
Search Kit Programming Guide
User Experience > Carbon

2005-12-06

Apple Inc.
© 2004, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Objective-C, Panther, Tiger, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder and Spotlight are trademarks of Apple
Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Search Kit Programming Guide 7

Who Should Read This Document 7
Organization of This Document 8
See Also 8

Chapter 1 Search Basics 9

Establishing a Suitable Source to Search 9
Selecting a Document Collection 9
Constructing Indexes 10
Searching Multiple Indexes 15

Formulating a Query 16
Providing Results 18

Chapter 2 Search Kit Concepts 19

Search Kit Architecture 19
Indexes, Documents, and Terms 19
Index Types 20
Indexes and Search Objects 21

Search Kit Application Workflow 21
Create a Searchable Corpus 21
Perform a Search and Display the Results 21

Additional Workflows 22
Similarity Searching 22
Using Summarization 22
Index Maintenance 23

How Search Kit Works 23
How Search Kit Works With Documents 23
How Search Kit Extracts Terms From Documents 26
How Search Kit Performs Searches 29

Chapter 3 Search Kit Tasks 35

Using Indexes and Documents 35
Creating a File-Based Index 35
Creating an Index in Memory 36
Opening a File-Based Index For Searching or Updating 37
Opening a Memory-Based Index for Searching Only 38
Opening a Memory-Based Index for Searching or Updating 38
Closing an Index 39

3
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

Specifying Text Analysis Properties 39
Loading The Spotlight Text Importers 40
Adding a File-Based Document to an Index 40
Adding a Folder of File-Based Documents to an Index 41
Adding Text Explicitly to an Index 42
Updating an Index When a Document Changes 43
Updating an Index When a Document Moves or Moves and Changes 44

Searching 45
Setting Up Search Options 46
Getting a User's Query 46
Creating an Asynchronous Search Object 46
Getting Matches From a Search Object 47
Getting Document Locations and Displaying Results 48
A Complete Search Method 49
Using Timeout to Search an Index Group in Parallel 51

Document Revision History 53

Glossary 55

4
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Search Basics 9

Figure 1-1 A corpus is a collection of documents 10
Figure 1-2 Inverted index 11
Figure 1-3 Text extraction, from formatted document to full text index 12
Figure 1-4 A typical stopword list (excerpt) 13
Figure 1-5 An inverted index that supports phrase searches 15
Figure 1-6 An index group 16
Figure 1-7 An information retrieval system 17

Chapter 2 Search Kit Concepts 19

Figure 2-1 The Search Kit containment hierarchy 20
Figure 2-2 A Search Kit document URL 25
Figure 2-3 Adding documents to a new index 26
Figure 2-4 Index types and their available search types 27
Figure 2-5 A simple search 31
Figure 2-6 A prefix search 32
Figure 2-7 A Boolean search 33
Figure 2-8 A phrase-based search 33
Table 2-1 Query operators in Search Kit, from highest to lowest precedence 30

Chapter 3 Search Kit Tasks 35

Listing 3-1 Creating a file-based index 35
Listing 3-2 Creating an index in memory 36
Listing 3-3 Opening a file-based index for searching or updating 37
Listing 3-4 Opening a memory-based index for searching only 38
Listing 3-5 Opening a memory-based index for searching or updating 38
Listing 3-6 Closing an index 39
Listing 3-7 Specifying text analysis properties 39
Listing 3-8 Loading the Spotlight text importers 40
Listing 3-9 Adding a file-based document to an index 40
Listing 3-10 Adding a folder of file-based documents to an index 41
Listing 3-11 Adding text explicitly to an index 42
Listing 3-12 Updating an index when a document changes 43
Listing 3-13 Updating an index when a document moves or moves and changes 44
Listing 3-14 Setting up search options 46
Listing 3-15 Getting a user's query 46
Listing 3-16 Creating an asynchronous search object 46
Listing 3-17 Getting matches from a search object 47
Listing 3-18 Getting document locations and displaying results 48

5
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

Listing 3-19 A complete search method 49
Listing 3-20 Using timeout to search an index group in parallel 51

6
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Adding Search to Your Application.

Search Kit is Apple’s content indexing and searching solution. It offers a powerful and streamlined procedural
C framework that you can use to build information retrieval functionality into your Carbon, Cocoa, or Java
application, or even into a command-line tool. In Mac OS X, Search Kit provides fast information retrieval in
System Preferences, Address Book, Help Viewer, and Xcode. Apple’s Spotlight technology is built on top of
Search Kit to provide content searching in Finder, Mail, and the Spotlight menu.

Search Kit works in Mac OS X starting with version 10.3, Panther. Its features, starting with Mac OS X version
10.4, include:

 ■ Fast indexing and asynchronous searching (improved in Mac OS X v10.4)

 ■ Search mode determined by a Google-like query syntax, including phrase-based searching (new in Mac
OS X v10.4)

 ■ Text summarization (new in Mac OS X v10.4)

 ■ Control over index characteristics including minimum term length, stopwords, and synonyms/substitutions

 ■ Flexible management of document hierarchies and indexes

 ■ Unicode support for language independence

 ■ Relevance ranking and statistical analysis of documents to improve search quality

Search Kit is not for locating the position of search terms within a document or for finding documents based
on their file-system attributes. Carbon and Cocoa offer other APIs for these other types of search, as described
in "How Search Kit Works With Documents" (page 23).

Who Should Read This Document

Whether you use Carbon, Cocoa, or a combination of the two, this guide provides the background you’ll
need to use Search Kit to add fast content searching to your application. If your application focuses on
metadata rather than document content, you may want to consider using Spotlight instead.

 ■ Use the Search Kit API when you want your application to have full control over indexing and searching.
Also use Search Kit when your “documents” are not necessarily files on disk but web pages, database
records, and so on.

 ■ Use the simpler Spotlight API either when your focus is local file metadata or when your application
does not need precise control over indexing or of the document hierarchy, or both.

Who Should Read This Document 7
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Search Kit Programming Guide

Organization of This Document

Search Kit Programming Guide contains the following chapters:

 ■ "Search Basics" (page 9), an optional introductory chapter, gets you up to speed on some of the basics
of information retrieval as a foundation for the rest of the book. If you are familiar with terms such as
corpus, text extraction, inverted index, query, Boolean search, and relevance ranking, you can skip this
chapter.

 ■ "Search Kit Concepts" (page 19) describes the elements of Search Kit’s approach to searching. Read this
chapter to learn about Search Kit’s notion of documents, terms, indexes, queries, searches, and search
results. This chapter also provides an overview of the workflow behind a user’s search, from text extraction
to display of ranked results.

 ■ "Search Kit Tasks" (page 35) provides detailed instructions on how to accomplish each of the steps
involved in a practical usage scenario with Search Kit. It also provides sample code excerpts illustrating
each step.

A glossary at the end lists terms that you need in order to understand information retrieval in general and
Search Kit in particular.

See Also

You may find this additional information from Apple helpful:

 ■ Search Kit Reference describes the entire Search Kit API in detail.

 ■ Memory Management Programming Guide for Core Foundation provides an introduction to memory
management in Core Foundation. Search Kit uses Apple's Core Foundation style for memory management.

 ■ Debugging Programming Topics for Core Foundation provides an introduction to debugging and error
handling in Core Foundation. Search Kit uses Apple's Core Foundation style for error handling.

 ■ Working With Spotlight provides an introduction to using Apple's Spotlight technology.

8 Organization of This Document
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Search Kit Programming Guide

http://developer.apple.com/macosx/spotlight.html

Talking about an information retrieval (IR) technology such as Search Kit requires some terms and notions
that may be unfamiliar to you. In this chapter you learn about these. Along the way, you learn that the
workflow in an IR system isn’t very different from the process of getting information from your local library.

If you understand such terms as corpus, text extraction, inverted index, query, Boolean search, and relevance
ranking, you can skip this chapter and begin with "Search Kit Concepts" (page 19).

This chapter describes information retrieval as a three-step process:

1. Establishing a suitable source to search

2. Formulating a query

3. Invoking a search and providing results

This chapter steps you through a search workflow using a library metaphor, relating it to a generic
computer-based IR system with occasional mention of Search Kit particulars.

Establishing a Suitable Source to Search

You have an information need. But before you can ask a question, you need someone or something to ask.
That is, you need to establish who or what you will accept as an authority for an answer. So before you ask
a question you need to define the target of your question.

Such a target can be as broad as the entire Internet for a simple search using Google, or as specific as a local
mailbox in a user's Mail program. Using a library metaphor here, you’ll ask a librarian, who will in turn consult
some magazine indexes. The librarian plays the role of your application. The librarian's special reference skills
play the role of Search Kit. The magazine indexes play the role of Search Kit indexes.

Selecting a Document Collection

The target of a question corresponds to the information retrieval notion of a document collection, or more
formally, a corpus, as depicted in Figure 1-1.

Establishing a Suitable Source to Search 9
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

Figure 1-1 A corpus is a collection of documents

Individual articles Magazine or corpus Larger corpus / 3 corpora

If one considers a magazine article to be a document, then an issue of the magazine constitutes a corpus—it
is a collection of one or more documents. The 12 issues published in a year are corpora (“Of these corpora,
which has the most articles?”), but considered as a single, larger collection, they become a single, larger
corpus (“In this corpus that includes 12 issues, which articles mention sports cars?”).

Similarly, if one considers a mail message to be a document, then each of the mailboxes in a user's Mail
application is a corpus. A set of mailboxes, when you search in one or another individually, are corpora. When
you search a set of mailboxes as a single large collection, the set constitutes a single, larger corpus.

So generally speaking, information retrieval is a two step process that starts with specifying a corpus and
proceeds to specifying a query.

If you call a librarian, you've chosen the library as your corpus. If you then ask, “Which make of car has the
best trade-in value?” the librarian might narrow the effective corpus by looking through the articles in the
past year’s issues of a consumer magazine and an automotive magazine. In this scenario, the librarian, acting
on your behalf, expects that one or more of these documents will contain a good answer—that is, the librarian
expects that those issues constitute an appropriate corpus to search.

Constructing Indexes

To get back to you in a reasonable amount of time, of course, the librarian wouldn’t go to the magazine
shelves and read every issue published over the past year, cover to cover. He’d use indexes. Computer-based
information retrieval systems do the same.

An index maps the salient information in a corpus into a format designed to let you quickly locate specific
content. For example, an annual magazine index includes the key terms from every article in every issue
published that year.

Inverted Indexes

Each entry in a magazine index points you to one or more articles. You can think of an index as a list of terms,
with each term followed by a list of the documents it appears in. This sort of index, the one that people
usually think of, is formally known as an inverted index. The term “inverted” refers to the arrangement of
information in the index, which is intended to locate documents by matching on terms. This is “inverted”
compared to using documents directly: if you pick up a book, you “match” on the document and “locate” all
the terms in it.

10 Establishing a Suitable Source to Search
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

Figure 1-2 shows an inverted index schematically and depicts a simplified version of how such an index might
represent terms from a set of documents.

Figure 1-2 Inverted index

Stopword list
Inverted index

a
and
around
every
for
from
in
is
it
not
on
one
the
to
under

ID Term Document

1

2

3

4

5

6

7

8

9

10

11

12

13

best

blue

bright

butterfly

breeze

forget

great

hangs

need

retire

search

sky

wind

2

1, 3

1, 3

1

1

2

2

1

3

2

3

2, 3

2

Document 1

Document 2

Document 3

The bright blue
butterfly hangs
on the breeze.

Under blue
sky, in bright
sunlight, one
need not
search around.

It's best to
forget the great
sky and to
retire from
every wind.

This figure includes something called a stopword list, used to filter out specified terms during text extraction.
(S"Stopwords and Minimum Term Length" (page 12)topwords are described shortly.)

Text Extraction

The earliest known use of inverted indexes is 1247 CE, when the first concordance of the Bible was created.
Back then the process took the efforts of several hundred monks. (This historical information comes from a
scholarly overview of text analysis from the University of Alberta, titled What Is Text Analysis?.)

An information retrieval system, instead of relying on multiple monks, employs a text-extraction algorithm
to harvest relevant terms from a document. A term that becomes an entry in an index is typically a word.
Figure 1-3 illustrates the basic steps in text extraction, starting with a formatted document and resulting in
a full text index.

Establishing a Suitable Source to Search 11
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

http://tapor.ualberta.ca/Resources/TAIntro/

Figure 1-3 Text extraction, from formatted document to full text index

Text, properties
and formatting

Remove properties
and formatting Parser

Stopword removal

Stemming

Synonym
matching

Full text index

Stopwords and Minimum Term Length

Text extraction entails a tradeoff between coverage and relevance. If you index every term in a corpus, you
have perfect coverage and won’t miss anything but you’ll end up with an index whose percentage of useful
entries is low. In many cases there’s no benefit to extracting words like “the,” “and,” or “it” and placing them
in an index.

Indexing systems, such as the one in Search Kit, let you specify a list of stopwords—terms to ignore during
text extraction—and to specify a minimum term length. Terms in the corpus either shorter than the minimum
term length or included in a stopword list are skipped during text extraction. Figure 1-4 shows an excerpt
from a typical stopword list.

12 Establishing a Suitable Source to Search
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

Figure 1-4 A typical stopword list (excerpt)

Stopword list

a
about
after
again
age
all
almost
also
am
an
and

been
before
being
between
but
by
came
can
cannot
come
could

get
getting
go
goes
going
gone
got
gotte
had
has
ha

Any word skipped in this way won’t be in the index and so won’t be searchable. This is sometimes just what
you want. Such words rarely relate to the meaning or value of a document.

But if you want to support searching for exact phrases, excluding common words can be problematic precisely
because they are common and appear often in phrases. One option some IR systems use to solve this dilemma
is to index everything, then filter on stopwords and minimum term length at query time unless the query is
phrase-based. For more on phrase-based searching, see "Phrase Searches" (page 14).

Stopword lists are, of course, language specific and perhaps even domain specific. A corpus of chemical
descriptions would likely benefit from a different stopword list than a corpus of children’s short stories would.
If you plan to market your application to different cultural regions, or to widely divergent markets even within
one region, keep this in mind.

Synonyms and Stemming

Indexing systems also employ lists of synonyms to improve search quality. For example, if you ask a librarian
a question about used-car trade-in value, he might look in some magazine indexes under “car”; but the text
of a relevant article might mention only “passenger vehicle” or “automobile.” If the indexing system associated
these alternate terms as synonyms of “car,” the relevant articles would also be attached to the index term
“car.”

Teaching an indexing system about synonyms amounts to giving it a list, the creation of which is a manual
process. Search Kit supports synonyms as a so-called "substitution list" in the text analysis properties dictionary
of an index. For more on this, see kSKSubstitutions and SKIndexCreateWithURL in Search Kit Reference.

There’s an algorithmic technique as well for increasing the likelihood users will find what they’re looking for.
This technique is called stemming or, sometimes, suffix stripping. Search Kit does not perform stemming,
but it’s useful to know about it so you can better understand Search Kit’s behavior in your application. You
may want to provide stemming functionality yourself.

Most languages have closely related words, known as morphological or inflectional variants, based on a
common portion known as a stem, or root word. In English, the stem tends to come at the beginning of
words: “swim,” “swimming,” and “swimmer” share the common stem “swim.”

Establishing a Suitable Source to Search 13
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

An indexing system that knows how to stem will convert each alternate word form, during text extraction,
to a common stem word. The associated query system will also convert words in a query string to the
appropriate stem. For example, “swim,” “swimming,” and “swimmer” would all be transformed to “swim.”
Some stemming systems can deal with irregular endings as well. For instance, a stemmer could equate
“swam” with “swim” even though the stem “swim” does not appear in this variant.

Stemming not only increases the likelihood of a successful search, it also decreases index size.

If your application requires stemming behavior, you can add it yourself using a standard algorithm such as
the one developed by Martin F. Porter in 1980. Using the Porter Stemming Algorithm, sometimes called the
Porter Stemmer, your application would get the text from the documents in a corpus, stem it, and then hand
it to Search Kit for indexing. Your application would also apply stemming to queries.

Keep in mind that stemming, like a useful list of synonyms, and like a stopword list, is language and domain
dependent.

Minimum Term Frequency

Another way to reduce index size and increase index quality is to employ a minimum term frequency during
text extraction. An indexing system that supports minimum term frequency skips over terms that appear in
a document fewer than a specified number of times.

The idea behind minimum term frequency is that if a term appears only once in a document, that document
is not likely to be a useful source of information on that topic. Search Kit does not currently support a minimum
term frequency, but you could add this behavior to your application using other Mac OS X frameworks.

An information retrieval system that needs to support phrase searches should not exclude words from an
index based on term frequency, just as it should not exclude words using a minimum term length or stopword
list.

Phrase Searches

Indexes can be constructed in a way that supports phrase or proximity searching. These allow users to
search, for example, for “Search Kit” as a complete phrase, as opposed to searching for documents that
contain the terms “search” and “kit” anywhere in their content.

In an index that supports phrase searching, a term’s linear position in a document is recorded along with a
reference to the document the term appears in. See Figure 1-5 (page 15).

14 Establishing a Suitable Source to Search
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

Figure 1-5 An inverted index that supports phrase searches

Inverted index

Query
Document 1

Document 2

Document 3

ID Term Document : position

1

2

3

4

5

6

7

8

9

10

11

12

13

best

blue

bright

butterfly

breeze

forget

great

hangs

needs

retire

search

sky

wind

2 : 3

1: 3, 3 : 2

1 : 2, 3 : 5

1 : 4

1 : 8

2 : 5

2 : 7

1 : 5

3 : 8

2 : 11

3 : 10

2 : 8, 3 : 3

2 : 14

blue - 3 : 2
sky - 3 : 3

Match on sequential terms

Search object

Document
reference Relevance

3 100%

The bright blue
butterfly hangs
on the breeze.

Under blue
sky, in bright
sunlight, one
need not
search around.

It's best to
forget the great
sky and to
retire from
every wind.

Searching for a phrase amounts to searching for a series of terms that appear in consecutive order. Similarly,
searching for proximity amounts to searching for a pair of terms whose linear distance is small. Search Kit
supports phrase searching in inverted and inverted-vector indexes but does not currently support proximity
searching.

Searching Multiple Indexes

Returning now to our library metaphor: If a librarian picks two annual indexes (one each from two magazines)
to find an answer to a question about automobile trade-in values, he creates an index group consisting of
two indexes, each of which contains the terms from multiple documents. Information retrieval systems can
offer the same functionality. In the case of Search Kit, it is up to your application to define and manage index
groups.

Just as a corpus is a collection of one or more related documents, an index group brings together one or
more related indexes, as shown in Figure 1-6.

Establishing a Suitable Source to Search 15
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

Figure 1-6 An index group

Index group

Corpus A Index A

Index B
Corpus B

This figure illustrates two indexes that each represent a different corpus. You can also create two indexes on
the same corpus to include in a group. For example, one index might contain only article titles and another
might contain article body text. If you create an index group with these two indexes, searches on it would
cover both sorts of content. An index "group" containing only the title index would let a user find articles
based strictly on titles.

Just as a librarian doesn’t read magazines when searching for an article (but goes straight to an index instead),
an IR system doesn’t scan the documents in a corpus during a search. So there is a lag between the time of
text extraction during index construction and the time of index scanning during a search. Depending on
how volatile the information is in a corpus, and how quickly a user expects a search response, an application
that uses an IR system may want to refresh its indexes before invoking a search.

Often, the best time to refresh an index is after a change is made to any of its referenced documents. This is
appropriate when an application exerts exclusive control over creating, deleting, and editing its documents.
Spotlight, for example, uses this strategy whenever a document is changed, added to, or deleted from the
Mac OS X file system.

Formulating a Query

In our ongoing example, you started with a general information need and used it to identify a suitable,
searchable corpus—namely, a library with a friendly librarian. You expected the library to contain the
information you need, and you expected it to be efficiently accessible. Thanks to magazine publishers who
create annual indexes, it is. The figure Figure 1-7 summarizes these steps from the top down on the right
side.

16 Formulating a Query
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

The next step in using an IR system is to define a specific information need and represent it as a query, a
process that the figure illustrates on the left side.

Figure 1-7 An information retrieval system

Query

Retrieved objects

Index objects

General
information need

Corpus

Specific
information need

Create
representation

Create
representation

Perform
comparison

Evaluate result.
Refine search if

necessary

In this chapter, we've supposed that you want to know which make of car has the best trade-in value, and
we've supposed that you are using a library to find your answer. Alternatively, you might ask a friend or use
Google. In each case you expect your chosen corpus to contain the answer. And, in each case you need to
formulate a specific query that expresses what you want to know in terms understood by whom or what you
are asking.

You use natural language to ask a friend or a librarian, and a Boolean-like syntax for Google. To get the answer
using a magazine index, you (or a librarian) would scan its alphabetical listings while holding one or more
keywords in mind. In other words, the IR system determines the appropriate form for a query.

Some common sorts of queries for software-based IR systems are Boolean, prefix, and phrase. To get what
you want, you need to pick the appropriate type of search and then use corresponding query syntax.

A librarian or an IR system can provide guidance to promote a successful search. Apple’s search field widget,
for example, provides a standard and flexible interface for invoking a search.

To review and then complete our library metaphor, you call your local library and ask for the information
desk. The very cooperative librarian listens to your car trade-in value question and then puts you on hold for
a few minutes. The librarian performs the search by comparing your query to the available indexes, represented

Formulating a Query 17
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

in the figure Figure 1-7 as the "Perform comparison" step. He comes back on the phone, with your retrieved
answer on a a scrap of paper, and says, “The make of automobile with the best trade in value this year is the
XYZ.”

You have your answer, but that isn’t necessarily the end of the story. The answer might prompt you to realize
you want to consider other criteria, such as purchase price. Or you might want to know which makes rank
second and third.

The response you get becomes part of what is known and helps you focus more clearly on what you want
to know. Information retrieval is often cyclical in this way. The IR systems that you develop should anticipate
that answers lead to new questions. Google “Similar pages” links are an example of this.

Providing Results

The two basic ways to provide results in an IR system are by inclusion/exclusion and by relevance.

An inclusion/exclusion result includes only documents that satisfy a query. The documents won’t be in any
particular order—they will not be ranked by relevance. If a user wants to know which CDs in a catalog are
by (fictional) rock band The Pink Widgets, then you simply want to return all the Pink Widgets CD titles as a
result. You may order the results based on release date or popularity, but those are considerations outside
the request encapsulated by the query.

In the case of the library search for used-car trade-in values, the librarian in our example didn’t bother saying
which article was best. He just found the information and gave it to you.

A relevance-based result, on the other hand, includes documents with a range of relevance to a query. For
example, an IR system might sort CD titles by The Pink Widgets toward the top of a results table but also list
CDs containing song titles with the words ‘pink’ and ‘widget’ in them, or CDs containing cover versions of
Pink Widgets songs, sorted lower in the table.

The best sort of result presentation will put the most satisfying matches at the top. More than this, it will
present matches in a way that helps a user refine a search if need be—perhaps by providing context for each
result, perhaps by providing associated information such as modification date or user-entered comments.

Once you’ve added information retrieval to your application, you’ll probably want to fine-tune the presentation
of results to provide maximum value. One way to approach such fine-tuning is by experimenting with a
representative corpus and with a suite of expected user queries. With such experimentation you may discover,
for example, that you can present sets of similar documents, or documents sharing a common attribute, as
groups in an outline-style view. For example, a search in Mac OS X using the Spotlight search field shows
results sorted by category such as Documents, Mail Messages, and PDF Documents.

18 Providing Results
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Search Basics

In this chapter you learn about Search Kit’s capabilities, architecture, workflow, and internal workings. Before
reading it you should understand the terms and ideas covered in "Search Basics" (page 9).

Apple designed Search Kit as a highly flexible information retrieval framework. When using Search Kit, a
"document" is any text container as understood by your application. You are not limited to searching files
on disk but can search any body of textual information—pages distributed across a network, live database
content, or custom, application-defined data. Similarly, your application can define what counts as a "term"
for Search Kit. For Japanese text, Search Kit parses terms using Apple’s Japanese language analysis technology.

Search Kit uses document URL objects, similar to CFURL objects, to refer to documents. Using document
URL objects, your application can define any sort of document object hierarchy and location scheme.

The first two sections of this chapter—"Search Kit Architecture" (page 19) and "Search Kit Application
Workflow" (page 21)—provide a high-level understanding. The meat of this chapter is in the final section,
"How Search Kit Works" (page 23).

Search Kit Architecture

The Search Kit API is a C language framework within the Core Services umbrella framework. As such, it employs
memory-management and error-handling conventions from Apple's Core Foundation technology and makes
use of Core Foundation data types.

This section is a brief tour through Search Kit's architecture, providing just enough context to understand
how Search Kit's pieces fit together. To dig deeper into any of the topics presented in this section, refer to
"How Search Kit Works" (page 23) and "Search Kit Tasks" (page 35).

Indexes, Documents, and Terms

Search Kit uses a simple information containment hierarchy to allow your application to manage the content,
or corpus, it is responsible for. Figure 2-1 illustrates this hierarchy by zooming in successively from left to
right.

Search Kit Architecture 19
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Figure 2-1 The Search Kit containment hierarchy

Index group Index Document
representation Term

Blue

At the outermost level, as shown in the figure on the left, an application typically works with a group of
indexes. An individual index, depicted in the figure under the heading "Index" and represented in Search Kit
as an SKIndexRef opaque type, contains representations of one or more documents.

A document representation in an index is a key/value pair. The key is a lightweight, unique identifier of type
SKDocumentID. The corresponding value includes a document URL object of type SKDocumentRef. Zooming
in on one such document representation, the figure depicts an individual term associated with one document.

A Search Kit index associates each document with the terms extracted from it. A term is also represented as
a key/value pair in an index. A term's key, like a document's key, is a lightweight, unique identifier. A term
ID is of type CFIndex. The value for a term includes the term string itself. Given a term ID, your application
can get the term by calling the SKIndexCopyTermStringForTermID function.

Index groups, as shown on the left in Figure 2-1, are not explicitly supported in Search Kit but have many
uses. You implement them in your application for such things as:

 ■ Simultaneously searching multiple fields in documents such as emails, where you have one index for
the body content, another for the “To” header, and so on

 ■ Simultaneously searching multiple corpora, such as multiple email mailboxes

Index Types

You’ll typically create disk-based (persistent) indexes using the SKIndexCreateWithURL function, which
creates an index in a file. One index file can hold any number of Search Kit indexes. The choice to put one
or more than one index in a file has implications regarding how an application manages searches, as described
later in this chapter.

Search Kit supports memory-based indexes as well, with its SKIndexCreateWithMutableData function.

Whether it is file or memory based, you set an index’s capabilities when you create it. There are two aspects
to consider.

 ■ Index type determines whether the index will be optimized for query searching or similarity searching.

 ■ An index’s text analysis properties dictionary determines whether the index will support phrase-based
searches. It also sets various index attributes that bear on index size and search efficiency.

20 Search Kit Architecture
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Indexes and Search Objects

A new Search Kit index is empty, ready to accept documents. Search Kit provides functions for creating
document URL objects, for adding them and their associated text to indexes, and for reindexing documents
that change or move.

To find documents, your application creates and then queries a search object. The search object, upon its
creation, initiates search and then acts as a dynamic repository for results. Your application can query the
search object immediately after its creation and then repeatedly to get additional results.

Each search object is associated with exactly one index. By creating multiple search objects, you can perform
searches on multiple indexes sequentially or in parallel, according to the requirements of your application.

Search Kit Application Workflow

Performing a search is a straightforward, two-step process:

1. Create a searchable corpus.

2. Using the user's query, perform a search and display the results.

Create a Searchable Corpus

You make textual content searchable by indexing it. To do this, you:

1. Create an empty index using the SKIndexCreateWithURL function for a file-based index, or with the
SKIndexCreateWithMutableData function for a memory-based index.

2. Create document URL objects to add to the index by calling the SKDocumentCreateWithURL or the
SKDocumentCreate function, depending on how your application wants to manage your corpus.

3. Add document URL objects and text to the index with the SKIndexAddDocumentWithText or
SKIndexAddDocument functions. In the general case, your application takes responsibility for getting
text out of a document, using other Mac OS X frameworks, and then hands the text to an index in the
form of a CFString object using the SKIndexAddDocumentWithText function. Alternatively, the
SKIndexAddDocument function makes use of the Spotlight text importers to get the text from a local,
file-based document.

Perform a Search and Display the Results

A user’s request for information includes a query along with a specification of where to search. The query
comprises words and perhaps operators, such as “&”, representing a logical AND, or “*”, the wildcard character.
The specification of where to search—that is, which indexes to use—may be supplied by your application
or supplied by the user. As an example of a user-supplied search location, the set of mailboxes a user selects
in Mail becomes the active set of locations for search.

Search Kit Application Workflow 21
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Different types of indexes support different types of search, so you may want your application to guide users
appropriately in regard to query type. For example, if an index doesn't support phrase searching, your
application could provide appropriate feedback if a user enters a query with a double-quote-delimited text
string.

As preparation for a search, your application should use the SKIndexFlush function to update and flush to
disk the indexes specified in the query. Updating and flushing ensure that you invoke the search on fresh
data.

However, if the information in the corpus changes rarely, or if the corpus is so large that the time consumed
by updating the indexes would frustrate user expectations, you may want to update more strategically. For
instance, if your application controls when documents change, you can update an index incrementally each
time a document changes. Mac OS X does this for file system searches that use Spotlight by way of file system
notifications.

You create a search object with the asynchronous SKSearchCreate function. You then query it with the
SKSearchFindMatches function, which provides results as an array of document IDs and a parallel array,
if requested, of relevance scores. Your application can get document locations for these IDs, in the form of
document URL objects, by calling the SKIndexCopyDocumentURLsForDocumentIDs function. Finally, your
application can display these document locations as search results using other Mac OS X frameworks.

Additional Workflows

In addition to query-based searches, Search Kit supports similarity searching and summarization. This section
briefly describes these workflows as well as index maintenance in terms of removing and reindexing
documents.

Similarity Searching

In a similarity search, a user looks for documents similar to an example document. The workflow is nearly
identical to the workflow for a query search, with these differences:

 ■ When creating a search object with the SKSearchCreate function, use the
kSKSearchOptionFindSimilar flag in the inSearchOptions parameter.

 ■ Provide a string representing a document, or a portion of a document, to the SKSearchCreate function’s
inQuery parameter.

Using Summarization

Starting with Mac OS X v10.4, Search Kit supplants the summarization functionality previously available in
Apple’s Find By Content technology. You can use summarization independently of search or as an adjunct
to your application’s display of search results. Find By Content remains available in Mac OS X for backward
compatibility only.

22 Additional Workflows
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

To perform summarization you create a summarization object of type SKSummaryRef by passing a text
string to the SKSummaryCreateWithString function. You then use the
SKSummaryCopySentenceSummaryString or SKSummaryCopyParagraphSummaryString functions to
generate a sentence- or paragraph-based summary of the size you want. Each of these functions has a
parameter that lets you specify summary length as an integer number of sentences or paragraphs.

You can see summarization in action by selecting a block of text in a Mac OS X application and then choosing
the Summarize service from the Services submenu in the application menu.

For additional control over summarization, Search Kit supplies other functions that let you work with individual
sentences and paragraphs from the summarization object. For more information, refer to SearchKit Reference.

Index Maintenance

To reindex a document that has changed but whose location is the same, you simply replace it in the index.
If a document has moved, or moved and changed, you remove the old version and then add the new version.
For details refer to "Search Kit Tasks" (page 35).

How Search Kit Works

Here you learn how Search Kit works with documents as abstract objects, how it indexes content, and how
it manages queries and results.

How Search Kit Works With Documents

Search Kit works with any collection of textual information as a document object hierarchy. This approach
gives your application a great deal of flexibility in how it defines and manages documents.

There are two ways Search Kit can manage a document object hierarchy. One is specifically for documents
that are disk-based files—those whose URLs use the file scheme. The other is general; it works with any
sort of document, whether it is file based, memory based, or application defined.

 ■ If your application works with documents that are disk-based files, you can use the file-system hierarchy
directly. With this option you let Search Kit find documents and get their contents. Document URL objects
in this approach are equivalent to file-system paths.

 ■ If your documents are not disk-based files or you want more control over the document object hierarchy,
use Search Kit’s general approach. In this approach, your application specifies, using a flexible URL format,
how to refer to documents. Your application takes responsibility for locating documents, and during
indexing, your application hands the textual content of a document to Search Kit in the form of a CFString
object.

With either approach, when you create a document URL object, you give Search Kit the information needed
to find the document. This may be a file-system URL, an Internet URL, a SQL statement, an ID number, and
so on—the format is up to your application. During a search, when Search Kit identifies a document in
response to a user’s query, your application can ask for the location information and use it to get the associated
document.

How Search Kit Works 23
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Working With Documents and Document URL Objects

Using Search Kit, the definition of “document” is largely up to your application. A document, to Search Kit,
is simply a locatable chunk of text. The chunking depends on your application which serves as an intermediary
between Search Kit and the information you want to search.

An email client, for example, might use a single plaintext file (such as in the Unix mbox format) to hold multiple
documents—namely, the set of mail messages in a mailbox. Another application might employ a one-to-one
correspondence between files and documents. Or an application might consider all the files within a folder
to be a single, multipart document—in this case, a search hit in any of the referenced files might direct the
user to the containing folder or bundle. It’s up to your application.

To Search Kit, a document is atomic in that it defines the granularity of a search. Using Search Kit, your
application can find documents—as your application understands them—but cannot locate the position of
a term within a document. If you want to locate matches for a user’s query within a found document, use
the MLTE TXNFind function in Carbon or the NSStringrangeOfCharacterFromSet:options: method
in Cocoa.

To Search Kit, a document’s structure is irrelevant in that Search Kit indexes don’t know anything about
paragraphs, subtitles, tagging, or fields of information within a document. Search Kit sees a document’s
content simply as a bag of terms. If you want to let users search by various attributes of documents, you
create an index for each attribute.

Search Kit is concerned only with textual content, so it does not keep track of file-system attributes such as
modification timestamps. In Carbon, use the PBCatSearch function to search by file-system attributes. In
Cocoa, use the NSFileManager class. You can also use the Spotlight API to search for documents according
to file-system attributes or other metadata.

Using Document Locations

As described above, Search Kit’s notion of document location is encapsulated in something called a document
URL object. Document URL objects correspond to the simple data type SKDocumentRef. A document URL
object is similar to a CFURL object but lets you use any format that you like to represent a document’s location.
It’s up to your application to interpret the location to retrieve the document.

There are multiple ways to create document URL objects. You can create them by converting CFURL objects
using the SKDocumentCreateWithURL function. Alternatively, you can give this function a URL directly. In
this case you can use any URL scheme you like, including standard schemes such as file, http and ftp; or
nonstandard schemes of your own design, such as data.

Yet another way to build document URL objects is to construct a document object hierarchy node by node.
Search Kit supports the building of document object hierarchies with its SKDocumentCreate function. This
function, rather than taking a complete URL as SKDocumentCreateWithURL does, builds a URL for you from
a triple of information that you hand it: the document name, the parent document URL object, and an
optional scheme.

Figure 2-2 illustrates these components as they appear in a URL. If you want to take advantage of Search
Kit’s ability to locate and read local, file-based documents, the Name portion should match the document
filename. If your application manages the documents in its corpora, the Name portion may match the
document filename or not, according to the application's needs.

24 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Figure 2-2 A Search Kit document URL

data://2004/07/4839

Scheme 2nd parent Name

1st parent

The full URL is the location information in the document URL object. The portion to the left of the Name, up
to but not including the final slash, is the location information in the document URL object for the parent.
To tell the SKDocumentCreate function the scheme for the document URL object, use the text starting from
the left and up to, but not including, the colon.

A document object hierarchy can be flat, tree-based, or more complex. Your application defines and uses it.

You can determine document URLs by assembling them piece by piece if you want, using the functions
SKDocumentGetName, SKDocumentGetParent, and SKDocumentGetSchemeName to query document URL
objects. Start at the leaf document and traverse upward, parent to parent. This works with all document URL
objects—those created by converting CFURL objects, those created from URLs directly, and those created
by using name, parent, and scheme.

The parent-child-based control of document object hierarchies you get by using the SKDocumentCreate
function can be useful when you want to attach information to nondocument nodes in a hierarchy. For
example, you may want to record when the documents in a folder were last indexed; you can associate that
information with the document URL object of the enclosing folder. This can also be useful when the documents
in your corpus do not correspond to disk-based files—for example, when they are database records or tagged
chunks of text within an enclosing file. In cases like these, a nondocument node is a good place to store
metainformation about subordinate documents.

A side effect of Search Kit’s powerful generality in handling document object hierarchies is that when you
create a document URL object from a multipart URL, Search Kit creates a series of document URL objects,
one for each element in the path. Use these if you want, as just described, or ignore them if they’re not useful.

In the special case of file URLs, Search Kit knows how to find documents for you. It also knows how to
harvest the content of local files, as described in "Terms, From Documents to Indexes" (page 26). In every
other case, your application manages a document object hierarchy and interprets document locations from
document URL objects.

You can get the URL itself from a document URL object by passing the object to the SKDocumentCopyURL
function.

Document Properties

You can associate information with each document in an index by way of a properties dictionary, using the
SKIndexSetDocumentProperties function. The format of this optional dictionary can be as simple or as
complex as you want. For example, an email program could include a property dictionary for each mailbox,
describing metainformation such as number of read and unread messages, the file-system location of the
mailbox, and so on.

You can use this property information as context for the user or for your application but you cannot directly
search it. Retrieve property information using the SKIndexCopyDocumentProperties function.

How Search Kit Works 25
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

How Search Kit Extracts Terms From Documents

Terms are the currency of information retrieval. In a search, you provide a query consisting of terms, perhaps
including operators, and Search Kit matches the query with indexed terms that have been extracted from
documents. Here you learn how terms get from documents into indexes. You also learn about the Search
Kit index types and about how they support various types of searching.

You may want to first review "Constructing Indexes" (page 10) in the Search Basics chapter, which provides
an implementation-independent introduction to indexes.

Terms, From Documents to Indexes

Terms get from documents into Search Kit indexes through a three-step process:

1. You ask Search Kit to create a new, empty index if you need one. Otherwise, get the reference for an
existing index.

2. You create a document URL object for each of the documents you want to index.

3. You add the document URL objects and textual content to the index.

Figure 2-3 depicts this process.

Figure 2-3 Adding documents to a new index

Simple

Boolean

Prefix/
suffix

Phrase

New empty,
inverted index

Add document
URL objects and
textual content

Inverted index Query

In the general case and for documents that do not correspond to on-disk files—webpages, database records,
tag-delimited subsets of files, data in memory, or custom, application-specific content—use the
SKIndexAddDocumentWithText function. Your application explicitly sends document text in the form of
a CFString object to the function and provides the document location as a document URL object. You can
also use this function for on-disk, file-based documents when you want more control over the indexing
process. You might do this, for example, for an XML document when your application understands the
tagging semantics.

To ask Search Kit to get textual content for you from an on-disk file using Spotlight importers, use the
SKIndexAddDocument function. This function converts a file-system path to a document URL object, and
(with help from the Spotlight importers) gets the text to be placed in the index.

If your application relies on Spotlight importers, when your program launches, tell Search Kit to load them
by calling the SKLoadDefaultExtractorPlugIns function.

26 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

In either case, the “add-document” functions—SKIndexAddDocument and
SKIndexAddDocumentWithText—parse textual content into terms before placing it into an index. If your
application is reading Japanese text, Search Kit uses Apple’s Japanese language analysis technology.

Each term in a Search Kit index has a unique ID and is associated with a list of document URL objects, as
illustrated in the Search Basics chapter in Figure 1-2 (page 11). Various Search Kit functions let you convert
between terms and IDs, determine which documents contain a term, get the number of times a term appears
in a document, and so on.

Index Types

Three types of Search Kit indexes handle various functionality and efficiency requirements:

 ■ Inverted indexes map terms to documents. Use an inverted index to allow users to discover which
documents match their queries. This is the preferred index type for most applications.

 ■ Vector indexes map documents to terms. Use a vector index to let users find documents based on a
similar, specified document—that is, to perform similarity searching.

 ■ Inverted-vector indexes combine the characteristics and capabilities of inverted and vector indexes. They
consume more memory and file space than either of their constituent types.

When you create an index, you specify one of these three index types using the inIndexType parameter
in either the SKIndexCreateWithURL or SKIndexCreateWithMutableData function. The type determines
how each added document will be indexed and indirectly determines which sorts of searches your users can
perform. For example, a vector index does not support Boolean queries or phrase-based searching. Figure
2-4 lists the various index types and the search capabilities for each.

Figure 2-4 Index types and their available search types

InvertedQuery

Index types

Simple

Works, but lower performance than with vector index

Recommended

Prefix/suffix

Boolean

Phrase

Similarity

Vector Inverted-Vector

Inverted indexes are optimized for fast query-based searches and for minimal index size. They map terms
to document. That is, terms are the keys in the key-value pairs in inverted indexes.

Use an inverted index unless your application’s primary use is similarity searching. Although inverted indexes
work for similarity searching, performance is slower than when searching by similarity using a vector index.

How Search Kit Works 27
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

A Search Kit inverted index lists each constituent term exactly once—no matter how many of the documents
contained in the index include the term and no matter how frequently the term appears in any of the
documents. The value in a term's (key, value) pair in an inverted index includes a number indicating how
many of the index's documents contain the term, IDs of the documents that use the term, and how often
the term appears in each document.

If you specify proximity-searching support when you create an index, the index also tracks the position of
each instance of the term in each document.

Vector indexes map documents to terms. That is, documents are the keys in the (key, value) pairs in vector
indexes. Their primary use is fast similarity searching.

The value in a document's (key, value) pair in a vector index includes a number indicating how many terms
the document contains, IDs of the terms in the document, and how often each term appears in the document.

Vector indexes do not support Boolean or phrase-based searching. These limitations, along with their relatively
large size, make them a bad choice unless your primary need is fast similarity searching.

Inverted-vector indexes support every type of Search Kit query but are larger still than vector indexes. Their
only practical application is to support Boolean, phrase-based, and fast similarity searching on the same
index, and when index size will not be an issue.

Text Analysis Properties

In addition to having a type, each Search Kit index has a text analysis properties dictionary that defines a
variety of index characteristics and capabilities. Among these are phrase-based searching, synonyms, words
to exclude from an index (“stopwords”), and so on.

You specify the text analysis properties dictionary for an index using the inAnalysisProperties parameter
in either the SKIndexCreateWithURL or SKIndexCreateWithMutableData function. The available keys
for the dictionary are defined in the Text Analysis Keys constants, described in Search Kit Reference.

You must ensure that the set of attributes you confer on an index makes sense. For example, because Vector
indexes do not support phrase-based searching, do not use a kCFBooleanTrue value for the
kSKProximityIndexing key in a Vector index's text analysis properties dictionary.

Designing Index Architecture

To design the index architecture for your application, begin by answering these questions:

 ■ Which documents should be in a given index?

 ■ Should the indexes be persistent or memory based?

 ■ Which sorts of queries should the indexes support?

 ■ Do you want to filter the content as it is added to the index (using stopwords or a minimum term length)?

 ■ Do you need a list of term substitutions?

Your answers to these questions will guide your choice of index type and text analysis properties.

28 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Flushing and Compacting Indexes

When your application adds or removes a document URL object from an index, the on-disk or memory-based
representation of the index becomes stale. A search on an index in such a state won’t have access to the
nonflushed updates. The solution is to call the SKIndexFlush function before searching. SKIndexFlush
flushes index-update information and commits memory-based index caches to disk, in the case of an on-disk
index, or to a memory object, in the case of a memory-based index. In both cases, calling this function makes
the state of an index consistent.

Indexes can develop fragmentation (that is, they can become bloated with unused text) as your application
adds and removes document URL objects. Search Kit compacts an index, if needed, when your application
calls the SKIndexCompact function. Because this function typically takes significant time to do its work, call
it only when you find that an index is significantly fragmented.

To check for bloat you can take advantage of the way Search Kit allocates document IDs. It does so starting
at 1 and without reusing previously allocated IDs for an index. Simply compare the highest document ID,
found with the SKIndexGetMaximumDocumentID function, with the current document count, found with
the SKIndexGetDocumentCount function.

How Search Kit Performs Searches

Once you have a searchable corpus in the form of populated indexes, you’re ready to search. Searching is a
multistep process:

1. Get the user’s query, including, if applicable, their specification of where to search.

2. Create (or reuse) an appropriate index group.

3. Update the indexes to query, as necessary.

4. Invoke the search.

5. Display results based on information from the returned search object, and continue to update the results
as appropriate by continuing to query the search object.

This section describes working with indexes and focuses on the general case of searching multiple indexes.
It also describes the various types of query available in Search Kit and briefly describes working with search
results.

Searching Multiple Indexes

In many cases, applications need to invoke a search over multiple indexes. For example, say a car buyer wants
to learn about cars from America, Germany, and Japan. Your application might manage its automobile data
by using a separate index for each country of manufacture. In this case, you'd include indexes from the
specified countries in the user's search.

As a slightly more complex example, say you have a large set of static webpages (not generated on demand
from a database) composing an online catalog. Each page lists several products. Each product, in turn, might
be a member of one or more product categories—sports equipment, home and garden, sale items, and so
on. Say you’d like your users to be able to search by product name, price, and category.

How Search Kit Works 29
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

One strategy for providing search on such a website would be to define and appropriately tag each individual
product description as a document. Recall that, when using Search Kit, a "document" is anything your
application defines it to be. You would include tagging within each product description indicating product
name, price, and a list of categories the product belongs to.

You could then create a separate index across the website for each such field of information, along with an
index of all the visible text content. A user's search could specify which fields to search on, and your application
would add the corresponding indexes to the index group used for the search.

Search Kit's asynchronous architecture lets you search multiple indexes in sequence or in parallel, depending
on your application's needs and on the structure of your information.

 ■ If your application is searching multiple indexes in a single file or in separate files but all on the same
physical disk, Apple recommends that you search the indexes in sequence for best performance.

 ■ When an index group is distributed across multiple disks or across a network, or when the indexes are
all in memory, search the indexes in parallel.

For a parallel search, your application can use a separate thread for each index to be searched. Alternatively,
you can create a search object for each index in a group, then repeatedly query the search objects in turn
by making use of the timeout option in the SKSearchFindMatches function.

Queries

Search Kit responds to a query by interpreting the query's terms, the explicit and implicit operators, and the
order of the query's terms and operators. Using an enhanced, Google-like syntax, Search Kit supports a variety
of types of query as well as arbitrary combinations of these types. For example, the following query includes
Boolean, prefix, and suffix searching:

appl* OR *ing

Using the asterisk (*) wildcard operator and the Boolean OR operator, this query returns documents containing
words that begin with “appl” as well as documents that contain words that end with “ing”.

Note: In versions of Mac OS X prior to version 10.4, Tiger, Search Kit used the now-deprecated
SKSearchResultsCreateWithQuery function. That function required explicit setting of search type by
way of a search type parameter. Refer to Search Kit Reference for more information.

The following table lists the operators for nonsimilarity searches. (Similarity searches do not respond to
operators.) Synonyms, separated by commas here, all have the same order of evaluation.

Table 2-1 Query operators in Search Kit, from highest to lowest precedence

MeaningOperator†

Opening and closing delimiter for phrase-based searching."

Opening and closing delimiters for logical grouping.(,)

Boolean NOT.!, NOT

30 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

MeaningOperator†

Boolean AND. The <space> character represents a Boolean operator when there are
terms to both sides of the <space> character. In this case, <space> represents a Boolean
AND by default, or a Boolean OR if specified by kSKSearchOptionSpaceMeansOR.

&, AND, <space>

Boolean inclusive OR.|

Wildcard for prefix or suffix; surround term with wildcard characters for substring search.
Ignored in phrase-based searches.

*

A Search Kit query can be as complex as you want, combining all the various operator types. For the purposes
of explanation, this section discusses each query type separately.

The simplest sort of query consists of:

 ■ One or more terms

 ■ No operators other than the <space> character between the terms

 ■ The default, AND-based behavior for <space>

Such a simple search looks for documents in the targeted set of indexes that contain all of the terms entered
in the query string. Indexed terms match the query only if they match exactly. For example, if you search for
“fooba” and a document contains “foobar” but not “fooba,” you don’t get a hit. Figure 2-5 depicts the behavior
of a simple search.

Figure 2-5 A simple search

fooba

foo

foo bar

fooba

foobar

If you specify the "space means OR" option using the kSKSearchOptionSpaceMeansOR constant in the
SKSearchCreate function, Search Kit finds not only documents that contain all of the query terms. It also
finds documents that contain some, but not all, of the query terms; it ranks such documents lower than
documents that contain all the query terms.

How Search Kit Works 31
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

A prefix search looks for documents represented in the targeted set of indexes that contain terms beginning
with the characters in a query. This is especially useful for the sort of live searching you see in Mail and Xcode.
As the user types each successive character, the found set narrows. See Figure 2-6.

Figure 2-6 A prefix search

foobar

foo bar

foo

Prefix searching looks at each term in the query separately, ANDing multiple terms by default, and matches
on the beginnings of terms in the currently targeted set of indexes. In Figure 2-6, the word “bar” in the circled
document is the only term that begins with the same characters as in the query, “ba.”

To invoke a prefix search directly, a user would append the asterisk (*) character to the end of each term to
be used as a prefix. An application can implicitly add the trailing asterisk to query terms before sending the
query on to Search Kit.

Here’s another example of prefix searching. If you have mail messages from Billy Bob, Billy Joe, and Big Chief,
you could enter “Bo*” to find all of Billy Bob’s messages, or “Jo*” to find Billy Joe’s messages. Entering “Bi*”
would match messages from all three friends. “Bi* OR Ch*” would match Big Chief with the highest relevance
but would also match Billy Bob and Billy Joe because they each contain one term matched by one of the
query terms. The query “illy*” wouldn’t match any of the mail messages.

Very similar to a prefix query is a suffix search. Suffix searching looks at each term in the query separately,
ANDing multiple terms by default, and matches on the ends of terms in the currently targeted set of indexes.
Again the wildcard character is the asterisk, but placed before the term as in "*illy". And again you can
design your application so that users explicitly type the asterisk before terms, or you can add the asterisk
implicitly before handing the query off to Search Kit.

A Boolean search offers full Boolean search functionality using the operators described in Table 2-1. You
can design your application's interface so that users type the operators directly, or you can provide an alternate
interface—converting the query to use the Search Kit standard operator syntax before handing off the query
to the SKSearchCreate function.

The Boolean search in Figure 2-7 employs grouping operators as well as Boolean operators.

32 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Figure 2-7 A Boolean search

foobar

bar

foo bar

foo

In the figure, the query in the search field indicates a request for documents that contain the exact term
"foobar" as well as documents that contain both the term "foo" and the term "bar".

A phrase search works in inverted (and inverted-vector) indexes that were created with a true value for the
kSKPromimityIndexing key in the text analysis properties dictionary. Such an index stores the position of
each term in each document, along with the information otherwise stored in an inverted (or an inverted-vector)
index.

Despite the name of the kSKPromimityIndexing text analysis properties key, Search Kit does not currently
support arbitrary proximity searching. That is, you cannot search for documents in which two words are near
each other but not adjacent. Search Kit supports only phrase searching.

When a user enters "Apple pie" as a query—including the surrounding quotation marks—Search Kit tries to
find documents containing this exact phrase. See Figure 2-8 (page 33) for an illustration of phrase searching.

Figure 2-8 A phrase-based search

Do you
want some
pie? Or
how about
an apple?

I would
like some
apple pie,
please.

Apple
Computer,
located in
Cupertino

How Search Kit Works 33
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

Search Results

Immediately upon invocation of a query—that is, upon creation of a search object—Search Kit asynchronous
searching accumulates results into the search object. Using the SKSearchFindMatches function, your
application retrieves results from the search object as they come in.

A search does not return documents per se. It returns document IDs. Your application, in turn, uses the
document IDs to get document URL objects from the indicated indexes. The document URL objects, in turn,
refer to the documents that satisfy the query.

The Search Kit framework does not provide display functionality. Instead, your application uses other Mac
OS X frameworks to present the basic result data in the way you determine to be most useful. Tables are a
popular way to display results, but you could just as well present search hits in outline form, as a graph, or
as audible feedback.

34 How Search Kit Works
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Search Kit Concepts

This chapter provides instructions and code samples for common Search Kit tasks including creating and
using indexes of various types, performing searches, and displaying results.

The code samples assume you are using Xcode and they illustrate how to use Search Kit's ANSI-C API within
Objective-C methods.

Using Indexes and Documents

To index a document your application first creates an empty index and then adds document content to it.
Search Kit indexes have a variety of characteristics you can set at the time of index creation. These
characteristics determine such things as which types of searches users can perform.

Your application can create file-based or memory-based indexes. Use file-based indexes for information you
want to retain between invocations of your program. Use memory-based indexes for temporary processes
such as searching on a subset of a file-based index. Because memory-based indexes can be opened as
read-only as well as read/write, you can use a memory-based index when your application needs an index
that is open only for searching.

When you create an index, either file-based or memory-based, the index is automatically open. The Search
Kit functions for opening indexes let your application re-open an index that you've closed, or open a
previously-created file-based index.

Creating a File-Based Index

To create a persistent, file-based index your application need only supply a file-system location, in the form
of a CFURL object, and an appropriate constant specifying the type of index you want. If you’re developing
in Cocoa, you can use an NSURL object for the index location and cast it to a CFURLRef object as shown in
Listing 3-1.

To create an index in memory, see "Creating an Index in Memory" (page 36). To specify text analysis properties
for an index, see "Specifying Text Analysis Properties" (page 39).

Listing 3-1 Creating a file-based index

- (void) newIndexInFile
{
 NSString * path = [pathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath: path]; // 2

 NSString * name = [nameTextField stringValue]; // 3
 if ([name length] == 0) name = nil;

 SKIndexType type = kSKIndexInverted; // 4

Using Indexes and Documents 35
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 skIndex = SKIndexCreateWithURL (// 5
 (CFURLRef) url,
 (CFStringRef) name,
 (SKIndexType) type,
 (CFDictionaryRef) NULL
);
}

Here is how this code works:

1. Gets the file-system path for a new file-based index and converts it to an NSString object.

2. Converts the NSString object to an NSURL object.

3. Gets the optional index name, if provided, and saves it in an NSString object. If there's no index name,
uses nil.

4. Defines the index type, in this case specifying an inverted index.

5. Creates the new, empty, file-based index using the specified URL, name, and type. Returns a Search Kit
index object. In this simple example, the code creates an index without specifying a text analysis properties
dictionary. See "Specifying Text Analysis Properties" (page 39) for more information on using a text
analysis properties dictionary.

Creating an Index in Memory

To create an index in memory, your application supplies an NSMutableData object (or, equivalently, a
CFMutableData object) to hold the index.

To create an index in a file, see "Creating a File-Based Index" (page 35). To specify text analysis properties
for an index, see "Specifying Text Analysis Properties" (page 39).

Listing 3-2 Creating an index in memory

- (void) newIndexInMemory
{
 NSString * name = [nameTextField stringValue]; // 1
 if ([name length] == 0) name = nil;

 SKIndexType type = kSKIndexInverted; // 2

 indexObject = [[NSMutableData dataWithCapacity: 2^16] retain]; // 3

 skIndex = SKIndexCreateWithMutableData (// 4
 (CFMutableDataRef) indexObject,
 (CFStringRef) name,
 (SKIndexType) type,
 (CFDictionaryRef) NULL
);
}

Here is how this code works:

36 Using Indexes and Documents
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

1. Gets the optional index name, if provided, and saves it in an NSString object. If there's no index name,
uses nil.

2. Defines the index type, in this case specifying an inverted index.

3. Creates a mutable data object to hold the new memory-based index, specifying the capacity and retaining
it.

4. Creates the new, empty, memory-based index using the supplied mutable data object, name, and type.
Returns a Search Kit index object. In this simple example, the code creates an index without specifying
a text analysis properties dictionary. See "Specifying Text Analysis Properties" (page 39) for more
information on using a text analysis properties dictionary.

Opening a File-Based Index For Searching or Updating

To work with an already-existing file-based index (one that existed before your application launched), or to
work with one that you have explicitly closed, your application must first open it. Once open, a file-based
Search Kit index can be searched or updated.

Memory-based indexes can be opened in a read-only mode as well as in a read/write mode. See "Opening
a Memory-Based Index for Searching Only" (page 38) and "Opening a Memory-Based Index for Searching or
Updating" (page 38).

Listing 3-3 Opening a file-based index for searching or updating

- (void) openIndex
{
 NSString * path = [pathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath:path]; // 2

 NSString * name = [nameTextField stringValue]; // 3
 if ([name length] == 0) name = nil;

 // open the specified index
 skIndex = SKIndexOpenWithURL (// 4
 (CFURLRef) url,
 (CFStringRef) name,
 true
);
}

Here's how this code works:

1. Gets the file-system path for the existing file-based index and converts it to an NSString object.

2. Converts the path NSString object to an NSURL object.

3. Gets the index name, if provided, for the existing file-based index and saves it as an NSString object. If
there's no index name, uses nil.

4. Opens the file-based index and returns a Search Kit index object.

Using Indexes and Documents 37
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

Opening a Memory-Based Index for Searching Only

To work with an already-existing memory-based index that your application has explicitly closed, your
application must first open it.

This task describes how to open a memory-based index for searching only. To open a memory-based index
for searching or updating, see "Opening a Memory-Based Index for Searching or Updating" (page 38).

Listing 3-4 Opening a memory-based index for searching only

- (void) openIndexInMemoryReadOnly
{
 skIndex = SKIndexOpenWithData (
 (CFDataRef) indexObject,
 (CFStringRef) nil
);
}

Here's how this code works:

Your application provides a previously-created mutable data object to the SKIndexOpenWithData function,
which then returns a read-only Search Kit index object. The index name is optional and in this example is
specified as nil. To open a memory-based index for searching and updating, see "Opening a Memory-Based
Index for Searching or Updating" (page 38). For information on creating a mutable data object, see "Creating
an Index in Memory" (page 36).

Opening a Memory-Based Index for Searching or Updating

To work with an already-existing memory-based index that your application has explicitly closed, your
application must first open it.

This task describes how to open a memory-based index for searching or updating. To open a memory-based
index for searching only, see "Opening a Memory-Based Index for Searching Only" (page 38).

Listing 3-5 Opening a memory-based index for searching or updating

- (void) openIndexInMemoryReadWrite
{
 skIndex = SKIndexOpenWithMutableData (
 (CFMutableDataRef) indexObject,
 (CFStringRef) nil
);
}

Here's how this code works:

Your application provides a previously-created mutable data object to the SKIndexOpenWithMutableData
function, which then returns a read/write Search Kit index object. The index name is optional and in this
example is specified as nil. To open a memory-based index for searching only, see "Opening a Memory-Based
Index for Searching Only" (page 38). For information on creating a mutable data object, see "Creating an
Index in Memory" (page 36).

38 Using Indexes and Documents
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

Closing an Index

A Search Kit index, as a Core Foundation object, can be closed by passing the index object to the CFRelease
function. Alternatively, your application can use the SKIndexClose function as shown here.

Listing 3-6 Closing an index

-(void) closeIndex
{
 if (skIndex) {
 SKIndexClose (skIndex);
 skIndex = nil;
 }
}

Specifying Text Analysis Properties

Your application specifies an index's text analysis properties at the time of index creation. This task illustrates
setting some of the available properties including minimum term length, stopwords, and customized term
characters while creating a new file-based index.

Listing 3-7 Specifying text analysis properties

- (void) newIndexWithPropertiesInFile
{
 NSString * path = [pathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath: path]; // 2

 NSString * name = [nameTextField stringValue]; // 3
 if ([name length] == 0) name = nil;

 SKIndexType type = kSKIndexInverted; // 4

 NSNumber * minTermLength = [NSNumber numberWithInt: (int) 3]; // 5

 NSSet * stopwords = [NSSet setWithObjects: // 6
 @"all",
 @"and",
 @"its",
 @"it's",
 @"the",
 nil
];

 NSDictionary * properties = // 7
 [NSDictionary dictionaryWithObjectsAndKeys:
 @"", @"kSKStartTermChars", // additional starting-characters for
 terms
 @"-_@.'", @"kSKTermChars", // additional characters within terms
 @"", @"kSKEndTermChars", // additional ending-characters for
terms
 minTermLength, @"kSKMinTermLength",
 stopwords, @"kSKStopWords",
 nil

Using Indexes and Documents 39
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

];

 skIndex = SKIndexCreateWithURL(// 8
 (CFURLRef) url,
 (CFStringRef) name,
 (SKIndexType) type,
 (CFDictionaryRef) properties
);
}

Here's how this code works:

1. Gets the file-system path for a new file-based index and converts it to an NSString object.

2. Converts the NSString object to an NSURL object.

3. Gets the optional index name, if provided, and saves it in an NSString object. If there's no index name,
uses nil.

4. Defines the index type, in this case specifying an inverted index.

5. Specifies the minimum term length as a NSNumber object.

6. Specifies a list of stopwords as an NSSet object.

7. Specifies the text analysis properties dictionary, including minimum term length, stopwords, and additional
term character specifications.

8. Creates the new, empty, file-based index using the specified URL, name, type, and text analysis properties.
Returns a Search Kit index object.

Loading The Spotlight Text Importers

Loading the Spotlight text importers is a single-step process that applications typically perform at launch
time.

Listing 3-8 Loading the Spotlight text importers

- (void) loadImporters
{
 SKLoadDefaultExtractorPlugIns ();
}

Adding a File-Based Document to an Index

To add a file-based document to an index your application simply supplies the index object and a document
URL object. You can optionally provide a MIME type hint, as described in Search Kit Reference. Finally, you
specify the document as replaceable or not.

Listing 3-9 Adding a file-based document to an index

- (void) addDoc

40 Using Indexes and Documents
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

{
 NSString * path = [filePathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath: path]; // 2
 SKDocumentRef doc = SKDocumentCreateWithURL (// 3
 (CFURLRef) url
);
 [(id) doc autorelease]; // 4

 Boolean added = SKIndexAddDocument (// 5
 (SKIndexRef) skIndex,
 (SKDocumentRef) doc,
 (CFStringRef) NULL, // optional MIME type hint
 (Boolean) true // replaceable
);
}

How this code works:

1. Gets the file-system path for the document to be added to an index. Converts the path string to an
NSString object.

2. Converts the NSString object to an NSURL object.

3. Creates a document URL object from the NSURL object.

4. Specifies that the document URL object should be auto-released.

5. Adds the document identified by the document URL object, along with its text, to the specified Search
Kit index.

Adding a Folder of File-Based Documents to an Index

To index a folder of documents, your application makes use of other Carbon or Cocoa frameworks. This task
illustrates how to do this in Cocoa, descending recursively into a folder structure.

Listing 3-10 Adding a folder of file-based documents to an index

- (void) addDocsInFolder
{
 NSString * path = [filePathTextField stringValue]; // 1

 NSDirectoryEnumerator * dirEnumerator = // 2
 [[NSFileManager defaultManager] enumeratorAtPath: path];

 NSString * item;
 while ((item = [dirEnumerator nextObject]) != nil) { // 3
 NSString * fullPath = // 4
 [path stringByAppendingPathComponent: item];
 if (!fullPath) continue;

 NSURL * url = // 5
 [NSURL fileURLWithPath: fullPath];
 if (!url) continue;

 SKDocumentRef doc = SKDocumentCreateWithURL (// 6

Using Indexes and Documents 41
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 (CFURLRef) url
);
 if (!doc) continue;
 [(id) doc autorelease]; // 7

 Boolean added = SKIndexAddDocument (// 8
 (SKIndexRef) skIndex,
 (SKDocumentRef) doc,
 (CFStringRef) NULL, // optional MIME type hint
 (Boolean) true // replaceable
);
 }
}

Here's how this code works:

1. Gets the file-system path for a folder containing file-based documents. Converts the path string to an
NSString object.

2. Creates an NSDirectoryEnumerator object for recursively finding all the file-based documents within the
folder.

3. Steps through the enumerator, getting the path to each file-based document in the folder.

4. Converts each path to an NSString object.

5. Converts each NSString object to an NSURL object.

6. Creates a document URL object from each NSURL object.

7. Specifies that the document URL object should be auto-released.

8. Adds the document identified by the document URL object, along with its text, to the specified Search
Kit index.

Adding Text Explicitly to an Index

To add text explicitly to an index, your application gets the text, parses it as necessary, and then hands it off
along with an index object to Search Kit. This example illustrates indexing text from a text field in the user
interface of an application. You could just as well take text from a database record or from a remote URL, for
example.

Listing 3-11 Adding text explicitly to an index

- (void) addDocWithText
{
 NSString * path = [filePathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath:path]; // 2

 SKDocumentRef doc = SKDocumentCreateWithURL (// 3
 (CFURLRef) url
);
 [(id) doc autorelease]; // 4

42 Using Indexes and Documents
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 NSString * contents = [fileContentsTextView string]; // 5
 Boolean added = SKIndexAddDocumentWithText (// 6
 skIndex,
 doc,
 (CFStringRef) contents,
 (Boolean) true // replaceable
);
}

Here's how this code works:

1. Gets the file-system path for the document to be added to an index. Converts the path string to an
NSString object.

2. Converts the NSString object to an NSURL object.

3. Creates a document URL object from the NSURL object.

4. Specifies that the document URL object should be auto-released.

5. Gets textual content from a user-interface text field and converts it to an NSString object.

6. Adds the document URL object along with the specified text to the specified Search Kit index. The text
is associated in the index to the document URL object such that queries that match terms in the text
will return the document URL object.

Updating an Index When a Document Changes

To reindex a document that has changed, simply replace it in the index. Do this by calling the
SKIndexAddDocumentWithTextorSKIndexAddDocument function, as appropriate, with theinCanReplace
parameter set to a true value. This example assumes that the document involved is a local, file-based
document and so uses the SKIndexAddDocument function.

Listing 3-12 Updating an index when a document changes

- (void) replaceChangedDoc: (id) sender
{
 NSString * path = [filePathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath:path];
 SKDocumentRef doc = SKDocumentCreateWithURL (
 (CFURLRef) url
);
 [(id) doc autorelease];
 Boolean replaced = SKIndexAddDocument (// 2
 skIndex,
 doc,
 NULL,
 true
);
}

1. Gets the file-system path for the replacement document. Converts the path string to an NSString object.]

Using Indexes and Documents 43
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

2. Replaces the document identified by the document URL object, along with its text, in the specified Search
Kit index.

Updating an Index When a Document Moves or Moves and Changes

To reindex a document that has moved, or moved and changed, perform these three steps:

1. Remove the old document with the SKIndexRemoveDocument function.

2. Remove the old text (if desired, or if the index is significantly fragmented) with the SKIndexCompact
function.

3. Add the changed document and its text to the index.

Compacting the index during this process removes any orphaned terms. However, the SKIndexCompact
function can be expensive in terms of performance. Apple recommends that you do not call it every time a
document is modified or deleted, but only when an index is significantly fragmented (bloated with unused
text).

To check for bloat you can take advantage of the way Search Kit allocates document IDs. It does so starting
at 1 and without reusing previously allocated IDs for an index. Simply compare the highest document ID,
found with the SKIndexGetMaximumDocumentID function, with the current document count, found with
the SKIndexGetDocumentCount function.

The following simple example illustrates compacting without checking for index bloat.

Listing 3-13 Updating an index when a document moves or moves and changes

- (void) replaceDoc: (id) sender
{
//..
// remove a specified document from an index
 NSString * path = [filePathTextField stringValue]; // 1
 NSURL * url = [NSURL fileURLWithPath: path]; // 2

 SKDocumentRef doc = SKDocumentCreateWithURL (// 3
 (CFURLRef) url
);
 [(id) doc autorelease]; // 4

 Boolean removed = SKIndexRemoveDocument (// 5
 skIndex,
 doc
);
//..
// compact the index to remove the terms associated with the removed document
 SKIndexCompact (skIndex); // 6
//..
// add the document and its terms back to the index
 NSString * path = [filePathTextField stringValue]; // 7
 NSURL * url = [NSURL fileURLWithPath:path];
 SKDocumentRef doc = SKDocumentCreateWithURL (
 (CFURLRef) url

44 Using Indexes and Documents
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

);
 [(id) doc autorelease];
 Boolean added = SKIndexAddDocument (// 8
 skIndex,
 doc,
 NULL,
 true
);
}

Here's how this code works:

1. Gets the file-system path for the document to be removed from an index. Converts the path string to
an NSString object.

2. Converts the NSString object to an NSURL object.

3. Creates a document URL object from the NSURL object.

4. Specifies that the document URL object should be auto-released.

5. Removes the document URL object from the specified index.

6. Compacts the index to remove the terms associated with the removed document.

7. Gets the file-system path for the replacement document. Converts the path string to an NSString object.

8. Adds the replacement document identified by the document URL object, along with its text, to the
specified Search Kit index.

Searching

This section describes each of the sub-tasks important to query-based searching and then assembles them
in the task titled "A Complete Search Method" (page 49). Briefly, the steps are:

 ■ Specify the maximum number of hits to return; this is simply defining a constant.

 ■ Set up the search options.

 ■ Get the user's query.

 ■ Create an asynchronous search object.

 ■ Request hits from the search object.

 ■ Convert the hits into document locations and displays the results.

Your application can use similarity-based searching instead of query-based searching by turning on the
kSKSearchOptionFindSimilar flag when creating a search object. In this case, use the content of an
example document, or a portion of an example document, as the query string.

Searching 45
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

Setting Up Search Options

When your application creates a search object it can specify a variety of search options. Each option is simply
a binary flag for the inSearchOptions parameter of the SKSearchCreate function.

Listing 3-14 Setting up search options

SKSearchOptions options = kSKSearchOptionDefault; // 1

if ([searchOptionNoRelevance intValue]) // 2
 options |= kSKSearchOptionNoRelevanceScores;
if ([searchOptionSpaceIsOR intValue]) // 3
 options |= kSKSearchOptionSpaceMeansOR;
if ([searchOptionSpaceFindSimilar intValue]) // 4
 options |= kSKSearchOptionFindSimilar;

Here's how this code works:

1. Specifies use of the default set of search options.

2. If the user has specified that searches should not consider relevance, adds that option.

3. If the user has specified that spaces should indicate a logical OR in a query, adds that option.

4. If the user has specified similarity searching instead of query-based searching, adds that option.

Getting a User's Query

This task illustrates the simple step of creating an NSString object from a user's query.

Listing 3-15 Getting a user's query

NSString * query = [searchField stringValue];

Creating an Asynchronous Search Object

Your application creates a search object by supplying an index object, an NSString object representing the
user's query, and a set of option flags that determine the searching behavior.

Listing 3-16 Creating an asynchronous search object

SKSearchRef search = SKSearchCreate (// 1
 skIndex,
 (CFStringRef) query,
 options
);
[(id) search autorelease]; // 2

Here's how this code works:

46 Searching
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

1. Creates a search object based on the user's query and the specified search options, targeting the specified
Search Kit index.

2. Specifies that the search object should be auto-released.

Getting Matches From a Search Object

To retrieve matches from an asynchronous search object, your application sets up arrays to hold the results
and then requests the results. You can use a loop to keep requesting additional hits while there are more to
be had, as illustrated in this task and in "A Complete Search Method" (page 49).

The result of a hit is a lightweight document identifier. The next task, "Getting Document Locations and
Displaying Results" (page 48), illustrates converting the document identifiers to document locations as
represented by document URL objects.

Listing 3-17 Getting matches from a search object

while (more) {

 SKDocumentID foundDocIDs [kSearchMax]; // 1
 float foundScores [kSearchMax]; // 2
 float * scores; // 3
 Boolean unranked = // 4
 options & kSKSearchOptionNoRelevanceScores;

 if (unranked) { // 5
 scores = NULL;
 } else {
 scores = foundScores;
 }

 CFIndex foundCount = 0; // 6
 more = SKSearchFindMatches (// 7
 search,
 kSearchMax,
 foundDocIDs,
 scores,
 1, // maximum time before function returns, in seconds
 &foundCount
);
 // display or accumulate results here

 totalCount += foundCount; // 8
}

Here's how this code works:

1. Sets up an array to hold document identifiers resulting from hits during the search.

2. Sets up an array to hold relevance scores.

3. Sets up a pointer to the relevance scores array.

4. Creates a Boolean flag specifying whether or not relevance scores should be reported.

Searching 47
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

5. Uses the relevance flag to define the outScoresArray parameter for the SKSearchFindMatches
function.

6. Initializes the found count to 0.

7. Queries the search object. The SKSearchFindMatches function places hits in the foundDocIDs array,
relevance scores in the scores array, and a Boolean value indicating whether there are more results to
be had (TRUE) or not (FALSE).

8. Accumulates the number of new matches into the total number of matches.

Getting Document Locations and Displaying Results

To obtain results that are meaningful to a user, you convert each of the document identifiers, provided by
the search object as hits, to a document location in the form of a document URL object. This task illustrates
a simple logging of results—including document ID, document URL, and relevance score if applicable—to
a text field.

In this code excerpt, and in the complete example shown in "A Complete Search Method" (page 49), the
code simply displays results as they're found. Using other Carbon or Cocoa frameworks, you may want to,
instead, accumulate results and present them in a single list sorted by relevance and perhaps dynamically
updated.

Listing 3-18 Getting document locations and displaying results

SKDocumentRef foundDocRefs [kSearchMax]; // 1
SKIndexCopyDocumentRefsForDocumentIDs (// 2
 skIndex,
 (CFIndex) foundCount,
 foundDocIDs,
 foundDocRefs
);

CFIndex pos;
for (pos = 0; pos < foundCount; pos++) { // 3
 SKDocumentRef doc = // 4
 (SKDocumentRef) [(id) foundDocRefs [pos] autorelease];
 NSURL * url = // 5
 [(id) SKDocumentCopyURL (doc) autorelease];
 NSString * urlStr = [url absoluteString]; // 6

 NSString * desc;
 if (unranked) { // 7
 desc = [NSString stringWithFormat:
 @"---\nDocID: %d,
 URL: %@",
 (int) foundDocIDs [pos],
 urlStr];
 } else {
 desc = [NSString stringWithFormat:
 @"---\nDocID: %d,
 Score: %f,
 URL: %@",
 (int) foundDocIDs[pos],

48 Searching
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 foundScores [pos],
 urlStr];
 }
 [self log: desc]; // 8

Here's how this code works:

1. Sets up an array to hold document URL objects derived from the document identifiers collected in
"Getting Matches From a Search Object" (page 47).

2. Converts the document identifiers to document URL objects. The found count and the document
identifiers are from "Getting Matches From a Search Object" (page 47).

3. Iterates through the foundDocRefs array to convert document URL objects to NSString objects for
display.

4. Gets the next document URL object.

5. For the current document URL object, gets the URL.

6. Converts the URL to an NSString object.

7. Formats the result information for the current hit. The information to be displayed depends on whether
the search was ranked or unranked.

8. Displays the results using the applications log: method (not illustrated here).

A Complete Search Method

This task collects the preceding code excerpts in this section and presents a complete search method. As
described in the introduction to this section, your application:

 ■ Specifies the maximum number of hits to return.

 ■ Sets up the search options.

 ■ Gets the user's query.

 ■ Creates an asynchronous search object.

 ■ Requests hits from the search object.

 ■ Converts the hits into document locations and displays the results.

For descriptions of how this code works, refer to the preceding subtasks in this section.

Listing 3-19 A complete search method

//..
// specify the maximum number of hits
#define kSearchMax 1000

- (void) search
{
//..
// set up search options

Searching 49
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 SKSearchOptions options = kSKSearchOptionDefault;

 if ([searchOptionNoRelevance intValue]) options |=
kSKSearchOptionNoRelevanceScores;
 if ([searchOptionSpaceIsOR intValue]) options |= kSKSearchOptionSpaceMeansOR;
 if ([searchOptionSpaceFindSimilar intValue]) options |=
kSKSearchOptionFindSimilar;

//..
// get the user's query

 NSString * query = [searchField stringValue];

//..
// create an asynchronous search object

 SKSearchRef search = SKSearchCreate (
 skIndex,
 (CFStringRef) query,
 options
);
 [(id) search autorelease];

//..
// get matches from a search object

 Boolean more = true;
 UInt32 totalCount = 0;

 while (more) {

 SKDocumentID foundDocIDs [kSearchMax];
 float foundScores [kSearchMax];
 SKDocumentRef foundDocRefs [kSearchMax];

 float * scores;
 Boolean unranked = options & kSKSearchOptionNoRelevanceScores;

 if (unranked) {
 scores = NULL;
 } else {
 scores = foundScores;
 }

 CFIndex foundCount = 0;
 CFIndex pos;

 more = SKSearchFindMatches (
 search,
 kSearchMax,
 foundDocIDs,
 scores,
 1, // maximum time before func returns, in seconds
 &foundCount
);

 totalCount += foundCount;

50 Searching
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

//..
// get document locations for matches and display results.
// alternatively, you can collect results over iterations of this loop
// for display later.

 SKIndexCopyDocumentRefsForDocumentIDs (
 (SKIndexRef) skIndex,
 (CFIndex) foundCount,
 (SKDocumentID *) foundDocIDs,
 (SKDocumentRef *) foundDocRefs
);

 for (pos = 0; pos < foundCount; pos++) {
 SKDocumentRef doc = (SKDocumentRef) [(id) foundDocRefs [pos]
autorelease];
 NSURL * url = [(id) SKDocumentCopyURL (doc) autorelease];
 NSString * urlStr = [url absoluteString];

 NSString * desc;

 if (unranked) {
 desc = [NSString stringWithFormat: @"---\nDocID: %d, URL: %@",
 (int) foundDocIDs [pos], urlStr];
 } else {
 desc = [NSString stringWithFormat: @"---\nDocID: %d, Score: %f,
 URL: %@", (int) foundDocIDs[pos], foundScores [pos], urlStr];
 }
 [self log: desc];
 }
 }

 NSString * desc = [NSString stringWithFormat: @"\"%@\" - %d matches", query,
 (int) totalCount];
 [self log: desc];
}

For descriptions of how this code works, refer to the preceding subtasks in this section.

Using Timeout to Search an Index Group in Parallel

To search an index group in parallel you can use a separate thread for querying each search object.
Alternatively, as illustrated here, you can repeatedly rotate through a set of search objects, querying one and
then moving on to the next, by using the timeout option in the SKSearchFindMatches function.

Listing 3-20 Using timeout to search an index group in parallel

completeCount = indexCount; // 1
while (completeCount) { // 2
 for (i = 0; i < indexCount; i++) {
 if (more [i]) {
 more [i] = SKSearchFindMatches (// 3
 searchObjects [i],
 kSearchMax,
 foundDocIDs,
 scores,

Searching 51
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

 timeout,
 &foundCount
);

 if (!more [i]) completeCount--; // 4
 ProcessHits (// 5
 searchObjects [i],
 foundDocIDs,
 scores,
 foundCount
);
 }
 }
}

Here's how this code works:

1. Initializes the completeCount variable to the number of indexes in the group. An application using this
code would have previously defined one search object per index in the group. It also would have initialized
the more array with true values for each element. The completeCount variable holds the diminishing
number of search objects that still have results available.

2. Iterates through the list of search objects, getting hits from each in turn. After the period specified by
the timeout parameter, moves on to the next search object. As long as hits from at least one search
object are not exhausted, repeats the iteration.

3. Gets the next set of search hits for the current search object, accumulating the results in foundDocIDs,
scores, and foundCount.

4. If no new search hits were found for the current search object, decrements the number of active search
objects.

5. Calls the application-defined ProcessHits function to work with the new search hits.

52 Searching
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Search Kit Tasks

This table describes the changes to Search Kit Programming Guide.

NotesDate

Major update for Mac OS X v10.4. Added "Search Kit Tasks" (page 35) chapter.
Renamed document from Adding Search to Your Application.

2005-12-06

Made minor corrections to figures.2004-06-28

Corrected some typographical errors. Changed descriptions of the
SKDocumentRef opaque data type from “document reference” to “document
URL object.”

2004-05-20

First publication of "Adding Search to Your Application."2004-04-22

53
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

54
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

AIAT See Apple Information Access Toolkit (AIAT).

Apple Information Access Toolkit (AIAT) In Classic
Mac OS, an object-oriented information access engine
that contained a collection of tools for indexing,
searching, and analyzing large volumes of documents.
Search Kit is the Mac OS X implementation of the
AIAT. AIAT was formerly known by its code name
V-Twin.

Boolean searching Matching of a query string to
indexed terms using Boolean (logical) operators such
as AND and OR between query terms, optionally
employing grouping for precedence using
parentheses. The entire query expression is matched.
See also search.

compact To make an index smaller by removing
unused bits. Over time, as documents get added to
and removed from an index, the index’s disk or
memory footprint may grow due to fragmentation.
Search Kit includes APIs to check for fragmentation
and to compact an index. See also fragmentation .

corpora Plural form of corpus.

corpus A collection of one or more documents,
typically related, and available to an information
retrieval system. Plural: corpora.

document In general, a specifically locatable
information object of useful granularity and arbitrary
structure. In Search Kit, anything that contains text
and that the Search Kit client application addresses
as a document—an RTF document, a PDF file, a Mail
message, an Address Book entry, the contents at an
Internet URL, the result of a database query, and so
on. See also document URL object.

document collection See corpus.

document object hierarchy A collection of
documents in which each document exists at a
location relative to a root document. The locations
may may be real, as in a file system, or virtual.

document URL object A URL to a document. In
Search Kit, a document URL object comprises a
scheme, a parent document URL object, and a name,
with the format of each component defined by the
client application. Search Kit document URL objects
may be converted to or from CFURL objects. See also
document, parent document URL object, scheme.

fragmentation In Search Kit, an unwanted increase
in index size due to accumulation of unused capacity.
Over time, as documents get added to and removed
from an index, the index may become
fragmented—its constituent documents and terms
may become arranged in a manner that includes a
significant amount of unused disk or memory space.
See also compact.

inclusion/exclusion result See inclusion/exclusion
searching.

inclusion/exclusion searching Unranked searching
where the result simply includes documents that
match the query and excludes documents that don’t.
Inclusion/exclusion searches tend to be faster than
ranked searches. Search Kit supports
inclusion/exclusion searches. See also relevance-based
result.

index A memory- or file-based sequential collection
of the terms in one or more documents. In addition
to terms, Search Kit indexes contain context
information that specifies which documents each
term belongs to, along with term and document
metadata useful during display of search results.
Search Kit performs its searching and analysis on
indexes. See also inverted index; inverted-vector
index; vector index

55
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

Glossary

index group A short-lived collection of one or more
indexes; the target of a search. An index group
corresponds to one or more aspects of the corpus of
documents you want to search. For example, one
index in a group might contain document titles, while
another contains the body text of those same
documents. An index group can also comprise indexes
of multiple corpora. See also corpus; document.

information retrieval (IR) The process of locating
information based on a well-defined information
need. An information retrieval system consists of a
corpus, one or more indexes of its content, a query
interface, a search system, and a results interface. See
also corpus; search.

inverted index An index containing terms, as keys,
mapped to references to the documents they appear
in. The index is sorted by its keys. “Inverted” means
that the documents are found by matching on terms,
rather than the other way around. See also index;
inverted-vector index; vector index

inverted-vector index An index containing terms
mapped to document URL objects representing the
documents that the terms appear in, as well as
document URL objects mapped to the terms that each
document contains. See also index; inverted index;
vector index.

IR See information retrieval (IR).

MIME type hint Advisory metainformation
suggesting the likely content type for a URL. MIME is
an acronym for Multipurpose Internet Mail Extensions.
In Search Kit, common MIME type hints include
text/plain,text/rtf,text/html,text/pdf, and
application/msword.

minimum term frequency The fewest number of
times a term can appear in a document and still be
indexed. This functionality is not currently supported
by Search Kit indexes.

minimum term length The shortest-length term to
index. When Search Kit adds terms from a document
to an index, it skips over words whose length is
shorter than the minimum term length.

name In Search Kit, a document name as represented
in a document URL object. For documents that are
on-disk files, the name should correspond to the

actual filename. For other types of documents, your
application can assign any name to a document. See
also document URL object

operator A character or word that has a special
meaning when used in a query. Operators in Search
Kit include AND, OR, NOT, parentheses, quoation marks,
and several others. Search Kit interprets operators
and determines the user's intended search type
according to the operators' meanings.

parent document URL object In Search Kit, for
file-based documents, the location of the enclosing
folder for a document or for another parent document
URL object. Search Kit manages documents using
parent-child relationships, not paths. You can
construct the path of any document by following its
parent document links. See also document URL object.

partial string searching Matching of the terms in a
query string to indexed terms, with implied wildcard
characters at the start and end of each query term.
Each term is matched separately. Search Kit does not
currently support partial string searching as an option,
but a client application can provide it by adding
wildcard operators (asterisks) around each term before
handing a query off to Search Kit. See also search.

phrase searching Matching of a query string to
indexed terms, with the query string considered as a
complete phrase. A match occurs when the exact
query phrase appears in a document. Search Kit
supports phrase searching in inverted and
inverted-vector indexes. See also search.

prefix searching A specialized type of substring
search. A prefix search involves matching of a term
in a query string to indexed terms, with an explicit
wildcard character at the end of the query term. A
match occurs when the characters in the query term
(minus the wildcard character) match the beginning
of an indexed term. For example, the query string
car*will matchcar,carpet, andcarnivore. Search
Kit supports prefix searching in inverted and
inverted-vector indexes. See also search; substring
searching; wildcard character.

query (n.) A text string, containing terms and
operators, that represents a user's information
retrieval request. Various types of query supported
by Search Kit include simple, prefix/suffix/substring,

56
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

Boolean, phrase, and similarity. (v.) To invoke a request
for information in an information retrieval system.
See also search.

ranked searching See relevance-based result.

relevance-based result See also relevance-based
search.

relevance-based search A ranked search whose
result includes a relevance rating for each document
matching a query. In general, relevance ratings may
be normalized to 100%, or nonnormalized. Search Kit
supports only nonnormalized results. See also
inclusion/exclusion searching; search.

root word See stem.

scheme A way to access a file-system or Internet
resource, corresponding to an access protocol.
Examples include http, ftp, and file. See also
document URL object.

search In an information retrieval system, a process
that attempts to locate documents that match a
query, and that may assign relevance scores to the
found documents. Upon a successful match, a search
system returns references to the found documents.
Search Kit supports a variety of search types, some of
which can be combined. These types are simple,
Boolean, ranked, unranked, phrase, similarity, prefix,
suffix, and substring.

search object In Search Kit, an opaque data type
representing an asynchronous search and containing
its results, accumulated as they are found. A search
object is of type SKSearchRef.

similarity searching Matching of a query string,
typically consisting of a representative portion of a
document, to indexed documents. A match occurs
when Search Kit determines significant content
similarity between the query and an indexed
document. Search Kit supports similarity searching in
vector and inverted-vector indexes. Similarity
searching also works in inverted indexes in Search
Kit, but performance is worse. See also search.

simple search Matching of the terms in a query string
to indexed terms using exact, character-for-character
matching. Each term is matched separately. In Search
Kit, by default, spaces between terms behave like
Boolean AND operators. See also search.

stem The root of a family of morphological or
inflectional variants of a word. For example, "swim"
is the stem of "swimmer," "swimming," and "swam."

stemming The algorithm-based removal of
morphological and inflectional word components,
typically endings. Language dependent. Stemming
is sometimes referred to as suffix stripping, although
some stemming algorithms perform prefix stripping
as well. IR systems use stemming to improve search
quality and to reduce index size. Search Kit does not
support stemming; if needed, client applications
implement it. Some stemming algorithms handle only
regular variants, such as converting "swimming" to
"swim," and do not handle irregular variants, such as
converting "swam" to "swim."

stopword A word not to index. When Search Kit adds
terms from a document to an index, it skips over
words in its top-word list.

substring searching Matching of a term in a query
string to indexed terms, with explicit wildcard
characters at the start and end of the query term. A
match occurs when the characters in the query term
(minus the wildcard characters) match the beginning,
ending, or middle of an indexed term. For example,
the query string *cat*will matchcat,concatenate,
tomcat, and cattle. Search Kit supports substring
searching in inverted and inverted-vector indexes.
See also search.

suffix searching A specialized type of substring
search. A suffix search involves matching of a term in
a query string to indexed terms, with an explicit
wildcard character at the start of the query term. A
match occurs when the characters in the query term
(minus the wildcard character) match the ending of
an indexed term. For example, the query string *ion
will match ion, lion, and version. Search Kit
supports suffix searching in inverted and
inverted-vector indexes. See also search; wildcard
character.

suffix stripping See stemming.

summarization object In Search Kit, an opaque data
type representing summarization information,
including the summary text. A summarization object
is of type SKSummaryRef.

57
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

synonym A term that an IR system considers to be
equivalent to another term for both indexing and
querying. For example, an IR system could define "car,"
"passenger vehicle," and "automobile" to be
synonyms. See also information retrieval (IR); index;
query.

term An atomic entry in a Search Kit index, typically
corresponding to a word found in one of the index’s
documents.

text extraction Selective copying of terms from one
or more documents into an index. See also stemming;
stopword.

unranked searching See inclusion/exclusion
searching.

URL Uniform Resource Locator. An Internet address,
or a file-system path when formatted as a URL with
a scheme. See also scheme.

V-Twin See Apple Information Access Toolkit (AIAT).

vector index An index containing document URL
objects, as keys, mapped to the terms that each
document contains. See also index; inverted index;
inverted-vector index

wildcard character An operator used in a query that
indicates matching on any character. In Search Kit,
the wildcard character is the asterisk. Depending on
usage, the wildcard character can indicate prefix,
suffix, or substring searching. See also operator; query.

58
2005-12-06 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Search Kit Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Search Basics
	Establishing a Suitable Source to Search
	Selecting a Document Collection
	Constructing Indexes
	Inverted Indexes
	Text Extraction
	Stopwords and Minimum Term Length
	Synonyms and Stemming
	Minimum Term Frequency
	Phrase Searches

	Searching Multiple Indexes

	Formulating a Query
	Providing Results

	Search Kit Concepts
	Search Kit Architecture
	Indexes, Documents, and Terms
	Index Types
	Indexes and Search Objects

	Search Kit Application Workflow
	Create a Searchable Corpus
	Perform a Search and Display the Results

	Additional Workflows
	Similarity Searching
	Using Summarization
	Index Maintenance

	How Search Kit Works
	How Search Kit Works With Documents
	Working With Documents and Document URL Objects
	Using Document Locations
	Document Properties

	How Search Kit Extracts Terms From Documents
	Terms, From Documents to Indexes
	Index Types
	Text Analysis Properties

	Designing Index Architecture
	Flushing and Compacting Indexes

	How Search Kit Performs Searches
	Searching Multiple Indexes
	Queries
	Search Results

	Search Kit Tasks
	Using Indexes and Documents
	Creating a File-Based Index
	Creating an Index in Memory
	Opening a File-Based Index For Searching or Updating
	Opening a Memory-Based Index for Searching Only
	Opening a Memory-Based Index for Searching or Updating
	Closing an Index
	Specifying Text Analysis Properties
	Loading The Spotlight Text Importers
	Adding a File-Based Document to an Index
	Adding a Folder of File-Based Documents to an Index
	Adding Text Explicitly to an Index
	Updating an Index When a Document Changes
	Updating an Index When a Document Moves or Moves and Changes

	Searching
	Setting Up Search Options
	Getting a User's Query
	Creating an Asynchronous Search Object
	Getting Matches From a Search Object
	Getting Document Locations and Displaying Results
	A Complete Search Method
	Using Timeout to Search an Index Group in Parallel

	Revision History
	Glossary

