
Search Kit Reference
User Experience > Carbon

2009-05-06

Apple Inc.
© 2003, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Spaces, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Search Kit Reference 9

Overview 9
Functions by Task 9

Creating, Opening, and Closing Indexes 9
Managing Indexes 10
Working With Text Importers 11
Working with Documents and Terms 11
Fast Asynchronous Searching 12
Working With Summarization 12
Legacy Support for Synchronous Searching 13

Functions 14
SKDocumentCopyURL 14
SKDocumentCreate 14
SKDocumentCreateWithURL 15
SKDocumentGetName 16
SKDocumentGetParent 16
SKDocumentGetSchemeName 17
SKDocumentGetTypeID 17
SKIndexAddDocument 18
SKIndexAddDocumentWithText 19
SKIndexClose 20
SKIndexCompact 21
SKIndexCopyDocumentForDocumentID 21
SKIndexCopyDocumentIDArrayForTermID 22
SKIndexCopyDocumentProperties 22
SKIndexCopyDocumentRefsForDocumentIDs 23
SKIndexCopyDocumentURLsForDocumentIDs 24
SKIndexCopyInfoForDocumentIDs 24
SKIndexCopyTermIDArrayForDocumentID 25
SKIndexCopyTermStringForTermID 26
SKIndexCreateWithMutableData 26
SKIndexCreateWithURL 27
SKIndexDocumentIteratorCopyNext 28
SKIndexDocumentIteratorCreate 29
SKIndexDocumentIteratorGetTypeID 30
SKIndexFlush 30
SKIndexGetAnalysisProperties 31
SKIndexGetDocumentCount 31
SKIndexGetDocumentID 32
SKIndexGetDocumentState 33
SKIndexGetDocumentTermCount 33

3
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

SKIndexGetDocumentTermFrequency 34
SKIndexGetIndexType 34
SKIndexGetMaximumBytesBeforeFlush 35
SKIndexGetMaximumDocumentID 35
SKIndexGetMaximumTermID 36
SKIndexGetTermDocumentCount 36
SKIndexGetTermIDForTermString 37
SKIndexGetTypeID 37
SKIndexMoveDocument 38
SKIndexOpenWithData 38
SKIndexOpenWithMutableData 39
SKIndexOpenWithURL 40
SKIndexRemoveDocument 41
SKIndexRenameDocument 41
SKIndexSetDocumentProperties 42
SKIndexSetMaximumBytesBeforeFlush 43
SKLoadDefaultExtractorPlugIns 43
SKSearchCancel 44
SKSearchCreate 44
SKSearchFindMatches 46
SKSearchGetTypeID 48
SKSearchGroupGetTypeID 48
SKSearchResultsGetTypeID 48
SKSummaryCopyParagraphAtIndex 49
SKSummaryCopyParagraphSummaryString 49
SKSummaryCopySentenceAtIndex 50
SKSummaryCopySentenceSummaryString 50
SKSummaryCreateWithString 51
SKSummaryGetParagraphCount 51
SKSummaryGetParagraphSummaryInfo 51
SKSummaryGetSentenceCount 52
SKSummaryGetSentenceSummaryInfo 53
SKSummaryGetTypeID 53

Callbacks 54
SKSearchResultsFilterCallBack 54

Data Types 55
SKDocumentRef 55
SKIndexDocumentIteratorRef 55
SKIndexRef 56
SKSearchRef 56
SKSummaryRef 57
SKDocumentID 57
SKSearchResultsRef 57
SKSearchGroupRef 58

Constants 58
Text Analysis Keys 58

4
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

SKDocumentIndexState 60
SKSearchOptions 61
SKIndexType 62
Deprecated Text Analysis Keys 63
Deprecated Search Keys 63

Appendix A Deprecated Search Kit Functions 65

Deprecated in Mac OS X v10.4 65
SKSearchGroupCopyIndexes 65
SKSearchGroupCreate 65
SKSearchResultsCopyMatchingTerms 66
SKSearchResultsCreateWithDocuments 67
SKSearchResultsCreateWithQuery 68
SKSearchResultsGetCount 69
SKSearchResultsGetInfoInRange 70

Document Revision History 73

Index 77

5
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Search Kit Reference 9

Table 1 Search Kit query operators for non-similarity searches 45

7
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

8
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

TABLES

Framework: CoreServices/CoreServices.h

Declared in SKAnalysis.h
SKDocument.h
SKIndex.h
SKSearch.h
SKSummary.h

Overview

Search Kit is a powerful and streamlined C language framework for indexing and searching text in most
human languages. It provides fast information retrieval in System Preferences, Address Book, Help Viewer,
and Xcode. Apple’s Spotlight technology is built on top of Search Kit to provide content searching in Finder,
Mail, and the Spotlight menu.

You can use Search Kit or Spotlight to provide similar functionality and powerful information-access capabilities
within your Mac OS X application. The Search Kit API is appropriate when you want your application to have
full control over indexing and searching, and when your focus is file content. Search Kit is thread-safe and
works with Cocoa, Carbon, and command-line tools.

Beginning with Mac OS X version 10.4, Search Kit supports phrase searches, prefix/suffix/substring searches,
improved Boolean searches, and improved relevance ranking. Search Kit now uses Spotlight’s metadata
importers when indexing documents, and takes advantage of any additional importers available on a system.
Searching and indexing are much faster with Search Kit’s new asynchronous search APIs. And, starting in
Mac OS X v10.4, Search Kit provides a summarization API that supplants Find By Content.

Functions by Task

Functions are grouped according to the tasks you perform using them. For an alphabetical list of functions,
go to the API index at the end of the document.

Creating, Opening, and Closing Indexes
Search Kit performs its searches not on documents but on its indexes of documents. The functions in this
group let your application create memory-based and persistent indexes. Indexes are initially empty. Functions
in “Managing Indexes” (page 10) let you add document content to these indexes.

SKIndexCreateWithURL (page 27)
Creates a named index in a file whose location is specified with a CFURL object.

Overview 9
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexCreateWithMutableData (page 26)
Creates a named index stored in a CFMutableData object.

SKIndexOpenWithData (page 38)
Opens an existing, named index for searching only.

SKIndexOpenWithMutableData (page 39)
Opens an existing, named index for searching and updating.

SKIndexOpenWithURL (page 40)
Opens an existing, named index stored in a file whose location is specified with a CFURL object.

SKIndexClose (page 20)
Closes an index.

SKIndexGetIndexType (page 34)
Gets the category of an index.

SKIndexGetTypeID (page 37)
Gets the type identifier for Search Kit indexes.

Managing Indexes
The functions in this section let your application add document content to (and remove document content
from) indexes, work with memory- and disk-based indexes, and retrieve metadata from indexes.

SKIndexAddDocumentWithText (page 19)
Adds a document URL object, and the associated document’s textual content, to an index.

SKIndexAddDocument (page 18)
Adds location information for a file-based document, and the document’s textual content, to an index.

SKIndexFlush (page 30)
Invokes all pending updates associated with an index and commits them to backing store.

SKIndexCompact (page 21)
Invokes all pending updates associated with an index, compacts the index if compaction is needed,
and commits all changes to backing store.

SKIndexGetDocumentCount (page 31)
Gets the total number of documents represented in an index.

SKIndexGetMaximumDocumentID (page 35)
Gets the highest-numbered document ID in an index.

SKIndexGetMaximumTermID (page 36)
Gets the highest-numbered term ID in an index.

SKIndexDocumentIteratorCreate (page 29)
Creates an index-based iterator for document URL objects owned by a parent document URL object.

SKIndexDocumentIteratorCopyNext (page 28)
Obtains the next document URL object from an index using a document iterator.

SKIndexDocumentIteratorGetTypeID (page 30)
Gets the type identifier for Search Kit document iterators.

SKIndexGetAnalysisProperties (page 31)
Gets the text analysis properties of an index.

SKIndexMoveDocument (page 38)
Changes the parent of a document URL object in an index.

10 Functions by Task
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexRemoveDocument (page 41)
Removes a document URL object and its children, if any, from an index.

SKIndexRenameDocument (page 41)
Changes the name of a document URL object in an index.

SKIndexSetMaximumBytesBeforeFlush (page 43)
Not recommended. Sets the memory size limit for updates to an index, measured in bytes.

SKIndexGetMaximumBytesBeforeFlush (page 35)
Not recommended. Gets the memory size limit for updates to an index, measured in bytes.

Working With Text Importers
Search Kit can import the textual content of file-based documents into indexes using the Spotlight metadata
importers.

SKLoadDefaultExtractorPlugIns (page 43)
Tells Search Kit to use the Spotlight metadata importers.

Working with Documents and Terms
From Search Kit’s perspective, a document is anything that contains text—an RTF document, a PDF file, a
Mail message, an Address Book entry, an Internet URL, the result of a database query, and so on.

The functions in this section let your application create new document URL objects (SKDocumentRefs),
retrieve metadata from documents, get information on document hierarchies, and work with documents
and their terms in the context of Search Kit indexes.

SKDocumentCreateWithURL (page 15)
Creates a document URL object from a CFURL object.

SKDocumentCreate (page 14)
Creates a document URL object based on a scheme, parent, and name.

SKDocumentCopyURL (page 14)
Builds a CFURL object from a document URL object.

SKDocumentGetName (page 16)
Gets the name of a document URL object.

SKDocumentGetParent (page 16)
Gets a document URL object’s parent.

SKDocumentGetSchemeName (page 17)
Gets the scheme name for a document URL object.

SKDocumentGetTypeID (page 17)
Gets the type identifier for Search Kit document URL objects.

SKIndexCopyDocumentForDocumentID (page 21)
Obtains a document URL object from an index.

SKIndexCopyInfoForDocumentIDs (page 24)
Gets document names and parent IDs based on document IDs.

SKIndexCopyDocumentRefsForDocumentIDs (page 23)
Gets document URL objects based on document IDs.

Functions by Task 11
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexCopyDocumentURLsForDocumentIDs (page 24)
Gets document URLs based on document IDs.

SKIndexCopyDocumentIDArrayForTermID (page 22)
Obtains document IDs for documents that contain a given term.

SKIndexCopyTermIDArrayForDocumentID (page 25)
Obtains the IDs for the terms of an indexed document.

SKIndexCopyTermStringForTermID (page 26)
Obtains a term, specified by ID, from an index.

SKIndexGetTermIDForTermString (page 37)
Gets the ID for a term in an index.

SKIndexSetDocumentProperties (page 42)
Sets the application-defined properties of a document URL object.

SKIndexCopyDocumentProperties (page 22)
Obtains the application-defined properties of an indexed document.

SKIndexGetDocumentState (page 33)
Gets the current indexing state of a document URL object in an index.

SKIndexGetDocumentTermCount (page 33)
Gets the number of terms for a document in an index.

SKIndexGetDocumentTermFrequency (page 34)
Gets the number of occurrences of a term in a document.

SKIndexGetTermDocumentCount (page 36)
Gets the number of documents containing a given term represented in an index.

SKIndexGetDocumentID (page 32)
Gets the ID of a document URL object in an index.

Fast Asynchronous Searching
In Mac OS X v10.4 and later, Search Kit’s fast asynchronous searching replaces synchronous searching.
Synchronous searching, which relied on search groups, is deprecated.

SKSearchCreate (page 44)
Creates an asynchronous search object for querying an index, and initiates search.

SKSearchFindMatches (page 46)
Extracts search result information from a search object.

SKSearchCancel (page 44)
Cancels an asynchronous search request.

SKSearchGetTypeID (page 48)
Gets the type identifier for Search Kit search objects.

Working With Summarization
Search Kit’s Summarization functions supplant those in Apple’s Find by Content API.

SKSummaryCreateWithString (page 51)
Creates a summary object based on a text string.

12 Functions by Task
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKSummaryGetSentenceSummaryInfo (page 53)
Gets detailed information about a body of text for constructing a custom sentence-based summary
string.

SKSummaryGetParagraphSummaryInfo (page 51)
Gets detailed information about a body of text for constructing a custom paragraph-based summary
string.

SKSummaryGetSentenceCount (page 52)
Gets the number of sentences in a summarization object.

SKSummaryGetParagraphCount (page 51)
Gets the number of paragraphs in a summarization object.

SKSummaryCopySentenceAtIndex (page 50)
Gets a specified sentence from the text in a summarization object.

SKSummaryCopyParagraphAtIndex (page 49)
Gets a specified paragraph from the text in a summarization object.

SKSummaryCopySentenceSummaryString (page 50)
Gets a text string consisting of a summary with, at most, the requested number of sentences.

SKSummaryCopyParagraphSummaryString (page 49)
Gets a text string consisting of a summary with, at most, the requested number of paragraphs.

SKSummaryGetTypeID (page 53)
Gets the type identifier for Search Kit summarization objects.

Legacy Support for Synchronous Searching
Developers should avoid using the functions listed in this section; instead, use the replacement functions
that are recommended. Search Kit retains the functions in this section for backward compatibility.

SKSearchGroupGetTypeID (page 48)
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search
groups.

SKSearchResultsGetTypeID (page 48)
Gets the type identifier for Search Kit search results. (Deprecated. Use SKSearchCreate (page 44)
instead.)

SKSearchGroupCopyIndexes (page 65) Deprecated in Mac OS X v10.4
Obtains the indexes for a search group. (Deprecated. Use asynchronous searching with SKSearchCreate
instead, which does not employ search groups.)

SKSearchGroupCreate (page 65) Deprecated in Mac OS X v10.4
Creates a search group as an array of references to indexes. (Deprecated. Use asynchronous searching
with SKSearchCreate instead, which does not employ search groups.)

SKSearchResultsCopyMatchingTerms (page 66) Deprecated in Mac OS X v10.4
Obtains the terms in a document that match a query. (Deprecated. Use SKSearchCreate (page 44)
instead.)

SKSearchResultsCreateWithDocuments (page 67) Deprecated in Mac OS X v10.4
Finds documents similar to given example documents. (Deprecated. Use SKSearchCreate (page
44) instead.)

SKSearchResultsCreateWithQuery (page 68) Deprecated in Mac OS X v10.4
Queries the indexes in a search group. (Deprecated. Use SKSearchCreate (page 44) instead.)

Functions by Task 13
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKSearchResultsGetCount (page 69) Deprecated in Mac OS X v10.4
Gets the total number of found items in a search. (Deprecated. Use SKSearchCreate (page 44)
instead.)

SKSearchResultsGetInfoInRange (page 70) Deprecated in Mac OS X v10.4
Extracts information from a Search Kit query result. (Deprecated. Use SKSearchCreate (page 44)
instead.)

Functions

SKDocumentCopyURL
Builds a CFURL object from a document URL object.

CFURLRef SKDocumentCopyURL (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) that you want a CFURLRef object for.

Return Value
A CFURLRef object representing a document location, or NULL on failure.

Discussion
You can use this function to create a CFURL Reference object to represent a document’s location. Do this to
gain access to the Core Foundation functionality provided by CFURL. This functionality includes accessing
parts of the URL string, getting properties of the URL, and converting the URL to other representations.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentCreate
Creates a document URL object based on a scheme, parent, and name.

14 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKDocumentRef SKDocumentCreate (
CFStringRef inScheme,
SKDocumentRef inParent,
CFStringRef inName
);

Parameters
inScheme

The scheme to use—analogous to the scheme of a URL. Only documents referenced with the “file”
scheme can be read by the SKIndexAddDocument (page 18) function. The scheme can be anything
you like if you use the SKIndexAddDocumentWithText (page 19) function. The scheme can be
NULL, in which case it will be set to be the same scheme as the document URL object’s
(SKDocumentRef’s) parent. For more information on schemes, see http://www.iana.org/assignments/uri-
schemes.html.

inParent
The document URL object one step up in the document hierarchy. Can be NULL.

inName
The name of the document that you’re creating a document URL object for. For the “file” scheme,
it is the name of the file or the container, not its path. The path can be constructed by following parent
links. The maximum length for a document name is 256 bytes.

Return Value
The new document URL object, or NULL on failure.

Discussion
The new document URL object’s (SKDocumentRef’s) parent can be NULL, but you must specify either a scheme
or a parent. When your application no longer needs the document URL object, dispose of it by calling
CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentCreateWithURL
Creates a document URL object from a CFURL object.

SKDocumentRef SKDocumentCreateWithURL (
 CFURLRef inURL
);

Parameters
inURL

The URL for the document URL object (SKDocumentRef) you are creating. The scheme of the document
URL object gets set to the scheme of the URL used. Only URLs with a scheme of “file” can be used
with the SKIndexAddDocument (page 18) function, but the URL scheme may be anything you like
if you use the SKIndexAddDocumentWithText (page 19) function. For more information on schemes,
see http://www.iana.org/assignments/uri-schemes.html.

Return Value
The new document URL object (SKDocumentRef), or NULL if the document URL object could not be created.

Functions 15
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html
http://www.iana.org/assignments/uri-schemes.html
http://www.iana.org/assignments/uri-schemes.html

Discussion
Use SKDocumentCreateWithURL to create a unique reference to a file or to another, arbitrary URL that your
application will use as a document URL object (SKDocumentRef). When your application no longer needs
the document URL object, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetName
Gets the name of a document URL object.

CFStringRef SKDocumentGetName (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose name you want to get.

Return Value
A CFStringRef object containing the document URL object’s name, or NULL on failure.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetParent
Gets a document URL object’s parent.

SKDocumentRef SKDocumentGetParent (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose parent you want to get.

Return Value
The parent document URL object, or NULL on failure.

Discussion
As described in SKDocumentRef (page 55), Search Kit manages document locations in terms of URLs as
Document URL objects (SKDocumentRefs). The parent document URL object typically contains the document’s
URL up to but not including the document name.

16 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Typically, document URL objects contain the complete URL to a file-based document. But you can use this
function iteratively to build up the complete file-system path for a document that you are managing as part
of a document hierarchy. See SKDocumentRef (page 55) for more on this.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetSchemeName
Gets the scheme name for a document URL object.

CFStringRef SKDocumentGetSchemeName (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose scheme you want to get.

Return Value
A CFStringRef object containing the document URL object’s scheme name, or NULL on failure.

Discussion
The scheme of a document URL object (SKDocumentRef), which represents how it can be accessed, can be
any character string but is typically “file” or “http”. The scheme is one of a Search Kit document URL object’s
three properties—see SKDocumentRef (page 55) for details.

For more information on schemes, see http://www.iana.org/assignments/uri-schemes.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetTypeID
Gets the type identifier for Search Kit document URL objects.

CFTypeID SKDocumentGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the document URL object (SKDocumentRef).

Discussion
Search Kit represents document URL objects with the SKDocumentRef (page 55) opaque type. If your code
needs to determine whether a particular data type is a document URL object, you can use this function along
with the CFGetTypeID function and perform a comparison.

Never hard-code the document URL object type ID because it can change from one release of Mac OS X to
another.

Functions 17
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKIndexAddDocument
Adds location information for a file-based document, and the document’s textual content, to an index.

Boolean SKIndexAddDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inMIMETypeHint,
 Boolean inCanReplace
);

Parameters
inIndex

The index you are adding the document URL object to.

inDocument
The document URL object (SKDocumentRef), containing a file-based document’s location information,
to add to the index. You can release the document URL object immediately after adding it to the
index.

inMIMETypeHint
The MIME type hint for the specified file-based document. Can be NULL. In Search Kit, common MIME
type hints include text/plain, text/rtf, text/html, text/pdf, and application/msword.

Specify a MIME type hint to help Spotlight determine which of its metadata importers to use when
Search Kit is indexing a file-based document. Search Kit uses filename extensions and type/creator
codes in attempting to determine file types when indexing files. See
SKLoadDefaultExtractorPlugIns (page 43). You can circumvent Search Kit’s file type
determination process, or override it, by using a MIME type hint.

inCanReplace
A Boolean value specifying whether Search Kit will overwrite a document’s index entry (true, indicated
by 1 or kCFBooleanTrue), or retain the entry if it exists (false, indicated by 0 or kCFBoolenFalse).

Return Value
A Boolean value of true on success, or false on failure. Also returns false if the document has an entry
in the index and inCanReplace is set to false.

Discussion
The document scheme must be of type “file” to use this function. If it’s not, call
SKIndexAddDocumentWithText (page 19) instead. For more information on schemes, see
http://www.iana.org/assignments/uri-schemes.html.

This function uses the referenced document and the optional MIME type hint to get the document’s textual
content using the Spotlight metadata importers. If you do not supply a MIME type hint, Spotlight’s importers
will use filename extensions and type/creator codes to guess file types.

Search Kit indexes any nonexecutable file associated with a document URL object (SKDocumentRef) that you
hand to this function, even nontext files such as images. Your application takes responsibility for ensuring
that the document URL objects you pass to SKIndexAddDocument are in fact the locations of files you want
to index.

18 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html

If your application did not call SKLoadDefaultExtractorPlugIns (page 43), Search Kit indexes the first
10 MB of a document. Otherwise, Search Kit indexes the entire document up to the index file size limit of 4
GB.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A single Search Kit index can hold up to 4 billion document URL objects and their associated textual content.

Special Considerations

In the current implementation of Search Kit, some functions do not provide expected results unless you
follow SKIndexAddDocument with a call to SKIndexFlush (page 30). The affected functions include
SKIndexGetDocumentCount (page 31), SKIndexGetDocumentTermCount (page 33),
SKIndexGetDocumentTermFrequency (page 34), and SKIndexGetTermDocumentCount (page 36).
However, in typical use this won’t be an issue, because applications call these functions after a search, and
you must call SKIndexFlush before a search.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, Search Kit used its own text extractor plug-ins rather than
using the Spotlight metadata importers. See SKLoadDefaultExtractorPlugIns (page 43) and
http://developer.apple.com/macosx/tiger/spotlight.html.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexAddDocumentWithText
Adds a document URL object, and the associated document’s textual content, to an index.

Boolean SKIndexAddDocumentWithText (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inDocumentText,
 Boolean inCanReplace
);

Parameters
inIndex

The index to which you are adding the document URL object (SKDocumentRef).

inDocument
The document URL object to add.

inDocumentText
The document text. Can be NULL.

inCanReplace
A Boolean value specifying whether Search Kit will overwrite a document’s index entry (true, indicated
by 1 or kCFBooleanTrue), or retain the entry if it exists (false, indicated by 0 or kCFBoolenFalse).

Return Value
A Boolean value of true on success, or false on failure. Also returns false if the document has an entry
in the index and inCanReplace is set to false.

Functions 19
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://developer.apple.com/macosx/tiger/spotlight.html

Discussion
Use this function to add the textual contents of arbitrary document types to an index. With this function,
your application takes responsibility for getting textual content and handing it to the index as a CFString
object. Because of this, your application can define what it considers to be a document—a database record,
a tagged field in an XML document, an object in memory, a text file, and so on.

Search Kit will index any size text string that you give it, up to its 4 GB index file size limit.

To add the textual content of file-based documents to a Search Kit index, you can use this function or take
advantage of Search Kit’s ability to locate and read certain on-disk, file-based document types—see
SKIndexAddDocument (page 18).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A single Search Kit index file can be up to 4 GB in size.

Special Considerations

In Mac OS X v10.3, some functions do not provide expected results unless you follow a call to
SKIndexAddDocumentWithText with a call to SKIndexFlush (page 30). The affected functions include
SKIndexGetDocumentCount (page 31), SKIndexGetDocumentTermCount (page 33),
SKIndexGetDocumentTermFrequency (page 34), and SKIndexGetTermDocumentCount (page 36).
However, in typical use this won’t be an issue, because applications call these functions after a search, and
you must call SKIndexFlush before a search.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexClose
Closes an index.

void SKIndexClose (
 SKIndexRef inIndex
);

Parameters
inIndex

The index to close.

Discussion
When your application no longer needs an index that it has opened or created, call SKIndexClose. Calling
this function is equivalent to calling CFRelease on an index.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKIndex.h

20 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexCompact
Invokes all pending updates associated with an index, compacts the index if compaction is needed, and
commits all changes to backing store.

Boolean SKIndexCompact (
 SKIndexRef inIndex
);

Parameters
inIndex

The index you want to compact.

Return Value
A Boolean value of true on success, or false on failure.

Discussion
Over time, as document URL objects (SKDocumentRefs) and associated contents get added to and removed
from an index, the index’s disk or memory footprint may grow due to fragmentation.

Compacting can take a significant amount of time. Do not call SKIndexCompact on the main thread in an
application with a user interface. Call it only if the index is significantly fragmented and according to the
needs of your application.

Calling SKIndexCompact changes the block allocation for an index’s backing store. Close all clients of an
index before calling this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentForDocumentID
Obtains a document URL object from an index.

SKDocumentRef SKIndexCopyDocumentForDocumentID (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef).

inDocumentID
The ID of the document URL object you want to copy.

Return Value
A Search Kit document URL object.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. The
parameter type in Mac OS X v10.4 and later is SKDocumentID.

Functions 21
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentIDArrayForTermID
Obtains document IDs for documents that contain a given term.

CFArrayRef SKIndexCopyDocumentIDArrayForTermID (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index to search.

inTermID
The ID of the term to search for.

Return Value
An array of CFNumbers, each the ID for a document URL object that points to a document containing the
search term.

Discussion
SKIndexCopyDocumentIDArrayForTermID searches a single index for documents that contain a given
term. The search uses a term ID, not a term string. To get the ID of a term, use
SKIndexGetTermIDForTermString (page 37).

Term IDs are index-specific; that is, a term has a different ID in each index in which it appears. If you want to
search for all the documents containing a term in a set of indexes, call this function in turn for each index,
using the index-specific term ID in each case.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentProperties
Obtains the application-defined properties of an indexed document.

CFDictionaryRef SKIndexCopyDocumentProperties (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose properties you want to copy.

22 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

inDocument
The document URL object whose properties you want to copy.

Return Value
A CFDictionary object containing the document URL object’s (SKDocumentRef’s) properties, or NULL on
failure.

Discussion
Search Kit document URL objects (SKDocumentRefs) can have an optional, application-defined properties
dictionary to hold any information you’d like to associate with the document represented by a document
URL object—such as timestamp, keywords, and so on. Use SKIndexSetDocumentProperties (page 42)
to add a properties dictionary to a document URL object, and this function to obtain a copy of the dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentRefsForDocumentIDs
Gets document URL objects based on document IDs.

void SKIndexCopyDocumentRefsForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 SKDocumentRef *outDocumentRefsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs corresponding to the document URL objects (SKDocumentRefs)
you want.

outDocumentRefsArray
On input, a pointer to an array for document URL objects. On output, points to the previously allocated
array, which now contains document URL objects corresponding to the document IDs in
inDocumentIDsArray.

When finished with the document URL objects array, dispose of it by calling CFRelease on each array
element.

Discussion
The SKIndexCopyDocumentRefsForDocumentIDs function lets you get a batch of document URL objects
(SKDocumentRef objects) in one step, based on a list of document IDs.

If you want to get lightweight URLs in the form of CFURL objects instead, use
SKIndexCopyDocumentURLsForDocumentIDs (page 24).

Availability
Available in Mac OS X v10.4 and later.

Functions 23
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Declared In
SKSearch.h

SKIndexCopyDocumentURLsForDocumentIDs
Gets document URLs based on document IDs.

void SKIndexCopyDocumentURLsForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 CFURLRef *outDocumentURLsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs corresponding to the document URLs (CFURL objects) you want.

outDocumentURLsArray
On input, a pointer to an array for document URLs (CFURL objects). On output, points to the previously
allocated array, which now contains document URLs corresponding to the document IDs in
inDocumentIDArray.

When finished with the document URL array, dispose of it by calling CFRelease on each array element.

Discussion
The SKIndexCopyDocumentURLsForDocumentIDs function lets you get a batch of document URLs (CFURL
objects) in one step, based on a list of document IDs.

If you want to get Search Kit Document URL objects (SKDocumentRefs) instead, use
SKIndexCopyDocumentRefsForDocumentIDs (page 23).

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKIndexCopyInfoForDocumentIDs
Gets document names and parent IDs based on document IDs.

24 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

void SKIndexCopyInfoForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 CFStringRef *outNamesArray,
 SKDocumentID *outParentIDsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs representing the documents whose names and parent IDs you
want.

outNamesArray
On input, a pointer to an array for document names. On output, points to the previously allocated
array, which now contains the document names corresponding to the document IDs in
inDocumentIDsArray. May be NULL on input if you don’t want to get the document names.

When finished with the names array, dispose of it by calling CFRelease on each array element.

outParentIDsArray
On input, a pointer to an array for parent document IDs. On output, points to the previously allocated
array, which now contains document IDs representing the parents of the documents whose IDs are
in inDocumentIDsArray. May be NULL on input if you don’t want to get the parent document IDs.

Discussion
The SKIndexCopyInfoForDocumentIDs function lets you get a batch of document names and parent
document IDs in one step, based on a list of document IDs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKIndexCopyTermIDArrayForDocumentID
Obtains the IDs for the terms of an indexed document.

CFArrayRef SKIndexCopyTermIDArrayForDocumentID (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) and associated textual content.

inDocumentID
The ID of the document whose term IDs you are copying.

Functions 25
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Return Value
A CFArray containing CFNumbers, each of which represents the ID for a term in a document.

Discussion
To derive the list of terms contained in a document, use this function to obtain an array of the term IDs, then
convert each ID into the corresponding term with the SKIndexCopyTermStringForTermID (page 26)
function.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In
Mac OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyTermStringForTermID
Obtains a term, specified by ID, from an index.

CFStringRef SKIndexCopyTermStringForTermID (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index whose terms you are searching.

inTermID
The ID of the term whose string you want.

Return Value
A CFString containing the term specified by inTermID.

Discussion
When your application has the ID of a term, perhaps as a result of calling
SKIndexCopyTermIDArrayForDocumentID (page 25), use this function to derive the term’s text string.

To perform the inverse operation of deriving a term ID from a term string in a given index, use
SKIndexGetTermIDForTermString (page 37).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCreateWithMutableData
Creates a named index stored in a CFMutableData object.

26 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexRef SKIndexCreateWithMutableData (
 CFMutableDataRef inData,
 CFStringRef inIndexName,
 SKIndexType inIndexType,
 CFDictionaryRef inAnalysisProperties
);

Parameters
inData

An empty CFMutableData object to contain the index being created.

inIndexName
The name of the index. If you call this function with inIndexName set to NULL, Search Kit assigns the
index the default index name IADefaultIndex. If you then attempt to create a second index in the
same file without assigning a name, no second index is created and this function returns NULL. Search
Kit does not currently support retrieving index names from an index.

inIndexType
The index type. See “SKIndexType” (page 62).

inAnalysisProperties
The text analysis properties dictionary, which optionally sets the minimum term length, stopwords,
term substitutions, maximum unique terms to index, and proximity support (for phrase-based searches)
when creating the index. See “Text Analysis Keys” (page 58). The inAnalysisProperties
parameter can be NULL, in which case Search Kit applies the default dictionary, which is NULL.

Return Value
The newly created index.

Discussion
SKIndexCreateWithMutableData creates an index in memory as a CFMutableData object. Search Kit
indexes are initially empty. A memory-based index is useful for quick searching and when your application
doesn’t need persistent storage. To create a disk-based, persistent index, use SKIndexCreateWithURL (page
27).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the index, dispose of it by calling SKIndexClose (page 20).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCreateWithURL
Creates a named index in a file whose location is specified with a CFURL object.

Functions 27
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexRef SKIndexCreateWithURL (
 CFURLRef inURL,
 CFStringRef inIndexName,
 SKIndexType inIndexType,
 CFDictionaryRef inAnalysisProperties
);

Parameters
inURL

The location of the index.

inIndexName
The name of the index. If you call this function with inIndexName set to NULL, Search Kit assigns the
index the default index name IADefaultIndex. If you then attempt to create a second index in the
same file without assigning a name, no second index is created and this function returns NULL. Search
Kit does not currently support retrieving index names from an index.

inIndexType
The index type. See “SKIndexType” (page 62).

inAnalysisProperties
The text analysis properties dictionary, which optionally sets the minimum term length, stopwords,
term substitutions, maximum unique terms to index, and proximity support (for phrase-based searches)
when creating the index. See “Text Analysis Keys” (page 58). To get the analysis properties of
an index, use the SKIndexGetAnalysisProperties (page 31) function. The
inAnalysisProperties parameter can be NULL, in which case Search Kit applies the default
dictionary, which is NULL.

Return Value
A unique reference to the newly created index.

Discussion
SKIndexCreateWithURL creates an index in a file. Search Kit indexes are initially empty. Use this function
when your application needs persistent storage of an index. To create a memory-based, nonpersistent index,
use SKIndexCreateWithMutableData (page 26).

A file can contain more than one index. To add a new index to an existing file, use the same value for inURL
and supply a new name for inIndexName.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the index, dispose of it by calling SKIndexClose (page 20).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorCopyNext
Obtains the next document URL object from an index using a document iterator.

28 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKDocumentRef SKIndexDocumentIteratorCopyNext (
 SKIndexDocumentIteratorRef inIterator
);

Parameters
inIterator

The index-based document iterator. See SKIndexDocumentIteratorCreate (page 29) for
information on creating an document iterator, and SKIndexDocumentIteratorRef (page 55) for
more about iterators.

Return Value
The next document URL object (SKDocumentRef) in the index.

Discussion
This function returns NULL when there are no more document URL objects (SKDocumentRefs) in the index.
When finished iterating, your application must call CFRelease on all retrieved document URL objects that
are non-NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorCreate
Creates an index-based iterator for document URL objects owned by a parent document URL object.

SKIndexDocumentIteratorRef SKIndexDocumentIteratorCreate (
 SKIndexRef inIndex,
 SKDocumentRef inParentDocument
);

Parameters
inIndex

The index you want to iterate across.

inParentDocument
The document URL object (SKDocumentRef) that is the parent of the document URL objects you want
to examine. Pass NULL to get the top item in an index. See SKDocumentRef (page 55) for a discussion
of how to get the full URL for a document URL object.

Return Value
An index-based document iterator.

Discussion
When you want to iterate across all the documents represented in an index, use this function to create an
iterator and then call SKIndexDocumentIteratorCopyNext (page 28) in turn for each document URL
object (SKDocumentRef) in the index.

Document iterators iterate over a single level of an index. Your code is responsible for descending through
a hierarchy of documents in an index.

Functions 29
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the iterator, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorGetTypeID
Gets the type identifier for Search Kit document iterators.

CFTypeID SKIndexDocumentIteratorGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKIndexDocumentIterator opaque type.

Discussion
Search Kit represents document iterators with the SKIndexDocumentIteratorRef (page 55) opaque type.
If your code needs to determine whether a particular data type is a document iterator, you can use this
function along with the CFGetTypeID function and perform a comparison.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Never hard-code the document iterator type ID because it can change from one release of Mac OS X to
another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexFlush
Invokes all pending updates associated with an index and commits them to backing store.

Boolean SKIndexFlush (
 SKIndexRef inIndex
);

Parameters
inIndex

The index you want to update and commit to backing store.

Return Value
A Boolean value of true on success, or false on failure.

30 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
An on-disk or memory-based index becomes stale when your application updates it by adding or removing
a document entry. A search on an index in such a state won’t have access to the nonflushed updates. The
solution is to call this function before searching. SKIndexFlush flushes index-update information and
commits memory-based index caches to disk, in the case of an on-disk index, or to a memory object, in the
case of a memory-based index. In both cases, calling this function makes the state of the index consistent.

Before searching an index, always call SKIndexFlush, even though the flush process may take up to several
seconds. If there are no updates to commit, a call to SKIndexFlush does nothing and takes minimal time.

A new Search Kit index does not have term IDs until it is flushed.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetAnalysisProperties
Gets the text analysis properties of an index.

CFDictionaryRef SKIndexGetAnalysisProperties (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose text-analysis properties you want to get.

Return Value
A CFDictionary object containing the index’s text-analysis properties. On failure, returns NULL.

Discussion
The text analysis properties of an index determine how searches behave when querying the index. You set
the analysis properties when creating an index with the SKIndexCreateWithURL (page 27) or
SKIndexCreateWithMutableData (page 26) functions. For more information on text-analysis properties,
see “Text Analysis Keys” (page 58).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentCount
Gets the total number of documents represented in an index.

Functions 31
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

CFIndex SKIndexGetDocumentCount (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose document URL objects (SKDocumentRefs) you want to count.

Return Value
A CFIndex object containing the number of document URL objects in the index. On failure, returns 0.

Discussion
Document URL objects (SKDocumentRefs) added to an index have an indexing state of
kSKDocumentStateIndexed. See the “SKDocumentIndexState” (page 60) enumeration.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Special Considerations

In the current implementation of Search Kit, SKIndexGetDocumentCount returns the number of documents
represented in the on-disk index. If your application has added document URL objects to the index but has
not yet called SKIndexFlush (page 30), the document count may not be correct.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentID
Gets the ID of a document URL object in an index.

SKDocumentID SKIndexGetDocumentID (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the text of the document whose document URL object (SKDocumentRef) ID
you want.

inDocument
The document URL object whose ID you want.

Return Value
A document ID object.

Discussion
The document ID identifies a document URL object (SKDocumentRef) in an index. The ID is available as soon
as you add a document URL object to an index using SKIndexAddDocumentWithText (page 19) or
SKIndexAddDocument (page 18).

Availability
Available in Mac OS X v10.3 and later.

32 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Declared In
SKIndex.h

SKIndexGetDocumentState
Gets the current indexing state of a document URL object in an index.

SKDocumentIndexState SKIndexGetDocumentState (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose indexing state you want.

inDocument
The document URL object whose indexing state you want.

Return Value
A value indicating the document URL object’s indexing state.

Discussion
A document URL object (SKDocumentRef) can be in one of four states, as defined by the
“SKDocumentIndexState” (page 60) enumeration: not indexed, indexed, not in the index but will be
added after the index is flushed or closed, and in the index but will be deleted after the index is flushed or
closed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentTermCount
Gets the number of terms for a document in an index.

CFIndex SKIndexGetDocumentTermCount (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the text of the document whose term count you want.

inDocumentID
The ID of the document URL object (SKDocumentRef) whose term count you want. Obtain a document
ID by calling SKIndexGetDocumentID (page 32).

Return Value
A CFIndex object containing the number of terms in a document.

Functions 33
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Version Notes
versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In Mac
OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentTermFrequency
Gets the number of occurrences of a term in a document.

CFIndex SKIndexGetDocumentTermFrequency (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID,
 CFIndex inTermID
);

Parameters
inIndex

The index containing the text of the document whose term count you are interested in.

inDocumentID
The ID of the document URL object whose associated term count you are interested in. Obtain a
document ID by calling SKIndexGetDocumentID (page 32).

inTermID
The ID of the term whose number of occurrences you want.

Return Value
A CFIndex object containing the number of occurrences of a term in a document.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In
Mac OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetIndexType
Gets the category of an index.

SKIndexType SKIndexGetIndexType (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose category you want to know.

34 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Return Value
The category of the index. See the “SKIndexType” (page 62) enumeration for a list of the various index
categories. On failure, returns a value of kSKIndexUnknown.

Discussion
As described in “SKIndexType” (page 62), Search Kit offers four categories of index, each optimized for
one or more types of searching.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumBytesBeforeFlush
Not recommended. Gets the memory size limit for updates to an index, measured in bytes.

CFIndex SKIndexGetMaximumBytesBeforeFlush (
 SKIndexRef inIndex
);

Special Considerations

This function is rarely needed and is likely to be deprecated. Apple recommends using the
SKIndexFlush (page 30) function along with the default memory size limit for index updates. Refer to the
SKIndexSetMaximumBytesBeforeFlush function for more information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumDocumentID
Gets the highest-numbered document ID in an index.

SKDocumentID SKIndexGetMaximumDocumentID (
 SKIndexRef inIndex
);

Parameters
inIndex

An index.

Return Value
A document ID object containing the highest-numbered document ID in the index.

Discussion
Use this function with SKIndexGetDocumentCount (page 31) to determine whether an index is fragmented
and in need of compaction. See SKIndexCompact (page 21).

Functions 35
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the return type for SKIndexGetMaximumDocumentID was
CFIndex. The return type in Mac OS X v10.4 and later is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumTermID
Gets the highest-numbered term ID in an index.

CFIndex SKIndexGetMaximumTermID (
 SKIndexRef inIndex
);

Parameters
inIndex

An index.

Return Value
A CFIndex object containing the highest-numbered term ID in an index.

Discussion
A new Search Kit index does not have term IDs until it is flushed.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTermDocumentCount
Gets the number of documents containing a given term represented in an index.

CFIndex SKIndexGetTermDocumentCount (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index containing the text of the documents you want to examine.

inTermID
The terms whose occurrences you want to know.

36 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Return Value
A CFIndex object containing the number of documents represented in an index that contain a given term.

Discussion
If you want to know in which documents a term appears across multiple indexes, call this function separately
on each index. Before querying each index, get the index-specific term ID using
SKIndexGetTermIDForTermString (page 37).

To ensure that this function takes into account document URL objects (SKDocumentRefs) recently added to
indexes, call SKIndexFlush (page 30) on each index before calling this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTermIDForTermString
Gets the ID for a term in an index.

CFIndex SKIndexGetTermIDForTermString (
 SKIndexRef inIndex,
 CFStringRef inTermString
);

Parameters
inIndex

The index you want to examine.

inTermString
The term string whose corresponding ID you want.

Return Value
A CFIndex object containing the term ID for a given term in an index. If the term isn’t found, this function
returns a value of kCFNotFound.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTypeID
Gets the type identifier for Search Kit indexes.

CFTypeID SKIndexGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKIndex opaque type.

Functions 37
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
Search Kit represents indexes with the SKIndexRef (page 56) opaque type. If your code needs to determine
whether a particular data type is an index, you can use this function along with the CFGetTypeID function
and perform a comparison.

Never hard-code the index type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexMoveDocument
Changes the parent of a document URL object in an index.

Boolean SKIndexMoveDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 SKDocumentRef inNewParent
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) you want to move.

inDocument
The document URL object you want to move.

inNewParent
The new parent document URL object for the document URL object you want to move.

Return Value
A Boolean value of true for a successful move, or false on failure.

Discussion
When your application moves a document, use this function to update the index to reflect the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithData
Opens an existing, named index for searching only.

38 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexRef SKIndexOpenWithData (
 CFDataRef inData,
 CFStringRef inIndexName
);

Parameters
inData

The index to open.

inIndexName
The name of the index. Can be NULL, in which case this function attempts to open the index with the
default name of IADefaultIndex.

Return Value
The named index, or NULL on failure.

Discussion
An index opened by SKIndexOpenWithData can be searched but not updated. To open an index for
updating, use SKIndexOpenWithMutableData (page 39).

If inIndexName is NULL and inData does not contain an index with the default name, this function returns
NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A call to SKIndexOpenWithData retains the opened index. When your application no longer needs the
index, dispose of it by calling SKIndexClose (page 20).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithMutableData
Opens an existing, named index for searching and updating.

SKIndexRef SKIndexOpenWithMutableData (
 CFMutableDataRef inData,
 CFStringRef inIndexName
);

Parameters
inData

The index to open.

inIndexName
The name of the index. Can be NULL, in which case this function attempts to open the index with the
default name of IADefaultIndex.

Functions 39
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Return Value
The named index, or NULL on failure.

Discussion
An index opened by SKIndexOpenWithMutableData may be searched or updated. To open an index for
search only, use the SKIndexOpenWithData (page 38) function.

If inIndexName is NULL and inData does not contain an index with the default name, this function returns
NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A call to SKIndexOpenWithMutableData retains the opened index. When your application no longer needs
the index, dispose of it by calling SKIndexClose (page 20).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithURL
Opens an existing, named index stored in a file whose location is specified with a CFURL object.

SKIndexRef SKIndexOpenWithURL (
 CFURLRef inURL,
 CFStringRef inIndexName,
 Boolean inWriteAccess
);

Parameters
inURL

The location of the index.

inIndexName
The name of the index. Can be NULL.

inWriteAccess
A Boolean value indicating whether the index is open for updating. To open an index for searching
only, pass false (0 or kCFBoolenFalse). To open it for searching and updating, pass true (1 or
kCFBooleanTrue).

Return Value
The named index.

Discussion
A call to SKIndexOpenWithURL retains the opened index. When your application no longer needs the index,
dispose of it by calling SKIndexClose (page 20).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

40 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRemoveDocument
Removes a document URL object and its children, if any, from an index.

Boolean SKIndexRemoveDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index from which you want to remove the document URL object (SKDocumentRef).

inDocument
The document URL object to remove.

Return Value
A Boolean value of true on success, or false on failure.

Discussion
When your application deletes a document, use this function to update the index to reflect the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRenameDocument
Changes the name of a document URL object in an index.

Boolean SKIndexRenameDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inNewName
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose name you want to change.

Functions 41
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

inDocument
The document URL object whose name you want to change.

inNewName
The new name for the document URL object.

Return Value
A Boolean value of true if the document URL object name was successfully changed, or false on failure.

Discussion
When your application changes the name of a document, use this function to update the index to reflect
the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexSetDocumentProperties
Sets the application-defined properties of a document URL object.

void SKIndexSetDocumentProperties (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFDictionaryRef inProperties
);

Parameters
inIndex

An index containing the document URL object (SKDocumentRef) whose properties you want to set.

inDocument
The document URL object whose properties you want to set.

inProperties
A CFDictionary object containing the properties to apply to the document URL object.

Discussion
Search Kit document URL objects (SKDocumentRefs) can have an optional, application-defined properties
dictionary to hold any information you’d like to associate with the document represented by a document
URL object—such as timestamp, keywords, and so on.

Use SKIndexSetDocumentProperties to persistently set application-defined properties for a document
URL object in an index. This function replaces a document URL object’s existing properties dictionary with
the new one. To obtain a copy of a document URL object’s properties dictionary, use
SKIndexCopyDocumentProperties (page 22).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

42 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKIndexSetMaximumBytesBeforeFlush
Not recommended. Sets the memory size limit for updates to an index, measured in bytes.

void SKIndexSetMaximumBytesBeforeFlush (
 SKIndexRef inIndex
 CFIndex inBytesForUpdate
);

Discussion
This function is rarely needed and is likely to be deprecated. Search Kit keeps track of index updates that are
not yet committed to disk. Apple recommends using the default memory size limit for index updates, which
is currently 2 million bytes.

Special Considerations

Apple recommends use of the SKIndexFlush (page 30) function instead of
SKIndexSetMaximumBytesBeforeFlush.

Version Notes
In Mac OS X v10.3, the default memory size limit for index updates was 1 million bytes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKLoadDefaultExtractorPlugIns
Tells Search Kit to use the Spotlight metadata importers.

void SKLoadDefaultExtractorPlugIns (void);

Discussion
The Spotlight metadata importers determine the kMDItemTextContent property for each document passed
to theSKIndexAddDocument (page 18) function. See http://developer.apple.com/macosx/tiger/spotlight.html.

Call the SKLoadDefaultExtractorPlugIns function once at application launch to tell Search Kit to use
the Spotlight metadata importers. The function SKIndexAddDocument (page 18) will then use Spotlight’s
importers to extract the text from supported files and place that text into an index, leaving the markup
behind.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, Search Kit used its own set of default text extractor plug-ins.
The file types supported by Search Kit’s default text extractor plug-ins were:

 ■ plaintext

 ■ PDF

 ■ HTML

 ■ RTF

 ■ Microsoft Word (.doc)

Functions 43
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://developer.apple.com/macosx/tiger/spotlight.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKSearchCancel
Cancels an asynchronous search request.

void SKSearchCancel (
 SKSearchRef inSearch
);

Parameters
inSearch

The search object whose associated asynchronous search you want to cancel.

Discussion
Call this function when you want to cancel an asynchronous search that you initiated with
SKSearchCreate (page 44). This function stops the search process if it is still in progress at the time. It does
not dispose of the search object (SKSearchRef).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchCreate
Creates an asynchronous search object for querying an index, and initiates search.

SKSearchRef SKSearchCreate (
 SKIndexRef inIndex,
 CFStringRef inQuery,
 SKSearchOptions inSearchOptions
);

Parameters
inIndex

The index to query.

inQuery
The query string to search for.

inSearchOptions
The search options. May be NULL. See the “SKSearchOptions” (page 61) enumeration for a
description of the available options.

Return Value
A search object.

44 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
This function creates an asynchronous search object for querying the document contents in an index. It also
initiates the search on a separate thread.

After you create the search object, call SKSearchFindMatches (page 46) to retrieve results. You can call
SKSearchFindMatches immediately. To cancel a search, call SKSearchCancel (page 44).

For normal (non-similarity-based) queries, Search Kit discerns the type of query—Boolean, prefix, phrase,
and so on—from the syntax of the query itself. Moreover, Search Kit supports multiple query types within a
single search. For example, the following query includes Boolean, prefix, and suffix searching:

appl* OR *ing

This query will return documents containing words that begin with “appl” as well as documents that contain
words that end with “ing”.

For similarity searches, specified with the kSKSearchOptionFindSimilar flag in the inSearchOptions
parameter, SKSearchCreate ignores all query operators.

The query operators that SKSearchCreate recognizes for non-similarity searching are:

Table 1 Search Kit query operators for non-similarity searches

meaningOperator

Boolean ANDAND

Boolean AND&

Boolean AND by default when no other operator is present, or Boolean OR if specified by
kSKSearchOptionSpaceMeansOR.

<space>

Boolean inclusive OROR

Boolean inclusive OR|

Boolean NOT (see Special Considerations)NOT

Boolean NOT (see Special Considerations)!

Wildcard for prefix or suffix; surround term with wildcard characters for substring search. Ignored
in phrase searching.

*

Begin logical grouping(

End logical grouping)

delimiter for phrase searching"

The operators AND, OR, and NOT are case sensitive.

Search Kit performs Unicode normalization on query strings and on the text placed into indexes. It uses
Unicode Normalization Form KC (NFKC, compatibility decomposition followed by canonical composition) as
documented in Unicode Standard Annex #15. For example, the a-grave character, ‘à’, can be written as the

Functions 45
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

two Unicode characters (0x0061, 0x0300) or as the single Unicode character 0x00E0. Search Kit will normalize
(0x0061, 0x0300) to 0x00E0. For more information on Unicode normalization, see http://unicode.org/re-
ports/tr15 .

Search Kit further normalizes query strings and indexes by stripping diacritical marks and by forcing characters
to lowercase. For example, Search Kit normalizes each of the following characters to ‘a’: ‘a’, ‘à’, ‘A’, and ‘À’.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the search object, dispose of it by calling CFRelease.

Special Considerations

Search Kit supports logical exclusion. The NOT and ! operators behave as though they were EXCLUDE operators.
For example, a search for ‘red NOT blue’ returns all documents that contain the word ‘red’ and do not contain
the word ‘blue’.

Unary Boolean operators, however, are not currently implemented in Search Kit. A search, for example, for
‘NOT blue’, returns zero documents no matter what their content.

You cannot use CFMakeCollectable with SKSearch objects. In a garbage-collected environment, you must
use CFRelease to dispose of an SKSearch object.

Version Notes
Mac OS X version 10.4 uses a completely revised, and far more powerful, query approach than did earlier
versions of Mac OS X. Refer to the Discussion in this function for details. Refer to
SKSearchResultsCreateWithQuery (page 68) (deprecated) for a description of Search Kit’s behavior in
earlier versions of Mac OS X.

In versions of Mac OS X prior to version 10.4, Search Kit did not perform Unicode normalization, and did not
remove diacritical marks.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchFindMatches
Extracts search result information from a search object.

Boolean SKSearchFindMatches (
 SKSearchRef inSearch,
 CFIndex inMaximumCount,
 SKDocumentID *outDocumentIDsArray,
 float *outScoresArray,
 CFTimeInterval maximumTime
 CFIndex *outFoundCount
);

Parameters
inSearch

A reference to a search object (SKSearchRef) previously created with SKSearchCreate.

46 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/

inMaximumCount
The maximum number of items to find. For each item found, SKSearchFindMatches places the
associated document ID into the outDocumentIDsArray array. Specify an inMaximumCount of 0
to find as many items as possible within maximumTime.

outDocumentIDsArray
On input, a pointer to an array for document IDs. On output, points to points to the previously allocated
array, which now contains the found document IDs. The size of this array must be equal to
inMaximumCount.

outScoresArray
On input, a pointer to an array for scores. On output, points to the previously allocated array, which
now contains relevance scores for the found items. The size of this array, if not NULL, must be equal
to inMaximumCount. Can be NULL on input, provided that your application doesn’t need this
information. Search Kit does not normalize relevance scores, so they can be very large.

maximumTime
The maximum number of seconds before this function returns, whether or not inMaximumCount
items have been found. Setting maximumTime to 0 tells the search to return quickly

outFoundCount
On input, a pointer to a CFIndex object that will hold the number of items found. On output, points
to the CFIndex object that now contains the actual number of items found.

Return Value
A logical value indicating whether the search is still in progress. Returns false when the search is exhausted.

Discussion
The SKSearchFindMatches extracts results from a find operation initiated by a search object (SKSearchRef).

This function provides results to its output parameters simply in the order in which they are found. This
reduces latency to support search-as-you-type functionality. Larger scores mean greater relevance.

You can call this function on a search object repeatedly to get additional sets of search results. For example,
if you call this function twice with an inMaximumCount value of 10, the first call will put the first 10 items
found into the output arrays and the second call will put the second 10 items found into the output arrays.

Applications are free to display relevance scores in any appropriate manner. One simple way is to divide each
relevance score by the largest number returned to get relevance numbers scaled linearly from 0.0 to 1.0.
Search Kit does not scale the relevance scores for you, because you may want to combine the scores from
several calls on a search object or the scores from calls to more than one search object.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Before invoking a search, call SKIndexFlush (page 30) on all indexes you will query to ensure that updates
to the indexes have been flushed to disk.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

Functions 47
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKSearchGetTypeID
Gets the type identifier for Search Kit search objects.

CFTypeID SKSearchGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearch opaque type.

Discussion
Search Kit represents searches with search objects (SKSearchRef (page 56) opaque types). If your code
needs to determine whether a particular data type is a search object, you can use this function along with
the CFGetTypeID function and perform a comparison.

Never hard-code the search type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchGroupGetTypeID
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

CFTypeID SKSearchGroupGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearchGroup opaque type.

Discussion
Gets the type identifier for Search Kit search groups.

Search Kit represents search groups with the SKSearchGroupRef (page 58) opaque type. If your code needs
to determine whether a particular data type is a search group, you can use this function along with the
CFGetTypeID function and perform a comparison.

Never hard-code the search group type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

SKSearchResultsGetTypeID
Gets the type identifier for Search Kit search results. (Deprecated. Use SKSearchCreate (page 44) instead.)

CFTypeID SKSearchResultsGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearchResults opaque type.

48 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
Search Kit represents search results with search results objects (SKSearchResultsRef (page 57) opaque
types). If your code needs to determine whether a particular data type is a search result, you can use this
function along with the CFGetTypeID function and perform a comparison.

Never hard-code the search result type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

SKSummaryCopyParagraphAtIndex
Gets a specified paragraph from the text in a summarization object.

CFStringRef SKSummaryCopyParagraphAtIndex (
 SKSummaryRef summary,
 CFIndex i,
);

Parameters
summary

The summarization object containing the text from which you want a paragraph.

i
The ordinal number of the paragraph in the original text, with the first paragraph designated by zero
(this function uses zero-based indexing).

Return Value
A CFString object containing the specified paragraph, or NULL on failure.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopyParagraphSummaryString
Gets a text string consisting of a summary with, at most, the requested number of paragraphs.

CFStringRef SKSummaryCopyParagraphSummaryString (
 SKSummaryRef summary,
 CFIndex numParagraphs
);

Parameters
summary

The summarization object containing the text from which you want a summarization.

numParagraphs
The maximum number of paragraphs you want in the summary.

Functions 49
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Return Value
A CFString object containing the requested summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopySentenceAtIndex
Gets a specified sentence from the text in a summarization object.

CFStringRef SKSummaryCopySentenceAtIndex (
 SKSummaryRef summary,
 CFIndex i,
);

Parameters
summary

The summarization object containing the text from which you want a sentence.

i
The ordinal number of the sentence in the original text, with the first sentence designated by zero
(this function uses zero-based indexing).

Return Value
A CFString object containing the specified sentence, or NULL on failure.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopySentenceSummaryString
Gets a text string consisting of a summary with, at most, the requested number of sentences.

CFStringRef SKSummaryCopySentenceSummaryString (
 SKSummaryRef summary,
 CFIndex numSentences
);

Parameters
summary

The summarization object containing the text from which you want a summarization.

numSentences
The maximum number of sentences you want in the summary.

Return Value
A CFString object containing the requested summary.

Availability
Available in Mac OS X v10.4 and later.

50 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Declared In
SKSummary.h

SKSummaryCreateWithString
Creates a summary object based on a text string.

SKSummaryRef SKSummaryCreateWithString (
 CFStringRef inString
);

Parameters
inString

The text string that you want to summarize.

Return Value
Returns a summarization object, or NULL on failure.

Discussion
The SKSummaryCreateWithString function creates a summarization object that pre-analyzes a text string
to support fast summarization. When your application no longer needs the summarization object, dispose
of it by calling CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetParagraphCount
Gets the number of paragraphs in a summarization object.

CFIndex SKSummaryGetParagraphCount (
 SKSummaryRef summary
);

Parameters
summary

The summarization object whose paragraphs you want to count.

Return Value
A CFIndex object containing the number of paragraphs in the summarization object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetParagraphSummaryInfo
Gets detailed information about a body of text for constructing a custom paragraph-based summary string.

Functions 51
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

CFIndex SKSummaryGetParagraphSummaryInfo (
 SKSummaryRef summary,
 CFIndex numParagraphsInSummary,
 CFIndex *outRankOrderOfParagraphs,
 CFIndex *outParagraphIndexOfParagraphs
);

Parameters
summary

The summarization object containing the text from which you want to build a summary.

numParagraphsInSummary
The maximum number of paragraphs you want in the summary.

outRankOrderOfParagraphs
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now lists the summarization relevance rank of each paragraph in the original text. The most
important paragraph gets a rank of 1. The array size must equal numParagraphsInSummary, or else
be NULL if you don’t want to get the relevance ranks.

outParagraphIndexOfParagraphs
On output, points to an array containing the ordinal number for each paragraph in the original text.
Use the SKSummaryCopyParagraphAtIndex (page 49) function with one of these numbers to get
the corresponding paragraph. The array size must equal numParagraphsInSummary, or else be NULL
if you don’t want to get the ordinal numbers of the paragraphs.

Return Value
The number of paragraphs in the summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetSentenceCount
Gets the number of sentences in a summarization object.

CFIndex SKSummaryGetSentenceCount (
 SKSummaryRef summary
);

Parameters
summary

The summarization object whose sentences you want to count.

Return Value
A CFIndex object containing the number of sentences in the summarization object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

52 Functions
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

SKSummaryGetSentenceSummaryInfo
Gets detailed information about a body of text for constructing a custom sentence-based summary string.

CFIndex SKSummaryGetSentenceSummaryInfo (
 SKSummaryRef summary,
 CFIndex numSentencesInSummary,
 CFIndex *outRankOrderOfSentences,
 CFIndex *outSentenceIndexOfSentences,
 CFIndex *outParagraphIndexOfSentences
);

Parameters
summary

The summarization object containing the text from which you want to build a summary.

numSentencesInSummary
The maximum number of sentences you want in the summary.

outRankOrderOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now lists the summarization relevance rank of each sentence in the original text. The most
important sentence gets a rank of 1. The array size must equal numSentencesInSummary, or else
be NULL if you don’t want to get the rank orders.

outSentenceIndexOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now contains the ordinal number for each sentence in the original text. Use the
SKSummaryCopySentenceAtIndex (page 50) function with one of these numbers to get the
corresponding sentence. The array size must equal numSentencesInSummary, or else be NULL if
you don’t want to get the ordinal numbers of the sentences.

outParagraphIndexOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now contains the ordinal number for the paragraph that each corresponding sentence,
referenced in outSentenceIndexOfSentences, appears in. The array size must equal
numSentencesInSummary, or else be NULL if you don’t want to get the ordinal numbers of the
sentences.

Return Value
The number of sentences in the summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetTypeID
Gets the type identifier for Search Kit summarization objects.

CFTypeID SKSummaryGetTypeID (void);

Return Value
A CFTypeID object, or NULL on failure.

Functions 53
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
Search Kit represents summarization results with summarization objects (SKSummaryRef (page 57) opaque
types). If your code needs to determine whether a particular data type is a summary, you can use this function
along with the CFGetTypeID function and perform a comparison.

Never hard-code the summarization type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

Callbacks

Developers should avoid using the callbacks listed in this section; instead, use SKSearchCreate (page 44)
and SKSearchFindMatches (page 46).

SKSearchResultsFilterCallBack
Deprecated. Use SKSearchCreate and SKSearchFindMatches instead, which do not use a callback.

typedef Boolean (SKSearchResultsFilterCallBack) (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 void *inContext

If you name your function MySearchResultsFilter, you would declare it like this:

Boolean MySearchResultsFilter (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 void *inContext
);

Parameters
inIndex

The index you are searching.

inDocument
The document URL object within the index you are searching.

inContext
An application-specified context which you set when calling
SKSearchResultsCreateWithQuery (page 68) orSKSearchResultsCreateWithDocuments (page
67).

Return Value
A Boolean value of true for a successful search hit, or false otherwise.

54 Callbacks
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Discussion
Deprecated. Defines a pointer to a search-results filtering callback function for hit testing and processing
during a search. Use this callback function to perform custom filtering on the search hits returned by the
SKSearchResultsCreateWithQuery (page 68) and SKSearchResultsCreateWithDocuments (page
67) functions. Return true to keep this document URL object (SKDocumentRef) in the results, false to filter
it out.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

Data Types

SKDocumentRef
Defines an opaque data type representing a document’s URL.

typedef struct __SKDocument *SKDocumentRef;

Discussion
A document URL object is a generic location specification for a document. It is built from a document scheme,
a parent document, and a document name. You can convert back and forth between document URL objects
andCFURLobjects using Search Kit’sSKDocumentCreateWithURL (page 15) andSKDocumentCopyURL (page
14) functions.

To create a Search Kit document URL object, use SKDocumentCreateWithURL (page 15) when you can
provide a complete URL, or use SKDocumentCreate (page 14) when you want to specify document location
indirectly using a parent document URL object. For other operations on documents, see “Working with
Documents and Terms” (page 11).

If you create document URL objects with indirect locations using the SKDocumentCreate (page 14) function,
you can resolve the locations by assembling them piece by piece, starting with a document URL object and
going up step by step, parent to parent.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKIndexDocumentIteratorRef
Defines an opaque data type representing an index-based document iterator.

Data Types 55
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

typedef struct __SKIndexDocumentIterator *SKIndexDocumentIteratorRef;

Discussion
A Search Kit document iterator lets your application loop through all the document URL objects owned by
a given parent document URL object. To create an iterator, use SKIndexDocumentIteratorCreate (page
29). To get a copy of the next document in the set owned by the iterator, use
SKIndexDocumentIteratorCopyNext (page 28).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRef
Defines an opaque data type representing an index.

typedef struct __SKIndex *SKIndexRef;

Discussion
A Search Kit index object contains the textual contents of one or more documents, as well as document URL
objects (SKDocumentRefs) representing those documents’ locations.

To create a new disk-based Search Kit index object, use SKIndexCreateWithURL (page 27). To create a
memory-based index, use SKIndexCreateWithMutableData (page 26). For other operations on indexes,
see “Creating, Opening, and Closing Indexes” (page 9) and “Managing Indexes” (page 10). Also see“Fast
Asynchronous Searching” (page 12).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects. In a garbage-collected environment, you must
use SKIndexClose (page 20) to dispose of an SKIndex object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKSearchRef
Defines an opaque data type representing a an asynchronous search.

typedef struct __SKSearch *SKSearchRef;

Discussion
A search object is created when you call the SKSearchCreate (page 44) function.

Special Considerations

You cannot use CFMakeCollectable with SKSearch objects. In a garbage-collected environment, you must
use CFRelease to dispose of an SKSearch object.

56 Data Types
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSummaryRef
Defines an opaque data type representing summarization information.

typedef struct __SKSummary *SKSummaryRef;

Discussion
A summarization object contains summarization information, including summary text.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKDocumentID
Defines an opaque data type representing a lightweight document identifier.

typedef CFIndex SKDocumentID;

Discussion
Use document IDs rather than document URL objects (SKDocumentRefs) whenever possible. Using document
IDs results in faster searching.

You can work with document IDs using a variety of Search Kit functions. See
SKIndexGetMaximumDocumentID (page 35), SKIndexCopyDocumentForDocumentID (page 21),
SKIndexCopyInfoForDocumentIDs (page 24), SKIndexCopyDocumentRefsForDocumentIDs (page
23), SKIndexCopyDocumentURLsForDocumentIDs (page 24),
SKIndexCopyDocumentIDArrayForTermID (page 22), and
SKIndexCopyTermIDArrayForDocumentID (page 25).

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKIndex.h

SKSearchResultsRef
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

Data Types 57
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

typedef struct __SKSearchResults *SKSearchResultsRef;

Discussion
Defines an opaque data type representing the result of a search. To perform a query and generate search
results, use SKSearchResultsCreateWithQuery (page 68) or
SKSearchResultsCreateWithDocuments (page 67). To examine the result of a search, use
SKSearchResultsGetInfoInRange (page 70). For other operations on search results, see “Legacy Support
for Synchronous Searching” (page 13).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

SKSearchGroupRef
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

typedef struct __SKSearchGroup *SKSearchGroupRef;

Discussion
Defines an opaque data type representing a search group.

A search group is a group of one or more indexes to be searched. To create a search group, use
SKSearchGroupCreate (page 65). For other operations with search groups, see “Fast Asynchronous
Searching” (page 12).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

Constants

Text Analysis Keys
Each of these constants is an optional key in a Search Kit index’s text analysis properties dictionary. The
constant descriptions describe the corresponding values for each of these keys. These keys are declared in
the Analysis.h header file.

58 Constants
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

const CFStringRef kSKMinTermLength;
const CFStringRef kSKStopWords;
const CFStringRef kSKSubstitutions;
const CFStringRef kSKMaximumTerms;
const CFStringRef kSKProximityIndexing;
const CFStringRef kSKTermChars;
const CFStringRef kSKStartTermChars;
const CFStringRef kSKEndTermChars;

Constants
kSKMinTermLength

The minimum term length to index. Specified as a CFNumber object. If this optional key is not present,
Search Kit indexing defaults to a minimum term length of 1.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKStopWords
A set of stopwords—words not to index. Specified as a CFSet object. There is no default stopword
list. You must supply your own.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKSubstitutions
A dictionary of term substitutions—terms that differ in their character strings but that match during
a search. Specified as a CFDictionary object.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKMaximumTerms
The maximum number of number unique terms to index in each document. Specified as a CFNumber
object.

Search Kit indexes from the beginning of a document. When it has indexed the first n unique terms,
it stops.

The default number of maximum terms, which applies if you do not provide a number, is 2000.

To tell Search Kit to index all the terms in each document without limit, specify a value of 0.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKProximityIndexing
A Boolean flag indicating whether or not Search Kit should use proximity indexing. The flag can be
a 0 or kCFBoolenFalse value (for false) or a 1 or kCFBooleanTrue value for true.

Proximity indexing supports phrase searching. If this key is not present in an index’s text analysis
properties dictionary, Search Kit defaults to not adding proximity information to the index.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

Constants 59
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

kSKTermChars
Additional valid starting-position “word” characters for indexing and querying. The corresponding
value, a CFString object, specifies the additional valid “word” characters that you want to be considered
as valid starting characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKStartTermChars, if this key is present, overrides the value of kSKTermChars for
the first character of a term.

By default, Search Kit considers alphanumeric characters as valid starting characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKStartTermChars
Additional valid starting-position “word” characters for indexing and querying. The corresponding
value, a CFString object, specifies the additional valid “word” characters that you want to be considered
as valid starting characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKStartTermChars, if this key is present, overrides the value of kSKTermChars for
the first character of a term.

By default, Search Kit considers alphanumeric characters as valid starting characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKEndTermChars
Additional valid last-position “word” characters for indexing and querying. The corresponding value,
a CFString object, specifies the additional valid “word” characters that you want to be considered as
valid ending characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKEndTermChars, if this key is present, overrides the value of kSKTermChars for the
last character of a term.

By default, Search Kit considers alphanumeric characters as valid ending characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

SKDocumentIndexState
The indexing state of a document.

60 Constants
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

enum SKDocumentIndexState {
 kSKDocumentStateNotIndexed = 0,
 kSKDocumentStateIndexed = 1,
 kSKDocumentStateAddPending = 2,
 kSKDocumentStateDeletePending= 3
};

Constants
kSKDocumentStateNotIndexed

Specifies that the document is not indexed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateIndexed
Specifies that the document is indexed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateAddPending
Specifies that the document is not in the index but will be added after the index is flushed or closed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateDeletePending
Specifies that the document is in the index but will be deleted after the index is flushed or closed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

Declared In
SKIndex.h

SKSearchOptions
Specifies the search options available for the SKSearchCreate (page 44) function.

typedef UInt32 SKSearchOptions;
enum SKSearchType {
 kSKSearchOptionDefault = 0,
 kSKSearchOptionNoRelevanceScores = 1L << 0,
 kSKSearchOptionSpaceMeansOR = 1L << 1
 kSKSearchOptionFindSimilar = 1L << 2
};

Constants
kSKSearchOptionDefault

Default search options include:

 ■ Relevance scores will be computed

 ■ Spaces in a query are interpreted as Boolean AND operators.

 ■ Do not use similarity searching.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

Constants 61
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

kSKSearchOptionNoRelevanceScores
This option saves time during a search by suppressing the computation of relevance scores.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

kSKSearchOptionSpaceMeansOR
This option alters query behavior so that spaces are interpreted as Boolean OR operators.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

kSKSearchOptionFindSimilar
This option alters query behavior so that Search Kit returns references to documents that are similar
to an example text string. When this option is specified, Search Kit ignores all query operators.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

Declared In
SKSearch.h

SKIndexType
Specifies the category of an index.

enum SKIndexType {
 kSKIndexUnknown = 0,
 kSKIndexInverted = 1,
 kSKIndexVector = 2,
 kSKIndexInvertedVector = 3
};

Constants
kSKIndexUnknown

Specifies an unknown index type.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexInverted
Specifies an inverted index, mapping terms to documents.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexVector
Specifies a vector index, mapping documents to terms.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexInvertedVector
Specifies an index type with all the capabilities of an inverted and a vector index.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

Declared In
SKIndex.h

62 Constants
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

Deprecated Text Analysis Keys
Search Kit ignores the kSKLanguageTypes constant. It determines language directly by document content.

const CFStringRef kSKLanguageTypes;

Constants
kSKLanguageTypes

Deprecated—Search Kit ignores this constant.

In releases of Mac OS X previous to version 10.4, each string in this key’s corresponding value specifies
a language to use for indexing. Each such string is a two character ISO 639-1 code. For example, 'en'
for English, 'ja' for Japanese, and so on. If this key is not present, Search Kit uses the Mac OS X
preferences system to determine the primary language from the user’s locale.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

Version Notes
In releases of Mac OS X prior to version 10.4, the kSKLanguageTypes constant was an optional key in an
index’s text analysis properties dictionary. Starting in Mac OS X v10.4, Search Kit ignores this constant and
determines language directly by the document content. A document may use multiple languages.

Deprecated Search Keys
Search Kit ignores the constants in this group. Use asynchronous searching with SKSearchCreate instead,
which uses query syntax to determine search type.

enum SKSearchType {
 kSKSearchRanked = 0,
 kSKSearchBooleanRanked = 1,
 kSKSearchRequiredRanked = 2,
 kSKSearchPrefixRanked = 3
};

Constants
kSKSearchRanked

Deprecated. Specifies a basic ranked search.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

kSKSearchBooleanRanked
Deprecated. Specifies a query that can include Boolean operators including '|', '&', '!', '(', and
')'.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

kSKSearchRequiredRanked
Deprecated. Specifies a query that can include required ('+') or excluded ('-') terms.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

Constants 63
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

kSKSearchPrefixRanked
Deprecated. Specifies a prefix-based search, which matches terms that begin with the query string.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

Version Notes
In releases of Mac OS X prior to version 10.4, these constants specify the category of search to perform.
Starting with Mac OS X v10.4, use asynchronous searching with SKSearchCreate instead, which uses query
syntax to determine search type.

In older versions of Mac OS X, these constants specify the various search types you can use with
SKSearchResultsCreateWithQuery. Each of these specifies a set of ranked search hits. The
kSKSearchRanked and kSKSearchPrefixRanked constants can be used for all index types. The
kSKSearchBooleanRanked and kSKSearchRequiredRanked constants cannot be used for vector indexes.

Declared In
SKSearch.h

64 Constants
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Search Kit Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

SKSearchGroupCopyIndexes
Obtains the indexes for a search group. (Deprecated in Mac OS X v10.4. Use asynchronous searching with
SKSearchCreate instead, which does not employ search groups.)

CFArrayRef SKSearchGroupCopyIndexes (
 SKSearchGroupRef inSearchGroup
);

Parameters
inSearchGroup

The search group whose indexes you want to copy.

Return Value
A CFArray object containing the indexes in the search group.

Discussion
Although the search functions SKSearchResultsCreateWithQuery (page 68) and
SKSearchResultsCreateWithDocuments (page 67) operate directly on search groups, many Search Kit
functions, such as SKIndexCompact (page 21), operate on one index at a time. When you want to examine
or manage all the indexes in a search group, use SKSearchGroupCopyIndexes to get the search group’s
list of indexes.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchGroupCreate
Creates a search group as an array of references to indexes. (Deprecated in Mac OS X v10.4. Use asynchronous
searching with SKSearchCreate instead, which does not employ search groups.)

Deprecated in Mac OS X v10.4 65
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

SKSearchGroupRef SKSearchGroupCreate (
 CFArrayRef inArrayOfInIndexes
);

Parameters
inArrayOfInIndexes

A CFArray object containing the indexes to put into the search group.

Return Value
An SKSearchGroup opaque type.

Discussion
Creates a search group as an array of references to indexes.

You create a search group to search one or more indexes, and then typically use the resulting
SKSearchGroupRef opaque type with SKSearchResultsCreateWithQuery (page 68) or
SKSearchResultsCreateWithDocuments (page 67).

When your application no longer needs the search group, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsCopyMatchingTerms
Obtains the terms in a document that match a query. (Deprecated in Mac OS X v10.4. Use
SKSearchCreate (page 44) instead.)

CFArrayRef SKSearchResultsCopyMatchingTerms (
 SKSearchResultsRef inSearchResults,
 CFIndex inItem
);

Parameters
inSearchResults

The search results to examine.

inItem
An integer that corresponds to a document URL object (SKDocumentRef) in the search results. A value
of ‘1’ identifies the first document URL object in the search results, a value of ‘2’ identifies the second,
and so on.

If you’ve created the search results using SKSearchResultsCreateWithQuery (page 68), the
document URL objects are sorted in ranking order with the top-ranked one first. See
SKSearchResultsGetInfoInRange (page 70) for a description of how to get a particular document
URL object, or set of them, from a search result.

Return Value
A CFArray object containing term IDs.

66 Deprecated in Mac OS X v10.4
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

Discussion
When using a prefix search, or a search for which the user entered more than one word, there may be multiple
terms that match the query. This function returns an array of the term IDs corresponding to these matches.

For example, a user could enter ‘App’ when performing a prefix search. If a document represented in the
search group contains the words ‘Apple,’ ‘application,’ and ‘appendectomy,’ the IDs for all of these terms
would then appear in the CFArray object that SKSearchResultsCopyMatchingTerms returns.

See SKSearchResultsCreateWithQuery (page 68) for a description of how to perform a search and get
search results. See SKSearchResultsGetInfoInRange (page 70) for how to extract information, including
document URL objects, from a search result. See “Deprecated Search Keys” (page 63) for a description
of the various categories of search.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsCreateWithDocuments
Finds documents similar to given example documents. (Deprecated in Mac OS X v10.4. Use
SKSearchCreate (page 44) instead.)

SKSearchResultsRef SKSearchResultsCreateWithDocuments (
 SKSearchGroupRef inSearchGroup,
 CFArrayRef inExampleDocuments,
 CFIndex inMaxFoundDocuments,
 void *inContext,
 SKSearchResultsFilterCallBack inFilterCallBack
);

Parameters
inSearchGroup

A search group containing the indexes which, in turn, contain the document URL objects
(SKDocumentRefs) representing the documents you want to search by similarity. The search group
must also contains the indexes that contain the textual content of the example documents.

inExampleDocuments
An array of document URL objects (SKDocumentRefs), each representing an example document.

inMaxFoundDocuments
The maximum number of found items to return. Your application must pass in a positive value.

inContext
An application-specified context for use by the SKSearchResultsFilterCallBack (page 54)
callback function. Can be NULL.

inFilterCallBack
A callback function for hit testing during searching—see SKSearchResultsFilterCallBack (page
54). In a similarity search, your application would typically use this function to exclude the example
documents from the search results. This parameter can be NULL, in which case your application
receives the returned results directly and without any custom postprocessing.

Deprecated in Mac OS X v10.4 67
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

Return Value
A search results object containing a list of document URL objects (SKDocumentRefs) representing documents
similar to the example documents.

Discussion
This function searches the on-disk indexes in a search group for document URL objects (SKDocumentRefs)
representing documents similar to those provided as examples. Build the search group in three steps:

1. Collect the index IDs from the search groups you want to search: for each search group, call the
SKSearchGroupCopyIndexes (page 65) function.

2. Add the document URL objects representing the example documents to a memory-based index (if they’re
not already in an index) by calling SKIndexCreateWithMutableData (page 26), and get that index’s
ID.

3. Create a new search group that contains the indexes to search, and also containing the
example-documents index, using SKSearchGroupCreate (page 65).

Before invoking a search, call SKIndexFlush (page 30) on all indexes in the search group to ensure that
changes to the indexes have been written to disk.

Once you’ve obtained the results of a search, get the specifics—including which documents match the user’s
similarity query, and the ranking scores for each document—by calling
SKSearchResultsGetInfoInRange (page 70).

When your application no longer needs the search result, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsCreateWithQuery
Queries the indexes in a search group. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page 44)
instead.)

SKSearchResultsRef SKSearchResultsCreateWithQuery (
 SKSearchGroupRef inSearchGroup,
 CFStringRef inQuery,
 SKSearchType inSearchType,
 CFIndex inMaxFoundDocuments,
 void *inContext,
 SKSearchResultsFilterCallBackinFilterCallBack
);

Parameters
inSearchGroup

The search group to query.

inQuery
The query string to search for.

68 Deprecated in Mac OS X v10.4
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

inSearchType
The category of search to perform. See the “Deprecated Search Keys” (page 63) enumeration
for options.

inMaxFoundDocuments
The maximum number of found items to return. Your application must pass in a positive integer
value.

inContext
An application-specified context for use by the SKSearchResultsFilterCallBack (page 54). Can
be NULL, but if you want to use the callback you must supply a context.

inFilterCallBack
A callback function for hit testing during searching. Can be NULL, in which case your application
receives the returned results directly and without any custom postprocessing. If non-NULL, you must
supply a context. See SKSearchResultsFilterCallBack (page 54).

Return Value
A search results object.

Discussion
This function searches the on-disk indexes in a search group. Before invoking a search, call
SKIndexFlush (page 30) on all indexes in the search group to ensure that changes to the indexes have
been flushed to disk.

Once you’ve obtained the results of a search, get the specifics—including which documents match the user’s
query, and the ranking scores for each document—by calling SKSearchResultsGetInfoInRange (page
70). You can extract other information by calling SKSearchResultsCopyMatchingTerms (page 66) and
SKSearchResultsGetCount (page 69).

When your application no longer needs the search result, dispose of it by calling CFRelease.

Special Considerations

This deprecated function performs searches synchronously. Apple recommends using the asynchronous
SKSearchCreate function instead.

In the current implementation of Search Kit, unary Boolean operators are not implemented. A search, for
example, for ‘not blue’, returns zero documents no matter what their content.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsGetCount
Gets the total number of found items in a search. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page
44) instead.)

Deprecated in Mac OS X v10.4 69
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

CFIndex SKSearchResultsGetCount (
 SKSearchResultsRef inSearchResults
);

Parameters
inSearchResults

A search results object containing the results of a query.

Return Value
A CFIndex object containing the total number of found items in a search.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsGetInfoInRange
Extracts information from a Search Kit query result. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page
44) instead.)

CFIndex SKSearchResultsGetInfoInRange (
 SKSearchResultsRef inSearchResults,
 CFRange inRange,
 SKDocumentRef *outDocumentsArray,
 SKIndexRef *outIndexesArray,
 float *outScoresArray
);

Parameters
inSearchResults

The search results whose information you want to extract.

inRange
The starting ranking and total number of found items to obtain, specified as (Location, Length).
‘Location’ specifies the starting item by ranking, with the top-ranked item having a location of 0.
‘Length’ specifies the total number of items to include in the results. For example, (0,1) indicates the
first item, which is also the highest-ranking item. (1,1) indicates the second item, which is also the
second-highest-ranking item. (0,5) means to get the first 5 items.

outDocumentsArray
On output, points to an array of found document URL objects (SKDocumentRefs).

outIndexesArray
On output, points to an array of indexes in which the found document URL objects reside. Can be
NULL on input, provided that your application doesn’t need this information.

outScoresArray
On output, points to an array of correspondence scores for found items. Can be NULL on input,
provided that your application doesn’t need this information.

Return Value
The number of items returned—usually the same number as specified by the length item in the inRange
parameter.

70 Deprecated in Mac OS X v10.4
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

Discussion
This function provides results to its output parameters in the order in which they are found, to reduce latency
and to support search-as-you-type functionality.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

Deprecated in Mac OS X v10.4 71
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

72 Deprecated in Mac OS X v10.4
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Search Kit Functions

This table describes the changes to Search Kit Reference.

NotesDate

Added notes that SKSearch and SKIndex objects cannot be used with
CFMakeCollectable.

2009-05-06

Minor updates and corrections.2006-07-24

Minor updates and corrections.2006-07-14

Minor updates and corrections.2006-03-08

Minor updates and corrections.2005-12-06

Clarified descriptions of SKIndexSetMaximumBytesBeforeFlush (page 43)
and SKIndexGetMaximumBytesBeforeFlush (page 35) functions.

2005-08-11

Reorganized Constants section and clarified constant descriptions and abstracts.2005-06-04

Corrected description of the “Text Analysis Keys” (page 58) constants in
regard to the underscore character. Also added type descriptions to the “Text
Analysis Keys” constants.

Clarified behavior of AND, OR, NOT, and * operators in the
SKSearchCreate (page 44) function.

Added explanation of Unicode normalization and other normalizations to
discussion for the SKSearchCreate (page 44) function.

Corrected descriptions of the SKSearchCreate (page 44),
SKSearchFindMatches (page 46), and SKSearchCancel (page 44) functions
in regard to initiating and canceling search operations.

Reorganized document around new asynchronous searching. Renamed function
group for searching to “Fast Asynchronous Searching” (page 12). Created legacy
function group for deprecated functions related to synchronous search: “Legacy
Support for Synchronous Searching” (page 13). Changed group name for callback
to “Search Kit Legacy Callbacks” (page 54). Added deprecation information to
data types and constants: SKSearchResultsRef (page 57),
SKSearchGroupRef (page 58), kSKLanguageTypes (page 63), and
“Deprecated Search Keys” (page 63). Added new function group for
summarization: “Working With Summarization” (page 12).

2005-04-29

Updated introduction. Added thread safety information throughout document.

73
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added documentation for new functions available in Mac OS X v10.4:
SKIndexClose (page 20), SKIndexCopyInfoForDocumentIDs (page 24),
SKIndexCopyDocumentRefsForDocumentIDs (page 23),
SKIndexCopyDocumentURLsForDocumentIDs (page 24),
SKSearchCreate (page 44), SKSearchFindMatches (page 46),
SKSearchCancel (page 44), SKSearchGetTypeID (page 48),
SKSummaryCreateWithString (page 51),
SKSummaryGetSentenceSummaryInfo (page 53),
SKSummaryGetParagraphSummaryInfo (page 51),
SKSummaryGetSentenceCount (page 52),
SKSummaryGetParagraphCount (page 51),
SKSummaryCopySentenceAtIndex (page 50),
SKSummaryCopyParagraphAtIndex (page 49),
SKSummaryCopySentenceSummaryString (page 50),
SKSummaryCopyParagraphSummaryString (page 49), and
SKSummaryGetTypeID (page 53).

Updated documentation for all other functions.

Added documentation for new types and constants available in Mac OS X v10.4:
SKSearchRef (page 56) and “SKSearchOptions” (page 61).

Added note on thread safety to indexing and searching functions.2004-10-11

Added deprecation information to SKSearchGroupCreate (page 65),
SKSearchGroupCopyIndexes (page 65), SKSearchGroupGetTypeID (page
48), SKSearchResultsCreateWithDocuments (page 67),
SKSearchResultsGetInfoInRange (page 70),
SKSearchResultsCopyMatchingTerms (page 66),
SKSearchResultsGetCount (page 69), SKSearchResultsGetTypeID (page
48), and SKSearchResultsCreateWithQuery (page 68).

Updated introduction. Clarified abstract and discussion for SKIndexFlush (page
30) and SKIndexCompact (page 21).

Added descriptions for Mac OS X v10.4 APIs including SKIndexClose (page
20), SKIndexCopyInfoForDocumentIDs (page 24),
SKIndexCopyDocumentRefsForDocumentIDs (page 23),
SKIndexCopyDocumentURLsForDocumentIDs (page 24),
SKSearchCreate (page 44), SKSearchCancel (page 44),
SKSearchFindMatches (page 46), SKSearchGetTypeID (page 48),
SKSearchRef (page 56), kSKProximityIndexing (page 59),
kSKMaximumTerms (page 59), kSKTermChars (page 60),
kSKStartTermChars (page 60), kSKEndTermChars (page 60), and
“SKSearchOptions” (page 61).

2004-06-28

Updated introduction. Clarified abstract and discussion for SKIndexFlush (page
30) and SKIndexCompact (page 21).

74
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Reorganized function groups to better reflect use of functions. Clarified
descriptions of SKSearchResultsCreateWithQuery (page 68),
SKIndexAddDocumentWithText (page 19), SKIndexAddDocument (page
18), SKIndexCreateWithURL (page 27),
SKIndexCreateWithMutableData (page 26), SKIndexOpenWithData (page
38), SKIndexOpenWithMutableData (page 39), and others. Changed
descriptions of the SKDocumentRef opaque data type from “document reference”
to “document URL object.”

2004-05-20

Minor additions and corrections. Clarified description for
SKSearchResultsCopyMatchingTerms (page 66).

2003-11-12

First publication of Search Kit Reference.2003-10-17

75
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

76
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

D

Deprecated Search Keys 63
Deprecated Text Analysis Keys 63

K

kSKDocumentStateAddPending constant 61
kSKDocumentStateDeletePending constant 61
kSKDocumentStateIndexed constant 61
kSKDocumentStateNotIndexed constant 61
kSKEndTermChars constant 60
kSKIndexInverted constant 62
kSKIndexInvertedVector constant 62
kSKIndexUnknown constant 62
kSKIndexVector constant 62
kSKLanguageTypes constant 63
kSKMaximumTerms constant 59
kSKMinTermLength constant 59
kSKProximityIndexing constant 59
kSKSearchBooleanRanked constant 63
kSKSearchOptionDefault constant 61
kSKSearchOptionFindSimilar constant 62
kSKSearchOptionNoRelevanceScores constant 62
kSKSearchOptionSpaceMeansOR constant 62
kSKSearchPrefixRanked constant 64
kSKSearchRanked constant 63
kSKSearchRequiredRanked constant 63
kSKStartTermChars constant 60
kSKStopWords constant 59
kSKSubstitutions constant 59
kSKTermChars constant 60

S

SKDocumentCopyURL function 14
SKDocumentCreate function 14
SKDocumentCreateWithURL function 15

SKDocumentGetName function 16
SKDocumentGetParent function 16
SKDocumentGetSchemeName function 17
SKDocumentGetTypeID function 17
SKDocumentID data type 57
SKDocumentIndexState 60
SKDocumentRef data type 55
SKIndexAddDocument function 18
SKIndexAddDocumentWithText function 19
SKIndexClose function 20
SKIndexCompact function 21
SKIndexCopyDocumentForDocumentID function 21
SKIndexCopyDocumentIDArrayForTermID function

22
SKIndexCopyDocumentProperties function 22
SKIndexCopyDocumentRefsForDocumentIDs function

23
SKIndexCopyDocumentURLsForDocumentIDs function

24
SKIndexCopyInfoForDocumentIDs function 24
SKIndexCopyTermIDArrayForDocumentID function

25
SKIndexCopyTermStringForTermID function 26
SKIndexCreateWithMutableData function 26
SKIndexCreateWithURL function 27
SKIndexDocumentIteratorCopyNext function 28
SKIndexDocumentIteratorCreate function 29
SKIndexDocumentIteratorGetTypeID function 30
SKIndexDocumentIteratorRef data type 55
SKIndexFlush function 30
SKIndexGetAnalysisProperties function 31
SKIndexGetDocumentCount function 31
SKIndexGetDocumentID function 32
SKIndexGetDocumentState function 33
SKIndexGetDocumentTermCount function 33
SKIndexGetDocumentTermFrequency function 34
SKIndexGetIndexType function 34
SKIndexGetMaximumBytesBeforeFlush function 35
SKIndexGetMaximumDocumentID function 35
SKIndexGetMaximumTermID function 36
SKIndexGetTermDocumentCount function 36
SKIndexGetTermIDForTermString function 37

77
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

Index

SKIndexGetTypeID function 37
SKIndexMoveDocument function 38
SKIndexOpenWithData function 38
SKIndexOpenWithMutableData function 39
SKIndexOpenWithURL function 40
SKIndexRef data type 56
SKIndexRemoveDocument function 41
SKIndexRenameDocument function 41
SKIndexSetDocumentProperties function 42
SKIndexSetMaximumBytesBeforeFlush function 43
SKIndexType 62
SKLoadDefaultExtractorPlugIns function 43
SKSearchCancel function 44
SKSearchCreate function 44
SKSearchFindMatches function 46
SKSearchGetTypeID function 48
SKSearchGroupCopyIndexes function (Deprecated in

Mac OS X v10.4) 65
SKSearchGroupCreate function (Deprecated in Mac OS

X v10.4) 65
SKSearchGroupGetTypeID function 48
SKSearchGroupRef data type 58
SKSearchOptions 61
SKSearchRef data type 56
SKSearchResultsCopyMatchingTerms function

(Deprecated in Mac OS X v10.4) 66
SKSearchResultsCreateWithDocuments function

(Deprecated in Mac OS X v10.4) 67
SKSearchResultsCreateWithQuery function

(Deprecated in Mac OS X v10.4) 68
SKSearchResultsFilterCallBack callback 54
SKSearchResultsGetCount function (Deprecated in

Mac OS X v10.4) 69
SKSearchResultsGetInfoInRange function

(Deprecated in Mac OS X v10.4) 70
SKSearchResultsGetTypeID function 48
SKSearchResultsRef data type 57
SKSummaryCopyParagraphAtIndex function 49
SKSummaryCopyParagraphSummaryString function

49
SKSummaryCopySentenceAtIndex function 50
SKSummaryCopySentenceSummaryString function 50
SKSummaryCreateWithString function 51
SKSummaryGetParagraphCount function 51
SKSummaryGetParagraphSummaryInfo function 51
SKSummaryGetSentenceCount function 52
SKSummaryGetSentenceSummaryInfo function 53
SKSummaryGetTypeID function 53
SKSummaryRef data type 57

T

Text Analysis Keys 58

78
2009-05-06 | © 2003, 2009 Apple Inc. All Rights Reserved.

INDEX

	Search Kit Reference
	Contents
	Tables
	Search Kit Reference
	Overview
	Functions by Task
	Creating, Opening, and Closing Indexes
	Managing Indexes
	Working With Text Importers
	Working with Documents and Terms
	Fast Asynchronous Searching
	Working With Summarization
	Legacy Support for Synchronous Searching

	Functions
	SKDocumentCopyURL
	SKDocumentCreate
	SKDocumentCreateWithURL
	SKDocumentGetName
	SKDocumentGetParent
	SKDocumentGetSchemeName
	SKDocumentGetTypeID
	SKIndexAddDocument
	SKIndexAddDocumentWithText
	SKIndexClose
	SKIndexCompact
	SKIndexCopyDocumentForDocumentID
	SKIndexCopyDocumentIDArrayForTermID
	SKIndexCopyDocumentProperties
	SKIndexCopyDocumentRefsForDocumentIDs
	SKIndexCopyDocumentURLsForDocumentIDs
	SKIndexCopyInfoForDocumentIDs
	SKIndexCopyTermIDArrayForDocumentID
	SKIndexCopyTermStringForTermID
	SKIndexCreateWithMutableData
	SKIndexCreateWithURL
	SKIndexDocumentIteratorCopyNext
	SKIndexDocumentIteratorCreate
	SKIndexDocumentIteratorGetTypeID
	SKIndexFlush
	SKIndexGetAnalysisProperties
	SKIndexGetDocumentCount
	SKIndexGetDocumentID
	SKIndexGetDocumentState
	SKIndexGetDocumentTermCount
	SKIndexGetDocumentTermFrequency
	SKIndexGetIndexType
	SKIndexGetMaximumBytesBeforeFlush
	SKIndexGetMaximumDocumentID
	SKIndexGetMaximumTermID
	SKIndexGetTermDocumentCount
	SKIndexGetTermIDForTermString
	SKIndexGetTypeID
	SKIndexMoveDocument
	SKIndexOpenWithData
	SKIndexOpenWithMutableData
	SKIndexOpenWithURL
	SKIndexRemoveDocument
	SKIndexRenameDocument
	SKIndexSetDocumentProperties
	SKIndexSetMaximumBytesBeforeFlush
	SKLoadDefaultExtractorPlugIns
	SKSearchCancel
	SKSearchCreate
	SKSearchFindMatches
	SKSearchGetTypeID
	SKSearchGroupGetTypeID
	SKSearchResultsGetTypeID
	SKSummaryCopyParagraphAtIndex
	SKSummaryCopyParagraphSummaryString
	SKSummaryCopySentenceAtIndex
	SKSummaryCopySentenceSummaryString
	SKSummaryCreateWithString
	SKSummaryGetParagraphCount
	SKSummaryGetParagraphSummaryInfo
	SKSummaryGetSentenceCount
	SKSummaryGetSentenceSummaryInfo
	SKSummaryGetTypeID

	Callbacks
	SKSearchResultsFilterCallBack

	Data Types
	SKDocumentRef
	SKIndexDocumentIteratorRef
	SKIndexRef
	SKSearchRef
	SKSummaryRef
	SKDocumentID
	SKSearchResultsRef
	SKSearchGroupRef

	Constants
	Text Analysis Keys
	SKDocumentIndexState
	SKSearchOptions
	SKIndexType
	Deprecated Text Analysis Keys
	Deprecated Search Keys

	Appendix A: Deprecated Search Kit Functions
	Deprecated in Mac OS X v10.4
	SKSearchGroupCopyIndexes
	SKSearchGroupCreate
	SKSearchResultsCopyMatchingTerms
	SKSearchResultsCreateWithDocuments
	SKSearchResultsCreateWithQuery
	SKSearchResultsGetCount
	SKSearchResultsGetInfoInRange

	Revision History
	Index
	D
	K
	S
	T

