
Quick Look Programming Guide
User Experience > Files & Software Installation

2008-02-08



Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Cover
Flow, iCal, iChat, iPhoto, Keynote, Mac, Mac OS,
Objective-C, Pages, Quartz, QuickTime, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Finder, Spotlight, and Time Machine are
trademarks of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction to Quick Look Programming Guide 7

Organization of This Document 7
See Also 8

Chapter 1 Quick Look and the User Experience 9

Thumbnails and Previews 9
Quick Look in Operation 9
Developing for Quick Look 12

Chapter 2 Quick Look Architecture 13

Quick Look Consumers and Producers 13
A Closer Look at Quick Look Daemons and Generators 14
Installing Quick Look Generators 16

Chapter 3 Creating and Configuring a Quick Look Project 17

Creating and Setting Up the Project 17
Project Configuration 19

The Content-Type UTI and CFPlugIn Properties 19
Other Property List Keys 20

Chapter 4 Overview of Generator Implementation 21

The Quick Look Generator API 21
Approaches to Thumbnail and Preview Generation 22
Generators and Thread Safety 23

Chapter 5 Drawing Thumbnails and Previews In a Graphics Context 25

Drawing Document Images in a Graphics Context 25
Drawing Previews in a PDF Context 27

Chapter 6 Dynamically Generating Previews 29

Creating Textual Representations “On the Fly” 29
Generating Enriched HTML 30

3
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.



Chapter 7 Saving Previews and Thumbnails in the Document 33

Chapter 8 Assigning Core Graphics Images to Thumbnails 37

Chapter 9 Canceling Previews and Thumbnails 39

Canceling Through a Callback Function 39
Canceling Through Polling 39

Chapter 10 Debugging and Testing a Generator 41

Debugging Facilities 41
Testing Tools and Strategies 45

Document Revision History 47

4
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CONTENTS



Figures, Tables, and Listings

Chapter 1 Quick Look and the User Experience 9

Figure 1-1 Thumbnails in the Finder’s Cover Flow view 10
Figure 1-2 A Quick Look preview of an image 11
Figure 1-3 A Quick Look preview of a movie 12

Chapter 2 Quick Look Architecture 13

Figure 2-1 The Quick Look architecture 13
Figure 2-2 Quick Look provider component 14

Chapter 3 Creating and Configuring a Quick Look Project 17

Figure 3-1 Choosing the Quick Look plug-in template 17
Figure 3-2 Default items in a Quick Look plug-in project 18
Listing 3-1 The subproperties of CFBundleDocumentTypes 19
Listing 3-2 CFPlugIn properties 19

Chapter 4 Overview of Generator Implementation 21

Figure 4-1 Returning preview data stored in the document 23
Table 4-1 Quick Look properties for specifying the thread-safety status of the generator 24

Chapter 5 Drawing Thumbnails and Previews In a Graphics Context 25

Listing 5-1 Drawing a Sketch preview in a Quick Look graphics context 25

Chapter 6 Dynamically Generating Previews 29

Listing 6-1 Generating a preview in RTF format 29
Listing 6-2 Generating a preview composed of HTML data plus an image attachment 30

Chapter 7 Saving Previews and Thumbnails in the Document 33

Listing 7-1 Sketch example project: adding a thumbnail property 33
Listing 7-2 Sketch example project: including the thumbnail with the document data 33
Listing 7-3 Returning the stored thumbnail image to Quick Look 34

Chapter 8 Assigning Core Graphics Images to Thumbnails 37

Listing 8-1 Creating and assigning a Core Graphics image 37

5
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.



Chapter 10 Debugging and Testing a Generator 41

Figure 10-1 Setting qlmanage as a custom executable 42
Figure 10-2 Specifying a document for which qlmanage requests a preview 43
Listing 10-1 Sample output of qlmanage -m 44

6
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS



Quick Look is a technology introduced in Mac OS X version 10.5 that enables client applications, such as
Spotlight and the Finder, to display thumbnail images and full-size previews of documents. For documents
of common content types—notably HTML, RTF, plain text, TIFF, PNG, JPEG, PDF, and QuickTime movies—this
support is automatic. However, applications with documents that are of less common or even private content
types can still take advantage of the Quick Look feature. Those applications can include Quick Look generators:
plug-ins that convert a given document from its native format into a format that Quick Look can display to
users.

This document describes the Quick Look technology and explains how you, as an application developer, can
create a generator so Quick Look can display thumbnail and preview images of your documents. Although
Quick Look generators are designed as CFPlugIn-style bundles, all the gritty details of plug-in implementation
are handled for you. And although the programmatic interface for Quick Look generators is an ANSI C interface,
you can write generators using Objective-C code that calls methods of the Cocoa frameworks.

Organization of This Document

The Quick Look Programming Guide has the following chapters:

 ■ “Quick Look and the User Experience” (page 9) describes what the Quick Look technology does and
points out the advantages for applications that make use of the technology. it also defines terms that
have special meaning in Quick Look.

 ■ “Quick Look Architecture” (page 13) describes the various components of Quick Look, including their
roles and how they communicate with each other.

 ■ “Creating and Configuring a Quick Look Project” (page 17) explains how to create a Quick Look generator
project and how to specify the properties of a generator.

 ■ “Overview of Generator Implementation” (page 21) summarizes the approaches for generating thumbnails
and previews and identifies the best contexts for each approach.

 ■ “Drawing Thumbnails and Previews In a Graphics Context” (page 25) shows how to draw thumbnails
and previews in graphics context optimized for bitmap, single-page vector, and multipage vector graphics.

 ■ “Dynamically Generating Previews” (page 29) discusses how you can dynamically generate text-based
previews in a supported content type such as RTF or HTML; for HTML previews it also shows how you
can include attachments such as images.

 ■ “Saving Previews and Thumbnails in the Document” (page 33) describes the approach where the
application saves the thumbnail or preview image in the document and the generator simply retrieves
the image for Quick Look. It also describes the function to use when the image data returned to Quick
Look is in a format supported by the Image I/O framework.

 ■ “Assigning Core Graphics Images to Thumbnails” (page 37) shows how you can return an image (as a
CGImage object) when that image is not in a format supported by the Image I/O framework.

Organization of This Document 7
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Quick Look Programming
Guide



 ■ “Canceling Previews and Thumbnails” (page 39) explains how you can, when requested by Quick Look,
cancel the generation of previews and thumbnails.

 ■ “Debugging and Testing a Generator” (page 41) describes the tools and techniques you can use to
debug and test a Quick Look generator.

See Also

Consult the following documents for descriptions of Quick Look generator functions and constants:

QLPreviewRequest Reference
QLThumbnailRequest Reference

Because generating a thumbnail or preview image often requires drawing or the creation of an image, the
following documents might be of help:

Quartz 2D Programming Guide
Image I/O Reference Collection
Cocoa Drawing Guide
Core Image Programming Guide

8 See Also
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Quick Look Programming Guide



Some applications on a Mac OS X system present users with lists of document files. Among these applications
are Finder, Spotlight, and Time Machine. These applications show a document icon, the filename, and perhaps
metadata related to the document, but often this information is insufficient for users to distinguish one
document from another. To identify a particular document by its content in versions of Mac OS X prior to
version 10.5, users had to open each document in the list (often requiring them to launch of the application)
until they find the one they want. Needless to say, this is a time-consuming procedure.

Quick Look is a feature of Mac OS X introduced in version 10.5 that makes it possible for users to quickly
discover the contents of listed documents, both as thumbnail images and as full-size preview images, without
requiring the launch of a document’s application. The following sections describe the Quick Look feature
and identify those applications that are likely candidates for generating Quick Look thumbnails and previews
for their documents.

Thumbnails and Previews

Quick Look displays two representations of documents: thumbnails and previews. These two representations
fulfill different needs.

A thumbnail is a static image that depicts a document. Although the size may vary, it is typically smaller than
a preview and larger than a document icon. The intent of a thumbnail is to give users a notion of a document’s
contents within a fairly small bounds. At larger sizes, a thumbnail for some kinds of documents—say, image
files—might be as useful as a full-size preview. But at smaller sizes, a thumbnail might not be any better than
a document icon at conveying what a document contains.

A preview is a larger representation of a document, usually a full-size rendering of it, that is contained by the
Quick Look panel (see Figure 1-2 (page 11)). Quick Look displays previews without the need to open the
document in its owning application. Users request previews when thumbnails are either not available or do
not reveal enough detail to allows them to distinguish one document from another.

A client may display multiple thumbnails at once, while previews are generally displayed one at a time.

Quick Look in Operation

To appreciate how Quick Look contributes to the user experience, let’s consider how it is used. If you search
for an item in Spotlight—say, “elephant”—and click the Show All option you might see a Finder window like
the example in Figure 1-1 .

Thumbnails and Previews 9
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Quick Look and the User Experience



Figure 1-1 Thumbnails in the Finder’s Cover Flow view

The image in the middle of the Finder’s Cover Flow view is a thumbnail generated by Quick Look. Thumbnails
appear in various places in Mac OS X v10.5. In addition to Cover Flow, they appear in the Finder in icon mode
and column mode, in the Dock as stacks of icons, and in the Quick Look index sheet when multiple previews
are requested. Thumbnails also appear in the Quick Look panel when Quick Look can’t generate a preview
(but can generate a thumbnail).

If the user want to get a closer look at a document, he or she could select it in Spotlight or a Finder window
and press the space bar. Quick Look displays a full-size preview image of the document similar to the one in
Figure 1-2. (In the Finder you can also press Command-Y to view a preview of the selected item.)

10 Quick Look in Operation
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Quick Look and the User Experience



Figure 1-2 A Quick Look preview of an image

Quick Look preview include not only static images and documents, but can include QuickTime movies, as in
the example in Figure 1-3.

Quick Look in Operation 11
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Quick Look and the User Experience



Figure 1-3 A Quick Look preview of a movie

When users request previews for multiple documents in the Finder, the Quick Look panel enables them to
cycle through the previews or look at them all at once (as thumbnails) in an index sheet. The Quick Look
panel also includes controls that permit users to resize a preview dynamically, expand it to take up the screen,
close the panel, and (depending on document type) perform operations such as “play movie” and “add to
iPhoto.“

Developing for Quick Look

Architecturally, Quick Look has a consumer, or client, side and a side that provides the thumbnail and preview
images to the consumer side for display. (For a detailed look at the various parts of Quick Look and how they
work together, see “Quick Look Architecture” (page 13).) Clients of Quick Look request thumbnails and
previews for listed and selected documents, respectively, and receive images for display.

Quick Look supports the display of document thumbnails and previews if the format is one of its native types.
The native Quick Look types are plain text, RTF, HTML, PDF, images (in various standard formats, such as JPG,
PNG, and TIFF), and QuickTime movies and sounds. However, if a document is not in one of the native types,
the document’s application must include a Quick Look generator if it wants to take advantage of the Quick
Look feature. The generator is a bundle that creates representations of the application’s documents in one
of the native types for display as previews and thumbnails. The purpose of a Quick Look generator is to
provide upon demand, and as efficiently as possible, a thumbnail or preview image of a document in one of
the native Quick Look types.

Of the various components of Quick Look, only the generator bundle (which is based on the CFPlugIn
architecture) exposes a programmatic interface for third-party developers. Because of its CFPlugIn foundation,
and to make Quick Look accessible to as many applications as possible, the generator API is in ANSI C, not
Objective-C.

A Quick Look generator bundle must have an extension of qlgenerator and be installed in a file-system
location described in “Installing Quick Look Generators” (page 16).

12 Developing for Quick Look
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

Quick Look and the User Experience



The follow sections examine the architecture of Quick Look. A general picture of this architecture helps you
to understand the role and constraints of generators.

Quick Look Consumers and Producers

The architecture of Quick Look is based on a consumer—producer model. The consumer (or client) is an
application that wants to display thumbnail and preview representations of documents. The producer side
of the architecture provides those representations to the consumer. (Some Quick Look clients are system
applications such as Finder, Spotlight, and FIleSync.) Clients have access to the public function
QLThumbnailImageCreate, but most of the part of Quick Look that supports the consumer consists of
private resources and programmatic interfaces (system programmatic interfaces, or SPI). Figure 2-1 illustrates
the architecture of Quick Look.

Figure 2-1 The Quick Look architecture

Quick Look consumer SPI

Document
reader view
and panel

Client application

Quick Look daemon Quick Look
generator bundle

Quick Look
generator bundle

Document reader
display bundle

Document reader
display bundle

Consumer

Producer

The consumer portion of Quick Look has three components: a document reader (consisting of a custom view
and panel), display bundles for that reader, and an SPI to enable communication with the client. Each of
these components has a specific role to play in support of the consumer:

Quick Look Consumers and Producers 13
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Quick Look Architecture



 ■ Document reader—Quick Look implements a view (NSView) and panel (NSPanel) customized for displaying
document previews. Along with the preview content, the view might include (at the client’s option)
controls for manipulating the preview, such as page-forward, page-backward, start playing, rewind, and
text-search. A client application can embed this view in its user interface if it chooses. The Quick Look
panel contains a Quick Look view and various controls that let the user take some action with the preview,
such making the preview image full-screen or starting a slideshow.

 ■ Display bundles—The Quick Look view itself doesn’t display document previews but delegates that work
to a display bundle. There is one Quick Look display bundle for each native document type. See
“Developing for Quick Look” (page 12) for a discussion of the Quick native types. If a document is not
of a native type, it must be converted to a one in order to be displayed as a Quick Look thumbnail or
preview.

 ■ Consumer SPI—The client application talks with Quick Look through this interface, making requests for
previews and thumbnails and accessing the Quick Look document reader.

The “producer” part of Quick Look is based on a plug-in architecture that enables applications to provide
thumbnails and previews of their documents, if those documents are not one of the native Quick Look types.
The consumer and producer parts of Quick Look communicate over one or more Mach ports.

A Closer Look at Quick Look Daemons and Generators

The “producer” side of Quick Look is where third-party development takes place, and thus it merits a closer
look. it consists of one or more Quick Look daemons and multiple Quick Look generators. Figure 2-2 shows
how these things are related to one another.

Figure 2-2 Quick Look provider component

Message port

Quick Look consumer SPI
. . .. . .

Generator

Quick Look
daemon

Message port

Quick Look
daemon

Generator

Generator

request

request

A Quick Look generator is CFPlugIn-based bundle that provides thumbnail images and previews for an
application’s documents. The job of a generator is to convert the document data into one of the Quick Look
native types for each preview or thumbnail request it receives. The daemon loads a generator when it first
receives a request for a document’s preview or thumbnail. It locates the generator associated with a particular
document using the document’s content-type UTI, which is specified in the generator’s information property
list. It looks for the generator inside the application bundle or in one of the standard file-system locations
for generators, such as /Library/QuickLook. The binary of a Quick Look generator must be universal and
must be 32-bit only.

14 A Closer Look at Quick Look Daemons and Generators
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Quick Look Architecture



The Quick Look daemon (quicklookd) is a faceless background application that acts as a host for the
CFPlugIn-based generators. It communicates with the consumer side of Quick Look through a Mach port,
and (as noted above) locates and loads generators when it first receives a request for a preview or thumbnail
for a document whose format is not one of the native types. It conveys requests from clients to generators
and returns their responses.

There are advantages to having a daemon as an intermediary between the consumer SPI and the generators.
If a Quick Look daemon crashes, it can be restarted immediately to resume service where it left off. If a
generator is not thread-safe or needs to be isolated for any other reason, a separate daemon can be run to
handle requests for that generator. When the daemon is idle, Quick Look can terminate it, thereby freeing
up memory and providing a cheap form of garbage collection.

With all the architectural pieces in place, let’s follow what happens when a client application such as Finder
asks to display a preview of a document. The user opens a folder, displaying a list of documents of various
types; some of these documents are of native Quick Look types and others are specific to certain applications.
The user selects a document—say, a JPG file—and chooses the Quick Look Preview command from the File
menu. In Quick Look the following sequence of actions occurs:

1. The client (Finder) sends a message to the consumer part of Quick Look requesting a preview for the
document.

2. Quick Look sees that the document format is of a native type, so it loads the appropriate display bundle
(if necessary)

3. The display bundle draws the document in the document reader (that is, in the Quick Look view, which
is the content view of the Quick Look panel).

The user next requests a preview for a document that is not of a Quick Look native type. The following
sequences of steps happens:

1. The client (Finder) sends a message to the consumer part of Quick Look requesting a preview for the
document.

2. The Quick Look framework sees that the document format is not of a native type, so it forwards the
message to the Quick Look daemon.

3. Using the document’s content-type UTI, the daemon locates the appropriate generator and loads it if
necessary.

4. It forwards the preview request to the generator, which creates a preview and either returns it or tells
the generator where to find it.

5. The daemon returns the generator’s response to the consumer part of Quick Look.

6. Quick Look loads the appropriate display bundle (if necessary).

7. The display bundle draws the document in the document reader.

A Closer Look at Quick Look Daemons and Generators 15
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Quick Look Architecture



Installing Quick Look Generators

You can store a Quick Look generator in an application bundle (in
MyApp.app/Contents/Library/QuickLook/) or in one of the standard file-system locations:

~/Library/QuickLook—third party generators, accessible only to logged-in user
/Library/QuickLook—third party generators, accessible to all users of the system
/System/Library/QuickLook—Apple-provided generators, accessible to all users of the system

When Quick Look searches for a generator to use, it first looks for it in the bundle of the associated application
and then in the standard file-system locations in the order given in the list above. If two generators have the
same UTI, Quick Look uses the first one it finds in this search order. If two generators claim the same UTI at
the same level (for example, in /Library/QuickLook), there is no way to determine which one of them
will be chosen.

16 Installing Quick Look Generators
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Quick Look Architecture



Xcode projects for Quick Look generators originate from a special template that sets up important aspects
of the project. However, you still must specify generator-specific configuration information and add any
resources for the generator, typically before you write any code.

Creating and Setting Up the Project

To create a Quick Look generator project, start by choosing New Project from the File menu in the Xcode
application. In the project-creation assistant, select Quick Look Plug-In in the list of project templates (as
shown in Figure 3-1) and click Next.

Figure 3-1 Choosing the Quick Look plug-in template

After you specify a name and location for the project, Xcode displays a project window similar to the example
in Figure 3-2.

Creating and Setting Up the Project 17
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Configuring a Quick Look Project



Figure 3-2 Default items in a Quick Look plug-in project

The following items in this window have some special relevance to Quick Look:

 ■ QuickLook.framework—The Quick Look framework, which includes both consumer and producer
parts of the architecture.

If you want additional frameworks, add them to the project and insert the appropriate #include or
#import directives. For example, if you want to write code using Cocoa API, add Cocoa.framework to
the project.

 ■ main.c — This file contains all of the code required for a CFPlugin-based plug-in. You should not
have to add or modify any of this code.

 ■ GeneratePreviewForURL.c and GenerateThumbnailForURL.c — The first file contains code
templates for the callbacks GeneratePreviewForURL and CancelPreviewGeneration; the second
file contains code templates for the callbacks GenerateThumbnailForURL and
CancelThumbnailGeneration.

If your implementation code is going to be Objective-C, be sure to change the extensions of these files
from c to m in Xcode (that is, by selecting the file and choosing Rename from the File menu).

Although a Quick Look generator does not (and should not) have nib files as resources, you can add other
resources if necessary.

18 Creating and Setting Up the Project
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Configuring a Quick Look Project



Project Configuration

The information property list (Info.plist) of a Quick Look generator project includes some special properties
whose values you should set in addition to standard properties such as CFBundleIdentifier and
CFBundleVersion. The following sections describe these properties.

The Content-Type UTI and CFPlugIn Properties

One important property for Quick Look generators is LSItemContentTypes, a subproperty of
CFBundleDocumentTypes. Listing 3-1 shows the CFBundleDocumentTypes property when unedited.
(Note that the Quick Look project template specifies the value (QLGenerator) of the CFBundleTypeRole
property for you.)

Listing 3-1 The subproperties of CFBundleDocumentTypes

    <key>CFBundleDocumentTypes</key>
    <array>
        <dict>
            <key>CFBundleTypeRole</key>
            <string>QLGenerator</string>
            <key>LSItemContentTypes</key>
            <array>
                <string>SUPPORTED_UTI_TYPE</string> // change this!
            </array>
        </dict>
    </array>

Replace the string “SUPPORTED_UTI_TYPE” with one or more UTI s identifying the content types of the
documents for which this generator generates thumbnails and previews. For example, the QuickLookSketch
example project specifies the UTIs for Sketch documents:

<key>CFBundleDocumentTypes</key>
    <array>
        <dict>
            <key>CFBundleTypeRole</key>
            <string>QLGenerator</string>
            <key>LSItemContentTypes</key>
            <array>
                <string>com.apple.sketch2</string>
                <string>com.apple.sketch1</string>
            </array>
        </dict>
    </array>

For more information on Uniform Type Identifiers (UTIs) for document-content types, see Uniform Type
Identifiers Overview.

As Listing 3-2 shows, a large segment of the Info.plist in a Quick Look generator project are properties
related to CFPlugIn. You should not have to edit these properties.

Listing 3-2 CFPlugIn properties

    <key>CFPlugInDynamicRegisterFunction</key>

Project Configuration 19
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Configuring a Quick Look Project



    <string></string>
    <key>CFPlugInDynamicRegistration</key>
    <string>NO</string>
    <key>CFPlugInFactories</key>
    <dict>
        <key>27EB40F9-21D6-4438-9395-692B52DB53FB</key>
        <string>QuickLookGeneratorPluginFactory</string>
    </dict>
    <key>CFPlugInTypes</key>
    <dict>
        <key>5E2D9680-5022-40FA-B806-43349622E5B9</key>
        <array>
            <string>27EB40F9-21D6-4438-9395-692B52DB53FB</string>
        </array>
    </dict>
    <key>CFPlugInUnloadFunction</key>
    <string></string>

Other Property List Keys

You can specify these additional key-value pairs in the information property list (Info.plist) of a Quick
Look generator:

DescriptionAllowed valueKey

Specifies the minimum use size along one dimension
(in points) of thumbnails for the generator. Quick Look
does not call the GenerateThumbnailForURL callback
function for thumbnail sizes less than this value. The
default size is 17. If your generator is fast enough, you
can remove this property so the thumbnail image can
appear in standard lists.

Real number
<real>n</real>

QLThumbnailMinimum-
Size

This number gives Quick Look a hint for the width (in
points) of previews. It uses these values if the generator
takes too long to produce the preview.

Real number
<real>n</real>

QLPreviewWidth

This number gives Quick Look a hint for the height (in
points) of previews. It uses these values if the generator
takes too long to produce the preview.

Real number
<real>n</real>

QLPreviewHeight

Controls whether the generator can handle concurrent
thumbnail and preview requests.

YES or NOQLSupportsConcurrent-
Requests

Controls whether the generator can be run in threads
other than the main thread

YES or NOQLNeedsToBeRun-
InMainThread

The properties QLSupportsConcurrentRequests and QLNeedsToBeRunInMainThread are Quick Look
properties that affect the multithreaded characteristics of the generator. They are discussed in “Generators
and Thread Safety” (page 23).

20 Project Configuration
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating and Configuring a Quick Look Project



The Quick Look generator API gives you several approaches for implementing generators. This chapter
describes what they are and suggests the approach most suitable for applications based on their document
types. It also discusses thread safety and multithreading issues related to Quick Look generators.

This chapter summarizes only the generation of thumbnails and previews. See “Canceling Previews and
Thumbnails” (page 39) for a discussion of how to cancel the generation of thumbnails and previews.

The Quick Look Generator API

The header file QLGenerator.h in the Quick Look framework declares the programmatic interface for Quick
Look generators. (Another header file, QLBase.h, is also in the Headers folder, but this file merely contains
definitions of various macros used by both the Quick Look public and private interfaces.) The programmatic
interface for generators is divided between thumbnail requests and preview requests, represented by opaque
types QLThumbnailRequestRef and QLPreviewRequestRef, respectively. The API falls into three distinct
categories:

 ■ Callbacks

Generators must implement a callback function typed as GenerateThumbnailForURL to create and
return a thumbnail representation of a document. They must implement a callback function typed as
GeneratePreviewForURL to create and return a preview of a document. As noted in “Creating and
Configuring a Quick Look Project” (page 17), the Xcode template for generators makes the default names
of the callback functions the same as their type names.

An additional pair of callback functions can be implemented to cancel the generation of previews and
thumbnails that a generator is currently performing. For more information on these callbacks, see
“Canceling Previews and Thumbnails” (page 39).

 ■ Functions used in generating thumbnails and previews

Quick Look provides a range of functional alternatives for generators to create and return thumbnails
and previews. For example, the QLThumbnailRequestCreateContext and
QLPreviewRequestCreateContext functions provide a graphics context for drawing bitmap and
vector-based images in. You use the QLPreviewRequestSetDataRepresentation function to return
an embedded or dynamically generated preview, often for HTML content enriched with attachments.
With the QLThumbnailRequestSetImage function you return a static thumbnail image representing
a document.

“Approaches to Thumbnail and Preview Generation” (page 22) describes these functions and related
functions in greater detail and identifies the situations best suited to their use.

 ■ Functions that return information about the request or generator

The remaining functions in QLGenerator.h allow you get the attributes of preview or thumbnail requests
or to obtain other data related to them. For example, the QLThumbnailRequestCopyURL function
returns the URL identifying the document for which a thumbnail is requested. The

The Quick Look Generator API 21
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Overview of Generator Implementation



QLThumbnailRequestGetGeneratorBundle function returns a reference (CFBundleRef) to the
generator’s bundle. And the QLPreviewRequestCopyContentUTI function returns the UTI identifier
of the current document’s content (for example, com.apple.sketch1).

An important distinction to keep in mind when programming generators is the difference between options
and properties. Both are names of CFDictionaryRef parameters in Quick Look functions. But the options
parameter in the callback functions GenerateThumbnailForURL and GeneratePreviewForURL is a
dictionary of options, or hints, from the client to the generator for how the request should be handled. The
propertiesparameter is the last parameter in theQLThumbnailRequest andQLPreviewRequest functions
used for creating thumbnails and previews,; the properties dictionary contains data supplemental to the
created thumbnail or preview.

Approaches to Thumbnail and Preview Generation

The approach you take toward thumbnail and preview generation, and the Quick Look functions you use,
depend on the kind of document your generator is intended for. Ask yourself these questions about the
document:

 ■ Is it bundled (as is, for example, a Pages document) or is it non-bundled (or flat)?

 ■ Does it contain graphics or text? Or both graphics and text?

 ■ If graphics, is it a bitmap or vector image?

 ■ Does it have a single page or multiple pages?

Of course, whether the request is for a thumbnail or a preview enters into your choice of approach. If a request
is for a thumbnail with a size no larger than a regular document icon, then a thumbnail at that size may be
no better than the icon. If the request is for preview of a multipage document, do you show just the first
page of the document or all of it? Whether the request is for a thumbnail or a preview, the performance of
your generator is of paramount importance. For example, when a client requests thumbnails, it can request
them for dozens of different documents; inefficient generators can make the client’s display of thumbnails
appear sluggish. If the client requests a preview for a document that is over 200 pages, perhaps you should
include only enough of the document for the user to identify it. For your generator you should adopt proper
memory-management practices and the appropriate multithreading strategy. For more information about
multithreaded generators and thread-safety issues, see “Generators and Thread Safety” (page 23)

If you want to specify static thumbnail and preview images for a bundled document, you can take the easiest
approach—it doesn’t even require a generator. Just have your application place the images inside the
document bundle in a subfolder named QuickLook; the image file for thumbnails should be named
Thumbnail.ext and the file for previews should be named Preview.ext (where ext is an extension such as
tiff, png, or jpg). If you decide on this approach, you should not create a generator.

Programmatically, you can take one the following approaches for generating your thumbnails and previews,
depending on the document and other circumstances:

 ■ If the document is single page containing bitmap graphics, vector graphics, or even text (generally when
it is a graphical element of the preview), you can draw the thumbnail or preview in a graphics context
returned by, respectively, the QLThumbnailRequestCreateContext or
QLPreviewRequestCreateContext function.

22 Approaches to Thumbnail and Preview Generation
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Overview of Generator Implementation



 ■ If the document has more than one page of vector graphics or text, you can draw the preview as PDF
content in the graphics context supplied by QLPreviewRequestCreatePDFContext. You can call
regular Core Graphics functions to draw the preview image.

The advantage of this and the previous approach is that you completely control what’s drawn; however,
you have to handle the layout yourself. Applications that are good candidates for this approach are Font
Book, Keynote, OmniGraffle, and Pages.

 ■ For any kind of document, the application can write the thumbnail and preview image as part of the
document data, which the generator retrieves and returns with the functions
QLThumbnailRequestSetImageWithData and QLPreviewRequestSetDataRepresentation,
respectively. Figure 4-1 illustrates this approach. For previews, you must specify which native Quick Look
type the preview data is in through the contentTypeUTI parameter. For thumbnails, the returned data
must in a format that can be processed by the Image I/O framework : JPG, TIFF, PNG, and so on.

Figure 4-1 Returning preview data stored in the document

Client application

Quick Look consumer SPI

Document

Preview
data

CFDataRef

Quick Look generator

 ■ For multipage documents, typically textual documents, the generator can dynamically generate the
preview “on the fly” and return it with the QLPreviewRequestSetDataRepresentation function.

Although you can do this for a preview in any native Quick Look type (such as RTF), a recommended
approach for documents with “enriched” textual content is to use
QLPreviewRequestSetDataRepresentationwith a contentTypeUTI parameter of kUTTypeHTML.
This combination of function and parameter tells Quick Look to use the Web Kit to handle the layout of
the preview. In the final parameter of the function, the properties dictionary, you can specify
attachments in the HTML (such as images, sounds, and even things like Address Book cards). For this
approach to be feasible, of course, the document data must be convertible to HTML. Some applications
that are good candidates for this approach are OmniOutliner, Delicious Library, and Microsoft Messenger.

 ■ When you cannot provide Quick Look (via QLThumbnailRequestSetImageWithData) a version of a
thumbnail image that is in a format suitable for the Image I/O framework, but you can generate a serialized
thumbnail image in some other format, you can use the QLThumbnailRequestSetImage function to
return this image to Quick Look.

Generators and Thread Safety

For performance reasons, the Quick Look daemon (quicklookd) prefers to run a generator in its own thread,
usually concurrently with other generators or even with the same generator when that generator is working
on multiple documents. Given this, several thread-safety questions arise when you write code for a generator:

Generators and Thread Safety 23
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Overview of Generator Implementation



 ■ Is the generator code itself thread-safe?

 ■ Are the frameworks that the generator calls into thread-safe in the current context?

For example, the Application Kit is generally thread-safe, but its text system (consisting of NSText,
NSTextView, NSLayoutManager, NSTextStorage, and related classes) is not thread-safe if the layout
of text is done asynchronously.

 ■ Is the generator code or the framework code called by the generator able to be run in a non-main thread?

If you can determine the answer to these questions, you can configure your generator for optimum
performance by setting the QLSupportsConcurrentRequests and QLNeedsToBeRunOnMainThread
properties in you generator’s information property list (Info.plist). (If you are unsure of the answer to
any of the above questions, assume the most conservative answer in terms of thread safety.) Table 4-1
summarizes the thread-safety status that Quick Look assumes when you assign different values to these two
properties.

Table 4-1 Quick Look properties for specifying the thread-safety status of the generator

Thread-safety statusValuesQuick Look property pair

Default. The generator code is not thread safe but it uses
thread-safe frameworks. The generator is never called twice
at the same time, but might be called on different threads.

NO

NO

QLSupportsConcurrentRequests

QLNeedsToBeRunOnMainThread

The generator code is thread save and uses thread-safe
frameworks. Quick Look can call the generator for several
documents at the same time in different threads, including
the main thread.

YES

NO

QLSupportsConcurrentRequests

QLNeedsToBeRunOnMainThread

The safest context, because Quick Look calls the generator
serially in the main thread.

NO

YES

QLSupportsConcurrentRequests

QLNeedsToBeRunOnMainThread

In some situations, the Quick Look daemon may spin off a
subprocess to handle requests from clients, so those
requests might be dispatched to the same generator code
in two different processes. This combination indicates that
the generator is thread safe in that context.

YES

YES

QLSupportsConcurrentRequests

QLNeedsToBeRunOnMainThread

For information about thread-safety issues, including the thread-safe status of the Carbon and Cocoa
frameworks, see Threading Programming Guide.

24 Generators and Thread Safety
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

Overview of Generator Implementation



For previews or thumbnails of documents that consist primarily or solely of graphics and images, the best
approach a generator can take is to draw the image of that document in a graphics context provided by
Quick Look. The generator draws the document images directly in the client—the graphics context acts as
a kind of window onto a surface of the client application. By doing this, you can avoid the overhead of creating
and compressing an image into a native type and then requiring the client to decompress and load it on
their end. Three graphics contexts are available, each for a different kind of document:

 ■ A graphics context for drawing one or more bitmap images that fit on one page

 ■ A graphics context for drawing one or more vector images that fit on one page

 ■ A graphics context for drawing multiple pages of vector images

“Drawing Document Images in a Graphics Context” (page 25) describes how to draw a thumbnail or preview
for the first two situations. “Drawing Previews in a PDF Context” (page 27) discusses the third kind of graphics
context and explains how to use it.

Drawing Document Images in a Graphics Context

The strategy for drawing single-page previews and thumbnails in a graphics context is the same. Implement
the appropriate callback function—GenerateThumbnailForURL or GeneratePreviewForURL—to read
the given document (located by the CFURLRef parameter) into memory. Then get the Quick Look graphics
context with a call to QLThumbnailRequestCreateContext or QLPreviewRequestCreateContext and
draw the thumbnail or preview image in the provided context. Listing 5-1 shows the code for generating a
preview of a Sketch document.

Listing 5-1 Drawing a Sketch preview in a Quick Look graphics context

OSStatus GeneratePreviewForURL(void *thisInterface, QLPreviewRequestRef preview,
 CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options)
{
    NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];

    // Create and read the document file
    SKTDrawDocument* document = [[SKTDrawDocument alloc] init];

    if(![document readFromURL:(NSURL *)url ofType:(NSString *)contentTypeUTI])
 {
        [document release];
        [pool release];
        return noErr;
    }

    NSSize canvasSize = [document canvasSize];

Drawing Document Images in a Graphics Context 25
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Drawing Thumbnails and Previews In a
Graphics Context



    // Preview will be drawn in a vectorized context
    CGContextRef cgContext = QLPreviewRequestCreateContext(preview, *(CGSize 
*)&canvasSize, false, NULL);
    if(cgContext) {
        NSGraphicsContext* context = [NSGraphicsContext 
graphicsContextWithGraphicsPort:(void *)cgContext flipped:YES];
        if(context) {
            [document drawDocumentInContext:context];
        }
        QLPreviewRequestFlushContext(preview, cgContext);
        CFRelease(cgContext);
    }
    [pool release];
    return noErr;
}

Before you draw the preview or thumbnail in the provided graphics context, make sure you save the current
context and then restore that context when you’re finished drawing. You should then flush the context with
QLPreviewRequestFlushContext or QLThumbnailRequestFlushContext and release it as shown in
the above example.

The QLPreviewRequestCreateContext and QLThumbnailRequestCreateContext functions have
identical sets of parameters. The first parameter identifies the preview request or thumbnail request object
passed into the callback. The other parameters have a more direct bearing on the created graphics context.

 ■ The second parameter (parameter named size in the function declaration) is the size of the image to
be drawn in either pixels or points depending on whether the graphics context is bitmap or vector,
respectively.

 ■ The third parameter (isBitmap) tells Quick Look whether the returned graphics context should be suited
for bitmap or vector graphics; in the example above, a vector-optimized graphics context is requested
with a false value.

 ■ The fourth and final parameter is a dictionary of properties that you can pass back to Quick Look as hints
for handling the drawn image; see QLPreviewRequest Reference and QLThumbnailRequest Reference for
details.

A generator implementing the GenerateThumbnailForURL callback might be passed in the options
directory a floating-point value that specifies how much Quick Look is scaling the thumbnail image. (You
can access this value using the kQLThumbnailOptionScaleFactorKey key.). If you a drawing a vector
image for a thumbnail using the graphics context returned from QLThumbnailRequestCreateContext,
you don’t have to worry about scaling the image; just draw it normally in the the given size, which is in points.
Quick Look creates a context with the specified size multiplied by the scale factor in pixels but also applies
the appropriate affine transform so that the drawing context appears to the generator to be of the stated
size.

26 Drawing Document Images in a Graphics Context
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Drawing Thumbnails and Previews In a Graphics Context



Drawing Previews in a PDF Context

If your application has documents that (potentially) have more than one page of vector graphics, you should
consider using the QLPreviewRequestCreatePDFContext function to create the graphics context for
drawing the preview in. This function returns a graphics context suited for PDF content. The procedure is
similar to the one described in “Drawing Document Images in a Graphics Context” (page 25). However, there
are some important differences:

 ■ Some parameters of the QLPreviewRequestCreatePDFContext are different from those of
QLPreviewRequestCreateContext:

 ❏ The second parameter (mediaBox) is a pointer to a rectangle that defines the location and size of
the PDF page.

 ❏ The third parameter (auxiliaryInfo) is a dictionary containing auxiliary PDF information.

 ■ You must precede the drawing of each page by calling CGPDFContextBeginPage and call
CGPDFContextEndPage when you have finished drawing a page.

As with QLPreviewRequestCreateContext, when you have finished drawing the preview, be sure to call
QLPreviewRequestFlushContext.

Drawing Previews in a PDF Context 27
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Drawing Thumbnails and Previews In a Graphics Context



28 Drawing Previews in a PDF Context
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

Drawing Thumbnails and Previews In a Graphics Context



If a textual document can readily be converted from its native format into an appropriate Quick Look format
(HTML, RTF, PDF, and plain text), your generator can perform that conversion for previews of that document.
In addition, if you can generate HTML data for your preview, you can also include attachments for such items
as images, QuickTime movies, and Flash animations.

An important difference between HTML previews and other kinds of textual previews is that in the former
case, the Web Kit handles the layout of the preview for you. For previews in other textual formats, your
generator must handle the layout of the text.

“Creating Textual Representations On the Fly” discusses how you might dynamically create a preview for a
textual document (in this case, RTF). “Generating Enriched HTML” (page 30) describes the HTML
data-plus-attachments approach.

Creating Textual Representations “On the Fly”

The code example in Listing 6-1 (page 29) illustrates how a generator might create and return an RTF version
of a document as a preview. Although most of the generator code is related to methods of a private framework,
there are two important things to point out:

 ■ The generator uses a private CSS parser object to assist in the layout of the preview.

 ■ The native format of the document is XML, which the generator then converts (using private methods)
to RTF.

The important aspect of this code from a Quick Look perspective is the call to
QLPreviewRequestSetDataRepresentation after the RTF data has been created. As parameters to this
function, the generator provides the RTF data and a UTI constant that indicates the native Quick Look type
of the provided data.

Listing 6-1 Generating a preview in RTF format

OSStatus GeneratePreviewForURL(void *thisInterface, QLPreviewRequestRef preview,
 CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options)
{
    static CSSParser *theCSS = nil;
    NSError *theErr = nil;
    NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

    // cache the CSS parser
    if(theCSS == nil) {
        NSString *cssPath = [[NSBundle 
bundleWithIdentifier:@"com.apple.quicklooksweet"] pathForResource:@"editor" 
ofType:@"css"];
        if(cssPath == nil) {
            return noErr;

Creating Textual Representations “On the Fly” 29
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Dynamically Generating Previews



        }
        theCSS = [[CSSParser parserFromPath:cssPath] retain];
    }
    if(theCSS == nil) {
        return noErr;
    }
    NSLog(@"GeneratePreviewForURL start...");
    NSXMLDocument *theDoc = [[[NSXMLDocument alloc] initWithContentsOfURL:(NSURL
 *)url options:0 error:&theErr] autorelease];
    if (!theDoc && theErr) {
        NSLog(@"Error creating the XML, %@", theErr);
        [pool release];
        return noErr;
    }
    XMLAttributedStringCreation *theXMLStr = [XMLAttributedStringCreation 
XMLAttributedStringCreator];
    NSMutableAttributedString *theAttrStr = [theXMLStr 
attributedStringForNode:[theDoc rootElement] CSSParser:theCSS];
    if (!theAttrStr) {
        [pool release];
        return noErr;
    }
    NSData *theRTF = [theAttrStr RTFFromRange:NSMakeRange(0, [theAttrStr 
length]-1) documentAttributes:nil];
    QLPreviewRequestSetDataRepresentation(preview, (CFDataRef)theRTF, kUTTypeRTF,
 NULL);

    [pool release];
    return noErr;
}

Generating Enriched HTML

A generally useful but slightly more complex approach to generating a preview dynamically is to create HTML
to which you attach other data, such as images, Java applets, and Flash animations. This approach can be
ideally suited for applications that aren’t primarily textual or graphical in nature, such as applications whose
document user interface is a combination of text and graphics, or applications that display their document
data in a user interface consisting of table views, text and form fields, labeled checkboxes, and so on.

An example of the latter sort of application is the Core Data example application, Event Manager. The Event
Manager application allows users to enter information on social and work events, including the occasion,
the description of the event, and the start and end dates. It uses Core Data to store and manage the entered
information. The implementation of GeneratePreviewForURL shown in Listing 6-2gets the managed object
representing the document file, creates a static HTML file using an NSMutableString object, and inserts in
the appropriate places document data fetched from the managed object. It also creates the properties
dictionary to be passed back to Quick Look in the call to QLPreviewRequestSetDataRepresentation;
the properties in this dictionary define the HTML data and the attachments associated with that data.

Listing 6-2 Generating a preview composed of HTML data plus an image attachment

OSStatus GeneratePreviewForURL(void *thisInterface, QLPreviewRequestRef preview,
 CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options)
{
    NSAutoreleasePool *pool;

30 Generating Enriched HTML
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Dynamically Generating Previews



    NSMutableDictionary *props,*imgProps;
    NSManagedObject *occasion=NULL;
    NSMutableString *html;
    NSString *momPath;
    NSData *image;

    pool = [[NSAutoreleasePool alloc] init];
    // Initializes the Core Data stack to read from the file and returns a 
managed object
    // See WebViewQLPlugin in /Developer/Examples/QuickLook for full code
    occasion=InitializeCoreDataStackWithURL(url);
    // Before proceeding make sure the user didn't cancel the request
    if (QLPreviewRequestIsCancelled(preview))
        return noErr;
    if (occasion!=NULL)
    {
        props=[[[NSMutableDictionary alloc] init] autorelease];
        [props setObject:@"UTF-8" forKey:(NSString 
*)kQLPreviewPropertyTextEncodingNameKey];
        [props setObject:@"text/html" forKey:(NSString 
*)kQLPreviewPropertyMIMETypeKey];

        html=[[[NSMutableString alloc] init] autorelease];
        [html appendString:@"<html><body bgcolor=white>"];
        [html appendString:@"<img src=\"cid:tabs.png\"><br>"];
        [html appendString:@"<h1>Occasion:"];
        [html appendString:[occasion valueForKey:@"name"]];
        [html appendString:@"</h1><br><br><h2>Description:</h2><br>"];
        [html appendString:[occasion valueForKey:@"detailDescription"]];
        [html appendString:@"<br><h2>Start Date:</h2><br>"];
        [html appendString:[[occasion valueForKey:@"startDate"] description]];
        [html appendString:@"<br><h2>End Date:</h2><br>"];
        [html appendString:[[occasion valueForKey:@"endDate"] description]];
        [html appendString:@"</body></html>"];

        image=[NSData dataWithContentsOfFile:[NSString 
stringWithFormat:@"%@%@",[[NSBundle 
bundleWithIdentifier:@"com.apple.eventsmanager.qlgenerator"] bundlePath], 
@"/Contents/Resources/tabs.png"]];
        imgProps=[[[NSMutableDictionary alloc] init] autorelease];
        [imgProps setObject:@"image/png" forKey:(NSString 
*)kQLPreviewPropertyMIMETypeKey];
        [imgProps setObject:image forKey:(NSString 
*)kQLPreviewPropertyAttachmentDataKey];
        [props setObject:[NSDictionary dictionaryWithObject:imgProps 
forKey:@"tabs.png"] forKey:(NSString *)kQLPreviewPropertyAttachmentsKey];

        QLPreviewRequestSetDataRepresentation(preview,(CFDataRef)[html 
dataUsingEncoding:NSUTF8StringEncoding],kUTTypeHTML,(CFDictionaryRef)props);
    }
    else {
        NSLog(@"Couldn't get managed object!");
    }
    [pool release];
    return noErr;
}

Generating Enriched HTML 31
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Dynamically Generating Previews



Note:  In the interests of brevity, the InitializeCoreDataStackWithURL function in the above listing is
a placeholder for the real code in the example project that initializes the Core Data stack from the passed-in
file and returns a managed object.

There are a few things worthy of special notice in Listing 6-2:

 ■ The HTML references the image attachment using the URL scheme cid:identifier. The identifier is always
used as the key for a dictionary containing attachment data (imgProps) that is added to the properties
dictionary.

 ■ The properties dictionary (props) contains the HTML encoding and HTML MIME type
(kQLPreviewPropertyTextEncodingNameKey and kQLPreviewPropertyMIMETypeKey) and any
attachment subdictionaries.

 ■ In this case there is one attachment subdictionary; it contains the MIME type of the image attachment
and the image data (accessed with kQLPreviewPropertyMIMETypeKey and
kQLPreviewPropertyAttachmentDataKey, respectively)

When the generator calls QLPreviewRequestSetDataRepresentation it passes in the HTML data (in the
specified encoding), the properties dictionary, and the UTI constant identifying HTML content. With the HTML
and the properties dictionary set up in this way, the Web Kit can load the HTML and, when it parses it, load
the attachments into the web view.

Although the code listing uses an imgHTML element for the cid-scheme reference to the image attachment,
you can also use the object element for all kinds of attachments (images, audio, videos, Java applets, and
Flash animations). It is not recommended that you use Web Kit plug-ins in enriched HTML passed back to
Quick Look.

32 Generating Enriched HTML
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

Dynamically Generating Previews



As one approach for providing thumbnail and preview data to Quick Look, the application can store that
data as part of the document data. The generator can then access it and return it to Quick Look in a call to
QLThumbnailRequestSetImageWithDataorQLPreviewRequestSetDataRepresentation. This approach
permits a quick response time for the generator, but at the expense of a larger document file.

To illustrate how your generator might provide previews and thumbnails using this approach, the following
listings show modifications to the code for the Sketch application that writes a thumbnail image as part of
the document data. Listing 7-1 shows how you might define a property of the NSDocument subclass to hold
the image data.

Listing 7-1 Sketch example project: adding a thumbnail property

@interface SKTDrawDocument : NSDocument {
    @private
    NSMutableArray *_graphics;
    // ...other instance variables here...
    NSData *_thumbnail;
}
// ...existing methods here...
- (NSData *)thumbnail;

Implement the thumbnail accessor method to return the thumbnail image. To the the NSDocumentmethod
that prepares the document data for writing out to a file (dataOfType:error:) are added the lines of code
in Listing 7-2 indicated by the “new” labels.

Listing 7-2 Sketch example project: including the thumbnail with the document data

static NSString *SKTThumbnailImageKey = @"SketchThumbnail";                   
// new

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError {
    NSData *data,;
    NSArray *graphics = [self graphics];
    NSPrintInfo *printInfo = [self printInfo];
    NSWorkspace *workspace = [NSWorkspace sharedWorkspace];
    BOOL useTypeConformance = [workspace 
respondsToSelector:@selector(type:conformsToType:)];
    if ((useTypeConformance && [workspace type:SKTDrawDocumentNewTypeName 
conformsToType:typeName]) || [typeName 
isEqualToString:SKTDrawDocumentOldTypeName]) {
        NSData *tiffRep;                                                     //
 new
        NSMutableDictionary *properties = [NSMutableDictionary dictionary];
        [properties setObject:[NSNumber 
numberWithInt:SKTDrawDocumentCurrentVersion] forKey:SKTDrawDocumentVersionKey];
        [properties setObject:[SKTGraphic propertiesWithGraphics:graphics] 
forKey:SKTDrawDocumentGraphicsKey];
        [properties setObject:[NSArchiver archivedDataWithRootObject:printInfo]
 forKey:SKTDrawDocumentPrintInfoKey];

33
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Saving Previews and Thumbnails in the
Document



        tiffRep = [self TIFFDataWithGraphics:graphics error:outError];        
// new
        [properties setObject:tiffRep forKey:SKTThumbnailImageKey];           
// new
        data = [NSPropertyListSerialization dataFromPropertyList:properties 
format:NSPropertyListBinaryFormat_v1_0 errorDescription:NULL];
    } else if ((useTypeConformance && [workspace type:(NSString *)kUTTypePDF 
conformsToType:typeName]) || [typeName isEqualToString:NSPDFPboardType]) {
    data = [SKTRenderingView pdfDataWithGraphics:graphics];
    } else {
    NSParameterAssert((useTypeConformance && [workspace type:(NSString 
*)kUTTypeTIFF conformsToType:typeName]) || [typeName 
isEqualToString:NSTIFFPboardType]);
        data = [SKTRenderingView tiffDataWithGraphics:graphics error:outError];
    }
    return data;
}

In the corresponding NSDocument method for reading document data back in
(readFromData:ofType:error:) “unpack” the thumbnail from the dictionary of document properties:

_thumbnail = [[properties objectForKey:SKTThumbnailImageKey] retain];

Now implementing the generator for Sketch is a simple matter of accessing the thumbnail image data and
passing it to Quick Look in a call to QLThumbnailRequestSetImageWithData, as shown in Listing 7-3. (For
previews, the corresponding function is QLPreviewRequestSetDataRepresentation.)

Listing 7-3 Returning the stored thumbnail image to Quick Look

OSStatus GenerateThumbnailForURL(void *thisInterface, QLThumbnailRequestRef 
thumbnail, CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options, 
CGSize maxSize)
{
    NSAutoreleasePool* pool = [[NSAutoreleasePool alloc] init];
    SKTDrawDocument* document = [[SKTDrawDocument alloc] init];
    if(![document readFromURL:(NSURL *)url ofType:(NSString *)contentTypeUTI])
 {
        [document release];
        [pool release];
        return noErr;
    }
    if ([document respondsToSelector:@selector(thumbnail)]) {  // runtime 
verification
        NSData *tiffData = [document thumbnail];
        if (tiffData != nil) {
            NSDictionary *props = [NSDictionary 
dictionaryWithObject:@"public.tiff" forKey:(NSString 
*)kCGImageSourceTypeIdentifierHint];
            QLThumbnailRequestSetImageWithData(thumbnail, (CFDataRef)tiffData,
 (CFDictionaryRef)props);
            return noErr;
        }
    }
    NSSize canvasSize = [document canvasSize];
    CGContextRef cgContext = QLThumbnailRequestCreateContext(thumbnail, *(CGSize
 *)&canvasSize, false, NULL);
    if(cgContext) {

34
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Saving Previews and Thumbnails in the Document



        NSGraphicsContext* context = [NSGraphicsContext 
graphicsContextWithGraphicsPort:(void *)cgContext flipped:YES];
        if(context) {
            [document drawDocumentInContext:context];
        }
        QLThumbnailRequestFlushContext(thumbnail, cgContext);
        CFRelease(cgContext);
    }
    [pool release];
    return noErr;
}

In the call to QLThumbnailRequestSetImageWithData, the generator indicates the image format to Quick
Look with the kCGImageSourceTypeIdentifierHint property. Note that this example checks whether
the class of the document object implements the thumbnail accessor method (to exclude prior versions of
the application) and, if so, it checks whether thumbnail data is returned. If it isn’t, it draws the thumbnail
image in a Quick Look–provided graphics context.

35
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Saving Previews and Thumbnails in the Document



36
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

Saving Previews and Thumbnails in the Document



In some cases the simplest course for generating a thumbnail is to create a Core Graphics image rather than
creating an image compatible with the I/O framework or drawing the image in a graphics context. For
example, your generator might be using a framework that can directly provide a serialized version of the
thumbnail image as a CGImage object. For this cases, you can create the Core Graphics image and then
communicate that image to Quick Look by calling the QLThumbnailRequestSetImage function. The main
difference between this function and QLThumbnailRequestSetImageWithData is that the latter function
requires the image data to be in a format that is supported by the I/O framework.

Listing 8-1 illustrates approach, using methods of the QT Kit framework to get the poster frame of a movie
as a Core Graphics image and setting that as the thumbnail for a movie file.

Listing 8-1 Creating and assigning a Core Graphics image

OSStatus GenerateThumbnailForURL(void *thisInterface, QLThumbnailRequestRef 
thumbnail, CFURLRef url, CFStringRef contentTypeUTI, CFDictionaryRef options, 
CGSize maxSize)
{
    NSError *theErr;
    QTMovie *theMovie = [QTMovie movieWithURL:(NSURL *)url error:&theErr];
    if (theMovie == nil) {
        if (theErr != nil) {
            NSLog(@"Couldn't load movie URL, error = %@", theErr);
        }
        return noErr;
    }
    [theMovie gotoPosterTime];
    QTTime mTime = [theMovie currentTime];
    NSDictionary *imgProp = [NSDictionary 
dictionaryWithObject:QTMovieFrameImageTypeCGImageRef 
forKey:QTMovieFrameImageType];
    CGImageRef theImage = (CGImageRef)[theMovie frameImageAtTime:mTime 
withAttributes:imgProp error:&theErr];

    if (theImage == nil) {
        if (theErr != nil) {
            NSLog(@"Couldn't create CGImageRef, error = %@", theErr);
        }
        return noErr;
    }
    QLThumbnailRequestSetImage(thumbnail, theImage, NULL);
    return noErr;
}

37
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Assigning Core Graphics Images to
Thumbnails



38
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

Assigning Core Graphics Images to Thumbnails



A client application or the Quick Look daemon (quicklookd) may decide that it no longer needs a preview
or thumbnail image that it has requested from a generator. Often this occurs because a user has indicated
(for example, by closing a Finder window) that he or she is no interested in the listed documents. When the
client or quicklookd decides it no longer needs a thumbnail or preview, Quick Look informs the appropriate
generator in two ways, described in the following sections. The generator should look for this cancellation,
stop any image generation in progress, and clean up any resources used in generating the preview or
thumbnail.

Canceling Through a Callback Function

When a client application no longer needs a thumbnail or preview that it has requested, it tells Quick Look,
which then invokes one of two callback functions, depending on the type of item requested earlier:

CancelThumbnailGeneration for canceling the generation of thumbnails
CancelPreviewGeneration for canceling the generation of previews

The generator can implement these these functions to stop creating the previews and thumbnail images
and clean up any resources so far used in their creation and return as quickly as possible.

However, it is not generally recommended that your code cancel the generation of previews and thumbnails
by implementing one of these callback functions. Because Quick Look always calls these functions in a
secondary thread, implementing it safely can be difficult. For example, you must be careful to match the
cancellation request to the thread involved in the image generation. If you have any doubts about ensuring
the thread-safety of your code, following the guidelines described in “Canceling Through Polling.”

Canceling Through Polling

When a client application no longer needs a thumbnail or preview that it has requested, it tells Quick Look,
which then sets a Boolean flag for the request (in addition to invoking the CancelThumbnailGeneration
or CancelPreviewGeneration callback function). A generator can access the value of this flag at any time
by calling the QLThumbnailRequestIsCancelled function (for thumbnails) or
QLPreviewRequestIsCancelled function (for previews).

In your generator code you can periodically call these functions to poll Quick Look for the cancellation status
of the current request. If a call returns a true value, clean up any resources used so far in the generation of
the thumbnail or preview and return noErr. For most generators, this approach is recommended over the
approach described in “Canceling Through a Callback Function” (page 39).

Canceling Through a Callback Function 39
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Canceling Previews and Thumbnails



You should call QLThumbnailRequestIsCancelled and QLPreviewRequestIsCancelled at appropriate
places in your generator code. Which places are appropriate depends on what the code is doing and how
well-factored it is. Generally, you should test for request cancellation before doing some task that is
time-consuming, especially when you won’t be able to query for cancellation status while that task is
proceeding (for example, parsing a file).

An example is helpful here. The logic of a typical generator has the following structure in its
GeneratePreviewForURL callback function:

1. Load document data.

2. Parse document data.

3. Composite the preview or convert it to a native Quick Look type.

4. Flush the graphics context or set the data in the response.

Given this structure, you probably should call QLPreviewRequestIsCancelled between steps 1 and 2
and again between steps 2 and 3. You don’t need to call the function between steps 3 and 4 because Quick
Look will discard the preview when you complete step 4, after which you release your resources anyway.)
The important idea is to poll for cancellation wisely; you shouldn’t poll too often, but at the same time you
should poll often enough so that a cancelled preview or thumbnail doesn’t affect performance.

40 Canceling Through Polling
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

Canceling Previews and Thumbnails



Quick Look gives developers some facilities for debugging and testing their generator code. The following
sections describe those facilities and offers some strategies and advice for debugging and testing generators.

Debugging Facilities

Because a generator is a plug-in and is not a self-contained executable, debugging it could be problematic
if you were left on your own. Fortunately, Quick Look gives you a way to debug generator code easily: the
qlmanage diagnostic tool (installed in /usr/bin). qlmanage executes your project’s generator in almost
the same kind of environment as the Quick Look daemon (quicklookd) does. You can run this tool as your
project’s executable and, by specifying certain arguments, you can step through your generator code and
see how it handles previews and thumbnails.

To set up your Quick Look project for debugging, complete the following steps:

1. Choose New Custom Executable from the Project menu.

2. In the Assistant window, enter “qlmanage” as the executable name. In the Executable Path field specify
the full path to the tool:

/usr/bin/qlmanage

Click Finish to dismiss the Assistant.

Debugging Facilities 41
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



3. The Executable Info window appears for qlmanage, as shown in Figure 10-1. Click the Arguments tab.

Figure 10-1 Setting qlmanage as a custom executable

42 Debugging Facilities
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



4. In the Arguments pane of the Executable Info window (Figure 10-2) enter one or more debugging options
in the Arguments table.

Figure 10-2 Specifying a document for which qlmanage requests a preview

The qlmanage tool takes the following arguments:

DescriptionValueFlag

Requests preview of specified documentAbsolute path to document-p

Requests thumbnail of specified document.Absolute path to document-t

Resets quicklookd and the Quick Look client’s generator cacheNone-r

Prints information on quicklookd actions, including a list of
detected generators

None-m

Prints a brief description of optionsNone-h

You can also run the qlmanage tool from the command line. The following example requests a thumbnail
of a specified document:

qlmanage -t /tmp/MySketchDoc.sketch2

Debugging Facilities 43
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



This example displays a preview for a particular document:

qlmanage -p /tmp/MySketchDoc.sketch2

The -m option for qlmanage is useful, as it prints (to standard output) a report from the Quick Look daemon
on current generator status.

Listing 10-1 Sample output of qlmanage -m

2007-04-05 17:00:46.998 qlmanage[1190:d03] Server statistics:
server: living for 21s (9 requests handled)
memory used: 10 MB (10551296 bytes)
last burst: during 0s - 1 requests - 0s idle
plugins:
  com.apple.ichat.ichat -> /System/Library/QuickLook/iChat.qlgenerator
  com.apple.safari.bookmark -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Bookmark.qlgenerator
  com.apple.sketch1 -> /Library/QuickLook/QuickLookSketch.qlgenerator
  public.rtf -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Text.qlgenerator
  public.audio -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Audio.qlgenerator
  com.apple.dashboard-widget -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/StandardBundles.qlgenerator
  com.apple.rtfd -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Text.qlgenerator
  com.microsoft.word.doc -> /System/Library/QuickLook/Office.qlgenerator
  com.apple.addressbook.person -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Contact.qlgenerator
  public.plain-text -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Text.qlgenerator
  com.apple.quartz-composer-composition -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Movie.qlgenerator
  public.xml -> /Library/QuickLook/QuickLookSweet.qlgenerator
  com.apple.eventmanager.events -> /Library/QuickLook/WebViewQLPlugin.qlgenerator
  com.apple.sketch2 -> /Library/QuickLook/QuickLookSketch.qlgenerator
  com.apple.package -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Package.qlgenerator
  com.apple.ical.bookmark -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/iCal.qlgenerator
  com.adobe.pdf -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/PDF.qlgenerator
  public.font -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Font.qlgenerator
  com.apple.mail.emlx -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Mail.qlgenerator
  com.microsoft.excel.xls -> /System/Library/QuickLook/Office.qlgenerator
  com.apple.eventmanager.eventsbin -> /Library/QuickLook/WebViewQLPlugin.qlgenerator
  com.apple.mail.email -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Mail.qlgenerator
  com.apple.ical.ics -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/iCal.qlgenerator
  com.apple.systempreference.prefpane -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/StandardBundles.qlgenerator
  com.apple.safari.history -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Bookmark.qlgenerator
  public.html -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Web.qlgenerator

44 Debugging Facilities
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



  com.apple.eventmanager.eventsq -> /Library/QuickLook/WebViewQLPlugin.qlgenerator
  com.apple.addressbook.group -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Contact.qlgenerator
  public.movie -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Movie.qlgenerator
  com.apple.application -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/StandardBundles.qlgenerator
  com.apple.ichat.transcript -> /System/Library/QuickLook/iChat.qlgenerator
  com.apple.ical.bookmark.todo -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/iCal.qlgenerator
  public.vcard -> 
/System/Library/Frameworks/QuickLook.framework/Resources/Generators/Contact.qlgenerator
generators change detected: NO

Note:  Consult the qlmanage man page for the syntax and complete list of options for this tool.

Once you have set up your Quick Look generator project for debugging, specify breakpoints in your code,
change the build configuration to Debug, and choose Build and Debug from the Debug menu.

Testing Tools and Strategies

After your generator seems to be bug-free, you can test it further to determine if anything else needs to be
improved. Copy the generator to an application bundle or to one of the standard file-system locations for
Quick Look generators. Try out your generator with different client applications (Finder, Spotlight, Time
Machine, and so forth). Using qlmanage as an executable (see “Debugging Facilities” (page 41)) you can
test your generator to see how it handles thumbnails and previews. Force preview- or thumbnail-generation
by closing a Finder or Spotlight window and see how well your generator responds.

In addition, check your generator to see how well it performs; if it takes longer than two seconds to generate
a preview, then you should closely examine your code to find out where you could improve performance.

As an aid to testing, or even debugging, you can set the QLEnableLogging user default at the command
line:

defaults write -g QLEnableLogging YES

After doing this, Quick Look prints log messages showing its activity, such as which generators it loads and
which documents it requests previews and thumbnails for. Here is a sample log message:

2006-12-15 11:18:16.839 quicklookd[26260:3b03] [QL] Thumbnailing 
/Users/jalon/Documents/PreviewableDocuments/Test5.sketch2. Content type UTI: 
com.apple.sketch2. Generator used: <QLGenerator 
/Library/QuickLook/quicklooksketch.qlgenerator>

Testing Tools and Strategies 45
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



46 Testing Tools and Strategies
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

Debugging and Testing a Generator



This table describes the changes to Quick Look Programming Guide.

NotesDate

Corrected minor errors.2008-02-08

New document that describes the purporse and architecture of Quick Look
generators and explains how to create them.

2007-10-31

47
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



48
2008-02-08   |   © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History


	Quick Look Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Quick Look and the User Experience
	Thumbnails and Previews
	Quick Look in Operation
	Developing for Quick Look

	Quick Look Architecture
	Quick Look Consumers and Producers
	A Closer Look at Quick Look Daemons and Generators
	Installing Quick Look Generators

	Creating and Configuring a Quick Look Project
	Creating and Setting Up the Project
	Project Configuration
	The Content-Type UTI and CFPlugIn Properties
	Other Property List Keys


	Overview of Generator Implementation
	The Quick Look Generator API
	Approaches to Thumbnail and Preview Generation
	Generators and Thread Safety

	Drawing Thumbnails and Previews In a Graphics Context
	Drawing Document Images in a Graphics Context
	Drawing Previews in a PDF Context

	Dynamically Generating Previews
	Creating Textual Representations “On the Fly”
	Generating Enriched HTML

	Saving Previews and Thumbnails in the Document
	

	Assigning Core Graphics Images to Thumbnails
	

	Canceling Previews and Thumbnails
	Canceling Through a Callback Function
	Canceling Through Polling

	Debugging and Testing a Generator
	Debugging Facilities
	Testing Tools and Strategies

	Revision History


