
Preference Panes
Cocoa > User Experience

2006-10-03

Apple Inc.
© 2003, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Mac, Mac OS, and Objective-C are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Preference Panes 9

Who Should Read This Document? 9
Organization of This Document 9
Limitations 10

Architecture of Preference Panes 11

Application Architecture 11
Design Architecture 12
Implementation 13

The Preference Application 15

System Preferences 15
Custom Preference Application 16
Target Application 17

Managing User Preferences 19

Preference Services 19
Configuration Files 20
Interprocess Communication 20

Apple Events 21
Distributed Objects 21
Distributed Notifications 22
Sockets and Ports 23
Signals 24

Life Cycle of a Preference Pane 25

Instantiating the Preference Pane Object 25
Loading the Main View 25

Dynamically Selecting the Main Nib File 26
Assigning the Main View 26
Setting Up the User Interface 27

Selecting 27
Deselecting 27
Longevity of Preference Pane Objects in System Preferences 28

3
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Preference Pane Bundle 29

Information Property Lists 29
Localizable Resources 30
Global Resources 30
Where Preference Panes Live 31

Preventing Name Conflicts 33

Uniqueness Algorithm 33
Categories 34

Using Preference Services 35

Communicating With the Target Application 37

Using Distributed Objects 37
Using Distributed Notifications 37

Implementing a Preference Pane Help Menu 41

Adding Global Help Menu Items 41
Adding Dynamic Help Menu Items 42

Creating a Preference Pane Bundle 43

Create the Project 43
Create the Nib File 43
Create the Preference Pane Files 44
Update the Build Settings 44
Build and Install the Preference Pane 45

Implementing a Simple Preference Pane 47

Build the User Interface 47
Update the Header File 47
Implement the initWithBundle: Method 48
Implement the mainViewDidLoad Method 48
Implement the checkboxClicked: Method 49
Implement the didUnselect Method 49

Using Preference Panes in Other Applications 51

Embedding a Single Pane 51
Managing a Collection of Panes 52

4
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History 55

5
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

6
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Architecture of Preference Panes 11

Figure 1 Plug-in architecture of preference panes 12
Figure 2 Model-View-Controller design of preference panes 12

The Preference Application 15

Figure 1 Using a tabbed view to categorize related options 16

Managing User Preferences 19

Figure 1 Distributed object architecture 22
Figure 2 Distributed Notification Model 23
Table 1 Preference domains in precedence order 19

Life Cycle of a Preference Pane 25

Figure 1 Execution flow of loadMainView 26
Table 1 Return values of shouldUnselect 27

Anatomy of a Preference Pane Bundle 29

Figure 1 Contents of a preference pane bundle 29

Implementing a Preference Pane Help Menu 41

Listing 1 Info.plst entry for the SMPL001 Help menu item 41
Listing 2 English Localizable.strings entry for the SMPL001 Help menu item 42
Listing 3 French Localizable.strings entry for the SMPL001 Help menu item 42
Listing 4 Dynamic help menu for a tab view 42

7
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

8
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preference panes are dynamically loaded plug-ins that provide a graphical user interface to the system’s or
an application’s user preferences. Preference panes can be presented to the user using the central System
Preferences application, using a specialized preferences application, or as the Preferences menu item in an
application’s application menu. In System Preferences, each icon in its Show All view represents an individual
preference pane plug-in. You can develop preference panes for use by System Preferences or by your own
application.

The most common situation for using preference panes is an application that lacks its own user interface (or
has a very restricted user interface such as the Mac OS X Login application) but needs to be configurable.
Possible cases include a server application that always runs in the background or an application that makes
its services available to other applications through the Services menu. To allow configuration of these
applications, you must provide a user interface in a separate application. You should not require the user to
hand-edit configuration files or execute the application from the command line with special arguments.
Instead, create one or more preference pane plug-ins that contain the user interface and the code that can
read and write the preference settings. Then, either supply your own “Setup” application or, if appropriate,
use System Preferences to display the preference panes.

Who Should Read This Document?

You should read this document if you are a Cocoa developer who wants to provide a custom preference
pane, accessible from the System Preferences applications, to your users. You should have a working knowledge
of Cocoa programming with the Application Kit before attempting preference pane programming.

Organization of This Document

This document describes how to create and manage a preference pane, how to have System Preferences
load your own preference pane, and how to load a preference pane in your own application.

Here are the concepts covered:

 ■ “Architecture of Preference Panes” (page 11) describes the plug-in architecture of preference panes and
how they interact with applications and the system.

 ■ “The Preference Application” (page 15) describes the ways the preference pane can be presented to the
user: System Preferences, a specialized preferences application, or inside the main application.

 ■ “Managing User Preferences” (page 19) describes several ways the preference pane can interact with
the system for manipulating preferences.

 ■ “Life Cycle of a Preference Pane” (page 25) describes how the application interacts with the preference
pane.

 ■ “Anatomy of a Preference Pane Bundle” (page 29) describes the structure of a preference pane bundle.

Who Should Read This Document? 9
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Preference Panes

Here are the tasks covered:

 ■ “Preventing Name Conflicts” (page 33) recommends a technique to prevent name conflicts between
the global symbols in your preference pane and either the application or other preference panes.

 ■ “Using Preference Services” (page 35) describes the methods available for reading and writing preferences
to a preference file.

 ■ “Communicating With the Target Application” (page 37) provides examples for notifying a separate
target application of preference changes.

 ■ “Creating a Preference Pane Bundle” (page 43) walks you through the steps of creating a skeletal
preference pane bundle in Project Builder and Interface Builder.

 ■ “Implementing a Simple Preference Pane” (page 47) walks you through the source code of a simple
preference pane, showing an example of how to implement a working preference pane.

 ■ “Using Preference Panes in Other Applications” (page 51) describes the responsibilities of an application
that loads a preference pane.

Limitations

The Preference Panes framework is available only in Mac OS X version 10.1 and later. You cannot create new
plug-ins for System Preferences nor use preference panes in your applications on earlier versions of Mac OS
X. If you want your application to run on 10.0.x systems, you need to build your own implementation for
preferences. You can still use all the techniques described in this documentation, though, regarding storage
of preferences and communication between applications as covered in “Managing User Preferences” (page
19), “Using Preference Services” (page 35), and “Communicating With the Target Application” (page 37).

The Preference Panes framework can be used only by an Objective-C Cocoa application. The preference pane
also needs to be written in Objective-C with its user interface implemented using Cocoa.

10 Limitations
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Introduction to Preference Panes

This section provides an overview of the preference pane architecture. It describes the various components
involved in using preference panes and how they fit together, the design principle within the plug-in, and
finally some implementation details.

Application Architecture

There are three logical components to the preference pane architecture: the application that loads the
preference pane plug-ins (the preference application), the Preference Panes framework
(PreferencePanes.framework), and the preference pane plug-ins themselves. The responsibilities of each
are as follows:

 ■ The preference application serves as the container of the preference pane: It loads the preference pane
plug-in and provides the window in which the preference pane is displayed. When the plug-in is loaded,
the application creates an instance of the plug-in’s principle class, a subclass of NSPreferencePane.
Through NSPreferencePane’s interface, the application notifies the preference pane when the pane is
displayed and again when it is being removed from the screen.

 ■ The Preference Panes framework acts as the interface between the preference application and the
preference pane plug-in. The framework provides the NSPreferencePane class, which is subclassed by
the plug-in. The application uses the methods defined by NSPreferencePane to communicate with the
plug-in. The default implementation of NSPreferencePane is able to load a default nib file and provide
the application with a view containing the user interface.

 ■ The preference pane plug-in provides the user interface for modifying the preferences and interacts with
the system or another application to record the changes. The plug-in exports a principle class that is a
subclass of the NSPreferencePane class. An instance of this subclass is created by the preference
application. This instance, the preference pane object, initializes the user interface with the current
preference settings, receives action messages from the interface when the user makes changes, and
then records the changes when the user is finished.

In managing the preference settings, the preference pane object usually interacts with an additional
component: the object to which the preferences apply. This target can be part of the operating system or
one or more separate applications; the interaction can be by direct communication between the preference
pane object and target or by indirect communication though the use of a preference file.

The plug-in architecture of preference panes is illustrated, showing a case of indirect communication with
the target application, in Figure 1.

Application Architecture 11
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Architecture of Preference Panes

Figure 1 Plug-in architecture of preference panes

Target
application

Preference application

Preference panes

PreferencePanes.Framework

Preference file

Design Architecture

Preference panes are built using a Model-View-Controller (MVC) design wherein the user interface (View)
and data model (Model) are separated from one another with all communication going through a third object
(Controller). Cocoa applications, as well as the Cocoa frameworks, are frequently implemented using MVC,
which allows for greater flexibility and object reuse.

Figure 2 (page 12) shows the MVC design as it applies to preference panes. The NSPreferencePane subclass
(the preference pane object) assumes the central role as Controller. It is the intermediary between the user
interface defined within a nib file and the preference file, which holds the user’s preferences. Through
target-action connections between the user interface (the View) and the preference pane object, the user
interface sends messages to the preference pane object as the user performs actions. The preference
application can also be considered part of the View, since it provides the window for displaying the preference
pane and notifies the preference pane object when the user selects and deselects the preference pane. The
preference pane object translates these user actions into modified preference values and updates the values
in the preference file (the Model).

Figure 2 Model-View-Controller design of preference panes

NSPreferencePane subclass
(Controller)

Preference file
(Model)

User interface
(View)

12 Design Architecture
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Architecture of Preference Panes

Implementation

The Preference Panes framework is an Objective-C framework built on top of Cocoa. As such, it can be used
only by a Cocoa application, and the user interface you create for the preference pane module must also be
implemented using Cocoa. You cannot create a Carbon-based, or Java-based, preference pane with this
framework. In contrast, the application to which the preferences apply can be implemented in any language
using any framework, provided it is able to communicate with the preference pane.

For storing preferences, Mac OS X has a built-in preference system, Core Foundation Preference Services,
that provides all applications (Cocoa, Carbon, or BSD) the ability to easily read and write preference information
to standardized XML-based files. When direct communication between applications is required, you can
choose from a variety of methods from low-level signals and sockets to high-level Apple events, most of
which are available to both Cocoa and Carbon applications.

Implementation 13
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Architecture of Preference Panes

14 Implementation
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Architecture of Preference Panes

The preference application loads the preference pane plug-in and presents the preference pane to the user.
Depending on the type and number of preferences you need to manage, you have several choices for the
preference application. You can have the preference pane be displayed by System Preferences, by a custom
preference application, or by the target application itself in response to the Preferences menu item.

System Preferences

System Preferences is the standard location for presenting system-level preferences. The preference panes
shipped with Mac OS X include panes affecting hardware (such as the Sound, Mouse, and Display panes),
software integrated into the system (such as the Dock and Screen Saver panes), and behavior applicable to
every application (such as the International and General panes).

When your preferences apply to the system or to the user’s environment as a whole, make the preference
pane available to System Preferences. This may include panes for the following situations:

 ■ additional input devices such as tablets, multi-function mice, and microphones

 ■ configurable internal hardware such as processor upgrade cards

 ■ light-weight faceless server applications such as a file server

 ■ system-wide utilities such as keyboard macros

Unless your preference pane clearly belongs in System Preferences, use a custom preference application
instead.

System Preferences searches for preference panes in four separate locations. Depending on where you install
your preference pane bundle, it is available only to an individual user, to an individual computer, or to all
computers and users on a network (see “Where Preference Panes Live” (page 31)).

The System Preferences window has a fixed width (595 pixels) but resizes itself vertically to fit the size of the
current preference pane. Your preference pane should fit on the smallest supported screen resolution in Mac
OS X: 800 x 600. If all your preferences cannot fit reasonably well within this size, you can use a tabbed view
to divide the preferences into subsets as shown in Figure 1. If you find yourself creating more than a few
tabs to hold all your preferences, you should create a custom preference application, instead. Do not split
related preferences between multiple panes.

System Preferences 15
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Preference Application

Figure 1 Using a tabbed view to categorize related options

Preference panes are self-contained modules. They cannot interact with nor extend other preference panes.
In particular you cannot create a preference pane that adds another tab to one of Apple’s standard preference
panes such as the pane shown in Figure 1.

Custom Preference Application

If your preferences cannot be presented to the user from within the target application, due to the lack of a
suitable user interface, and they do not provide system-level functionality appropriate for System Preferences,
present the preferences in a custom preference application. In particular, use a custom preference application
if any of the following is true:

 ■ there are a large number of preferences (for example, for a Web server)

 ■ the preferences apply to a background application that is not providing a service to the system or other
applications (for example, distributed computing applications)

 ■ more interaction is required than basic mouse clicking and short typing (for example, for training
voice-recognition software)

Because System Preferences controls the window in which your preference pane is displayed, your layout
options are restricted, especially when you have more than a few preferences. By using a custom preference
application, you get greater freedom in designing the user interface. Rather than having a single preference
pane with its preferences possibly split into tabbed views of a fixed height and width, preferences can be
split between multiple preference panes with custom icons and unique sizes. Each pane can be customized
to present the best possible interface for its contents.

16 Custom Preference Application
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Preference Application

If you have very few preferences and do not need to manage multiple preference panes, you can forego use
of the Preference Panes framework altogether. You can more easily create a regular nib file containing the
entire interface and have the application load it directly.

Target Application

If the preferences apply to an individual application with its own user interface, or several applications that
share common preferences, use the application itself, loading the preference pane in response to the
Preferences menu item. For a solitary application, store the preference pane bundles within the Resources
directory of the application’s package. For a suite of applications, store the bundles in your own subdirectory
in /Library/Application Support.

If you have very few preferences that can all fit into a single preference pane, the Preference Panes framework
provides little benefit over a regular nib file and a custom class. When managing a collection of preferences,
though, the framework provides a prebuilt architecture with several benefits. For one, the plug-in architecture
takes advantage of lazy loading. The code and resources consumed by the preference pane do not need to
be allocated until the user selects the preference pane. Its modular design also allows for greater reuse. For
example, if you write multiple applications that have a common preference, such as a default font, you can
have a single preference pane used by all applications. Finally, the programming interface is designed to
support preference panes being displayed and then hidden as the user selects from a collection of preference
panes. You do not need to design and create your own implementation for this.

Target Application 17
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Preference Application

18 Target Application
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

The Preference Application

The Preference Panes framework defines the interface through which an application interacts with the
preference pane object, but the application is responsible only for displaying the preference pane’s user
interface. The preference pane object is responsible for handling the preferences themselves. This section
describes techniques by which the preference pane can store and communicate preferences to the target
application.

Preference Services

At the heart of the Mac OS X user preference system is Core Foundation Preference Services. This collection
of routines defines a set of domains according to the user name, host name, and application ID to which a
given preference value applies. Each component of the domain is specified by a CFString. Predefined constant
strings are available to easily select either the “Current” instance of a component (such as the current
application or current user) or a shared component available to “Any” instance.

kCFPreferencesAnyUserkCFPreferencesCurrentUser

kCFPreferencesAnyApplicationkCFPreferencesCurrentApplication

kCFPreferencesAnyHostkCFPreferencesCurrentHost

These constants combine to form the eight preference domains shown in Table 1 (page 19).

Table 1 Preference domains in precedence order

Host nameApplication IDUser name

CurrentCurrentCurrent

AnyCurrentCurrent

CurrentAnyCurrent

AnyAnyCurrent

CurrentCurrentAny

AnyCurrentAny

CurrentAnyAny

AnyAnyAny

Preference Services 19
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

By providing your own string, you can access domains other than those defined by the current context.
Access to the preferences of other users, though, requires special privileges.

Preferences located in domains higher on the list in Table 1 (page 19) (in other words, the more specific
domains) take precedence over those located in lower domains (the more general domains).

The NSUserDefaults class, which is part of the Cocoa Foundation framework, is used by Cocoa applications
to manage their user preferences. Because it writes preferences to the second domain listed in Table 1 (page
19), using the “Current” application domain, it cannot be used by a preference pane within a preference
application. It would write any changed preferences to the preference application’s preference file, instead
of to the target application’s file. If the preference pane is embedded in the target application, NSUserDefaults
works, but it then breaks the modular and reusable design of the preference pane.

For details on how to read and write preferences to a preference file, see “Using Preference Services” (page
35). For more information about Preferences, see Preferences.

Configuration Files

When dealing with a cross-platform target application, such as standard BSD daemons, Core Foundation
Preference Services cannot be used. Instead, you need to manipulate custom configuration files. For BSD
applications, the file is normally a plain text file, but the specific format varies from program to program.
Your preference pane needs to include its own code to read, parse, modify, and save these files rather than
use Preference Services.

Interprocess Communication

Storing the new preferences on disk is not sufficient when the change applies to a running application or
an integrated part of the operating system; you need to inform the target of the change if it is to take effect
immediately instead of waiting for a restart. You achieve this by sending a message from the preference
pane to the target application. In some cases the message may be a simple function call to an operating
system routine.

In Mac OS X there is an abundance of ways to communicate with other processes; each layer and framework
has its own preferred methods. Although preference panes are written using the Cocoa Objective-C framework,
you are not restricted to its particular implementation of messaging—use what is best for the situation. When
the target application is not under your control, your choice is limited to those methods understood by the
target.

You could forego saving the preferences in the preference pane altogether if the changes are communicated
directly to an omnipresent part of the system that manages its preferences itself. The preference pane could
merely send the updated preferences to the target and the target would take responsibility for storing them
in a persistent location (typically a file on the disk).

If the target is not guaranteed to always be running, the preference pane needs to update the preference
file itself. Use the following communication methods only for auxiliary information or to notify the target, if
it is currently running, that its preferences have changed.

20 Configuration Files
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

Apple Events

At the highest level of interprocess communication are Apple events, the long-time standard for
interapplication communication in Mac OS. An Apple event is a high-level message that an application can
send to itself, other applications on the same computer, or applications on a remote computer. Apple event
objects have a well-defined data structure with support for extensible, hierarchical data types. A well-defined
set of Apple events can provide support for a rich scripting interface through AppleScript.

Apple events are the preferred method for applications to communicate with each other in Mac OS X. They
are available to both Carbon and Cocoa applications through the Apple Event Manager.

Apple events are beyond the scope of this document. For detailed information on using Apple events, see
documentation on the Apple Event Manager in Carbon.

Distributed Objects

The Objective-C language runtime supports an interprocess messaging solution called “distributed objects.”
This mechanism enables a Cocoa application to call an object in a different Cocoa application. Calls may be
synchronous, meaning the sending process is blocked while waiting for a reply from the receiver, or
asynchronous, meaning no reply is expected and the sender is not blocked.

The receiving application “vends,” or makes public, an object to which other applications can connect.
Invoking one of the vended object’s methods then takes place as if the object existed in your own
application—the syntax does not change. The runtime system handles the necessary transmission of data
between the applications.

Interprocess Communication 21
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

Figure 1 Distributed object architecture

Target
application

Preference
application

NSConnection1. Vend object

2. Open connection

If your preference pane is to be used to control a faceless Cocoa application, this is a very simple technique
for interapplication communication. Since it allows two-way communication, you can provide greater
interaction between the user and the application. The preference application can obtain the current settings
directly from the target application instead of a preference file. It can then get immediate feedback on
whether the user’s modifications are accepted by the target.

For details on how to use distributed objects in a preference pane, see “Using Distributed Objects” (page
37). For more information on distributed objects, see InsideMacOS X: The Objective-C Programming Language
and the NSConnection and NSDistantObject class descriptions in the Foundation Framework Reference.

Distributed Notifications

An alternative to the direct and bidirectional communication of distributed objects and Apple events is a
one-way distributed notification. A distributed notification is a message posted by any application to a
per-machine notification center, which in turn broadcasts the message to any applications interested in
receiving it. Included with the notification is an identifier of the sender, and, optionally, a dictionary containing
additional information. The receiver of the notification cannot communicate any information back to the
sender. Figure 2 (page 23) illustrates this architecture.

22 Interprocess Communication
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

Figure 2 Distributed Notification Model

Target
application

Preference
application

Notification
center

1. Add observer

2. Post notification

3. Notify observers

The distributed notification mechanism is accessible through the Core Foundation CFNotificationCenter
object and through the Cocoa NSDistributedNotificationCenter class. A Cocoa application, such as your
preference application, can use either interface. A Carbon application, perhaps the target application, can
use only the Core Foundation interface. A notification posted using one interface can be received by either.

Note: Core Foundation and Cocoa notifications are unrelated to the Notification Manager, which is part of
Carbon.

A benefit of the distributed notification model is the model’s one-to-many capabilities. If you have a suite of
tools that share a common set of preferences, each running tool can register for and receive the same
notifications for preference changes. Distributed notifications are also sent asynchronously. Your preference
pane can post the notification and return immediately; you do not need to wait for the target application to
receive the notification and finish processing it.

Further, the target application does not need to be running. If no application is listening for the notification,
nothing happens. Because of this, distributed notifications are especially useful for notifying an application
of a modified preference file. The preference pane can modify the preference file and post a notification
about the change without being dependent on whether someone is listening to it.

Distributed notifications are a system-wide resource shared by all applications. To avoid name conflicts, select
notification names that are certain to be unique to your application. See “Preventing Name Conflicts” (page
33) for details.

For details on how to use distributed notifications in a preference pane, see “Using Distributed
Notifications” (page 37). For more information on distributed notifications, see the
NSDistributedNotificationCenter class description in the Foundation Framework Reference.

Sockets and Ports

Cross-platform applications cannot make use of the above Mac OS X–specific techniques for interprocess
communication. However, Mac OS X supports BSD sockets, a standard communication method on BSD
platforms. You can make use of the standard POSIX socket APIs or take advantage of higher-level abstractions
in the Cocoa class NSSocketPort or a Core Foundation CFSocket object. The production and parsing of the
raw data stream sent over the sockets are the responsibilities of the preference pane object and the target
application.

Interprocess Communication 23
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

Signals

BSD signals are also available in Mac OS X. Signals are software interrupts that can be sent to a specific
application. By default, the signal terminates the receiving application, but the application can override this
by installing a signal handler that runs when a particular signal is received. The only information passed by
the signal is a single integer identifying the signal.

Traditional BSD services (such as inetd) frequently use the predefined signal SIGHUP (hangup signal) to
reset themselves. When modifying the preferences of one of these services, write the updated settings to
the application’s preference file and send the SIGHUP signal to the application. In response, the application
can reread its preferences.

24 Interprocess Communication
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Managing User Preferences

Normally, the user interacts with a preference pane via the System Preferences application. It is the
responsibility of the System Preferences application to load the preference pane bundle, create an instance
of the principle class, and message the principle class object appropriately at various times during its life.

Preference panes can be used in other applications as well. For example, the Mac OS X Setup Assistant embeds
the Date & Time preference pane in one of its windows.

Throughout this description, we’ll refer to the container application, whether it be System Preferences, the
Setup Assistant, or your own preference application, as simply “the application.”

Instantiating the Preference Pane Object

The life of a preference pane begins when the application instantiates an NSBundle object for the preference
pane package. The application then asks the NSBundle for its principle class and creates an instance of the
principle class using the initWithBundle: method, passing in the NSBundle object as the argument.

The initWithBundle: method is the designated initializer for the NSPreferencePane class. Subclasses of
NSPreferencePane that wish to perform their own initialization should override the initWithBundle:
method, taking care to call the superclass’s implementation first. For example:

- (id)initWithBundle:(NSBundle *)bundle
{
 if ((self = [super initWithBundle:bundle]) != nil)
 {
 // add subclass-specific initialization here
 }
 return self;
}

At this point, the user interface elements of the preference pane (its main nib file and its main view) have
not been loaded or initialized. Any initialization that depends on outlet connections to user interface elements
in the main nib file should be deferred to the mainViewDidLoad method described below.

If your preference pane supports AppleScript commands, it should be prepared to respond to them at this
point.

Loading the Main View

When the preference pane’s user interface needs to be displayed for the first time, the application sends the
loadMainView message to the preference pane object. The default implementation of loadMainView
performs the following actions:

Instantiating the Preference Pane Object 25
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Life Cycle of a Preference Pane

1. Determines the name of the main nib file by calling the preference pane object’s mainNibNamemethod.

2. Loads that nib file, passing in the preference pane object as the nib file’s owner.

3. Invokes the preference pane object’s assignMainView method to find and assign the main view.

4. Invokes the preference pane object’s mainViewDidLoad method.

5. Returns the main view.

The sequence of methods invoked while loading the main view is illustrated in Figure 1 (page 26).

Figure 1 Execution flow of loadMainView

Preference pane object

Preference
application

loadMainView

mainNibName assignMainView mainViewDidLoad

setMainView:

41 2

3

A preference pane subclass should rarely need to override the loadMainView method. One case in which
an override is necessary is if a preference pane subclass needs to use a non–nib–based technique to load
the main view, such as programatically creating the main view. In this case, the subclass’s implementation
of loadMainView must call setMainView: passing in the main view as the argument. This ensures that
future calls to mainView will return the correct view.

Dynamically Selecting the Main Nib File

The default implementation of mainNibName returns the value of the NSMainNibFile key in the bundle’s
property list. If the key does not exist, the default value of @"Main" is returned. A NSPreferencePane subclass
can override the mainNibName method if it needs to dynamically select the main nib file to use.

Assigning the Main View

The default implementation of loadMainView invokes the assignMainView method to find and assign
the main view in the main nib file. The default implementation of assignMainView assigns the content
view of _window to the _mainView outlet and retains the view. It then removes the content view from
_window, releases _window, and sets _window to nil.

26 Loading the Main View
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Life Cycle of a Preference Pane

Most preference panes should not need to override theassignMainViewmethod. The default implementation
of assignMainView allows a preference pane developer to create the user interface for the preference pane
in a window and connect the _window outlet to the window. If a preference pane has multiple main views
and needs to select which main view to use at runtime, it can override the assignMainView method.

Setting Up the User Interface

The preference pane object receives a mainViewDidLoad message after its main nib file has been loaded
and the main view has been assigned. The default implementation of mainViewDidLoad in the
NSPreferencePane class does nothing. A NSPreferencePane subclass can override this method if it needs to
initialize the state of the view’s graphical elements.

Selecting

Before a preference pane’s main view is displayed in the application’s window, the application sends the
preference pane object a willSelect message. Immediately after the view is displayed, the application
sends the preference pane a didSelect message.

The default implementations of these methods do nothing. An NSPreferencePane subclass should override
these methods if it needs to perform some action either immediately before or immediately after a preference
pane is selected.

Deselecting

The application attempts to deselect the currently selected preference pane when one of the following
actions occur:

 ■ the user attempts to switch to another view in the preference window

 ■ the user attempts to close the preference window

 ■ the user attempts to quit the application

The application attempts to deselect a preference pane by sending it the shouldUnselect message. The
method returns one of the values from Table 1 (page 27), indicating whether the preference pane is willing
to be deselected. The default implementation of shouldUnselect in the NSPreferencePane class returns
NSUnselectNow. This tells the application that it is OK to deselect the preference pane immediately.

Table 1 Return values of shouldUnselect

Cancel the deselectionNSUnselectCancel

Continue the deselectionNSUnselectNow

Delay the deselection until the preference pane invokes replyToShouldUnselect:NSUnselectLater

Selecting 27
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Life Cycle of a Preference Pane

A preference pane can override the shouldUnselect method if it needs to cancel or delay the deselection.
Typically, this occurs if the preference pane needs to confirm saving changes with the user (as with the
Network preference pane). If the mechanism of confirming the deselection is synchronous (such as with an
application-modal alert or sheet), the shouldUnselectmethod should make the synchronous call and then
return NSUnselectCancel or NSUnselectNow. For example:

- (NSPreferencePaneUnselectReply)shouldUnselect
{
 int result = NSRunAlertPanel(...);

 if (result == NSAlertDefaultReturn)
 return NSUnselectNow;
 return NSUnselectCancel;
}

If the mechanism of confirming the deselection is asynchronous (such as with a window-modal sheet), the
shouldUnselect method should return NSUnselectLater. When a pane returns NSUnselectLater, it
must call replyToShouldUnselect: once the pane decides whether or not it can be deselected. The
replyToShouldUnselect: method takes one parameter, a Boolean value, that indicates whether or not
the application should deselect the pane. A value of YES means the application should deselect the pane. A
value of NO means the application should cancel the deselection.

Once the deselection is confirmed, the application sends the preference pane a willUnselect message
immediately before the action that causes the deselection is performed. The application sends the preference
pane a didUnselectmessage immediately after the action that caused the deselection is performed. When
quitting the application, the willUnselect and didUnselectmessages are both sent before the application
quits.

Longevity of Preference Pane Objects in System Preferences

For performance reasons, the System Preferences application keeps preference pane objects around once
they have been instantiated. They are not deallocated when the preference pane is deselected. They are only
deallocated when the System Preferences application terminates.

28 Longevity of Preference Pane Objects in System Preferences
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Life Cycle of a Preference Pane

A preference pane plug-in is packaged on disk as a bundle with the .prefPane extension. Like all bundle
packages, a preference pane consists of an executable (in the Mac OS X native Mach-O format), an information
property list (Info.plist), and localizable and global (nonlocalized) resources.

The structure of a sample preference pane bundle is shown in Figure 1 (page 29).

Figure 1 Contents of a preference pane bundle

When created within Project Builder, the basic structure and the files are created for you. “Creating a Preference
Pane Bundle” (page 43) describes the steps required to produce a working preference pane bundle. The
following sections describe the individual elements of the bundle.

Information Property Lists

Every bundle contains a dictionary, the Info.plist file, that defines certain properties of the bundle, such
as the names of important resources. Preference pane bundles should provide values for the following keys
in the information property list:

DescriptionKey

The unique identifier string for the bundle. Every bundle should have a unique
CFBundleIdentifier prefixed by the reverse domain name of the
organization. For example, “com.apple.preference.sound”.

CFBundleIdentifier

Information Property Lists 29
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Preference Pane Bundle

DescriptionKey

The name of the main nib file. If this key is omitted, the default preference pane
implementation assumes a value of “Main”. The value must not include the
.nib extension. For example, “SoundPref”.

NSMainNibFile

The name of an image file resource used in the Show All view and favorites area
of the System Preferences application to represent the preference pane. The
icon should be 32 x 32 pixels in size. If this key is omitted, System Preferences
looks for the CFBundleIconFile key. The value must include the extension.
For example, “Sound.tiff”.

NSPrefPaneIconFile

The name of the preference pane displayed by System Preferences beneath the
pane’s icon and in the Pane menu. You can include a newline character in the
string (“\n”) to split a long name between two lines. If this key is omitted, System
Preferences looks for the CFBundleName key. NSPrefPaneIconLabel should
be localized via the InfoPlist.strings file. For example, “Sound” and
“Sonido”.

NSPrefPaneIconLabel

The name of the main controller class of the preference pane. This class must
be defined in the Mach-O binary of the bundle and it must be a subclass of
NSPreferencePane. To avoid symbol name collisions, the name of the class must
be prefixed by a specially munged version of the bundle identifier (see
“Preventing Name Conflicts” (page 33) for details). For example,
“ComApplePreferenceSoundPref”.

NSPrincipalClass

Localizable Resources

A bundle’s resources can be localized to different languages and regions. Generally, these are resources that
present text to the user, such as menu names and labels in windows. The resource files are stored in separate
subdirectories in the Contents/Resources directory of the bundle. The directories are named after the
language, such as English.lproj or Spanish.lproj. When your preference pane accesses a localized
resource, such as a nib file containing a window, the operating system selects the version according to the
user’s language preferences.

The simplest way for a preference pane to define its user interface is through a main nib file. This nib file
should be a localized resource. The name of the main nib file can be anything, but it must match the value
of the NSMainNibFile key in the bundle’s property list.

Like application bundles, preference pane bundles should include a localized InfoPlist.strings resource.
This file contains individual strings the user sees, but cannot be stored within the nib file. This file should
contain an entry for the NSPrefPaneIconLabel property whose value is the localized display name of the
preference pane.

Global Resources

Not all resources need to be localized. Images without textual content can be used for all languages. These
global resources are stored in the Contents/Resources directory.

30 Localizable Resources
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Preference Pane Bundle

The preference pane icon file (usually an .icns or .tiff file) is the 32 x 32 pixel icon used in the System
Preferences application to represent the preference pane in the Show All view and the favorites area. The
name of the preference pane icon file is specified by the NSPrefPaneIconFile key in the bundle’s property
list. Typically, this is a global (nonlocalized) resource. However, if the icon contains locale-specific information
(such as text), it can be made localized.

Where Preference Panes Live

Preference pane bundles for System Preferences live in the PreferencePanes family of library directories.
This family of directories consists of these directories:

DescriptionDirectory

Mac OS X built-in preference panes/System/Library/PreferencePanes

Third-party preference panes available to all users on the
network

/Network/Library/PreferencePanes

Third-party preference panes available to all users on the
computer

/Library/PreferencePanes

Third-party preference panes available only to the current
user

~/Library/PreferencePanes

System Preferences searches these directories in the reverse order that they are listed here. If multiple
preference panes are found with identical bundle identifiers (CFBundleIdentifier key value), only the
first preference pane found is displayed.

When creating a custom preference application or if you use preference panes to implement the Preferences
menu item of the target application, store the preference pane bundles inside the application’s bundle in
the Resources directory. If the preference pane needs to be shared by a suite of applications, store the
preference pane bundles in a subdirectory in /Library/Application Support.

Where Preference Panes Live 31
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Preference Pane Bundle

32 Where Preference Panes Live
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Anatomy of a Preference Pane Bundle

The Objective-C runtime provides only a single flat, global name space per process for all exported symbols.
This includes all global variables, nonstatic functions, class names, and categories declared for individual
classes; protocols have a separate global name space of their own.

Because preference pane plug-ins from different vendors must coexist in the same process, you must follow
conventions to avoid symbol name collisions. Every exported symbol in a preference pane plug-in must be
prefixed with an identifier unique to the plug-in. This requirement is not circumvented by unloading each
plug-in before loading the next one. Once an Objective-C symbol (class names, protocols and categories)
gets loaded, it cannot be unloaded.

Uniqueness Algorithm

Your preference pane plug-in should derive its unique prefix from its bundle identifier using the following
algorithm:

1. Start with the bundle identifier (com.apple.preference.sound)

2. Capitalize the first letter of each period-separated component (Com.Apple.Preference.Sound)

3. Remove the periods (ComApplePreferenceSound)

Note that this convention depends on the uniqueness of each bundle identifier. To guarantee uniqueness
of the bundle identifier, each organization should prefix its identifiers with its reverse-ordered ICANN domain
name (for example, “com.apple”).

Each organization should institute its own processes and conventions to avoid bundle identifier collisions
among bundles developed within the organization.

To avoid having to use the full, prefixed symbol names in source code, you can create shorthand preprocessor
macros. These macros can be defined in a single header file that is imported into every source file. For example:

#define SoundPref ComApplePreferenceSoundPref
#define AlertController ComApplePreferenceSoundAlertController
#define MicrophoneController ComApplePreferenceSoundMicrophoneController

Obviously, these shortcuts are only valid in Objective-C source files that include the header file. References
to class names outside of such source files (for example, in the bundle property list and in the main nib file)
must specify the full, real name.

Uniqueness Algorithm 33
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preventing Name Conflicts

Categories

Preference pane plug-ins should avoid using Objective-C categories to override methods of classes in public
frameworks. If multiple panels attempt to override the same method of the same class, only one override
takes effect, leading to unpredictable behavior.

34 Categories
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Preventing Name Conflicts

Core Foundation Preference Services provides functions for reading and writing preferences to and from any
available preference domain (see “Preference Services” (page 19)). Preference data are stored in property
lists as a series of key-value pairs. The key is a string identifying the preference. The value is the preference
setting, which can be any of the following data types: CFData, CFString, CFArray, CFDictionary, CFDate,
CFBoolean, and CFNumber. When the value is a CFArray or CFDictionary, each of its elements must be one
of the allowed data types. Except for CFBoolean (which has no equivalent object), each of the Core Foundation
types are interchangeable with their Cocoa equivalents (NSData, NSString, and so forth).

Reading and writing preferences look like this:

#include <CoreFoundation/CFPreferences.h>

CFStringRef appID, userName, hostName; // Assigned elsewhere
CFStringRef key = CFSTR("PrefKey");
CFPropertyListRef value; // Any allowed data type

value = CFPreferencesCopyValue(key, appID, userName, hostName);
CFPreferencesSetValue(key, value, appID, userName, hostName);

If a key does not exist in the given domain, the CFPreferencesCopyValue function returns NULL. Conversely,
passing NULL to CFPreferencesSetValue for the key’s value removes the key from that domain. For
performance reasons, changes made to a domain are cached. To force changes to be flushed to disk, call
CFPreferencesSynchronize for the particular domain. This can be an expensive operation since it requires
accessing the disk, so do not synchronize too often.

Several convenience functions automatically search through the domains of a particular application for a
requested key and associated value. The search proceeds from the most specific domain—current user, the
particular application, current host—at the top of Table 1 (page 19) to the most general domain—any user,
any application, any host—at the bottom of the table, until a matching key is found. When writing a value,
it is stored in the application’s default domain: current user, the particular application, any host. Use of these
routines looks like this:

value = CFPreferencesCopyAppValue(key, appID);
CFPreferencesSetAppValue(key, value, appID);

If a suite of applications share certain preferences, they can be stored together in their own set of domains
defined by a suite ID, similar to the application ID. The suite domains can be added to the search path of the
CFPreferencesCopyAppValue function with the CFPreferencesAddSuitePreferencesToApp function.
Multiple suites of domains can be added. After searching each application-specific domain, Preference Services
searches the corresponding suite-specific domains before searching the general domain. Preferences are still
stored in the application’s default domain when using these functions, though.

For user-specific and application-specific preferences, these functions should suffice. For system-level
preferences, you need to use the more general functions.

35
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Services

Note: Property lists, which are used to store the preference data, are intended for relatively small amounts
of data (less than a few hundred kilobytes). If you need to store large amounts of data, especially CFData or
NSData objects, consider storing the larger preferences in regular files instead of property lists.

36
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Services

In some situations you need to communicate directly with the target application rather than rely solely on
the preference file. This section describes how to use two methods—distributed objects and distributed
notifications—to achieve this.

Using Distributed Objects

Distributed objects allow one application to communicate with an object in another application. You can
use distributed objects only in Cocoa applications.

The application that owns the object, the target application in this case, makes the object available to other
applications by vending the object with code such as

id serverObject; // Assume this exists.
NSConnection *theConnection;

theConnection = [NSConnection defaultConnection];
[theConnection setRootObject:serverObject];
[theConnection registerName:@"MyServer"];

where serverObject is an object that defines a set of methods for external use. These methods can provide
low-level “get” and “set” accessors for the application settings or higher-level queries and requests. To gain
access to the object, another application, such as your preference pane, executes code such as

NSConnection *theConnection;
id remoteObject;

theConnection = [NSConnection connectionWithRegisteredName:@"MyServer"
 host:nil];
remoteObject = [[theConnection rootProxy] retain];

where remoteObject is now a proxy object representing the vended object. Interaction with the object
occurs normally:

x = [remoteObject defaultWidth];
[remoteObject setBackgroundColor:[NSColor redColor]];

Using Distributed Notifications

Distributed notifications allow an application to broadcast a message to any number of other applications
without needing to know who those other applications are, or even if the other applications exist. Every
application type—Cocoa, Carbon, BSD—can use distributed notifications.

Using Distributed Objects 37
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Communicating With the Target Application

An application, the target application in this case, expresses an interest in receiving a broadcasted message
by registering itself with the system’s distributed notification center, identifying exactly what message, or
notification type, it wants to receive. The notification type is defined by an arbitrary string agreed upon by
the sender and receiver of the notification. As an example, Cocoa’s NSWindow class defines the notification
type @"NSWindowWillCloseNotification", which an NSWindow instance broadcasts when its window
is about to close. Any other object can register to receive this notification. (This notification, however, is
internal to a single application and is not distributed to the rest of the system.)

In addition to the message, the application can identify the particular object sending the message. When
the sender and receiver are in the same application—in other words, using nondistributed notifications—the
observed object can be anything. When using distributed notifications, though, the object must be a string
(CFString or NSString). A useful choice for the observed string is the bundle identifier of the target application.

In registering for the notification, the application provides a callback to be executed when it receives the
notification. The application then proceeds with its duties. To receive the notification, the application must
enter a Core Foundation run loop. This occurs for both the Cocoa run loop and Carbon event manager.

To register to receive a notification, a Cocoa application executes code such as the following:

NSString *observedObject = @"com.apple.example.PrefpaneTarget";
NSDistributedNotificationCenter *center =
 [NSDistributedNotificationCenter defaultCenter];
[center addObserver: self
 selector: @selector(callbackWithNotification:)
 name: @"My Notification"
 object: observedObject];

The observer argument is the object on which the callback method is invoked. The callback method, identified
by the selector argument and implemented by the observer object, has a signature of

- (void)callbackWithNotification:(NSNotification *)myNotification;

The NSNotification object passed to this method contains the specific object and notification message
received.

The analogous code for a Carbon or BSD application using Core Foundation is

void *observer;
CFStringRef observedObject =
 CFSTR("com.apple.example.PrefpaneTarget");
CFNotificationCenterRef center =
 CFNotificationCenterGetDistributedCenter();
CFNotificationCenterAddObserver(center, observer, myCallbackFntn,
 CFSTR("My Notification"), observedObject,
 CFNotificationSuspensionBehaviorDeliverImmediately);

with a callback function prototype of

(void)myCallbackFntn(CFNotificationCenterRef center, void *observer,
 CFStringRef notificationName, const void *observedObject,
 CFDictionaryRef userInfo);

Because the callback is a function instead of a method invocation, the observer argument is any additional
data (in the form of a pointer) that you want to pass to the callback function.

38 Using Distributed Notifications
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Communicating With the Target Application

Next, the broadcasting application—your preference pane—sends the notification. It calls the system’s
notification center, tells the center what notification to send, and optionally passes a dictionary containing
additional information. The dictionary can be used to pass the modified preferences directly to the application.
Or, the preference pane can choose not to use the dictionary and instead write the changes out to disk. The
notification is then used to tell the application to update its preferences from the disk.

Cocoa code to send the notification looks like this:

NSString *observedObject = @"com.apple.example.PrefpaneTarget";
NSDistributedNotificationCenter *center =
 [NSDistributedNotificationCenter defaultCenter];
[center postNotificationName: @"My Notification"
 object: observedObject
 userInfo: nil /* no dictionary */
 deliverImmediately: YES];

The Core Foundation code looks like this:

CFStringRef observedObject =
 CFSTR("com.apple.example.PrefpaneTarget");
CFNotificationCenterRef center =
 CFNotificationCenterGetDistributedCenter();
CFNotificationCenterPostNotification(center, CFSTR("My Notification"),
 observedObject, NULL /* no dictionary */, TRUE);

The notification center looks up all the applications that registered to receive the given notification type
from the particular observedObject. It then notifies each application’s run loop of the notification and
gives it a copy of the dictionary. The selected callback function or method is executed during the application’s
next pass through its run loop.

When using Preference Services, be certain to flush changes to the disk with the appropriate synchronize
functions before sending notifications of changes. Otherwise, due to the caching performed by Preference
Services, the disk may not accurately reflect the changes when the target receives the notification. Likewise,
the target application must resynchronize its preferences after receiving the notification.

Using Distributed Notifications 39
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Communicating With the Target Application

40 Using Distributed Notifications
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Communicating With the Target Application

This section takes you through the steps to add context-sensitive Help menu entries for a preference pane.
You can implement Help Viewer anchors in two different ways, both which can provide your user with specific
assistance accessible from their Help menu. If you have already created a skeletal preference pane as described
in “Creating a Preference Pane Bundle” (page 43), you can use it here. Or, you can create a fresh preference
pane and refer to the following instructions where appropriate.

Adding Global Help Menu Items

One method of offering help to your preference pane user is by adding help menu items that become
available whenever your preference pane is loaded. Upon selection of your preference pane, the System
Preferences application will automatically add the Help menu items as described by a static array in the
pane’s Info.plist file. Once the preference pane is deselected, the System Preferences application will
remove them from the menu.

First, you need to create some help material, unless you are linking to existing material on the system. If you
are not familiar with creating content for the Mac OS X Help Viewer, refer to Providing User Assistance with
Apple Help.

Second, you need to add entries to the array values of the NSPrefPaneHelpAnchors key in your Info.plist
file. You will statically define each anchor with an associated title. The title represents the string value of the
menu item which will display the help book specified by the anchor. For example, if you wanted to add a
“Sample Help” item in the Help menu for your preference pane, which will open a book marked by the
SMPL001 anchor, add this to your Info.plist file:

Listing 1 Info.plst entry for the SMPL001 Help menu item

<key>NSPrefPaneHelpAnchors</key>
<array>
 <dict>
 <key>title</key>
 <string>Sample Help</string>
 <key>anchor</key>
 <string>SMPL001</string>
 </dict>
</array>

Once the preference pane is loaded by the System Preferences application, a new menu item in the Help
menu called “Sample Help” will appear. When selected, it will load the Help book specified by the SMPL001
anchor.

You can also localize the Help menu item for your preference pane. In the example above, you would replace
the “Sample Help” string with some internal string, such as SAMPLE_PREFPANE_MENU_TITLE. Then in the
Localizable.strings file for all your languages, you would add the appropriate entry to override this internal
string:

Adding Global Help Menu Items 41
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Preference Pane Help Menu

Listing 2 English Localizable.strings entry for the SMPL001 Help menu item

"SAMPLE_PREFPANE_MENU_TITLE" = "Sample Help";

Listing 3 French Localizable.strings entry for the SMPL001 Help menu item

"SAMPLE_PREFPANE_MENU_TITLE" = "Aide Sample";

Adding Dynamic Help Menu Items

Often, you want the items in your preference pane’s Help menu to show or hide based off context—for
example, if you have multiple subpanes in your preference pane’s main view, you may want to add a Help
menu item for one subpane, and hide the menu items for the others.

You can accomplish this with the method updateHelpMenuWithArray:. This method, implemented in the
PreferencePanes framework, is called with one argument, an array of dictionaries corresponding to the same
format as the array and dictionaries in “Adding Global Help Menu Items” (page 41). Instead of adding the
items statically in the Info.plist file, you create dynamic NSArray and NSDictionary objects and pass those
into this method, which will update the Help menu accordingly.

The code in Listing 4 shows you how to construct a help menu that changes its menu item title based off
the identifier of the selected tab.

Listing 4 Dynamic help menu for a tab view

- (void)tabView:(NSTabView *)tabView didSelectTabViewItem:(NSTabViewItem
*)tabViewItem
{
 NSDictionary *dictionary = [NSDictionary dictionaryWithObjectsAndKeys:
 [tabViewItem identifier], @"title",
 @"SMPL001", @"anchor",
 NULL];

 NSArray *array = [NSArray arrayWithObject:dictionary];

 [self updateHelpMenuWithArray:array];
}

Note that the title string used in this method call is not localizable with the Localizable.strings file. If you
want to localize the title of the help menu item, you must do so programatically or using identifiers from the
language-specific nib file, demonstrated in the example above.

42 Adding Dynamic Help Menu Items
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Preference Pane Help Menu

This section takes you through the steps to create and install a preference pane bundle for use by System
Preferences. You need to perform these actions for every preference pane you create. It is assumed that you
are already familiar with Project Builder and Interface Builder. For help using these development tools, see
the Currency Converter tutorial for Cocoa.

Note: Beginning with Project Builder v1.1.1 (December 2001 Developer Tools), Project Builder has a Preference
Pane template project. Selecting this template instead of the generic Cocoa Bundle in step 3 of “Create the
Project” (page 43) renders most of the remaining directions in this section unnecessary. The project already
contains a nib file and skeleton source files; you can immediately build and install the preference pane
according to “Build and Install the Preference Pane” (page 45). You should still read these directions and
customize settings, such as the bundle identifier, where appropriate. Before moving onto the next section
and constructing a user interface, though, you need to inform the nib file of your custom NSPreferencePane
subclass by dragging the class’s header file to the nib file window in Interface Builder and setting the File’s
Owner to your subclass.

Create the Project

This section describes how to create the preference pane project and add the Preference Panes framework.

1. Start Project Builder.

2. Choose New Project from the File menu.

3. Select the Cocoa Bundle project type and create the project.

4. Choose Add Frameworks from the Project menu. If the selection is not already there, go to the
/System/Library/Frameworks directory. Select PreferencePanes.framework.

Create the Nib File

This section describes how to create a simple preference pane nib file and add it to the preference pane
project.

1. While Project Builder is still running with your project open, start Interface Builder.

2. Create an empty Cocoa nib.

3. Create a window and resize it to a suitable size. For System Preferences, the window should not be more
than 595 pixels wide. As the window itself is not used by the preference pane, only its contents, you do
not need to specify a window title nor localize the title.

Create the Project 43
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Preference Pane Bundle

4. Build the user interface in the window.

5. Return to Project Builder and locate the NSPreferencePane.h header file in
PreferencePanes.framework. Drag the header file to the nib’s main window in Interface Builder.

6. In the Classes pane, select the NSPreferencePane class and create a subclass of it. Rename it to whatever
you want. This is a global property within the preference application, so include a unique prefix in the
name as described in “Preventing Name Conflicts” (page 33).

7. With the subclass selected, go to the Attributes pane of the Info window. Create any outlets or actions
you need for the user interface.

8. In the Instances pane, select the File’s Owner object. In the Custom Class pane of the Info window, select
your preference pane class.

9. Draw a connection (Control-drag) between the File’s Owner object and the window object. Connect the
window to the _window outlet.

10. Connect the remaining outlets and actions needed for the user interface.

11. Save the nib file into the English.lproj directory of your project. When asked whether to add it to
the project, click the Add button.

Create the Preference Pane Files

This section describes how to create the initial source files and to insert the preference pane’s icon into the
project.

1. In Interface Builder, with the nib file open, click the Classes tab and select your preference pane subclass.

2. Choose Create Files from the Classes menu. Save the files in your project folder and make sure the “Insert
into targets” checkbox is checked.

3. In Project Builder, edit the header file of your preference pane subclass. After the line importing Cocoa.h,
add the line

#import <PreferencePanes/NSPreferencePane.h>

4. Add your preference pane icon to the project’s Resources folder.

Update the Build Settings

This section describes how to modify the default project settings to produce a custom preference pane
bundle. This mostly involves assigning values to the necessary keys in the bundle’s information property list.

1. Choose Edit Active Target from the Project menu and go to the Bundle Settings pane.

44 Create the Preference Pane Files
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Preference Pane Bundle

2. Change the “Identifier” field to an appropriate unique value for the CFBundleIdentifier key. The
value should be prefixed by the reverse domain name of your organization (see “Preventing Name
Conflicts” (page 33)).

3. Change the “Principal class” field in the Cocoa-specific section to the name of your preference pane
subclass. This is the NSPrincipalClass key.

4. Change the “Main nib file” field to the name of your nib file. Do not include the .nib extension. This is
the NSMainNibFile key.

5. Enter Expert mode by clicking the Expert button at the top of the Bundle Settings window. Create a new
key by clicking the New Sibling button. Rename the new key NSPrefPaneIconFile and set its value
to the name of your icon file.

6. Go to the Build Settings pane, scroll to the bottom of the window, and change the WRAPPER_EXTENSION
entry value to prefPane.

7. Select the InfoPlist.strings file in the project’s Resources folder. Update the CFBundleName value
if it should be different from the project name. Alternatively, you can add an entry for
NSPrefPaneIconLabel, if you need to split the name between two lines.

Build and Install the Preference Pane

This section describes how to make the preference pane available to System Preferences.

1. Build the project.

2. In Finder, locate the build directory for the project. The default location is inside the project folder. The
preference pane is in this folder.

3. Move the preference pane into one of the PreferencePanes family of folders listed in “Where Preference
Panes Live” (page 31). For testing, use the PreferencePanes folder in ~/Library. You may need to
create the PreferencePanes folder.

When you run System Preferences you should now see your preference pane at the bottom of the window
in the “Other” category.

Build and Install the Preference Pane 45
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Preference Pane Bundle

46 Build and Install the Preference Pane
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Creating a Preference Pane Bundle

This section takes you through the steps to create a simple preference pane that interacts with the user
preference system. The preference pane stores and retrieves a pair of values using Core Foundation Preference
Services. If you have already created a skeletal preference pane as described in “Creating a Preference Pane
Bundle” (page 43), you can use it here. Or, you can create a fresh preference pane and refer to the following
instructions where appropriate.

Build the User Interface

The preference pane created in this section consists of a text field and a checkbox illustrating the handling
of string and Boolean preferences.

1. Open the nib file in Interface Builder.

2. Drag a text field into the window. Label the field “A string value”.

3. Drag a checkbox into the window. Change its label to “A Boolean value”.

4. In the Classes pane of the main window, select your preference pane subclass.

5. In the Attributes pane of the Info window, add two outlets named theTextField and theCheckbox.

6. Add an action named checkboxClicked:.

7. In the Instances pane of the main window, make connections between the File’s Owner object
(representing your preference pane subclass) and the text field and checkbox, connecting them to the
theTextField and theCheckbox outlets.

8. Make a connection between the checkbox and the File’s Owner object, connecting the
checkboxClicked: target-action method.

9. Save the nib file.

10. With your subclass highlighted in the Classes pane, choose Create Files from the Classes menu. Save the
files into your project, overwriting if necessary.

Update the Header File

The default preference pane header created by Interface Builder requires a few additions.

1. In Project Builder, select the preference pane’s header file.

Build the User Interface 47
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Simple Preference Pane

2. After the line importing Cocoa.h add the lines

#import <PreferencePanes/NSPreferencePane.h>
#import <CoreFoundation/CoreFoundation.h>

3. Update the outlet declarations to be

IBOutlet NSButton *theCheckbox;
IBOutlet NSTextField *theTextField;

4. Add a new instance variable to hold the application ID of the target application:

CFStringRef appID;

Implement the initWithBundle: Method

The preference pane is initialized using the initWithBundle: method. Only the appID instance variable
needs to be initialized here, but when overriding an init method, you also need to call the superclasses
implementation. Add the following code to the preference pane’s implementation file.

- (id)initWithBundle:(NSBundle *)bundle
{
 if ((self = [super initWithBundle:bundle]) != nil) {
 appID = CFSTR("com.apple.example.prefPaneSample");
 }

 return self;
}

Implement the mainViewDidLoad Method

Immediately after the nib file has been loaded, the object receives a mainViewDidLoad message from the
default implementation of loadMainView. Here you should initialize the user interface elements to reflect
the current preference settings. Add the following code to the implementation file.

- (void)mainViewDidLoad
{
 CFPropertyListRef value;

 /* Initialize the checkbox */
 value = CFPreferencesCopyAppValue(CFSTR("Bool Value Key"), appID);
 if (value && CFGetTypeID(value) == CFBooleanGetTypeID()) {
 [theCheckbox setState:CFBooleanGetValue(value)];
 } else {
 [theCheckbox setState:NO];
 }
 if (value) CFRelease(value);

 /* Initialize the text field */
 value = CFPreferencesCopyAppValue(CFSTR("String Value Key"), appID);
 if (value && CFGetTypeID(value) == CFStringGetTypeID()) {

48 Implement the initWithBundle: Method
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Simple Preference Pane

 [theTextField setStringValue:(NSString *)value];
 } else {
 [theTextField setStringValue:@"setStringValue:@""];
 }
 if (value) CFRelease(value);
}

For each of the two preferences being used, mainViewDidLoad requests the preference’s value from Core
Foundation Preference Services. If a value is found for the preference (value is not NULL) and the value is
of the correct data type, the preferences value is used to set the value of the appropriate user interface
element. If the value does not exist, it initializes the elements with default values.

Implement the checkboxClicked: Method

When the user clicks the checkbox, it sends an action message to the preference pane object. The
checkboxClicked: method obtains the new state of the checkbox and stores it under the name “Bool
Value Key”. Add the following code to the implementation file; an empty method definition should have
been created by Interface Builder.

- (IBAction)checkboxClicked:(id)sender
{
 if ([sender state])
 CFPreferencesSetAppValue(CFSTR("Bool Value Key"),
 kCFBooleanTrue, appID);
 else
 CFPreferencesSetAppValue(CFSTR("Bool Value Key"),
 kCFBooleanFalse, appID);
}

Implement the didUnselect Method

When the preference pane gets deselected, either because the application is exiting or another preference
pane is selected, it is sent a didUnselectmessage. In this method you want to extract the user’s preferences
and save the changes to disk. Since the checkbox gets recorded whenever the user clicks it, only the text
field needs to be updated here. After flushing the preferences to the disk, didUnselect broadcasts a
notification. The notification assumes the target application is implemented to receive this notification and
update its preferences while it is running. Add the following code to the implementation file.

- (void)didUnselect
{
 CFNotificationCenterRef center;

 CFPreferencesSetAppValue(CFSTR(“String Value Key”),
 [theTextField stringValue], appID);
 CFPreferencesAppSynchronize(appID);

 center = CFNotificationCenterGetDistributedCenter();
 CFNotificationCenterPostNotification(center,
 CFSTR("Preferences Changed"), appID, NULL, TRUE);
}

Implement the checkboxClicked: Method 49
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Simple Preference Pane

50 Implement the didUnselect Method
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Implementing a Simple Preference Pane

The NSPreferencePane class is not restricted to use only by System Preferences. Your own application can
use it as well. You can reuse preference panes intended for System Preferences just like the Mac OS X Setup
Assistant does with the Date & Time preference pane. Or, you can write preference panes for use exclusively
by your own application.

Embedding a Single Pane

Embedding a preference pane into your own application is largely a matter of adding the preference pane’s
main view into a window and sending the proper information messages to the preference pane object. The
preference pane object is responsible for accessing and saving user preferences. The procedure is as follows.

1. Initialize the preference pane. If you have the path to the preference pane bundle, load and initialize the
preference pane object with the following lines of code.

NSBundle *prefBundle = [NSBundle bundleWithPath: pathToPrefPaneBundle];
Class prefPaneClass = [prefBundle principalClass];
NSPreferencePane *prefPaneObject = [[prefPaneClass alloc]
 initWithBundle:prefBundle];

For preference panes stored within the application’s bundle, use one of the NSBundle pathForResource
methods to obtain the path to the preference pane. For example, if the preference panes are stored in
a subdirectory named PreferencePanes in the application’s Resources directory, the full path can
be obtained using

pathToPrefPaneBundle = [[NSBundle mainBundle]
 pathForResource: @"NameOfPane" ofType: @"prefPane"
 inDirectory: @"PreferencePanes"];

2. Select the preference pane. When you are ready to display the preference pane, send it a loadMainView
message. Its return value is the preference pane’s main view if successful; on failure it returns nil. Next,
notify the preference pane that it is about to be displayed by sending it a willSelectmessage. Because
this method may potentially alter the preference pane’s main view, get the main view again with the
mainView message. Now add the view into your window. Center the preference pane view horizontally,
but resize the window vertically to accommodate the view. Finally, send the preference pane object a
didSelect message.

The code for selecting the preference pane looks like the following.

NSView *prefView;
if ([prefPaneObject loadMainView]) {
 [prefPaneObject willSelect];
 prefView = [prefPaneObject mainView];
 /* Add view to window */
 [prefPaneObject didSelect];
} else {

Embedding a Single Pane 51
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Panes in Other Applications

 /* loadMainView failed -- handle error */
}

3. Deselect the preference pane. The application is required to deselect the preference pane before any of
the following actions occur:

 ■ the window switches to a different view

 ■ the preference pane’s window closes

 ■ the application quits

The application is required to release the object only when quitting the application; for the other events,
the preference pane object can be reselected at a later time.

The first step is to ask the preference pane object whether it is willing to be deselected by sending it a
shouldUnselect message. The object can refuse to be deselected if one of the user preferences has
an unacceptable value. The method returns one of the values from Table 1 (page 27) to indicate its
willingness to be deselected. If the preference pane object returns NSUnselectLater, it is indicating
that it needs to obtain some more information from the user before it knows what action to take. When
the preference pane object is ready, it posts one of the following two notifications to indicate whether
it is now OK to continue or you should abort the deselection.

Do the deselectionNSPreferencePaneDoUnselectNotification

Cancel the deselectionNSPreferencePaneCancelUnselectNotification

When NSUnselectLater is returned, register for these two notifications coming from the preference
pane object and temporarily abort the deselection. Continue as appropriate after receiving one of these
notifications.

When the preference pane object indicates it can be deselected, send it a willUnselect message.
Next, perform the appropriate action causing the deselection: remove the view, close the window, or
prepare to exit. Finally, send the object a didUnselect message.

If you do not expect to use the preference pane object again in your application, release it to reclaim
the memory resources it consumed.

Managing a Collection of Panes

A large application probably has a large number of preferences. Although you can use an NSTabView to
associate closely related preferences into a single preference pane object, you may need to create multiple
preference panes. Your application needs to provide a user interface for selecting the panes.

If you have a small number of preference panes, place their icons into a fixed-size view at the top of the
window and place the preference panes’ views into the bottom of the window as each is selected. See the
Mail application for an example.

If you have more preference panes than can fit into the width of your window, provide an additional “Show
All” icon in the top–left corner. The icon should be the application icon to which the preferences are applied
(not necessarily the preference application’s own icon). Selecting this icon presents a two-dimensional matrix

52 Managing a Collection of Panes
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Panes in Other Applications

of all the preference pane icons from which the user can select. Also provide a view to the right of the “Show
All” icon into which users can drag their favorite preference panes. The user’s favorite preference panes
should be stored as part of the preference application’s own user preferences. See the System Preferences
application for an example.

Managing a Collection of Panes 53
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Panes in Other Applications

54 Managing a Collection of Panes
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Using Preference Panes in Other Applications

This table describes the changes to Preference Panes.

NotesDate

Fixed information regarding NSWindowWillCloseNotification.2006-10-03

Fixed an incorrect instruction and replaced a duplicate graphic.2005-04-29

Added article on using new custom Help menu items.

Updated tabbed view screen shot in “The Preference Application” article.2003-08-12

Revision history was added to existing topic. It will be used to record changes
to the content of the topic.

2003-02-24

55
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

56
2006-10-03 | © 2003, 2006 Apple Computer, Inc. All Rights Reserved.

Document Revision History

	Preference Panes
	Contents
	Figures, Tables, and Listings
	Introduction
	Architecture of Preference Panes
	Application Architecture
	Design Architecture
	Implementation

	The Preference Application
	System Preferences
	Custom Preference Application
	Target Application

	Managing User Preferences
	Preference Services
	Configuration Files
	Interprocess Communication
	Apple Events
	Distributed Objects
	Distributed Notifications
	Sockets and Ports
	Signals

	Life Cycle of a Preference Pane
	Instantiating the Preference Pane Object
	Loading the Main View
	Dynamically Selecting the Main Nib File
	Assigning the Main View
	Setting Up the User Interface

	Selecting
	Deselecting
	Longevity of Preference Pane Objects in System Preferences

	Anatomy of a Preference Pane Bundle
	Information Property Lists
	Localizable Resources
	Global Resources
	Where Preference Panes Live

	Preventing Name Conflicts
	Uniqueness Algorithm
	Categories

	Using Preference Services
	Communicating With the Target Application
	Using Distributed Objects
	Using Distributed Notifications

	Implementing a Preference Pane Help Menu
	Adding Global Help Menu Items
	Adding Dynamic Help Menu Items

	Creating a Preference Pane Bundle
	Create the Project
	Create the Nib File
	Create the Preference Pane Files
	Update the Build Settings
	Build and Install the Preference Pane

	Implementing a Simple Preference Pane
	Build the User Interface
	Update the Header File
	Implement the initWithBundle: Method
	Implement the mainViewDidLoad Method
	Implement the checkboxClicked: Method
	Implement the didUnselect Method

	Using Preference Panes in Other Applications
	Embedding a Single Pane
	Managing a Collection of Panes

	Revision History

