
Secure Transport Reference
Security > Carbon

2004-08-31

Apple Inc.
© 2003, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Secure Transport Reference 5

Overview 5
Functions by Task 6

Creating and Disposing of a Session Context 6
Configuring an SSL Session 6
Managing an SSL Session 7
Managing Ciphers 7
Managing Root Certificates 8
Managing Certificates 8
Managing the Peer Domain Name 9
Deprecated Functions 9

Functions 9
SSLAddDistinguishedName 9
SSLClose 10
SSLDisposeContext 10
SSLGetAllowsAnyRoot 11
SSLGetAllowsExpiredCerts 11
SSLGetAllowsExpiredRoots 12
SSLGetBufferedReadSize 12
SSLGetClientCertificateState 13
SSLGetConnection 13
SSLGetDiffieHellmanParams 14
SSLGetEnableCertVerify 15
SSLGetEnabledCiphers 15
SSLGetNegotiatedCipher 16
SSLGetNegotiatedProtocolVersion 16
SSLGetNumberEnabledCiphers 17
SSLGetNumberSupportedCiphers 18
SSLGetPeerDomainName 18
SSLGetPeerDomainNameLength 19
SSLGetPeerID 19
SSLGetProtocolVersion 20
SSLGetProtocolVersionEnabled 21
SSLGetRsaBlinding 21
SSLGetSessionState 22
SSLGetSupportedCiphers 22
SSLHandshake 23
SSLNewContext 24
SSLRead 25
SSLSetAllowsAnyRoot 25
SSLSetAllowsExpiredCerts 26

3
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

SSLSetAllowsExpiredRoots 27
SSLSetCertificate 28
SSLSetClientSideAuthenticate 29
SSLSetConnection 29
SSLSetDiffieHellmanParams 30
SSLSetEnableCertVerify 31
SSLSetEnabledCiphers 32
SSLSetEncryptionCertificate 32
SSLSetIOFuncs 33
SSLSetPeerDomainName 34
SSLSetPeerID 35
SSLSetProtocolVersion 35
SSLSetProtocolVersionEnabled 36
SSLSetRsaBlinding 37
SSLSetTrustedRoots 38
SSLWrite 38

Callbacks 39
SSLReadFunc 39
SSLWriteFunc 40

Data Types 41
SSLConnectionRef 41
SSLContextRef 41

Constants 42
SSL Authentication Constants 42
SSL Cipher Suite Constants 42
SSL Client Certificate State Constants 44
SSL Protocol Constants 45
SSL Session State Constants 46

Result Codes 47

Appendix A Deprecated Secure Transport Functions 51

Deprecated in Mac OS X v10.5 51
SSLGetPeerCertificates 51
SSLGetTrustedRoots 52

Document Revision History 53

Index 55

4
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Framework: Security/Security.h

Declared in CipherSuite.h
SecureTransport.h

Overview

This document describes the public API for an implementation of the protocols Secure Sockets Layer version
3.0 and Transport Layer Security version 1.0.

There are no transport layer dependencies in this library; it can be used with BSD Sockets and Open Transport,
among other protocols. To use this library, you must provide callback functions to perform the actual I/O on
underlying network connections. You are also responsible for setting up raw network connections; you pass
in an opaque reference to the underlying (connected) entity at the start of an SSL session in the form of an
SSLConnectionRef (page 41) object.

The following terms are used in this document:

 ■ A client is the initiator of an SSL session. The canonical example of a client is a web browser communicating
with an HTTPS URL.

 ■ A server is an entity that accepts requests for SSL sessions made by clients. An example is a secure web
server.

 ■ An SSL session is bounded by calls to the functions SSLHandshake (page 23) and SSLClose (page 10).
An active session is in some state between these two calls, inclusive.

 ■ An SSL session context, or SSLContextRef (page 41), is an opaque reference to the state associated
with one session. A session context cannot be reused for multiple sessions.

Most applications need only a few of the functions in this API, which are normally called in the following
sequence:

1. Preparing for a session

a. Call SSLNewContext (page 24) to create a new SSL session context.

b. Write I/O functions and call SSLSetIOFuncs (page 33) to pass them to Secure Transpport.

c. Establish a connection using CFNetwork, BSD Sockets, or Open Transport. Then call
SSLSetConnection (page 29) to specify the connection to which the SSL session context applies.

d. Call SSLSetPeerDomainName (page 34) to specify the fully-qualified domain name of the peer to
which you want to connect (optional but highly recommended).

Overview 5
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

e. Call SSLSetCertificate (page 28) to specify the certificate to be used in authentication (required
for server side, optional for client).

2. Starting a session

 ■ Call SSLHandshake (page 23) to perform the SSL handshake and establish a secure session.

3. Maintaining the session

 ■ To transfer data over the secure session, call SSLWrite (page 38) andSSLRead (page 25) as needed.

4. Ending a session

a. Call SSLClose (page 10) to close the secure session.

b. Close the connection and dispose of the connection reference (SSLConnectionRef (page 41)).

c. Call SSLDisposeContext (page 10) to dispose of the SSL session context.

d. If you have called SSLGetPeerCertificates (page 51) to obtain any certificates, call CFRelease
to release the certificate reference objects.

In many cases, it is easier to use the CFNetwork API than Secure Transport to implement a simple connection
to a secure (HTTPS) URL. See CFNetwork Programming Guide for documentation of the CFNetwork API and
the CFNetworkHTTPDownload sample code for an example of code that downloads data from a URL. If you
specify an HTTPS URL, this routine automatically uses Secure Transport to encrypt the data stream.

For functions to manage and evaluate certificates, see Certificate, Key, andTrust Services Reference and Certificate,
Key, and Trust Services Programming Guide.

Functions by Task

Creating and Disposing of a Session Context

SSLNewContext (page 24)
Creates a new SSL session context.

SSLDisposeContext (page 10)
Disposes of an SSL session context.

Configuring an SSL Session

SSLSetConnection (page 29)
Specifies an I/O connection for a specific session.

SSLGetConnection (page 13)
Retrieves an I/O connection—such as a socket or endpoint—for a specific session.

6 Functions by Task
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSLSetIOFuncs (page 33)
Specifies callback functions that perform the network I/O operations.

SSLSetProtocolVersionEnabled (page 36)
Sets the allowed SSL protocol versions.

SSLGetProtocolVersionEnabled (page 21)
Retrieves the enabled status of a given protocol.

SSLSetClientSideAuthenticate (page 29)
Specifies the requirements for client-side authentication.

SSLSetRsaBlinding (page 37)
Enables or disables RSA blinding.

SSLGetRsaBlinding (page 21)
Obtains a value indicating whether RSA blinding is enabled.

Managing an SSL Session

SSLHandshake (page 23)
Performs the SSL handshake.

SSLGetSessionState (page 22)
Retrieves the state of an SSL session.

SSLGetNegotiatedProtocolVersion (page 16)
Obtains the negotiated protocol version of the active session.

SSLSetPeerID (page 35)
Specifies data that is sufficient to uniquely identify the peer of the current session.

SSLGetPeerID (page 19)
Retrieves the current peer ID data.

SSLGetBufferedReadSize (page 12)
Determines how much data is available to be read.

SSLRead (page 25)
Performs a normal application-level read operation.

SSLWrite (page 38)
Performs a normal application-level write operation.

SSLClose (page 10)
Terminates the current SSL session.

Managing Ciphers

SSLGetNumberSupportedCiphers (page 18)
Determines the number of cipher suites supported.

SSLGetSupportedCiphers (page 22)
Determines the values of the supported cipher suites.

SSLSetEnabledCiphers (page 32)
Specifies a restricted set of SSL cipher suites to be enabled by the current SSL session context.

Functions by Task 7
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSLGetNumberEnabledCiphers (page 17)
Determines the number of cipher suites currently enabled.

SSLGetEnabledCiphers (page 15)
Determines which SSL cipher suites are currently enabled.

SSLGetNegotiatedCipher (page 16)
Retrieves the cipher suite negotiated for this session.

SSLSetDiffieHellmanParams (page 30)
Specifies Diffie-Hellman parameters.

SSLGetDiffieHellmanParams (page 14)
Retrieves the Diffie-Hellman parameters specified earlier.

Managing Root Certificates

SSLSetAllowsAnyRoot (page 25)
Specifies whether root certificates from unrecognized certification authorities are allowed.

SSLGetAllowsAnyRoot (page 11)
Obtains a value specifying whether an unknown root is allowed.

SSLSetAllowsExpiredRoots (page 27)
Specifies whether expired root certificates are allowed.

SSLGetAllowsExpiredRoots (page 12)
Retrieves the value indicating whether expired roots are allowed.

SSLSetTrustedRoots (page 38)
Augments or replaces the default set of trusted root certificates for this session.

SSLGetTrustedRoots (page 52) Deprecated in Mac OS X v10.5
Retrieves the current list of trusted root certificates.

Managing Certificates

SSLAddDistinguishedName (page 9)
Unsupported.

SSLSetAllowsExpiredCerts (page 26)
Specifies whether certificate expiration times are ignored.

SSLGetAllowsExpiredCerts (page 11)
Retrieves the value specifying whether expired certificates are allowed.

SSLSetCertificate (page 28)
Specifies this connection’s certificate or certificates.

SSLGetClientCertificateState (page 13)
Retrieves the exchange status of the client certificate.

SSLSetEnableCertVerify (page 31)
Enables or disables peer certificate chain validation.

SSLGetEnableCertVerify (page 15)
Determines whether peer certificate chain validation is currently enabled.

8 Functions by Task
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSLSetEncryptionCertificate (page 32)
Specifies the encryption certificates used for this connection.

SSLGetPeerCertificates (page 51) Deprecated in Mac OS X v10.5
Retrieves a peer certificate.

Managing the Peer Domain Name

SSLSetPeerDomainName (page 34)
Specifies the fully qualified domain name of the peer.

SSLGetPeerDomainNameLength (page 19)
Determines the length of a previously set peer domain name.

SSLGetPeerDomainName (page 18)
Retrieves the peer domain name specified previously.

Deprecated Functions

SSLSetProtocolVersion (page 35)
Sets the SSL protocol version. This function is deprecated.

SSLGetProtocolVersion (page 20)
Gets the SSL protocol version. This function is deprecated.

Functions

SSLAddDistinguishedName
Unsupported.

OSStatus SSLAddDistinguishedName (
 SSLContextRef context,
 const void *derDN,
 size_t derDNLen
);

Parameters
context

An SSL session context reference.

derDN
A pointer to a buffer containing a DER-encoded distinguished name.

derDNLen
A value of type size_t representing the size of the buffer pointed to by the parameter derDN.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function has not been implemented and is unsupported at this time.

Functions 9
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Availability
Usupported.

Declared In
SecureTransport.h

SSLClose
Terminates the current SSL session.

OSStatus SSLClose (
 SSLContextRef context
);

Parameters
context

The SSL session context reference of the session you want to terminate.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLDisposeContext
Disposes of an SSL session context.

OSStatus SSLDisposeContext (
 SSLContextRef context
);

Parameters
context

A reference to the SSL session context to dispose.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
When you are completely finished with a secure session, you should dispose of the SSL session context in
order to release the memory associated with the session.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

10 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Declared In
SecureTransport.h

SSLGetAllowsAnyRoot
Obtains a value specifying whether an unknown root is allowed.

OSStatus SSLGetAllowsAnyRoot (
 SSLContextRef context,
 Boolean *anyRoot
);

Parameters
context

An SSL session context reference.

anyRoot
On return, a Boolean indicating the current setting of the anyRoot flag.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use the SSLSetAllowsAnyRoot (page 25) function to set the value of the anyRoot flag. The effect and
meaning of this flag is described in the discussion of the SSLSetAllowsAnyRoot (page 25) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetAllowsExpiredCerts
Retrieves the value specifying whether expired certificates are allowed.

OSStatus SSLGetAllowsExpiredCerts (
 SSLContextRef context,
 Boolean *allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
On return, this flag is set to the value of the Boolean flag that specifies whether expired certificates
are ignored. If this value is true, then Secure Transport does not return an error if any certificates in
the certificate chain are expired.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Functions 11
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Discussion
You can set the allowsExpired flag to allow the handshake to succeed even if one or more certificates in
the certificate chain have expired. This function returns the current setting of this flag. Use the
SSLSetAllowsExpiredCerts (page 26) function to set the value of the allowsExpired flag.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetAllowsExpiredRoots
Retrieves the value indicating whether expired roots are allowed.

OSStatus SSLGetAllowsExpiredRoots (
 SSLContextRef context,
 Boolean *allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
On return, points to a Boolean value indicating whether expired roots are allowed. If this value is
true, no errors are returned if the certificate chain ends in an expired root.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use the SSLSetAllowsExpiredRoots (page 27) function to change the setting of the allowsExpired
flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetBufferedReadSize
Determines how much data is available to be read.

OSStatus SSLGetBufferedReadSize (
 SSLContextRef context,
 size_t *bufSize
);

Parameters
context

An SSL session context reference.

12 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

bufSize
On return, the size of the data to be read.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function determines how much data you can be guaranteed to obtain in a call to the SSLRead (page
25) function. This function does not block or cause any low-level read operations to occur.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetClientCertificateState
Retrieves the exchange status of the client certificate.

OSStatus SSLGetClientCertificateState (
 SSLContextRef context,
 SSLClientCertificateState *clientState
);

Parameters
context

An SSL session context reference.

clientState
On return, a pointer to a value indicating the state of the client certificate exchange. See SSL Client
Certificate State Constants (page 44) for a list of possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The value returned reflects the latest change in the state of the client certificate exchange. If either peer
initiates a renegotiation attempt, Secure Transport resets the state to kSSLClientCertNone.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetConnection
Retrieves an I/O connection—such as a socket or endpoint—for a specific session.

Functions 13
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLGetConnection (
 SSLContextRef context,
 SSLConnectionRef *connection
);

Parameters
context

An SSL session context reference.

connection
On return, a pointer to a session connection reference. If no connection has been set using the
SSLSetConnection (page 29) function, then this parameter is NULL on return.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can use this function on either the client or server to retrieve the connection associated with a secure
session.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetDiffieHellmanParams
Retrieves the Diffie-Hellman parameters specified earlier.

OSStatus SSLGetDiffieHellmanParams (
 SSLContextRef context,
 const void **dhParams,
 size_t *dhParamsLen
);

Parameters
context

An SSL session context reference.

dhParams
On return, points to a buffer containing the Diffie-Hellman parameter block in Open SSL DER format.The
returned data is not copied and belongs to the SSL session context reference; therefore, you cannot
modify the data and it is released automatically when you dispose of the context.

dhParamsLen
On return, points to the length of the buffer pointed to by the dhParams parameter.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function returns the parameter block specified in an earlier call to the function
SSLSetDiffieHellmanParams (page 30). IfSSLSetDiffieHellmanParamswas never called, thedhParams
parameter returns NULL and the dhParamsLen parameter returns 0.

14 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetEnableCertVerify
Determines whether peer certificate chain validation is currently enabled.

OSStatus SSLGetEnableCertVerify (
 SSLContextRef context,
 Boolean *enableVerify
);

Parameters
context

An SSL session context reference.

enableVerify
On return, a pointer to a Boolean value specifying whether peer certificate chain validation is enabled.
If this value is true, then Secure Transport automatically attempts to verify the certificate chain during
exchange of peer certificates.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use the SSLSetEnableCertVerify (page 31) function to set the value of the enableVerify flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetEnabledCiphers
Determines which SSL cipher suites are currently enabled.

OSStatus SSLGetEnabledCiphers (
 SSLContextRef context,
 SSLCipherSuite *ciphers,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
On return, points to the enabled cipher suites. Before calling, you must allocate this buffer using the
number of enabled cipher suites retrieved from a call to the SSLGetNumberEnabledCiphers (page
17) function.

Functions 15
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

numCiphers
Pointer to the number of enabled cipher suites. Before calling, retrieve this value by calling the
SSLGetNumberEnabledCiphers (page 17) function.

Return Value
A result code. See “Secure Transport Result Codes” (page 47). If the supplied buffer is too small,
errSSLBufferOverflow is returned.

Discussion
Call the SSLSetEnabledCiphers (page 32) function to specify which SSL cipher suites are enabled.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetNegotiatedCipher
Retrieves the cipher suite negotiated for this session.

OSStatus SSLGetNegotiatedCipher (
 SSLContextRef context,
 SSLCipherSuite *cipherSuite
);

Parameters
context

An SSL session context reference.

cipherSuite
On return, points to the cipher suite that was negotiated for this session.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You should call this function only when a session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetNegotiatedProtocolVersion
Obtains the negotiated protocol version of the active session.

16 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLGetNegotiatedProtocolVersion (
 SSLContextRef context,
 SSLProtocol *protocol
);

Parameters
context

An SSL session context reference.

protocol
On return, points to the negotiated protocol version of the active session.

Return Value
A result code. See “Secure Transport Result Codes” (page 47). This function returns kSSLProtocolUnknown
if no SSL session is in progress.

Discussion
This function retrieves the version of SSL or TLS protocol negotiated for the session. Note that the negotiated
protocol may not be the same as your preferred protocol, depending on which protocol versions you enabled
with the SSLSetProtocolVersionEnabled (page 36) function. This function can return any of the following
values:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolUnknown

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetNumberEnabledCiphers
Determines the number of cipher suites currently enabled.

OSStatus SSLGetNumberEnabledCiphers (
 SSLContextRef context,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

numCiphers
On return, points to the number of enabled cipher suites.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Functions 17
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Discussion
You use the number of enabled cipher suites returned by this function when you call the
SSLGetEnabledCiphers (page 15) function to retrieve the list of currently enabled cipher suites.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetNumberSupportedCiphers
Determines the number of cipher suites supported.

OSStatus SSLGetNumberSupportedCiphers (
 SSLContextRef context,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

numCiphers
On return, points to the number of supported cipher suites.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You use the number of enabled cipher suites returned by this function when you call the
SSLGetNumberSupportedCiphers (page 18) function to retrieve the list of currently enabled cipher suites.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetPeerDomainName
Retrieves the peer domain name specified previously.

OSStatus SSLGetPeerDomainName (
 SSLContextRef context,
 char *peerName,
 size_t *peerNameLen
);

Parameters
context

An SSL session context reference.

18 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

peerName
On return, points to the peer domain name.

peerNameLen
A pointer to the length of the peer domain name. Before calling this function, retrieve the peer domain
name length by calling the function SSLGetPeerDomainNameLength (page 19).

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
If you previouslly called the SSLSetPeerDomainName (page 34) function to specify a fully qualified domain
name for the peer certificate, you can use the SSLGetPeerDomainName function to retrieve the domain
name.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetPeerDomainNameLength
Determines the length of a previously set peer domain name.

OSStatus SSLGetPeerDomainNameLength (
 SSLContextRef context,
 size_t *peerNameLen
);

Parameters
context

An SSL session context reference.

peerNameLen
On return, points to the length of the peer domain name.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
If you previously called the SSLSetPeerDomainName (page 34) function to specify a fully qualified domain
name for the peer certificate, you can use the SSLGetPeerDomainName (page 18) function to retrieve the
peer domain name. Before doing so, you must call the SSLGetPeerDomainNameLength function to retrieve
the buffer size needed for the domain name.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetPeerID
Retrieves the current peer ID data.

Functions 19
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLGetPeerID (
 SSLContextRef context,
 const void **peerID,
 size_t *peerIDLen
);

Parameters
context

An SSL session context reference.

peerID
On return, points to a buffer containing the peer ID data.

peerIDLen
On return, the length of the peer ID data buffer.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
If the peer ID data for this context was not set by calling the SSLSetPeerID (page 35) function, this function
returns a NULL pointer in the peerID parameter, and 0 in the peerIDLen parameter.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLGetProtocolVersion
Gets the SSL protocol version. This function is deprecated.

OSStatus SSLGetProtocolVersion (
 SSLContextRef context,
 SSLProtocol *protocol
);

Parameters
context

An SSL session context reference.

protocol
On return, a pointer to the SSL protocol version.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use the SSLGetProtocolVersionEnabled (page 21) function instead.

Availability
Available in Mac OS X v10.2.

20 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Declared In
SecureTransport.h

SSLGetProtocolVersionEnabled
Retrieves the enabled status of a given protocol.

OSStatus SSLGetProtocolVersionEnabled (
 SSLContextRef context,
 SSLProtocol protocol,
 Boolean *enable
);

Parameters
context

An SSL session context reference.

protocol
A value of type SSLProtocol representing an SSL protocol version.

enable
On return, points to a Boolean value indicating whether the specified protocol version is enabled. If
this value is true, the protocol is enabled.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can specify any one of the following values for the protocol parameter:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll Specify this value to determine whether all protocols are enabled.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetRsaBlinding
Obtains a value indicating whether RSA blinding is enabled.

OSStatus SSLGetRsaBlinding (
 SSLContextRef context,
 Boolean *blinding
);

Parameters
context

An SSL session context reference.

Functions 21
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

blinding
On return, a pointer to a Boolean value indicating whether RSA blinding is enabled.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function is used only on the server side of a connection.

Call the SSLSetRsaBlinding (page 37) function to enable or disable RSA blinding.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLGetSessionState
Retrieves the state of an SSL session.

OSStatus SSLGetSessionState (
 SSLContextRef context,
 SSLSessionState *state
);

Parameters
context

An SSL session context reference.

state
On return, points to a constant that indicates the state of the SSL session. See “SSL Session State
Constants” (page 46) for possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLGetSupportedCiphers
Determines the values of the supported cipher suites.

22 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLGetSupportedCiphers (
 SSLContextRef context,
 SSLCipherSuite *ciphers,
 size_t *numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
On return, points to the values of the supported cipher suites. Before calling, you must allocate this
buffer using the number of supported cipher suites retrieved from a call to the
SSLGetNumberSupportedCiphers (page 18) function.

numCiphers
Points to the number of supported cipher suites that you want returned. Before calling, retrieve this
value by calling the SSLGetNumberSupportedCiphers (page 18) function.

Return Value
A result code. See “Secure Transport Result Codes” (page 47). If the supplied buffer is too small,
errSSLBufferOverflow is returned.

Discussion
All the supported cipher suites are enabled by default. Use the SSLSetEnabledCiphers (page 32) function
to enable a subset of the supported cipher suites. Use the SSLGetEnabledCiphers (page 15) function to
determine which cipher suites are currently enabled.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLHandshake
Performs the SSL handshake.

OSStatus SSLHandshake (
 SSLContextRef context
);

Parameters
context

An SSL session context reference.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
On successful return, the session is ready for normal secure communication using the functions SSLRead (page
25) and SSLWrite (page 38).

Functions 23
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

If it finds any problems with the peer’s certificate chain, Secure Transport aborts the handshake. You can use
the SSLGetPeerCertificates (page 51) function to see the peer’s certificate chain. This function can
return a wide variety of result codes, including the following:

 ■ errSSLUnknownRootCert—The peer has a valid certificate chain, but the root of the chain is not a
known anchor certificate.

 ■ errSSLNoRootCert—The peer’s certificate chain was not verifiable to a root certificate.

 ■ errSSLCertExpired—The peer’s certificate chain has one or more expired certificates.

 ■ errSSLXCertChainInvalid—The peer has an invalid certificate chain; for example, signature verification
within the chain failed, or no certificates were found.

A return value of errSSLWouldBlock indicates that the SSLHandshake function must be called again until
a different result code is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLNewContext
Creates a new SSL session context.

OSStatus SSLNewContext (
 Boolean isServer,
 SSLContextRef *contextPtr
);

Parameters
isServer

A Boolean value; True if the calling process is a server.

contextPtr
On return, points to a new SSL session context reference.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The SSL session context is an opaque data structure that identifies a session and stores session information.
You must pass this object to every other function in the Secure Transport API.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

24 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Declared In
SecureTransport.h

SSLRead
Performs a normal application-level read operation.

OSStatus SSLRead (
 SSLContextRef context,
 void *data,
 size_t dataLength,
 size_t *processed
);

Parameters
context

An SSL session context reference.

data
On return, points to the data read. You must allocate this buffer before calling the function. The size
of this buffer must be equal to or greater than the value in the dataLength parameter.

dataLength
The amount of data you would like to read.

processed
On return, points to the number of bytes actually read.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The SSLRead function might call the SSLReadFunc (page 39) function that you provide (see
SSLSetIOFuncs (page 33). Because you may configure the underlying connection to operate in a nonblocking
manner, a read operation might return errSSLWouldBlock, indicating that less data than requested was
actually transferred. In this case, you should repeat the call to SSLRead until some other result is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsAnyRoot
Specifies whether root certificates from unrecognized certification authorities are allowed.

Functions 25
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLSetAllowsAnyRoot (
 SSLContextRef context,
 Boolean anyRoot
);

Parameters
context

An SSL session context reference.

anyRoot
A Boolean flag specifying whether root certificates from unrecognized certification authorities (CAs)
are allowed. The default for this flag is false, specifying that roots from unrecognized CAs are not
allowed.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The system maintains a set of root certificates signed by known, trusted root CAs. When the anyRoot flag
is true, Secure Transport does not return an error if one of the following two conditions occurs:

 ■ The peer returns a certificate chain with a root certificate, and the chain verifies to that root, but the CA
for the root certificate is not one of the known, trusted root CAs. This results in an
errSSLUnknownRootCert result code when the anyRoot flag is false.

 ■ The peer returns a certificate chain that does not contain a root certificate, and the server can’t verify
the chain to one of the trusted root certificates. This results in an errSSLNoRootCert result code when
the anyRoot flag is false.

Both of these error conditions are ignored when the anyRoot flag is true, allowing connection to a peer
for which trust could not be established.

If you use this function to allow an untrusted root to be used for validation of a certificate—for example,
after prompting the user for permission to do so—remember to set the anyRoot Boolean value back to
false. If you don’t, any random root certificate can be used for signing a certificate chain. To add a certificate
to the list of trusted roots, use the SecTrustSetAnchorCertificates function.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsExpiredCerts
Specifies whether certificate expiration times are ignored.

26 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLSetAllowsExpiredCerts (
 SSLContextRef context,
 Boolean allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
A Boolean flag representing whether the certificate expiration times are ignored. The default for this
flag is false, meaning expired certificates result in an errSSLCertExpired result code.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can use this function to allow the handshake to succeed even if one or more certificates in the certificate
chain have expired. You can use the SSLGetAllowsExpiredCerts (page 11) function to determine the
current setting of the allowsExpired flag.

Use the SSLSetAllowsExpiredRoots (page 27) function to set a flag specifying whether expired root
certificates are allowed.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetAllowsExpiredRoots
Specifies whether expired root certificates are allowed.

OSStatus SSLSetAllowsExpiredRoots (
 SSLContextRef context,
 Boolean allowsExpired
);

Parameters
context

An SSL session context reference.

allowsExpired
A Boolean value indicating whether to allow expired root certificates. Pass true to allow expired
roots.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The default value for the allowsExpired flag is false. When this flag is false, Secure Transport returns
an errSSLCertExpired result code during handshake if the root certificate is expired.

Functions 27
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

You can use the SSLGetAllowsExpiredRoots (page 12) function to determine the current setting of the
allowsExpired flag.

Use the SSLSetAllowsExpiredCerts (page 26) function to set a value that determines whether expired
non-root certificates are allowed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetCertificate
Specifies this connection’s certificate or certificates.

OSStatus SSLSetCertificate (
 SSLContextRef context,
 CFArrayRef certRefs
);

Parameters
context

An SSL session context reference.

certRefs
The certificates to set. This array contains items of type SecCertificateRef, except for certRefs[0],
which is of type SecIdentityRef.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Setting the certificate or certificates is mandatory for server connections, but is optional for clients. Specifying
a certificate for a client enables SSL client-side authentication. You must place in certRefs[0] a
SecIdentityRef object that identifies the leaf certificate and its corresponding private key. Specifying a
root certificate is optional; if it’s not specified, the root certificate that verifies the certificate chain specified
here must be present in the system wide set of trusted anchor certificates.

This function can be called only when no session is active.

Secure Transport assumes the following:

 ■ The certificate references remain valid for the lifetime of the session.

 ■ The identity specified in certRefs[0] is capable of signing.

The required capabilities of the identity specified in certRefs[0], and of the optional certificate specified
in the SSLSetEncryptionCertificate (page 32) function, are highly dependent on the application. For
example, to work as a server with Netscape clients, the identity specified here must be capable of both signing
and encrypting.

Availability
Available in Mac OS X v10.2 and later.

28 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetClientSideAuthenticate
Specifies the requirements for client-side authentication.

OSStatus SSLSetClientSideAuthenticate (
 SSLContextRef context,
 SSLAuthenticate auth
);

Parameters
context

An SSL session context reference.

auth
A flag setting the requirements for client-side authentication. See “SSL Authentication Constants” (page
42) for possible values.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function can be called only by servers. Use of this function is optional. The default authentication
requirement is kNeverAuthenticate. This function may be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetConnection
Specifies an I/O connection for a specific session.

OSStatus SSLSetConnection (
 SSLContextRef context,
 SSLConnectionRef connection
);

Parameters
context

An SSL session context reference.

Functions 29
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

connection
An SSL session connection reference. The connection data is opaque to Secure Transport; you can
set it to any value that your application can use to uniquely identify the connection in the callback
functions SSLReadFunc (page 39) and SSLWriteFunc (page 40).

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You must establish a connection before creating a secure session. After calling the SSLNewContext (page
24) function to create an SSL session context, you call the SSLSetConnection function to specify the
connection to which the context applies. You specify a value in the connection parameter that your callback
routines can use to identify the connection. This value might be a pointer to a socket (if you are using the
Sockets API) or an endpoint (if you are using Open Transport). For example, you might create a socket, start
a connection on it, create a context reference, cast the socket to an SSLConnectionRef, and then pass both
the context reference and connection reference to the SSLSetConnection function.

Note that the Sockets API is the preferred networking interface for new development.

On the client side, it’s assumed that communication has been established with the desired server on this
connection. On the server side, it’s assumed that a connection has been established in response to an incoming
client request .

This function must be called prior to the SSLHandshake (page 23) function; consequently, this function can
be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetDiffieHellmanParams
Specifies Diffie-Hellman parameters.

OSStatus SSLSetDiffieHellmanParams (
 SSLContextRef context,
 const void *dhParams,
 size_t dhParamsLen
);

Parameters
context

An SSL session context reference.

dhParams
A pointer to a buffer containing the Diffie-Hellman parameters in Open SSL DER format.

dhParamsLen
A value representing the size of the buffer pointed to by the dhParams parameter.

30 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can use this function to specify a set of Diffie-Hellman parameters to be used by Secure Transport for a
specific session. Use of this function is optional. If Diffie-Hellman ciphers are allowed, the server and client
negotiate a Diffie-Hellman cipher, and this function has not been called, then Secure Transport calculates a
set of process wide parameters. However, that process can take as long as 30 seconds. Diffie-Hellman ciphers
are enabled by default; see SSLSetEnabledCiphers (page 32).

In SSL/TLS, Diffie-Hellmand parameters are always specified by the server. Therefore, this function can be
called only by the server side of the connection.

You can use the SSLGetDiffieHellmanParams (page 14) function to retrieve Diffie-Hellman parameters
specified in an earlier call to SSLSetDiffieHellmanParams.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetEnableCertVerify
Enables or disables peer certificate chain validation.

OSStatus SSLSetEnableCertVerify (
 SSLContextRef context,
 Boolean enableVerify
);

Parameters
context

An SSL session context reference.

enableVerify
A Boolean value specifying whether peer certificate chain validation is enabled. Certificate chain
validation is enabled by default. Specify false to disable validation.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
By default, Secure Transport attempts to verify the certificate chain during an exchange of peer certificates.
If you disable peer certificate chain validation, it is your responsibility to call SSLGetPeerCertificates (page
51) upon successful completion of the handshake and then to validate the peer certificate chain before
transferring the data.

You can use the SSLGetEnableCertVerify (page 15) function to determine the current setting of the
enableVerify flag.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

Functions 31
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSLSetEnabledCiphers
Specifies a restricted set of SSL cipher suites to be enabled by the current SSL session context.

OSStatus SSLSetEnabledCiphers (
 SSLContextRef context,
 const SSLCipherSuite *ciphers,
 size_t numCiphers
);

Parameters
context

An SSL session context reference.

ciphers
A pointer to the cipher suites to enable.

numCiphers
The number of cipher suites to enable.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can call this function, for example, to limit cipher suites to those that use exportable key sizes or to those
supported by a particular protocol version.

This function can be called only when no session is active. The default set of enabled cipher suites is the
complete set of supported cipher suites obtained by calling the SSLGetSupportedCiphers (page 22)
function.

Call the SSLGetEnabledCiphers (page 15) function to determine which SSL cipher suites are currently
enabled.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetEncryptionCertificate
Specifies the encryption certificates used for this connection.

OSStatus SSLSetEncryptionCertificate (
 SSLContextRef context,
 CFArrayRef certRefs
);

Parameters
context

An SSL session context reference.

32 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

certRefs
A value of type CFArrayRef referring to an array of certificate references. The references are type
SecCertificateRef, except for certRefs[0], which is of type SecIdentityRef.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use this function in one of the following cases:

 ■ The leaf certificate specified in the SSLSetCertificate (page 28) function is not capable of encryption.

 ■ The leaf certificate specified in the SSLSetCertificate (page 28) function contains a key that is too
large or strong for legal encryption in this session. In this case, a weaker certificate is specified here and
is used for server-initiated key exchange.

The following assumptions are made:

 ■ The certRefs parameter’s references remain valid for the lifetime of the connection.

 ■ The specified certRefs[0] value is capable of encryption.

This function can be called only when no session is active.

SSL servers that enforce the SSL3 or TLS1 specification to the letter do not accept encryption certificates with
key sizes larger than 512 bits for exportable ciphers (that is, for SSL sessions with 40-bit session keys). Therefore,
if you wish to support exportable ciphers and your certificate has a key larger than 512 bits, you must specify
a separate encryption certificate.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetIOFuncs
Specifies callback functions that perform the network I/O operations.

OSStatus SSLSetIOFuncs (
 SSLContextRef context,
 SSLReadFunc read,
 SSLWriteFunc write
);

Parameters
context

An SSL session context reference.

read
A pointer to your read callback function. See SSLReadFunc (page 39) for information on defining
this function.

Functions 33
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

write
A pointer to your write callback function. See SSLWriteFunc (page 40) for information on defining
this function.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Secure Transport calls your read and write callback functions to perform network I/O. You must define these
functions before calling SSLSetIOFuncs.

You must call SSLSetIOFuncs prior to calling the SSLHandshake (page 23) function. SSLSetIOFuncs
cannot be called while a session is active.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetPeerDomainName
Specifies the fully qualified domain name of the peer.

OSStatus SSLSetPeerDomainName (
 SSLContextRef context,
 const char *peerName,
 size_t peerNameLen
);

Parameters
context

An SSL session context reference.

peerName
The fully qualified domain name of the peer—for example, store.apple.com. The name is in the
form of a C string, except that NULL termination is optional.

peerNameLen
The number of bytes passed in the peerName parameter.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can use this function to verify the common name field in the peer’s certificate. If you call this function
and the common name in the certificate does not match the value you specify in the peerName parameter,
then handshake fails and returns errSSLXCertChainInvalid. Use of this function is optional.

This function can be called only when no session is active.

Availability
Available in Mac OS X v10.2 and later.

34 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetPeerID
Specifies data that is sufficient to uniquely identify the peer of the current session.

OSStatus SSLSetPeerID (
 SSLContextRef context,
 const void *peerID,
 size_t peerIDLen
);

Parameters
context

An SSL session context reference.

peerID
A pointer to a buffer containing the peer ID data to set.

peerIDLen
The length of the peer ID data buffer.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Secure Transport uses the peer ID to match the peer of an SSL session with the peer of a previous session in
order to resume an interrupted session. If the peer IDs match, Secure Transport attempts to resume the
session with the same parameters as used in the previous session with the same peer.

The data you provide to this function is treated as an opaque blob by Secure Transport but is compared byte
for byte with previous peer ID data values set by the current application. An example of peer ID data is an
IP address and port, stored in some caller-private manner. Calling this function is optional but is required if
you want the session to be resumable. If you do call this function, you must call it prior to the handshake for
the current session.

You can use the SSLGetPeerID (page 19) function to retrieve the peer ID data for the current session.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetProtocolVersion
Sets the SSL protocol version. This function is deprecated.

Functions 35
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

OSStatus SSLSetProtocolVersion (
 SSLContextRef context,
 SSLProtocol version
);

Parameters
context

An SSL session context reference.

version
The SSL protocol version to negotiate.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Use the SSLSetProtocolVersionEnabled (page 36) function instead.

This function cannot be called when a session is active.

Availability
Available in Mac OS X v10.2.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

SSLSetProtocolVersionEnabled
Sets the allowed SSL protocol versions.

OSStatus SSLSetProtocolVersionEnabled (
 SSLContextRef context,
 SSLProtocol protocol,
 Boolean enable
);

Parameters
context

An SSL session context reference.

protocol
The SSL protocol version to enable. Pass kSSLProtocolAll to enable all protocols.

enable
A Boolean value indicating whether to enable or disable the specified protocol. Specify true to enable
the protocol.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

36 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Discussion
Calling this function is optional. The default is that all supported protocols are enabled. When you call this
function, only the specified protocol is affected. Therefore, if you call it once to disable SSL version 2 (for
example), the other protocols all remain enabled. You may call this function as many times as you wish to
enable and disable specific protocols. You can specify one of the following values for the protocol parameter:

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll

This function cannot be called when a session is active.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLSetRsaBlinding
Enables or disables RSA blinding.

OSStatus SSLSetRsaBlinding (
 SSLContextRef context,
 Boolean blinding
);

Parameters
context

An SSL session context reference.

blinding
A Boolean value indicating whether to enable RSA blinding. Pass true to enable RSA blinding.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function is used only on the server side of a connection.

This feature thwarts a known attack to which RSA keys are vulnerable: It is possible to guess the RSA key by
timing how long it takes the server to calcuate the response to certain queries. RSA blinding adds a random
calculation to each query response, thus making the attack impossible. Enabling RSA blinding is a trade-off
between performance and security.

RSA blinding is enabled by default. Use the SSLGetRsaBlinding (page 21) function to determine the
current setting.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

Functions 37
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSLSetTrustedRoots
Augments or replaces the default set of trusted root certificates for this session.

OSStatus SSLSetTrustedRoots (
 SSLContextRef context,
 CFArrayRef trustedRoots,
 Boolean replaceExisting
);

Parameters
context

An SSL session context reference.

trustedRoots
A reference to an array of trusted root certificates of type SecCertificateRef.

replaceExisting
A Boolean value indicating whether to replace or append the current trusted root certificate set. If
this value is true, the specified root certificates become the only roots that are trusted during this
session. If this value is false, the specified root certificates are added to the current set of trusted
root certificates.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Each successive call to this function with the replaceExisting parameter set to false results in
accumulation of additional root certificates. To see the current set of trusted root certificates, call the
SSLGetTrustedRoots (page 52) function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SecureTransport.h

SSLWrite
Performs a normal application-level write operation.

OSStatus SSLWrite (
 SSLContextRef context,
 const void *data,
 size_t dataLength,
 size_t *processed
);

Parameters
context

An SSL session context reference.

data
A pointer to the buffer of data to write.

dataLength
The amount, in bytes, of data to write.

38 Functions
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

processed
On return, the length, in bytes, of the data actually written.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
The SSLWrite function might call the SSLWriteFunc (page 40) function that you provide (see
SSLSetIOFuncs (page 33)). Because you may configure the underlying connection to operate in a no-blocking
manner, a write operation might return errSSLWouldBlock, indicating that less data than requested was
actually transferred. In this case, you should repeat the call to SSLWrite until some other result is returned.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

Callbacks

SSLReadFunc
Defines a pointer to a customized read function that Secure Transport calls to read data from the connection.

typedef OSStatus (*SSLReadFunc) (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

You would declare your callback function like this if you were to name it MySSLReadFunction:

OSStatus MySSLReadFunction (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

Parameters
connection

A connection reference.

data
On return, points to the data read from the connection. You must allocate this memory before calling
this function.

dataLength
On input, a pointer to an integer representing the length of the data in bytes. On return, points to
the number of bytes actually transferred.

Callbacks 39
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Before using the Secure Transport API, you must write the functions SSLReadFunc and SSLWriteFunc (page
40) and provide them to the library by calling the SSLSetIOFuncs (page 33) function.

You may configure the underlying connection to operate in a nonblocking manner; in that case, a read
operation may well return errSSLWouldBlock, indicating less data than requested was transferred and
nothing is wrong except that the requested I/O hasn’t completed. This result is returned to the caller from
the functions SSLRead (page 25), SSLWrite (page 38), or SSLHandshake (page 23).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLWriteFunc
Defines a pointer to a customized write function that Secure Transport calls to write data to the connection.

typedef OSStatus (*SSLWriteFunc) (
 SSLConnectionRef connection,
 const void *data,
 size_t *dataLength
);

You would declare your callback function like this if you were to name it MySSLWriteFunction:

OSStatus MySSLWriteFunction (
 SSLConnectionRef connection,
 void *data,
 size_t *dataLength
);

Parameters
connection

The SSL session connection reference.

data
A pointer to the data to write to the connection.You must allocate this memory before calling this
function.

dataLength
Before calling, an integer representing the length of the data in bytes. On return, this is the number
of bytes actually transferred.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
Before using the Secure Transport API, you must write the functions SSLReadFunc (page 39) and SSLWriteFunc
and provide them to the library by calling the SSLSetIOFuncs (page 33) function.

40 Callbacks
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

You may configure the underlying connection to operate in a nonblocking manner. In that case, a write
operation may well return errSSLWouldBlock, indicating less data than requested was transferred and
nothing is wrong except that the requested I/O hasn’t completed. This result is returned to the caller from
the functions SSLRead (page 25), SSLWrite (page 38), or SSLHandshake (page 23).

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

Data Types

SSLConnectionRef
Represents a pointer to an opaque I/O connection object.

typedef const void *SSLConnectionRef;

Discussion
The I/O connection object refers to data that identifies a connection. The connection data is opaque to Secure
Transport; you can set it to any value that your application can use in the callback functions
SSLReadFunc (page 39) and SSLWriteFunc (page 40) to uniquely identify the connection, such as a socket
or endpoint. Use the SSLSetConnection (page 29) function to assign a value to the connection object.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

SSLContextRef
Represents a pointer to an opaque SSL session context object.

struct SSLContext;
typedef struct SSLContext *SSLContextRef;

Discussion
The SSL session context object references the state associated with a session. You cannot reuse an SSL session
context in multiple sessions.

Availability
Available in Mac OS X v10.2 and later.

Declared In
SecureTransport.h

Data Types 41
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

Constants

SSL Authentication Constants
Represents the requirements for client-side authentication.

typedef enum {
 kNeverAuthenticate,
 kAlwaysAuthenticate,
 kTryAuthenticate
} SSLAuthenticate;

Constants
kNeverAuthenticate

Indicates that client-side authentication is not required. (Default.)

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kAlwaysAuthenticate
Indicates that client-side authentication is required.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTryAuthenticate
Indicates that client-side authentication should be attempted. There is no error if the client doesn’t
have a certificate.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

SSL Cipher Suite Constants
Represents the cipher suites available.

42 Constants
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

typedef UInt32 SSLCipherSuite;
enum
{SSL_NULL_WITH_NULL_NULL = 0x0000,
 SSL_RSA_WITH_NULL_MD5 = 0x0001,
 SSL_RSA_WITH_NULL_SHA = 0x0002,
 SSL_RSA_EXPORT_WITH_RC4_40_MD5 = 0x0003,
 SSL_RSA_WITH_RC4_128_MD5 = 0x0004,
 SSL_RSA_WITH_RC4_128_SHA = 0x0005,
 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = 0x0006,
 SSL_RSA_WITH_IDEA_CBC_SHA = 0x0007,
 SSL_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0008,
 SSL_RSA_WITH_DES_CBC_SHA = 0x0009,
 SSL_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A,
 SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x000B,
 SSL_DH_DSS_WITH_DES_CBC_SHA = 0x000C,
 SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA = 0x000D,
 SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x000E,
 SSL_DH_RSA_WITH_DES_CBC_SHA = 0x000F,
 SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA = 0x0010,
 SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA = 0x0011,
 SSL_DHE_DSS_WITH_DES_CBC_SHA = 0x0012,
 SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA = 0x0013,
 SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0014,
 SSL_DHE_RSA_WITH_DES_CBC_SHA = 0x0015,
 SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA = 0x0016,
 SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 = 0x0017,
 SSL_DH_anon_WITH_RC4_128_MD5 = 0x0018,
 SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA = 0x0019,
 SSL_DH_anon_WITH_DES_CBC_SHA = 0x001A,
 SSL_DH_anon_WITH_3DES_EDE_CBC_SHA = 0x001B,
 SSL_FORTEZZA_DMS_WITH_NULL_SHA = 0x001C,
 SSL_FORTEZZA_DMS_WITH_FORTEZZA_CBC_SHA =0x001D,
 SSL_RSA_WITH_RC2_CBC_MD5 = 0xFF80,
 SSL_RSA_WITH_IDEA_CBC_MD5 = 0xFF81,
 SSL_RSA_WITH_DES_CBC_MD5 = 0xFF82,
 SSL_RSA_WITH_3DES_EDE_CBC_MD5 = 0xFF83,
 SSL_NO_SUCH_CIPHERSUITE = 0xFFFF
};

Constants
SSL_RSA_EXPORT_WITH_RC4_40_MD5

Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

Constants 43
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA
Session key size conforms to pre-1998 US export restrictions.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_RC2_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_IDEA_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_DES_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL_RSA_WITH_3DES_EDE_CBC_MD5
This value can be specified for SSL 2 but not SSL 3.

Available in Mac OS X v10.2 and later.

Declared in CipherSuite.h.

SSL Client Certificate State Constants
Represents the status of client certificate exchange.

44 Constants
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

typedef enum {
 kSSLClientCertNone,
 kSSLClientCertRequested,
 kSSLClientCertSent,
 kSSLClientCertRejected
} SSLClientCertificateState;

Constants
kSSLClientCertNone

Indicates that the server hasn’t asked for a certificate and that the client hasn’t sent one.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertRequested
Indicates that the server has asked for a certificat, but the client has not sent it.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertSent
Indicates that the server asked for a certificate, the client sent one, and the server validated it. The
application can inspect the certificate using the function SSLGetPeerCertificates (page 51).

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClientCertRejected
Indicates that the client sent a certificate but the certificate failed validation. This value is seen only
on the server side. The server application can inspect the certificate using the function
SSLGetPeerCertificates (page 51).

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

SSL Protocol Constants
Represents the SSL protocol version.

typedef enum {
 kSSLProtocolUnknown,
 kSSLProtocol2,
 kSSLProtocol3,
 kSSLProtocol3Only,
 kTLSProtocol1,
 kTLSProtocol1Only,
 kSSLProtocolAll
} SSLProtocol;

Constants
kSSLProtocolUnknown

Specifies that no protocol has been or should be negotiated or specified; use default.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

Constants 45
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

kSSLProtocol2
Specifies that only the SSL 2.0 protocol may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocol3
Specifies that the SSL 3.0 protocol is preferred; the SSL 2.0 protocol may be negotiated if the peer
cannot use the SSL 3.0 protocol.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocol3Only
Specifies that only the SSL 3.0 protocol may be negotiated; fails if the peer tries to negotiate the SSL
2.0 protocol.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTLSProtocol1
Specifies that the TLS 1.0 protocol is preferred but lower versions may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kTLSProtocol1Only
Specifies that only the TLS 1.0 protocol may be negotiated.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLProtocolAll
Specifies all supported versions.

Available in Mac OS X v10.3 and later.

Declared in SecureTransport.h.

Discussion
The descriptions given here apply to the functions SSLSetProtocolVersion (page 35) and
SSLGetProtocolVersion (page 20). For the functions SSLSetProtocolVersionEnabled (page 36) and
SSLGetProtocolVersionEnabled (page 21), only the following values are used. For these functions, each
constant except kSSLProtocolAll specifies a single protocol version.

 ■ kSSLProtocol2

 ■ kSSLProtocol3

 ■ kTLSProtocol1

 ■ kSSLProtocolAll

SSL Session State Constants
Represents the state of an SSL session.

46 Constants
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

typedef enum {
 kSSLIdle,
 kSSLHandshake,
 kSSLConnected,
 kSSLClosed,
 kSSLAborted
} SSLSessionState;

Constants
kSSLIdle

No I/O has been performed yet.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLHandshake
The SSL handshake is in progress.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLConnected
The SSL handshake is complete; the connection is ready for normal I/O.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLClosed
The connection closed normally.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

kSSLAborted
The connection aborted.

Available in Mac OS X v10.2 and later.

Declared in SecureTransport.h.

Result Codes

The most common result codes returned by Secure Transport functions are listed in the table below.

Errors in the range of –9819 through –9840 are fatal errors that are detected by the peer.

DescriptionValueResult Code

SSL protocol error.–9800errSSLProtocol

Available in Mac OS X v10.2 and later.

The cipher suite negotiation failed.–9801errSSLNegotiation

Available in Mac OS X v10.2 and later.

A fatal alert was encountered.–9802errSSLFatalAlert

Available in Mac OS X v10.2 and later.

Result Codes 47
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

DescriptionValueResult Code

Function is blocked; waiting for I/O. This is not fatal.–9803errSSLWouldBlock

Available in Mac OS X v10.2 and later.

An attempt to restore an unknown session failed.–9804errSSLSessionNotFound

Available in Mac OS X v10.2 and later.

The connection closed gracefully.–9805errSSLClosedGraceful

Available in Mac OS X v10.2 and later.

The connection closed due to an error.–9806errSSLClosedAbort

Available in Mac OS X v10.2 and later.

Invalid certificate chain.–9807errSSLXCertChainInvalid

Available in Mac OS X v10.2 and later.

Bad certificate format.–9808errSSLBadCert

Available in Mac OS X v10.2 and later.

An underlying cryptographic error was encountered.–9809errSSLCrypto

Available in Mac OS X v10.2 and later.

Internal error.–9810errSSLInternal

Available in Mac OS X v10.2 and later.

Module attach failure.–9811errSSLModuleAttach

Available in Mac OS X v10.2 and later.

Certificate chain is valid, but root is not trusted.–9812errSSLUnknownRootCert

Available in Mac OS X v10.2 and later.

No root certificate for the certificate chain.–9813errSSLNoRootCert

Available in Mac OS X v10.2 and later.

The certificate chain had an expired certificate.–9814errSSLCertExpired

Available in Mac OS X v10.2 and later.

The certificate chain had a certificate that is not yet valid.–9815errSSLCertNotYetValid

Available in Mac OS X v10.2 and later.

The server closed the session with no notification.–9816errSSLClosedNoNotify

Available in Mac OS X v10.2 and later.

An insufficient buffer was provided.–9817errSSLBufferOverflow

Available in Mac OS X v10.2 and later.

48 Result Codes
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

DescriptionValueResult Code

A bad SSL cipher suite was encountered.–9818errSSLBadCipherSuite

Available in Mac OS X v10.2 and later.

An unexpected message was received.–9819errSSLPeerUnexpectedMsg

Available in Mac OS X v10.3 and later.

A bad record MAC was encountered.–9820errSSLPeerBadRecordMac

Available in Mac OS X v10.3 and later.

Decryption failed.–9821errSSLPeerDecryptionFail

Available in Mac OS X v10.3 and later.

A record overflow occurred.–9822errSSLPeerRecordOverflow

Available in Mac OS X v10.3 and later.

Decompression failed.–9823errSSLPeerDecompressFail

Available in Mac OS X v10.3 and later.

The handshake failed.–9824errSSLPeerHandshakeFail

Available in Mac OS X v10.3 and later.

A bad certificate was encountered.–9825errSSLPeerBadCert

Available in Mac OS X v10.3 and later.

An unsupported certificate format was encountered.–9826errSSLPeerUnsupportedCert

Available in Mac OS X v10.3 and later.

The certificate was revoked.–9827errSSLPeerCertRevoked

Available in Mac OS X v10.3 and later.

The certificate expired.–9828errSSLPeerCertExpired

Available in Mac OS X v10.3 and later.

The certificate is unknown.–9829errSSLPeerCertUnknown

Available in Mac OS X v10.3 and later.

An illegal parameter was encountered.–9830errSSLIllegalParam

Available in Mac OS X v10.3 and later.

An unknown certificate authority was encountered.–9831errSSLPeerUnknownCA

Available in Mac OS X v10.3 and later.

Access was denied.–9832errSSLPeerAccessDenied

Available in Mac OS X v10.3 and later.

Result Codes 49
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

DescriptionValueResult Code

A decoding error occurred.–9833errSSLPeerDecodeError

Available in Mac OS X v10.3 and later.

A decryption error occurred.–9834errSSLPeerDecryptError

Available in Mac OS X v10.3 and later.

An export restriction occurred.–9835errSSLPeerExportRestriction

Available in Mac OS X v10.3 and later.

A bad protocol version was encountered.–9836errSSLPeerProtocolVersion

Available in Mac OS X v10.3 and later.

There is insufficient security for this operation.–9837errSSLPeerInsufficientSecurity

Available in Mac OS X v10.3 and later.

An internal error occurred.–9838errSSLPeerInternalError

Available in Mac OS X v10.3 and later.

The user canceled the operation.–9839errSSLPeerUserCancelled

Available in Mac OS X v10.3 and later.

No renegotiation is allowed.–9840errSSLPeerNoRenegotiation

Available in Mac OS X v10.3 and later.

The peer dropped the connection before responding.–9844errSSLConnectionRefused

Available in Mac OS X v10.4 and later.

Decryption failed.–9845errSSLDecryptionFail

Available in Mac OS X v10.3 and later.

A bad record MAC was encountered.–9846errSSLBadRecordMac

Available in Mac OS X v10.3 and later.

A record overflow occurred.–9847errSSLRecordOverflow

Available in Mac OS X v10.3 and later.

A configuration error occurred.–9848errSSLBadConfiguration

Available in Mac OS X v10.3 and later.

50 Result Codes
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Secure Transport Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

SSLGetPeerCertificates
Retrieves a peer certificate. (Deprecated in Mac OS X v10.5.)

OSStatus SSLGetPeerCertificates (
 SSLContextRef context,
 CFArrayRef *certs
);

Parameters
context

An SSL session context reference.

certs
On return, a pointer to an array of values of type SecCertificateRef representing the peer certificate
and the certificate chain used to validate it. The certificate at index 0 of the returned array is the peer
certificate; the root certificate (or the closest certificate to it) is at the end of the returned array. The
entire array is created by the Secure Transport library; you must release it when you are finished with
it.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
This function is valid any time after a handshake attempt. You can use it to examine a peer certificate, to
examine a certificate chain to determine why a handshake attempt failed, or to retrieve the certificate chain
in order to validate the certificate yourself (see SSLSetEnableCertVerify (page 31)).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

Related Sample Code
SSLSample

Declared In
SecureTransport.h

Deprecated in Mac OS X v10.5 51
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Secure Transport Functions

SSLGetTrustedRoots
Retrieves the current list of trusted root certificates. (Deprecated in Mac OS X v10.5.)

OSStatus SSLGetTrustedRoots (
 SSLContextRef context,
 CFArrayRef *trustedRoots
);

Parameters
context

An SSL session context reference.

trustedRoots
On return, a pointer to a value of type CFArrayRef. This array contains values of type
SecCertificateRef representing the current set of trusted roots.

Return Value
A result code. See “Secure Transport Result Codes” (page 47).

Discussion
You can use the SSLSetTrustedRoots (page 38) function to replace or add to the set of trusted root
certificates. If SSLSetTrustedRoots (page 38) has never been called for this session, the
SSLGetTrustedRoots function returns the system’s default set of trusted root certificates.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.

Declared In
SecureTransport.h

52 Deprecated in Mac OS X v10.5
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Secure Transport Functions

This table describes the changes to Secure Transport Reference.

NotesDate

Clarified and expanded some function descriptions.2004-08-31

New document that provides a reference to the Secure Transport API, which
implements the SSL and TLS protocols for secure communication over a network.

2003-05-15

53
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

E

errSSLBadCert constant 48
errSSLBadCipherSuite constant 49
errSSLBadConfiguration constant 50
errSSLBadRecordMac constant 50
errSSLBufferOverflow constant 48
errSSLCertExpired constant 48
errSSLCertNotYetValid constant 48
errSSLClosedAbort constant 48
errSSLClosedGraceful constant 48
errSSLClosedNoNotify constant 48
errSSLConnectionRefused constant 50
errSSLCrypto constant 48
errSSLDecryptionFail constant 50
errSSLFatalAlert constant 47
errSSLIllegalParam constant 49
errSSLInternal constant 48
errSSLModuleAttach constant 48
errSSLNegotiation constant 47
errSSLNoRootCert constant 48
errSSLPeerAccessDenied constant 49
errSSLPeerBadCert constant 49
errSSLPeerBadRecordMac constant 49
errSSLPeerCertExpired constant 49
errSSLPeerCertRevoked constant 49
errSSLPeerCertUnknown constant 49
errSSLPeerDecodeError constant 50
errSSLPeerDecompressFail constant 49
errSSLPeerDecryptError constant 50
errSSLPeerDecryptionFail constant 49
errSSLPeerExportRestriction constant 50
errSSLPeerHandshakeFail constant 49
errSSLPeerInsufficientSecurity constant 50
errSSLPeerInternalError constant 50
errSSLPeerNoRenegotiation constant 50
errSSLPeerProtocolVersion constant 50
errSSLPeerRecordOverflow constant 49
errSSLPeerUnexpectedMsg constant 49
errSSLPeerUnknownCA constant 49
errSSLPeerUnsupportedCert constant 49

errSSLPeerUserCancelled constant 50
errSSLProtocol constant 47
errSSLRecordOverflow constant 50
errSSLSessionNotFound constant 48
errSSLUnknownRootCert constant 48
errSSLWouldBlock constant 48
errSSLXCertChainInvalid constant 48

K

kAlwaysAuthenticate constant 42
kNeverAuthenticate constant 42
kSSLAborted constant 47
kSSLClientCertNone constant 45
kSSLClientCertRejected constant 45
kSSLClientCertRequested constant 45
kSSLClientCertSent constant 45
kSSLClosed constant 47
kSSLConnected constant 47
kSSLHandshake constant 47
kSSLIdle constant 47
kSSLProtocol2 constant 46
kSSLProtocol3 constant 46
kSSLProtocol3Only constant 46
kSSLProtocolAll constant 46
kSSLProtocolUnknown constant 45
kTLSProtocol1 constant 46
kTLSProtocol1Only constant 46
kTryAuthenticate constant 42

S

SSL Authentication Constants 42
SSL Cipher Suite Constants 42
SSL Client Certificate State Constants 44
SSL Protocol Constants 45
SSL Session State Constants 46
SSLAddDistinguishedName function 9
SSLClose function 10

55
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

Index

SSLConnectionRef data type 41
SSLContextRef structure 41
SSLDisposeContext function 10
SSLGetAllowsAnyRoot function 11
SSLGetAllowsExpiredCerts function 11
SSLGetAllowsExpiredRoots function 12
SSLGetBufferedReadSize function 12
SSLGetClientCertificateState function 13
SSLGetConnection function 13
SSLGetDiffieHellmanParams function 14
SSLGetEnableCertVerify function 15
SSLGetEnabledCiphers function 15
SSLGetNegotiatedCipher function 16
SSLGetNegotiatedProtocolVersion function 16
SSLGetNumberEnabledCiphers function 17
SSLGetNumberSupportedCiphers function 18
SSLGetPeerCertificates function (Deprecated in Mac

OS X v10.5) 51
SSLGetPeerDomainName function 18
SSLGetPeerDomainNameLength function 19
SSLGetPeerID function 19
SSLGetProtocolVersion function 20
SSLGetProtocolVersionEnabled function 21
SSLGetRsaBlinding function 21
SSLGetSessionState function 22
SSLGetSupportedCiphers function 22
SSLGetTrustedRoots function (Deprecated in Mac OS

X v10.5) 52
SSLHandshake function 23
SSLNewContext function 24
SSLRead function 25
SSLReadFunc callback 39
SSLSetAllowsAnyRoot function 25
SSLSetAllowsExpiredCerts function 26
SSLSetAllowsExpiredRoots function 27
SSLSetCertificate function 28
SSLSetClientSideAuthenticate function 29
SSLSetConnection function 29
SSLSetDiffieHellmanParams function 30
SSLSetEnableCertVerify function 31
SSLSetEnabledCiphers function 32
SSLSetEncryptionCertificate function 32
SSLSetIOFuncs function 33
SSLSetPeerDomainName function 34
SSLSetPeerID function 35
SSLSetProtocolVersion function 35
SSLSetProtocolVersionEnabled function 36
SSLSetRsaBlinding function 37
SSLSetTrustedRoots function 38
SSLWrite function 38
SSLWriteFunc callback 40
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA constant

44

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA constant
44

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA constant
44

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 constant 44
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA constant

44
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA constant 43
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 constant 43
SSL_RSA_EXPORT_WITH_RC4_40_MD5 constant 43
SSL_RSA_WITH_3DES_EDE_CBC_MD5 constant 44
SSL_RSA_WITH_DES_CBC_MD5 constant 44
SSL_RSA_WITH_IDEA_CBC_MD5 constant 44
SSL_RSA_WITH_RC2_CBC_MD5 constant 44

56
2004-08-31 | © 2003, 2004 Apple Computer, Inc. All Rights Reserved.

INDEX

	Secure Transport Reference
	Contents
	Secure Transport Reference
	Overview
	Functions by Task
	Creating and Disposing of a Session Context
	Configuring an SSL Session
	Managing an SSL Session
	Managing Ciphers
	Managing Root Certificates
	Managing Certificates
	Managing the Peer Domain Name
	Deprecated Functions

	Functions
	SSLAddDistinguishedName
	SSLClose
	SSLDisposeContext
	SSLGetAllowsAnyRoot
	SSLGetAllowsExpiredCerts
	SSLGetAllowsExpiredRoots
	SSLGetBufferedReadSize
	SSLGetClientCertificateState
	SSLGetConnection
	SSLGetDiffieHellmanParams
	SSLGetEnableCertVerify
	SSLGetEnabledCiphers
	SSLGetNegotiatedCipher
	SSLGetNegotiatedProtocolVersion
	SSLGetNumberEnabledCiphers
	SSLGetNumberSupportedCiphers
	SSLGetPeerDomainName
	SSLGetPeerDomainNameLength
	SSLGetPeerID
	SSLGetProtocolVersion
	SSLGetProtocolVersionEnabled
	SSLGetRsaBlinding
	SSLGetSessionState
	SSLGetSupportedCiphers
	SSLHandshake
	SSLNewContext
	SSLRead
	SSLSetAllowsAnyRoot
	SSLSetAllowsExpiredCerts
	SSLSetAllowsExpiredRoots
	SSLSetCertificate
	SSLSetClientSideAuthenticate
	SSLSetConnection
	SSLSetDiffieHellmanParams
	SSLSetEnableCertVerify
	SSLSetEnabledCiphers
	SSLSetEncryptionCertificate
	SSLSetIOFuncs
	SSLSetPeerDomainName
	SSLSetPeerID
	SSLSetProtocolVersion
	SSLSetProtocolVersionEnabled
	SSLSetRsaBlinding
	SSLSetTrustedRoots
	SSLWrite

	Callbacks
	SSLReadFunc
	SSLWriteFunc

	Data Types
	SSLConnectionRef
	SSLContextRef

	Constants
	SSL Authentication Constants
	SSL Cipher Suite Constants
	SSL Client Certificate State Constants
	SSL Protocol Constants
	SSL Session State Constants

	Result Codes

	Appendix A: Deprecated Secure Transport Functions
	Deprecated in Mac OS X v10.5
	SSLGetPeerCertificates
	SSLGetTrustedRoots

	Revision History
	Index
	E
	K
	S

