
Enterprise JavaBeans
(Legacy)

WebObjects > Development

2004-10-05

Apple Inc.
© 2001, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Logic, Mac, Mac OS, and
WebObjects are trademarks of Apple Inc.,
registered in the United States and other
countries.

Enterprise Objects and Finder are trademarks
of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 About This Document 11

Chapter 2 Introduction to Enterprise JavaBeans 13

Enterprise JavaBeans 13
Enterprise JavaBeans in WebObjects 14

Chapter 3 Developing Session Beans 17

Developing a Session Bean in Mac OS X 17
Creating the Bean Framework 17
Analyzing the Hello Bean’s Files 20
Adding Business Logic to the Bean 23
Building the Bean Framework 23
Creating the Client Application 23
Adding Business Logic to the Client Application 25
Configuring the Container 28
Running the Hello_Client Application 29

Developing a Session Bean in Windows 29
Creating the Bean Framework 29
Adding Business Logic to the Bean 30
Building the Framework 30
Creating the Client Application Project 30
Adding the Hello Bean Framework to the Hello_Client Project 31
Creating the Container Configuration Files 31
Adding Business Logic to the Client Application 31
Configuring the Container 33
Running the Hello_Client Application 34

Chapter 4 Developing Entity Beans 35

Developing an Entity Bean From a Data Model 35
Creating an Empty Bean Framework 35
Generating Enterprise-Bean Source Files From a Model File Using EOBeanAssistant 36

Using an Entity-Bean Framework 40
Developing the Application Project 40
Defining Data Sources 41
Mapping Enterprise Beans to Data-Store Tables 41
Configuring the Transaction Manager 42
Creating, Retrieving, and Removing Person Beans 42

Advanced Entity-Bean Development 46

3
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Bean-Managed Persistence 46
Data Access Objects 51

Chapter 5 Developing Bean Frameworks 53

Adding Source Files to a Bean-Framework Project 53
Adding JAR Files to a Bean-Framework Project 54
Creating Frameworks From Bean JAR Files in Windows 54
Adding CMP Fields to an EJB Deployment Descriptor 55
Generating EJB Stubs 56

Chapter 6 Configuring Applications 59

Configuration Overview 60
Configuring the Transaction Manager 60
Configuring the EJB Container 61
Configuring the Persistence Manager 62

Transaction Manager Configuration 62
Persistence Manager Configuration 63

Mapping Enterprise Beans to Database Tables 64
Defining Data Sources 68

Container Configuration 68
Containers Section 69
Facilities Section 70

Using External Containers 70
Communication Transport Between Bean Clients and Containers 71
Generating the EJB Configuration Files 72
EJB Container Operation Logging 72

Chapter 7 Configuration Reference 75

Elements of the Component-Managed Persistence Configuration File 75
bind-xml element 77
cache-type element 77
class element 77
field element 78
key-generator element 81
ldap element 82
map-to element 82
mapping element 82
param element 83
sql element 83

Elements of the Transaction Manager Configuration File 83
config element 83
connector element 84
dataSource element 84

4
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

domain element 85
limits element 85
resources element 85

Elements of the Container Configuration File 86
connection-manager element 88
connector element 88
connectors element 88
container-system element 89
containers element 89
ejb-ref element 89
ejb-ref-location element 90
entity-bean element 90
entity-container element 91
env-entry element 91
facilities element 91
jndi-context element 92
jndi-enc element 92
intra-vm-server element 92
managed-connection-factory element 93
method element 93
method-params element 94
method-permission element 94
method-transaction element 94
openejb element 95
properties element 95
property element 95
query element 96
remote-jndi-contexts element 96
resource element 96
resource-ref element 96
role-mapping element 97
security-role element 98
security-role-ref element 98
security-service element 98
services element 99
stateful-bean element 99
stateful-session-container element 99
stateless-bean element 100
stateless-session-container element 100
transaction-service element 101

5
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Document Revision History 103

Glossary 105

Index 107

6
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 3 Developing Session Beans 17

Figure 3-1 Hello project—the EJB Deployment target’s members 22
Figure 3-2 Hello project—the EJB 22
Figure 3-3 Hello_Client project—Hello.framework in Frameworks group 25
Figure 3-4 Output of the Hello_Client application 29
Listing 3-1 HelloHome.java file 20
Listing 3-2 Hello.java file 20
Listing 3-3 HelloBean.java file 20
Listing 3-4 ejb-jar.xml file 21
Listing 3-5 TransactionManagerConfiguration.xml file of the Hello_Client project with

container-configuration information 28
Listing 3-6 TransactionManagerConfiguration.xml file of the Hello_Client project without

container-configuration information 29

Chapter 4 Developing Entity Beans 35

Figure 4-1 The Select Model pane of EOBeanAssistant 36
Figure 4-2 The Select Entities pane of EOBeanAssistant 37
Figure 4-3 The Configure Bean pane of EOBeanAssistant 38
Figure 4-4 The Select Generation Path pane of EOBeanAssistant 39
Listing 4-1 Enterprise bean files added by EOBeanAssistant to the Person project directory

40
Listing 4-2 Person_Client project—GlobalTransactionConfiguration.xml file 41
Listing 4-3 Person_Client project—CMPConfiguration.xml file 41
Listing 4-4 Person_Client project—TransactionManagerConfiguration.xml file 42
Listing 4-5 Person_Client project—Application.java file 42
Listing 4-6 PersonBMP.java file 46
Listing 4-7 PersonDAO.java file 51

Chapter 5 Developing Bean Frameworks 53

Figure 5-1 Bean framework project in Windows 55
Figure 5-2 Viewing the value of the EJB_STUB_GENERATION build setting 57
Listing 5-1 Deployment descriptor for a CMP entity bean 56

Chapter 6 Configuring Applications 59

Table 6-1 The configuration files of a bean-client application 59
Table 6-2 HIGH/LOW key generator parameters 66
Table 6-3 SEQUENCE key generator parameters 67
Table 6-4 Transaction attributes 69

7
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Listing 6-1 ExampledataSource element of theTransactionManagerConfiguration.xml
file 60

Listing 6-2 Example containers section of the OpenEJBConfiguration.xml file 69
Listing 6-3 The initialContext method setting external-container properties 71
Listing 6-4 Logging.conf file 72

Chapter 7 Configuration Reference 75

Table 7-1 Element usage symbols 75
Table 7-2 Members of the bind-xml element 77
Table 7-3 Members of the cache-type element 77
Table 7-4 Members of the class element 78
Table 7-5 Members of the field element 78
Table 7-6 Values for the type attribute of the field element for CMP beans 79
Table 7-7 Values for the collection attribute of the field element CMP beans 80
Table 7-8 Members of the key-generator element 81
Table 7-9 Key-generator names supported in the persistence manager 81
Table 7-10 Members of the ldap element 82
Table 7-11 Members of the map-to element 82
Table 7-12 Members of the mapping element 82
Table 7-13 Members of the param element 83
Table 7-14 Members of the sql element 83
Table 7-15 Members of the config element 84
Table 7-16 Members of the connector element 84
Table 7-17 Members of the dataSource element 84
Table 7-18 Members of the domain element 85
Table 7-19 Members of the limits element 85
Table 7-20 Members of the resources element 86
Table 7-21 Members of the connection-manager element 88
Table 7-22 Members of the connector element 88
Table 7-23 Members of the connectors element 88
Table 7-24 Members of the container-system element 89
Table 7-25 Members of the containers element 89
Table 7-26 Members of the ejb-ref element 89
Table 7-27 Members of the ejb-ref-location element 90
Table 7-28 Members of the entity-bean element 90
Table 7-29 Members of the entity-container element 91
Table 7-30 Members of the env-entry element 91
Table 7-31 Members of the facilities element 91
Table 7-32 Members of the jndi-context element 92
Table 7-33 Members of the jndi-enc element 92
Table 7-34 Member of the intra-vm-server element 92
Table 7-35 Members of the managed-connection-factory element 93
Table 7-36 Members of the method element 93
Table 7-37 Members of the method-params element 94
Table 7-38 Members of the method-permission element 94

8
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table 7-39 Members of the method-transaction element 95
Table 7-40 Members of the openejb element 95
Table 7-41 Member of the properties element 95
Table 7-42 Members of the property element 95
Table 7-43 Members of the query element 96
Table 7-44 Members of the remote-jndi-contexts element 96
Table 7-45 Member of the resource element 96
Table 7-46 Members of the resource-ref element 97
Table 7-47 Members of the role-mapping element 97
Table 7-48 Members of the security-role element 98
Table 7-49 Members of the security-role-ref element 98
Table 7-50 Members of the security-service element 98
Table 7-51 Members of the services element 99
Table 7-52 Members of the stateful-bean element 99
Table 7-53 Members of the stateful-session-container element 100
Table 7-54 Members of the stateless-bean element 100
Table 7-55 Members of the stateless-session-container element 101
Table 7-56 Members of the transaction-service element 101
Listing 7-1 DTD for CMPConfiguration.xml 75
Listing 7-2 DTD for OpenEJBConfiguration.xml 86

9
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

10
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

Enterprise JavaBeans (EJB) is a specification that provides an infrastructure through which solution providers
can develop components that you can purchase and use in your WebObjects applications with minimal
effort. In addition, the components can be configured to work with a variety of databases (as long as the
database supports JDBC). The key ingredient in these components is enterprise beans. Enterprise beans are
business objects that contain logic used to perform specific tasks. They are similar to enterprise objects in
WebObjects, but can be used in application servers from multiple vendors.

Enterprise JavaBeans is part of Sun’s Java 2 Platform, Enterprise Edition (J2EE) strategy. J2EE provides an
abstraction from the implementation details of databases, directory services, communication protocols, and
so on. EJB aims at providing you an abstraction layer between your application’s business logic and the
implementation-specific details of the data entities it uses. An enterprise-bean developer doesn’t have to
worry about which database is used when the bean is deployed, freeing her to concentrate on the business
problem. WebObjects implements version 1.1 of the EJB specification.

Enterprise JavaBeans support in WebObjects lets you integrate third-party, enterprise-bean–based solutions
in your WebObjects applications. This means you can purchase components that solve a particular problem,
so that you can focus on issues specific to your business. In addition, you can develop your own enterprise
beans using WebObjects tools. You must keep in mind, however, that Enterprise Object technology does
not complement, nor can be efficiently combined with Enterprise JavaBeans. When you write enterprise
beans, you use a persistence-management system that is completely separate from Enterprise Objects. You
should not have enterprise beans that use the same database tables that enterprise-object classes are mapped
to.

You should read this document if you want to learn how to incorporate an EJB-based solution in a WebObjects
application or you want to develop your own enterprise beans using WebObjects tools. However, it is not
the purpose of this document to teach you EJB development. If you want to develop enterprise beans, you
must already have a sound knowledge of the technology.

The document includes the following chapters:

 ■ “Introduction to Enterprise JavaBeans” (page 13) provides an overview of Enterprise JavaBeans technology
and how it’s implemented in WebObjects.

 ■ “Developing Session Beans” (page 17) walks you through the development of a simple session bean
and its use in a client application.

 ■ “Developing Bean Frameworks” (page 53) lists the steps you take to create and maintain bean frameworks.

 ■ “Configuring Applications” (page 59) explains how to configure the transaction manager, the persistence
manager, and the EJB container in your client applications.

 ■ “Configuration Reference” (page 75) provides explanations of the XML elements used in the configuration
files of client applications.

 ■ “Document Revision History” (page 103), lists changes made from previous editions of the document.

11
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About This Document

To get the most out of this document you should be an experienced WebObjects application developer. In
particular, you need to know how to create applications using Project Builder and be familiar with the layout
of a Project Builder project. To make use of enterprise beans in an application, you are required to edit
configuration files written in XML; therefore, you should be familiar with XML’s rules and syntax.

To streamline your learning experience, you can take advantage of the companion resources that are included
with this document in the databases, models, and projects directories in your hard disk or in the TAR
file that you can download from http://developer.apple.com/documentation/WebObjects/index.html.

If you need to learn the basics about developing WebObjects applications, you can find pertinent documents
and resources in http://developer.apple.com/webobjects.

If you need to learn about EJB development, these books provide you introductory information as well as
development guidelines:

 ■ Enterprise JavaBeans (O’Reilly)

 ■ Professional EJB (Wrox Press)

 ■ Applying Enterprise JavaBeans: Component-Based Development for the J2EE Platform (Addison-Wesley)

WebObjects uses open-source implementations of the EJB container, the object request broker, the transaction
manager, and the persistence manager. For details about those implementations in WebObjects, consult the
following resources:

 ■ OpenEJB: Open-source EJB container system. For detains, see http://OpenEJB.sourceforge.net.

 ■ OpenORB: Open-source implementation of the Common Object Request Broker Architecture. For
information, see http://OpenORB.sourceforge.net.

 ■ Tyrex Transaction Manager: Open-source J2EE transaction manager. See http://Tyrex.sourceforge.net
for more information.

12
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About This Document

http://developer.apple.com/documentation/WebObjects/index.html
http://developer.apple.com/webobjects
http://OpenEJB.sourceforge.net
http://OpenORB.sourceforge.net
http://Tyrex.sourceforge.net

WebObjects provides all the tools you need to develop and deploy enterprise applications. However,
WebObjects is not the only technology available. Other companies provide tools that accomplish the same
task, albeit using different methods and requiring specialized deployment environments. Therefore, it’s
difficult for a WebObjects application to talk to an application developed and deployed under a different
environment. J2EE and EJB bridge the schism between environments from different vendors.

J2EE standardizes the way Web applications communicate with the resources they need to operate. Akin to
JDBC, the goal of J2EE is to provide an infrastructure that applications from different developers can utilize
to get their work done.

This chapter contains the following sections:

 ■ “About This Document” (page 11) provides an overview of EJB.

 ■ “Enterprise JavaBeans in WebObjects” (page 14) introduces EJB development in WebObjects.

Enterprise JavaBeans

Enterprise JavaBeans is an important part of J2EE. It provides an environment in which components from
several manufacturers can be assembled into a working application. The application assembler, with deep
knowledge of the requirements of the business, can choose the component that best matches the task at
hand. For instance, she could use transaction-processing beans from one company; customer, order, and
product beans from another company; and shipping beans from a third company. She would then end up
with an application capable of accepting orders, charging the customer, and process shipments without
having to write code.

Enterprise beans are specialized components that can encapsulate session information, workflow, and
persistent data. A bean client is an application that uses enterprise beans to access database data or an
enterprise bean that relies on the functionality provided by another enterprise bean. An enterprise bean has
three parts:

 ■ The home interface is used by the client to create and discard beans.

 ■ The remote interface is used by the client to execute the bean’s business methods.

 ■ The implementation or bean class is where the bean’s business methods and callback methods are
implemented. The client never invokes these methods directly; they are invoked by the bean container.

The container is a conceptual entity that mediates between enterprise-bean instances and client applications.
Clients never access bean instances directly. Instead, they interact with proxies provided by the container.
This allows the bean container to perform its duties in the most efficient way. The client doesn’t have to
know how the container implements its functions; all it needs to know is how to talk to the container.

In addition, beans have a deployment descriptor. This is an XML file that gives the container information
about each bean and data-source connection details, among many other items.

Enterprise JavaBeans 13
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Introduction to Enterprise JavaBeans

There are two major types of enterprise beans: session beans and entity beans.

 ■ Session beans come in two flavors: stateful and stateless. Stateful session beans maintain state between
method invokations; stateless session beans do not.

Stateless session beans are useful for grouping related methods in one place. Stateful session beans can
be used to encapsulate workflow. In most cases it’s more efficient for client applications to use session
beans (stateless or stateful) to accomplish their tasks than to use entity beans directly because network
traffic is reduced.

 ■ Entity beans are similar to enterprise objects (the objects that represent an instance of a data entity in
Enterprise Objects). They encapsulate access to data stored in databases and other types of data stores.

An enterprise-bean developer can focus on the high-level business logic needed to implement the services
that a bean provides instead of on low-level system or data- store calls (those functions can be left to the
container).

One of the most important functions of the container is transaction management and access control.
WebObjects includes the OpenEJB open-source container system. OpenEJB consists of four main components:

 ■ EJB container: The EJB container implements the lifecycle of enterprise beans and the server contracts
in the EJB specification.

 ■ Object Request Broker (ORB): The OpenORB object request broker implements RMI-over-IIOP, naming
service, and CORBA ORB.

 ■ Transaction manager: The Tyrex transaction manager implements a transaction manager compliant
with the Java Transaction API (JTA) and Object Transaction Service (OTS) specifications.

 ■ Persistence manager: The Castor JDO persistence manager implements bean persistence for entity
beans. It’s used in the implementation of CMP (container-managed persistence) beans.

Enterprise JavaBeans in WebObjects

You can use WebObjects development tools to develop enterprise beans from scratch or to integrate
third-party EJB-based solutions in a WebObjects application. Bean development in WebObjects is divided in
two phases: development and deployment.

You develop enterprise beans by writing .java files and deployment descriptor files. Project Builder provides
you with templates for these files. You can also obtain the source code or JAR files for enterprise beans from
a third party. As an alternative, you can develop data models from which entity-bean source files can be
generated. For more information, see “Developing an Entity Bean From a Data Model” (page 35).

You deploy one or more beans by generating a bean framework, which contains the beans’ JAR files and
deployment descriptor files, and placing it somewhere in a development computer’s file system; for example,
in /Library/Frameworks. After you deploy a bean framework, it’s available to be integrated in client
applications or other enterprise beans for their use.

Client applications can be developed in two ways: using an internal bean container, or using an external
container:

 ■ Internal container: This approach is the most scalable because each application instance has its own
container and naming-service object.

14 Enterprise JavaBeans in WebObjects
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Introduction to Enterprise JavaBeans

If the user load of your site becomes too large for one instance to handle, all you have to do is add more
instances of it. Each container answers only to one application, so there is no application-to-container
bottleneck.

 ■ External container: This approach is beneficial if you already have a robust bean container, running on
a fast computer, that you want to leverage. In this case, no configuration files should be present in the
bean-client application project. For more on the configuration files, see “Configuring Applications” (page
59).

Enterprise JavaBeans in WebObjects 15
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Introduction to Enterprise JavaBeans

16 Enterprise JavaBeans in WebObjects
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Introduction to Enterprise JavaBeans

Before developing WebObjects applications that use enterprise beans, you have to create enterprise-bean
frameworks. These frameworks contain the JAR files (which include the deployment descriptor files) needed
to deploy enterprise beans.

You can develop a bean framework by writing the beans yourself or by using third-party beans (either from
Java source and deployment descriptor files or JAR files). Project Builder helps you develop beans by providing
you with bean templates that get you started.

In most cases, you save both time and money when you purchase enterprise beans from EJB vendors instead
of developing your own. This is because you obtain a solution that has been tested by the solution vendor
and other developers. Also remember that you cannot take advantage of Enterprise Object technology in
your enterprise beans; for example, you may have to implement primary-key classes, finder methods,
primary-key–value generation, and so on in your entity beans. In addition, you have to choose between
implementing a bean as an entity bean or a session bean. It’s a bean provider’s job to design an effective
and efficient bean solution for you. You can then compare similar solutions from various vendors and purchase
the one that most closely addresses your situation.

The following sections show how to develop a stateless session bean for use in a WebObjects application
both on Mac OS X and Windows.

This chapter contains the following sections:

 ■ “Developing a Session Bean in Mac OS X” (page 17) explains how to develop a Web application that
uses a session bean in Mac OS X.

 ■ “method-params element” (page 94) shows how to develop a Web application that uses a session bean
in Windows.

Developing a Session Bean in Mac OS X

This section shows you how you develop a stateless session bean for use in a WebObjects application in Mac
OS X.

Creating the Bean Framework

Follow these steps to create a session-bean framework.

1. Launch Project Builder.

2. Choose File > New Project.

Developing a Session Bean in Mac OS X 17
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

3. In the New Project pane of the Project Builder Assistant, select Enterprise JavaBean Framework from the
list of project types, and click Next.

4. Name the project Hello.

5. In the Create New Enterprise Java Bean pane of the Assistant, select “Create source files for a new
Enterprise Java Bean.”

18 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

6. In the Choose Bean Type pane, make sure Stateless Bean is selected under Enterprise JavaBean Types.

7. In the Enterprise JavaBean Class Name pane:

a. Enter Hello in the Class Name text field.

b. Enter my.ejb in the Package Name text field.

Developing a Session Bean in Mac OS X 19
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Analyzing the Hello Bean’s Files

The Hello project has templates for the home and remote interfaces, as well as for the implementation class
of the Hello enterprise bean in the Classes group of the Files list. In addition, the Resources group contains
the bean’s deployment descriptor file.

Listing 3-1 shows the template for the home interface of the Hello enterprise bean (HelloHome.java):

Listing 3-1 HelloHome.java file

package my.ejb;
import javax.ejb.*;
import java.rmi.RemoteException;

public interface HelloHome extends EJBHome {

 /** Creation methods **/

 /* Stateful session beans may have multiple create methods taking
 * different parameters. They must all be reflected in identically
 * named methods in the home interface without the 'ejb' prefix
 * and initial cap.
 *
 * Stateless session bean create methods never have parameters.
 */

 public Hello create() throws RemoteException, CreateException;
}

Listing 3-2 shows the template for the bean’s remote interface (Hello.java):

Listing 3-2 Hello.java file

package my.ejb;
import javax.ejb.*;
import java.rmi.RemoteException;
import java.rmi.Remote;

public interface Hello extends EJBObject {

 //
 // Business Logic Interfaces
 //

 // Example:
 // public String hello() throws java.rmi.RemoteException;

}

Listing 3-3 shows the template for the bean’s implementation class (HelloBean.java):

Listing 3-3 HelloBean.java file

package my.ejb;
import javax.ejb.*;

20 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

public class HelloBean implements SessionBean {

 //
 // Creation methods
 //

 public HelloBean() {
 }

 public void ejbCreate() throws CreateException {
 /* Stateless session bean create methods never have parameters */
 }

 //
 // SessionBean interface implementation
 //

 private SessionContext _ctx;

 public void setSessionContext(SessionContext ctx) {
 this._ctx = ctx;
 }

 public void ejbPassivate() {
 /* does not apply to stateless session beans */
 }

 public void ejbActivate() {
 /* does not apply to stateless session beans */
 }

 public void ejbRemove() {
 }

 //
 // Business Logic Implementations
 //

 // Example:
 // public String hello() { return "hello"; }
}

Listing 3-4 shows the bean’s deployment descriptor file (ejb-jar.xml):

Listing 3-4 ejb-jar.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <description>deployment descriptor for Hello</description>
 <display-name>Hello</display-name>
 <enterprise-beans>
 <session>
 <description>deployment descriptor for HelloBean</description>
 <display-name>HelloBean</display-name>
 <ejb-name>HelloBean</ejb-name>
 <home>my.ejb.HelloHome</home>

Developing a Session Bean in Mac OS X 21
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

 <remote>my.ejb.Hello</remote>
 <ejb-class>my.ejb.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

In addition to providing you with most of the code needed to deploy a bean, Project Builder also partitions
the source code appropriately between two targets: EJB Deployment and EJB Client Interfaces.

Figure 3-1 shows how the bean’s source files are assigned to the EJB Deployment target.

Figure 3-1 Hello project—the EJB Deployment target’s members

When you view the EJB Client Interfaces target, however, you see that the implementation class and the
deployment descriptor files are not assigned to it, as shown in Figure 3-2.

Figure 3-2 Hello project—the EJB

22 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Adding Business Logic to the Bean

Now you’re ready to add the business logic required for the Hello bean to provide a message to its clients.

Edit Hello.java by adding the following method declaration:

public String message() throws RemoteException;

Edit HelloBean.java by adding the implementation of the message method, which is listed below.

public String message() {
 return "Hello, World.";
}

Building the Bean Framework

To build the Hello bean framework, all you have to do is click Build in the toolbar or choose Build > Build.
(Make sure that the Hello target is selected in the target pop-up menu before you build.)

After the framework is built, you can find it in the project’s build directory:

Hello/
 build/
 Hello.framework

Creating the Client Application

Now that the Hello bean framework is built, you’re ready to use it in an application. In this case, the client
application is an Web application that invokes the bean’s message method and displays its return value
using a WOString element.

1. Create a WebObjects application project.

2. Name the project Hello_Client.

Developing a Session Bean in Mac OS X 23
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

3. In the Enable J2EE Integration pane of the Project Builder Assistant, select “Deploy as an Enterprise
JavaBean container.”

When you deploy the client application as an EJB container, each application instance has its own EJB
container. For more information on internal and external containers, see “Enterprise JavaBeans in
WebObjects” (page 14).

4. This example doesn’t require the use of any data-store adaptors, so make sure no adaptors are selected
in the Choose EOAdaptors pane.

You need to select a data-store adaptor only when you plan to use enterprise objects in your application.
Entity beans that use bean-managed persistence (BMP) are responsible for interfacing with the necessary
data stores. For entity beans that use container-managed persistence (CMP), the bean container has this
responsibility. The Hello_Client application does not use enterprise objects.

5. Add the Hello framework to the project.

a. In the Choose Frameworks pane of the Assistant, click Add.

b. Select Hello.framework in the build folder of the Hello project folder, and click Choose.

Figure 3-3 highlights Hello.framework in the Hello_Client project.

24 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Figure 3-3 Hello_Client project—Hello.framework in Frameworks group

Adding Business Logic to the Client Application

You have generated an application that, when run, instantiates its own EJB container. This container behaves
like a standard EJB container. To access bean instances, you use standard EJB methods.

Modify Session.java

Now, edit Session.java so that each new session creates a Hello bean proxy that your components can
access.

First, add these import statements:

import my.ejb.Hello;
import my.ejb.HelloHome;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

Now, add two instance variables: one to hold a Hello bean instance and another to hold a Hello home-interface
object.

// Holds a Hello bean instance.
protected Hello hello;

Developing a Session Bean in Mac OS X 25
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

// Holds the Hello bean’s home interface.
private HelloHome _helloHome = null;

Modify the Session constructor so that it looks like this

public Session() {
 super();

 // Instantiate a Hello bean object.
 try {
 hello = helloHome().create();
 }
 catch (RemoteException re) {
 re.printStackTrace();
 }
 catch (CreateException ce) {
 ce.printStackTrace();
 }
}

Finally, add the following method:

/**
 * Obtains Hello bean’s home interface.
 * @return Hello bean’s home interface.
 */
public HelloHome helloHome() {
 if (_helloHome == null) {
 try {
 Context jndiContext = new InitialContext();
 _helloHome =
(HelloHome)PortableRemoteObject.narrow(jndiContext.lookup("HelloBean"),
HelloHome.class);
 }
 catch (NamingException ne) {
 ne.printStackTrace();
 }
 }
 return _helloHome;
}

Modify Main.wo

Open Main.wo in WebObjects Builder by double-clicking Main.wo, which is located under the Main subgroup
of the Web Components group in the Files list.

Add a String key called greeting to Main.wo through the Edit Source pop-up menu.

26 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Add a WOString element to the component, and bind it to the greeting key.

Modify Main.java

When a Main page is about to be displayed, the Main object needs to invoke the message method of its
Hello bean proxy to obtain the bean’s greeting and store the value returned in its greeting instance variable.
When the WOString element is rendered on the page, its value binding provides the text to be displayed;
in this case, the value comes from greeting in the Main object.

Add the following import statements to Main.java:

Developing a Session Bean in Mac OS X 27
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

import my.ejb.Hello;
import java.rmi.RemoteException;

Edit the Main constructor so that it looks like this

public Main(WOContext context) {
 super(context);

 Session session = (Session)session();

 try {
 greeting = session.hello.message();
 }
 catch (RemoteException re) {
 re.printStackTrace();
 }
}

Configuring the Container

This simple session bean project doesn’t make use of bean persistence. Therefore, it requires no container
configuration. The text you need to delete from the TransactionManagerConfiguration.xml file (Listing
3-5) starts at the line numbered 1 and ends at the line numbered 2 in (everything between the <resources>
tag and the </resources> tag, and the tags themselves). See “Transaction Manager Configuration ” (page
62) for more information.

Listing 3-5 TransactionManagerConfiguration.xml file of the Hello_Client project with
container-configuration information

<domain>
 <name>default</name>

// 1 <resources>
 <dataSource>
 <name>DefaultDatabase</name>
 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>
 <!-- Path to the database-driver JAR File if not in the extensions directory-->
 <jar>file:/FAKEPATHNAME</jar>
 <config>
 <driverName>jdbc:oracle:thin:@HOSTNAME:PORTNAME:DATABASENAME</driverName>
 <driverClassName>oracle.jdbc.OracleDriver</driverClassName>
 <user>ejb</user>
 <password>ejb</password>

 <!-- Transaction timeout in seconds. -->
 <transactionTimeout>60</transactionTimeout>
 <!-- Specifies the JDBC transaction isolation attribute. -->
 <isolationLevel>Serializable</isolationLevel>
 </config>

 <limits>
 <maximum>100</maximum>
 <minimum>10</minimum>
 <initial>10</initial>
 <maxRetain>300</maxRetain>
 <timeout>50</timeout>

28 Developing a Session Bean in Mac OS X
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

 </limits>
 </dataSource>

// 2 </resources>
</domain>

After removing the irrelevant information, the TransactionManagerConfiguration.xml file should look
like Listing 3-6:

Listing 3-6 TransactionManagerConfiguration.xml file of the Hello_Client project without
container-configuration information

<domain>
 <name>default</name>
</domain>

Running the Hello_Client Application

After you build and run the application, you should see a Web page similar to the one in Figure 3-4 in your
Web browser.

Figure 3-4 Output of the Hello_Client application

Developing a Session Bean in Windows

This section shows how to develop a stateless session bean for use in a WebObjects application in Windows.

Creating the Bean Framework

Follow these steps to create a session-bean framework.

1. Launch Project Builder.

2. Choose Project > New.

Developing a Session Bean in Windows 29
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

3. Choose Java WebObjects EJB Framework from the Project Type pop-up menu in the New Project dialog,
and click Browse.

4. Select a path for your project, name it Hello, and click Save.

5. In the Specify Enterprise JavaBeans pane of the EJB Framework Wizard, select “Create source files for a
new Enterprise Java Bean” and click Next.

6. Make sure that Stateless Session Bean is selected in the Chose Enterprise JavaBeans Type pane of the
wizard and click Next.

7. In the Create New Enterprise JavaBeans class pane:

a. Enter Hello in the Class Name text field.

b. Enter my.ejb in the Package Name text field.

c. Click Finish.

Adding Business Logic to the Bean

Now you’re ready to add the business logic required for the Hello bean to provide a message to its clients.

Edit Hello.java by adding the following code (the file is located in the Classes bucket):

public String message() throws RemoteException;

Edit HelloBean.java by adding the implementation of the message method, which is listed below (the
file is located in the Classes bucket of the EJBServer subproject).

public String message() {
 return "Hello, World.";
}

Building the Framework

To build the Hello framework, click the Build button or choose Tools > Project Build > Build.

After the framework is built, you find it in the project’s directory:

Hello/
 Hello.framework

Creating the Client Application Project

Now that the Hello framework is built, you’re ready to use it in an application. In this case, the client application
is a Web application that invokes the bean’s message method and displays its return value using a WOString
element.

1. Create a Java WebObjects Application project and name it Hello_Client.

30 Developing a Session Bean in Windows
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

2. Choose None in the “Choose type of assistance in your Java project” pane of the WebObjects Application
Wizard.

3. Choose “Deploy as an EJB Container” in the Enable J2EE Integration pane.

4. In the Choose EOAdaptors pane, click Select None, and then click Finish.

Adding the Hello Bean Framework to the Hello_Client Project

You need to add the Hello bean framework to the Hello_Client project in order to use the services provided
by the Hello enterprise bean—mainly providing a greeting. To accomplish that, follow these steps:

1. Select the Frameworks bucket and choose Project > Add Files.

2. Navigate to the Hello project directory, select Hello.framework, and click Open.

3. Click Add in the search order dialog.

Creating the Container Configuration Files

To create the configuration files that the client application needs to interact with its environment, you need
to run an application named OpenEJBTool, whose launch script is located in
/Apple/Library/WebObjects/JavaApplications/OpenEIBTool.woa.

Using the Bourne shell, execute the following commands:

cd /Apple/Library/WebObjects/JavaApplications/OpenEJBTool.woa

./OpenEJBTool.cmd -o c:/<Hello_Client_path>
 c:/<Hello_path>Hello.framework

When the tool is finished, you need to add the configuration files it generated (OpenEJBConfiguration.xml
and TransactionManagerConfiguration.xml) to the Resources bucket of the Hello_Client project.

Note: You have to run OpenEJBTool manually every time you add bean frameworks to your project or when
the deployment descriptor file in any of the bean frameworks your project uses changes.

Adding Business Logic to the Client Application

You have generated a WebObjects application that, when run, instantiates its own EJB container. This container
behaves like a standard EJB container. To access bean instances, you use standard EJB methods.

Modify Session.java

Here you edit Session.java so that each new session creates a Hello proxy and provides access to it to
components.

Developing a Session Bean in Windows 31
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

First, add these import statements:

import my.ejb.Hello;
import my.ejb.HelloHome;
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.CreateException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

Now, add two instance variables: one to hold a Hello bean object and another to hold a Hello home-interface
object.

// Holds a Hello bean instance.
protected Hello hello;

// Holds a Hello bean home-interface object.
private HelloHome _helloHome;

Modify the Session constructor so that it looks like this:

public Session() {
 super();

 // Instantiate a HelloBean object.
 try {
 hello = helloHome().create();

 } catch (RemoteException re) {
 re.printStackTrace();
 } catch (CreateException ce) {
 ce.printStackTrace();
 }
}

Finally, add the following method:

/**
 * Obtains HelloBean’s home interface.
 * @return HelloBean’s home interface.
 */
public HelloHome helloHome() {
 if (_helloHome == null) {
 try {
 Context jndiContext = new InitialContext();
 _helloHome =
(HelloHome)PortableRemoteObject.narrow(jndiContext.lookup("HelloBean"),
HelloHome.class);

 } catch (NamingException ne) {
 ne.printStackTrace();
 }
 }

 return _helloHome;
}

32 Developing a Session Bean in Windows
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Modify Main.wo

Open Main.wo in WebObjects Builder by double-clicking Main.wo, which is located under the Web
Components bucket.

Add a String key called greeting to Main.wo through the Edit Source pop-up menu.

Add a WOString element to the component, and bind it to the greeting key.

Modify Main.java

When a Main page is about to be displayed, the Main object needs to invoke the message method of its
Hello bean proxy to obtain the bean’s greeting and store the value returned in its greeting instance variable.
When the WOString element is rendered on the page, its value binding provides the text to be displayed;
in this case, the value comes from greeting in the Main object.

Add the following import statements to Main.java:

import com.my.ejb.Hello;
import java.rmi.RemoteException;

Edit the Main constructor so that it looks like this:

public Main(WOContext context) {
 super(context);

 Session session = (Session)session();

 try {
 greeting = session.hello.message();

 } catch (RemoteException re) {
 re.printStackTrace();
 }
}

Configuring the Container

This simple session-bean project doesn’t make use of bean persistence. Therefore, it requires no database
configuration. You need to edit the TransactionManagerConfiguration.xml file of the project to remove
extraneous container configuration information, which is everything between the <resources> and
</resources> tags, and the tags themselves.

After removing the irrelevant information, the TransactionManagerConfiguration.xml file should look
like this

<domain>
 <name>default</name>
</domain>

Developing a Session Bean in Windows 33
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

Running the Hello_Client Application

After you build and run the application, you should see a Web browser window with the message “Hello,
World.”

34 Developing a Session Bean in Windows
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing Session Beans

This chapter guides you through the development of an entity-bean framework based on a data model and
its use in an application. It also shows you the entity-bean source files that the Project Builder Assistant can
generate for you, which include source files for CMP (container-managed persistence) entity beans, BMP
(bean-managed persistence) entity beans, and DAO (Data Access Object) source files used to customize
data-store access.

The chapter contains the following sections:

 ■ “Developing an Entity Bean From a Data Model” (page 35) shows you how to create an enterprise-bean
framework using EOBeanBuilder.

 ■ “Using an Entity-Bean Framework” (page 40) explains how an entity-bean framework can be used in a
Web application.

 ■ “Advanced Entity-Bean Development” (page 46) shows the source files that EOBeanBuilder generates
for bean-managed persistence beans and DAO-based data-store access.

Developing an Entity Bean From a Data Model

This section shows how to use EOBeanAssistant to create an enterprise-bean framework based on entities
defined in a model file created using EOModeler.

This document’s companion files include a simple model file named Person.eomodeld, located in the
models directory.

Creating an Empty Bean Framework

Before generating the source files for an entity bean, there needs to be a project to which you add the files.
You can create an empty bean-framework project or you may add the generated files to an existing
bean-framework project. This section walks you through creating an empty bean framework.

1. In Project Builder, choose File > New Project.

2. Choose Enterprise JavaBean Framework as the project type.

3. Name the project Person.

4. Make sure “Empty Enterprise JavaBean framework” is selected in the Create New Enterprise JavaBean
pane of the Project Builder Assistant.

Developing an Entity Bean From a Data Model 35
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

Generating Enterprise-Bean Source Files From a Model File Using
EOBeanAssistant

EOBeanAssistant is an application that creates the Java source files and the ejb-jar.xml file you need to
implement an entity bean. It’s located in /Developer/Applications. Figure 4-1 shows the Select Model
pane of EOBeanAssistant. Enter the path to your model in the text field or click Select Model and navigate
to it.

Figure 4-1 The Select Model pane of EOBeanAssistant

In the Select Entities pane (Figure 4-2), select the entity or entities you want to generate enterprise-bean
source files for and click the right-pointing arrow so that they move from the box on the left to the one on
the right.

36 Developing an Entity Bean From a Data Model
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

Figure 4-2 The Select Entities pane of EOBeanAssistant

The Configure Bean pane (Figure 4-3) provides several options. Make sure Generate ejbFindAll Method,
Generate BMP Class, and Generate CMP Class are selected.

Developing an Entity Bean From a Data Model 37
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

Figure 4-3 The Configure Bean pane of EOBeanAssistant

The following list explains the text fields and options in the Configure Bean pane:

Package
The package name to use in the Java source files and the deployment descriptor.

Home Interface
The name of the home-interface class of the entity bean.

Remote Interface
The name of the remote-interface class of the entity bean.

Primary Key Class Name
The data type you want to use for the primary key of the entity bean.

Generate ejbFindAll Method
When selected, EOBeanAssistant generates findAll and ejbFindAll methods.

Generate BMP Class
When selected, EOBeanAssistant generates a BMP source file for the entity bean.

BMP Class Name
The name of the BMP class.

JNDI Data-Source Name
The name of the JNDI (Java Naming and Directory Service) data source that identifies the data store.

38 Developing an Entity Bean From a Data Model
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

BMP Class Extends CMP Class
When selected, the BMP source file generated by EOBeanAssistant extends the CMP class.

Generate DAO Class
When selected, EOBeanAssistant generates DAO class files that implement database-specific logic.

DAO Interface Name
The name of the DAO interface.

JDBC Class Name
The name of the JDBC class used to communicate with the data store.

Generate CMP Class
When selected, EOBeanAssistant generates a CMP source file for the entity bean.

CMP Class Name
The name of the CMP class.

The Common Bean Configuration pane allows you to enter header information that you want all the source
files generated to contain.

The Select Generation Path pane (Figure 4-4) allows you to enter or choose the path of the bean-framework
project folder you want to add the generated source files to. You can choose to overwrite the existing
ejb-jar.xmlfile or to add or replace only the entries corresponding to the added entity beans.

Figure 4-4 The Select Generation Path pane of EOBeanAssistant

Developing an Entity Bean From a Data Model 39
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

Listing 4-1 shows the files EOBeanAssistant adds to the Person project directory.

Listing 4-1 Enterprise bean files added by EOBeanAssistant to the Person project directory

Person/
 EOBeanBuilder.xml
 Person.java
 PersonBMP.java
 PersonCMP.java
 PersonHome.java
 META-INF/
 ejb-jar.xml

Using an Entity-Bean Framework

In this section you create an application that uses the entity-bean framework developed in “Developing an
Entity Bean From a Data Model” (page 35).

Before you can successfully run the application, you must create the Person database. Use OpenBaseManager
to import the database in the databases directory, which is part of the companion resources of this document.
Alternatively, you can do the following:

1. Create a database named Person using OpenBaseManager:

a. Launch OpenBaseManager, which is located in /Applications/OpenBase/OpenBaseManager.

b. Choose Database > New.

c. In the Configure Database dialog, enter Person in the Database Name text input field, select Start
Database at Boot, choose ASCII from the Internal Encoding pop-up menu, and click Set.

d. In the OpenBaseManager main window, select the Person database under localhost and click Start
Database.

2. Add the PERSON table to the Person database:

a. Open models/Person.eomodeld in EOModeler.

b. Choose Property > Generate SQL.

c. Make sure only the Create Tables option is selected in the SQL Generation dialog and click Execute
SQL.

Developing the Application Project

Follow these steps to develop the client-application project:

1. Create a project named Person_Client.

40 Using an Entity-Bean Framework
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

2. In the J2EE Integration pane of the Project Builder Assistant, select “Deploy as Enterprise JavaBean
container.”

3. In the Choose EOAdaptors pane of the Assistant, deselect the JDBC adaptor.

4. In the Choose Frameworks pane, add Person.framework, which is located in the build directory of
the Person project directory.

Defining Data Sources

In Project Builder, select GlobalTransactionConfiguration.xml under the Resources group. You should
see the file shown in Listing 4-2.

Listing 4-2 Person_Client project—GlobalTransactionConfiguration.xml file

<!DOCTYPE databases PUBLIC "-//EXOLAB/Castor JDO Configuration DTD Version
1.0//EN"

"http://www.apple.com/webobjects/5.2/DTDs/jdo-conf.dtd">
// 1<database name="Global_TX_Database" engine="oracle">

 <jndi name="java:comp/env/jdbc/DefaultCMPDatasource" />
 <mapping href="Contents/Resources/CMPConfiguration.xml" />
</database>

In the line numbered 1, change the value of the engine attribute to "generic".

For more information on data-source definition, see “Defining Data Sources” (page 68).

Mapping Enterprise Beans to Data-Store Tables

Select CMPConfiguration.xml under the Resources group of the Files list. You should see the file shown
in Listing 4-3.

Listing 4-3 Person_Client project—CMPConfiguration.xml file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
 "http://www.apple.com/webobjects/5.2/DTDs/mapping.dtd">
<mapping>
 <class identity="person_ID" name="my.ejb.PersonCMP">

// 1 <map-to table="*** MARKER table name ***"/>
 <field direct="true" name="personName" type="java.lang.String">

// 2 <sql name="personName" type="varchar"/>
 </field>
 <field direct="true" name="person_ID" type="java.lang.Integer">

// 3 <sql name="person_ID" type="integer"/>
 </field>
 </class>
</mapping>

Change the numbered lines according to these instructions:

Using an Entity-Bean Framework 41
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

1. Set the table attribute of the map-to element to "PERSON".

2. Set the name attribute of the sql element to "PERSON_NAME".

3. Set the name attribute of the sql element to "PERSON_ID".

For more information on mapping enterprise beans to tables, see “Mapping Enterprise Beans to Database
Tables” (page 64).

Configuring the Transaction Manager

Select TransactionManagerConfiguration.xml and edit it so that it looks like Listing 4-4.

Listing 4-4 Person_Client project—TransactionManagerConfiguration.xml file

<domain>
 <name>default</name>
 <resources>
 <dataSource>
 <name>DefaultDatabase</name>
 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>
 <jar>/Library/Java/Extensions/OpenBaseJDBC.jar</jar>
 <config>
 <driverName>jdbc:openbase://localhost/Person</driverName>
 <driverClassName>com.openbase.jdbc.ObDriver</driverClassName>
 <transactionTimeout>60</transactionTimeout>
 <isolationLevel>Serializable</isolationLevel>
 </config>
 <limits>
 <maximum>100</maximum>
 <minimum>10</minimum>
 <initial>10</initial>
 <maxRetain>300</maxRetain>
 <timeout>50</timeout>
 </limits>
 </dataSource>
 </resources>
</domain>

For more information on transaction manager configuration, see “Transaction Manager Configuration ” (page
62).

Creating, Retrieving, and Removing Person Beans

Now, add the application’s business logic. Select Application.java under Classes in the Files list and
modify it to match Listing 4-5.

Listing 4-5 Person_Client project—Application.java file

import my.ejb.Person;
import my.ejb.PersonHome;

42 Using an Entity-Bean Framework
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.FinderException;
import javax.ejb.RemoveException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;

public class Application extends WOApplication {

 private PersonHome _personHome = null;

 public static void main(String argv[]) {
 WOApplication.main(argv, Application.class);
 }

 public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");

 // Create Person records.
 createPeople();

 // Show Person records.
 showPeople();

 // Remove Person records.
 removePeople();
 }

 /**
 * Creates Person records.
 */
 public void createPeople() {
 System.out.println();
 System.out.println("Creating Person records.");

 String[] names = {"Susana", "Charles", "Maria", "August"};
 NSArray personNames = new NSArray(names);
 for (int id = 1; id <= personNames.count(); id++) {
 addPerson(id, (String)personNames.objectAtIndex(id - 1));
 }
 System.out.println();
 }

 /**
 * Displays Person records.
 */
 public void showPeople() {
 System.out.println("Showing Person records:");
 for (int id = 1; ; id++) {
 try {
 Integer personID = new Integer(id);
 Person person = personHome().findByPrimaryKey(personID);

Using an Entity-Bean Framework 43
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 System.out.println("Name: " + person.getPersonName());
 }
 catch (FinderException fe) {
 break;
 }
 catch (RemoteException re) {
 re.printStackTrace();
 }
 }
 System.out.println();
 }

 /**
 * Removes Person records.
 */
 public void removePeople() {
 int id = 1;
 System.out.println("Removing Person records:");
 while (removePerson(id++))
 ;
 System.out.println();
 }

 /**
 * Adds a Person record.
 */
 public void addPerson(int id, String name) {
 try {
 Integer personID = new Integer(id);
 if (personIDIsAvailable(personID)) {
 Person person = personHome().create(personID, name);
 System.out.println("Added " + name + ".");
 }
 else {
 System.out.println(name + " not added because ID " + personID + " is in
 use.");
 }
 }
 catch (RemoteException re) {
 re.printStackTrace();
 }
 catch (CreateException ce) {
 // Unable to create record: Do nothing.
 }
 }

 /**
 * Removes a Person record.
 * @return <code>true</code> when successful, <code>false</code> otherwise.
 */
 public boolean removePerson(int id) {
 boolean removed = false;
 try {
 Integer personID = new Integer(id);

 // FinderException is thrown when the record doesn't exist.
 Person person = personHome().findByPrimaryKey(personID);

44 Using an Entity-Bean Framework
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 System.out.println("Deleting " + person.getPersonName() + ".");
 personHome().remove(personID);
 removed = true;
 }
 catch (FinderException fe) {
 // Record not found: Do nothing.
 }
 catch (RemoteException re) {
 re.printStackTrace();
 }
 catch (RemoveException re) {
 re.printStackTrace();
 }
 return removed;
 }

 /**
 * Determines whether a personID has been used.
 * @param personID the value to check;
 * @return <code>true</code> when personID is available,
 * <code>false</code> otherwise.
 */
 public boolean personIDIsAvailable(Integer personID) {
 boolean personID_available = true;
 try {
 personHome().findByPrimaryKey(personID);
 personID_available = false;
 }
 catch (FinderException fe) {
 // personID is available: Do nothing.
 }
 catch (RemoteException re) {
 re.printStackTrace();
 personID_available = false;
 }
 return personID_available;
 }

 /**
 * Obtains Person's home interface.
 * @return Person's home interface.
 */
 public PersonHome personHome() {
 if (_personHome == null) {
 try {
 Context jndiContext = new InitialContext();
 _personHome =
(PersonHome)PortableRemoteObject.narrow(jndiContext.lookup("PersonCMP"),
PersonHome.class);
 }
 catch (NamingException ne) {
 ne.printStackTrace();
 }
 }
 return _personHome;
 }
}

Using an Entity-Bean Framework 45
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

Build and run the application. You should see the following output in the console:

Welcome to Person_Client!

Creating Person records.
Added Susana.
Added Charles.
Added Maria.
Added August.

Showing Person records:
Name: Susana
Name: Charles
Name: Maria
Name: August

Removing Person records:
Deleting Susana.
Deleting Charles.
Deleting Maria.
Deleting August.

Advanced Entity-Bean Development

This section addresses support for advanced entity-bean development, mainly bean-managed persistence
(BMP) and Data Access Objects (DAO).

Bean-Managed Persistence

CMP beans are easy to use because the bean container performs the data-store operations; you don’t need
to worry about executing SQL statements. However, you can use BMP beans when you need to customize
the way your beans store and retrieve data from a data store.

If you select Generate BMP Class in the Configure Bean pane of EOBeanAssistant when you develop an entity
bean from a data model, you get a file similar to the one shown in Listing 4-6.

Listing 4-6 PersonBMP.java file

package my.ejb;
import javax.sql.DataSource;
import javax.naming.InitialContext;
import javax.ejb.*;
import java.sql.*;

public class PersonBMP implements EntityBean {
 protected DataSource _datasource;
 protected EntityContext _entityContext;
 protected java.lang.String personName;
 protected java.lang.Integer person_ID;

 /**
 * Empty constructor as required by the EJB spcification.

46 Advanced Entity-Bean Development
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 */
 public PersonBMP() {
 }

 /**
 * This method creates a new entity from all required (non-NULL)
 * attributes.
 * @returns the primary key for this bean instance.
 * @throws javax.ejb.CreateException
 */
 public java.lang.Integer ejbCreate(java.lang.Integer person_ID) throws
CreateException{
 this.person_ID = person_ID;
 Connection connection = null;
 PreparedStatement statement = null;
 try {
 String sqlString = "INSERT INTO PERSON (PERSON_ID) VALUES (?)";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, person_ID.intValue());
 int ret=statement.executeUpdate();
 if (ret != 1) {
 throw new CreateException();
 }
 }
 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 return person_ID;
 }

 /**
 */
 public void ejbPostCreate(java.lang.Integer person_ID) {
 }

 /**
 * This method creates a new entity from all attributes.
 * @returns the primary key for this bean instance.
 * @throws javax.ejb.CreateException
 */
 public java.lang.Integer ejbCreate(java.lang.Integer person_ID, java.lang.String
personName) throws CreateException {
 this.personName = personName;
 this.person_ID = person_ID;
 Connection connection = null;
 PreparedStatement statement = null;
 try {
 String sqlString = "INSERT INTO PERSON (PERSON_NAME, PERSON_ID) VALUES
(?,?)";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);

 statement.setString(1, personName);

Advanced Entity-Bean Development 47
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 statement.setInt(2, person_ID.intValue());
 int ret=statement.executeUpdate();
 if (ret != 1) {
 throw new CreateException();
 }
 }
 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 return person_ID;
 }

 /**
 */
 public void ejbPostCreate(java.lang.Integer person_ID, java.lang.String personName)
 {
 }

 /**
 * This method returns all entities in this table.
 * @returns all entities in the table in a java.util.Collection.
 * @throws javax.ejb.FinderException if there are problems connecting
 * to the database or executing the query.
 */
 public java.util.Collection ejbFindAll() throws FinderException {
 Connection connection = null;
 PreparedStatement statement = null;
 try {
 String sqlString = "SELECT PERSON_ID FROM PERSON";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);
 ResultSet resultSet = statement.executeQuery();
 java.util.Collection primaryKeys = new java.util.ArrayList();
 while(resultSet.next()) {
 java.lang.Integer primaryKey = new java.lang.Integer(resultSet.getInt(1));
 primaryKeys.add(primaryKey);
 }
 resultSet.close();
 return primaryKeys;
 }
 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 }

 /**
 * This method returns the bean associated with the primaryKey argument,
 * or throws a javax.ejb.ObjectNotFoundException.
 * @returns the bean associated with the primaryKey argument.
 * @throws javax.ejb.ObjectNotFoundException if an entity with the given
 * primary key doesn't exist.
 */

48 Advanced Entity-Bean Development
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 public java.lang.Integer ejbFindByPrimaryKey(java.lang.Integer primaryKey) throws
FinderException {
 Connection connection=null;
 PreparedStatement statement=null;
 try {
 String sqlString = "SELECT PERSON_ID FROM PERSON WHERE PERSON_ID = ? ";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);
 statement.setInt(1, primaryKey.intValue());
 ResultSet resultSet = statement.executeQuery();
 boolean found = resultSet.next();
 resultSet.close();
 if (found) {
 return primaryKey;
 }
 else {
 throw new ObjectNotFoundException("Could not find: " + primaryKey);
 }
 }
 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 }

 /**
 */
 public java.lang.String getPersonName(){
 return personName;
 }

 /**
 */
 public void setPersonName(java.lang.String personName){
 this.personName = personName;
 }

 /**
 */
 public java.lang.Integer getPerson_ID() {
 return person_ID;
 }

 public void ejbRemove() throws RemoveException {
 Connection connection = null;
 PreparedStatement statement = null;
 try {
 String sqlString = "DELETE FROM PERSON WHERE PERSON_ID = ? ";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, person_ID.intValue());
 if (statement.executeUpdate() != 1) {
 throw new RemoveException();
 }
 }

Advanced Entity-Bean Development 49
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 }

 public void ejbActivate() {
 java.lang.Integer person_ID = (java.lang.Integer) _entityContext.getPrimaryKey();
 this.person_ID = person_ID;
 }

 public void ejbPassivate() {
 }

 public void ejbLoad() {
 Connection connection = null;
 PreparedStatement statement = null;
 try {
 String sqlString = "SELECT PERSON_NAME FROM PERSON WHERE PERSON_ID = ? ";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);

 statement.setInt(1, person_ID.intValue());
 ResultSet resultSet = statement.executeQuery();
 if(!resultSet.next()) {
 resultSet.close();
 throw new NoSuchEntityException("ejbLoad failed. Primary key not found:
 "+_entityContext.getPrimaryKey());
 }
 personName = resultSet.getString(1);
 resultSet.close();
 }
 catch(SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 }

 public void ejbStore() {
 Connection connection=null;
 PreparedStatement statement=null;
 try {
 String sqlString = "UPDATE PERSON SET PERSON_NAME = ? WHERE PERSON_ID = ?
 ";
 connection = _datasource.getConnection();
 statement = connection.prepareStatement(sqlString);

 statement.setString(1, personName);
 statement.setInt(2, person_ID.intValue());
 if(statement.executeUpdate() != 1) {
 throw new NoSuchEntityException("ejbStore failed. Primary key not found:
 "+_entityContext.getPrimaryKey());
 }
 }

50 Advanced Entity-Bean Development
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 catch (SQLException e) {
 throw new EJBException(e);
 }
 finally {
 cleanup(connection, statement);
 }
 }

 public void setEntityContext(EntityContext entityContext) {
 _entityContext = entityContext;
 try {
 InitialContext context = new InitialContext();
 _datasource = (DataSource) context.lookup("java:comp/env/jdbc/DataSource");
 }
 catch(Exception ne) {
 throw new EJBException(ne);
 }
 }

 public void unsetEntityContext() {
 _entityContext = null;
 }

 private void cleanup(Connection connection, PreparedStatement statement) {
 if(statement != null) {
 try{
 statement.close();
 }
 catch(SQLException e) {
 // Do nothing.
 }
 }
 if(connection != null) {
 try {
 connection.close();
 }
 catch(SQLException e) {
 // Do nothing.
 }
 }
 }
}

Data Access Objects

When you select Generate DAO Class in the Configure Bean pane of EOBeanAssistant, you get a file similar
to the one listed in Listing 4-7.

Listing 4-7 PersonDAO.java file

package my.ejb;

public interface PersonDAO {

 /**
 * This method creates a new entity from its required attributes.

Advanced Entity-Bean Development 51
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

 * @throws javax.ejb.CreateException;
 * @returns the primary key for this bean instance.
 */
 public java.lang.Integer ejbCreate(java.lang.Integer person_ID) throws
javax.ejb.CreateException;

 /**
 * This method creates a new entity from all attributes.
 * @throws javax.ejb.CreateException;
 * @returns the primary key for this bean instance.
 */
 public java.lang.Integer ejbCreate(java.lang.Integer person_ID, java.lang.String
personName) throws javax.ejb.CreateException;

 /**
 * This method returns the bean associated with the primaryKey argument,
 * or throws a javax.ejb.ObjectNotFoundException.
 * @throws javax.ejb.ObjectNotFoundException if an entity with the given
 * primary key doesn't exist;
 * @returns the bean associated with the primaryKey argument.
 */
 public java.lang.Integer ejbFindByPrimaryKey(java.lang.Integer primaryKey) throws
javax.ejb.FinderException;

 public void ejbRemove() throws javax.ejb.RemoveException;

 public void ejbLoad();

 public void ejbStore();

 public void setBeanInstance(PersonBMP bean, javax.sql.DataSource datasource);

}

52 Advanced Entity-Bean Development
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing Entity Beans

This chapter shows how to create enterprise-bean frameworks to be used by client applications. It contains
the following sections:

 ■ “Adding Source Files to a Bean-Framework Project” (page 53) explains how to add enterprise-bean
source files to an existing bean framework.

 ■ “Adding JAR Files to a Bean-Framework Project” (page 54) describes how to add JAR files of enterprise
beans to an existing bean framework.

 ■ “Creating Frameworks From Bean JAR Files in Windows” (page 54) focuses on creating bean frameworks
from JAR files in Windows.

 ■ “Adding CMP Fields to an EJB Deployment Descriptor” (page 55) provides an example of an EJB
deployment descriptor for an entity bean with elements for CMP fields, which are the attributes whose
persistence are the responsibility of the bean container.

 ■ “Generating EJB Stubs” (page 56) covers EJB-stub generation.

Adding Source Files to a Bean-Framework Project

To add new enterprise-bean source files to an existing enterprise-bean framework project, follow these steps:

1. Choose File > New File.

2. Choose Enterprise JavaBean from the New File pane of the Project Builder Assistant.

3. In the New Enterprise JavaBean pane of the Assistant:

a. Enter the name of the bean in the File Name text field.

b. Enter the location where you want to place the bean’s source files in the Location text field.

c. Choose the project you want to add the bean to from the Add to Project pop-up menu.

4. Select “Create source files for a new Enterprise JavaBean” in the Create New Enterprise JavaBean pane.

5. Select the type of bean you want to create in the Choose Bean Type pane of the Assistant.

6. In the Enterprise JavaBean Class Name pane:

a. Enter the class name of the bean in the Class Name text field.

b. Enter the package name in the Package Name text field.

Adding Source Files to a Bean-Framework Project 53
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

Adding JAR Files to a Bean-Framework Project

To add an enterprise-bean JAR file to an existing enterprise-bean framework project follow these steps:

1. Choose File > New File.

2. Choose Enterprise JavaBean form the New File pane of the Project Builder Assistant.

3. In the New Enterprise JavaBean pane of the Assistant:

a. Enter the name of the bean in the File Name text field.

b. Choose the project you want to add the bean to from the Add to Project pop-up menu.

4. In the Create New Enterprise JavaBean pane:

a. Select Use JAR Files.

b. Enter the location of the JAR files you want to add in the Client Interfaces JAR and Deployment JAR
text fields (client-interface JAR files contain helper classes that facilitate communication between
bean clients and bean containers).

Creating Frameworks From Bean JAR Files in Windows

In Windows, you have to create one enterprise-bean framework per JAR file. Follow these steps to create an
enterprise-bean framework:

1. Launch Project Builder.

2. Choose Project > New.

3. Choose Java WebObjects EJB Framework from the Project Type pop-up menu in the New Project dialog
and enter a location for your project.

4. In the Specify Enterprise JavaBeans pane of the EJB Framework Wizard:

a. Select “Use JAR Files.”

54 Adding JAR Files to a Bean-Framework Project
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

b. Enter the location of the JAR file you want to use in the “Client Interfaces jar” text field.

After WebObjects finishes generating the project, you should see a window like the one in Figure 5-1.

Figure 5-1 Bean framework project in Windows

Adding CMP Fields to an EJB Deployment Descriptor

After creating a bean framework using Project Builder, you have to add to the deployment descriptor the
fields whose persistence is to be managed by the EJB container. To accomplish this, you add cmp-field
elements to the ejb-jar.xml file in the META-INF directory of your project.

Adding CMP Fields to an EJB Deployment Descriptor 55
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

Listing 5-1 lists the deployment descriptor of a simple entity bean with container-managed persistence. The
numbered lines show the cmp-field elements.

Listing 5-1 Deployment descriptor for a CMP entity bean

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>
<ejb-jar>
 <description>deployment descriptor for PersonBean</description>
 <display-name>PersonBean</display-name>
 <enterprise-beans>
 <entity>
 <description>deployment descriptor for PersonBean</description>
 <display-name>PersonBean</display-name>
 <ejb-name>PersonBean</ejb-name>
 <home>com.my.ejb.PersonHome</home>
 <remote>com.my.ejb.Person</remote>
 <ejb-class>com.my.ejb.PersonBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>com.my.ejb.PersonPK</prim-key-class>
 <reentrant>False</reentrant>
 <resource-ref>
 <description>the default data source for a CMP bean.</description>
 <res-ref-name>jdbc/DefaultCMPDatasource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

// 1 <cmp-field>
// 2 <field-name>PersonID</field-name>
// 3 </cmp-field>
// 4 <cmp-field>
// 5 <field-name>firstName</field-name>
// 6 </cmp-field>
// 7 <cmp-field>
// 8 <field-name>lastName</field-name>
// 9 </cmp-field>
// 10 <cmp-field>
// 11 <field-name>middleInitial</field-name>
// 12 </cmp-field>
// 13 <cmp-field>
// 14 <field-name>dateOfBirth</field-name>
// 15 </cmp-field>

 </entity>
 </enterprise-beans>
</ejb-jar>

Generating EJB Stubs

When you build a bean-framework project you have the option of generating the EJB stubs or not generating
them. The EJB_STUB_GENERATION build setting of the EJB Client Interfaces target is how you tell Project
Builder whether to create these stubs. The build setting can have two values: OpenORB and None. By default,
the build setting is set to OpenORB. This means that stubs are generated. By setting the build setting to None,

56 Generating EJB Stubs
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

you tell Project Builder not to generate the stubs, which makes building bean-frameworks faster. However,
this setting requires that the WOEJBTransportproperty be set to IntraVM. For more on the WOEJBTransport
property, see “Communication Transport Between Bean Clients and Containers” (page 71).

You access the EJB_STUB_GENERATION build setting through the Expert View of the EJB Client Interfaces
target, as shown in Figure 5-2.

Figure 5-2 Viewing the value of the EJB_STUB_GENERATION build setting

In Windows, you find the EJB_STUB_GENERATION build setting in the Makefile.preamble file of the
EJBServer subproject.

In bean-framework projects created with a version of WebObjects earlier than 5.2, you may have to add the
build setting yourself. Just click “Add new build setting” in the lower-left corner of the Build Settings pane.

Generating EJB Stubs 57
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

58 Generating EJB Stubs
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing Bean Frameworks

This chapter shows how to configure a bean-client application project so that it can use resources like
databases and JavaMail connections, explains how to ensure that each enterprise bean is bound to the
appropriate resources, and shows how you can improve the performance of applications through the use of
the WOEJBTransport property.

You need to configure three major items before deploying a bean-client application:

 ■ Transaction manager. This is where you define the data sources that your enterprise beans use to
connect to the data stores that hold their data, and the JavaMail connections they use for messaging.

 ■ Persistence manager. Here you map the fields of your CMP (container-managed persistence) beans to
columns in tables of your databases so that the container can perform database transactions for the
beans.

 ■ EJB container. This is where you set bean-deployment properties such as method transactions and
permissions.

You configure bean-client applications by editing the files in Table 6-1.

Table 6-1 The configuration files of a bean-client application

PurposeFilename

Defines data sources and JavaMail connections.TransactionManagerConfiguration.xml

Defines the JNDI name of a remote data store.GlobalTransactionConfiguration.xml

Defines bean-to-table and field-to-column mapping.CMPConfiguration.xml

Defines enterprise-bean deployment behavior for the
container.

OpenEJBConfiguration.xml

The chapter is divided in the following sections:

 ■ “Configuration Overview” (page 60) provides you with a checklist of items you need to review in the
configuration files that WebObjects creates by default.

 ■ “Transaction Manager Configuration ” (page 62) explains how to configure the transaction manager.

 ■ “Persistence Manager Configuration ” (page 63) describes how to map enterprise- bean fields to table
columns.

 ■ “Container Configuration” (page 68) covers the configuration of the EJB container.

 ■ “Using External Containers” (page 70) shows how to configure client applications to use an external EJB
container.

 ■ “Communication Transport Between Bean Clients and Containers” (page 71) explains how communication
between client applications and bean containers can be streamlined.

59
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

 ■ “Generating the EJB Configuration Files” (page 72) discusses the regeneration of the EJB configuration
files of a bean-client application project.

 ■ “EJB Container Operation Logging” (page 72) describes how to configure application logging.

Configuration Overview

This section gives you a quick look at the configuration process for bean-client applications. It lists the major
points you need to look at before deploying your application. It’s divided in the following sections:

 ■ “Configuring the Transaction Manager” (page 60)

 ■ “Configuring the EJB Container ” (page 61)

 ■ “Configuring the Persistence Manager” (page 62)

Configuring the Transaction Manager

The TransactionManagerConfiguration.xml file is where you enter connection information, such as
user name and password, for the data stores that your application’s CMP beans use. You also configure
JavaMail. The OpenEJBConfiguration.xml file determines what you need to configure in this file: the data
stores, or JavaMail.

If your enterprise beans use container-managed persistence (the OpenEJBConfiguration.xml file contains
the string “<res-type>javax.sql.DataSource</res-type>”), you need to configure at least one data
source.

Listing 6-1 Example dataSource element of the TransactionManagerConfiguration.xml file

<dataSource>
 <name>DefaultDatabase</name>
 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>
 <jar>file:/Users/Shared/JDBCDrivers/oracle/oracle8.1.7.1.zip</jar>
 <config>
 <driverName>jdbc:oracle:thin:@xsrv3.apple.com:1521:sqa</driverName>
 <driverClassName>oracle.jdbc.OracleDriver</driverClassName>
 <user>ejb</user>
 <password>ejb</password>
 </config>
 <limits>
 <maximum>100</maximum>
 <minimum>10</minimum>
 <initial>10</initial>
 <maxRetain>300</maxRetain>
 <timeout>50</timeout>
 </limits>
</dataSource>

If your enterprise beans do not use container-managed persistence, you need to delete the resources
element from the TransactionManagerConfiguration.xml file, which includes everything between the
<resources> tag and the </resources> tag as well as the tags themselves.

60 Configuration Overview
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

If you need to access more than one data store, you can add dataSource elements for each additional data
store. See “Transaction Manager Configuration ” (page 62) for more information.

If your enterprise beans make use of JavaMail (the OpenEJBConfiguration.xml file contains the string
“<resource-type>javax.mail.Session</resource-type>”), you need to configure JavaMail.

To configure JavaMail in the TransactionManagerConfiguration.xml file, add this to the data-source
section and customize as necessary:

<javamail>
 <name>DefaultSMTPServer</name>
 <property>
 <key>mail.smtp.host</key>
 <value>post.office.com</value>
 </property>
</javamail>

Configuring the EJB Container

Once you have defined the resources that your enterprise beans utilize, you have to review the container
environment that WebObjects defined for you in the OpenEJBConfiguration.xml file:

 ■ Data sources and JavaMail-connection factories.

If your enterprise beans use more than one data source or rely on JavaMail (as defined in the
TransactionManagerConfiguration.xml file, you have to make sure that each bean is linked to
the appropriate data source or JavaMail connection factory (through the res-id element inside
resource-ref) in the OpenEJBConfiguration.xml file. See “resource-ref element” (page 96).

 ■ Environment entries.

Scan the file for env-entry elements and make sure that they contain the appropriate values for your
situation. See “env-entry element” (page 91).

 ■ Method-transaction settings.

Make sure that the trans-attribute element of method-transaction elements is set to the
appropriate transaction type. If the enterprise bean does not define the transaction type for a method,
WebObjects sets it to Required. See “query element” (page 96), and “method-transaction element” (page
94) for details.

 ■ One entity-container element per database.

When your CMP beans use more than one database, you need to

 ❏ group the CMP beans that use the same data store under the same entity-container element

 ❏ create a global transaction manager configuration file by duplicating the
GlobalTransactionConfiguration.xml file and changing "Global_TX_Database" so that it
names the additional data source (for example, "Global_TX_Personnel")

In general, you should use the following grouping:

 ❏ one entity-container element per distinct database that encloses its corresponding CMP beans
(for more information, see “entity-container element” (page 91))

 ❏ one stateless-session-container element that encloses all stateless beans

Configuration Overview 61
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

 ❏ one stateful-session-container element that encloses all stateful beans

Configuring the Persistence Manager

This section explains how to configure the container for CMP beans. If your application doesn’t use CMP
beans, you don’t need to configure the files mentioned here. In fact, the files are only present in your project
when at least one of the enterprise-bean frameworks in the project uses container-managed persistence.

GlobalTransactionConfiguration.xml

This is where you define the JNDI name of a remote data store. It must be identical to the name used in the
resource-ref element of a bean in the CMPConfiguration.xml file. You must have one global-transaction
configuration file per data store.

CMPConfiguration.xml

This is where you map enterprise beans to tables and their fields (or instance variables) to columns in those
tables. You also define a bean’s identity or primary key and configure key-value generators. This is an example
of a CMPConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
 "http://castor.exolab.org/mapping.dtd">
<mapping>
 <class key-generator="MAX" identity="mPropID"
name="webobjectsexamples.realestate.property.PropertyCMPBean">
 <map-to table="EJB_PROPERTY"/>
 <field direct="true" name="mPropID" type="java.lang.Integer">
 <sql name="PROP_ID" type="integer"/>
 </field>
 <field direct="true" name="mPropAddress" type="java.lang.String">
 <sql name="PROP_ADDR" type="varchar"/>
 </field>
 <field direct="true" name="mPropDate" type="java.util.Date">
 <sql name="PROP_LIST_DATE" type="date"/>
 </field>
 <field direct="true" name="mPropPrice" type="float">
 <sql name="PROP_ASK_PRICE" type="real"/>
 </field>
 </class>
</mapping>

For more information, see “Persistence Manager Configuration ” (page 63).

Transaction Manager Configuration

WebObjects includes the Tyrex transaction manager. You configure it through the
TransactionManagerConfiguration.xml file.

62 Transaction Manager Configuration
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

The only item you need to configure for the transaction manager is the domain. A transaction domain provides
centralized management of transactions. It defines the policy for all transactions created from that domain,
such as default timeout, maximum number of open transactions, support, and journaling. In addition, the
domain maintains resource managers such as JDBC data sources and JCA (J2EE Connector Architecture)
connectors.

Note: If your application uses only session beans and does not need to access a data store, you must remove
the resources element from the TransactionManagerConfiguration.xml file.

This is an example of a TransactionManagerConfiguration.xml file:

<domain>
 <name>default</name>
 <resources>
 <dataSource>
 <name>DefaultDatabase</name>
 <class>tyrex.resource.jdbc.xa.EnabledDataSource</class>
 <jar>/Library/Java/Extensions/OpenBaseJDBC.jar</jar>
 <config>
 <driverName>jdbc:openbase://localhost/Person</driverName>
 <driverClassName>com.openbase.jdbc.ObDriver</driverClassName>
 <transactionTimeout>60</transactionTimeout>
 <isolationLevel>Serializable</isolationLevel>
 </config>
 <limits>
 <maximum>100</maximum>
 <minimum>10</minimum>
 <initial>10</initial>
 <maxRetain>300</maxRetain>
 <timeout>50</timeout>
 </limits>
 </dataSource>
 </resources>
</domain>

For details on how to write the transaction manager configuration file, see “Elements of the Transaction
Manager Configuration File” (page 83).

Persistence Manager Configuration

Container-managed persistence is handled by the Castor JDO component. It generates SQL statements that
the container uses to update information in a database. All you have to do is map a database’s table columns
to entity beans’ fields.

The persistence manager configuration files specify how the persistence manager obtains a connection to
a data store, the mapping between Java classes and the corresponding data-store elements, and the service
provider to use to talk to the data store.

These are supported database servers:

 ■ Generic JDBC engine

 ■ Oracle 7 and Oracle 8

Persistence Manager Configuration 63
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

 ■ Sybase 11 and SQL Anywhere

 ■ Microsoft SQL Server

 ■ DB/2

 ■ PostgreSQL 6.5 and 7

 ■ Hypersonic SQL

 ■ InstantDB

 ■ Interbase

 ■ MySQL

 ■ SAP DB

You configure the persistence manager by editing three files:

 ■ CMPConfiguration.xml

This file defines the correspondence between table columns and the fields of your enterprise beans. It
also defines how CMP beans are made persistent. This mapping is used in global transaction configuration
files.

 ■ GlobalTransactionConfiguration.xml

This file defines the configuration that the persistence manager uses when a client uses an enterprise
bean with a transaction context. This configuration requires that the data source be specified in the JNDI
registry. The persistence manager creates the data-store connection, which can be used in bean-managed
as well as container-managed persistence beans.

Mapping Enterprise Beans to Database Tables

One of the tasks you need to perform to accomplish bean persistence is to map the enterprise bean fields
to be persisted to table columns or other types of permanent storage. You accomplish this by editing the
CMPConfiguration.xml file.

The Mapping File

The mapping information you enter in the CMPConfiguration.xml file is written from the point of view
of the enterprise bean and describes how the contents of the bean’s fields are translated to and from
permanent storage.

This is an example of the contents of the CMPConfiguration.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mapping PUBLIC "-//EXOLAB/Castor Mapping DTD Version 1.0//EN"
 "http://castor.exolab.org/mapping.dtd">
<mapping>
 <class key-generator="MAX" identity="mPropID"
name="webobjectsexamples.realestate.property.PropertyCMPBean">
 <map-to table="EJB_PROPERTY"/>
 <field direct="true" name="mPropID" type="java.lang.Integer">
 <sql name="PROP_ID" type="integer"/>
 </field>

64 Persistence Manager Configuration
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

 <field direct="true" name="mPropAddress" type="java.lang.String">
 <sql name="PROP_ADDR" type="varchar"/>
 </field>
 <field direct="true" name="mPropDate" type="java.util.Date">
 <sql name="PROP_LIST_DATE" type="date"/>
 </field>
 <field direct="true" name="mPropPrice" type="float">
 <sql name="PROP_ASK_PRICE" type="real"/>
 </field>
 </class>
</mapping>

For details in how to write the CMPConfiguration.xml file, see “Elements of the Component-Managed
Persistence Configuration File” (page 75).

Primary Keys

The persistence manager can generate the values of identity properties automatically with the key generator.
When the enterprise bean’s createmethod is invoked, the persistence manager sets the value of the identity
property to the value obtained from the key generator. The key generator can use one of several algorithms
available to generate the value. You can use generic algorithms or algorithms specific to a data store. For
details on setting the algorithm to use for an enterprise bean’s identity property, see “class element” (page
77) and “key-generator element” (page 81).

You can use the key generator only under the following conditions:

 ■ The primary-key value is not determined from the arguments to the bean’s ejbCreate method.

 ■ The bean’s identity can be determined through a single field of numeric (byte through long) or String
type.

The following sections describe the key-generator algorithms you can use.

MAX

This generic algorithm fetches the maximum value of the primary key (MAX) and locks the record found until
the end of the transaction. When the transaction ends, the value generated is MAX + 1. Because of the lock,
concurrent transactions that use the same algorithm wait until the end of the original transaction to obtain
a new primary-key value. Note that it is still possible to perform multiple inserts during the same transaction.

With this algorithm, duplicate-key exceptions are almost completely avoided. The only case in which they
might occur is when inserting a row into an empty table because there are no rows to lock. In this case, the
value generated is 1.

This is an example definition of a key generator using the MAX algorithm:

<key-generator name="MAX">
 <param name="table" value="PERSON"/>
 <param name="key-column" value="PERSON_ID"/>
</key-generator>

Persistence Manager Configuration 65
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

HIGH/LOW

This generic algorithm needs an auxiliary table or sequence table containing a unique column (the key
column) that stores table names and a numeric (integer, bigint, or numeric) column used to reserve
primary-key values.

The following table describes the parameters used by the HIGH/LOW key generator.

Table 6-2 HIGH/LOW key generator parameters

UseDescriptionParameter

MandatorySequence-table name.table

MandatoryName of the column containing table names.key-column

MandatoryName of the column used to reserve primary-key values.value-column

Optional; default="10"Number of primary-key values the key generator reserves
at a time.

grab-size

Optional; default="false"Indicates whether the key generator must use the same
connection when accessing the sequence table. Values:
(true or false). Must be set to true when working in
an EJB environment.

same-connection

Optional; default="false"Indicates whether the key generator produces globally
unique keys. Values: (true or false).

global

The first time the key generator is called, it finds the row for the target table in the sequence table, locks it,
reads the last reserved primary-key value, increases it by the grab size (the number of primary-key values to
reserve at a time), and unlocks the row. In subsequent requests for primary-key values for the same target
table, the key generator provides primary-key values from the reserved values until it runs out. When it has
no more primary-key values, it accesses the sequence table to obtain a new group of primary-key values.

Note: The sequence table must be in the same database as the table for which primary-key values are to be
generated. When working with multiple databases, you must have one sequence table in each database that
contains a table for which the key generator is to provide primary-key values.

If grab-size is set to 1, the sequence tables contain the true maximum primary-key value at all times. In
this case, the HIGH/LOW key generator is essentially equivalent to the MAX key generator.

If global is set to true, the sequence table contains only one row instead of one row per table. The key
generator uses this row for all tables.

UUID

This algorithm generates global unique primary-key values. The value generated is a combination of the
host’s IP address, the current time in milliseconds since 1970, and a static counter. The complete key consists
of a 30-character, fixed-length string. This algorithm has no parameters. The primary-key column must be of
type char, varchar, or longvarchar.

66 Persistence Manager Configuration
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

IDENTITY

The IDENTITY key generator can be used only with auto-increment primary-key columns (identities) in Sybase
ASE/ASA, MS SQL Server, MySQL, and Hypersonic SQL.

After an insert, except when using MySQL or Hypersonic SQL, the key generator obtains the primary-key
value from the @@identity system variable, which contains the last identity value for the current database
connection. When using MySQL, the system function LAST_INSERT_ID() is used. For Hypersonic SQL,
IDENTITY() is used.

SEQUENCE

This algorithm can be used with only Oracle, Oracle8i, PostgreSQL, Interbase, and SAP DB. It generates keys
using sequences.

The following table describes the parameters for the SEQUENCE key generator.

Table 6-3 SEQUENCE key generator parameters

UseDescriptionParameter

Optional; default="{0}_seq"Sequence name.sequence

Optional; default="false"RETURNING mode for Oracle8i. Values: (true or false)returning

Optional; default="1"Increment for Interbase.increment

Optional; default="false"Indicates whether there is a trigger that generates primary-key
values.

trigger

Usually a sequence is used for only one table. Therefore, in general, you have to define one key generator
per table. However, if you adhere to a naming convention for sequences, you can use one key generator for
multiple tables.

For example, if you always obtain sequence names by adding _seq to the name of the corresponding table,
you can set sequence to "{0}_seq" (the default).

The way this key generator performs its function depends on the data store being used.

With PostgreSQL, this key generator performs SELECT nextval(sequence_name) before the insert and
produces the identity value that is then used when it performs INSERT.

With Interbase, the key generator performs SELECT gen_id(sequence_name, increment) from
rdb$database before the insert.

With Oracle, with returning set to "false" by default, and with SAP DB, the key generator transforms the
insert statement generated by the persistence manager to the form INSERT INTO table_name (pk_name,
...) VALUES (sequence_name.nextval, ...), executes it, and then it performs SELECT
sequene_name.currval FROM table_name to obtain the identity value.

With Oracle8i, when you set returning to "true", RETURNING primary_key_name INTO ? is appended
to the insert statement shown above, which is a more efficient procedure to generate primary-key values.
Therefore, the persistence manager fetches the identity value when it executes the insert statement (both
the insertion and the procurement of the identity value occur in one statement).

Persistence Manager Configuration 67
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

If your table has an on_Insert trigger, like the one listed below, that already generates values for the table’s
primary key, you can set trigger to "true".

create or replace trigger "trigger_name"
before insert on "table_name" for each row
begin
 select "sequence_name".nextval into :new."pk_name" from dual;
end;

This prevents "sequence_name".nextval from being pulled twice: first during the insert and then in the
trigger. It’s also useful in combination with returning="true" for Oracle, in which case you may not specify
the sequence name.

Defining Data Sources

Global data-source configuration files tell the transaction manager how to locate a data store using JNDI.
They contain the mapping between enterprise beans and tables in a database. The transaction manager
then uses the information in TransactionManagerConfiguration.xml to create database connections.

The persistence manager can obtain a connection to a data store in one of three ways:

 ■ using a JDBC 2.0 driver and URL

 ■ using a JDBC 2.0 data source

 ■ using a JNDI data source

If you are deploying the application inside a J2EE environment, you should use the JNDI method because it
allows the application server to manage connection pooling and distributed transactions.

To allow for concurrent transactions and to ensure data integrity, two data-store definitions should never
use overlapping mappings.

The following is the JNDI configuration of a global data store:

<database name="ebiz" engine="oracle">
 <jndi name="java:comp/env/jdbc/mydb"/>
 <mapping href="Contents/Resources/CMPConfiguration.xml"/>
</database>

Container Configuration

The OpenEJBConfiguration.xml file contains deployment information, as well as transaction and security
details. Its contents are divided in two sections: containers, and facilities. WebObjects writes this file for you.
However, you need to make additions, especially regarding the transaction type for methods and mapping
physical roles to logical roles.

68 Container Configuration
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

Containers Section

This section of the EJB configuration file holds four types of elements: containers, security-role,
method-permission, and method-transaction.

The containers element can contain three types of elements: stateless-session-container,
stateful-session-container, and entity-container. Each of these elements holds definitions for
the corresponding types of enterprise beans: stateless session bean, stateful session bean, and entity bean
(CMP and BMP).

One or more logical security roles are defined using security-role elements. Physical security roles are
mapped to logical security roles in the facilities section of the file. You have to define the logical security
roles that you want to use in an application. Then, you assign those roles to the methods of the enterprise
beans—using method-permission elements—as you see fit.

Note: WebObjects generates a default role and assigns it to all method permissions. You have to add the
roles adequate for your situation and assign them to each of the methods of your enterprise beans through
method-permission elements.

The method-transaction element tells the container how to manage transactions for each method
invocation. You must determine what kind of transaction attribute each enterprise bean’s methods should
have, and modify the contents of the method-transaction element as appropriate. Table 6-4 provides a
brief explanation of transaction attributes.

Table 6-4 Transaction attributes

MeaningTransaction attribute

The current transaction is suspended until the method ends.NotSupported

If in a transaction, the method is included in it.Supports

The method must be invoked within a transaction. Otherwise, a new transaction
is created for the method.

Required

A new transaction is always created for the method.RequiresNew

The method must be invoked within a transaction. Otherwise, a
javax.transaction.TransactionRequiredException is thrown.

Mandatory

The method must never be invoked within a transaction. Otherwise, a
java.rmi.RemoteException is thrown.

Never

Listing 6-2 shows an example of the containers section of the EJB configuration file:

Listing 6-2 Example containers section of the OpenEJBConfiguration.xml file

<container-system>
 <containers>
 <stateless-session-container>
 <container-name>Basic Stateless Container</container-name>
 <stateless-bean>

Container Configuration 69
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

 <description>deployment descriptor for HelloBean</description>
 <display-name>HelloBean</display-name>
 <ejb-deployment-id>HelloBean</ejb-deployment-id>
 <home>com.my.ejb.HelloHome</home>
 <remote>com.my.ejb.Hello</remote>
 <ejb-class>com.my.ejb.HelloBean</ejb-class>
 <transaction-type>Container</transaction-type>
 </stateless-bean>
 </stateless-session-container>
 </containers>
 <security-role>
 <role-name>everyone</role-name>
 </security-role>
 <method-permission>
 <role-name>everyone</role-name>
 <method>
 <ejb-deployment-id>HelloBean</ejb-deployment-id>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-transaction>
 <method>
 <ejb-deployment-id>HelloBean</ejb-deployment-id>
 <method-intf>Remote</method-intf>
 <method-name>message</method-name>
 <method-params/>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </method-transaction>
</container-system>

Facilities Section

This section of the EJB configuration file specifies the runtime environment: proxy-generation attributes,
remote JNDI contexts, database connections, and J2EE services. The elements used are intra-vm-server,
remote-jndi-contexts, connectors, and services, respectively. You should not edit this part of the
OpenEJBConfiguration.xml file.

Using External Containers

You may want to use an external EJB container instead of an internal one in your bean-client applications
when you already have a powerful, reliable container. In this case, you need to remove all the configuration
files listed at the beginning of this chapter from your project.

To configure your application to use a single, external EJB container, you need to set system properties when
you launch your application. You can set them through the command line. The following list shows the
properties you need to set for various EJB containers:

 ■ OpenEJB

-Djava.naming.factory.initial=org.openorb.rmi.jndi.CtxFactory
-Djava.naming.provider.url=

70 Using External Containers
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

corbaloc::1.2@<HOST>:<NAMESERVICE_PORT>/NameService"
-Dorg.omg.CORBA.ORBClass=org.openorb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass=org.openorb.CORBA.ORBSingleton
-Djavax.rmi.CORBA.StubClass=org.openorb.rmi.system.StubDelegateImpl
-Djavax.rmi.CORBA.UtilClass=org.openorb.rmi.system.UtilDelegateImpl
-Djavax.rmi.CORBA.PortableRemoteObjectClass=
org.openorb.rmi.system.PortableRemoteObjectDelegateImpl

 ■ iPlanet

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory
-Djava.naming.provider.url=iiop://$<HOST>:$<NAMESERVICE_PORT>

 ■ Web Logic

-Djava.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
-Djava.naming.provider.url=t3://<HOST>:<NAMESERVICE_PORT>

 ■ WebSphere

-Djava.naming.factory.initial= com.ibm.websphere.naming.WsnInitialContextFactory
-Djava.naming.provider.url=iiop://<HOST>:<NAMESERVICE_PORT>"

If you want to use more than one EJB container in an application, you have to set these properties through
application code. For example, to set the JNDI context for the Web Logic EJB container, you would add the
following method listed in Listing 6-3.

Listing 6-3 The initialContext method setting external-container properties

/**
 * Obtains the JNDI context.
 * @return the JNDI context.
 */
public static Context initialContext() throws NamingException {
 Properties properties = new Properties();

 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

 properties.put(Context.PROVIDER_URL, "t3://<HOST>:<NAMESERVICE_PORT>");

 return new InitialContext(properties);
}

Communication Transport Between Bean Clients and Containers

Bean-client applications can communicate with bean containers using one of two transports: Common Object
Request Broker Architecture (CORBA) or intra virtual machine. You determine how clients communicate with
bean containers through the WOEJBTransport property. It can have one of two values: OpenORB for the
CORBA transport or IntraVM for the intra-VM transport.

Communication Transport Between Bean Clients and Containers 71
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

Using CORBA requires that bean frameworks be built with EJB stubs. See “Generating EJB Stubs” (page 56)
for information on generating EJB stubs when building bean frameworks. You must use CORBA when the
client application and the bean container do not run on the same virtual machine.

When you know that the bean client and the container run on the same virtual machine, you should set the
WOEJBTransport property to IntraVM. This streamlines communication between bean client and container
as well as facilitate debugging your enterprise beans in Project Builder.

Generating the EJB Configuration Files

After you add bean frameworks to an existing bean-client project, you need to regenerate the EJB configuration
files. Also, WebObjects 5.2, bean-client projects do not require the LocalTransactionConfiguration.xml
file. Therefore, you need to delete the file from the projects and regenerate the remaining configuration files.

To regenerate the configuration files of a bean-client project, run OpenEJBTool with the bean-client project
path and the path of each of the bean frameworks it uses, as shown below.

% cd /System/Library/WebObjects/JavaApplications/OpenEJBTool.woa

% ./OpenEJBTool -o <bean-client_project_path> <bean-framework0_path> ...
<bean-frameworkN_path>

EJB Container Operation Logging

EJB-container operations are logged using Log4J, which is an open-source package that allows you to turn
on logging for an application without changing its source code. Logging is configured through the
logging.conf file, which is placed in the Resources group of a project. Listing 6-4 shows the logging.conf
file. You modify this file to change the debugging level for the container. For information and documentation
on Log4J, see http://jakarta.apache.org/log4j.

Listing 6-4 Logging.conf file

This file sets up log4j logging for the EJB container
#
The default setup will log error messages to stdout

// 1log4j.rootCategory=warn, R

Fileappender
// 2log4j.appender.F=org.apache.log4j.FileAppender

Edit this line to suit you application name
// 3log4j.appender.F.file=/tmp/application.log
// 4log4j.appender.F.layout=org.apache.log4j.PatternLayout
// 5log4j.appender.F.layout.ConversionPattern=%5p [%t] (%C:%L) - %m%n

Console Appender
// 6log4j.appender.R=org.apache.log4j.ConsoleAppender
// 7log4j.appender.R.layout=org.apache.log4j.PatternLayout

72 Generating the EJB Configuration Files
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

http://jakarta.apache.org/log4j

// 8log4j.appender.R.layout.ConversionPattern=%5p [%t] (%C:%L) - %m%n
// 9log4j.appender.R.Target=System.err

General logging for the EJB container
// 10#log4j.category.OpenEJB=debug

logging for Container-Managed Persistence
// 11#log4j.category.CastorCMP=debug

CORBA layer logging
// 12#log4j.category.CORBA-Adapter=warn

logging of transaction handling
// 13#log4j.category.Transactions=info

Transaction Manager and Connection Pool logging
// 14#log4j.category.tyrex.default=debug
// 15#log4j.category.tyrex.ots=debug
// 16#log4j.category.tyrex.security=debug
// 17#log4j.category.tyrex.resource=debug
// 18#log4j.category.tyrex.resource.castor=debug
// 19#log4j.category.tyrex.resource.DefaultDatabase=debug

The line numbered 1 configures the logging level of the root category and the output channel. In this case,
warn tells Log4J that it should log warnings only. This setting applies to all the subcategories of rootCategory
that do not override it. The second argument indicates which appender to use: R for the console output and
F for file output.

The lines numbered 2 through 5 configure file logging. You must change only lines 3 through 5, however.

The lines numbered 6 through 9 configure console logging.

The lines numbered 10 through 19 configure the logging level of several components.

EJB Container Operation Logging 73
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

74 EJB Container Operation Logging
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Configuring Applications

The elements (defined by tags) of an XML document can include attributes, other elements, or both. The
sections below include tables that describe those elements. In the Members column, element names are
between < and > characters. Table 7-1 describes the meaning of the symbols in the Use column in the tables
that describe an element’s members.

Table 7-1 Element usage symbols

MeaningSymbol in Use column

The tag or attribute is required by the parent tag.Nothing

The element or attribute can be omitted.?

The element can be present zero or more times within the parent element.*

The element must be present at least once within the parent element.+

This chapter contains the following sections:

 ■ “Elements of the Component-Managed Persistence Configuration File” (page 75) describes the XML
elements and attributes of the CMPConfiguration.xml file.

 ■ “Elements of the Transaction Manager Configuration File” (page 83) describes the XML elements and
attributes of the TransactionManagerConfiguration.xml file.

 ■ “Elements of the Container Configuration File” (page 86) describes the XML elements and attributes of
the OpenEJBConfiguration.xml file.

Elements of the Component-Managed Persistence Configuration
File

The DTD for the CMPConfiguration.xml file is located at http://castor.exolab.org/mapping.dtd, and is
shown in Listing 7-1.

Listing 7-1 DTD for CMPConfiguration.xml

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT mapping (description?, include*, class*, key-generator*)>

<!ELEMENT include EMPTY>
<!ATTLIST include
 href CDATA #REQUIRED>

<!ELEMENT class (description?, cache-type?, map-to?, field+)>

Elements of the Component-Managed Persistence Configuration File 75
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

http://castor.exolab.org/mapping.dtd

<!ATTLIST class
 name ID #REQUIRED
 extends IDREF #IMPLIED
 depends IDREF #IMPLIED
 identity CDATA #IMPLIED
 access (read-only | shared | exclusive | db-locked) "shared"
 key-generator IDREF #IMPLIED >

<!ELEMENT cache-type EMPTY>
<!ATTLIST cache-type
 type (none | count-limited | time-limited | unlimited)
"count-limited"
 capacity NMTOKEN #IMPLIED>

<!ELEMENT map-to EMPTY>
<!ATTLIST map-to
 table NMTOKEN #IMPLIED
 xml NMTOKEN #IMPLIED
 ns-uri NMTOKEN #IMPLIED
 ns-prefix NMTOKEN #IMPLIED
 ldap-dn NMTOKEN #IMPLIED
 ldap-oc NMTOKEN #IMPLIED>

<!ELEMENT field (description?, sql?, bind-xml?, ldap?)>
<!ATTLIST field
 name NMTOKEN #REQUIRED
 type NMTOKEN #IMPLIED
 required (true | false) "false"
 direct (true | false) "false"
 lazy (true | false) "false"
 get-method NMTOKEN #IMPLIED
 set-method NMTOKEN #IMPLIED
 create-method NMTOKEN #IMPLIED
 collection (array | vector | hashtable | collection | set | map)
#IMPLIED>

<!ELEMENT sql EMPTY>
<!ATTLIST sql
 name NMTOKEN #IMPLIED
 type CDATA #IMPLIED
 many-key NMTOKEN #IMPLIED
 many-table NMTOKEN #IMPLIED
 dirty (check | ignore) "check">

<!ELEMENT bind-xml EMPTY>
<!ATTLIST bind-xml
 name NMTOKEN #IMPLIED
 type NMTOKEN #IMPLIED
 matches NMTOKEN #IMPLIED
 node (attribute | element | text) #IMPLIED>

<!ELEMENT ldap EMPTY>
<!ATTLIST ldap
 name NMTOKEN #IMPLIED>

<!ELEMENT key-generator (param*)>
<!ATTLIST key-generator
 name CDATA #REQUIRED

76 Elements of the Component-Managed Persistence Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

 alias CDATA #IMPLIED>

<!ELEMENT param EMPTY>
<!ATTLIST param
 name CDATA #REQUIRED
 value CDATA #REQUIRED>

<!ELEMENT description (#PCDATA)>

The following sections describe the elements of the CMPConfiguration.xml file.

bind-xml element

The attribute or element name and XML schema must be specified for all XML-dependent fields. The node
attribute indicates whether the field maps to an attribute, another tag, or the textual content of this element.
Only simple types (primitives, date, string, and so on) can be used for attribute values. In addition, only one
field can be specified as the content model in a given object. Table 7-2 describes this element’s members.

Table 7-2 Members of the bind-xml element

DescriptionUseMember

Table-column name.?name

?type

?matches

Value: attribute, element, or text.?node

cache-type element

This element tells the container how to cache instances of this enterprise bean. Table 7-3 describes the
members of this element.

Table 7-3 Members of the cache-type element

DescriptionUseMember

Value: none, count-limited, time-limited, or unlimited. Default =
"count-limited".

type

The maximum number of instances of this bean the container is to create.?capacity

class element

This element describes the mapping between a Java class (enterprise bean implementation) and an SQL
table, an XML element, an LDAP entry, or any other engine. To map a class into LDAP, you must specify an
identity field.

Elements of the Component-Managed Persistence Configuration File 77
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

A class is specified by its fully qualified name; for example, com.my.ejb.Person. If a class extends another
class for which a mapping file exists, you should use the extends attribute to include the class being extended.
Do not use the extends attribute to describe class inheritance that is not reflected in any mapping.

The class mapping specifies each field in the class that is mapped to a table column. Fields that are not
mapped are not stored, read, or otherwise processed. Table 7-4 describes this element’s members.

Table 7-4 Members of the class element

DescriptionUseMember

Class name.name

Implied by the persistence manager. It’s the name of the class this class extends.
Used only if this class extends another class for which mapping information is
provided.

?extends

Implied by the persistence manager.?depends

Implied by the persistence manager.?identity

Value: read-only, shared, exclusive or db-locked. Default = "shared".access

Name or alias of the key generator to use. Use only for classes with single-property,
numeric ID fields. If your class uses a compound primary key or the primary key
contains strings, you must use a custom key generator; that is, the bean itself
must create the primary-key values. See “key-generator element” (page 81).

?key-generator

Optional class description.?<description>

See “cache-type element” (page 77).?<cache-type>

Used if the name of the element this class maps to is not the same as the name
of the class. By default, the persistence manager infers the name of the element
from the name of the class. For example, a class named SocialEvent is mapped
to an element called social-event. See “map-to element” (page 82).

?<map-to>

Describes the properties of an enterprise bean. See “field element” (page 78).+<field>

field element

This element specifies the mapping between a field in an enterprise bean’s and an SQL table column, an
XML element or attribute, an LDAP attribute, and so on. Table 7-5 describes its members.

Table 7-5 Members of the field element

DescriptionUseMember

Name of the enterprise bean’s field being mapped.name

Java type of the field. For example, java.lang.Integer.?type

78 Elements of the Component-Managed Persistence Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

DescriptionUseMember

Value: true or false. Default = "false". Indicates whether the field is optional
or required.

?required

Value: true or false. Default = "false".?direct

Value: true or false. Default = "false".?lazy

Implied by the persistence manager.?get-method

Implied by the persistence manager.?set-method

Implied by the persistence manager.?create-method

Value: array, vector, hashtable, collection, set, or map. Implied by the
persistence manager.

?collection

Optional field description.?<description>

See “sql element” (page 83).?<sql>

See “bind-xml element” (page 77).?<bind-xml>

See “ldap element” (page 82).?<ldap>

The mapping is specified from the perspective of the bean’s implementation class. The field name is required
even if no such field exists in the class in order to support field references. A field is an abstraction of an
enterprise bean’s property: It can refer to a property directly (by mapping to a public instance variable that
is not static or transient) or indirectly by using accessor methods.

Unless specified otherwise, the persistence manager accesses the field through get methods and set methods,
whose names are derived from the field name. For example, for a field called lastName, the accessors String
getName() and void setName(String) are used. Collection fields require only a get method, except an
array requires both a get and a set method. If the accessors are specified through the get-method and
set-method attributes, the persistence manager accesses the field only through those methods. The methods
must be public and not static.

If the direct attribute is true, the field is accessed directly. The field must be public, not static, and not
transient.

The type attribute indicates the type of the instance variable being mapped or the type of each element in
a collection. You can use fully qualified class names or a short name, as Table 7-6 illustrates.

Table 7-6 Values for the type attribute of the field element for CMP beans

Fully qualified nameShort name

java.lang.Objectother

java.lang.Stringstring

integerinteger

Elements of the Component-Managed Persistence Configuration File 79
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Fully qualified nameShort name

longlong

booleanboolean

doubledouble

floatfloat

java.math.BigDecimalbig-decimal

bytebyte

java.util.Datedate

shortshort

charchar

byte[]bytes

char[]chars

string[]strings

java.lang.Localelocale

If the field is a collection, you specify the collection type through the collection attribute and the type of
each element of the collection through the type attribute. Use the following table to determine the
appropriate value for the collection attribute.

Table 7-7 Values for the collection attribute of the field element CMP beans

Default implementationType of collectionCollection attribute value

<type>[]<type>[]array

java.util.Vectorjava.util.Vectorvector

java.util.Hashtablejava.util.Hashtablehashtable

java.util.Arraylistjava.util.Collectioncollection

java.util.Hashsetjava.util.Setset

java.util.Hashmapjava.util.Mapmap

The “Default implementation” column indicates the type used when the object holding the collection is null
and needs to be instantiated. For hashtable and map collections, the persistence manager adds an object
with the put(Object, Object) method: The object added is both the key and the value.

Table 7-5 (page 78) describes the members of the field element.

80 Elements of the Component-Managed Persistence Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

key-generator element

This element specifies parameters for the key generator (if needed). For example, to obtain sequential values
from the table SEQTAB, use

<key-generator name="SEQUENCE">
 <param name="table" value="SEQTAB">
 <param name="global" value="0">
</key-generator>
<class key-generator="SEQUENCE">
 ...
</class>

If you have to use several key generators of the same type for the same data store, use aliases:

<key-generator name="SEQUENCE" alias="seq1">
 <param name="table" value="SEQTAB">
 <param name="global" value="0">
</key-generator>
<key-generator name="SEQUENCE" alias="seq2">
 <param name="table" value="SEQGLOBAL">
 <param name="global" value="1">
</key-generator>
<class key-generator="seq2">
 ...
</class>

Table 7-8 describes the members of the key-generator element.

Table 7-8 Members of the key-generator element

DescriptionUseMember

Sequence-table name.name

Additional identifier for the key generator.?alias

See “param element” (page 83).“param element” (page 83)*<param>

Table 7-9 lists the key-generator names supported in the persistence manager.

Table 7-9 Key-generator names supported in the persistence manager

DescriptionName

MAX generic algorithm: MAX(pk) + 1.MAX

HIGH/LOW generic algorithm.HIGH/LOW

UUID generic algorithm.UUID

Supports auto-increase identity fields in Sybase ASE/ASA, MS SQL Server, MySQL, and Hypersonic
SQL.

IDENTITY

Supports the SEQUENCE algorithm in Oracle, PostgreSQL, Interbase, and SAP DB.SEQUENCE

Elements of the Component-Managed Persistence Configuration File 81
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

ldap element

This element contains field mapping information for fields mapped to LDAP resources. Table 7-10 describes
its members.

Table 7-10 Members of the ldap element

DescriptionUseMember

LDAP-resource name.?name

map-to element

This element specifies the mapping between an enterprise bean and an SQL table. Table 7-11 describes the
element’s members.

Table 7-11 Members of the map-to element

DescriptionUseMembers

SQL table name.?table

?xml

?ns-uri

?ns-prefix

?ldap-dn

?ldap-oc

mapping element

This element is the root element of the entire file. It defines a collection of class mappings. Its members are
described in Table 7-12.

Table 7-12 Members of the mapping element

DescriptionUseMember

Optional description of the mapping.?<description>

Used to include other mappings in this mapping. The tag’s sole member is the
href attribute, set to the URL that indicates the location of the mapping file.

*<include>

See “class element” (page 77).*<class>

See “key-generator element” (page 81).*<key-generator>

82 Elements of the Component-Managed Persistence Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

param element

This element is used to provide named parameters to the containing element. Table 7-13 describes the
members of this element.

Table 7-13 Members of the param element

DescriptionUseMember

Parameter name.name

Parameter value.value

sql element

This element provides field mapping information that is relevant only for fields mapped to SQL tables. The
type can be the proper Java-class type returned by the JDBC driver or the SQL type without precision; for
example, "java.math.BigDecimal" or "numeric". However, the type could contain the parameter for the
SQL-to-Java type convertors in square brackets; for example, "char[01]" for false=0, true=1 conversion
from the boolean Java type to the char SQL type. Table 7-14 describes this element’s members.

Table 7-14 Members of the sql element

DescriptionUseMember

Table-column name.?name

SQL type of the column.?type

?many-key

?many-table

Value: check or ignore. Default = "check".?dirty

Elements of the Transaction Manager Configuration File

The following sections describe the elements of the TransactionManagerConfiguration.xml file.

config element

The config element provides the configuration for a JDBC data source. Table 7-15 describes its members.

Elements of the Transaction Manager Configuration File 83
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-15 Members of the config element

DescriptionUseMember

Server name.<serverName>

Port number.<portNumber>

Database name.?<databaseName>

Driver type. Value: thin.?<driverType>

User ID.<user>

Password.<password>

connector element

The connector element specifies a database-connection factory. Table 7-16 describes its members.

Table 7-16 Members of the connector element

DescriptionUseMember

Connector name.<name>

Connector JAR filename.<jar>

Paths to additional JAR files and dependent files.?<paths>

See “config element” (page 83).?<config>

See “limits element” (page 85).?<limits>

dataSource element

The dataSource element contains a specification for a JDBC data source. Table 7-17 describes the members
of this element.

Table 7-17 Members of the dataSource element

DescriptionUseMember

Data-source name.<name>

Data-source JAR filename.<jar>

Paths to additional JAR files and dependent files.?<paths>

Class name of the data-source implementation.<class>

84 Elements of the Transaction Manager Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

DescriptionUseMember

See “config element” (page 83).?<config>

See “limits element” (page 85).?<limits>

domain element

The domain element is the root element of the entire file. Table 7-18 describes the members of this element.

Table 7-18 Members of the domain element

DescriptionUseMember

Domain name.<name>

Maximum number of open transactions allowed.?<maximum>

Default timeout (in seconds) for transactions.?<timeout>

See “resources element” (page 85).?<resources>

limits element

The limits element provides resource limits for a data source or a connector. Table 7-19 describes its
members.

Table 7-19 Members of the limits element

DescriptionUseMember

Maximum number of connections allowed.?<maximum>

Minimum number of connections allowed.?<minimum>

Initial pool size.?<initial>

Maximum period (in seconds) to retain open connections.?<maxRetain>

Maximum timeout (in seconds) to wait for a new connection.?<timeout>

Turns tracing on ("true") or off ("false").?<trace>

resources element

The resources element is the top-level element of a list of JDBC data sources and JCA connectors. Table
7-20 describes the members of this element.

Elements of the Transaction Manager Configuration File 85
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-20 Members of the resources element

DescriptionUseMember

See “dataSource element” (page 84).*<dataSource>

See “connector element” (page 84).*<connector>

Elements of the Container Configuration File

The DTD for the deployment configuration file, openejb_config.dtd, is stored in
/System/Library/WebObjects/JavaApplications/OpenEJBTool.woa/Contents/Resources. The
DTD is also added to the Resources group of an enterprise-bean–client application project. The file is shown
in Listing 7-2 . (You must never edit this file.)

Listing 7-2 DTD for OpenEJBConfiguration.xml

<?xml encoding="US-ASCII"?>
<!ELEMENT entity-bean (description?, display-name?, small-icon?,large-icon?,
ejb-deployment-id, home, remote, ejb-class, persistence-type, prim-key-class, reentrant,
cmp-field-name*, primkey-field?, jndi-enc?, security-role-ref*, query*)>
<!ELEMENT query (description?, method, query-statement)>
<!ELEMENT query-statement (#PCDATA)>
<!ELEMENT entity-container (class-name?, codebase?, description?, display-name?,
container-name, properties?, entity-bean+)>
<!ELEMENT codebase (#PCDATA)>
<!ELEMENT class-name (#PCDATA)>
<!ELEMENT cmp-field-name (#PCDATA)>
<!ELEMENT connection-manager (connection-manager-id, class-name,properties?)>
<!ELEMENT connectors (connector*, connection-manager+)>
<!ELEMENT connector (connector-id, connection-manager-id, managed-connection-factory)>
<!ELEMENT connector-id (#PCDATA)>
<!ELEMENT connection-manager-id (#PCDATA)>
<!ELEMENT containers
(stateful-session-container|stateless-session-container|entity-container)+>
<!ELEMENT container-name (#PCDATA)>
<!ELEMENT container-system (containers, security-role*, method-permission*,
method-transaction*)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT display-name (#PCDATA)>
<!ELEMENT ejb-class (#PCDATA)>
<!ELEMENT ejb-deployment-id (#PCDATA)>
<!ELEMENT ejb-ref-name (#PCDATA)>
<!ELEMENT home (#PCDATA)>
<!ELEMENT env-entry (env-entry-name, env-entry-type, env-entry-value)>
<!ELEMENT env-entry-name (#PCDATA)>
<!ELEMENT env-entry-type (#PCDATA)>
<!ELEMENT env-entry-value (#PCDATA)>
<!ELEMENT facilities (intra-vm-server, remote-jndi-contexts?, connectors?, services)>
<!ELEMENT remote-jndi-contexts (jndi-context+)>
<!ELEMENT jndi-context (jndi-context-id, properties)>
<!ELEMENT jndi-context-id (#PCDATA)>
<!ELEMENT ejb-ref (ejb-ref-name, home, ejb-ref-location)>

86 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

<!ELEMENT ejb-ref-location (ejb-deployment-id | (remote-ref-name, jndi-context-id))>
<!ELEMENT remote-ref-name (#PCDATA)>
<!ELEMENT factory-class (#PCDATA)>
<!ELEMENT intra-vm-server (proxy-factory, codebase?, properties?)>
<!ELEMENT jndi-enc (env-entry*, ejb-ref*, resource-ref*)>
<!ELEMENT large-icon (#PCDATA)>
<!ELEMENT logical-role-name (#PCDATA)>
<!ELEMENT managed-connection-factory (class-name, properties?)>
<!ELEMENT method (description?, ejb-deployment-id?, method-intf?, method-name,
method-params?)>
<!ELEMENT method-intf (#PCDATA)>
<!ELEMENT method-name (#PCDATA)>
<!ELEMENT method-param (#PCDATA)>
<!ELEMENT method-params (method-param*)>
<!ELEMENT method-permission (description?, role-name+, method+)>
<!ELEMENT method-transaction (description?, method+, trans-attribute)>
<!ELEMENT openejb (container-system, facilities)>
<!ELEMENT persistence-type (#PCDATA) >
<!ELEMENT physical-role-name (#PCDATA)>
<!ELEMENT prim-key-class (#PCDATA)>
<!ELEMENT primkey-field (#PCDATA)>
<!ELEMENT properties (property+)>
<!ELEMENT property (property-name, property-value)>
<!ELEMENT property-name (#PCDATA)>
<!ELEMENT property-value (#PCDATA)>
<!ELEMENT proxy-factory (#PCDATA)>
<!ELEMENT reentrant (#PCDATA)>
<!ELEMENT role-mapping (logical-role-name+, physical-role-name+)>
<!ELEMENT role-name (#PCDATA)>
<!ELEMENT role-link (#PCDATA)>
<!ELEMENT remote (#PCDATA)>
<!ELEMENT res-auth (#PCDATA)>
<!ELEMENT res-id (#PCDATA)>
<!ELEMENT res-ref-name (#PCDATA)>
<!ELEMENT res-type (#PCDATA)>
<!ELEMENT resource-ref (description?, res-ref-name, res-type, res-auth, (res-id |
properties | connector-id))>
<!ELEMENT resource (description?, res-id, properties)>
<!ELEMENT security-role (description?, role-name)>
<!ELEMENT security-role-ref (description?, role-name, role-link)>
<!ELEMENT security-service (description?, display-name?, service-name, factory-class,
codebase?,properties?, role-mapping*)>
<!ELEMENT security-service-name (#PCDATA)>
<!ELEMENT services (security-service, transaction-service)>
<!ELEMENT service-name (#PCDATA)>
<!ELEMENT small-icon (#PCDATA)>
<!ELEMENT stateful-bean (description?, display-name?, small-icon?,large-icon?,
ejb-deployment-id, home, remote, ejb-class, transaction-type, jndi-enc?,
security-role-ref*)>
<!ELEMENT stateless-bean (description?, display-name?, small-icon?,large-icon?,
ejb-deployment-id, home, remote, ejb-class, transaction-type, jndi-enc?,
security-role-ref*)>
<!ELEMENT stateful-session-container (codebase?, description?, display-name?,
container-name, properties?, stateful-bean+)>
<!ELEMENT stateless-session-container (codebase?, description?, display-name?,
container-name, properties?, stateless-bean+)>
<!ELEMENT transaction-service (description?, display-name?, service-name, factory-class,
 codebase?, properties?) >

Elements of the Container Configuration File 87
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

<!ELEMENT transaction-service-name (#PCDATA)>
<!ELEMENT transaction-type (#PCDATA)>
<!ELEMENT trans-attribute (#PCDATA)>

The following sections describe the elements of the OpenEJBConfiguration.xml file.

connection-manager element

This element specifies a connection manager. Table 7-21 describes its members.

Table 7-21 Members of the connection-manager element

DescriptionUseMember

Name of the connection manager.<connection-manager-id>

Class name of the data source.<class-name>

Properties required by the data source.<properties>

connector element

This element defines a connector. Table 7-22 describes its members.

Table 7-22 Members of the connector element

DescriptionUseMember

Name of the connector.<connector-id>

Specifies a connection manager. See “connection-manager
element” (page 88).

<connection-manager-id>

See “managed-connection-factory element” (page 93).*<managed-connection-factory>

connectors element

This element encloses connectors or connection managers. Table 7-23 describes its members.

Table 7-23 Members of the connectors element

DescriptionUseMember

See “connector element” (page 88).*<connector>

See “connection-manager element” (page 88).+<connection-manager>

88 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

container-system element

This element delimits the container configuration section of the deployment configuration file. Table 7-24
describes its members.

Table 7-24 Members of the container-system element

DescriptionUseMember

See “dataSource element” (page 84).<containers>

See “connector element” (page 84).+<security-role>

Assigns a logical role to methods of the enterprise beans defined in the
containers element.

+<method-permission>

Specifies a method’s transaction attribute.+<method-transaction>

containers element

This element encloses containers for the three types of enterprise beans: stateless session beans, stateful
session beans, and entity beans. Table 7-25 describes its members.

Table 7-25 Members of the containers element

DescriptionUseMember

At least one
of these
items must
be present.

+<stateful-session-container><stateless-session-container><entity-container>

ejb-ref element

This element defines a reference to a bean so that the bean can be accessed using JNDI calls. Table 7-26
describes its members.

Table 7-26 Members of the ejb-ref element

DescriptionUseMember

JNDI name for the bean. For example, ejb/agent/Agent.<ejb-ref-name>

Home interface of the bean. For example,
webobjectsexamples.realestate.agent.AgentHome.

<home>

See “ejb-ref-location element” (page 90).<ejb-ref-location>

Elements of the Container Configuration File 89
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

ejb-ref-location element

This element identifies a bean through its name (using its <ejb-deployment-id> member) or through its
remote interface and JNDI context ID. Table 7-27 describes its members.

Table 7-27 Members of the ejb-ref-location element

DescriptionUseMember

Either <ejb-deployment-id> or
<remote-ref-name> and <jndi-context-id>
must be specified.

<ejb-deployment-id> or
(<remote-ref-name>,
<jndi-context-id>)

entity-bean element

This element defines an entity session bean. Table 7-28 describes its members.

Table 7-28 Members of the entity-bean element

DescriptionUseMember

Description for the bean.?<description>

?<display-name>

?<small-icon>

?<large-icon>

Name of the bean.<ejb-deployment-id>

Home interface (for example, com.my.ejb.PersonHome).<home>

Remote interface (for example, com.my.ejb.Person).<remote>

Implementation class (for example, com.my.ejb.PersonBean).<ejb-class>

Value: Container or Bean.<persistence-type>

Fully qualified class name of the primary key.<prim-key-class>

Value: true or false. Should be false.<reentrant>

Container-managed–persistence field name.*<cmp-field-name>

Primary-key field name.?<primkey-field>

See “jndi-enc element” (page 92).?<jndi-enc>

See “security-role-ref element” (page 98).*<security-role-ref>

Specifies a query for a finder method.*<query>

90 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

entity-container element

This element defines an entity-bean container and encloses the definition of entity beans. Table 7-29 describes
its members.

Table 7-29 Members of the entity-container element

DescriptionUseMember

?<codebase>

Description of the container.?<description>

?<display-name>

Name for the container.<container-name>

Used to tell the container how to handle instances of entity beans. See
“properties element” (page 95).

?<properties>

Entity bean definitions. See “entity-bean element” (page 90).+<entity-bean>

env-entry element

This element defines an environment variable and its value (which can be accessed by other beans through
JNDI). Table 7-30 describes its members.

Table 7-30 Members of the env-entry element

DescriptionUseMember

Name of the variable.<env-entry-name>

Java type of the variable.<env-entry-type>

Value for the variable.<env-entry-value>

facilities element

This element specifies the runtime environment: proxy-generation attributes, remote JNDI contexts, data-store
connections, and J2EE services. You should not change the information within <facilities> and
</facilities> tags. Table 7-31 describes its members.

Table 7-31 Members of the facilities element

DescriptionUseMember

<intra-vm-server>

?<remote-jndi-contexts>

Elements of the Container Configuration File 91
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

DescriptionUseMember

?<connectors>

<services>

jndi-context element

This element defines one external JNDI context to be used by the application. Table 7-32 describes its
members.

Table 7-32 Members of the jndi-context element

DescriptionUseMember

Name of the JNDI context.<jndi-context-id>

Required properties.<properties>

jndi-enc element

This element encloses naming information so that this bean can be located through JNDI. Table 7-33 describes
the members of the jndi-enc element.

Table 7-33 Members of the jndi-enc element

DescriptionUseMember

*<env-entry>

Defines a reference to this bean. See “ejb-ref element” (page 89).*<ejb-ref>

Defines the bean’s data source. See “resource-ref element” (page 96).*<resource-ref>

intra-vm-server element

This element specifies the dynamic factory proxy to use to create client proxies of the real EJB objects. Table
7-34 describes its member.

Table 7-34 Member of the intra-vm-server element

DescriptionUseMember

Dynamic proxy factory. Values:
org.openejb.util.proxy.jdk13.Jdk13ProxyFactory or
org.openejb.util.proxy.DynamicProxy.

<proxy-factory>

92 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

managed-connection-factory element

This element defines a managed-connection factory. Table 7-35 describes its members.

Table 7-35 Members of the managed-connection-factory element

DescriptionUseMember

Class name of the data source.<class-name>

Properties required by the data source.?<properties>

method element

This element specifies a home or remote interface method of an enterprise bean. Table 7-36 describes its
members.

Table 7-36 Members of the method element

DescriptionUseMember

Description for the method.?<description>

Must specify the ID (name) of one of the enterprise beans declared in the
container-system element. If this element isn’t specified, this method
declaration applies to all matching bean methods (home and remote
interfaces) of all the enterprise beans defined in the
<container-system> tag.

?<ejb-deployment-id>

Value: Home or Remote. Distinguishes between a method with the same
signature that is defined in both the home interface and the remote
interface.

?<method-intf>

Specifies the method name.<method-name>

Identifies a single method among multiple methods with an overloaded
method name. If the method takes no input arguments, this element can
be empty or omitted.

?<method-params>

These are examples of the three possible styles of the method element’s syntax:

 ■ Referring to all the methods (home interfaces and remote interfaces) defined within the
<container-system> tag:

<method>
 <method-name>*</method-name>
</method>

 ■ Referring to a specific method defined within the <container-system> tag:

<method>
 <method-name>METHOD</method-name>

Elements of the Container Configuration File 93
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

</method>

 ■ Referring to a single method within a set of methods (home interfaces and remote interfaces) with an
overloaded name:

<method>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAM-1</method-param>
 <method-param>PARAM-2</method-param>
 ...
 <method-param>PARAM-n</method-param>
 </method-params>
</method>

method-params element

This element is used when further identification of a method is needed due to method-name overloading.
Table 7-37 describes its members.

Table 7-37 Members of the method-params element

DescriptionUseMember

Fully qualified Java type. Specify arrays by following the array element’s type
with one or more pairs of square brackets (for example, int[]).

*<method-param>

method-permission element

This element maps security roles to methods. Table 7-38 describes its members.

Table 7-38 Members of the method-permission element

DescriptionUseMember

Description for the method permission.?<description>

Logical role name corresponding to a security-role element.+<role-name>

See “method element” (page 93).+<method>

method-transaction element

This element specifies how the container manages transaction scopes when delegating a method invocation
to an enterprise bean’s implementation class. Table 7-39 describes its members.

94 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-39 Members of the method-transaction element

DescriptionUseMember

Description for the method and the transaction.?<description>

Methods to apply the transaction type to.+<method>

Value: NotSupported, Supports, Required, RequiresNew, Mandatory,
Never, or Bean.

<trans-attribute>

openejb element

This is the root tag of the deployment configuration file. Table 7-40 describes its members.

Table 7-40 Members of the openejb element

DescriptionUseMember

See “container-system element” (page 89).<container-system>

See “facilities element” (page 91).<facilities>

properties element

This element encloses a set of property-value definitions. Table 7-41 describes its members.

Table 7-41 Member of the properties element

DescriptionUseMember

See “property element” (page 95).<property>

property element

This element encloses a property-value definition. Table 7-42 describes its members.

Table 7-42 Members of the property element

DescriptionUseMember

The name of the property.<property-name>

The value for the property.<property-value>

Elements of the Container Configuration File 95
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

query element

This element can be used to declare a query statement and bind it to a specific finder method. The value
can be retrieved using the org.openejb.core.DeploymentInfo.getQuerymethod. Table 7-43 describes
this element’s members.

Table 7-43 Members of the query element

DescriptionUseMember

Description for the query.?<description>

The ejb-deployment-id element of the method element is ignored (should
not be used). See “method element” (page 93).

<method>

SQL statement.*<query-statement>

remote-jndi-contexts element

This element groups external JNDI contexts. Table 7-44 describes its members.

Table 7-44 Members of the remote-jndi-contexts element

DescriptionUseMember

See “jndi-context element” (page 92).+<jndi-context>

resource element

This element defines a resource. Table 7-45 describes its members.

Table 7-45 Member of the resource element

DescriptionUseMember

Description for the resource.?<description>

Maps this resource to aconnector-id element in the correspondingconnectors
element.

<res-id>

See “properties element” (page 95).<properties>

resource-ref element

This element specifies a reference to an external resource. Table 7-46 describes its members.

96 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-46 Members of the resource-ref element

DescriptionUseMember

Description for the resource.?<description>

Specifies the name of a resource manager connection-factory
reference (for example, comp/env/jdbc/Employee).

<res-ref-name>

Specifies the type of the data source, that is, the Java class or interface
expected to be implemented by the data-store engine; for example,
javax.sql.DataSource.

<res-type>

Value: Application or Container. Specifies who signs on to the
resource manager, the enterprise bean or the container.

<res-auth>

You can map this resource reference to a resource, a connector, or
to a set of properties.

<res-id> or
<connector-id> or
<properties>

This is an example of a <resource-ref> definition using properties:

<resource-ref>
 <res-ref-name>comp/env/jdbc/Employee</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <properties>
 <property>
 <property-name>url</property-name>
 <property-value>jdbc:odbc:orders</property-value>
 </property>
 <property>
 <property-name>username</property-name>
 <property-value>Admin</property-value>
 </property>
 <property>
 <property-name>password</property-name>
 <property-value></property-value>
 </property>
 </properties>
</resource-ref>

role-mapping element

This element maps a logical security role to a physical security role. Table 7-47 describes its members.

Table 7-47 Members of the role-mapping element

DescriptionUseMember

Logical security-role name.+<logical-role-name>

Physical security-role name.+<physical-role-name>

Elements of the Container Configuration File 97
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

security-role element

This element defines a logical role name. Table 7-48 describes its members.

Table 7-48 Members of the security-role element

DescriptionUseMember

Description of the logical role.?<description>

Logical role name; for example, everyone or admin.<role-name>

security-role-ref element

This element specifies a security-role reference. Table 7-49 describes its members

Table 7-49 Members of the security-role-ref element

DescriptionUseMember

Description of the security role.?<description>

Security-role name used in code. It must be the String used as the argument in
the invocation of the isCallerInRole(String) method of EJBContext.

<role-name>

Name of a security role (security-role element). Links this security-role
reference to a defined security role. See “security-role element” (page 98).

<role-link>

security-service element

This element defines a security service. Table 7-50 describes its members.

Table 7-50 Members of the security-service element

DescriptionUseMember

Description of the service.?<description>

?<display-name>

Name of the service.?<service-name>

Name of the factory class for the service.<factory-class>

?<codebase>

Properties needed by the service.?<properties>

See “role-mapping element” (page 97).+<role-mapping>

98 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

services element

This element encloses services used by the container. Table 7-51 describes its members.

Table 7-51 Members of the services element

DescriptionUseMember

Description of the services.<security-service>

See “transaction-service element” (page 101).*<transaction-service>

stateful-bean element

This element defines a stateful session bean. Table 7-52 describes its members.

Table 7-52 Members of the stateful-bean element

DescriptionUseMember

Description for the bean.?<description>

?<display-name>

?<small-icon>

?<large-icon>

Name of the bean; for example, HelloBean.<ejb-deployment-id>

Home interface; for example, com.my.ejb.HelloHome.<home>

Remote interface; for example, com.my.ejb.Hello.<remote>

Implementation class; for example, com.my.ejb.HelloBean.<ejb-class>

Value: Container or Bean.<transaction-type>

See “jndi-enc element” (page 92).?<jndi-enc>

See “security-role-ref element” (page 98).*<security-role-ref>

stateful-session-container element

This element defines a stateful session bean container and encloses the definitions of stateful session beans.
Table 7-53 describes its members.

Elements of the Container Configuration File 99
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-53 Members of the stateful-session-container element

DescriptionUseMember

?<codebase>

Description of the container.?<description>

?<display-name>

Name for the container.<container-name>

Used to tell the container how to handle instances of stateful session beans.
See “properties element” (page 95).

?<properties>

Stateful bean definitions. See “stateful-bean element” (page 99).+<stateful-bean>

stateless-bean element

This element defines a stateless session bean. Table 7-54 describes its members.

Table 7-54 Members of the stateless-bean element

DescriptionUseMember

?<description>

?<display-name>

?<small-icon>

?<large-icon>

Name of the bean.<ejb-deployment-id>

Home interface; for example, com.my.ejb.HelloHome.<home>

Remote interface; for example, com.my.ejb.Hello.<remote>

Implementation class; for example, com.my.ejb.HelloBean.<ejb-class>

Value: Container or Bean.<transaction-type>

See “jndi-enc element” (page 92).?<jndi-enc>

See “security-role-ref element” (page 98).*<security-role-ref>

stateless-session-container element

This element defines a stateless session bean container and encloses the definitions of stateless session
beans. Table 7-55 describes its members.

100 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

Table 7-55 Members of the stateless-session-container element

DescriptionUseMember

?<codebase>

Description of the container.?<description>

?<display-name>

<container-name>

Used to tell the container how to handle instances of stateless session beans.
See “properties element” (page 95).

?<properties>

Stateless bean definitions. See “stateless-bean element” (page 100).+<stateless-bean>

transaction-service element

This element defines a transaction service. Table 7-56 describes its members.

Table 7-56 Members of the transaction-service element

DescriptionUseMember

Description of the transaction service.?<description>

?<display-name>

Name of the transaction service.<service-name>

Name of the factory class for the service.<factory-class>

?<codebase>

Properties needed by the service.?<properties>

Elements of the Container Configuration File 101
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

102 Elements of the Container Configuration File
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Configuration Reference

This table describes the changes to Enterprise JavaBeans.

NotesDate

Added a caption to Table 6-3.2004-10-05

Made editorial changes.2002-12-01

Revised for WebObjects 5.2.2002-10-01

Document name changed to Inside WebObjects: Enterprise JavaBeans.

“Developing Bean Frameworks” (page 53) added information on EOBeanBuilder
usage.

Removed references toLocalTransactionConfiguration.xml file, as it not
used in WebObjects 5.2. See “Generating the EJB Configuration Files” (page 72)
for more information.

Added information on EJB-stub generation (“Generating EJB Stubs” (page 56)).

Added information on EJB transport (“Communication Transport Between Bean
Clients and Containers” (page 71)).

Added information on EJB-container logging (“EJB Container Operation
Logging” (page 72)).

Reorganized “Configuration Reference” (page 75) in alphabetical order.2002-01-01

Added index and glossary.

Document published as Inside WebObjects: Developing EJB Applications.2001-12-01

103
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

104
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

bean class The bean class implements the methods
defined in an enterprise bean’s business methods,
which are defined in the remote interface.

bean client An application or enterprise bean that
makes use of an enterprise bean.

deployment descriptor XML file that describes the
configuration of a Web application. It’s located in the
WEB-INF directory of the application’s WAR file and
named web.xml.

EJB (Enterprise JavaBeans) Specification that
provides an infrastructure through which data-based
components can be developed and deployed in a
variety of platforms.

J2EE (Java 2 Platform, Enterprise
Edition) Specification that defines a platform for the
development and deployment of Web applications.
It describes an environment under which enterprise
beans, servlets, and JSP pages can share resources
and work together.

home interface The home interface defines an
enterprise bean’s life-cycle methods, used to create,
remove, and find beans.

ORB (Object Request Broker) Facility through which
an application can locate and use distributed objects.

remote interface The remote interface defines an
enterprise bean’s business methods, which are used
by bean clients to interact with the bean.

Web application File structure that contains servlets,
JSP pages, HTML documents and other resources. This
structure can be deployed on any servlet-enabled
HTTP server.

105
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Glossary

106
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

B

bean class 13
bean clients 13
bean frameworks

creating
in Mac OS X 17–23
in Windows 29–30, 54–55

deploying 14
developing 17–34, 35–51

bean proxy, creating a 25, 31
bean source files, working with 53–54
bean-client applications

adding bean frameworks 31
configuring 59–71

bean persistence 41–42
data stores 60
EJB Containers 61

creating
in Mac OS X 23–29
in Windows 30–34

grouping beans 61
BMP 38, 46

C

CMP 39, 61
CMPConfiguration.xml file 59, 62, 75
containers, EJB

external 15, 70
internal 14
iPlanet 71
OpenEJB 14, 70
responsibilities 13
Web Logic 71
WebSphere 71

D

DAO 39, 51
data stores, defining local and global 68
databases

grouping beans in the EJB-container configuration file
61

primary-key–generator algorithms
Interbase 67
Oracle 67
PostgreSQL 67

supported servers 63
deployment descriptor file 13, 21

E

EJB (Enterprise JavaBeans) 11
EJB Client Interfaces target 22
EJB Deployment target 22
EJB vendors 17
ejb-jar.xml file 21, 39
ejbFindAll method 38
elements
bind-xml 77
cache-type 77
class 77
config 83
connection-manager 88
connector 84, 88
connectors 88
container-system 89
containers 89
dataSource 84
domain 85
ejb-ref 89
ejb-ref-location 90
entity-bean 90
entity-container 91
env-entry 91
facilities 91
field 78

107
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Index

intra-vm-server 92
jndi-context 92
jndi-enc 92
key-generator 81
ldap 82
limits 85
managed-connection-factory 93
map-to 82
mapping 82
method 93
method-params 94
method-permission 69, 94
method-transaction 69, 94
openejb 95
param 83
properties 95
property 95
query 96
remote-jndi-contexts 96
resource 96
resource-ref 96
resources 85
role-mapping 97
security-role 69, 98
security-role-ref 98
security-service 98
services 99
sql 83
stateful-bean 99
stateful-session-container 99
stateless-bean 100
stateless-session-container 100
transaction-service 101

enterprise beans
See also bean frameworks
EJB vendors 17
mapping to data stores 68

enterprise objects and bean-client applications 24
entity beans 14
EOBeanAssistant 35, 36

G

GlobalTransactionConfiguration.xml file 59, 62
greeting instance variable 27, 33

H

Hello.java file 23, 30
HelloBean project 18, 30

HelloBean_Client project 30
Hello_Client project 23
home interface 13, 20, 38

I

Interbase database, primary-key–generator algorithm for
67

iPlanet EJB container 71

J

J2EE (Java 2 Platform, Enterprise Edition) 11
JavaMail 59, 61
JDBC 39
JNDI 38

M

Main.java file 27, 33
mapping beans to data stores
See also primary-key–generator algorithms
mapping files 64
primary keys 65

message method 23, 27, 33

O

OpenEJB EJB container 70
OpenEJBConfiguration.xml file 59, 68, 86
OpenEJBTool 31, 72
openejb_config.dtd file 86
Oracle database, SEQUENCE primary-key–generator

algorithm for 67
ORB (Object Request Broker), OpenORB 14

P

package 38
persistence manager

Castor JDO 14, 63
configuring 63

Person project 35–40
Person_Client project 40–46
PostgreSQL

108
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INDEX

SEQUENCE primary-key–generator algorithm 67
primary-key class 38
primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

primary-key–generator algorithms 65–68
See also elements
key-generator

HIGH/LOW 66
IDENTITY 67
MAX 65
SEQUENCE 67
UUID 66

R

remote interface 13, 20, 38

S

session beans, stateful and stateless 14
Session.java file, creating a bean proxy in 25, 31

T

transaction manager
configuring
See also data stores, local and global
local and global configuration files 61
summary 62

Tyrex 14
TransactionManagerConfiguration.xml file

configuring the EJB container in a bean-client
application 28

description of XML tags 83
example 63
purpose 59

W

Web Logic EJB container 71
WebSphere EJB container 71

109
Legacy Document | 2004-10-05 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INDEX

	Enterprise JavaBeans
	Contents
	Figures, Tables, and Listings
	About This Document
	Introduction to Enterprise JavaBeans
	Enterprise JavaBeans
	Enterprise JavaBeans in WebObjects

	Developing Session Beans
	Developing a Session Bean in Mac OS X
	Creating the Bean Framework
	Analyzing the Hello Bean’s Files
	Adding Business Logic to the Bean
	Building the Bean Framework
	Creating the Client Application
	Adding Business Logic to the Client Application
	Modify Session.java
	Modify Main.wo
	Modify Main.java

	Configuring the Container
	Running the Hello_Client Application

	Developing a Session Bean in Windows
	Creating the Bean Framework
	Adding Business Logic to the Bean
	Building the Framework
	Creating the Client Application Project
	Adding the Hello Bean Framework to the Hello_Client Project
	Creating the Container Configuration Files
	Adding Business Logic to the Client Application
	Modify Session.java
	Modify Main.wo
	Modify Main.java

	Configuring the Container
	Running the Hello_Client Application

	Developing Entity Beans
	Developing an Entity Bean From a Data Model
	Creating an Empty Bean Framework
	Generating Enterprise-Bean Source Files From a Model File Using EOBeanAssistant

	Using an Entity-Bean Framework
	Developing the Application Project
	Defining Data Sources
	Mapping Enterprise Beans to Data-Store Tables
	Configuring the Transaction Manager
	Creating, Retrieving, and Removing Person Beans

	Advanced Entity-Bean Development
	Bean-Managed Persistence
	Data Access Objects

	Developing Bean Frameworks
	Adding Source Files to a Bean-Framework Project
	Adding JAR Files to a Bean-Framework Project
	Creating Frameworks From Bean JAR Files in Windows
	Adding CMP Fields to an EJB Deployment Descriptor
	Generating EJB Stubs

	Configuring Applications
	Configuration Overview
	Configuring the Transaction Manager
	Configuring the EJB Container
	Configuring the Persistence Manager
	GlobalTransactionConfiguration.xml
	CMPConfiguration.xml

	Transaction Manager Configuration
	Persistence Manager Configuration
	Mapping Enterprise Beans to Database Tables
	The Mapping File
	Primary Keys
	MAX
	HIGH/LOW
	UUID
	IDENTITY
	SEQUENCE

	Defining Data Sources

	Container Configuration
	Containers Section
	Facilities Section

	Using External Containers
	Communication Transport Between Bean Clients and Containers
	Generating the EJB Configuration Files
	EJB Container Operation Logging

	Configuration Reference
	Elements of the Component-Managed Persistence Configuration File
	bind-xml element
	cache-type element
	class element
	field element
	key-generator element
	ldap element
	map-to element
	mapping element
	param element
	sql element

	Elements of the Transaction Manager Configuration File
	config element
	connector element
	dataSource element
	domain element
	limits element
	resources element

	Elements of the Container Configuration File
	connection-manager element
	connector element
	connectors element
	container-system element
	containers element
	ejb-ref element
	ejb-ref-location element
	entity-bean element
	entity-container element
	env-entry element
	facilities element
	jndi-context element
	jndi-enc element
	intra-vm-server element
	managed-connection-factory element
	method element
	method-params element
	method-permission element
	method-transaction element
	openejb element
	properties element
	property element
	query element
	remote-jndi-contexts element
	resource element
	resource-ref element
	role-mapping element
	security-role element
	security-role-ref element
	security-service element
	services element
	stateful-bean element
	stateful-session-container element
	stateless-bean element
	stateless-session-container element
	transaction-service element

	Revision History
	Glossary
	Index
	B
	C
	D
	E
	G
	H
	I
	J
	M
	O
	P
	R
	S
	T
	W

