
Resolution Independence Guidelines
User Experience > Carbon

2007-05-04

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Quartz, and QuickDraw are trademarks
of Apple Inc., registered in the United States
and other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Resolution Independence Guidelines 7

Who Should Read This Document? 7
Organization of This Document 7

Chapter 1 Overview of Resolution Independence 9

A Resolution-Independent User Interface 9
The Scale Factor 10
How to Change the Scale Factor 12

Changing the Global Scale Factor 12
Changing an Application’s Scale Factor 12

Scale Modes 12
Framework-Scaled Mode 13
Magnified Mode (Carbon Only) 14

Keeping Track of Coordinate Systems 14

Chapter 2 Supporting Resolution Independence 17

Supporting Resolution Independence in Cocoa 17
Resolution-Independent Compositing 17
Cocoa Bitmapped Images 18
Detecting the Scale Factor 18
Coordinate Conversion in Cocoa 19
Changes to the deviceDescription Method 20

Supporting Resolution Independence in Carbon 20
Framework-Scaled Mode 20
Magnified Mode 20
Detecting Scale Information 21
Coordinate Conversion in Carbon 21
Custom Drawing in Carbon 22
Unsupported Technologies 23

Resolution Independence Support in Java 23
Accessing the Scaling Transform 23
Other Issues 24

Cross-Process Communication 24
OpenGL 24

Chapter 3 Updating Icons and Other Artwork 25

Overview 25
Icon Design Guidelines 26

3
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

Updates to Icon Services 27
Bitmap Image Guidelines 27
Vector-Based (PDF) Image Guidelines 28

Chapter 4 Troubleshooting 29

Problems 29
My controls and other window elements are truncated, or show up in odd places. 29
Some of my artwork displays with cracks. 29
Some of my bitmap images show banding or jaggies. 30

Questions 31
What about plug-ins? 31
My application still needs to work on earlier systems. What's the best way to ensure backwards
compatibility? 31

Document Revision History 33

4
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Overview of Resolution Independence 9

Figure 1-1 Points versus pixels in user and device space 9
Figure 1-2 Resolution differences in higher density displays 11
Figure 1-3 Relative sizes in framework-scaled mode 13
Figure 1-4 Relative sizes in magnified mode 14

Chapter 3 Updating Icons and Other Artwork 25

Figure 3-1 Changing levels of detail for icon sizes 26
Figure 3-2 Specifying resolution for 1x and 4x bitmap images 28

Chapter 4 Troubleshooting 29

Figure 4-1 Pixel cracking 29
Figure 4-2 Interpolation problems 31
Listing 4-1 Aligning on pixel boundaries in Carbon 30
Listing 4-2 Aligning on pixel boundaries in Cocoa 30

5
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

6
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Note: This document was previously titled Resolution Independence Overview.

This document describes resolution independence in Mac OS X and explains how to start updating applications
to support high-resolution displays.

What Is Resolution Independence?

In the past, developers could assume that the resolution of screen displays was 72 dpi and that one unit in
the application's drawing space corresponded to one pixel. Specifying a 100 x 200 window in the application
would result in a 100 x 200 pixel window onscreen. However, with the introduction of LCD displays with
higher pixel densities (often well over 100 dpi), maintaining a one-to-one correspondence between drawing
units and screen pixels can result in images that are too small for most users.

The solution is to make the drawing sizes specified by the application independent of the display's pixel
resolution and allow arbitrary scaling between the two. Depending on the type of application, the user
interface, and the drawing technologies used, you may need to update your code to provide the best user
experience on a resolution-independent system.

Who Should Read This Document?

This document is relevant for all Carbon and Cocoa developers who are writing applications that display
information onscreen (that is, applications with a graphical user interface).

Mac OS X v10.4 introduced preliminary support for resolution independence, but the implementation was
very limited and many visual errors occur. Mac OS X v10.5 adds further support and the implementation has
been refined. Most Cocoa applications, and Carbon applications that use compositing mode, should be
capable of being resolution-independent when running on this release. However, resolution independence
is still a developer-only feature in Mac OS X v10.5 and is not yet intended for end-user adoption.

Organization of This Document

The chapters in this document cover the following topics:

 ■ “Overview of Resolution Independence” (page 9) explains the basics of resolution independence.

 ■ “Supporting Resolution Independence” (page 17) describes how to start adapting your application to
take advantage of resolution independence.

What Is Resolution Independence? 7
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Resolution Independence
Guidelines

 ■ “Updating Icons and Other Artwork” (page 25) describes how to update the icons and other artwork in
your application to take advantage of resolution independence.

 ■ “Troubleshooting” (page 29) addresses some problems and questions you may have as you modify your
application to take advantage of resolution independence.

8 Organization of This Document
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Resolution Independence Guidelines

This chapter explains the basics of resolution independence: what it is and how it works.

A Resolution-Independent User Interface

Historically, image dimensions were described in pixels, such as a 100 x 20 pixel button. The user space (that
is, the idealized coordinate system the application draws into) was essentially the same as the device space
(the coordinate system corresponding to the pixels of an output device). For example, when using Carbon
QuickDraw, applications drew into the user space assuming that one QuickDraw unit corresponded to one
pixel onscreen.

Quartz introduced an abstract coordinate system, which had no ties to real-world display pixels. However,
you could assume that these Quartz units (typically called points) had a scale of about 72 units per inch.
Onscreen, one Quartz point still mapped to one pixel. Doing so was reasonable, as physical display resolutions
were about 72 dots (or pixels) per inch (dpi) and having a one-to-one correspondence between drawing
units and onscreen pixels resulted in a reasonably sized image. Unfortunately, with the increasing pixel
density of today's LCD displays, this fixed resolution is becoming an obstacle. As the pixel density increases,
the comparative size of an image described in pixels grows smaller and smaller. On a 144 dpi screen, a 200
x 200 image is one quarter the size of a comparable image on a 72 dpi screen.

Resolution independence allows greater flexibility with high-density displays by allowing a Quartz point to
map to any number of pixels (or fractions thereof). You can no longer assume a 1:1 correspondence between
a Quartz point and an onscreen pixel as shown in Figure 1-1.

Figure 1-1 Points versus pixels in user and device space

Device space coordinates

40
points

80
points

60
pixels

120
pixels

User space coordinates

A Resolution-Independent User Interface 9
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

Note: Resolution independence for display devices is analogous to the scaling that occurs when printing;
whether printing on a 300 dpi printer or a 1200 dpi printer, a line 72 points long always appears as roughly
one inch long on paper (assuming standard size output).

The Scale Factor

Resolution independence makes it possible to choose between seeing more detail (more pixels per unit
point) versus having more screen real estate (fewer pixels per unit point, but more points onscreen). A new
parameter, called the scale factor, is required to govern the ratio between an onscreen pixel and a Quartz
unit.

Currently, a scale factor of 1.0 corresponds to 72 dpi. If a display had a pixel density of 144 dpi, software
would have to scale an image by a factor of 2.0 in order for it to appear the same size as on a 72 dpi display.
In a similar fashion, say you had two displays of the same physical size, but one has a 1024 x 768 pixel
resolution and the other 1536 x 1152 pixels. To make the higher-density display show the same amount of
screen real estate, you would have to apply a scale factor of 1536/1024 = 1.5 to its user interface. Given that
scaling, the high-density screen would look the same from a distance, but a close-range view would display
more detail as shown in Figure 1-2.

10 The Scale Factor
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

Figure 1-2 Resolution differences in higher density displays

 Monday's child is fair of face,

 Tuesday's child is full of grace,

 Wednesday's child is full of woe,

 Thursday's child has far to go,

 Friday's child is loving & giving,

 Saturday's child must work for a living,

1152

1536

72 dpi display

108 dpi at 1.5 scaling factor

 Monday's child is fair of face,

 Tuesday's child is full of grace,

 Wednesday's child is full of woe,

 Thursday's child has far to go,

 Friday's child is loving & giving,

 Saturday's child must work for a living,

768

1024

giving,

The scale factor applies only to onscreen displays, not printing. In actuality, printers already use a form of
scaling when rendering a page. For example, you can print a document to both a 300 dpi and 1200 dpi
printer and the output is the same size; the output from the 1200 dpi printer is just crisper and shows more
detail.

The Scale Factor 11
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

How to Change the Scale Factor

The default scale factor is 1.0 (no scaling). You can test other scale factors on a system-wide basis using the
Quartz Debug application, or on a per-application basis using the defaults database.

Changing the Global Scale Factor

You can use the Quartz Debug application to change the scale factor on a system-wide basis. Quartz Debug
is available in the Developer installation at /Developer/Applications/Performance Tools/. To change
the scale factor globally:

1. Launch the Quartz Debug application.

2. From the Tools menu, choose Show User Interface Resolution. A User Interface Resolution window
appears.

3. Select the new scale factor by moving the slider.

The scale factor you select does not affect currently running applications, but any applications launched after
changing the scale factor are resized accordingly.

Changing an Application’s Scale Factor

To run a specific application with a scale factor that’s different from the global scale factor, you can add an
AppleDisplayScaleFactor entry for the application to the defaults database. For example, to run the
Mail application with a 1.25 scale factor:

1. Determine the bundle identifier. Bundle identifiers are defined in the Info.plist dictionary inside the
application bundle. The bundle identifier for Mail is com.apple.mail.

2. Quit Mail, launch the Terminal application, and execute this command:

defaults write com.apple.mail AppleDisplayScaleFactor 1.25

3. Launch Mail and confirm that its user interface is now scaled appropriately.

4. To delete the scale factor entry for Mail, execute this command:

defaults delete com.apple.mail AppleDisplayScaleFactor

Scale Modes

Given that the scale factor is adjustable, application user interfaces now have to adjust their size accordingly.
For example, a user interface displayed on a 144 dpi display would have to have its dimensions doubled in
order to appear the same size as it did on a 72 dpi display. In theory, an unscaled interface might still be

12 How to Change the Scale Factor
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

usable, but many of its features would appear very small (such as buttons, checkboxes, and so on). Any
application that makes assumptions about how Quartz units relate to screen pixels definitely needs to scale
its user interface accordingly.

The amount of work needed to scale the user interface depends on the application code base. Resolution
independence has two adoption paths: using framework-scaled mode and using magnified mode.

Framework-Scaled Mode

Framework-scaled mode means that the application framework (Cocoa or Carbon) automatically adjusts the
drawing size depending on the scale factor. The size of the window buffer is increased to accommodate the
actual number of pixels to be drawn to the screen, as shown in Figure 1-3.

Note: The application user space in Figure 1-3 is drawn the same size as the window buffer and the display
because the same amount of window area is being covered, even though the units that describe the space
are different.

Figure 1-3 Relative sizes in framework-scaled mode

100
 pixels

80
 points

Display

Window buffer

Application

72
points

90
pixels

90
pixels

100
 pixels

Application frameworks such as Carbon and Cocoa scale all standard user interface elements (such as buttons,
menus, and the window title bar) to the correct size. In addition, the frameworks add a scaling transform to
a window's Quartz context, so that any content drawn using Quartz or the Application Kit is scaled
automatically.

Cocoa applications automatically use framework-scaled mode, and in most cases you don't have to do any
work to support resolution independence. However, if your Cocoa code uses any QuickDraw calls, you need
to replace them with their Quartz equivalents.

Carbon applications can use framework-scaled mode if they use compositing windows that contain
HIView-based controls and they draw using Quartz. Windows also need to have the framework-scaled attribute
set, either by selecting the attribute in the Inspector window in Interface Builder, or by specifying
kWindowFrameworkScaledAttribute at window creation time.

Scale Modes 13
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

Magnified Mode (Carbon Only)

Magnified mode is the default compatibility mode for providing basic scaling support in Carbon applications
that can’t use framework-scaled mode. The window server applies the current scale factor to the window
buffer to create a magnified view of the window, as shown in Figure 1-4. That is, the window is simply enlarged
to scale, with no additional detail, and may look slightly blurry as a result.

Figure 1-4 Relative sizes in magnified mode

72
points

72
pixels

100
 pixels

80
 points

90
pixels

Display 80
 pixels

Application

Window
buffer

Because of the loss of detail, you should rely on magnified mode only until you make the necessary changes
to support framework scaling in your application. You should adopt compositing windows, use HIView-based
controls, and draw using Quartz.

Keeping Track of Coordinate Systems

In this document, the coordinate system used to draw in application windows is referred to as user space.
This name is akin to the term Quartz uses. In Quartz, user space is often contrasted with device space, which
represents the coordinate system used by a display device (a monitor, printer, and so on).

When in resolution-independent mode, all onscreen positions and bounds are automatically translated to
their proper equivalents in user space. The coordinate system used depends on the scale mode.

 ■ When drawing with Quartz in framework-scaled mode, user space is the same coordinate system used
by Quartz. Some documentation refers to this coordinate system as being 72 points per inch, but you
cannot assume a 1:1 correspondence between Quartz units and pixels. All coordinates are view-relative,
as is standard for Cocoa views and HIViews.

 ■ When Carbon applications use older QuickDraw-based or noncompositing windows (that is, in magnified
mode), user space is the old-style pseudo-72 dpi coordinate space, in which one unit in user space is
assumed to correspond to one pixel. To ensure that older Carbon functions still work properly, all window
positions, bounds, and so on, are presented to the application in this coordinate system, as are global
values such as mouse click positions, or Carbon event parameters that assume global coordinates.

14 Keeping Track of Coordinate Systems
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

A single process can handle multiple scale modes on a window-by-window basis. For example, a Carbon
application might contain a magnified Carbon window, a framework-scaled Carbon window, and a
framework-scaled Cocoa window. It’s important to note that Cocoa applications do not support magnified
Carbon windows well. If you’re using Carbon windows in a Cocoa application, the Carbon windows should
be framework-scaled.

Many of the methods and functions you need to use for correct coordinate conversion in a
resolution-independent environment are available in earlier versions of Mac OS X. With framework scaling
in Mac OS X v10.5, it is now important to make sure you are using these facilities correctly and consistently.

Keeping Track of Coordinate Systems 15
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

16 Keeping Track of Coordinate Systems
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of Resolution Independence

This chapter describes how to start adapting your application to take advantage of resolution independence.

Supporting Resolution Independence in Cocoa

Cocoa applications require little work to support resolution independence because the Cocoa frameworks
handle the scaling for you. However, depending on how you manipulate windows and the views within
them, you may need to make some changes. Of course, in addition to code changes, you may need to provide
higher-resolution versions of any custom artwork.

Because of scaling, the coordinates of the window frame and its top-level view (the frame view) are not
always the same. For example, say you have a window frame view with dimensions 80 x 80 points. If the
scale factor is 1.0, there is a 1 : 1 correspondence between the units of the frame view and its owning window;
that is, the window is displayed as being 80 x 80 pixels. However, if the scale factor is 1.25, the window size
is displayed 25% larger, resulting in a 100 x 100 pixel window. Any calls that return the size of the window
return 100 x 100.

Note: In the resolution-independent world, all Cocoa views are scaled if the scale factor is not 1.0; however,
if the scaling for a view is due only to the scale factor, the NSView method isRotatedOrScaledFromBase
returns NO. This result minimizes possible overhead from scrolling and similar operations.

An application must not assume that the window frame and the view frames within the window use the
same coordinate system. For example, an application that positions a view based on the window frame does
not always get correct results.

Resolution-Independent Compositing

Historically, compositing was done in the base coordinate system of the image being rendered, regardless
of the coordinate system of the owning view. To allow compositing to support resolution independence,
you can assume that all base coordinates are transformed by the current scale factor.

Here are some common cases.

1. Compositing a 72 dpi 100 x 100 source image in a 1.25 scale factor window.

A 72 dpi 100 x 100 image (stored in an NSImageRep object) contains 100 x 100 pixels. When composited
into a view in a scaled window, the image is scaled to fill 125 x 125 pixels using the proper interpolation
algorithm. Any coordinate transforms on the destination view (aside from the window scaling) are
ignored.

2. Compositing a 90 dpi 100 x 100 source image in a 1.25 scale factor window.

Supporting Resolution Independence in Cocoa 17
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

A 90 dpi 100 x 100 image contains 125 x 125 pixels. When composited into a view in a scaled window,
this image (rendered from an NSCachedImageRep object) contains 125 x 125 pixels, so no interpolation
is needed. Any coordinate transforms on the destination view (aside from the window scaling) are
ignored.

3. Creating an NSCachedImageRep object from a 72 dpi 100 x 100 source image to display in a 1.25 scale
factor window.

A 72 dpi 100 x 100 source image contains 100 x 100 pixels. The NSCachedImageRep object is created
with a size of 100 x 100, but holds 125 x 125 pixels because of the scale factor. The source image is scaled
to fit the required pixel size using the proper interpolation algorithm. When the cached image is drawn,
the pixels are copied 1 to 1 from the cached image to the destination window.

Cocoa Bitmapped Images

Each NSImageRep object that contains bitmapped data indicates its resolution (dots-per-inch) because the
image size is defined in points as well as in pixel width and height. A 72 dpi NSImageRep object has a 1 : 1
correspondence between points and pixels, while a 144 dpi NSImageRep object has a 1 : 2 correspondence
between points and pixels. NSCachedImageRep objects are stored already scaled to the destination window;
for example, a 100 x 100 NSCachedImageRep for a window with a scale factor of 1.25 would report a size
of 100 x 100 points, but pixel dimensions of 125 x 125.

Detecting the Scale Factor

Cocoa supports several methods that your application can use to obtain scale factor information. It should
be noted that most Cocoa applications do not need to use these methods.

To obtain the global scale factor (as set in Quartz Debug), use the userSpaceScaleFactor method in the
NSScreen class:

@interface NSScreen : NSObject
...
- (CGFloat)userSpaceScaleFactor;
...
@end

To obtain the scale factor for a particular window, use the userSpaceScaleFactormethod in the NSWindow
class:

@interface NSWindow : NSResponder
...
- (CGFloat)userSpaceScaleFactor;
...
@end

If you want to create a window that should not be scaled (for example, a custom window), you can specify
the NSUnscaledWindowMask mask at window creation time. For unscaled windows, the
userSpaceScaleFactor method returns 1.0.

18 Supporting Resolution Independence in Cocoa
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

Coordinate Conversion in Cocoa

To support resolution independence, you may need to convert rectangles or points from the coordinate
system of one NSView instance to another (typically the superview or subview), or from one NSView instance
to the containing window. The NSView class defines six methods that convert rectangles, points, and sizes
in either direction:

Convert from the receiver to the specified viewConvert to the receiver from the specified view

convertPoint:toView:convertPoint: fromView:

convertRect:toView:convertRect: fromView:

convertSize:toView:convertSize: fromView:

The convert...:fromView: methods convert the values to the receiver's coordinate system, from the
coordinate system of the view passed as the second parameter. If nil is passed as the view, the values are
assumed to be in the window's base coordinate system and are converted to the receiver's coordinate system.
The convert..:toView: methods do the inverse, converting values in the receiver's coordinate system to
the coordinate system of the view passed as a parameter. If the view parameter is nil, the values are converted
to the base coordinate system of the receiver's window.

For converting to and from the screen coordinate system, NSWindow defines the convertBaseToScreen:
and convertScreenToBase: methods.

For more information about coordinate conversion in views, see the chapter Working with the View Hierarchy
in View Programming Guide for Cocoa. The chapter Coordinate Systems and Transforms in Cocoa Drawing
Guide may also be helpful.

Coordinate Conversion in Mac OS X v10.5

In Mac OS X v10.5, NSView provides a new set of methods that should be used when performing pixel
alignment of view content. These methods provide the means to transform geometry to and from a base
coordinate space that is pixel-aligned with the backing store into which the view is being drawn.

Convert from the base coordinate systemConvert to the base coordinate system

convertPointFromBase:convertPointToBase:

convertSizeFromBase:convertSizeToBase:

convertRectFromBase:convertRectToBase:

These new coordinate transform methods provide a way to abstract view content drawing code from the
details of particular backing store configurations, and always achieve correct pixel alignment without having
to special-case for layer-backed vs. conventional view rendering mode.

For more information, see Application Kit Release Notes (10.5).

Supporting Resolution Independence in Cocoa 19
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

Changes to the deviceDescription Method

Both the NSWindow and NSScreen classes define a deviceDescription method. This method returns a
dictionary containing a NSDeviceResolution key. The NSDeviceResolution key has historically contained
an NSSize value of (72.0, 72.0). In Mac OS X v10.4 and later, NSDeviceResolution contains an NSSize
value of (72.0 * scale factor, 72.0 * scale factor).

Supporting Resolution Independence in Carbon

Carbon applications have two scaling options: framework-scaled mode and magnified mode. You set these
modes on a window-by-window basis by setting the appropriate attribute at window creation time. If you
do not select a scale mode, the system assumes magnified mode by default. You can specify the scale mode
of a window only at window creation time.

Framework-Scaled Mode

As described previously, a window can use the framework-scaled mode if it uses HIView-based controls (that
is, it uses compositing mode) and draws exclusively with Quartz. At drawing time, a scaling transform is
applied to the Quartz context used by the views. Also, in order to support older functions, any window
coordinate information (window bounds, mouse position, and so on) is automatically translated to reflect
the proper window- or view-centric origin before being passed to the application.

A major benefit of framework-scaled mode is that windows loaded from nib files automatically work at all
scale factors with no need to reposition their contents.

You specify framework-scaled mode by setting the kWindowFrameworkScaledAttribute attribute at
window creation time or by choosing Framework Scaled for the Scaling popup button in the window inspector
in Interface Builder version 2.5 and later.

While specifying framework-scaled mode means most of the scaling work is handled for you, you still need
to supply higher-resolution versions of any custom artwork, such as icons, background images, and so on.

Magnified Mode

Magnified mode is the default rendering mode. If the scale factor is not 1.0, all windows that are not tagged
as being in framework-scaled mode are scaled in magnified mode. As described previously, the window is
simply scaled to match the scale factor.

Important: Because magnified windows do not look as crisp as properly scaled windows, you should adopt
framework scaling as soon as possible.

In magnified mode, all onscreen coordinates are mapped to their user space equivalents when passed to
the application. For example, if the scale factor is 2.0, a mouse click onscreen at a particular pixel is mapped
to its window or view-centric equivalent location when passed in a mouse-down event.

20 Supporting Resolution Independence in Carbon
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

Detecting Scale Information

To determine the scale factor for your application, you can use the HIGetScaleFactor function:

CGFloat HIGetScaleFactor (void);

If you need to determine the scale mode for a particular window (and also the application scale factor), you
can call the HIWindowGetScaleMode function:

OSStatus HIWindowGetScaleMode (
 HIWindowRef inWindow,
 HIWindowScaleMode *outMode,
 CGFloat *outScaleFactor);

On output, outMode returns one of the following values:

kHIWindowScaleModeUnscaled
The window is not scaled at all because the scale factor is 1.0.

kHIWindowScaleModeMagnified
The window‘s backing store is being magnified because the scale factor is not equal to 1.0 and because
the window was not created with the framework-scaled attribute.

kHIWindowScaleModeFrameworkScaled
The window‘s contents are scaled to match the scale factor because the scale factor is not equal to
1.0 and because the window was created with the framework-scaled attribute.

Note: A fourth scale mode named kHIWindowScaleModeApplicationScaled was available in Mac OS X
v10.4 but was never fully implemented and is not supported at all in Mac OS X v10.5 and later.

Coordinate Conversion in Carbon

Because the scale mode in Carbon applications can be on a window-by-window basis, you may often need
to convert between the various coordinate systems involved. The HIGeometry programming interface (see
HIGeometry Reference) provides three functions that simplify conversion:

 ■ HIPointConvert to translate an HIPoint structure.

 ■ HIRectConvert to translate an HIRect structure. Note that the HIRect structure has an organization
different from that of the older QuickDraw Rect structure.

 ■ HISizeConvert to translate an HISize structure.

These conversion functions require you to specify the source and destination coordinate spaces as well as
any associated objects, if required. For example, if you wanted to translate a point into view coordinates,
you must specify the HIView to which the coordinates refer. You specify the coordinate spaces by passing
the following constants:

 ■ kHICoordSpace72DPIGlobal, which specifies the old global coordinate system defined by QuickDraw.
When the scale factor is 1.0, this space is equivalent to kHICoordSpaceScreenPixel.

 ■ kHICoordSpaceScreenPixel, which is the coordinate space defined by the actual screen pixels.

Supporting Resolution Independence in Carbon 21
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

 ■ kHICoordSpaceWindow, which specifies a window-centric coordinate system, with the origin (0,0) being
the top-left corner of the window's structure region.

 ■ kHICoordSpaceView, which specifies an HIView-centric coordinate system. The origin (0,0) is the top-left
corner of the view.

The conversion functions take floating-point coordinates, which means that rounding may be necessary in
certain cases. Which way to round depends on whether the system is more forgiving of overstating or
understating the value. For example:

 ■ When the coordinate is used to define some sort of maximal area, you should outset the value. That is,
round the value so that it defines a larger area rather a smaller one. For example, you should outset
coordinate values that define a view's structure shape, because that area defines the maximum bounds
into which the view can draw.

 ■ When defining a minimal area, you should inset the value. For example, you should inset the coordinate
values for a view's opaque region, because that area defines the largest area that can be assumed to be
opaque.

You can use the Quartz 2D functions CGRectInset and CGRectIntegral to simplify inset and outset
operations. The BSD Library functions ceil and floor (available in math.h) may also be useful.

Keep in mind that HIShapeRef values take only integer coordinates. If you attempt to create a shape from
floating-point coordinates (for example, by calling HIShapeCreateWithRect on an HIRect object), the
call automatically rounds any non-integer coordinates to outset the shape. To avoid unexpected results, you
should round any coordinates appropriately (inset or outset) before creating an HIShape based upon it.

Custom Drawing in Carbon

If your application uses custom controls or menus, you may need to make some changes to make them
compatible with resolution independence.

Custom Controls

If you are still using QuickDraw to draw, you should adopt Quartz. If you are using the Appearance Manager
to draw control elements, use HITheme (which is Quartz-savvy) instead.

In framework-scaled mode, the Quartz context passed to your custom view in the kEventControlDraw
event has already been transformed to match the scale factor, so you probably won't need to update your
drawing code.

Custom Menus

If your application still uses custom MDEFs, the Menu Manager creates windows to hold them and scales
them appropriately, so they are effectively in magnified mode. However, you should consider updating your
MDEFs to custom HIView-based menus.

When using view-based menus, the Menu Manager can automatically scale them in framework-scaled mode.
Currently a workaround exists that allows kEventMenuDrawItem and kEventMenuDrawItemContent
handlers to use QuickDraw calls even in framework-scaled mode. The standard menu view creates a temporary
GWorld object and sets it to the current QuickDraw port before sending any menu drawing events. After the

22 Supporting Resolution Independence in Carbon
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

draw event, the Menu Manager copies the contents of the graphics world into the view. However, this
workaround should be considered a temporary fix and you should plan to update your menu drawing handlers
to draw into the supplied CGContext event parameter.

Unsupported Technologies

The following Carbon technologies will not be updated to support resolution independence:

 ■ TextEdit. Applications should use MLTE, the editable Unicode text control, or HITextView instead.

 ■ The edit text control. Applications should use the editable Unicode text control or HITextView instead.

 ■ The list box control. Applications should use the data browser control instead.

Resolution Independence Support in Java

Java SE (Standard Edition) 6 in Mac OS X v10.5 supports resolution independence at runtime.

All drawing is done in framework-scaled mode. Text, vector drawing, and most system controls are drawn
correctly scaled with no additional work on your part. Any bitmap images are magnified to fit the designated
space.

All Java drawing methods (and their associated parameters) interpret coordinates as points, not pixels.
Currently, no resolution independence–specific methods exist.

Accessing the Scaling Transform

Even if you rely on framework scaling, there may be cases where you want to know in advance how to scale
your content. To do so, you can use the Quartz 2D function
CGContextGetUserSpaceToDeviceSpaceTransform.

CGAffineTransform CGContextGetUserSpaceToDeviceSpaceTransform (
 CGContextRef theContext);

This call returns the transform matrix used to resize your window, converting from user space (that is, where
you draw into the context) to the coordinate space of the display device. For example, you may want to
transform your window to device space to determine the new coordinates of its elements. You can adjust
these coordinates to make sure that window elements line up correctly, then do a reverse transform to obtain
the user space coordinates needed for the best presentation at that scale factor.

Note: The transform you receive describes the sum of all the transformations applied to the graphics context,
not just the scaling. For example, the transform includes any rotation or translation applied to the context.

For simple conversions between user space and device space, you can also use one of the Quartz conversion
functions described in CGContext Reference. These functions convert only global coordinates, so you need to
perform additional calculations to translate the results to view-centric coordinates.

Resolution Independence Support in Java 23
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

Other Issues

Cross-Process Communication

If your application interacts with other applications, you need to make sure that all the applications agree
on the coordinate system; otherwise, strange behavior may result.

Apple’s accessibility interfaces support resolution independence, so you don’t need to worry about translating
between coordinate systems when supporting accessibility. The accessibility interfaces always return
coordinates in screen pixels.

For the accessibility Carbon events that have event parameters containing coordinates, an event handler
can ask for the parameter value in either screen pixel or 72DPI global coordinates, depending on which
parameter type is used. For example, typeHIPoint and typeHIPoint72DPIGlobal return 72DPI global
coordinates, while typeHIPointScreenPixel returns screen pixel coordinates. Similar parameter type
constants are available for HIRect, HISize, and CGFloat.

OpenGL

Most OpenGL problems with resolution independence are caused by a mismatch between the screen pixels
and the points of the drawing environment. The Cocoa class NSOpenGLView has been updated to handle
common problems. If you are drawing directly to the screen (that is, on a pixel-by-pixel basis), you need to
obtain the current scale factor and scale all your images manually.

24 Other Issues
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Supporting Resolution Independence

This chapter describes how to update the icons and other artwork in your application to take advantage of
resolution independence.

Overview

As the pixel density of displays increases, you need to make sure your application's custom artwork can scale
accordingly. That is, the art needs to be larger in terms of pixel dimensions to avoid loss of resolution at high
scale factors onscreen.

Examples of art that needs to be updated include:

 ■ Application icons

 ■ Icons that appear in buttons or other controls

 ■ Custom images

If your application uses custom controls, you may need to provide high-resolution version of their artwork.
If an existing standard control or icon provides the same function as your custom version, you should consider
adopting the standard version.

For example, applications can use standard art from:

 ■ Named NSImage objects

 ■ Icons provided by Icon Services

 ■ Standard UI elements drawn using HITheme functions

 ■ Standard window frame views

Adopting standard art helps insulate your custom controls from future changes; if the appearance of certain
control features changes, any standard art automatically adopts the new look.

Also, consider handling simple drawing such as fills, gradients, and lines programmatically. Point-based
drawing classes such as NSBezierPath and NSShadow automatically scale according to the scale factor.

To increase drawing efficiency, you should cache images scaled to the current scale factor; doing so eliminates
having to recalculate and scale the images each time they are drawn. NSImage does this for you automatically.
Icons obtained from Icon Services are also automatically cached.

Overview 25
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Updating Icons and Other Artwork

Icon Design Guidelines

For application icons, you should make sure that the icon family includes images up to 512 x 512 pixels. At
the very least, the icon family should contain artwork for 1x (128 x 128, 72 dpi) and 4x (512 x 512, 288 dpi)
sized images.

For new icons, it’s easiest to design the large icons first and then decide how to scale them down. When
scaling up existing icons, the enlarged versions should look like close-ups of the existing icons, with the
appropriate level of detail. For example, a house icon may show shingles or shutters in the larger sizes, while
a large book icon may actually contain readable text. Do not simply create a pixel-for-pixel upscaled version
of the existing icon. Figure 3-1 shows the changes in detail for different icon sizes.

Figure 3-1 Changing levels of detail for icon sizes

You can use the Icon Composer application to create your icons. Icon Composer v2.0 and later includes
support for larger icon sizes. This utility is available in the /Developer/Applications/Utilities/ folder.

26 Icon Design Guidelines
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Updating Icons and Other Artwork

Updates to Icon Services

To support resolution independence, Icon Services has added two high-resolution icon sizes: 256 x 256 and
512 x 512. To support these icon sizes, the constants kIconServices256PixelDataARGB and
kIconServices512PixelDataARGB are defined in IconStorage.h for use in calls to SetIconFamilyData
and GetIconFamilyData.

 ■ When using these constants with SetIconFamilyData, you must pass an unpremultiplied 256 x 256
(or 512 x 512) ARGB bitmap. Icon Services compresses this bitmap before storing it in an 'ICNS' container.

 ■ When retrieving icons with these constants,GetIconFamilyData returns uncompressed, unpremultiplied
ARGB bitmaps. These bitmaps contain both image data and an alpha channel that you can use for mask
information. (In the past, Icon Services required separate selectors to indicate mask or image data.)

In Mac OS X v10.5 and later, you can use these two functions to store and retrieve ARGB icons at all sizes.

Bitmap Image Guidelines

If you must use bitmap images, keep the following guidelines in mind:

 ■ Create 1x (72 dpi) and 4x (288 dpi) versions of each image. You must specify the appropriate dpi value,
as shown in Figure 3-2, or else the system will not be able to find the correct version for the given scaling.

 ■ Use lossless compression.

 ■ Store the two images together in a multi-image TIFF file. Both NSImage and the Image I/O framework
support multi-image TIFF files. You can use the tiffutil command line tool in Terminal to combine
the images (specify the-cathidpicheck option). You can also use PNG files to store images; however,
this option requires a separate file for each image and your application must include additional code to
determine and fetch the best-sized image.

Updates to Icon Services 27
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Updating Icons and Other Artwork

Figure 3-2 Specifying resolution for 1x and 4x bitmap images

Note that Carbon toolbars should use icons for toolbar items rather than bitmap images.

Because larger bitmap images require proportionally larger amounts of memory or disk space, you should
avoid using them wherever possible. Instead, consider using vector graphics, which can be stored as PDF
files.

Note: PDF files can also store bitmap images, so you cannot assume that any PDF file is automatically scalable.

Vector-Based (PDF) Image Guidelines

Vector-based art is automatically scalable. You should use vector-based images for simple artwork such as
black-and-white images or flat images without dimensional detail. Shadows, gradients, arrows, and glyphs
are good examples of when to use vector-based art.

If you are using Adobe Illustrator, be sure to specify Snap to Grid when creating your artwork.

28 Vector-Based (PDF) Image Guidelines
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Updating Icons and Other Artwork

This chapter addresses some problems and questions you may have as you modify your application to take
advantage of resolution independence.

Problems

My controls and other window elements are truncated, or show up
in odd places.

Misplaced drawing almost certainly results from code that assumes that 1 Quartz point = 1 pixel. In a
resolution-independent system, there is no guarantee that this is the case. See “Coordinate Conversion in
Cocoa” (page 19) or “Coordinate Conversion in Carbon” (page 21).

Some of my artwork displays with cracks.

Pixel cracking typically occurs at nonintegral scale factors when tiling images to form a continuous background
or fill. The cracks are caused when rounding errors cause points to be mapped to nonadjacent pixel boundaries.
The image boundaries may overlap or contain anti-aliasing artifacts. Figure 4-1 illustrates the problem.

Figure 4-1 Pixel cracking

Image is aligned on Quartz
points rather than pixel boundaries
which can result in cracks from
rounding errors.

The solution is to make sure that your drawing aligns on pixel boundaries rather than relying on Quartz
points. To adjust the position of an object to fall on exact pixel boundaries, you must do the following:

Problems 29
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Troubleshooting

1. Convert the object's origin and size values from user space to device space coordinates.

2. Round each of the values to fall on exact pixel boundaries in device space.

3. Convert the values back to user space to obtain the coordinates required to achieve the desired pixel
boundaries.

Carbon applications can use the functionHIWindowGetScaleMode to obtain the scale mode,HIRectConvert
to convert coordinates between user and device space, and CGRectIntegral to manipulate the values in
an HIRect structure that contains the object’s bounds, as shown in Listing 4-1.

Listing 4-1 Aligning on pixel boundaries in Carbon

// myRect contains the bounds of an object that draws a portion of myView
HIWindowScaleMode scaleMode;
HIWindowGetScaleMode (window, &scaleMode, NULL);
if (scaleMode == kHIWindowScaleModeFrameworkScaled)
{ // window is framework scaled and scale factor is not 1.0
 // convert coordinates to device space units
 HIRectConvert (&myRect, kHICoordSpaceView, myView, kHICoordSpaceScreenPixel,
 NULL);
 // outset the rectangle to integer boundaries
 myRect = CGRectIntegral(myRect);
 // convert back to user space
 HIRectConvert (&myRect, kHICoordSpaceScreenPixel, NULL, kHICoordSpaceView,
 myView);
}

Cocoa applications can align a rectangle on pixel boundaries using the convertRect:method in the NSView
class, as shown in Listing 4-2.

Listing 4-2 Aligning on pixel boundaries in Cocoa

float scaleFactor = [[myView window] userSpaceScaleFactor];
if (scaleFactor != 1.0)
{
 // convert rect to pixel coordinates
 myRect = [myView convertRect:rect toView:nil];

 // round the origin and size up to the nearest pixel boundary
 myRect.origin.x = ceilf(myRect.origin.x);
 myRect.origin.y = ceilf(myRect.origin.y);
 myRect.size.width = ceilf(myRect.size.width);
 myRect.size.height = ceilf(myRect.size.height);

 // convert rect back to user space
 myRect = [myView convertRect:myRect fromView:nil];
}

Some of my bitmap images show banding or jaggies.

Jaggies or banding result from poor scaling of bitmap images due to interpolation problems, as shown in
Figure 4-2.

30 Problems
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Troubleshooting

Figure 4-2 Interpolation problems

Banding

Jaggies

You can improve interpolation accuracy by adjusting the interpolation quality using the Quartz 2D function
CGContextSetInterpolationQuality or the Cocoa NSGraphicsContext method
setImageInterpolation:. Higher quality interpolation can incur a performance overhead.

If your Cocoa application needs to scale any artwork, you should specify NSImageInterpolationHigh
when rendering.

If adjusting the interpolation quality does not work, you can supply additional artwork sizes (such as 1.25x
and 1.5x) to allow more accurate interpolation.

Questions

What about plug-ins?

If your application supports plug-ins, you may need to ensure that they are resolution independence–savvy.
If you pass drawing coordinates between the plug-in and the application, you need to make sure that both
sides agree on what type of coordinates they are, and who is responsible for scaling (if necessary).

If the plug-in uses QuickDraw to draw, you should update it to use Quartz, or (if you do not have access to
the source), coordinate with the plug-in owner to make sure all drawing is properly scaled.

My application still needs to work on earlier systems. What's the best
way to ensure backwards compatibility?

If your application uses Cocoa views or Carbon HIViews and does all of its drawing using Quartz, most scaling
should work automatically.

Most standard controls have been available for several OS releases, so they should still work on earlier systems.
If the standard control is not available for older systems, draw using the standard control in Mac OS X v10.5
and a custom control in Mac OS X v10.4 and earlier.

Questions 31
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Troubleshooting

The Cocoa class NSImage supports multi-image TIFF and PDF files in Mac OS X v10.3 and later.

Icon Services supports 256 x 256 and 512x 512 images in .icns files back to Mac OS X v10.3, although v10.3
does not use the newer images. Mac OS X v10.2 cannot read the .icns file at all if it contains the larger
images, so the only workaround is to install a separate icon file containing only 128 x128 and smaller images.

You should test your application at the following scale factors: 1.0, 1.25, 1.5, 2.0, and 3.0.

32 Questions
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Troubleshooting

This table describes the changes to Resolution Independence Guidelines.

NotesDate

Added new information and illustrations. Changed the document title from
"Resolution Independence Overview."

2007-05-04

New document that describes resolution independence and explains how to
start updating applications to support high-resolution displays.

2006-08-01

33
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2007-05-04 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Resolution Independence Guidelines
	Contents
	Figures and Listings
	Introduction
	Overview of Resolution Independence
	A Resolution-Independent User Interface
	The Scale Factor
	How to Change the Scale Factor
	Changing the Global Scale Factor
	Changing an Application’s Scale Factor

	Scale Modes
	Framework-Scaled Mode
	Magnified Mode (Carbon Only)

	Keeping Track of Coordinate Systems

	Supporting Resolution Independence
	Supporting Resolution Independence in Cocoa
	Resolution-Independent Compositing
	Cocoa Bitmapped Images
	Detecting the Scale Factor
	Coordinate Conversion in Cocoa
	Coordinate Conversion in Mac OS X v10.5

	Changes to the deviceDescription Method

	Supporting Resolution Independence in Carbon
	Framework-Scaled Mode
	Magnified Mode
	Detecting Scale Information
	Coordinate Conversion in Carbon
	Custom Drawing in Carbon
	Custom Controls
	Custom Menus

	Unsupported Technologies

	Resolution Independence Support in Java
	Accessing the Scaling Transform
	Other Issues
	Cross-Process Communication
	OpenGL

	Updating Icons and Other Artwork
	Overview
	Icon Design Guidelines
	Updates to Icon Services
	Bitmap Image Guidelines
	Vector-Based (PDF) Image Guidelines

	Troubleshooting
	Problems
	My controls and other window elements are truncated, or show up in odd places.
	Some of my artwork displays with cracks.
	Some of my bitmap images show banding or jaggies.

	Questions
	What about plug-ins?
	My application still needs to work on earlier systems. What's the best way to ensure backwards compatibility?

	Revision History

