicationList,
 CFStringRef description,
 const CSSM_ACL_KEYCHAIN_PROMPT_SELECTOR *promptSelector,
 SecACLRef *newAcl
);

Parameters
access

The access object to which to add the information.

Functions 109
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

applicationList
An array of trusted application objects (that is, SecTrustedApplication instances) identifying
applications that are allowed access to the keychain item without user confirmation. Use the
SecTrustedApplicationCreateFromPath (page 154) function to create trusted application objects.
If you set this parameter to NULL, then any application can use this item. If you pass an empty array,
then there are no trusted applications. Call CFRelease for this object when you no longer need it.

description
The human readable name to be used to refer to this item when the user is prompted.

promptSelector
A pointer to a prompt selector. If you set the CSSM_ACL_KEYCHAIN_PROMPT_REQUIRE_PASSPHRASE
bit, the user is prompted for the keychain password each time a non-trusted application attempts to
access this item, even if the keychain is already unlocked.

newAcl
On return, points to an access control list object, which is a reference to the new access control list
entry.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The ACL object returned by this function is a reference to an access control list (ACL) entry. The ACL entry
includes a list of trusted applications (see SecTrustedApplicationCreateFromPath (page 154)), the name
of the keychain item as it appears in user prompts, the prompt selector flag, and a list of one or more operations
to which this ACL entry applies. By default, a new ACL entry applies to all operations (the CSSM authorization
tag is set to CSSM_ACL_AUTHORIZATION_ANY). Use the SecACLSetAuthorizations (page 112) function
to set the list of operations for an ACL object.

The system allows exactly one owner ACL entry in each access object. The
SecACLCreateFromSimpleContents function fails if you attempt to add a second owner ACL. To change
owner access controls, use the SecAccessCopySelectedACLList (page 105) function to find the owner
ACL (that is, the only ACL with a CSSM authorization tag of CSSM_ACL_AUTHORIZATION_CHANGE_ACL) and
the SecACLSetSimpleContents (page 113) function to change it as needed.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLGetAuthorizations
Retrieves the CSSM authorization tags of a given access control list entry.

OSStatus SecACLGetAuthorizations (
 SecACLRef acl,
 CSSM_ACL_AUTHORIZATION_TAG *tags,
 uint32 *tagCount
);

Parameters
acl

An ACL object that identifies the access control list entry from which you wish to retrieve the
authorization tags.

110 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

tags
A pointer to an array of CSSM authorization tags. You must allocate this array before calling the
function. On return, this array contains the authorization tags of the specified ACL entry.

tagCount
On input, points to the number of elements in the array you passed in the tags parameter. On return,
points to the number of tags actually returned.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
An ACL object includes a list of trusted applications (see SecTrustedApplicationCreateFromPath (page
154)), the name of the keychain item as it appears in user prompts, the prompt selector flag, and a list of one
or more operations to which this ACL object applies. Use this function to retrieve the list of operations for
an ACL object. Use the SecACLCopySimpleContents (page 108) function to retrieve the other information.

The SecACLGetAuthorizations function returns an error if there are more tags to return than the number
of elements you allocated in the tags array. A 20-element array should suffice for most purposes; however,
you can test for the errSecBufferTooSmall error and increase the size of the array before calling the
function again if necessary.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLGetTypeID
Returns the unique identifier of the opaque type to which a SecACLRef object belongs.

CFTypeID SecACLGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecACLRef (page 157) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecACLRef (page 157) object. You
can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function on a
specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLRemove
Removes the specified access control list entry.

Functions 111
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecACLRemove (
 SecACLRef aclRef
);

Parameters
aclRef

An ACL object that identifies the access control list entry to remove.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The system allows exactly one owner ACL entry in each access object. The SecACLRemove function fails if
you attempt to remove the owner ACL entry. To change owner access controls, use the
SecAccessCopySelectedACLList (page 105) function to find the owner ACL (that is, the only ACL with a
CSSM authorization tag of CSSM_ACL_AUTHORIZATION_CHANGE_ACL) and the
SecACLSetSimpleContents (page 113) function to change it as needed.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLSetAuthorizations
Sets the CSSM authorization tags for a given access control list entry.

OSStatus SecACLSetAuthorizations (
 SecACLRef acl,
 CSSM_ACL_AUTHORIZATION_TAG *tags,
 uint32 tagCount
);

Parameters
acl

An ACL object that identifies the access control list entry for which you wish to set authorization tags.

tags
An array of CSSM authorization tags.

tagCount
The number of tags in the CSSM authorization tag array.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
An ACL object includes a list of trusted applications (see SecTrustedApplicationCreateFromPath (page
154)), the name of the keychain item as it appears in user prompts, the prompt selector flag, and a list of one
or more operations to which this ACL object applies. Use this function to set a list of operations for an ACL
object, or set the CSSM_ACL_AUTHORIZATION_ANY tag to allow all operations. Use the
SecACLSetSimpleContents (page 113) function to set the other information.

112 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Because an ACL object is always associated with an access object, when you modify an ACL entry, you are
modifying the access object as well. There is no need for a separate function to write a modified ACL object
back into the access object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecACL.h

SecACLSetSimpleContents
Sets the application list, description, and prompt selector for a given access control list entry.

OSStatus SecACLSetSimpleContents (
 SecACLRef acl,
 CFArrayRef applicationList,
 CFStringRef description,
 const CSSM_ACL_KEYCHAIN_PROMPT_SELECTOR *promptSelector
);

Parameters
acl

An ACL object that identifies the access control list entry.

applicationList
An array of trusted application objects (that is, SecTrustedApplication instances) identifying
applications that are allowed access to the keychain item without user confirmation. Use the
SecTrustedApplicationCreateFromPath (page 154) function to create trusted application objects.
If you set this parameter to NULL, then any application can use this item. If you pass an empty array,
then there are no trusted applications. Call CFRelease for this object when you no longer need it.

description
The name of the keychain item that appears in the dialog box when the user is prompted for permission
to use the item. Note that this name is not necessarily the same as the one displayed for the item by
the Keychain Access application. Call CFRelease for this object when you no longer need it.

promptSelector
The prompt selector flag for the given access control list entry. Set the
CSSM_ACL_KEYCHAIN_PROMPT_REQUIRE_PASSPHRASEbit to have the user prompted for the keychain
password each time a non-trusted application attempts to access this item, even if the keychain is
already unlocked.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Because an ACL object is always associated with an access object, when you modify an ACL entry, you are
modifying the access object as well. There is no need for a separate function to write a modified ACL object
back into the access object.

Use the SecACLGetAuthorizations (page 110) function to get the list of operations for an ACL object.

Availability
Available in Mac OS X v10.2 and later.

Functions 113
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecACL.h

SecKeychainAddCallback
Registers your keychain event callback function

OSStatus SecKeychainAddCallback (
 SecKeychainCallback callbackFunction,
 SecKeychainEventMask eventMask,
 void *userContext
);

Parameters
callbackFunction

A pointer to your keychain event callback function, described in SecKeychainCallback (page 156).

eventMask
A bit mask indicating the keychain events of which your application wishes to be notified. Keychain
Services tests this mask to determine the keychain events that you wish to receive, and passes these
events in the keychainEvent parameter of your callback function.

userContext
A pointer to application-defined storage that will be passed to your callback function. Your application
can use this to associate any particular call of this function with any particular call of your keychain
event callback function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
It is important to note that the current Foundation or Core Foundation run loop must be active when making
this call or the callbacks are not registered. In multithreaded programs, the notifications are registered in the
run loop of the thread calling SecKeychainAddCallback; therefore, delivery of notifications depends on
the functioning of that thread’s run loop. If that thread terminates, or is so busy that it doesn't operate its
run loop in a timely manner, notifications will be delayed, and may eventually be dropped without any
notification.

For that reason, it is inadvisable for your program to depend on delivery of notifications caused by your own
actions (such as depending on receiving a deletion notification before updating a UI view) unless your
program is multithreaded and can take notifications on a thread different from the one generating the events.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainAddGenericPassword
Adds a new generic password to a keychain.

114 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainAddGenericPassword (
 SecKeychainRef keychain,
 UInt32 serviceNameLength,
 const char *serviceName,
 UInt32 accountNameLength,
 const char *accountName,
 UInt32 passwordLength,
 const void *passwordData,
 SecKeychainItemRef *itemRef
);

Parameters
keychain

A reference to the keychain in which to store a generic password. Pass NULL to specify the default
keychain.

serviceNameLength
The length of the serviceName character string.

serviceName
A UTF-8 encoded character string representing the service name.

accountNameLength
The length of the accountName character string.

accountName
A UTF-8 encoded character string representing the account name.

passwordLength
The length of the passwordData buffer.

passwordData
A pointer to a buffer containing the password data to be stored in the keychain. Before calling this
function, allocate enough memory for the buffer to hold the data you want to store.

itemRef
On return, a pointer to a reference to the new keychain item. Pass NULL if you don’t want to obtain
this object. You must allocate the memory for this pointer. The memory that this pointer occupies
must be released by calling the CFRelease function when finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code errSecNoDefaultKeychain
indicates that no default keychain could be found. The result code errSecDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errSecDataTooLarge
indicates that you tried to add more data than is allowed for a structure of this type.

Discussion
This function adds a new generic password to the specified keychain. Required parameters to identify the
password are serviceName and accountName, which are application-defined strings. This function optionally
returns a reference to the newly added item.

You can use this function to add passwords for accounts other than the Internet. For example, you might
add AppleShare passwords, or passwords for your database or scheduling programs.

This function sets the initial access rights for the new keychain item so that the application creating the item
is given trusted access.

This function automatically calls the function SecKeychainUnlock (page 153) to display the Unlock Keychain
dialog box if the keychain is currently locked.

Functions 115
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainAddInternetPassword
Adds a new Internet password to a keychain.

OSStatus SecKeychainAddInternetPassword (
 SecKeychainRef keychain,
 UInt32 serverNameLength,
 const char *serverName,
 UInt32 securityDomainLength,
 const char *securityDomain,
 UInt32 accountNameLength,
 const char *accountName,
 UInt32 pathLength,
 const char *path,
 UInt16 port,
 SecProtocolType protocol,
 SecAuthenticationType authenticationType,
 UInt32 passwordLength,
 const void *passwordData,
 SecKeychainItemRef *itemRef
);

Parameters
keychain

A reference to the keychain in which to store an Internet password. Pass NULL to specify the user’s
default keychain.

serverNameLength
The length of the serverName character string.

serverName
A UTF-8 encoded character string representing the server name.

securityDomainLength
The length of the securityDomain character string.

securityDomain
A UTF-8 encoded character string representing the security domain. This parameter is optional. Pass
NULL if the protocol does not require it.

accountNameLength
The length of the accountName character string.

accountName
A UTF-8 encoded character string representing the account name.

pathLength
The length of the path character string.

path
A UTF-8 encoded character string representing the path.

116 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

port
The TCP/IP port number. If no specific port number is associated with this password, pass 0.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 186) for a
description of possible values.

authenticationType
The authentication scheme used. See “Keychain Authentication Type Constants” (page 166) for a
description of possible values. Pass the constant kSecAuthenticationTypeDefault, to specify
the default authentication scheme.

passwordLength
The length of the passwordData buffer.

passwordData
A pointer to a buffer containing the password data to be stored in the keychain.

itemRef
On return, a pointer to a reference to the new keychain item. Pass NULL if you don’t want to obtain
this object. You must allocate the memory for this pointer. The memory that this pointer occupies
must be released by calling the CFRelease function when finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code errSecNoDefaultKeychain
indicates that no default keychain could be found. The result code errSecDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errSecDataTooLarge
indicates that you tried to add more data than is allowed for a structure of this type.

Discussion
This function adds a new Internet server password to the specified keychain. Required parameters to identify
the password are serverName and accountName (you cannot pass NULL for both parameters). In addition,
some protocols may require an optional securityDomain when authentication is requested. This function
optionally returns a reference to the newly added item.

This function sets the initial access rights for the new keychain item so that the application creating the item
is given trusted access.

This function automatically calls the function SecKeychainUnlock (page 153) to display the Unlock Keychain
dialog box if the keychain is currently locked.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageClient

Declared In
SecKeychain.h

SecKeychainAttributeInfoForItemID
Obtains tags for all possible attributes of a given item class.

Functions 117
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainAttributeInfoForItemID (
 SecKeychainRef keychain,
 UInt32 itemID,
 SecKeychainAttributeInfo **info
);

Parameters
keychain

A keychain object.

itemID
The relation identifier of the item tags. An itemID is a CSSM_DB_RECORDTYPE type as defined in
cssmtype.h.

info
On return, a pointer to the keychain attribute information. Your application should call the
SecKeychainFreeAttributeInfo (page 126) function to release this structure when done with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This call returns more attributes than are supported by the old style Keychain API and passing them into
older calls yields an invalid attribute error. The recommended call to retrieve the attribute values is the
SecKeychainItemCopyAttributesAndData (page 131) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainCopyAccess
Retrieves the application access of a keychain.

OSStatus SecKeychainCopyAccess (
 SecKeychainRef keychain,
 SecAccessRef *access
);

Parameters
keychain

A reference to the keychain from which to copy the access object. Pass NULL to specify the default
keychain.

access
A pointer to an access object. On return, this points to the access object of the specified keychain.
See “Managing Access Objects” (page 102) for information on manipulating access objects.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Special Considerations

Although this function is available in Mac OS X v10.2, it was unimplemented before Mac OS X v10.3 and
returned an unimpErr error code if called.

118 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainCopyDefault
Retrieves a pointer to the default keychain.

OSStatus SecKeychainCopyDefault (
 SecKeychainRef *keychain
);

Parameters
keychain

On return, a pointer to the default keychain object. The memory that this pointer occupies must be
released by calling the CFRelease function when finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code errSecNoDefaultKeychain
indicates that there is no default keychain.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecKeychain.h

SecKeychainCopyDomainDefault
Retrieves the default keychain from a specified preference domain.

OSStatus SecKeychainCopyDomainDefault (
 SecPreferencesDomain domain,
 SecKeychainRef *keychain
);

Parameters
domain

The preference domain from which you wish to retrieve the default keychain. See “Keychain Preference
Domain Constants” (page 185) for possible domain values.

keychain
On return, a pointer to the keychain object of the default keychain in the specified preference domain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Functions 119
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. Use this function if you want to retrieve the default keychain for a specific preference
domain. Use the SecKeychainCopyDefault (page 119) function if you want the default keychain for the
current preference domain. See theSecKeychainSetPreferenceDomain (page 150) function for a discussion
of current and default preference domains.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecKeychain.h

SecKeychainCopyDomainSearchList
Retrieves the keychain search list for a specified preference domain.

OSStatus SecKeychainCopyDomainSearchList (
 SecPreferencesDomain domain,
 CFArrayRef *searchList
);

Parameters
domain

The preference domain from which you wish to retrieve the keychain search list. See “Keychain
Preference Domain Constants” (page 185) for possible domain values.

searchList
On return, a pointer to the keychain search list of the specified preference domain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. Use this function if you want to retrieve the keychain search list for a specific preference
domain. Use the SecKeychainCopySearchList (page 120) function if you want the keychain search list for
the current preference domain. See the SecKeychainSetPreferenceDomain (page 150) function for a
discussion of current and default preference domains.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecKeychain.h

SecKeychainCopySearchList
Retrieves a keychain search list.

120 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainCopySearchList (
 CFArrayRef *searchList
);

Parameters
searchList

The returned keychain search list. When finished with the array, you must call CFRelease to release
the memory.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainCopySettings
Obtains a keychain’s settings.

OSStatus SecKeychainCopySettings (
 SecKeychainRef keychain,
 SecKeychainSettings *outSettings
);

Parameters
keychain

A reference to the keychain from which to copy its settings.

outSettings
On return, a pointer to a keychain settings structure. Since this structure is versioned, you must allocate
the memory for it and fill in the version of the structure before passing it to the function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainCreate
Creates an empty keychain.

Functions 121
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainCreate (
 const char *pathName,
 UInt32 passwordLength,
 const void *password,
 Boolean promptUser,
 SecAccessRef initialAccess,
 SecKeychainRef *keychain
);

Parameters
pathName

A constant character string representing the POSIX path indicating where to store the keychain.

passwordLength
An unsigned 32-bit integer representing the length of the buffer pointed to by password. Pass 0 if
the value of password is NULL and the value of promptUser is TRUE.

password
A pointer to the buffer containing the password which is used to protect the new keychain. The
password must be in canonical UTF8 encoding. Pass NULL if the value of passwordLength is 0 and
the value of promptUser is TRUE.

promptUser
A Boolean value representing whether to display a password dialog to the user. Set this value to TRUE
to display a password dialog or FALSE otherwise. If you pass TRUE, any values passed for
passwordLength and password are ignored, and a dialog for the user to enter a password is
presented.

initialAccess
An access object indicating the initial access rights for the keychain. A keychain’s access rights
determine which applications have permission to use the keychain. You may pass NULL for the
standard access rights.

keychain
On return, a pointer to a keychain object. The memory that the keychain object pointer occupies must
be released by calling CFRelease when you are finished with it. Pass NULL if you do not need the
pointer to the keychain object returned.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function creates an empty keychain. The keychain, password, and initialAccess parameters are
optional. If user interaction to create a keychain is posted, the newly-created keychain is automatically
unlocked after creation.

The system ensures that a default keychain is created for the user at login, thus, in most cases, you do not
need to call this function yourself. Users can create additional keychains, or change the default, by using the
Keychain Access application. However, a missing default keychain is not recreated automatically, and you
may receive an errSecNoDefaultKeychain error from other functions if a default keychain does not exist.
In that case, you can use this function followed by SecKeychainSetDefault (page 149), to create a new
default keychain. You can also call this function to create a private temporary keychain for your application’s
use, in cases where no user interaction can occur.

Availability
Available in Mac OS X v10.2 and later.

122 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecKeychain.h

SecKeychainDelete
Deletes one or more keychains from the default keychain search list, and removes the keychain itself if it is
a file.

OSStatus SecKeychainDelete (
 SecKeychainRef keychainOrArray
);

Parameters
keychainOrArray

A single keychain object or a reference to an array of keychains you wish to delete. To delete more
than one keychain, create a CFArray of keychain references (type SecKeychainRef) and pass a
reference to the array. In Mac OS X v10.3 and later, passing NULL to this parameter returns an
errSecInvalidKeychain error code.

In Mac OS X v10.2, this parameter was named keychain and only took a single keychain object.
Passing NULL to this parameter deleted the user’s default keychain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The keychain may be a file stored locally, a smart card, or retrieved from a network server using non-file-based
database protocols. This function deletes the keychain only if it is a local file.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainFindGenericPassword
Finds the first generic password based on the attributes passed.

OSStatus SecKeychainFindGenericPassword (
 CFTypeRef keychainOrArray,
 UInt32 serviceNameLength,
 const char *serviceName,
 UInt32 accountNameLength,
 const char *accountName,
 UInt32 *passwordLength,
 void **passwordData,
 SecKeychainItemRef *itemRef
);

Parameters
keychainOrArray

A reference to an array of keychains to search, a single keychain, or NULL to search the user’s default
keychain search list.

Functions 123
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

serviceNameLength
The length of the serviceName character string.

serviceName
A UTF-8 encoded character string representing the service name.

accountNameLength
The length of the accountName character string.

accountName
A UTF-8 encoded character string representing the account name.

passwordLength
On return, the length of the buffer pointed to by passwordData.

passwordData
On return, a pointer to a buffer that holds the password data. Pass NULL if you want to obtain the
item object but not the password data. In this case, you must also pass NULL in the passwordLength
parameter. You should use the SecKeychainItemFreeContent (page 138) function to free the
memory pointed to by this parameter.

itemRef
On return, a pointer to the item object of the generic password. Pass NULL if you don’t want to obtain
this object.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function finds the first generic password item that matches the attributes you provide. Most attributes
are optional; you should pass only as many as you need to narrow the search sufficiently for your application’s
intended use. This function optionally returns a reference to the found item.

This function decrypts the password before returning it to you. If the calling application is not in the list of
trusted applications, the user is prompted before access is allowed. If the access controls for this item do not
allow decryption, the function returns the errSecAuthFailed result code.

This function automatically calls the function SecKeychainUnlock (page 153) to display the Unlock Keychain
dialog box if the keychain is currently locked.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainFindInternetPassword
Finds the first Internet password based on the attributes passed.

124 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainFindInternetPassword (
 CFTypeRef keychainOrArray,
 UInt32 serverNameLength,
 const char *serverName,
 UInt32 securityDomainLength,
 const char *securityDomain,
 UInt32 accountNameLength,
 const char *accountName,
 UInt32 pathLength,
 const char *path,
 UInt16 port,
 SecProtocolType protocol,
 SecAuthenticationType authenticationType,
 UInt32 *passwordLength,
 void **passwordData,
 SecKeychainItemRef *itemRef
);

Parameters
keychainOrArray

A reference to an array of keychains to search, a single keychain or NULL to search the user’s default
keychain search list.

serverNameLength
The length of the serverName character string.

serverName
A UTF-8 encoded character string representing the server name.

securityDomainLength
The length of the securityDomain character string.

securityDomain
A UTF-8 encoded character string representing the security domain. This parameter is optional, as
not all protocols require it. Pass NULL if it is not required.

accountNameLength
The length of the accountName character string.

accountName
A UTF-8 encoded character string representing the account name.

pathLength
The length of the path character string.

path
A UTF-8 encoded character string representing the path.

port
The TCP/IP port number. Pass 0 to ignore the port number.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 186) for a
description of possible values.

authenticationType
The authentication scheme used. See “Keychain Authentication Type Constants” (page 166) for a
description of possible values. Pass the constant kSecAuthenticationTypeDefault, to specify
the default authentication scheme.

Functions 125
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

passwordLength
On return, the length of the buffer pointed to by passwordData.

passwordData
On return, a pointer to a buffer containing the password data. Pass NULL if you want to obtain the
item object but not the password data. In this case, you must also pass NULL in the passwordLength
parameter. You should use the SecKeychainItemFreeContent (page 138) function to free the
memory pointed to by this parameter.

itemRef
On return, a pointer to the item object of the Internet password. Pass NULL if you don’t want to obtain
this object.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function finds the first Internet password item that matches the attributes you provide. This function
optionally returns a reference to the found item.

This function decrypts the password before returning it to you. If the calling application is not in the list of
trusted applications, the user is prompted before access is allowed. If the access controls for this item do not
allow decryption, the function returns the errSecAuthFailed result code.

This function automatically calls the function SecKeychainUnlock (page 153) to display the Unlock Keychain
dialog box if the keychain is currently locked.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageClient

Declared In
SecKeychain.h

SecKeychainFreeAttributeInfo
Releases the memory acquired by calling the SecKeychainAttributeInfoForItemID function.

OSStatus SecKeychainFreeAttributeInfo (
 SecKeychainAttributeInfo *info
);

Parameters
info

A pointer to the keychain attribute information to release.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

126 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainGetCSPHandle
Returns the CSSM CSP handle for the given keychain object.

OSStatus SecKeychainGetCSPHandle (
 SecKeychainRef keychain,
 CSSM_CSP_HANDLE *cspHandle
);

Parameters
keychain

A keychain object.

cspHandle
On return, a pointer to the CSSM CSP handle for the given keychain. The handle is valid until the
keychain object is released.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainGetDLDBHandle
Returns the CSSM database handle for a given keychain object.

OSStatus SecKeychainGetDLDBHandle (
 SecKeychainRef keychain,
 CSSM_DL_DB_HANDLE *dldbHandle
);

Parameters
keychain

A keychain object.

dldbHandle
On return, a pointer to the CSSM database handle for the given keychain. The handle is valid until
the keychain object is released.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainGetPath
Determines the path of a keychain.

Functions 127
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainGetPath (
 SecKeychainRef keychain,
 UInt32 *ioPathLength,
 char *pathName
);

Parameters
keychain

A reference to a keychain whose path you wish to obtain.

ioPathLength
On input, a pointer to the size of the character string pathName. On return, the size of pathName
without the zero termination.

pathName
On input, a pointer to a buffer that you have allocated. On output, the buffer contains the POSIX path
of the keychain as a UTF-8 encoded string. The function returns errSecBufferTooSmall if the
provided buffer is too small.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecKeychain.h

SecKeychainGetPreferenceDomain
Gets the current keychain preference domain.

OSStatus SecKeychainGetPreferenceDomain (
 SecPreferencesDomain *domain
);

Parameters
domain

On return, a pointer to the keychain preference domain. See “Keychain Preference Domain
Constants” (page 185) for possible domain values.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. The default preference domain for system daemons (that is, for daemons running in the
root session) is the system domain. The default preference domain for all other programs is the user domain.
Use the SecKeychainSetPreferenceDomain (page 150) function to change the preference domain.

Availability
Available in Mac OS X v10.3 and later.

128 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecKeychain.h

SecKeychainGetStatus
Retrieves status information of a keychain.

OSStatus SecKeychainGetStatus (
 SecKeychainRef keychain,
 SecKeychainStatus *keychainStatus
);

Parameters
keychain

A keychain object of the keychain whose status you wish to determine for the user session. Pass NULL
to obtain the status of the default keychain.

keychainStatus
On return, a pointer to the status of the specified keychain. See “Keychain Status Masks” (page 190)
for valid status constants.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code errSecNoSuchKeychain
indicates that the specified keychain could not be found. The result code errSecInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
This function retrieves the status of a specified keychain. You can use this function to determine if the keychain
is unlocked, readable, or writable. Note that the lock status of a keychain can change at any time due to user
or system activity. Because the system automatically prompts the user to unlock a keychain when necessary,
you do not usually have to worry about the lock status of a keychain. If you do need to track the lock status
of a keychain, use the SecKeychainAddCallback (page 114) function to register for keychain notifications.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainGetTypeID
Returns the unique identifier of the opaque type to which a SecKeychainRef object belongs.

CFTypeID SecKeychainGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecKeychainRef (page 160) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecKeychainRef (page 160)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Functions 129
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainGetUserInteractionAllowed
Indicates whether Keychain Services functions that normally display a user interaction are allowed to do so.

OSStatus SecKeychainGetUserInteractionAllowed (
 Boolean *state
);

Parameters
state

A Boolean value indicating whether user interaction is permitted. If true, user interaction is allowed,
and Keychain Services functions that display a user interface can do so as appropriate.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainGetVersion
Determines the version of Keychain Services installed on the user’s system.

OSStatus SecKeychainGetVersion (
 UInt32 *returnVers
);

Parameters
returnVers

On return, a pointer to the version number of Keychain Services installed on the current system. See
“Keychain Settings Version” (page 190) for a list of values.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Your application can call the SecKeychainGetVersion function to find out which version of Keychain
Services is installed on the user’s system.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

130 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainItemCopyAccess
Copies the access of a given keychain item.

OSStatus SecKeychainItemCopyAccess (
 SecKeychainItemRef itemRef,
 SecAccessRef *access
);

Parameters
itemRef

A reference to a keychain item.

access
On return, points to the keychain item’s access object. Release this object by calling the CFRelease
function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Each protected keychain item (such as a password or private key) has an associated access object. The access
object contains access control list (ACL) entries, which specify trusted applications and the operations for
which those operations are trusted. You can use this function together with the
SecKeychainItemSetAccess (page 143) function to copy access controls from one keychain item to another.
You can use the functions in the section “Managing Access Control List Objects” (page 103) to modify the
contents of an access object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemCopyAttributesAndData
Retrieves the data and/or attributes stored in the given keychain item.

OSStatus SecKeychainItemCopyAttributesAndData (
 SecKeychainItemRef itemRef,
 SecKeychainAttributeInfo *info,
 SecItemClass *itemClass,
 SecKeychainAttributeList **attrList,
 UInt32 *length,
 void **outData
);

Parameters
itemRef

A reference to the keychain item from which you wish to retrieve data or attributes.

info
A pointer to a list of tags of attributes to retrieve.

itemClass
A pointer to the item’s class. You should pass NULL if not required. See “Keychain Item Class
Constants” (page 179) for valid constants.

Functions 131
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

attrList
On input, the list of attributes in this item to get; on output the attributes are filled in. You should call
the function SecKeychainItemFreeAttributesAndData (page 137) when you no longer need the
attributes and data.

length
On return, a pointer to the actual length of the data.

outData
A pointer to a buffer containing the data in this item. Pass NULL if not required. You should call the
function SecKeychainItemFreeAttributesAndData (page 137) when you no longer need the
attributes and data.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function returns the data and attributes of a specific keychain item. You can use the
SecKeychainSearchCopyNext (page 146) function to search for a keychain item if you don’t already have
the item’s reference object. To find and obtain data from a password keychain item, use the
SecKeychainFindInternetPassword (page 124) or SecKeychainFindGenericPassword (page 123)
function.

You should pair the SecKeychainItemCopyAttributesAndData function with the
SecKeychainItemModifyAttributesAndData (page 142) function, as these functions handle more
attributes than are support by the old Keychain Manager and passing them into older calls yields an invalid
attribute error. Use the functions SecKeychainItemModifyContent (page 142) and
SecKeychainItemCopyContent (page 132) when dealing with older Keychain Manager functions.

If the keychain item data is encrypted, this function decrypts the data before returning it to you. If the calling
application is not in the list of trusted applications, the user is prompted before access is allowed. If the access
controls for this item do not allow decryption, the function returns the errSecAuthFailed result code.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemCopyContent
Copies the data and attributes stored in the given keychain item.

OSStatus SecKeychainItemCopyContent (
 SecKeychainItemRef itemRef,
 SecItemClass *itemClass,
 SecKeychainAttributeList *attrList,
 UInt32 *length,
 void **outData
);

Parameters
itemRef

A reference to the keychain item to modify.

132 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

itemClass
A pointer to the item’s class. You should pass NULL if it is not required. See “Keychain Item Class
Constants” (page 179) for valid constants.

attrList
A pointer to the list of attributes to get in this item on input; on output the attributes are filled in.
You must call SecKeychainItemFreeContent (page 138) when you no longer need the attributes
and data.

length
On return, the length of the buffer pointed to by the outData parameter.

outData
On return, a pointer to a buffer containing the data in this item. You must call
SecKeychainItemFreeContent (page 138) when you no longer need the attributes and data.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function returns the data and attributes of a specific keychain item. You can use the
SecKeychainSearchCopyNext (page 146) function to search for a keychain item if you don’t already have
the item’s reference object. To find and obtain data from a password keychain item, use the
SecKeychainFindInternetPassword (page 124) or SecKeychainFindGenericPassword (page 123)
function.

You should pair the SecKeychainItemModifyContent (page 142) function with the
SecKeychainItemCopyContent function when dealing with older Keychain Manager functions. The
SecKeychainItemCopyAttributesAndData (page 131) and
SecKeychainItemModifyAttributesAndData (page 142) functions handle more attributes than are
support by the old Keychain Manager; however, passing them into older calls yields an invalid attribute error.

If the keychain item data is encrypted, this function decrypts the data before returning it to you. If the calling
application is not in the list of trusted applications, the user is prompted before access is allowed. If the access
controls for this item do not allow decryption, the function returns the errSecAuthFailed result code.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageClient

Declared In
SecKeychainItem.h

SecKeychainItemCopyKeychain
Returns the keychain object of a given keychain item.

Functions 133
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainItemCopyKeychain (
 SecKeychainItemRef itemRef,
 SecKeychainRef *keychainRef
);

Parameters
itemRef

A keychain item object.

keychainRef
On return, a pointer to a keychain object referencing the given keychain item. Release this by calling
the CFRelease function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemCreateCopy
Copies a keychain item from one keychain to another.

OSStatus SecKeychainItemCreateCopy (
 SecKeychainItemRef itemRef,
 SecKeychainRef destKeychainRef,
 SecAccessRef initialAccess,
 SecKeychainItemRef *itemCopy
);

Parameters
itemRef

A reference to the keychain item to copy.

destKeychainRef
A reference to the keychain in which to insert the copied keychain item. Pass NULL to specify the
default keychain.

initialAccess
The initial access for the copied keychain item. Use the SecAccessCreate (page 105) function to
create an access object or the SecKeychainItemCopyAccess (page 131) function to copy an access
object from another keychain item. If you pass NULL for this parameter, the access defaults to the
application creating the item.

itemCopy
On return, a pointer to a copy of the keychain item referenced by the itemRef parameter. You must
release this object by calling the CFRelease function.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

134 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecKeychainItem.h

SecKeychainItemCreateFromContent
Creates a new keychain item from the supplied parameters.

OSStatus SecKeychainItemCreateFromContent (
 SecItemClass itemClass,
 SecKeychainAttributeList *attrList,
 UInt32 length,
 const void *data,
 SecKeychainRef keychainRef,
 SecAccessRef initialAccess,
 SecKeychainItemRef *itemRef
);

Parameters
itemClass

A constant identifying the class of item to create. See “Keychain Item Class Constants” (page 179) for
valid constants.

attrList
A pointer to the list of attributes for the item to create.

length
The length of the buffer pointed to by the data parameter.

data
A pointer to a buffer containing the data to store.

keychainRef
A reference to the keychain in which to add the item. Pass NULL to specify the default keychain.

initialAccess
An access object for this keychain item. Use the SecAccessCreate (page 105) function to create an
access object or the SecKeychainItemCopyAccess (page 131) function to copy an access object
from another keychain item. If you pass NULL for this parameter, the access defaults to the application
creating the item.

itemRef
On return, a pointer to a reference to the newly created keychain item. This parameter is optional.
When the item object is no longer required, call CFRelease to deallocate memory occupied by the
item.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Each item stored in the keychain contains data (such as a certificate), which is indexed by the item’s attributes.
Use this function to create a keychain item from its attributes and data. To create keychain items that hold
passwords, use the SecKeychainAddInternetPassword (page 116) or
SecKeychainAddGenericPassword (page 114) functions.

A SecKeychainItemRef object for a certificate that is stored in a keychain can be safely cast to a
SecCertificateRef for use with the Certificate, Key, and Trust API.

Functions 135
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemDelete
Deletes a keychain item from the default keychain’s permanent data store.

OSStatus SecKeychainItemDelete (
 SecKeychainItemRef itemRef
);

Parameters
itemRef

A keychain item object of the item to delete. Use the CFRelease function when you are completely
finished with this item.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
If the keychain item has not previously been added to the keychain, this function does nothing and returns
noErr.

Do not delete a keychain item and recreate it in order to modify it; instead, use the
SecKeychainItemModifyContent (page 142) or SecKeychainItemModifyAttributesAndData (page
142) function to modify an existing keychain item. When you delete a keychain item, you lose any access
controls and trust settings added by the user or by other applications.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemExport
Exports one or more certificates, keys, or identities.

136 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainItemExport (
 CFTypeRef keychainItemOrArray,
 SecExternalFormat outputFormat,
 SecItemImportExportFlags flags,
 const SecKeyImportExportParameters *keyParams,
 CFDataRef *exportedData
);

Parameters
keychainItemOrArray

The keychain item or items to export. You can export only the following types of keychain items:
SecCertificateRef, SecKeyRef, and SecIdentityRef. If you are exporting exactly one item,
you can specify a SecKeychainItemRef object. Otherwise this parameter is a CFArrayRef object
containing a number of items of type SecKeychainItemRef.

outputFormat
The format of the external representation of the item. Set this parameter to kSecFormatUnknown
to use the default for that item type. Possible values for this parameter and default values are
enumerated in “Keychain Item Import/Export Formats” (page 182).

flags
A flag indicating whether the exported item should have PEM armour. PEM armour refers to a way
of expressing binary data as an ASCII string so that it can be transferred over text-only channels such
as email. Set this flag to kSecItemPemArmour if you want PEM armouring.

keyParams
A pointer to a structure containing a set of input parameters for the function. If no key items are being
exported, these parameters are optional and you can set the keyParams parameter to NULL.

exportedData
On return, points to the external representation of the keychain item or items.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function works only with keys, certificates, and identities. An identity is the combination of a certificate
and its associated private key. Although public keys are commonly stored in certificates, they can be stored
separately in the keychain as well; for example, when you call the SecKeyCreatePair (page 52) function
to create a key pair, both the public and private keys are stored in the keychain. Use the
SecKeychainSearchCopyNext (page 146) function to find a key or certificate. Use the
SecIdentitySearchCopyNext (page 49) function in the Certificate, Key, and Trust API to find an identity.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SecImportExport.h

SecKeychainItemFreeAttributesAndData
Releases the memory used by the keychain attribute list and/or the keychain data retrieved in a call to
SecKeychainItemCopyAttributesAndData.

Functions 137
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainItemFreeAttributesAndData (
 SecKeychainAttributeList *attrList,
 void *data
);

Parameters
attrList

A pointer to the attribute list to release. Pass NULL if there is no attribute list to release.

data
A pointer to the data buffer to release. Pass NULL if there is no data to release.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemFreeContent
Releases the memory used by the keychain attribute list and/or the keychain data retrieved in a call to the
SecKeychainItemCopyContent (page 132) function.

OSStatus SecKeychainItemFreeContent (
 SecKeychainAttributeList *attrList,
 void *data
);

Parameters
attrList

A pointer to the attribute list to release. Pass NULL if there is no attribute list to release.

data
A pointer to the data buffer to release. Pass NULL if there is no data to release.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Because the SecKeychainFindInternetPassword (page 124) and
SecKeychainFindGenericPassword (page 123) functions call the SecKeychainItemCopyContent (page
132) function, you must call SecKeychainItemFreeContent to release the data buffers after calls to those
functions as well.

Because the SecKeychainItemCopyContent function does not allocate buffers until they are needed, you
should not call the SecKeychainItemFreeContent function unless data is actually returned to you.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageClient

138 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecKeychainItem.h

SecKeychainItemGetDLDBHandle
Returns the CSSM database handle for a given keychain item object.

OSStatus SecKeychainItemGetDLDBHandle (
 SecKeychainItemRef keyItemRef,
 CSSM_DL_DB_HANDLE *dldbHandle
);

Parameters
keyItemRef

A keychain item object.

dldbHandle
On return, a pointer to a CSSM database handle for the keychain database containing the given item.
The handle is valid until the keychain item object is released.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemGetTypeID
Returns the unique identifier of the opaque type to which a SecKeychainItemRef object belongs.

CFTypeID SecKeychainItemGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecKeychainItemRef (page 160) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecKeychainItemRef (page 160)
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemGetUniqueRecordID
Returns a CSSM unique record for the given keychain item object.

Functions 139
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainItemGetUniqueRecordID (
 SecKeychainItemRef itemRef,
 const CSSM_DB_UNIQUE_RECORD **uniqueRecordID
);

Parameters
itemRef

A keychain item object.

uniqueRecordID
On return, a pointer to a CSSM unique record for the given item. The unique record is valid until the
item object is released.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemImport
Imports one or more certificates, keys, or identities and adds them to a keychain.

OSStatus SecKeychainItemImport (
 CFDataRef importedData,
 CFStringRef fileNameOrExtension,
 SecExternalFormat *inputFormat,
 SecExternalItemType *itemType,
 SecItemImportExportFlags flags,
 const SecKeyImportExportParameters *keyParams,
 SecKeychainRef importKeychain,
 CFArrayRef *outItems
);

Parameters
importedData

The external representation of the items to import.

fileNameOrExtension
The name or extension of the file from which the external representation was obtained. Pass NULL if
you don’t know the name or extension.

inputFormat
On input, points to the format of the external representation. Pass kSecFormatUnknown if you do
not know the exact format. On output, points to the format that the function has determined the
external representation to be in. Pass NULL if you don’t know the format and don’t want the format
returned to you.

itemType
On input, points to the item type of the item or items contained in the external representation. Pass
kSecItemTypeUnknown if you do not know the item type. On output, points to the item type that
the function has determined the external representation to contain. Pass NULL if you don’t know the
item type and don’t want the type returned to you.

140 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

flags
Unused; pass in 0.

keyParams
A pointer to a structure containing a set of input parameters for the function. If no key items are being
imported, these parameters are optional and you can set the keyParams parameter to NULL.

importKeychain
A keychain object indicating the keychain to which the key or certificate should be imported. If you
pass NULL, the item is not imported. Use the SecKeychainCopyDefault (page 119) function to get
a reference to the default keychain. If this parameter is NULL, the kSecKeyImportOnlyOne bit in the
flags parameter is ignored. Otherwise, if the kSecKeyImportOnlyOne bit is set and there is more
than one key in the incoming external representation, no items are imported to the specified keychain
and the error errSecMultiplePrivKeys is returned.

outItems
On output, points to an array of SecKeychainItemRef objects for the imported items. You must
provide a valid pointer to a CFArrayRef object to receive this information. If you pass NULL for this
parameter, the function does not return the imported items. Release this object by calling the
CFRelease function when you no longer need it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
When you pass this function a CFDataRef object containing the external representation of one or more
keys, certificates, or identities, SecKeychainItemImport attempts to determine the format and contents
of the data. To ensure that this process is successful, you should specify values for one or more of the
parameters fileNameOrExtension, inputFormat, and itemType. To have the function add the imported
items to a keychain, specify a non-NULL value for the importKeychain parameter. To have the function
return SecKeychainItemRef objects for the imported items, specify a non-NULL value for the outItems
parameter.

Because the SecKeychainItemImport function determines whether the item is PEM armoured by inspecting
the data, the flags parameter is not used in this function call.

After the function returns, you can determine the nature of the keychain items from the values returned in
the inputFormat and itemType parameters. Depending on the nature of each item, once it is imported to
a keychain you can safely cast the SecKeychainItemRef object to a SecKeyRef, SecCertificateRef,
or SecIdentityRef object.

Note that when you import data in PKCS12 format, typically one SecIdentityRef object is returned in the
outItems parameter. The data might also include one or more SecCertificateRef objects. The output
data will not include any SecKeyRef objects unless the incoming data includes a key with no matching
certificate.

When the output item type iskSecItemTypeAggregate, you can use theCFGetTypeID function to determine
the Core Foundation type of each item and the functions in “Getting Information About Keychain Services
and Types” (page 99) to determine the keychain item type of each item. For example, the following code
determines whether the item is a certificate:

CFTypeID theID = CFGetTypeID(theItem);
if (SecCertificateGetTypeID() == theID)

You can pass in NULL for both outItems and importKeychain to determine what is inside a given external
data representation. When you do, the function returns the input format and the item type without modifying
the data in any way.

Functions 141
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
SecImportExport.h

SecKeychainItemModifyAttributesAndData
Updates an existing keychain item after changing its attributes or data.

OSStatus SecKeychainItemModifyAttributesAndData (
 SecKeychainItemRef itemRef,
 const SecKeychainAttributeList *attrList,
 UInt32 length,
 const void *data
);

Parameters
itemRef

A reference to the keychain item to modify.

attrList
A pointer to the list of attributes to set. Pass NULL if you have no attributes to set.

length
The length of the buffer pointed to by the data parameter. Pass 0 if you pass NULL in the data
parameter.

data
A pointer to a buffer containing the data to store. Pass NULL if you do not need to modify the data.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The keychain item is written to the keychain’s permanent data store. If the keychain item has not previously
been added to a keychain, a call to this function does nothing and returns noErr.

You should pair the SecKeychainItemCopyAttributesAndData (page 131) function with the
SecKeychainItemModifyAttributesAndData function, as these functions handle more attributes than
are support by the old Keychain Manager and passing them into older calls yields an invalid attribute error.
Use the functionsSecKeychainItemModifyContent (page 142) andSecKeychainItemCopyContent (page
132) when dealing with older Keychain Manager functions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainItemModifyContent
Updates an existing keychain item after changing its attributes and/or data.

142 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainItemModifyContent (
 SecKeychainItemRef itemRef,
 const SecKeychainAttributeList *attrList,
 UInt32 length,
 const void *data
);

Parameters
itemRef

A reference to the keychain item to modify.

attrList
A pointer to the list of attributes to set. Pass NULL if you have no attributes to set.

length
The length of the buffer pointed to by the data parameter. Pass 0 if you pass NULL in the data
parameter.

data
A pointer to a buffer containing the data to store. Pass NULL if you do not need to modify the data.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The keychain item is written to the keychain’s permanent data store. If the keychain item has not previously
been added to a keychain, a call to this function does nothing and returns noErr.

You should pair the SecKeychainItemModifyContent function with the
SecKeychainItemCopyContent (page 132) function when dealing with older Keychain Manager functions.
The SecKeychainItemCopyAttributesAndData (page 131) and
SecKeychainItemModifyAttributesAndData (page 142) functions handle more attributes than are
support by the old Keychain Manager; however, passing them into older calls yields an invalid attribute error.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
ImageClient

Declared In
SecKeychainItem.h

SecKeychainItemSetAccess
Sets the access of a given keychain item.

OSStatus SecKeychainItemSetAccess (
 SecKeychainItemRef itemRef,
 SecAccessRef access
);

Parameters
itemRef

A reference to a keychain item.

Functions 143
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

access
An access object to replace the keychain item’s current access object. Use the SecAccessCreate (page
105) function to create an access object.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Each protected keychain item (such as a password or private key) has an associated access object. The access
object contains access control list (ACL) entries, which specify trusted applications and the operations for
which those operations are trusted. When an application attempts to access a keychain item for a particular
purpose (such as to sign a document), the system determines whether that application is trusted to access
the item for that purpose. If it is trusted, then the application is given access and no user confirmation is
required. If the application is not trusted, but there is an ACL entry for that operation, then the user is asked
to confirm whether the application should be given access. If there is no ACL entry for that operation, then
access is denied and it is up to the calling application to try something else or to notify the user.

For more information about ACL entries, see the SecACLCreateFromSimpleContents (page 109) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainLock
Locks a keychain.

OSStatus SecKeychainLock (
 SecKeychainRef keychain
);

Parameters
keychain

A reference to the keychain to lock. Pass NULL to lock the default keychain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).The result code errSecNoSuchKeychain
indicates that specified keychain could not be found. The result code errSecInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
Your application should not call this function unless you are responding to a user’s request to lock a keychain.
In general, you should leave the keychain unlocked so that the user does not have to unlock it again in
another application.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

144 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainLockAll
Locks all keychains belonging to the current user.

OSStatus SecKeychainLockAll (
 void
);

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Your application should not call this function unless you are responding to a user’s request to lock a keychain.
In general, you should leave the keychain unlocked so that the user does not have to unlock it again in
another application.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainOpen
Opens a keychain.

OSStatus SecKeychainOpen (
 const char *pathName,
 SecKeychainRef *keychain
);

Parameters
pathName

A constant character string representing the POSIX path to the keychain to open.

keychain
On return, a pointer to the keychain object. The memory that this pointer occupies must be released
by calling the CFRelease function when finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
You may use this function to retrieve a pointer to a keychain object given the path of the keychain. You do
not need to close the keychain, but you should release the memory that the pointer occupies when you are
finished with it.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecKeychain.h

Functions 145
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainRemoveCallback
Unregisters your keychain event callback function.

OSStatus SecKeychainRemoveCallback (
 SecKeychainCallback callbackFunction
);

Parameters
callbackFunction

The callback function pointer to remove.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Once removed, keychain events are not sent to the owner of the callback.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainSearchCopyNext
Finds the next keychain item matching the given search criteria.

OSStatus SecKeychainSearchCopyNext (
 SecKeychainSearchRef searchRef,
 SecKeychainItemRef *itemRef
);

Parameters
searchRef

A reference to the current search criteria. The search object is created in the
SecKeychainSearchCreateFromAttributes (page 147) function and must be released by calling
the CFRelease function when you are done with it.

itemRef
On return, a pointer to a keychain item object of the next matching keychain item, if any. You must
release this object by calling the CFRelease function.

Return Value
A result code. When there are no more items that match, errSecItemNotFound is returned. See “Keychain
Services Result Codes” (page 191).

Discussion
Each item stored in the keychain contains data (such as a certificate), which is indexed by the item’s attributes.
Use the SecKeychainSearchCreateFromAttributes (page 147) function to specify attributes to search
for. If the SecKeychainSearchCopyNext function finds a match, you can use the
SecKeychainItemCopyAttributesAndData (page 131) function to retrieve the item’s data.

A SecKeychainItemRef object for a certificate that is stored in a keychain can be safely cast to a
SecCertificateRef for use with the Certificate, Key, and Trust API.

146 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

To find and obtain data from a password keychain item, use the SecKeychainFindInternetPassword (page
124) or SecKeychainFindGenericPassword (page 123) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainSearch.h

SecKeychainSearchCreateFromAttributes
Creates a search object matching a list of zero or more attributes.

OSStatus SecKeychainSearchCreateFromAttributes (
 CFTypeRef keychainOrArray,
 SecItemClass itemClass,
 const SecKeychainAttributeList *attrList,
 SecKeychainSearchRef *searchRef
);

Parameters
keychainOrArray

A reference to an array of keychains to search, a single keychain, or NULL to search the user’s current
keychain search list. Use the function SecKeychainCopySearchList (page 120) to retrieve the user’s
default search list.

itemClass
The keychain item class. See “Keychain Item Class Constants” (page 179) for valid constants.

attrList
A pointer to a list of zero or more keychain attribute records to match. Pass NULL to match any keychain
attribute.

searchRef
On return, a pointer to the current search object. You are responsible for calling the CFRelease
function to release this object when finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Each item stored in the keychain contains data (such as a certificate), which is indexed by the item’s attributes.
You look up an item in a keychain by its attributes. If you find a match, you can then retrieve the item’s data.
Use the search object created by this function as input to the SecKeychainSearchCopyNext (page 146)
function to find a a keychain item and the SecKeychainItemCopyAttributesAndData (page 131) function
to retrieve the item’s data.

To find and obtain data from a password keychain item, use the SecKeychainFindInternetPassword (page
124) or SecKeychainFindGenericPassword (page 123) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainSearch.h

Functions 147
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainSearchGetTypeID
Returns the unique identifier of the opaque type to which a SecKeychainSearchRef object belongs.

CFTypeID SecKeychainSearchGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecKeychainSearchRef (page 161) object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecKeychainSearchRef (page
161) object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID
function on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainSearch.h

SecKeychainSetAccess
Sets the application access for a keychain.

OSStatus SecKeychainSetAccess (
 SecKeychainRef keychain,
 SecAccessRef access
);

Parameters
keychain

A reference to the keychain for which to set the access. Pass NULL to specify the default keychain.

access
An access object of type SecAccessRef containing access control lists for the keychain. See “Creating
an Access Object” (page 102) for instructions on creating an access object.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
In addition to the ACLs for individual keychain items, the keychain itself has ACLs. However, they are currently
unused and this function is unimplemented.

Special Considerations

Although this function is available in Mac OS X v10.2 and later, it is unimplemented and returns an unimpErr
error code if called.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

148 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecKeychainSetDefault
Sets the default keychain.

OSStatus SecKeychainSetDefault (
 SecKeychainRef keychain
);

Parameters
keychain

A reference to the keychain you wish to make the default.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code errSecNoSuchKeychain
indicates that the specified keychain could not be found. The result code errSecInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
In most cases, your application should not need to set the default keychain, because this is a choice normally
made by the user. You may call this function to change where a password or other keychain items are added,
but since this is a user choice, you should set the default keychain back to the user specified keychain when
you are done.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainSetDomainDefault
Sets the default keychain for a specified preference domain.

OSStatus SecKeychainSetDomainDefault (
 SecPreferencesDomain domain,
 SecKeychainRef keychain
);

Parameters
domain

The preference domain for which you wish to set the default keychain. See “Keychain Preference
Domain Constants” (page 185) for possible domain values.

keychain
A reference to the keychain you wish to set as default in the specified preference domain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. Use this function if you want to set the default keychain for a specific preference domain.
Use the SecKeychainSetDefault (page 149) function if you want to set the default keychain for the current
preference domain. See the SecKeychainSetPreferenceDomain (page 150) function for a discussion of
current and default preference domains.

Functions 149
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecKeychain.h

SecKeychainSetDomainSearchList
Sets the keychain search list for a specified preference domain.

OSStatus SecKeychainSetDomainSearchList (
 SecPreferencesDomain domain,
 CFArrayRef searchList
);

Parameters
domain

The preference domain for which you wish to set the default keychain search list. See “Keychain
Preference Domain Constants” (page 185)for possible domain values.

searchList
A pointer to a keychain search list to set in the preference domain.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. Use this function if you want to set the keychain search list for a specific preference
domain. Use the SecKeychainSetSearchList (page 151) function if you want to set the keychain search
list for the current preference domain. See the SecKeychainSetPreferenceDomain (page 150) function
for a discussion of current and default preference domains.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecKeychain.h

SecKeychainSetPreferenceDomain
Sets the keychain preference domain.

OSStatus SecKeychainSetPreferenceDomain (
 SecPreferencesDomain domain
);

Parameters
domain

The keychain preference domain to set. See “Keychain Preference Domain Constants” (page 185) for
possible domain values.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

150 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. The default preference domain for system daemons (that is, for daemons running in the
root session) is the system domain. The default preference domain for all other programs is the user domain.

This function changes the preference domain for all subsequent function calls; for example, if you change
from the system domain to the user domain and then call SecKeychainLock (page 144) specifying NULL
for the keychain, the function locks the default system keychain rather than the default user keychain. You
might want to use this function, for example, when launching a system daemon from a user session so that
the daemon uses system preferences rather than user preferences.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecKeychain.h

SecKeychainSetSearchList
Specifies the list of keychains to use in the default keychain search list.

OSStatus SecKeychainSetSearchList (
 CFArrayRef searchList
);

Parameters
searchList

An array of keychain references (of type SecKeychainRef) specifying the list of keychains to use in
the default keychain search list. Passing an empty array clears the search list.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The default keychain search list is used by several functions; see for example
SecKeychainSearchCreateFromAttributes (page 147), SecKeychainFindInternetPassword (page 124), or
SecKeychainFindGenericPassword (page 123). To obtain the current default keychain search list, use the
SecKeychainCopySearchList (page 120) function.

The default keychain search list is displayed as the keychain list in the Keychain Access utility. If you use
SecKeychainSetSearchList to change the keychain search list, the list displayed in Keychain Access
changes accordingly.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainSetSettings
Changes the settings of a keychain.

Functions 151
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

OSStatus SecKeychainSetSettings (
 SecKeychainRef keychain,
 const SecKeychainSettings *newSettings
);

Parameters
keychain

A reference to a keychain whose settings you wish to change. Pass NULL to change the settings of
the default keychain.

newSettings
A pointer to a keychain settings structure that defines whether the keychain locks when sleeping, or
locks after a set time period of inactivity.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainSetUserInteractionAllowed
Enables or disables the user interface for Keychain Services functions that automatically display a user interface.

OSStatus SecKeychainSetUserInteractionAllowed (
 Boolean state
);

Parameters
state

A flag that indicates whether the Keychain Services will display a user interface. If you pass TRUE, user
interaction is allowed. This is the default value. If FALSE, Keychain Services functions that normally
display a user interface will instead return an error.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
Certain Keychain Services functions that require the presence of a keychain automatically display a Keychain
Not Found dialog if there is none. Functions that require the keychain to be unlocked automatically display
the Unlock Keychain dialog. The SecKeychainSetUserInteractionAllowed function enables you to
control whether these functions display a user interface. By default, user interaction is permitted.

If you are writing an application that must run unattended on a server, you may wish to disable the user
interface so that any subsequent keychain calls that normally bring up the unlock UI will instead return
immediately with an errSecInteractionRequired result). In this case you must programmatically create
a keychain or unlock the keychain when necessary.

Special Considerations

If you disable user interaction before calling a Keychain Services function, be sure to reenable it when you
are finished. Failure to reenable user interaction will affect other clients of the Keychain Services.

152 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainUnlock
Unlocks a keychain.

OSStatus SecKeychainUnlock (
 SecKeychainRef keychain,
 UInt32 passwordLength,
 const void *password,
 Boolean usePassword
);

Parameters
keychain

A reference to the keychain to unlock. Pass NULL to specify the default keychain. If you pass a locked
keychain, this function displays the Unlock Keychain dialog box if you have not provided a password.
If the specified keychain is currently unlocked, the Unlock Keychain dialog box is not displayed and
this function returns noErr. The memory that the keychain object occupies must be released by
calling the function CFRelease when you are finished with it.

passwordLength
An unsigned 32-bit integer representing the length of the password buffer.

password
A buffer containing the password for the keychain. Pass NULL if the user password is unknown. In
this case, this function displays the Unlock Keychain dialog to request the user for the keychain
password.

usePassword
A Boolean value indicating whether the password parameter is used. You should pass TRUE if you
are passing a password or FALSE if it is to be ignored.

Return Value
A result code. See “Keychain Services Result Codes” (page 191). The result code userCanceledErr indicates
that the user pressed the Cancel button in the Unlock Keychain dialog box. The result code
errSecAuthFailed indicates that authentication failed because of too many unsuccessful retries. The result
code errSecInteractionRequired indicates that user interaction is required to unlock the keychain.

Discussion
In most cases, your application does not need to call this function directly, since most Keychain Services
functions that require an unlocked keychain do so for you. If your application needs to verify that a keychain
is unlocked, call the function SecKeychainGetStatus (page 129).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

Functions 153
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

SecTrustedApplicationCopyData
Retrieves the data of a trusted application object.

OSStatus SecTrustedApplicationCopyData (
 SecTrustedApplicationRef appRef,
 CFDataRef *data
);

Parameters
appRef

A trusted application object from which to retrieve data. Use the
SecTrustedApplicationCreateFromPath (page 154) function to create a trusted application
object.

data
On return, points to a data object for the data of the trusted application object. Call the CFRelease
function to release this object when you are finished with it.

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
The trusted application object created by the SecTrustedApplicationCreateFromPath (page 154)
function includes data that uniquely identifies the application, such as a cryptographic hash of the application.
The operating system can use this data to verify that the application has not been altered since the trusted
application object was created. When an application requests access to an item in the keychain for which it
is designated as a trusted application, for example, the operating system checks this data before granting
access. You can use the SecTrustedApplicationCopyData function to extract this data from the trusted
application object for storage or for transmittal to another location (such as over a network). Use the
SecTrustedApplicationSetData (page 155) function to insert the data back into a trusted application
object. Note that this data is in a private format; there is no supported way to read or interpret it.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrustedApplication.h

SecTrustedApplicationCreateFromPath
Creates a trusted application object based on the application specified by path.

OSStatus SecTrustedApplicationCreateFromPath (
 const char *path,
 SecTrustedApplicationRef *app
);

Parameters
path

The path to the application or tool to trust. For application bundles, use the path to the bundle
directory. Pass NULL to refer to the application or tool making this call.

app
On return, points to the newly created trusted application object. Call the CFRelease function to
release this object when you are finished with it.

154 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
This function creates a trusted application object, which both identifies an application and provides data
that can be used to ensure that the application has not been altered since the object was created. The
application object is used as input to the SecAccessCreate (page 105) function, which creates an access
object. The access object, in turn, is used as input to the SecKeychainItemSetAccess (page 143) function
to specify the set of applications that are trusted to access a specific keychain item.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrustedApplication.h

SecTrustedApplicationGetTypeID
Returns the unique identifier of the opaque type to which a SecTrustedApplication object belongs.

CFTypeID SecTrustedApplicationGetTypeID (
 void
);

Return Value
A value that identifies the opaque type of a SecTrustedApplicationRef object.

Discussion
This function returns a value that uniquely identifies the opaque type of a SecTrustedApplicationRef
object. You can compare this value to the CFTypeID identifier obtained by calling the CFGetTypeID function
on a specific object. These values might change from release to release or platform to platform.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrustedApplication.h

SecTrustedApplicationSetData
Sets the data of a given trusted application object.

OSStatus SecTrustedApplicationSetData (
 SecTrustedApplicationRef appRef,
 CFDataRef data
);

Parameters
appRef

A trusted application object.

data
A reference to the data to set in the trusted application.

Functions 155
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
If you used the SecTrustedApplicationCopyData (page 154) function to extract the data from a trusted
application object for storage or to transmit it to a different location, you can use the
SecTrustedApplicationSetData function to insert the data into a new trusted application object. Doing
so would create an object that identifies the same application as the original trusted application object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecTrustedApplication.h

Callbacks

SecKeychainCallback
Defines a pointer to a customized callback function that Keychain Services calls when a keychain event has
occurred.

typedef OSStatus (*SecKeychainCallback) (
 SecKeychainEvent keychainEvent,
 SecKeychainCallbackInfo *info,
 void *context
);

You would declare your keychain callback function like this if you were to name it MyKeychainCallback:

OSStatus MyKeychainCallback (
 SecKeychainEvent keychainEvent,
 SecKeychainCallbackInfo *info,
 void *context
);

Parameters
keychainEvent

The keychain event of which your application wishes to be notified. The type of event that can trigger
your callback depends on the bit mask you passed in the eventMask parameter of the function
SecKeychainAddCallback (page 114).

info
A pointer to a structure of type SecKeychainCallbackInfo. On return, the structure contains
information about the keychain event that occurred. The Keychain Manager passes this information
to your callback function through this parameter.

context
A pointer to application-defined storage that your application previously passed to the function
SecKeychainAddCallback (page 114). You can use this value to perform operations such as tracking
which instance of a function is operating.

156 Callbacks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Return Value
A result code. See “Keychain Services Result Codes” (page 191).

Discussion
To add your callback function, use the SecKeychainAddCallback (page 114) function. To remove your
callback function, use the SecKeychainRemoveCallback (page 146) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

Data Types

SecAccessRef
Identifies a keychain or keychain item’s access information.

typedef struct OpaqueSecAccessRef *SecAccessRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecACLRef
Represents information about an access control list entry.

typedef struct OpaqueSecTrustRef *SecACLRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecAFPServerSignature
Represents a 16-byte Apple File Protocol server signature block.

typedef UInt8 SecAFPServerSignature[16];

Discussion
This type represents a 16-byte Apple File Protocol server signature block. You can pass a value of this type
in the serverSignature parameter of the functions KCAddAppleSharePassword and
KCFindAppleSharePassword to represent an Apple File Protocol server signature. You can use a value of
this type with the keychain item attribute constant kSecSignatureItemAttr to specify an Apple File
Protocol server signature.

Data Types 157
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychainItem.h

SecKeychainAttribute
Contains keychain attributes.

struct SecKeychainAttribute
{
 SecKeychainAttrType tag;
 UInt32 length;
 void *data;
};
typedef struct SecKeychainAttribute SecKeychainAttribute;
typedef SecKeychainAttribute *SecKeychainAttributePtr;

Fields
tag

A 4-byte attribute tag. See “Keychain Item Attribute Constants” (page 170) for valid attribute types.

length
The length of the buffer pointed to by data.

data
A pointer to the attribute data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainAttributeInfo
Represents an attribute.

struct SecKeychainAttributeInfo
{
 UInt32 count;
 UInt32 *tag;
 UInt32 *format;
};
typedef struct SecKeychainAttributeInfo SecKeychainAttributeInfo;

Fields
count

The number of tag-format pairs in the respective arrays.

tag
A pointer to the first attribute tag in the array.

format
A pointer to the first attribute format in the array.

158 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Discussion
Each tag and format item form a pair.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

SecKeychainAttributeList
Represents a list of keychain attributes.

struct SecKeychainAttributeList
{
 UInt32 count;
 SecKeychainAttribute *attr;
};
typedef struct SecKeychainAttributeList SecKeychainAttributeList;

Fields
count

An unsigned 32-bit integer that represents the number of keychain attributes in the array.

attr
A pointer to the first keychain attribute in the array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainAttrType
Represents a keychain attribute type.

typedef OSType SecKeychainAttrType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainCallbackInfo
Contains information about a keychain event.

Data Types 159
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

struct SecKeychainCallbackInfo
{
 UInt32 version;
 SecKeychainItemRef item;
 SecKeychainRef keychain;
 pid_t pid;
};
typedef struct SecKeychainCallbackInfo SecKeychainCallbackInfo;

Fields
version

The version of this structure. See “Keychain Settings Version” (page 190) for valid constants.

item
A reference to the keychain item in which the event occurred. If the event did not involve an item,
this field is not valid.

keychain
A reference to the keychain in which the event occurred. If the event did not involve a keychain, this
field is not valid.

pid
The ID of the process that generated this event.

Discussion
This structure contains information about the keychain event of which your application wants to be notified.
Keychain Services passes a pointer to this structure in the info parameter of your callback function. For
information on how to write a keychain event callback function, see SecKeychainCallback (page 156).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecKeychain.h

SecKeychainItemRef
Contains information about a keychain item.

typedef struct OpaqueSecKeychainItemRef *SecKeychainItemRef;

Discussion
A SecKeychainItemRef object for a certificate that is stored in a keychain can be safely cast to a
SecCertificateRef for use with the Certificate, Key, and Trust API.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainRef
Contains information about a keychain.

160 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef struct OpaqueSecKeychainRef *SecKeychainRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainSearchRef
Contains information about a keychain search.

typedef struct OpaqueSecKeychainSearchRef *SecKeychainSearchRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SecBase.h

SecKeychainSettings
Contains information about keychain settings.

struct SecKeychainSettings
{
 UInt32 version;
 Boolean lockOnSleep;
 Boolean useLockInterval;
 UInt32 lockInterval;
};
typedef struct SecKeychainSettings SecKeychainSettings;

Fields
version

An unsigned 32-bit integer representing the keychain version.

lockOnSleep
A Boolean value indicating whether the keychain locks when the system sleeps.

useLockInterval
A Boolean value indicating whether the keychain automatically locks after a certain period of time.

lockInterval
An unsigned 32-bit integer representing the number of seconds before the keychain locks. If you set
useLockInterval to FALSE, set lockInterval to INT_MAX to indicate that the keychain never
locks.

Discussion
This structure contains information about a keychain’s settings such as locking on sleep and the lock time
interval. You can use the SecKeychainSetSettings (page 151) and SecKeychainCopySettings (page
121) functions to set and copy a keychain’s settings.

Availability
Available in Mac OS X v10.2 and later.

Data Types 161
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Declared In
SecKeychain.h

SecKeyImportExportParameters
Contains input parameters for import and export functions.

typedef struct
{
 /* for import and export */
 uint32_t version;
 SecKeyImportExportFlags flags;
 CFTypeRef passphrase;
 CFStringRef alertTitle;
 CFStringRef alertPrompt;

 /* for import only */
 SecAccessRef accessRef;
 CSSM_KEYUSE keyUsage;
 CSSM_KEYATTR_FLAGS keyAttributes;
} SecKeyImportExportParameters;

Fields
version

The version of this structure; the current value is SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION.

flags
A set of flag bits, defined in “Keychain Item Import/Export Formats” (page 182).

passphrase
A password, used for kSecFormatPKCS12 and kSecFormatWrapped formats only. (A password is
sometimes referred to as a passphrase to emphasize the fact that a longer string that includes non-letter
characters, such as numbers, punctuation, and spaces, is more secure than a simple word.) Legal types
are CFStringRef and CFDataRef. PKCS12 requires passwords to be in Unicode format; passing in
a CFStringRef as the password is the safest way to ensure that this requirement is met (and that
the result is compatible with other implementations). If a CFDataRef object is supplied as the password
for a PKCS12 export operation, the data is assumed to be in UTF8 form and is converted as appropriate.

When importing or exporting keys (SecKeyRef objects) in one of the wrapped formats
(kSecFormatWrappedOpenSSL, kSecFormatWrappedSSH, or kSecFormatWrappedPKCS8) or in
PKCS12 format, you must either explicitly specify the passphrase field or set the
kSecKeySecurePassphrase bit in the Flags field (to prompt the user for the password).

alertTitle
Title of secure password alert panel. When importing or exporting a key, if you set the
kSecKeySecurePassphrase flag bit, you can optionally use this field to specify a string for the
password panel’s title bar.

alertPrompt
Prompt in secure password alert panel. When importing or exporting a key, if you set the
kSecKeySecurePassphrase flag bit, you can optionally use this field to specify a string for the
prompt that appears in the password panel.

162 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

accessRef
Specifies the initial access controls of imported private keys. If more than one private key is being
imported, all private keys get the same initial access controls. If this field is NULL when private keys
are being imported, then the access object for the keychain item for an imported private key depends
on the kSecKeyNoAccessControl bit in the flags parameter. If this bit is 0 (or keyParams is NULL),
the default access control is used. If this bit is 1, no access object is attached to the keychain item for
imported private keys.

keyUsage
A word of bits constituting the low-level use flags for imported keys as defined in cssmtype.h. If
this field is 0 or keyParams is NULL, the default value is CSSM_KEYUSE_ANY.

keyAttributes
A word of bits constituting the low-level attribute flags for imported keys. The default value is
CSSM_KEYATTR_SENSITIVE | CSSM_KEYATTR_EXTRACTABLE; the CSSM_KEYATTR_PERMANENT
bit is also added to the default if a non-NULL value is specified for the importKeychain parameter.

The following are valid values for these flags: CSSM_KEYATTR_PERMANENT,
CSSM_KEYATTR_SENSITIVE, and CSSM_KEYATTR_EXTRACTABLE.

If the CSSM_KEYATTR_PERMANENT bit is set, the importKeychain parameter is not valid, and if any
keys are found in the external representation, then the error errSecInvalidKeychain is returned.

The CSSM_KEYATTR_SENSITIVE bit indicates that the key can only be extracted in wrapped form.

Important: If you do not set the CSSM_KEYATTR_EXTRACTABLE bit, you cannot extract the imported
key from the keychain in any form, including in wrapped form.

The CSSM_KEYATTR_FLAGS enumeration is defined in cssmtype.h. Note that the
CSSM_KEYATTR_RETURN_xxx bits are always forced to CSSM_KEYATTR_RETURN_REF regardless of
how they are specified in the keyAttributes field.

Discussion
This structure is passed in the keyParams parameter as input to the functions
SecKeychainItemExport (page 136) and SecKeychainItemImport (page 140).

PKCS12 is an abbreviation for Public-Key Cryptography Standard # 12. This standard, by RSA Security, provides
a format for external representation of keys and certificates and is described in PKCS 12 v1.0: Personal
Information Exchange Syntax.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SecImportExport.h

SecTrustedApplicationRef
Contains information about a trusted application.

typedef struct OpaqueSecTrustedApplicationRef *SecTrustedApplicationRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecBase.h

Data Types 163
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Constants

Mac OS X Keychain Services API Constants

Authorization Tag Type Constants
Defines constants that specify which operations an access control list entry applies to.

typedef sint32 CSSM_ACL_AUTHORIZATION_TAG;
enum {
 CSSM_ACL_AUTHORIZATION_TAG_VENDOR_DEFINED_START =
 0x00010000,
 CSSM_ACL_AUTHORIZATION_ANY = CSSM_WORDID__STAR_,
 CSSM_ACL_AUTHORIZATION_LOGIN = CSSM_WORDID_LOGIN,
 CSSM_ACL_AUTHORIZATION_GENKEY = CSSM_WORDID_GENKEY,
 CSSM_ACL_AUTHORIZATION_DELETE = CSSM_WORDID_DELETE,
 CSSM_ACL_AUTHORIZATION_EXPORT_WRAPPED =
 CSSM_WORDID_EXPORT_WRAPPED,
 CSSM_ACL_AUTHORIZATION_EXPORT_CLEAR =CSSM_WORDID_EXPORT_CLEAR,
 CSSM_ACL_AUTHORIZATION_IMPORT_WRAPPED =
 CSSM_WORDID_IMPORT_WRAPPED,
 CSSM_ACL_AUTHORIZATION_IMPORT_CLEAR =CSSM_WORDID_IMPORT_CLEAR,
 CSSM_ACL_AUTHORIZATION_SIGN = CSSM_WORDID_SIGN,
 CSSM_ACL_AUTHORIZATION_ENCRYPT = CSSM_WORDID_ENCRYPT,
 CSSM_ACL_AUTHORIZATION_DECRYPT = CSSM_WORDID_DECRYPT,
 CSSM_ACL_AUTHORIZATION_MAC = CSSM_WORDID_MAC,
 CSSM_ACL_AUTHORIZATION_DERIVE = CSSM_WORDID_DERIVE
};
/* Apple-defined ACL authorization tags */
enum {
 CSSM_ACL_AUTHORIZATION_CHANGE_ACL =
 CSSM_ACL_AUTHORIZATION_TAG_VENDOR_DEFINED_START,
 CSSM_ACL_AUTHORIZATION_CHANGE_OWNER
};

Constants
CSSM_ACL_AUTHORIZATION_TAG_VENDOR_DEFINED_START

All vendor specific constants must be in the number range starting at this value.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_ANY
No restrictions. This ACL entry applies to all operations available to the caller.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_LOGIN
Use for a CSP (smart card) login.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

164 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

CSSM_ACL_AUTHORIZATION_GENKEY
Generate a key.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_DELETE
Delete this item.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_EXPORT_WRAPPED
Export a wrapped (that is, encrypted) key. This tag is checked on the key being exported; in addition,
the CSSM_ACL_AUTHORIZATION_ENCRYPT tag is checked for any key used in the wrapping operation.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_EXPORT_CLEAR
Export an unencrypted key.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_IMPORT_WRAPPED
Import an encrypted key. This tag is checked on the key being imported; in addition, the
CSSM_ACL_AUTHORIZATION_DECRYPT tag is checked for any key used in the unwrapping operation.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_IMPORT_CLEAR
Import an unencrypted key.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_SIGN
Digitally sign data.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_ENCRYPT
Encrypt data.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_DECRYPT
Decrypt data.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_MAC
Create or verify a message authentication code.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

Constants 165
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

CSSM_ACL_AUTHORIZATION_DERIVE
Derive a new key from another key.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_ACL_AUTHORIZATION_CHANGE_ACL
Change an access control list entry.

Available in Mac OS X v10.0 and later.

Declared in cssmapple.h.

CSSM_ACL_AUTHORIZATION_CHANGE_OWNER
For internal system use only. Use the CSSM_ACL_AUTHORIZATION_CHANGE_ACL tag for changes to
owner ACL entries.

Available in Mac OS X v10.0 and later.

Declared in cssmapple.h.

Import/Export Parameters Version
Defines the version of an import/export parameters structure.

#define SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION 0

Constants
SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION

Defines the version number for a SecImportExportParameters structure used as input to the
functions SecKeychainItemExport (page 136) and SecKeychainItemImport (page 140).

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

Keychain Authentication Type Constants
Defines constants you can use to identify the type of authentication to use for an Internet password.

typedef FourCharCode SecAuthenticationType;
enum
{
 kSecAuthenticationTypeNTLM = AUTH_TYPE_FIX_ ('ntlm'),
 kSecAuthenticationTypeMSN = AUTH_TYPE_FIX_ ('msna'),
 kSecAuthenticationTypeDPA = AUTH_TYPE_FIX_ ('dpaa'),
 kSecAuthenticationTypeRPA = AUTH_TYPE_FIX_ ('rpaa'),
 kSecAuthenticationTypeHTTPBasic = AUTH_TYPE_FIX_ ('http'),
 kSecAuthenticationTypeHTTPDigest = AUTH_TYPE_FIX_ ('httd'),
 kSecAuthenticationTypeHTMLForm = AUTH_TYPE_FIX_ ('form'),
 kSecAuthenticationTypeDefault = AUTH_TYPE_FIX_ ('dflt')
};

Constants
kSecAuthenticationTypeNTLM

Specifies Windows NT LAN Manager authentication.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

166 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecAuthenticationTypeMSN
Specifies Microsoft Network default authentication.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeDPA
Specifies Distributed Password authentication.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeRPA
Specifies Remote Password authentication.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeHTTPBasic
Specifies HTTP Basic authentication. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeHTTPDigest
Specifies HTTP Digest Access authentication.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeHTMLForm
Specifies HTML form based authentication. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecAuthenticationTypeDefault
Specifies the default authentication type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Keychain Event Constants
Defines the keychain-related event.

Constants 167
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef UInt32 SecKeychainEvent;
enum
{
 kSecLockEvent = 1,
 kSecUnlockEvent = 2,
 kSecAddEvent = 3,
 kSecDeleteEvent = 4,
 kSecUpdateEvent = 5,
 kSecPasswordChangedEvent = 6,
 kSecDefaultChangedEvent = 9,
 kSecDataAccessEvent = 10,
 kSecKeychainListChangedEvent = 11
};

Constants
kSecLockEvent

Indicates a keychain was locked. It is impossible to distinguish between a lock event caused by an
explicit request and one caused by a keychain that locked itself because of a timeout. Therefore, the
pid parameter in the SecKeychainCallbackInfo structure does not contain useful information
for this event. Note that when the login session terminates, all keychains become effectively locked;
however, no kSecLockEvent events are generated in this case.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecUnlockEvent
Indicates a keychain was successfully unlocked. It is impossible to distinguish between an unlock
event caused by an explicit request and one that occurred automatically because the keychain was
needed to perform an operation. In either case, however, the pid parameter in the
SecKeychainCallbackInfo structure does return the ID of the process whose actions caused the
unlock event.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAddEvent
Indicates an item was added to a keychain.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecDeleteEvent
Indicates an item was deleted from a keychain.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecUpdateEvent
Indicates a keychain item was updated.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecPasswordChangedEvent
Indicates the keychain password was changed.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

168 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecDefaultChangedEvent
Indicates that a different keychain was specified as the default.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecDataAccessEvent
Indicates a process has accessed a keychain item’s data.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecKeychainListChangedEvent
Indicates the list of keychains has changed.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Keychain Event Mask Constants
Defines bit masks for keychain event constants

typedef UInt32 SecKeychainEventMask;
enum
{
 kSecLockEventMask = 1 << kSecLockEvent,
 kSecUnlockEventMask = 1 << kSecUnlockEvent,
 kSecAddEventMask = 1 << kSecAddEvent,
 kSecDeleteEventMask = 1 << kSecDeleteEvent,
 kSecUpdateEventMask = 1 << kSecUpdateEvent,
 kSecPasswordChangedEventMask = 1 << kSecPasswordChangedEvent,
 kSecDefaultChangedEventMask = 1 << kSecDefaultChangedEvent,
 kSecDataAccessEventMask = 1 << kSecDataAccessEvent,
 kSecKeychainListChangedMask = 1 << kSecKeychainListChangedEvent,
 kSecEveryEventMask = 0xffffffff
};

Constants
kSecLockEventMask

If the bit specified by this mask is set, your callback function is invoked when a keychain is locked.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecUnlockEventMask
If the bit specified by this mask is set, your callback function is invoked when a keychain is unlocked.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecAddEventMask
If the bit specified by this mask is set, your callback function is invoked when an item is added to a
keychain.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Constants 169
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecDeleteEventMask
If the bit specified by this mask is set, your callback function is invoked when an item is deleted from
a keychain.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecUpdateEventMask
If the bit specified by this mask is set, your callback function is invoked when a keychain item is
updated.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecPasswordChangedEventMask
If the bit specified by this mask is set, your callback function is invoked when the keychain password
is changed.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecDefaultChangedEventMask
If the bit specified by this mask is set, your callback function is invoked when a different keychain is
specified as the default.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecDataAccessEventMask
If the bit specified by this mask is set, your callback function is invoked when a process accesses a
keychain item’s data.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecKeychainListChangedMask
If the bit specified by this mask is set, your callback function is invoked when a keychain list is changed.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecEveryEventMask
If all the bits are set, your callback function is invoked whenever any event occurs.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Keychain Item Attribute Constants
Specifies a keychain item’s attributes.

170 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef FourCharCode SecItemAttr;
enum
{
 kSecCreationDateItemAttr = 'cdat',
 kSecModDateItemAttr = 'mdat',
 kSecDescriptionItemAttr = 'desc',
 kSecCommentItemAttr = 'icmt',
 kSecCreatorItemAttr = 'crtr',
 kSecTypeItemAttr = 'type',
 kSecScriptCodeItemAttr = 'scrp',
 kSecLabelItemAttr = 'labl',
 kSecInvisibleItemAttr = 'invi',
 kSecNegativeItemAttr = 'nega',
 kSecCustomIconItemAttr = 'cusi',
 kSecAccountItemAttr = 'acct',
 kSecServiceItemAttr = 'svce',
 kSecGenericItemAttr = 'gena',
 kSecSecurityDomainItemAttr = 'sdmn',
 kSecServerItemAttr = 'srvr',
 kSecAuthenticationTypeItemAttr = 'atyp',
 kSecPortItemAttr = 'port',
 kSecPathItemAttr = 'path',
 kSecVolumeItemAttr = 'vlme',
 kSecAddressItemAttr = 'addr',
 kSecSignatureItemAttr = 'ssig',
 kSecProtocolItemAttr = 'ptcl',
 kSecCertificateType = 'ctyp',
 kSecCertificateEncoding = 'cenc',
 kSecCrlType = 'crtp',
 kSecCrlEncoding = 'crnc',
 kSecAlias = 'alis'
};

Constants
kSecCreationDateItemAttr

Identifies the creation date attribute. You use this tag to set or get a value of type UInt32 that indicates
the date the item was created.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecModDateItemAttr
Identifies the modification date attribute. You use this tag to set or get a value of type UInt32 that
indicates the last time the item was updated.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecDescriptionItemAttr
Identifies the description attribute. You use this tag to set or get a value of type string that represents
a user-visible string describing this particular kind of item, for example “disk image password”.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

Constants 171
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecCommentItemAttr
Identifies the comment attribute. You use this tag to set or get a value of type string that represents
a user-editable string containing comments for this item.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecCreatorItemAttr
Identifies the creator attribute. You use this tag to set or get a value that represents the item’s creator.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecTypeItemAttr
Identifies the type attribute. You use this tag to set or get a value that represents the item’s type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecScriptCodeItemAttr
Identifies the script code attribute. You use this tag to set or get a value of type ScriptCode that
represents the script code for all strings. Use of this attribute is deprecated; string attributes should
be stored in UTF-8 encoding.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecLabelItemAttr
Identifies the label attribute. You use this tag to set or get a value of type string that represents a
user-editable string containing the label for this item.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecInvisibleItemAttr
Identifies the invisible attribute. You use this tag to set or get a value of type Boolean that indicates
whether the item is invisible.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecNegativeItemAttr
Identifies the negative attribute. You use this tag to set or get a value of type Boolean that indicates
whether there is a valid password associated with this keychain item. This is useful if your application
doesn’t want a password for some particular service to be stored in the keychain, but prefers that it
always be entered by the user. The item, which is typically invisible and with zero-length data, acts
as a placeholder.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

172 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecCustomIconItemAttr
Identifies the custom icon attribute. You use this tag to set or get a value of type Boolean that
indicates whether the item has an application-specific icon. To do this, you must also set the attribute
value identified by the tag kSecTypeItemAttr to a file type for which there is a corresponding icon
in the desktop database, and set the attribute value identified by the tag kSecCreatorItemAttr
to an appropriate application creator type. If a custom icon corresponding to the item’s type and
creator can be found in the desktop database, it will be displayed by Keychain Access. Otherwise,
default icons are used.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecAccountItemAttr
Identifies the account attribute. You use this tag to set or get a string that represents the user account.
It also applies to generic and AppleShare passwords.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecServiceItemAttr
Identifies the service attribute. You use this tag to set or get a string that represents the service
associated with this item, for example, “iTools”. This is unique to generic password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecGenericItemAttr
Identifies the generic attribute. You use this tag to set or get a value of untyped bytes that represents
a user-defined attribute. This is unique to generic password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecSecurityDomainItemAttr
Identifies the security domain attribute. You use this tag to set or get a value that represents the
Internet security domain. This is unique to Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecServerItemAttr
Identifies the server attribute. You use this tag to set or get a string that represents the Internet server’s
domain name or IP address. This is unique to Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecAuthenticationTypeItemAttr
Identifies the authentication type attribute. You use this tag to set or get a value of type
SecAuthenticationType that represents the Internet authentication scheme. For possible
authentication values, see “Keychain Authentication Type Constants” (page 166). This is unique to
Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

Constants 173
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecPortItemAttr
Identifies the port attribute. You use this tag to set or get a value of type UInt32 that represents the
Internet port number. This is unique to Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecPathItemAttr
Identifies the path attribute. You use this tag to set or get a value that represents the path. This is
unique to Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecVolumeItemAttr
Identifies the volume attribute. You use this tag to set or get a value that represents the AppleShare
volume. This is unique to AppleShare password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecAddressItemAttr
Identifies the address attribute. You use this tag to set or get a value of type string that represents
the AppleTalk zone name, or the IP or domain name that represents the server address. This is unique
to AppleShare password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecSignatureItemAttr
Identifies the server signature attribute. You use this tag to set or get a value of type
SecAFPServerSignature (page 157) that represents the server signature block. This is unique to
AppleShare password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecProtocolItemAttr
Identifies the protocol attribute. You use this tag to set or get a value of type SecProtocolType that
represents the Internet protocol. For possible protocol type values, see “Keychain Protocol Type
Constants” (page 186). This is unique to AppleShare and Internet password attributes.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecCertificateType
Indicates a CSSM_CERT_TYPE type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecCertificateEncoding
Indicates a CSSM_CERT_ENCODING type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

174 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecCrlType
Indicates a CSSM_CRL_TYPE type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecCrlEncoding
Indicates a CSSM_CRL_ENCODING type.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecAlias
Indicates an alias.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

Discussion
Not all of these attributes are used for all types of items. Which set of attributes exist for each type of item
is documented in the “Data Storage Library Services” chapter of Common Security: CDSA and CSSM, version 2
(with corrigenda) from The Open Group (http://www.opengroup.org/security/cdsa.htm) for standard items
and in the DL section of the Security Release Notes for Apple-defined item types (if any).

To obtain information about a certificate, use the CDSA Certificate Library (CL) API. To obtain information
about a key, use the SecKeyGetCSSMKey function and the CDSA Cryptographic Service Provider (CSP) API.

For attributes for keys, see “Keychain Item Attribute Constants For Keys” (page 175).

Keychain Item Attribute Constants For Keys
Specifies the attributes for a key item in a keychain.

Constants 175
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

http://www.opengroup.org/security/cdsa.htm

enum
{
 kSecKeyKeyClass =0,
 kSecKeyPrintName =1,
 kSecKeyAlias =2,
 kSecKeyPermanent =3,
 kSecKeyPrivate =4,
 kSecKeyModifiable =5,
 kSecKeyLabel =6,
 kSecKeyApplicationTag =7,
 kSecKeyKeyCreator =8,
 kSecKeyKeyType =9,
 kSecKeyKeySizeInBits =10,
 kSecKeyEffectiveKeySize =11,
 kSecKeyStartDate =12,
 kSecKeyEndDate =13,
 kSecKeySensitive =14,
 kSecKeyAlwaysSensitive =15,
 kSecKeyExtractable =16,
 kSecKeyNeverExtractable =17,
 kSecKeyEncrypt =18,
 kSecKeyDecrypt =19,
 kSecKeyDerive =20,
 kSecKeySign =21,
 kSecKeyVerify =22,
 kSecKeySignRecover =23,
 kSecKeyVerifyRecover =24,
 kSecKeyWrap =25,
 kSecKeyUnwrap =26
};

Constants
kSecKeyKeyClass

Type uint32 (CSSM_KEYCLASS); value is one of CSSM_KEYCLASS_PUBLIC_KEY,
CSSM_KEYCLASS_PRIVATE_KEY or CSSM_KEYCLASS_SESSION_KEY.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyPrintName
Type blob; human readable name of the key. Same as kSecLabelItemAttr for normal keychain
items.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyAlias
Type blob; currently unused.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyPermanent
Type uint32; value is nonzero. This key is permanent (stored in some keychain) and is always 1.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

176 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecKeyPrivate
Type uint32; value is nonzero. This key is protected by a user login, a password, or both.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyModifiable
Type uint32; value is nonzero. Attributes of this key can be modified.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyLabel
Type blob; for private and public keys this contains the hash of the public key. This is used to associate
certificates and keys. Its value matches the value of the kSecPublicKeyHashItemAttr attribute of
a certificate and it's used to construct an identity from a certificate and a key. For symmetric keys this
is whatever the creator of the key passed in when they generated the key.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyApplicationTag
Type blob; currently unused.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyKeyCreator
Type data. The data points to a CSSM_GUID structure representing the module ID of the CSP owning
this key.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyKeyType
Type uint32; value is a CSSM algorithm (CSSM_ALGORITHMS) representing the algorithm associated
with this key.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyKeySizeInBits
Type uint32; value is the number of bits in this key.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyEffectiveKeySize
Type uint32; value is the effective number of bits in this key. For example, a DES key has a key size in
bits (kSecKeyKeySizeInBits) of 64 but a value for kSecKeyEffectiveKeySize of 56.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyStartDate
Type CSSM_DATE. Earliest date at which this key may be used. If the value is all zeros or not present,
no restriction applies.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

Constants 177
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecKeyEndDate
Type CSSM_DATE. Latest date at which this key may be used. If the value is all zeros or not present,
no restriction applies.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeySensitive
Type uint32; value is nonzero. This key cannot be wrapped with CSSM_ALGID_NONE.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyAlwaysSensitive
Type uint32; value is nonzero. This key has always been marked sensitive.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyExtractable
Type uint32; value is nonzero. This key can be wrapped.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyNeverExtractable
Type uint32; value is nonzero. This key was never marked extractable.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyEncrypt
Type uint32; value is nonzero. This key can be used in an encrypt operation.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyDecrypt
Type uint32; value is nonzero. This key can be used in a decrypt operation.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyDerive
Type uint32; value is nonzero. This key can be used in a key derivation operation.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeySign
Type uint32, value is nonzero. This key can be used in a sign operation.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyVerify
Type uint32, value is nonzero. This key can be used in a verify operation.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

178 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecKeySignRecover
Type uint32.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyVerifyRecover
Type uint32. This key can unwrap other keys.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyWrap
Type uint32; value is nonzero. This key can wrap other keys.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

kSecKeyUnwrap
Type uint32; value is nonzero. This key can unwrap other keys.

Available in Mac OS X v10.4 and later.

Declared in SecKey.h.

Discussion
For attributes for items other than keys, see “Keychain Item Attribute Constants” (page 170).

Keychain Item Class Constants
Specifies a keychain item’s class code.

Constants 179
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef FourCharCode SecItemClass;
enum
{
 /* SecKeychainItem.h */
 kSecInternetPasswordItemClass = 'inet',
 kSecGenericPasswordItemClass = 'genp',
 kSecAppleSharePasswordItemClass = 'ashp',
 kSecCertificateItemClass =
 CSSM_DL_DB_RECORD_X509_CERTIFICATE,
};
enum
{
 /* Record Types defined in The Open Group Application Name Space */
 /* cssmtype.h */
 CSSM_DL_DB_RECORD_PUBLIC_KEY =
 CSSM_DB_RECORDTYPE_OPEN_GROUP_START + 5,
 CSSM_DL_DB_RECORD_PRIVATE_KEY =
 CSSM_DB_RECORDTYPE_OPEN_GROUP_START + 6,
 CSSM_DL_DB_RECORD_SYMMETRIC_KEY =
 CSSM_DB_RECORDTYPE_OPEN_GROUP_START + 7,
 CSSM_DL_DB_RECORD_ALL_KEYS =
 CSSM_DB_RECORDTYPE_OPEN_GROUP_START + 8
};

Constants
kSecInternetPasswordItemClass

Indicates that the item is an Internet password.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecGenericPasswordItemClass
Indicates that the item is a generic password.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecAppleSharePasswordItemClass
Indicates that the item is an AppleShare password.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

kSecCertificateItemClass
Indicates that the item is an X509 certificate.

Available in Mac OS X v10.2 and later.

Declared in SecKeychainItem.h.

CSSM_DL_DB_RECORD_PUBLIC_KEY
Indicates that the item is a public key of a public-private pair.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_DL_DB_RECORD_PRIVATE_KEY
Indicates that the item is a private key of a public-private pair.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

180 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

CSSM_DL_DB_RECORD_SYMMETRIC_KEY
Indicates that the item is a private key used for symmetric-key encryption.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

CSSM_DL_DB_RECORD_ALL_KEYS
The item can be any type of key; used for searches only.

Available in Mac OS X v10.0 and later.

Declared in cssmtype.h.

Discussion
These enumerations define constants your application can use to specify the type of the keychain item you
wish to create, dispose, add, delete, update, copy, or locate. You can also use these constants with the tag
constant SecItemAttr.

Declared In
SecKeychainItem.h, cssmtype.h.

Keychain Item Import/Export Flags
Defines values for import and export flags.

enum
{
 kSecItemPemArmour = 0x00000001,
};
typedef uint32_t SecItemImportExportFlags;

Constants
kSecItemPemArmour

The exported data should have PEM armour.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

Discussion
This enumeration lists values used by the flags parameter of the functions SecKeychainItemExport (page
136) and SecKeychainItemImport (page 140).

PEM armour refers to a way of expressing binary data as an ASCII string so that it can be transferred over
text-only channels such as email. (PEM stands for an Internet standard, Privacy Enhanced Mail.)

Keychain Item Import/Export Parameter Flags
Defines values for the flags field of the import/export parameters.

Constants 181
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

enum
{
 kSecKeyImportOnlyOne = 0x00000001,
 kSecKeySecurePassphrase = 0x00000002,
 kSecKeyNoAccessControl = 0x00000004
};
typedef uint32_t SecKeyImportExportFlags;

Constants
kSecKeyImportOnlyOne

Prevents the importing of more than one private key by the SecKeychainItemImport (page 140)
function. If the importKeychain parameter is NULL, this bit is ignored. Otherwise, if this bit is set
and there is more than one key in the incoming external representation, no items are imported to
the specified keychain and the error errSecMultipleKeys is returned.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecKeySecurePassphrase
When set, the password for import or export is obtained by user prompt. (A password is sometimes
referred to as a passphrase to emphasize the fact that a longer string that includes non-letter characters,
such as numbers, punctuation, and spaces, is more secure than a simple word.) Otherwise, you must
provide the password in the passphrase field of the SecKeyImportExportParameters structure.
A user-supplied password is preferred, because it avoids having the cleartext password appear in the
application’s address space at any time.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecKeyNoAccessControl
When set, imported private keys have no access object attached to them. In the absence of both this
bit and the accessRef field in SecKeyImportExportParameters, imported private keys are given
default access controls.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

Discussion
These flags are used as input to the import/export parameters structure
(SecKeyImportExportParameters (page 162), which in turn is used as input to the functions
SecKeychainItemExport (page 136) and SecKeychainItemImport (page 140).

Keychain Item Import/Export Formats
Specifies the format of an item after export from or before import to the keychain.

enum
{
 kSecFormatUnknown = 0,

 /* Asymmetric Key Formats */
 kSecFormatOpenSSL,
 kSecFormatSSH, //not supported
 kSecFormatBSAFE,

182 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

 /* Symmetric Key Formats */
 kSecFormatRawKey,

 /* Formats for wrapped symmetric and private keys */
 kSecFormatWrappedPKCS8,
 kSecFormatWrappedOpenSSL,
 kSecFormatWrappedSSH, //not supported
 kSecFormatWrappedLSH, //not supported

 /* Formats for certificates */
 kSecFormatX509Cert,

 /* Aggregate Types */
 kSecFormatPEMSequence,
 kSecFormatPKCS7,
 kSecFormatPKCS12,
 kSecFormatNetscapeCertSequence
};
typedef uint32_t SecExternalFormat;

Constants
kSecFormatUnknown

When importing, indicates the format is unknown. When exporting, use the default format for the
item. For asymmetric keys, the default is kSecFormatOpenSSL. For symmetric keys, the default is
kSecFormatRawKey. For certificates, the default is kSecFormatX509Cert. For multiple items, the
default is kSecFormatPEMSequence.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatOpenSSL
Format for asymmetric (public/private) keys. OpenSSL is an open source toolkit for Secure Sockets
Layer (SSL) and Transport Layer Security (TLS). Also known as X.509 for public keys.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatSSH
Not supported.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatBSAFE
Format for asymmetric keys. BSAFE is a standard from RSA Security for encryption, digital signatures,
and privacy.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatRawKey
Format for symmetric keys. Raw, unformatted key bits. This is the default for symmetric keys.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

Constants 183
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecFormatWrappedPKCS8
Format for wrapped symmetric and private keys. PKCS8 is the Private-Key Information Syntax Standard
from RSA Security.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatWrappedOpenSSL
Format for wrapped symmetric and private keys. OpenSSL is an open-source toolkit for Secure Sockets
Layer (SSL) and Transport Layer Security (TLS).

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatWrappedSSH
Not supported.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatWrappedLSH
Not supported.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatX509Cert
Format for certificates. DER (distinguished encoding rules) encoded. X.509 is a standard for digital
certificates from the International Telecommunication Union (ITU). This is the default for certificates.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatPEMSequence
Sequence of certificates and keys with PEM armour. PEM armour refers to a way of expressing binary
data as an ASCII string so that it can be transferred over text-only channels such as email. This is the
default format for multiple items.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatPKCS7
Sequence of certificates, no PEM armour. PKCS7 is the Cryptographic Message Syntax Standard from
RSA Security, Inc.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatPKCS12
Set of certificates and private keys. PKCS12 is the Personal Information Exchange Syntax from RSA
Security, Inc.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecFormatNetscapeCertSequence
Set of certificates in the Netscape Certificate Sequence format.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

184 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

Keychain Item Type When Importing
Specifies the type of keychain item being imported.

enum {
 kSecItemTypeUnknown, /* caller doesn't know what this is */
 kSecItemTypePrivateKey,
 kSecItemTypePublicKey,
 kSecItemTypeSessionKey,
 kSecItemTypeCertificate,
 kSecItemTypeAggregate
};
typedef uint32_t SecExternalItemType;

Constants
kSecItemTypePrivateKey

Indicates a private key.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecItemTypePublicKey
Indicates a public key.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecItemTypeSessionKey
Indicates a session key.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecItemTypeCertificate
Indicates a certificate.

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

kSecItemTypeAggregate
Indicates a set of certificates or certificates and private keys, such as PKCS7, PKCS12, or
kSecFormatPEMSequence formats (see “Keychain Item Import/Export Formats” (page 182)).

Available in Mac OS X v10.4 and later.

Declared in SecImportExport.h.

Keychain Preference Domain Constants
Defines constants for the keychain preference domains.

Constants 185
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef enum {
 kSecPreferencesDomainUser,
 kSecPreferencesDomainSystem,
 kSecPreferencesDomainCommon,
 kSecPreferencesDomainAlternate } SecPreferencesDomain;

Constants
kSecPreferencesDomainUser

Indicates the user preference domain preferences.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecPreferencesDomainSystem
Indicates the system or daemon preference domain preferences.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecPreferencesDomainCommon
Indicates the preferences are common to everyone.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecPreferencesDomainAlternate
Indicates an alternate preference domain preferences.

Available in Mac OS X v10.3 through Mac OS X v10.3.

Declared in SecKeychain.h.

Discussion
A preference domain is a set of security-related preferences, such as the default keychain and the current
keychain search list. The default preference domain for system daemons (that is, for daemons running in the
root session) is the system domain. The default preference domain for all other programs is the user domain.
A common preference appears for all users and the system; for example, if you add a keychain to the keychain
search list using kSecPreferencesDomainCommon for the preference domain, the keychain is added to the
search list for all users and the system.

Keychain Protocol Type Constants
Defines the protocol type associated with an AppleShare or Internet password.

186 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef FourCharCode SecProtocolType;
enum
{
 kSecProtocolTypeFTP = 'ftp ',
 kSecProtocolTypeFTPAccount = 'ftpa',
 kSecProtocolTypeHTTP = 'http',
 kSecProtocolTypeIRC = 'irc ',
 kSecProtocolTypeNNTP = 'nntp',
 kSecProtocolTypePOP3 = 'pop3',
 kSecProtocolTypeSMTP = 'smtp',
 kSecProtocolTypeSOCKS = 'sox ',
 kSecProtocolTypeIMAP = 'imap',
 kSecProtocolTypeLDAP = 'ldap',
 kSecProtocolTypeAppleTalk = 'atlk',
 kSecProtocolTypeAFP = 'afp ',
 kSecProtocolTypeTelnet = 'teln',
 kSecProtocolTypeSSH = 'ssh ',
 kSecProtocolTypeFTPS = 'ftps',
 kSecProtocolTypeHTTPS = 'htps',
 kSecProtocolTypeHTTPProxy = 'htpx',
 kSecProtocolTypeHTTPSProx = 'htsx',
 kSecProtocolTypeFTPProxy = 'ftpx',
 kSecProtocolTypeSMB = 'smb ',
 kSecProtocolTypeRTSP = 'rtsp',
 kSecProtocolTypeRTSPProxy = 'rtsx',
 kSecProtocolTypeDAAP = 'daap',
 kSecProtocolTypeEPPC = 'eppc',
 kSecProtocolTypeIPP = 'ipp ',
 kSecProtocolTypeNNTPS = 'ntps',
 kSecProtocolTypeLDAPS = 'ldps',
 kSecProtocolTypeTelnetS = 'tels',
 kSecProtocolTypeIMAPS = 'imps',
 kSecProtocolTypeIRCS = 'ircs',
 kSecProtocolTypePOP3S = 'pops'
};

Constants
kSecProtocolTypeFTP

Indicates FTP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeFTPAccount
Indicates a client side FTP account. The usage of this constant is deprecated as of Mac OS X v10.3.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeHTTP
Indicates HTTP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeIRC
Indicates IRC.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Constants 187
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecProtocolTypeNNTP
Indicates NNTP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypePOP3
Indicates POP3.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeSMTP
Indicates SMTP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeSOCKS
Indicates SOCKS.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeIMAP
Indicates IMAP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeLDAP
Indicates LDAP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeAppleTalk
Indicates AFP over AppleTalk.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeAFP
Indicates AFP over TCP.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeTelnet
Indicates Telnet.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecProtocolTypeSSH
Indicates SSH.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

188 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecProtocolTypeFTPS
Indicates FTP over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeHTTPS
Indicates HTTP over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeHTTPProxy
Indicates HTTP proxy. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeHTTPSProxy
Indicates HTTPS proxy. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeFTPProxy
Indicates FTP proxy. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeSMB
Indicates SMB. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeRTSP
Indicates RTSP. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeRTSPProxy
Indicates RTSP proxy. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeDAAP
Indicates DAAP. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeEPPC
Indicates Remote Apple Events. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

Constants 189
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

kSecProtocolTypeIPP
Indicates IPP. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeNNTPS
Indicates NNTP over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeLDAPS
Indicates LDAP over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeTelnetS
Indicates Telnet over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeIMAPS
Indicates IMAP4 over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypeIRCS
Indicates IRC over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

kSecProtocolTypePOP3S
Indicates POP3 over TLS/SSL. This constant is available in Mac OS X v10.3 and later.

Available in Mac OS X v10.3 and later.

Declared in SecKeychain.h.

Keychain Settings Version
Defines the keychain settings version.

#define SEC_KEYCHAIN_SETTINGS_VERS1 1

Constants
SEC_KEYCHAIN_SETTINGS_VERS1

Defines the keychain settings version.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Keychain Status Masks
Defines the current status of a keychain.

190 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

typedef UInt32 SecKeychainStatus;
enum
{
 kSecUnlockStateStatus = 1,
 kSecReadPermStatus = 2,
 kSecWritePermStatus = 4
};

Constants
kSecUnlockStateStatus

Indicates the keychain is unlocked.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecReadPermStatus
Indicates the keychain is readable.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

kSecWritePermStatus
Indicates the keychain is writable.

Available in Mac OS X v10.2 and later.

Declared in SecKeychain.h.

Discussion
You can use these masks in combination. For example, a keychain may be both readable and writable.

Result Codes

The most common result codes returned by Keychain Services are listed in the table below. The assigned
error space for Keychain Services is discontinuous: –25240 through –25279 and –25290 through –25329.
Keychain Item Services may also return noErr (0) or paramErr (–50), or CSSM result codes (see Common
Security: CDSA and CSSM, version 2 (with corrigenda) from The Open Group (http://www.opengroup.org/secu-
rity/cdsa.htm)).

DescriptionValueResult Code

No trust results are available.–25291errSecNotAvailable

Available in Mac OS X v10.2 and later.

Read only error.–25292errSecReadOnly

Available in Mac OS X v10.2 and later.

Authorization/Authentication failed.–25293errSecAuthFailed

Available in Mac OS X v10.2 and later.

The keychain does not exist.–25294errSecNoSuchKeychain

Available in Mac OS X v10.2 and later.

Result Codes 191
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

http://www.opengroup.org/security/cdsa.htm
http://www.opengroup.org/security/cdsa.htm

DescriptionValueResult Code

The keychain is not valid.–25295errSecInvalidKeychain

Available in Mac OS X v10.2 and later.

A keychain with the same name already exists.–25296errSecDuplicateKeychain

Available in Mac OS X v10.2 and later.

More than one callback of the same name exists.–25297errSecDuplicateCallback

Available in Mac OS X v10.2 and later.

The callback is not valid.–25298errSecInvalidCallback

Available in Mac OS X v10.2 and later.

The item already exists.–25299errSecDuplicateItem

Available in Mac OS X v10.2 and later.

The item cannot be found.–25300errSecItemNotFound

Available in Mac OS X v10.2 and later.

The buffer is too small.–25301errSecBufferTooSmall

Available in Mac OS X v10.2 and later.

The data is too large for the particular data type.–25302errSecDataTooLarge

Available in Mac OS X v10.2 and later.

The attribute does not exist.–25303errSecNoSuchAttr

Available in Mac OS X v10.2 and later.

The item reference is invalid.–25304errSecInvalidItemRef

Available in Mac OS X v10.2 and later.

The search reference is invalid.–25305errSecInvalidSearchRef

Available in Mac OS X v10.2 and later.

The keychain item class does not exist.–25306errSecNoSuchClass

Available in Mac OS X v10.2 and later.

A default keychain does not exist.–25307errSecNoDefaultKeychain

Available in Mac OS X v10.2 and later.

Interaction with the Security Server is not allowed.–25308errSecInteractionNotAllowed

Available in Mac OS X v10.2 and later.

The attribute is read only.–25309errSecReadOnlyAttr

Available in Mac OS X v10.2 and later.

192 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

DescriptionValueResult Code

The version is incorrect.–25310errSecWrongSecVersion

Available in Mac OS X v10.2 and later.

The key size is not allowed.–25311errSecKeySizeNotAllowed

Available in Mac OS X v10.2 and later.

There is no storage module available.–25312errSecNoStorageModule

Available in Mac OS X v10.2 and later.

There is no certificate module available.–25313errSecNoCertificateModule

Available in Mac OS X v10.2 and later.

There is no policy module available.–25314errSecNoPolicyModule

Available in Mac OS X v10.2 and later.

User interaction is required.–25315errSecInteractionRequired

Available in Mac OS X v10.2 and later.

The data is not available.–25316errSecDataNotAvailable

Available in Mac OS X v10.2 and later.

The data is not modifiable.–25317errSecDataNotModifiable

Available in Mac OS X v10.2 and later.

The attempt to create a certificate chain failed.–25318errSecCreateChainFailed

Available in Mac OS X v10.2 and later.

The preference domain specified is invalid. This error is
available in Mac OS X v10.3 and later.

–25319errSecInvalidPrefsDomain

Available in Mac OS X v10.3 and later.

The access control list is not in standard simple form.–25240errSecACLNotSimple

Available in Mac OS X v10.2 and later.

The policy specified cannot be found.–25241errSecPolicyNotFound

Available in Mac OS X v10.2 and later.

The trust setting is invalid.–25242errSecInvalidTrustSetting

Available in Mac OS X v10.2 and later.

The specified item has no access control.–25243errSecNoAccessForItem

Available in Mac OS X v10.2 and later.

An invalid attempt to change the owner of an item.–25244errSecInvalidOwnerEdit

Available in Mac OS X v10.2 and later.

Result Codes 193
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

DescriptionValueResult Code

No trust results are available.–25245errSecTrustNotAvailable

Available in Mac OS X v10.3 and later.

The specified import or export format is not supported.–25256errSecUnsupportedFormat

Available in Mac OS X v10.4 and later.

The item you are trying to import has an unknown format.–25257errSecUnknownFormat

Available in Mac OS X v10.4 and later.

The key must be wrapped to be exported.–25258errSecKeyIsSensitive

Available in Mac OS X v10.4 and later.

An attempt was made to import multiple private keys.–25259errSecMultiplePrivKeys

Available in Mac OS X v10.4 and later.

A password is required for import or export.–25260errSecPassphraseRequired

Available in Mac OS X v10.4 and later.

194 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Keychain Services Reference

195
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART II

Other References

196
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

PART II

Other References

Framework: Security/Security.h

Declared in SecureTransport.h
CipherSuite.h

Overview

This document describes the public API for an implementation of the protocols Secure Sockets Layer version
3.0 and Transport Layer Security version 1.0.

There are no transport layer dependencies in this library; it can be used with BSD Sockets and Open Transport,
among other protocols. To use this library, you must provide callback functions to perform the actual I/O on
underlying network connections. You are also responsible for setting up raw network connections; you pass
in an opaque reference to the underlying (connected) entity at the start of an SSL session in the form of an
SSLConnectionRef (page 234) object.

The following terms are used in this document:

 ■ A client is the initiator of an SSL session. The canonical example of a client is a web browser communicating
with an HTTPS URL.

 ■ A server is an entity that accepts requests for SSL sessions made by clients. An example is a secure web
server.

 ■ An SSL session is bounded by calls to the functions SSLHandshake (page 216) and SSLClose (page 202).
An active session is in some state between these two calls, inclusive.

 ■ An SSL session context, or SSLContextRef (page 234), is an opaque reference to the state associated
with one session. A session context cannot be reused for multiple sessions.

Most applications need only a few of the functions in this API, which are normally called in the following
sequence:

1. Preparing for a session

a. Call SSLNewContext (page 217) to create a new SSL session context.

b. Write I/O functions and call SSLSetIOFuncs (page 226) to pass them to Secure Transpport.

c. Establish a connection using CFNetwork, BSD Sockets, or Open Transport. Then call
SSLSetConnection (page 222) to specify the connection to which the SSL session context applies.

d. Call SSLSetPeerDomainName (page 227) to specify the fully-qualified domain name of the peer to
which you want to connect (optional but highly recommended).

Overview 197
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

e. Call SSLSetCertificate (page 221) to specify the certificate to be used in authentication (required
for server side, optional for client).

2. Starting a session

 ■ Call SSLHandshake (page 216) to perform the SSL handshake and establish a secure session.

3. Maintaining the session

 ■ To transfer data over the secure session, call SSLWrite (page 231) andSSLRead (page 218) as needed.

4. Ending a session

a. Call SSLClose (page 202) to close the secure session.

b. Close the connection and dispose of the connection reference (SSLConnectionRef (page 234)).

c. Call SSLDisposeContext (page 202) to dispose of the SSL session context.

d. If you have called SSLGetPeerCertificates (page 210) to obtain any certificates, call CFRelease
to release the certificate reference objects.

In many cases, it is easier to use the CFNetwork API than Secure Transport to implement a simple connection
to a secure (HTTPS) URL. See CFNetwork Programming Guide for documentation of the CFNetwork API and
the CFNetworkHTTPDownload sample code for an example of code that downloads data from a URL. If you
specify an HTTPS URL, this routine automatically uses Secure Transport to encrypt the data stream.

For functions to manage and evaluate certificates, see Certificate, Key, andTrust Services Reference and Certificate,
Key, and Trust Services Programming Guide.

Functions by Task

Creating and Disposing of a Session Context

SSLNewContext (page 217)
Creates a new SSL session context.

SSLDisposeContext (page 202)
Disposes of an SSL session context.

Configuring an SSL Session

SSLSetConnection (page 222)
Specifies an I/O connection for a specific session.

SSLGetConnection (page 205)
Retrieves an I/O connection—such as a socket or endpoint—for a specific session.

198 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLSetIOFuncs (page 226)
Specifies callback functions that perform the network I/O operations.

SSLSetProtocolVersionEnabled (page 229)
Sets the allowed SSL protocol versions.

SSLGetProtocolVersionEnabled (page 213)
Retrieves the enabled status of a given protocol.

SSLSetClientSideAuthenticate (page 222)
Specifies the requirements for client-side authentication.

SSLSetRsaBlinding (page 230)
Enables or disables RSA blinding.

SSLGetRsaBlinding (page 214)
Obtains a value indicating whether RSA blinding is enabled.

Managing an SSL Session

SSLHandshake (page 216)
Performs the SSL handshake.

SSLGetSessionState (page 215)
Retrieves the state of an SSL session.

SSLGetNegotiatedProtocolVersion (page 208)
Obtains the negotiated protocol version of the active session.

SSLSetPeerID (page 228)
Specifies data that is sufficient to uniquely identify the peer of the current session.

SSLGetPeerID (page 212)
Retrieves the current peer ID data.

SSLGetBufferedReadSize (page 204)
Determines how much data is available to be read.

SSLRead (page 218)
Performs a normal application-level read operation.

SSLWrite (page 231)
Performs a normal application-level write operation.

SSLClose (page 202)
Terminates the current SSL session.

Managing Ciphers

SSLGetNumberSupportedCiphers (page 210)
Determines the number of cipher suites supported.

SSLGetSupportedCiphers (page 215)
Determines the values of the supported cipher suites.

SSLSetEnabledCiphers (page 225)
Specifies a restricted set of SSL cipher suites to be enabled by the current SSL session context.

Functions by Task 199
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLGetNumberEnabledCiphers (page 209)
Determines the number of cipher suites currently enabled.

SSLGetEnabledCiphers (page 207)
Determines which SSL cipher suites are currently enabled.

SSLGetNegotiatedCipher (page 208)
Retrieves the cipher suite negotiated for this session.

SSLSetDiffieHellmanParams (page 223)
Specifies Diffie-Hellman parameters.

SSLGetDiffieHellmanParams (page 206)
Retrieves the Diffie-Hellman parameters specified earlier.

Managing Root Certificates

SSLSetAllowsAnyRoot (page 218)
Specifies whether root certificates from unrecognized certification authorities are allowed.

SSLGetAllowsAnyRoot (page 203)
Obtains a value specifying whether an unknown root is allowed.

SSLSetAllowsExpiredRoots (page 220)
Specifies whether expired root certificates are allowed.

SSLGetAllowsExpiredRoots (page 204)
Retrieves the value indicating whether expired roots are allowed.

SSLSetTrustedRoots (page 231)
Augments or replaces the default set of trusted root certificates for this session.

SSLGetTrustedRoots (page 216) Deprecated in Mac OS X v10.5
Retrieves the current list of trusted root certificates.

Managing Certificates

SSLAddDistinguishedName (page 201)
Unsupported.

SSLSetAllowsExpiredCerts (page 219)
Specifies whether certificate expiration times are ignored.

SSLGetAllowsExpiredCerts (page 203)
Retrieves the value specifying whether expired certificates are allowed.

SSLSetCertificate (page 221)
Specifies this connection’s certificate or certificates.

SSLGetClientCertificateState (page 205)
Retrieves the exchange status of the client certificate.

SSLSetEnableCertVerify (page 224)
Enables or disables peer certificate chain validation.

SSLGetEnableCertVerify (page 207)
Determines whether peer certificate chain validation is currently enabled.

200 Functions by Task
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLSetEncryptionCertificate (page 225)
Specifies the encryption certificates used for this connection.

SSLGetPeerCertificates (page 210) Deprecated in Mac OS X v10.5
Retrieves a peer certificate.

Managing the Peer Domain Name

SSLSetPeerDomainName (page 227)
Specifies the fully qualified domain name of the peer.

SSLGetPeerDomainNameLength (page 212)
Determines the length of a previously set peer domain name.

SSLGetPeerDomainName (page 211)
Retrieves the peer domain name specified previously.

Deprecated Functions

SSLSetProtocolVersion (page 228)
Sets the SSL protocol version. This function is deprecated.

SSLGetProtocolVersion (page 213)
Gets the SSL protocol version. This function is deprecated.

Functions

SSLAddDistinguishedName
Unsupported.

OSStatus SSLAddDistinguishedName (
 SSLContextRef context,
 const void *derDN,
 size_t derDNLen
);

Parameters
context

An SSL session context reference.

derDN
A pointer to a buffer containing a DER-encoded distinguished name.

derDNLen
A value of type size_t representing the size of the buffer pointed to by the parameter derDN.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function has not been implemented and is unsupported at this time.

Functions 201
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Availability
Usupported.

Declared In
SecureTransport.h

SSLClose
Terminates the current SSL session.

OSStatus SSLClose (
 SSLContextRef context
);

Parameters
context

The SSL session context reference of the session you want to terminate.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLDisposeContext
Disposes of an SSL session context.

OSStatus SSLDisposeContext (
 SSLContextRef context
);

Parameters
context

A reference to the SSL session context to dispose.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
When you are completely finished with a secure session, you should dispose of the SSL session context in
order to release the memory associated with the session.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

202 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Declared In
SecureTransport.h

SSLGetAllowsAnyRoot
Obtains a value specifying whether an unknown root is allowed.

OSStatus SSLGetAllowsAnyRoot (
 SSLContextRef context,
 Boolean *anyRoot
);

Parameters
context

An SSL session context reference.

anyRoot
On return, a Boolean indicating the current setting of the anyRoot flag.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use the SSLSetAllowsAnyRoot (page 218) function to set the value of the anyRoot flag. The effect and
meaning of this flag is described in the discussion of the SSLSetAllowsAnyRoot (page 218) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetAllowsExpiredCerts
Retrieves the value specifying whether expired certificates are allowed.

OSStatus SSLGetAllowsExpiredCerts (
 SSLContextRef context,
 Boolean *allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
On return, this flag is set to the value of the Boolean flag that specifies whether expired certificates
are ignored. If this value is true, then Secure Transport does not return an error if any certificates in
the certificate chain are expired.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Functions 203
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Discussion
You can set the allowsExpired flag to allow the handshake to succeed even if one or more certificates in
the certificate chain have expired. This function returns the current setting of this flag. Use the
SSLSetAllowsExpiredCerts (page 219) function to set the value of the allowsExpired flag.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetAllowsExpiredRoots
Retrieves the value indicating whether expired roots are allowed.

OSStatus SSLGetAllowsExpiredRoots (
 SSLContextRef context,
 Boolean *allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
On return, points to a Boolean value indicating whether expired roots are allowed. If this value is
true, no errors are returned if the certificate chain ends in an expired root.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use the SSLSetAllowsExpiredRoots (page 220) function to change the setting of the allowsExpired
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetBufferedReadSize
Determines how much data is available to be read.

OSStatus SSLGetBufferedReadSize (
 SSLContextRef context,
 size_t *bufSize
);

Parameters
context

An SSL session context reference.

204 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

bufSize
On return, the size of the data to be read.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function determines how much data you can be guaranteed to obtain in a call to the SSLRead (page
218) function. This function does not block or cause any low-level read operations to occur.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetClientCertificateState
Retrieves the exchange status of the client certificate.

OSStatus SSLGetClientCertificateState (
 SSLContextRef context,
 SSLClientCertificateState *clientState
);

Parameters
context

An SSL session context reference.

clientState
On return, a pointer to a value indicating the state of the client certificate exchange. See SSL Client
Certificate State Constants (page 237) for a list of possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The value returned reflects the latest change in the state of the client certificate exchange. If either peer
initiates a renegotiation attempt, Secure Transport resets the state to kSSLClientCertNone.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetConnection
Retrieves an I/O connection—such as a socket or endpoint—for a specific session.

Functions 205
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

OSStatus SSLGetConnection (
 SSLContextRef context,
 SSLConnectionRef *connection
);

Parameters
context

An SSL session context reference.

connection
On return, a pointer to a session connection reference. If no connection has been set using the
SSLSetConnection (page 222) function, then this parameter is NULL on return.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can use this function on either the client or server to retrieve the connection associated with a secure
session.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetDiffieHellmanParams
Retrieves the Diffie-Hellman parameters specified earlier.

OSStatus SSLGetDiffieHellmanParams (
 SSLContextRef context,
 const void **dhParams,
 size_t *dhParamsLen
);

Parameters
context

An SSL session context reference.

dhParams
On return, points to a buffer containing the Diffie-Hellman parameter block in Open SSL DER format.The
returned data is not copied and belongs to the SSL session context reference; therefore, you cannot
modify the data and it is released automatically when you dispose of the context.

dhParamsLen
On return, points to the length of the buffer pointed to by the dhParams parameter.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function returns the parameter block specified in an earlier call to the function
SSLSetDiffieHellmanParams (page 223). IfSSLSetDiffieHellmanParamswas never called, thedhParams
parameter returns NULL and the dhParamsLen parameter returns 0.

206 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetEnableCertVerify
Determines whether peer certificate chain validation is currently enabled.

OSStatus SSLGetEnableCertVerify (
 SSLContextRef context,
 Boolean *enableVerify
);

Parameters
context

An SSL session context reference.

enableVerify
On return, a pointer to a Boolean value specifying whether peer certificate chain validation is enabled.
If this value is true, then Secure Transport automatically attempts to verify the certificate chain during
exchange of peer certificates.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use the SSLSetEnableCertVerify (page 224) function to set the value of the enableVerify flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetEnabledCiphers
Determines which SSL cipher suites are currently enabled.

OSStatus SSLGetEnabledCiphers (
 SSLContextRef context,
 SSLCipherSuite *ciphers,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
On return, points to the enabled cipher suites. Before calling, you must allocate this buffer using the
number of enabled cipher suites retrieved from a call to the SSLGetNumberEnabledCiphers (page
209) function.

Functions 207
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

numCiphers
Pointer to the number of enabled cipher suites. Before calling, retrieve this value by calling the
SSLGetNumberEnabledCiphers (page 209) function.

Return Value
A result code. See “Secure Transport Result Codes” (page 240). If the supplied buffer is too small,
errSSLBufferOverflow is returned.

Discussion
Call the SSLSetEnabledCiphers (page 225) function to specify which SSL cipher suites are enabled.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetNegotiatedCipher
Retrieves the cipher suite negotiated for this session.

OSStatus SSLGetNegotiatedCipher (
 SSLContextRef context,
 SSLCipherSuite *cipherSuite
);

Parameters
context

An SSL session context reference.

cipherSuite
On return, points to the cipher suite that was negotiated for this session.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You should call this function only when a session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetNegotiatedProtocolVersion
Obtains the negotiated protocol version of the active session.

208 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

OSStatus SSLGetNegotiatedProtocolVersion (
 SSLContextRef context,
 SSLProtocol *protocol
);

Parameters
context

An SSL session context reference.

protocol
On return, points to the negotiated protocol version of the active session.

Return Value
A result code. See “Secure Transport Result Codes” (page 240). This function returns kSSLProtocolUnknown
if no SSL session is in progress.

Discussion
This function retrieves the version of SSL or TLS protocol negotiated for the session. Note that the negotiated
protocol may not be the same as your preferred protocol, depending on which protocol versions you enabled
with the SSLSetProtocolVersionEnabled (page 229) function. This function can return any of the following
values:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolUnknown

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetNumberEnabledCiphers
Determines the number of cipher suites currently enabled.

OSStatus SSLGetNumberEnabledCiphers (
 SSLContextRef context,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

numCiphers
On return, points to the number of enabled cipher suites.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Functions 209
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Discussion
You use the number of enabled cipher suites returned by this function when you call the
SSLGetEnabledCiphers (page 207) function to retrieve the list of currently enabled cipher suites.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetNumberSupportedCiphers
Determines the number of cipher suites supported.

OSStatus SSLGetNumberSupportedCiphers (
 SSLContextRef context,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

numCiphers
On return, points to the number of supported cipher suites.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You use the number of enabled cipher suites returned by this function when you call the
SSLGetNumberSupportedCiphers (page 210) function to retrieve the list of currently enabled cipher suites.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetPeerCertificates
Retrieves a peer certificate. (Deprecated in Mac OS X v10.5.)

OSStatus SSLGetPeerCertificates (
 SSLContextRef context,
 CFArrayRef *certs
);

Parameters
context

An SSL session context reference.

210 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

certs
On return, a pointer to an array of values of type SecCertificateRef representing the peer certificate
and the certificate chain used to validate it. The certificate at index 0 of the returned array is the peer
certificate; the root certificate (or the closest certificate to it) is at the end of the returned array. The
entire array is created by the Secure Transport library; you must release it when you are finished with
it.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function is valid any time after a handshake attempt. You can use it to examine a peer certificate, to
examine a certificate chain to determine why a handshake attempt failed, or to retrieve the certificate chain
in order to validate the certificate yourself (see SSLSetEnableCertVerify (page 224)).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetPeerDomainName
Retrieves the peer domain name specified previously.

OSStatus SSLGetPeerDomainName (
 SSLContextRef context,
 char *peerName,
 size_t *peerNameLen
);

Parameters
context

An SSL session context reference.

peerName
On return, points to the peer domain name.

peerNameLen
A pointer to the length of the peer domain name. Before calling this function, retrieve the peer domain
name length by calling the function SSLGetPeerDomainNameLength (page 212).

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
If you previouslly called the SSLSetPeerDomainName (page 227) function to specify a fully qualified domain
name for the peer certificate, you can use the SSLGetPeerDomainName function to retrieve the domain
name.

Availability
Available in Mac OS X v10.2 and later.

Functions 211
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Declared In
SecureTransport.h

SSLGetPeerDomainNameLength
Determines the length of a previously set peer domain name.

OSStatus SSLGetPeerDomainNameLength (
 SSLContextRef context,
 size_t *peerNameLen
);

Parameters
context

An SSL session context reference.

peerNameLen
On return, points to the length of the peer domain name.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
If you previously called the SSLSetPeerDomainName (page 227) function to specify a fully qualified domain
name for the peer certificate, you can use the SSLGetPeerDomainName (page 211) function to retrieve the
peer domain name. Before doing so, you must call the SSLGetPeerDomainNameLength function to retrieve
the buffer size needed for the domain name.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetPeerID
Retrieves the current peer ID data.

OSStatus SSLGetPeerID (
 SSLContextRef context,
 const void **peerID,
 size_t *peerIDLen
);

Parameters
context

An SSL session context reference.

peerID
On return, points to a buffer containing the peer ID data.

peerIDLen
On return, the length of the peer ID data buffer.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

212 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Discussion
If the peer ID data for this context was not set by calling the SSLSetPeerID (page 228) function, this function
returns a NULL pointer in the peerID parameter, and 0 in the peerIDLen parameter.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetProtocolVersion
Gets the SSL protocol version. This function is deprecated.

OSStatus SSLGetProtocolVersion (
 SSLContextRef context,
 SSLProtocol *protocol
);

Parameters
context

An SSL session context reference.

protocol
On return, a pointer to the SSL protocol version.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use the SSLGetProtocolVersionEnabled (page 213) function instead.

Availability
Available in Mac OS X v10.2.

Declared In
SecureTransport.h

SSLGetProtocolVersionEnabled
Retrieves the enabled status of a given protocol.

OSStatus SSLGetProtocolVersionEnabled (
 SSLContextRef context,
 SSLProtocol protocol,
 Boolean *enable
);

Parameters
context

An SSL session context reference.

Functions 213
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

protocol
A value of type SSLProtocol representing an SSL protocol version.

enable
On return, points to a Boolean value indicating whether the specified protocol version is enabled. If
this value is true, the protocol is enabled.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can specify any one of the following values for the protocol parameter:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll Specify this value to determine whether all protocols are enabled.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetRsaBlinding
Obtains a value indicating whether RSA blinding is enabled.

OSStatus SSLGetRsaBlinding (
 SSLContextRef context,
 Boolean *blinding
);

Parameters
context

An SSL session context reference.

blinding
On return, a pointer to a Boolean value indicating whether RSA blinding is enabled.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function is used only on the server side of a connection.

Call the SSLSetRsaBlinding (page 230) function to enable or disable RSA blinding.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

214 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLGetSessionState
Retrieves the state of an SSL session.

OSStatus SSLGetSessionState (
 SSLContextRef context,
 SSLSessionState *state
);

Parameters
context

An SSL session context reference.

state
On return, points to a constant that indicates the state of the SSL session. See “SSL Session State
Constants” (page 239) for possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetSupportedCiphers
Determines the values of the supported cipher suites.

OSStatus SSLGetSupportedCiphers (
 SSLContextRef context,
 SSLCipherSuite *ciphers,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
On return, points to the values of the supported cipher suites. Before calling, you must allocate this
buffer using the number of supported cipher suites retrieved from a call to the
SSLGetNumberSupportedCiphers (page 210) function.

numCiphers
Points to the number of supported cipher suites that you want returned. Before calling, retrieve this
value by calling the SSLGetNumberSupportedCiphers (page 210) function.

Return Value
A result code. See “Secure Transport Result Codes” (page 240). If the supplied buffer is too small,
errSSLBufferOverflow is returned.

Discussion
All the supported cipher suites are enabled by default. Use the SSLSetEnabledCiphers (page 225) function
to enable a subset of the supported cipher suites. Use the SSLGetEnabledCiphers (page 207) function to
determine which cipher suites are currently enabled.

Functions 215
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetTrustedRoots
Retrieves the current list of trusted root certificates. (Deprecated in Mac OS X v10.5.)

OSStatus SSLGetTrustedRoots (
 SSLContextRef context,
 CFArrayRef *trustedRoots
);

Parameters
context

An SSL session context reference.

trustedRoots
On return, a pointer to a value of type CFArrayRef. This array contains values of type
SecCertificateRef representing the current set of trusted roots.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can use the SSLSetTrustedRoots (page 231) function to replace or add to the set of trusted root
certificates. If SSLSetTrustedRoots (page 231) has never been called for this session, the
SSLGetTrustedRoots function returns the system’s default set of trusted root certificates.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
SecureTransport.h

SSLHandshake
Performs the SSL handshake.

OSStatus SSLHandshake (
 SSLContextRef context
);

Parameters
context

An SSL session context reference.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

216 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Discussion
On successful return, the session is ready for normal secure communication using the functions SSLRead (page
218) and SSLWrite (page 231).

If it finds any problems with the peer’s certificate chain, Secure Transport aborts the handshake. You can use
the SSLGetPeerCertificates (page 210) function to see the peer’s certificate chain. This function can
return a wide variety of result codes, including the following:

 ■ errSSLUnknownRootCert—The peer has a valid certificate chain, but the root of the chain is not a
known anchor certificate.

 ■ errSSLNoRootCert—The peer’s certificate chain was not verifiable to a root certificate.

 ■ errSSLCertExpired—The peer’s certificate chain has one or more expired certificates.

 ■ errSSLXCertChainInvalid—The peer has an invalid certificate chain; for example, signature verification
within the chain failed, or no certificates were found.

A return value of errSSLWouldBlock indicates that the SSLHandshake function must be called again until
a different result code is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLNewContext
Creates a new SSL session context.

OSStatus SSLNewContext (
 Boolean isServer,
 SSLContextRef *contextPtr
);

Parameters
isServer

A Boolean value; True if the calling process is a server.

contextPtr
On return, points to a new SSL session context reference.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The SSL session context is an opaque data structure that identifies a session and stores session information.
You must pass this object to every other function in the Secure Transport API.

Availability
Available in Mac OS X v10.2 and later.

Functions 217
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLRead
Performs a normal application-level read operation.

OSStatus SSLRead (
 SSLContextRef context,
 void *data,
 size_t dataLength,
 size_t *processed
);

Parameters
context

An SSL session context reference.

data
On return, points to the data read. You must allocate this buffer before calling the function. The size
of this buffer must be equal to or greater than the value in the dataLength parameter.

dataLength
The amount of data you would like to read.

processed
On return, points to the number of bytes actually read.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The SSLRead function might call the SSLReadFunc (page 232) function that you provide (see
SSLSetIOFuncs (page 226). Because you may configure the underlying connection to operate in a nonblocking
manner, a read operation might return errSSLWouldBlock, indicating that less data than requested was
actually transferred. In this case, you should repeat the call to SSLRead until some other result is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsAnyRoot
Specifies whether root certificates from unrecognized certification authorities are allowed.

218 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

OSStatus SSLSetAllowsAnyRoot (
 SSLContextRef context,
 Boolean anyRoot
);

Parameters
context

An SSL session context reference.

anyRoot
A Boolean flag specifying whether root certificates from unrecognized certification authorities (CAs)
are allowed. The default for this flag is false, specifying that roots from unrecognized CAs are not
allowed.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The system maintains a set of root certificates signed by known, trusted root CAs. When the anyRoot flag
is true, Secure Transport does not return an error if one of the following two conditions occurs:

 ■ The peer returns a certificate chain with a root certificate, and the chain verifies to that root, but the CA
for the root certificate is not one of the known, trusted root CAs. This results in an
errSSLUnknownRootCert result code when the anyRoot flag is false.

 ■ The peer returns a certificate chain that does not contain a root certificate, and the server can’t verify
the chain to one of the trusted root certificates. This results in an errSSLNoRootCert result code when
the anyRoot flag is false.

Both of these error conditions are ignored when the anyRoot flag is true, allowing connection to a peer
for which trust could not be established.

If you use this function to allow an untrusted root to be used for validation of a certificate—for example,
after prompting the user for permission to do so—remember to set the anyRoot Boolean value back to
false. If you don’t, any random root certificate can be used for signing a certificate chain. To add a certificate
to the list of trusted roots, use the SecTrustSetAnchorCertificates (page 71) function.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsExpiredCerts
Specifies whether certificate expiration times are ignored.

Functions 219
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

OSStatus SSLSetAllowsExpiredCerts (
 SSLContextRef context,
 Boolean allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
A Boolean flag representing whether the certificate expiration times are ignored. The default for this
flag is false, meaning expired certificates result in an errSSLCertExpired result code.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can use this function to allow the handshake to succeed even if one or more certificates in the certificate
chain have expired. You can use the SSLGetAllowsExpiredCerts (page 203) function to determine the
current setting of the allowsExpired flag.

Use the SSLSetAllowsExpiredRoots (page 220) function to set a flag specifying whether expired root
certificates are allowed.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsExpiredRoots
Specifies whether expired root certificates are allowed.

OSStatus SSLSetAllowsExpiredRoots (
 SSLContextRef context,
 Boolean allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
A Boolean value indicating whether to allow expired root certificates. Pass true to allow expired
roots.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The default value for the allowsExpired flag is false. When this flag is false, Secure Transport returns
an errSSLCertExpired result code during handshake if the root certificate is expired.

220 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

You can use the SSLGetAllowsExpiredRoots (page 204) function to determine the current setting of the
allowsExpired flag.

Use the SSLSetAllowsExpiredCerts (page 219) function to set a value that determines whether expired
non-root certificates are allowed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetCertificate
Specifies this connection’s certificate or certificates.

OSStatus SSLSetCertificate (
 SSLContextRef context,
 CFArrayRef certRefs
);

Parameters
context

An SSL session context reference.

certRefs
The certificates to set. This array contains items of type SecCertificateRef, except for certRefs[0],
which is of type SecIdentityRef.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Setting the certificate or certificates is mandatory for server connections, but is optional for clients. Specifying
a certificate for a client enables SSL client-side authentication. You must place in certRefs[0] a
SecIdentityRef object that identifies the leaf certificate and its corresponding private key. Specifying a
root certificate is optional; if it’s not specified, the root certificate that verifies the certificate chain specified
here must be present in the system wide set of trusted anchor certificates.

This function can be called only when no session is active.

Secure Transport assumes the following:

 ■ The certificate references remain valid for the lifetime of the session.

 ■ The identity specified in certRefs[0] is capable of signing.

The required capabilities of the identity specified in certRefs[0], and of the optional certificate specified
in the SSLSetEncryptionCertificate (page 225) function, are highly dependent on the application. For
example, to work as a server with Netscape clients, the identity specified here must be capable of both signing
and encrypting.

Availability
Available in Mac OS X v10.2 and later.

Functions 221
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetClientSideAuthenticate
Specifies the requirements for client-side authentication.

OSStatus SSLSetClientSideAuthenticate (
 SSLContextRef context,
 SSLAuthenticate auth
);

Parameters
context

An SSL session context reference.

auth
A flag setting the requirements for client-side authentication. See “SSL Authentication Constants” (page
235) for possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function can be called only by servers. Use of this function is optional. The default authentication
requirement is kNeverAuthenticate. This function may be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetConnection
Specifies an I/O connection for a specific session.

OSStatus SSLSetConnection (
 SSLContextRef context,
 SSLConnectionRef connection
);

Parameters
context

An SSL session context reference.

222 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

connection
An SSL session connection reference. The connection data is opaque to Secure Transport; you can
set it to any value that your application can use to uniquely identify the connection in the callback
functions SSLReadFunc (page 232) and SSLWriteFunc (page 233).

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You must establish a connection before creating a secure session. After calling the SSLNewContext (page
217) function to create an SSL session context, you call the SSLSetConnection function to specify the
connection to which the context applies. You specify a value in the connection parameter that your callback
routines can use to identify the connection. This value might be a pointer to a socket (if you are using the
Sockets API) or an endpoint (if you are using Open Transport). For example, you might create a socket, start
a connection on it, create a context reference, cast the socket to an SSLConnectionRef, and then pass both
the context reference and connection reference to the SSLSetConnection function.

Note that the Sockets API is the preferred networking interface for new development.

On the client side, it’s assumed that communication has been established with the desired server on this
connection. On the server side, it’s assumed that a connection has been established in response to an incoming
client request .

This function must be called prior to the SSLHandshake (page 216) function; consequently, this function can
be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetDiffieHellmanParams
Specifies Diffie-Hellman parameters.

OSStatus SSLSetDiffieHellmanParams (
 SSLContextRef context,
 const void *dhParams,
 size_t dhParamsLen
);

Parameters
context

An SSL session context reference.

dhParams
A pointer to a buffer containing the Diffie-Hellman parameters in Open SSL DER format.

dhParamsLen
A value representing the size of the buffer pointed to by the dhParams parameter.

Functions 223
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can use this function to specify a set of Diffie-Hellman parameters to be used by Secure Transport for a
specific session. Use of this function is optional. If Diffie-Hellman ciphers are allowed, the server and client
negotiate a Diffie-Hellman cipher, and this function has not been called, then Secure Transport calculates a
set of process wide parameters. However, that process can take as long as 30 seconds. Diffie-Hellman ciphers
are enabled by default; see SSLSetEnabledCiphers (page 225).

In SSL/TLS, Diffie-Hellmand parameters are always specified by the server. Therefore, this function can be
called only by the server side of the connection.

You can use the SSLGetDiffieHellmanParams (page 206) function to retrieve Diffie-Hellman parameters
specified in an earlier call to SSLSetDiffieHellmanParams.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetEnableCertVerify
Enables or disables peer certificate chain validation.

OSStatus SSLSetEnableCertVerify (
 SSLContextRef context,
 Boolean enableVerify
);

Parameters
context

An SSL session context reference.

enableVerify
A Boolean value specifying whether peer certificate chain validation is enabled. Certificate chain
validation is enabled by default. Specify false to disable validation.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
By default, Secure Transport attempts to verify the certificate chain during an exchange of peer certificates.
If you disable peer certificate chain validation, it is your responsibility to call SSLGetPeerCertificates (page
210) upon successful completion of the handshake and then to validate the peer certificate chain before
transferring the data.

You can use the SSLGetEnableCertVerify (page 207) function to determine the current setting of the
enableVerify flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

224 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLSetEnabledCiphers
Specifies a restricted set of SSL cipher suites to be enabled by the current SSL session context.

OSStatus SSLSetEnabledCiphers (
 SSLContextRef context,
 const SSLCipherSuite *ciphers,
 size_t numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
A pointer to the cipher suites to enable.

numCiphers
The number of cipher suites to enable.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can call this function, for example, to limit cipher suites to those that use exportable key sizes or to those
supported by a particular protocol version.

This function can be called only when no session is active. The default set of enabled cipher suites is the
complete set of supported cipher suites obtained by calling the SSLGetSupportedCiphers (page 215)
function.

Call the SSLGetEnabledCiphers (page 207) function to determine which SSL cipher suites are currently
enabled.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetEncryptionCertificate
Specifies the encryption certificates used for this connection.

OSStatus SSLSetEncryptionCertificate (
 SSLContextRef context,
 CFArrayRef certRefs
);

Parameters
context

An SSL session context reference.

Functions 225
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

certRefs
A value of type CFArrayRef referring to an array of certificate references. The references are type
SecCertificateRef, except for certRefs[0], which is of type SecIdentityRef.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use this function in one of the following cases:

 ■ The leaf certificate specified in the SSLSetCertificate (page 221) function is not capable of encryption.

 ■ The leaf certificate specified in the SSLSetCertificate (page 221) function contains a key that is too
large or strong for legal encryption in this session. In this case, a weaker certificate is specified here and
is used for server-initiated key exchange.

The following assumptions are made:

 ■ The certRefs parameter’s references remain valid for the lifetime of the connection.

 ■ The specified certRefs[0] value is capable of encryption.

This function can be called only when no session is active.

SSL servers that enforce the SSL3 or TLS1 specification to the letter do not accept encryption certificates with
key sizes larger than 512 bits for exportable ciphers (that is, for SSL sessions with 40-bit session keys). Therefore,
if you wish to support exportable ciphers and your certificate has a key larger than 512 bits, you must specify
a separate encryption certificate.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetIOFuncs
Specifies callback functions that perform the network I/O operations.

OSStatus SSLSetIOFuncs (
 SSLContextRef context,
 SSLReadFunc read,
 SSLWriteFunc write
);

Parameters
context

An SSL session context reference.

read
A pointer to your read callback function. See SSLReadFunc (page 232) for information on defining
this function.

226 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

write
A pointer to your write callback function. See SSLWriteFunc (page 233) for information on defining
this function.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Secure Transport calls your read and write callback functions to perform network I/O. You must define these
functions before calling SSLSetIOFuncs.

You must call SSLSetIOFuncs prior to calling the SSLHandshake (page 216) function. SSLSetIOFuncs
cannot be called while a session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetPeerDomainName
Specifies the fully qualified domain name of the peer.

OSStatus SSLSetPeerDomainName (
 SSLContextRef context,
 const char *peerName,
 size_t peerNameLen
);

Parameters
context

An SSL session context reference.

peerName
The fully qualified domain name of the peer—for example, store.apple.com. The name is in the
form of a C string, except that NULL termination is optional.

peerNameLen
The number of bytes passed in the peerName parameter.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
You can use this function to verify the common name field in the peer’s certificate. If you call this function
and the common name in the certificate does not match the value you specify in the peerName parameter,
then handshake fails and returns errSSLXCertChainInvalid. Use of this function is optional.

This function can be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

Functions 227
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetPeerID
Specifies data that is sufficient to uniquely identify the peer of the current session.

OSStatus SSLSetPeerID (
 SSLContextRef context,
 const void *peerID,
 size_t peerIDLen
);

Parameters
context

An SSL session context reference.

peerID
A pointer to a buffer containing the peer ID data to set.

peerIDLen
The length of the peer ID data buffer.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Secure Transport uses the peer ID to match the peer of an SSL session with the peer of a previous session in
order to resume an interrupted session. If the peer IDs match, Secure Transport attempts to resume the
session with the same parameters as used in the previous session with the same peer.

The data you provide to this function is treated as an opaque blob by Secure Transport but is compared byte
for byte with previous peer ID data values set by the current application. An example of peer ID data is an
IP address and port, stored in some caller-private manner. Calling this function is optional but is required if
you want the session to be resumable. If you do call this function, you must call it prior to the handshake for
the current session.

You can use the SSLGetPeerID (page 212) function to retrieve the peer ID data for the current session.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetProtocolVersion
Sets the SSL protocol version. This function is deprecated.

228 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

OSStatus SSLSetProtocolVersion (
 SSLContextRef context,
 SSLProtocol version
);

Parameters
context

An SSL session context reference.

version
The SSL protocol version to negotiate.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Use the SSLSetProtocolVersionEnabled (page 229) function instead.

This function cannot be called when a session is active.

Availability
Available in Mac OS X v10.2.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetProtocolVersionEnabled
Sets the allowed SSL protocol versions.

OSStatus SSLSetProtocolVersionEnabled (
 SSLContextRef context,
 SSLProtocol protocol,
 Boolean enable
);

Parameters
context

An SSL session context reference.

protocol
The SSL protocol version to enable. Pass kSSLProtocolAll to enable all protocols.

enable
A Boolean value indicating whether to enable or disable the specified protocol. Specify true to enable
the protocol.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Functions 229
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Discussion
Calling this function is optional. The default is that all supported protocols are enabled. When you call this
function, only the specified protocol is affected. Therefore, if you call it once to disable SSL version 2 (for
example), the other protocols all remain enabled. You may call this function as many times as you wish to
enable and disable specific protocols. You can specify one of the following values for the protocol parameter:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll

This function cannot be called when a session is active.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetRsaBlinding
Enables or disables RSA blinding.

OSStatus SSLSetRsaBlinding (
 SSLContextRef context,
 Boolean blinding
);

Parameters
context

An SSL session context reference.

blinding
A Boolean value indicating whether to enable RSA blinding. Pass true to enable RSA blinding.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
This function is used only on the server side of a connection.

This feature thwarts a known attack to which RSA keys are vulnerable: It is possible to guess the RSA key by
timing how long it takes the server to calcuate the response to certain queries. RSA blinding adds a random
calculation to each query response, thus making the attack impossible. Enabling RSA blinding is a trade-off
between performance and security.

RSA blinding is enabled by default. Use the SSLGetRsaBlinding (page 214) function to determine the
current setting.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

230 Functions
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSLSetTrustedRoots
Augments or replaces the default set of trusted root certificates for this session.

OSStatus SSLSetTrustedRoots (
 SSLContextRef context,
 CFArrayRef trustedRoots,
 Boolean replaceExisting
);

Parameters
context

An SSL session context reference.

trustedRoots
A reference to an array of trusted root certificates of type SecCertificateRef.

replaceExisting
A Boolean value indicating whether to replace or append the current trusted root certificate set. If
this value is true, the specified root certificates become the only roots that are trusted during this
session. If this value is false, the specified root certificates are added to the current set of trusted
root certificates.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Each successive call to this function with the replaceExisting parameter set to false results in
accumulation of additional root certificates. To see the current set of trusted root certificates, call the
SSLGetTrustedRoots (page 216) function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLWrite
Performs a normal application-level write operation.

OSStatus SSLWrite (
 SSLContextRef context,
 const void *data,
 size_t dataLength,
 size_t *processed
);

Parameters
context

An SSL session context reference.

data
A pointer to the buffer of data to write.

dataLength
The amount, in bytes, of data to write.

Functions 231
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

processed
On return, the length, in bytes, of the data actually written.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
The SSLWrite function might call the SSLWriteFunc (page 233) function that you provide (see
SSLSetIOFuncs (page 226)). Because you may configure the underlying connection to operate in a no-blocking
manner, a write operation might return errSSLWouldBlock, indicating that less data than requested was
actually transferred. In this case, you should repeat the call to SSLWrite until some other result is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

Callbacks

SSLReadFunc
Defines a pointer to a customized read function that Secure Transport calls to read data from the connection.

typedef OSStatus (*SSLReadFunc) (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

You would declare your callback function like this if you were to name it MySSLReadFunction:

OSStatus MySSLReadFunction (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

Parameters
connection

A connection reference.

data
On return, points to the data read from the connection. You must allocate this memory before calling
this function.

dataLength
On input, a pointer to an integer representing the length of the data in bytes. On return, points to
the number of bytes actually transferred.

232 Callbacks
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Before using the Secure Transport API, you must write the functions SSLReadFunc and SSLWriteFunc (page
233) and provide them to the library by calling the SSLSetIOFuncs (page 226) function.

You may configure the underlying connection to operate in a nonblocking manner; in that case, a read
operation may well return errSSLWouldBlock, indicating less data than requested was transferred and
nothing is wrong except that the requested I/O hasn’t completed. This result is returned to the caller from
the functions SSLRead (page 218), SSLWrite (page 231), or SSLHandshake (page 216).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLWriteFunc
Defines a pointer to a customized write function that Secure Transport calls to write data to the connection.

typedef OSStatus (*SSLWriteFunc) (
 SSLConnectionRef connection,
 const void *data,
 size_t *dataLength
);

You would declare your callback function like this if you were to name it MySSLWriteFunction:

OSStatus MySSLWriteFunction (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

Parameters
connection

The SSL session connection reference.

data
A pointer to the data to write to the connection.You must allocate this memory before calling this
function.

dataLength
Before calling, an integer representing the length of the data in bytes. On return, this is the number
of bytes actually transferred.

Return Value
A result code. See “Secure Transport Result Codes” (page 240).

Discussion
Before using the Secure Transport API, you must write the functionsSSLReadFunc (page 232) and SSLWriteFunc
and provide them to the library by calling the SSLSetIOFuncs (page 226) function.

Callbacks 233
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

You may configure the underlying connection to operate in a nonblocking manner. In that case, a write
operation may well return errSSLWouldBlock, indicating less data than requested was transferred and
nothing is wrong except that the requested I/O hasn’t completed. This result is returned to the caller from
the functions SSLRead (page 218), SSLWrite (page 231), or SSLHandshake (page 216).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

Data Types

SSLConnectionRef
Represents a pointer to an opaque I/O connection object.

typedef const void *SSLConnectionRef;

Discussion
The I/O connection object refers to data that identifies a connection. The connection data is opaque to Secure
Transport; you can set it to any value that your application can use in the callback functions
SSLReadFunc (page 232) and SSLWriteFunc (page 233) to uniquely identify the connection, such as a socket
or endpoint. Use the SSLSetConnection (page 222) function to assign a value to the connection object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLContextRef
Represents a pointer to an opaque SSL session context object.

struct SSLContext;
typedef struct SSLContext *SSLContextRef;

Discussion
The SSL session context object references the state associated with a session. You cannot reuse an SSL session
context in multiple sessions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

234 Data Types
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

Constants

SSL Authentication Constants
Represents the requirements for client-side authentication.

typedef enum {
 kNeverAuthenticate,
 kAlwaysAuthenticate,
 kTryAuthenticate
} SSLAuthenticate;

Constants
kNeverAuthenticate

Indicates that client-side authentication is not required. (Default.)

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kAlwaysAuthenticate
Indicates that client-side authentication is required.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTryAuthenticate
Indicates that client-side authentication should be attempted. There is no error if the client doesn’t
have a certificate.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

SSL Cipher Suite Constants
Represents the cipher suites available.

Constants 235
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

typedef UInt32 SSLCipherSuite;
enum
{SSL_NULL_WITH_NULL_NULL = 0x0000,
 SSL_RSA_WITH_NULL_MD5 = 0x0001,
 SSL_RSA_WITH_NULL_SHA = 0x0002,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5 = 0x0003,
 SSL_RSA_WITH_RC4_128_MD5 = 0x0004,
 SSL_RSA_WITH_RC4_128_SHA = 0x0005,
 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = 0x0006,
 SSL_RSA_WITH_IDEA_CBC_SHA = 0x0007,
 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0008,
 SSL_RSA_WITH_DES_CBC_SHA = 0x0009,
 SSL_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A,
 SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x000B,
 SSL_DH_DSS_WITH_DES_CBC_SHA = 0x000C,
 SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA = 0x000D,
 SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x000E,
 SSL_DH_RSA_WITH_DES_CBC_SHA = 0x000F,
 SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA = 0x0010,
 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x0011,
 SSL_DHE_DSS_WITH_DES_CBC_SHA = 0x0012,
 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA = 0x0013,
 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0014,
 SSL_DHE_RSA_WITH_DES_CBC_SHA = 0x0015,
 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA = 0x0016,
 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 = 0x0017,
 SSL_DH_anon_WITH_RC4_128_MD5 = 0x0018,
 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA = 0x0019,
 SSL_DH_anon_WITH_DES_CBC_SHA = 0x001A,
 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA = 0x001B,
 SSL_FORTEZZA_DMS_WITH_NULL_SHA = 0x001C,
 SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA =0x001D,
 SSL_RSA_WITH_RC2_CBC_MD5 = 0xFF80,
 SSL_RSA_WITH_IDEA_CBC_MD5 = 0xFF81,
 SSL_RSA_WITH_DES_CBC_MD5 = 0xFF82,
 SSL_RSA_WITH_3DES_EDE_CBC_MD5 = 0xFF83,
 SSL_NO_SUCH_CIPHERSUITE = 0xFFFF
};

Constants
SSL_RSA_EXPORT_WITH_RC4_40_MD5

Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

236 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_RC2_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_IDEA_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_DES_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_3DES_EDE_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL Client Certificate State Constants
Represents the status of client certificate exchange.

Constants 237
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

typedef enum {
 kSSLClientCertNone,
 kSSLClientCertRequested,
 kSSLClientCertSent,
 kSSLClientCertRejected
} SSLClientCertificateState;

Constants
kSSLClientCertNone

Indicates that the server hasn’t asked for a certificate and that the client hasn’t sent one.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertRequested
Indicates that the server has asked for a certificat, but the client has not sent it.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertSent
Indicates that the server asked for a certificate, the client sent one, and the server validated it. The
application can inspect the certificate using the function SSLGetPeerCertificates (page 210).

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertRejected
Indicates that the client sent a certificate but the certificate failed validation. This value is seen only
on the server side. The server application can inspect the certificate using the function
SSLGetPeerCertificates (page 210).

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

SSL Protocol Constants
Represents the SSL protocol version.

typedef enum {
 kSSLProtocolUnknown,
 kSSLProtocol2,
 kSSLProtocol3,
 kSSLProtocol3Only,
 kTLSProtocol1,
 kTLSProtocol1Only,
 kSSLProtocolAll
} SSLProtocol;

Constants
kSSLProtocolUnknown

Specifies that no protocol has been or should be negotiated or specified; use default.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

238 Constants
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

kSSLProtocol2
Specifies that only the SSL 2.0 protocol may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocol3
Specifies that the SSL 3.0 protocol is preferred; the SSL 2.0 protocol may be negotiated if the peer
cannot use the SSL 3.0 protocol.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocol3Only
Specifies that only the SSL 3.0 protocol may be negotiated; fails if the peer tries to negotiate the SSL
2.0 protocol.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTLSProtocol1
Specifies that the TLS 1.0 protocol is preferred but lower versions may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTLSProtocol1Only
Specifies that only the TLS 1.0 protocol may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocolAll
Specifies all supported versions.

Available in Mac OS X v10.3 and later.

Declared in SecureTransport.h.

Discussion
The descriptions given here apply to the functions SSLSetProtocolVersion (page 228) and
SSLGetProtocolVersion (page 213). For the functions SSLSetProtocolVersionEnabled (page 229) and
SSLGetProtocolVersionEnabled (page 213), only the following values are used. For these functions, each
constant except kSSLProtocolAll specifies a single protocol version.

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll

SSL Session State Constants
Represents the state of an SSL session.

Constants 239
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

typedef enum {
 kSSLIdle,
 kSSLHandshake,
 kSSLConnected,
 kSSLClosed,
 kSSLAborted
} SSLSessionState;

Constants
kSSLIdle

No I/O has been performed yet.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLHandshake
The SSL handshake is in progress.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLConnected
The SSL handshake is complete; the connection is ready for normal I/O.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClosed
The connection closed normally.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLAborted
The connection aborted.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

Result Codes

The most common result codes returned by Secure Transport functions are listed in the table below.

Errors in the range of –9819 through –9840 are fatal errors that are detected by the peer.

DescriptionValueResult Code

SSL protocol error.–9800errSSLProtocol

Available in Mac OS X v10.2 and later.

The cipher suite negotiation failed.–9801errSSLNegotiation

Available in Mac OS X v10.2 and later.

A fatal alert was encountered.–9802errSSLFatalAlert

Available in Mac OS X v10.2 and later.

240 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

DescriptionValueResult Code

Function is blocked; waiting for I/O. This is not fatal.–9803errSSLWouldBlock

Available in Mac OS X v10.2 and later.

An attempt to restore an unknown session failed.–9804errSSLSessionNotFound

Available in Mac OS X v10.2 and later.

The connection closed gracefully.–9805errSSLClosedGraceful

Available in Mac OS X v10.2 and later.

The connection closed due to an error.–9806errSSLClosedAbort

Available in Mac OS X v10.2 and later.

Invalid certificate chain.–9807errSSLXCertChainInvalid

Available in Mac OS X v10.2 and later.

Bad certificate format.–9808errSSLBadCert

Available in Mac OS X v10.2 and later.

An underlying cryptographic error was encountered.–9809errSSLCrypto

Available in Mac OS X v10.2 and later.

Internal error.–9810errSSLInternal

Available in Mac OS X v10.2 and later.

Module attach failure.–9811errSSLModuleAttach

Available in Mac OS X v10.2 and later.

Certificate chain is valid, but root is not trusted.–9812errSSLUnknownRootCert

Available in Mac OS X v10.2 and later.

No root certificate for the certificate chain.–9813errSSLNoRootCert

Available in Mac OS X v10.2 and later.

The certificate chain had an expired certificate.–9814errSSLCertExpired

Available in Mac OS X v10.2 and later.

The certificate chain had a certificate that is not yet valid.–9815errSSLCertNotYetValid

Available in Mac OS X v10.2 and later.

The server closed the session with no notification.–9816errSSLClosedNoNotify

Available in Mac OS X v10.2 and later.

An insufficient buffer was provided.–9817errSSLBufferOverflow

Available in Mac OS X v10.2 and later.

Result Codes 241
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

DescriptionValueResult Code

A bad SSL cipher suite was encountered.–9818errSSLBadCipherSuite

Available in Mac OS X v10.2 and later.

An unexpected message was received.–9819errSSLPeerUnexpectedMsg

Available in Mac OS X v10.3 and later.

A bad record MAC was encountered.–9820errSSLPeerBadRecordMac

Available in Mac OS X v10.3 and later.

Decryption failed.–9821errSSLPeerDecryptionFail

Available in Mac OS X v10.3 and later.

A record overflow occurred.–9822errSSLPeerRecordOverflow

Available in Mac OS X v10.3 and later.

Decompression failed.–9823errSSLPeerDecompressFail

Available in Mac OS X v10.3 and later.

The handshake failed.–9824errSSLPeerHandshakeFail

Available in Mac OS X v10.3 and later.

A bad certificate was encountered.–9825errSSLPeerBadCert

Available in Mac OS X v10.3 and later.

An unsupported certificate format was encountered.–9826errSSLPeerUnsupportedCert

Available in Mac OS X v10.3 and later.

The certificate was revoked.–9827errSSLPeerCertRevoked

Available in Mac OS X v10.3 and later.

The certificate expired.–9828errSSLPeerCertExpired

Available in Mac OS X v10.3 and later.

The certificate is unknown.–9829errSSLPeerCertUnknown

Available in Mac OS X v10.3 and later.

An illegal parameter was encountered.–9830errSSLIllegalParam

Available in Mac OS X v10.3 and later.

An unknown certificate authority was encountered.–9831errSSLPeerUnknownCA

Available in Mac OS X v10.3 and later.

Access was denied.–9832errSSLPeerAccessDenied

Available in Mac OS X v10.3 and later.

242 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

DescriptionValueResult Code

A decoding error occurred.–9833errSSLPeerDecodeError

Available in Mac OS X v10.3 and later.

A decryption error occurred.–9834errSSLPeerDecryptError

Available in Mac OS X v10.3 and later.

An export restriction occurred.–9835errSSLPeerExportRestriction

Available in Mac OS X v10.3 and later.

A bad protocol version was encountered.–9836errSSLPeerProtocolVersion

Available in Mac OS X v10.3 and later.

There is insufficient security for this operation.–9837errSSLPeerInsufficientSecurity

Available in Mac OS X v10.3 and later.

An internal error occurred.–9838errSSLPeerInternalError

Available in Mac OS X v10.3 and later.

The user canceled the operation.–9839errSSLPeerUserCancelled

Available in Mac OS X v10.3 and later.

No renegotiation is allowed.–9840errSSLPeerNoRenegotiation

Available in Mac OS X v10.3 and later.

The peer dropped the connection before responding.–9844errSSLConnectionRefused

Available in Mac OS X v10.4 and later.

Decryption failed.–9845errSSLDecryptionFail

Available in Mac OS X v10.3 and later.

A bad record MAC was encountered.–9846errSSLBadRecordMac

Available in Mac OS X v10.3 and later.

A record overflow occurred.–9847errSSLRecordOverflow

Available in Mac OS X v10.3 and later.

A configuration error occurred.–9848errSSLBadConfiguration

Available in Mac OS X v10.3 and later.

Result Codes 243
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

244 Result Codes
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Secure Transport Reference

This table describes the changes to Security Framework Reference.

NotesDate

Added Randomization Services.2008-03-12

First publication of this content as a collection of previously published
documents.

2006-05-23

245
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

246
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Action Data Flags 89
Authorization Options 25
Authorization Rights Mask 27
Authorization Tag Type Constants 164
AuthorizationCopyInfo function 10
AuthorizationCopyPrivilegedReference function

11
AuthorizationCopyRights function 12
AuthorizationCreate function 14
AuthorizationCreateFromExternalForm function

15
AuthorizationEnvironment data type 22
AuthorizationExecuteWithPrivileges function 16
AuthorizationExternalForm structure 22
AuthorizationFlags data type 23
AuthorizationFree function 17
AuthorizationFreeItemSet function 18
AuthorizationItem structure 23
AuthorizationItemSet structure 24
AuthorizationMakeExternalForm function 18
AuthorizationRef data type 24
AuthorizationRightGet function 19
AuthorizationRightRemove function 20
AuthorizationRights data type 25
AuthorizationRightSet function 20
AuthorizationString data type 25

C

Certificate Item Attribute Constants 86
Certificate Status Constants 87
CSSM_ACL_AUTHORIZATION_ANY constant 164
CSSM_ACL_AUTHORIZATION_CHANGE_ACL constant 166
CSSM_ACL_AUTHORIZATION_CHANGE_OWNER constant

166
CSSM_ACL_AUTHORIZATION_DECRYPT constant 165
CSSM_ACL_AUTHORIZATION_DELETE constant 165
CSSM_ACL_AUTHORIZATION_DERIVE constant 166

CSSM_ACL_AUTHORIZATION_ENCRYPT constant 165
CSSM_ACL_AUTHORIZATION_EXPORT_CLEAR constant

165
CSSM_ACL_AUTHORIZATION_EXPORT_WRAPPED constant

165
CSSM_ACL_AUTHORIZATION_GENKEY constant 165
CSSM_ACL_AUTHORIZATION_IMPORT_CLEAR constant

165
CSSM_ACL_AUTHORIZATION_IMPORT_WRAPPED constant

165
CSSM_ACL_AUTHORIZATION_LOGIN constant 164
CSSM_ACL_AUTHORIZATION_MAC constant 165
CSSM_ACL_AUTHORIZATION_SIGN constant 165
CSSM_ACL_AUTHORIZATION_TAG_VENDOR_DEFINED_START

constant 164
CSSM_CERT_STATUS_EXPIRED constant 87
CSSM_CERT_STATUS_IS_FROM_NET constant 88
CSSM_CERT_STATUS_IS_IN_ANCHORS constant 87
CSSM_CERT_STATUS_IS_IN_INPUT_CERTS constant 87
CSSM_CERT_STATUS_IS_ROOT constant 87
CSSM_CERT_STATUS_NOT_VALID_YET constant 87
CSSM_DL_DB_RECORD_ALL_KEYS constant 181
CSSM_DL_DB_RECORD_PRIVATE_KEY constant 180
CSSM_DL_DB_RECORD_PUBLIC_KEY constant 180
CSSM_DL_DB_RECORD_SYMMETRIC_KEY constant 181
CSSM_TP_ACTION_ALLOW_EXPIRED constant 90
CSSM_TP_ACTION_ALLOW_EXPIRED_ROOT constant 90
CSSM_TP_ACTION_FETCH_CERT_FROM_NET constant 90
CSSM_TP_ACTION_LEAF_IS_CA constant 90
CSSM_TP_APPLE_EVIDENCE_INFO structure 82

D

Default Root Certificate Trust Settings 95

E

Empty Environment 27
errAuthorizationCanceled constant 30

247
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

Index

errAuthorizationDenied constant 30
errAuthorizationExternalizeNotAllowed constant

30
errAuthorizationInteractionNotAllowed constant

30
errAuthorizationInternal constant 30
errAuthorizationInternalizeNotAllowed constant

30
errAuthorizationInvalidFlags constant 31
errAuthorizationInvalidPointer constant 30
errAuthorizationInvalidRef constant 30
errAuthorizationInvalidSet constant 30
errAuthorizationInvalidTag constant 30
errAuthorizationSuccess constant 30
errAuthorizationToolEnvironmentError constant

31
errAuthorizationToolExecuteFailure constant 31
errSecACLNotSimple constant 97, 193
errSecAuthFailed constant 95, 191
errSecBufferTooSmall constant 96, 192
errSecCreateChainFailed constant 97, 193
errSecDataNotAvailable constant 97, 193
errSecDataNotModifiable constant 97, 193
errSecDataTooLarge constant 96, 192
errSecDuplicateCallback constant 192
errSecDuplicateItem constant 96, 192
errSecDuplicateKeychain constant 96, 192
errSecInteractionNotAllowed constant 96, 192
errSecInteractionRequired constant 97, 193
errSecInvalidCallback constant 192
errSecInvalidItemRef constant 96, 192
errSecInvalidKeychain constant 96, 192
errSecInvalidOwnerEdit constant 98, 193
errSecInvalidPrefsDomain constant 97, 193
errSecInvalidSearchRef constant 96, 192
errSecInvalidTrustSetting constant 97, 193
errSecItemNotFound constant 96, 192
errSecKeyIsSensitive constant 194
errSecKeySizeNotAllowed constant 97, 193
errSecMultiplePrivKeys constant 194
errSecNoAccessForItem constant 98, 193
errSecNoCertificateModule constant 97, 193
errSecNoDefaultKeychain constant 96, 192
errSecNoPolicyModule constant 97, 193
errSecNoStorageModule constant 97, 193
errSecNoSuchAttr constant 96, 192
errSecNoSuchClass constant 96, 192
errSecNoSuchKeychain constant 96, 191
errSecNotAvailable constant 95, 191
errSecPassphraseRequired constant 194
errSecPolicyNotFound constant 97, 193
errSecReadOnly constant 95, 191
errSecReadOnlyAttr constant 96, 192

errSecTrustNotAvailable constant 98, 194
errSecUnknownFormat constant 194
errSecUnsupportedFormat constant 194
errSecWrongSecVersion constant 97, 193
errSSLBadCert constant 241
errSSLBadCipherSuite constant 242
errSSLBadConfiguration constant 243
errSSLBadRecordMac constant 243
errSSLBufferOverflow constant 241
errSSLCertExpired constant 241
errSSLCertNotYetValid constant 241
errSSLClosedAbort constant 241
errSSLClosedGraceful constant 241
errSSLClosedNoNotify constant 241
errSSLConnectionRefused constant 243
errSSLCrypto constant 241
errSSLDecryptionFail constant 243
errSSLFatalAlert constant 240
errSSLIllegalParam constant 242
errSSLInternal constant 241
errSSLModuleAttach constant 241
errSSLNegotiation constant 240
errSSLNoRootCert constant 241
errSSLPeerAccessDenied constant 242
errSSLPeerBadCert constant 242
errSSLPeerBadRecordMac constant 242
errSSLPeerCertExpired constant 242
errSSLPeerCertRevoked constant 242
errSSLPeerCertUnknown constant 242
errSSLPeerDecodeError constant 243
errSSLPeerDecompressFail constant 242
errSSLPeerDecryptError constant 243
errSSLPeerDecryptionFail constant 242
errSSLPeerExportRestriction constant 243
errSSLPeerHandshakeFail constant 242
errSSLPeerInsufficientSecurity constant 243
errSSLPeerInternalError constant 243
errSSLPeerNoRenegotiation constant 243
errSSLPeerProtocolVersion constant 243
errSSLPeerRecordOverflow constant 242
errSSLPeerUnexpectedMsg constant 242
errSSLPeerUnknownCA constant 242
errSSLPeerUnsupportedCert constant 242
errSSLPeerUserCancelled constant 243
errSSLProtocol constant 240
errSSLRecordOverflow constant 243
errSSLSessionNotFound constant 241
errSSLUnknownRootCert constant 241
errSSLWouldBlock constant 241
errSSLXCertChainInvalid constant 241
External Authorization Reference Length 27

248
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

I

Import/Export Parameters Version 166

K

kAlwaysAuthenticate constant 235
kAuthorizationComment constant 29
kAuthorizationEmptyEnvironment constant 27
kAuthorizationEnvironmentIcon constant 28
kAuthorizationEnvironmentPassword constant 28
kAuthorizationEnvironmentPrompt constant 28
kAuthorizationEnvironmentShared constant 28
kAuthorizationEnvironmentUsername constant 28
kAuthorizationExternalFormLength constant 27
kAuthorizationFlagCanNotPreAuthorize constant

27
kAuthorizationFlagDefaults constant 26
kAuthorizationFlagDestroyRights constant 26
kAuthorizationFlagExtendRights constant 26
kAuthorizationFlagInteractionAllowed constant

26
kAuthorizationFlagNoData constant 26
kAuthorizationFlagPartialRights constant 26
kAuthorizationFlagPreAuthorize constant 26
kAuthorizationRightExecute constant 28
kAuthorizationRightRule constant 29
kAuthorizationRuleAuthenticateAsAdmin constant

29
kAuthorizationRuleAuthenticateAsSessionUser

constant 29
kAuthorizationRuleClassAllow constant 29
kAuthorizationRuleClassDeny constant 29
kAuthorizationRuleIsAdmin constant 29
Key Credential Type Constants 91
Keychain Authentication Type Constants 166
Keychain Event Constants 167
Keychain Event Mask Constants 169
Keychain Item Attribute Constants 170
Keychain Item Attribute Constants For Keys 175
Keychain Item Class Constants 179
Keychain Item Import/Export Flags 181
Keychain Item Import/Export Formats 182
Keychain Item Import/Export Parameter Flags 181
Keychain Item Type When Importing 185
Keychain Preference Domain Constants 185
Keychain Protocol Type Constants 186
Keychain Settings Version 190
Keychain Status Masks 190
kNeverAuthenticate constant 235
kSecAccountItemAttr constant 173
kSecAddEvent constant 168

kSecAddEventMask constant 169
kSecAddressItemAttr constant 174
kSecAlias constant 175
kSecAppleSharePasswordItemClass constant 180
kSecAuthenticationTypeDefault constant 167
kSecAuthenticationTypeDPA constant 167
kSecAuthenticationTypeHTMLForm constant 167
kSecAuthenticationTypeHTTPBasic constant 167
kSecAuthenticationTypeHTTPDigest constant 167
kSecAuthenticationTypeItemAttr constant 173
kSecAuthenticationTypeMSN constant 167
kSecAuthenticationTypeNTLM constant 166
kSecAuthenticationTypeRPA constant 167
kSecCertEncodingItemAttr constant 87
kSecCertificateEncoding constant 174
kSecCertificateItemClass constant 180
kSecCertificateType constant 174
kSecCertTypeItemAttr constant 86
kSecCommentItemAttr constant 172
kSecCreationDateItemAttr constant 171
kSecCreatorItemAttr constant 172
kSecCredentialTypeDefault constant 91
kSecCredentialTypeNoUI constant 91
kSecCredentialTypeWithUI constant 91
kSecCrlEncoding constant 175
kSecCrlType constant 175
kSecCustomIconItemAttr constant 173
kSecDataAccessEvent constant 169
kSecDataAccessEventMask constant 170
kSecDefaultChangedEvent constant 169
kSecDefaultChangedEventMask constant 170
kSecDeleteEvent constant 168
kSecDeleteEventMask constant 170
kSecDescriptionItemAttr constant 171
kSecEveryEventMask constant 170
kSecFormatBSAFE constant 183
kSecFormatNetscapeCertSequence constant 184
kSecFormatOpenSSL constant 183
kSecFormatPEMSequence constant 184
kSecFormatPKCS12 constant 184
kSecFormatPKCS7 constant 184
kSecFormatRawKey constant 183
kSecFormatSSH constant 183
kSecFormatUnknown constant 183
kSecFormatWrappedLSH constant 184
kSecFormatWrappedOpenSSL constant 184
kSecFormatWrappedPKCS8 constant 184
kSecFormatWrappedSSH constant 184
kSecFormatX509Cert constant 184
kSecGenericItemAttr constant 173
kSecGenericPasswordItemClass constant 180
kSecIdentityDomainDefault constant 90
kSecIdentityDomainKerberosKDC constant 90

249
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kSecInternetPasswordItemClass constant 180
kSecInvisibleItemAttr constant 172
kSecIssuerItemAttr constant 86
kSecItemPemArmour constant 181
kSecItemTypeAggregate constant 185
kSecItemTypeCertificate constant 185
kSecItemTypePrivateKey constant 185
kSecItemTypePublicKey constant 185
kSecItemTypeSessionKey constant 185
kSecKeyAlias constant 176
kSecKeyAlwaysSensitive constant 178
kSecKeyApplicationTag constant 177
kSecKeychainListChangedEvent constant 169
kSecKeychainListChangedMask constant 170
kSecKeyDecrypt constant 178
kSecKeyDerive constant 178
kSecKeyEffectiveKeySize constant 177
kSecKeyEncrypt constant 178
kSecKeyEndDate constant 178
kSecKeyExtractable constant 178
kSecKeyImportOnlyOne constant 182
kSecKeyKeyClass constant 176
kSecKeyKeyCreator constant 177
kSecKeyKeySizeInBits constant 177
kSecKeyKeyType constant 177
kSecKeyLabel constant 177
kSecKeyModifiable constant 177
kSecKeyNeverExtractable constant 178
kSecKeyNoAccessControl constant 182
kSecKeyPermanent constant 176
kSecKeyPrintName constant 176
kSecKeyPrivate constant 177
kSecKeySecurePassphrase constant 182
kSecKeySensitive constant 178
kSecKeySign constant 178
kSecKeySignRecover constant 179
kSecKeyStartDate constant 177
kSecKeyUnwrap constant 179
kSecKeyVerify constant 178
kSecKeyVerifyRecover constant 179
kSecKeyWrap constant 179
kSecLabelItemAttr constant 172
kSecLockEvent constant 168
kSecLockEventMask constant 169
kSecModDateItemAttr constant 171
kSecNegativeItemAttr constant 172
kSecPasswordChangedEvent constant 168
kSecPasswordChangedEventMask constant 170
kSecPathItemAttr constant 174
kSecPortItemAttr constant 174
kSecPreferencesDomainAlternate constant 186
kSecPreferencesDomainCommon constant 186
kSecPreferencesDomainSystem constant 186

kSecPreferencesDomainUser constant 186
kSecProtocolItemAttr constant 174
kSecProtocolTypeAFP constant 188
kSecProtocolTypeAppleTalk constant 188
kSecProtocolTypeDAAP constant 189
kSecProtocolTypeEPPC constant 189
kSecProtocolTypeFTP constant 187
kSecProtocolTypeFTPAccount constant 187
kSecProtocolTypeFTPProxy constant 189
kSecProtocolTypeFTPS constant 189
kSecProtocolTypeHTTP constant 187
kSecProtocolTypeHTTPProxy constant 189
kSecProtocolTypeHTTPS constant 189
kSecProtocolTypeHTTPSProxy constant 189
kSecProtocolTypeIMAP constant 188
kSecProtocolTypeIMAPS constant 190
kSecProtocolTypeIPP constant 190
kSecProtocolTypeIRC constant 187
kSecProtocolTypeIRCS constant 190
kSecProtocolTypeLDAP constant 188
kSecProtocolTypeLDAPS constant 190
kSecProtocolTypeNNTP constant 188
kSecProtocolTypeNNTPS constant 190
kSecProtocolTypePOP3 constant 188
kSecProtocolTypePOP3S constant 190
kSecProtocolTypeRTSP constant 189
kSecProtocolTypeRTSPProxy constant 189
kSecProtocolTypeSMB constant 189
kSecProtocolTypeSMTP constant 188
kSecProtocolTypeSOCKS constant 188
kSecProtocolTypeSSH constant 188
kSecProtocolTypeTelnet constant 188
kSecProtocolTypeTelnetS constant 190
kSecPublicKeyHashItemAttr constant 86
kSecReadPermStatus constant 191
kSecScriptCodeItemAttr constant 172
kSecSecurityDomainItemAttr constant 173
kSecSerialNumberItemAttr constant 86
kSecServerItemAttr constant 173
kSecServiceItemAttr constant 173
kSecSignatureItemAttr constant 174
kSecSubjectItemAttr constant 86
kSecSubjectKeyIdentifierItemAttr constant 86
kSecTrustResultConfirm constant 88
kSecTrustResultDeny constant 88
kSecTrustResultFatalTrustFailure constant 89
kSecTrustResultInvalid constant 88
kSecTrustResultOtherError constant 89
kSecTrustResultProceed constant 88
kSecTrustResultRecoverableTrustFailure

constant 89
kSecTrustResultUnspecified constant 89
kSecTrustSettingsAllowedError constant 94

250
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

kSecTrustSettingsApplication constant 93
kSecTrustSettingsDefaultRootCertSetting

constant 95
kSecTrustSettingsDomainAdmin constant 92
kSecTrustSettingsDomainSystem constant 92
kSecTrustSettingsDomainUser constant 91
kSecTrustSettingsKeyUsage constant 94
kSecTrustSettingsKeyUseAny constant 93
kSecTrustSettingsKeyUseEnDecryptData constant

92
kSecTrustSettingsKeyUseEnDecryptKey constant

92
kSecTrustSettingsKeyUseKeyExchange constant 93
kSecTrustSettingsKeyUseSignature constant 92
kSecTrustSettingsKeyUseSignCert constant 92
kSecTrustSettingsKeyUseSignRevocation constant

93
kSecTrustSettingsPolicy constant 93
kSecTrustSettingsPolicyString constant 93
kSecTrustSettingsResult constant 94
kSecTrustSettingsResultDeny constant 95
kSecTrustSettingsResultInvalid constant 94
kSecTrustSettingsResultTrustAsRoot constant 94
kSecTrustSettingsResultTrustRoot constant 94
kSecTrustSettingsResultUnspecified constant 95
kSecTypeItemAttr constant 172
kSecUnlockEvent constant 168
kSecUnlockEventMask constant 169
kSecUnlockStateStatus constant 191
kSecUpdateEvent constant 168
kSecUpdateEventMask constant 170
kSecVolumeItemAttr constant 174
kSecWritePermStatus constant 191
kSSLAborted constant 240
kSSLClientCertNone constant 238
kSSLClientCertRejected constant 238
kSSLClientCertRequested constant 238
kSSLClientCertSent constant 238
kSSLClosed constant 240
kSSLConnected constant 240
kSSLHandshake constant 240
kSSLIdle constant 240
kSSLProtocol2 constant 239
kSSLProtocol3 constant 239
kSSLProtocol3Only constant 239
kSSLProtocolAll constant 239
kSSLProtocolUnknown constant 238
kTLSProtocol1 constant 239
kTLSProtocol1Only constant 239
kTryAuthenticate constant 235

N

Name Tags 28

P

Policy Database Constants 28

S

SecAccessCopyACLList function 104
SecAccessCopySelectedACLList function 105
SecAccessCreate function 105
SecAccessCreateFromOwnerAndACL function 106
SecAccessGetOwnerAndACL function 107
SecAccessGetTypeID function 108
SecAccessRef data type 157
SecACLCopySimpleContents function 108
SecACLCreateFromSimpleContents function 109
SecACLGetAuthorizations function 110
SecACLGetTypeID function 111
SecACLRef data type 157
SecACLRemove function 111
SecACLSetAuthorizations function 112
SecACLSetSimpleContents function 113
SecAFPServerSignature data type 157
SecCertificateAddToKeychain function 37
SecCertificateCopyCommonName function 38
SecCertificateCopyEmailAddresses function 38
SecCertificateCopyPreference function 39
SecCertificateCopyPublicKey function 39
SecCertificateCreateFromData function 40
SecCertificateGetAlgorithmID function 41
SecCertificateGetCLHandle function 41
SecCertificateGetData function 42
SecCertificateGetIssuer function 42
SecCertificateGetItem function 43
SecCertificateGetSubject function 43
SecCertificateGetType function 43
SecCertificateGetTypeID function 44
SecCertificateRef data type 83
SecCertificateSetPreference function 44
SecCopyErrorMessageString function 45
SecIdentityCopyCertificate function 46
SecIdentityCopyPreference function 46
SecIdentityCopyPrivateKey function 47
SecIdentityCopySystemIdentity function 47
SecIdentityCreateWithCertificate function 48
SecIdentityGetTypeID function 49
SecIdentityRef data type 83

251
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

SecIdentitySearchCopyNext function 49
SecIdentitySearchCreate function 50
SecIdentitySearchGetTypeID function 51
SecIdentitySearchRef data type 84
SecIdentitySetPreference function 51
SecIdentitySetSystemIdentity function 52
SecKeychainAddCallback function 114
SecKeychainAddGenericPassword function 114
SecKeychainAddInternetPassword function 116
SecKeychainAttribute structure 158
SecKeychainAttributeInfo structure 158
SecKeychainAttributeInfoForItemID function 117
SecKeychainAttributeList structure 159
SecKeychainAttrType data type 159
SecKeychainCallback callback 156
SecKeychainCallbackInfo structure 159
SecKeychainCopyAccess function 118
SecKeychainCopyDefault function 119
SecKeychainCopyDomainDefault function 119
SecKeychainCopyDomainSearchList function 120
SecKeychainCopySearchList function 120
SecKeychainCopySettings function 121
SecKeychainCreate function 121
SecKeychainDelete function 123
SecKeychainFindGenericPassword function 123
SecKeychainFindInternetPassword function 124
SecKeychainFreeAttributeInfo function 126
SecKeychainGetCSPHandle function 127
SecKeychainGetDLDBHandle function 127
SecKeychainGetPath function 127
SecKeychainGetPreferenceDomain function 128
SecKeychainGetStatus function 129
SecKeychainGetTypeID function 129
SecKeychainGetUserInteractionAllowed function

130
SecKeychainGetVersion function 130
SecKeychainItemCopyAccess function 131
SecKeychainItemCopyAttributesAndData function

131
SecKeychainItemCopyContent function 132
SecKeychainItemCopyKeychain function 133
SecKeychainItemCreateCopy function 134
SecKeychainItemCreateFromContent function 135
SecKeychainItemDelete function 136
SecKeychainItemExport function 136
SecKeychainItemFreeAttributesAndData function

137
SecKeychainItemFreeContent function 138
SecKeychainItemGetDLDBHandle function 139
SecKeychainItemGetTypeID function 139
SecKeychainItemGetUniqueRecordID function 139
SecKeychainItemImport function 140

SecKeychainItemModifyAttributesAndData function
142

SecKeychainItemModifyContent function 142
SecKeychainItemRef data type 160
SecKeychainItemSetAccess function 143
SecKeychainLock function 144
SecKeychainLockAll function 145
SecKeychainOpen function 145
SecKeychainRef data type 160
SecKeychainRemoveCallback function 146
SecKeychainSearchCopyNext function 146
SecKeychainSearchCreateFromAttributes function

147
SecKeychainSearchGetTypeID function 148
SecKeychainSearchRef data type 161
SecKeychainSetAccess function 148
SecKeychainSetDefault function 149
SecKeychainSetDomainDefault function 149
SecKeychainSetDomainSearchList function 150
SecKeychainSetPreferenceDomain function 150
SecKeychainSetSearchList function 151
SecKeychainSetSettings function 151
SecKeychainSettings structure 161
SecKeychainSetUserInteractionAllowed function

152
SecKeychainUnlock function 153
SecKeyCreatePair function 52
SecKeyGenerate function 54
SecKeyGetCredentials function 55
SecKeyGetCSPHandle function 56
SecKeyGetCSSMKey function 57
SecKeyGetTypeID function 57
SecKeyImportExportParameters structure 162
SecKeyRef data type 84
SecPolicyGetOID function 58
SecPolicyGetTPHandle function 58
SecPolicyGetTypeID function 59
SecPolicyGetValue function 59
SecPolicyRef data type 84
SecPolicySearchCopyNext function 60
SecPolicySearchCreate function 60
SecPolicySearchGetTypeID function 61
SecPolicySearchRef data type 85
SecPolicySetValue function 62
SecPublicKeyHash data type 85
SecTrustCopyAnchorCertificates function 62
SecTrustCopyCustomAnchorCertificates function

63
SecTrustCopyPolicies function 64
SecTrustCreateWithCertificates function 64
SecTrustedApplicationCopyData function 154
SecTrustedApplicationCreateFromPath function

154

252
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

SecTrustedApplicationGetTypeID function 155
SecTrustedApplicationRef data type 163
SecTrustedApplicationSetData function 155
SecTrustEvaluate function 65
SecTrustGetCSSMAnchorCertificates function

(Deprecated in Mac OS X v10.5) 67
SecTrustGetCssmResult function 67
SecTrustGetCssmResultCode function 68
SecTrustGetResult function 69
SecTrustGetTPHandle function 70
SecTrustGetTypeID function 70
SecTrustGetUserTrust function (Deprecated in Mac

OS X v10.5) 71
SecTrustRef data type 85
SecTrustSetAnchorCertificates function 71
SecTrustSetKeychains function 72
SecTrustSetParameters function 73
SecTrustSetPolicies function 74
SecTrustSettingsCopyCertificates function 75
SecTrustSettingsCopyModificationDate function

75
SecTrustSettingsCopyTrustSettings function 76
SecTrustSettingsCreateExternalRepresentation

function 78
SecTrustSettingsImportExternalRepresentation

function 78
SecTrustSettingsRemoveTrustSettings function

79
SecTrustSettingsSetTrustSettings function 80
SecTrustSetUserTrust function (Deprecated in Mac

OS X v10.5) 81
SecTrustSetVerifyDate function 81
SecTrustUserSetting data type 85
SEC_KEYCHAIN_SETTINGS_VERS1 constant 190
SEC_KEY_IMPORT_EXPORT_PARAMS_VERSION constant

166
SSL Authentication Constants 235
SSL Cipher Suite Constants 235
SSL Client Certificate State Constants 237
SSL Protocol Constants 238
SSL Session State Constants 239
SSLAddDistinguishedName function 201
SSLClose function 202
SSLConnectionRef data type 234
SSLContextRef structure 234
SSLDisposeContext function 202
SSLGetAllowsAnyRoot function 203
SSLGetAllowsExpiredCerts function 203
SSLGetAllowsExpiredRoots function 204
SSLGetBufferedReadSize function 204
SSLGetClientCertificateState function 205
SSLGetConnection function 205
SSLGetDiffieHellmanParams function 206

SSLGetEnableCertVerify function 207
SSLGetEnabledCiphers function 207
SSLGetNegotiatedCipher function 208
SSLGetNegotiatedProtocolVersion function 208
SSLGetNumberEnabledCiphers function 209
SSLGetNumberSupportedCiphers function 210
SSLGetPeerCertificates function (Deprecated in Mac

OS X v10.5) 210
SSLGetPeerDomainName function 211
SSLGetPeerDomainNameLength function 212
SSLGetPeerID function 212
SSLGetProtocolVersion function 213
SSLGetProtocolVersionEnabled function 213
SSLGetRsaBlinding function 214
SSLGetSessionState function 215
SSLGetSupportedCiphers function 215
SSLGetTrustedRoots function (Deprecated in Mac OS

X v10.5) 216
SSLHandshake function 216
SSLNewContext function 217
SSLRead function 218
SSLReadFunc callback 232
SSLSetAllowsAnyRoot function 218
SSLSetAllowsExpiredCerts function 219
SSLSetAllowsExpiredRoots function 220
SSLSetCertificate function 221
SSLSetClientSideAuthenticate function 222
SSLSetConnection function 222
SSLSetDiffieHellmanParams function 223
SSLSetEnableCertVerify function 224
SSLSetEnabledCiphers function 225
SSLSetEncryptionCertificate function 225
SSLSetIOFuncs function 226
SSLSetPeerDomainName function 227
SSLSetPeerID function 228
SSLSetProtocolVersion function 228
SSLSetProtocolVersionEnabled function 229
SSLSetRsaBlinding function 230
SSLSetTrustedRoots function 231
SSLWrite function 231
SSLWriteFunc callback 233
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA constant

237
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA constant

237
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA constant

237
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 constant

237
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA constant

237
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA constant 236

253
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 constant
236

SSL_RSA_EXPORT_WITH_RC4_40_MD5 constant 236
SSL_RSA_WITH_3DES_EDE_CBC_MD5 constant 237
SSL_RSA_WITH_DES_CBC_MD5 constant 237
SSL_RSA_WITH_IDEA_CBC_MD5 constant 237
SSL_RSA_WITH_RC2_CBC_MD5 constant 237
System Identity Domains 90

T

Trust Result Type Constants 88
Trust Settings Domain Constants 91
Trust Settings Key Use Constants 92
Trust Settings Result Constants 94
Trust Settings Usage Constraints Dictionary Keys 93

254
2008-03-12 | © 2008 Apple Inc. All Rights Reserved.

INDEX

	Security Framework Reference
	Contents
	Introduction
	Part I: Managers
	Authorization Services C Reference
	Overview
	Functions by Task
	Creating and Releasing Authorization References
	Requesting Rights and Credentials
	Externalizing and Internalizing Authorization References
	Modifying the Policy Database
	Executing With Root Privileges

	Functions
	AuthorizationCopyInfo
	AuthorizationCopyPrivilegedReference
	AuthorizationCopyRights
	AuthorizationCreate
	AuthorizationCreateFromExternalForm
	AuthorizationExecuteWithPrivileges
	AuthorizationFree
	AuthorizationFreeItemSet
	AuthorizationMakeExternalForm
	AuthorizationRightGet
	AuthorizationRightRemove
	AuthorizationRightSet

	Data Types
	AuthorizationEnvironment
	AuthorizationExternalForm
	AuthorizationFlags
	AuthorizationItem
	AuthorizationItemSet
	AuthorizationRef
	AuthorizationRights
	AuthorizationString

	Constants
	Authorization Options
	Authorization Rights Mask
	Empty Environment
	External Authorization Reference Length
	Name Tags
	Policy Database Constants

	Result Codes

	Certificate, Key, and Trust Services Reference
	Overview
	Functions by Task
	Getting Type Identifiers
	Managing Certificates
	Managing Identities
	Cryptography and Digital Signatures
	Managing Policies
	Managing Trust
	Managing Trust Settings
	Reporting Errors

	Functions
	SecCertificateAddToKeychain
	SecCertificateCopyCommonName
	SecCertificateCopyEmailAddresses
	SecCertificateCopyPreference
	SecCertificateCopyPublicKey
	SecCertificateCreateFromData
	SecCertificateGetAlgorithmID
	SecCertificateGetCLHandle
	SecCertificateGetData
	SecCertificateGetIssuer
	SecCertificateGetItem
	SecCertificateGetSubject
	SecCertificateGetType
	SecCertificateGetTypeID
	SecCertificateSetPreference
	SecCopyErrorMessageString
	SecIdentityCopyCertificate
	SecIdentityCopyPreference
	SecIdentityCopyPrivateKey
	SecIdentityCopySystemIdentity
	SecIdentityCreateWithCertificate
	SecIdentityGetTypeID
	SecIdentitySearchCopyNext
	SecIdentitySearchCreate
	SecIdentitySearchGetTypeID
	SecIdentitySetPreference
	SecIdentitySetSystemIdentity
	SecKeyCreatePair
	SecKeyGenerate
	SecKeyGetCredentials
	SecKeyGetCSPHandle
	SecKeyGetCSSMKey
	SecKeyGetTypeID
	SecPolicyGetOID
	SecPolicyGetTPHandle
	SecPolicyGetTypeID
	SecPolicyGetValue
	SecPolicySearchCopyNext
	SecPolicySearchCreate
	SecPolicySearchGetTypeID
	SecPolicySetValue
	SecTrustCopyAnchorCertificates
	SecTrustCopyCustomAnchorCertificates
	SecTrustCopyPolicies
	SecTrustCreateWithCertificates
	SecTrustEvaluate
	SecTrustGetCSSMAnchorCertificates
	SecTrustGetCssmResult
	SecTrustGetCssmResultCode
	SecTrustGetResult
	SecTrustGetTPHandle
	SecTrustGetTypeID
	SecTrustGetUserTrust
	SecTrustSetAnchorCertificates
	SecTrustSetKeychains
	SecTrustSetParameters
	SecTrustSetPolicies
	SecTrustSettingsCopyCertificates
	SecTrustSettingsCopyModificationDate
	SecTrustSettingsCopyTrustSettings
	SecTrustSettingsCreateExternalRepresentation
	SecTrustSettingsImportExternalRepresentation
	SecTrustSettingsRemoveTrustSettings
	SecTrustSettingsSetTrustSettings
	SecTrustSetUserTrust
	SecTrustSetVerifyDate

	Data Types
	CSSM_TP_APPLE_EVIDENCE_INFO
	SecCertificateRef
	SecIdentityRef
	SecIdentitySearchRef
	SecKeyRef
	SecPolicyRef
	SecPolicySearchRef
	SecPublicKeyHash
	SecTrustRef
	SecTrustUserSetting

	Constants
	Certificate Item Attribute Constants
	Certificate Status Constants
	Trust Result Type Constants
	Action Data Flags
	System Identity Domains
	Key Credential Type Constants
	Trust Settings Domain Constants
	Trust Settings Key Use Constants
	Trust Settings Usage Constraints Dictionary Keys
	Trust Settings Result Constants
	Default Root Certificate Trust Settings

	Result Codes

	Keychain Services Reference
	Overview
	Functions by Task
	Getting Information About Keychain Services and Types
	Creating and Deleting a Keychain
	Managing Keychains
	Locking and Unlocking Keychains
	Managing User Interaction
	Managing Keychain Access
	Storing and Retrieving Passwords
	Searching for Keychain Items
	Creating and Deleting Keychain Items
	Exporting and Importing Keychain Items
	Managing Keychain Items
	Creating an Access Object
	Managing Access Objects
	Managing Access Control List Objects
	Managing Trusted Applications
	Managing Preference Domains
	CSSM Bridge Functions
	Adding and Removing Callbacks

	Functions
	SecAccessCopyACLList
	SecAccessCopySelectedACLList
	SecAccessCreate
	SecAccessCreateFromOwnerAndACL
	SecAccessGetOwnerAndACL
	SecAccessGetTypeID
	SecACLCopySimpleContents
	SecACLCreateFromSimpleContents
	SecACLGetAuthorizations
	SecACLGetTypeID
	SecACLRemove
	SecACLSetAuthorizations
	SecACLSetSimpleContents
	SecKeychainAddCallback
	SecKeychainAddGenericPassword
	SecKeychainAddInternetPassword
	SecKeychainAttributeInfoForItemID
	SecKeychainCopyAccess
	SecKeychainCopyDefault
	SecKeychainCopyDomainDefault
	SecKeychainCopyDomainSearchList
	SecKeychainCopySearchList
	SecKeychainCopySettings
	SecKeychainCreate
	SecKeychainDelete
	SecKeychainFindGenericPassword
	SecKeychainFindInternetPassword
	SecKeychainFreeAttributeInfo
	SecKeychainGetCSPHandle
	SecKeychainGetDLDBHandle
	SecKeychainGetPath
	SecKeychainGetPreferenceDomain
	SecKeychainGetStatus
	SecKeychainGetTypeID
	SecKeychainGetUserInteractionAllowed
	SecKeychainGetVersion
	SecKeychainItemCopyAccess
	SecKeychainItemCopyAttributesAndData
	SecKeychainItemCopyContent
	SecKeychainItemCopyKeychain
	SecKeychainItemCreateCopy
	SecKeychainItemCreateFromContent
	SecKeychainItemDelete
	SecKeychainItemExport
	SecKeychainItemFreeAttributesAndData
	SecKeychainItemFreeContent
	SecKeychainItemGetDLDBHandle
	SecKeychainItemGetTypeID
	SecKeychainItemGetUniqueRecordID
	SecKeychainItemImport
	SecKeychainItemModifyAttributesAndData
	SecKeychainItemModifyContent
	SecKeychainItemSetAccess
	SecKeychainLock
	SecKeychainLockAll
	SecKeychainOpen
	SecKeychainRemoveCallback
	SecKeychainSearchCopyNext
	SecKeychainSearchCreateFromAttributes
	SecKeychainSearchGetTypeID
	SecKeychainSetAccess
	SecKeychainSetDefault
	SecKeychainSetDomainDefault
	SecKeychainSetDomainSearchList
	SecKeychainSetPreferenceDomain
	SecKeychainSetSearchList
	SecKeychainSetSettings
	SecKeychainSetUserInteractionAllowed
	SecKeychainUnlock
	SecTrustedApplicationCopyData
	SecTrustedApplicationCreateFromPath
	SecTrustedApplicationGetTypeID
	SecTrustedApplicationSetData

	Callbacks
	SecKeychainCallback

	Data Types
	SecAccessRef
	SecACLRef
	SecAFPServerSignature
	SecKeychainAttribute
	SecKeychainAttributeInfo
	SecKeychainAttributeList
	SecKeychainAttrType
	SecKeychainCallbackInfo
	SecKeychainItemRef
	SecKeychainRef
	SecKeychainSearchRef
	SecKeychainSettings
	SecKeyImportExportParameters
	SecTrustedApplicationRef

	Constants
	Mac OS X Keychain Services API Constants
	Authorization Tag Type Constants
	Import/Export Parameters Version
	Keychain Authentication Type Constants
	Keychain Event Constants
	Keychain Event Mask Constants
	Keychain Item Attribute Constants
	Keychain Item Attribute Constants For Keys
	Keychain Item Class Constants
	Keychain Item Import/Export Flags
	Keychain Item Import/Export Parameter Flags
	Keychain Item Import/Export Formats
	Keychain Item Type When Importing
	Keychain Preference Domain Constants
	Keychain Protocol Type Constants
	Keychain Settings Version
	Keychain Status Masks

	Result Codes

	Part II: Other References
	Secure Transport Reference
	Overview
	Functions by Task
	Creating and Disposing of a Session Context
	Configuring an SSL Session
	Managing an SSL Session
	Managing Ciphers
	Managing Root Certificates
	Managing Certificates
	Managing the Peer Domain Name
	Deprecated Functions

	Functions
	SSLAddDistinguishedName
	SSLClose
	SSLDisposeContext
	SSLGetAllowsAnyRoot
	SSLGetAllowsExpiredCerts
	SSLGetAllowsExpiredRoots
	SSLGetBufferedReadSize
	SSLGetClientCertificateState
	SSLGetConnection
	SSLGetDiffieHellmanParams
	SSLGetEnableCertVerify
	SSLGetEnabledCiphers
	SSLGetNegotiatedCipher
	SSLGetNegotiatedProtocolVersion
	SSLGetNumberEnabledCiphers
	SSLGetNumberSupportedCiphers
	SSLGetPeerCertificates
	SSLGetPeerDomainName
	SSLGetPeerDomainNameLength
	SSLGetPeerID
	SSLGetProtocolVersion
	SSLGetProtocolVersionEnabled
	SSLGetRsaBlinding
	SSLGetSessionState
	SSLGetSupportedCiphers
	SSLGetTrustedRoots
	SSLHandshake
	SSLNewContext
	SSLRead
	SSLSetAllowsAnyRoot
	SSLSetAllowsExpiredCerts
	SSLSetAllowsExpiredRoots
	SSLSetCertificate
	SSLSetClientSideAuthenticate
	SSLSetConnection
	SSLSetDiffieHellmanParams
	SSLSetEnableCertVerify
	SSLSetEnabledCiphers
	SSLSetEncryptionCertificate
	SSLSetIOFuncs
	SSLSetPeerDomainName
	SSLSetPeerID
	SSLSetProtocolVersion
	SSLSetProtocolVersionEnabled
	SSLSetRsaBlinding
	SSLSetTrustedRoots
	SSLWrite

	Callbacks
	SSLReadFunc
	SSLWriteFunc

	Data Types
	SSLConnectionRef
	SSLContextRef

	Constants
	SSL Authentication Constants
	SSL Cipher Suite Constants
	SSL Client Certificate State Constants
	SSL Protocol Constants
	SSL Session State Constants

	Result Codes

	Revision History
	Index
	A
	C
	D
	E
	I
	K
	N
	P
	S
	T

