
WebObjects J2EE Programming Guide
Internet & Web > WebObjects

2005-08-11

Apple Inc.
© 2002, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Logic, Mac, Mac OS,
Pages, and WebObjects are trademarks of
Apple Inc., registered in the United States and
other countries.

Enterprise Objects and Finder are trademarks
of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to WebObjects J2EE Programming Guide 7

Organization of This Document 7
See Also 7

Chapter 1 Servlets 9

Servlets in WebObjects 9
Developing a Servlet 10
Deploying a Servlet 11
Adding Servlet Support to an Existing Application 14
Servlet Single Directory Deployment 15
Cross-Platform Deployment 16

Configuring the Deployment Descriptor 16
Configuring the Servlet Container 17

Installing Servlets in WebSphere 18

Chapter 2 JavaServer Pages 19

JSP Page Writing Guidelines 19
Developing a JavaServer Pages–Based Application 21
Passing Data From a JSP Page to a Component 22
Using WebObjects Classes in a JSP Page 25
Using Direct Actions in JSP Pages 28
Custom-Tag Reference 31

wo:component 31
wo:directAction 32
wo:extraHeader 32
wo:binding 33
wo:formValue 33

Appendix A Special Issues 35

Deploying Multiple WebObjects Applications in a Single Servlet Container 35
Updating Servlet-Based Applications to Future Versions of WebObjects 36

Document Revision History 37

Glossary 39

Index 41

3
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Introduction Introduction to WebObjects J2EE Programming Guide 7

Table I-1 Servlet containers supported in WebObjects 8

Chapter 1 Servlets 9

Figure 1-1 Hello project directory and Project Builder window 11
Figure 1-2 Build settings for a servlet project 12
Table 1-1 Default host and port in the supported servlet containers 14
Listing 1-1 Contents of Hello.war file 13
Listing 1-2 Contents of the Hello single deployment directory 15

Chapter 2 JavaServer Pages 19

Figure 2-1 JSP_Example project—the Hello component 21
Figure 2-2 JSP_Example project—the output of Welcome.jsp 22
Figure 2-3 JSP_Example project—the DiningWell component 24
Figure 2-4 JSP_Example project—the output of DiningWell.jsp 25
Figure 2-5 JSP_Example project—the MusicGenres component 27
Figure 2-6 JSP_Example project—the output of InternetRadio.jsp 28
Figure 2-7 JSP_Example project—the FoodInquiry component 30
Figure 2-8 JSP_Example project—the output of LogIn.jsp 31
Table 2-1 Custom elements defined in WOtaglib_1_0.tld 20
Table 2-2 Attributes of the wo:component element 31
Table 2-3 Attributes of the wo:directAction element 32
Table 2-4 Attributes of the wo:extraHeader element 32
Table 2-5 Attributes of the binding element 33
Table 2-6 Attributes of the formValue element 33
Listing 2-1 FavoriteFood.java 24
Listing 2-2 InternetRadio.jsp file 26
Listing 2-3 FoodInquiry.java 29

5
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled JavaServer Pages and Servlets.

JavaServer Pages (JSP) and servlets are important parts of Sun’s J2EE (Java 2 Platform, Enterprise Edition)
architecture. JSP is a specification that defines interfaces that servlet-container vendors can implement to
provide developers the ability to create dynamic Web pages, which are files with the extension .jsp. Servlet
containers interpret these files and create servlets (also know as workhorse servlets) to process HTTP requests
and produce responses. Servlets are server plug-ins that extend the capabilities of your Web server. They
provide a straightforward deployment mechanism for your applications. Servlets are deployed inside servlet
containers, which are plug-ins to your Web server.

You should read this document if you want to deploy your WebObjects applications inside a servlet container
or want to take advantage of WebObjects components (both standard and custom) in your JSP pages.

Deploying WebObjects applications as servlets allows you to take advantage of the features that your servlet
container provides. Keep in mind that deployment tools such as Monitor and wotaskd do not work with
servlets. WebObjects uses version 2.2 of the Servlet API, and version 1.1 of the JSP specification.

Organization of This Document

The document addresses two major points, each contained in its own chapter:

 ■ “Servlets” (page 9) explains how you develop WebObjects applications to be deployed as servlets and
how to add servlet capability to existing applications.

 ■ “JavaServer Pages” (page 19) tells you how to write JSP-based applications, which can be thought of as
JSP applications that use WebObjects technology or hybrids—applications that use JSP pages to
accomplish some tasks and WebObjects components or direct actions to perform others.

 ■ “Special Issues” (page 35) addresses special issues to consider when you deploy WebObjects applications
as servlets or when you develop JSP-based applications.

 ■ “Document Revision History” (page 37) lists the revisions made to this document.

See Also

To get the most out of this document, you must be familiar with WebObjects application development. In
particular, you need to know how to create applications using Project Builder and how to layout WebObjects
components using WebObjects Builder.

For additional WebObjects documentation and links to other resources, visit http://developer.apple.com/we-
bobjects.

Organization of This Document 7
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects J2EE
Programming Guide

http://developer.apple.com/webobjects
http://developer.apple.com/webobjects

In addition to WebObjects development experience, you also need to be acquainted with the syntax used
in JSP pages and with the layout of WAR (Web Application Archive) files. You can find information about JSP
and J2EE in the following documents:

 ■ Java Servlet Programming, 2nd edition (O’Reilly) provides an in-depth treatise on servlets. You can find
more information at http://java.oreilly.com.

 ■ J2EE Technology in Practice (Sun) provides an overview of J2EE technology.

 ■ JavaServer Pages Technology Syntax (Sun) is a short document that describes the syntax used in JSP pages.
You can download it from http://java.sun.com/products/jsp/technical.html. For more information on JSP
and servlets, see http://java.sun.com/products/jsp.

 ■ Java Servlet Technology contains the latest information on Sun’s Java Servlet technology. You can view
it at http://java.sun.com/products/servlet/.

WebObjects Developer also includes a commented application project that shows you how JSP pages can
take advantage of WebObjects components and direct actions. The example—using the client/server
approach—includes two WebObjects application projects named SchoolToolsClient and SchoolToolsServer.
The projects are located at /Developer/Examples/JavaWebObjects.

The three servlet containers supported in WebObjects are listed in Table I-1.

Table I-1 Servlet containers supported in WebObjects

VersionContainerPlatform

3.2.4TomcatMac OS X Server

7.0WebLogicSolaris

4.0.4WebSphereWindows 2000

8 See Also
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects J2EE Programming Guide

http://java.oreilly.com
http://java.sun.com/products/jsp/technical.html
http://java.sun.com/products/jsp
http://java.sun.com/products/servlet/

Servlet technology was developed as an improvement over CGI. It’s an open standard that can be freely
adopted by any vendor. It provides an infrastructure that allows applications from different manufacturers
to cooperate and share resources.

The following sections explain how you can take advantage of servlet technology in WebObjects:

 ■ “Servlets in WebObjects” (page 9) provides an overview of servlet technology as it is implemented in
WebObjects.

 ■ “Developing a Servlet” (page 10) guides you through creating a simple servlet.

 ■ “Deploying a Servlet” (page 11) explores deployment issues and tasks you need to keep in mind when
deploying a servlet.

 ■ “Adding Servlet Support to an Existing Application” (page 14) explains how to add servlet support to
an existing WebObjects application.

 ■ “Servlet Single Directory Deployment” (page 15) describes the feature that allows you to create a directory
containing the files necessary to deploy an application as a servlet that does not require WebObjects to
be installed on the deployment computer.

 ■ “Cross-Platform Deployment” (page 16) shows you how to simplify cross-platform deployment (or
deployment in a platform other than the development platform) by allowing you to easily define the
paths your servlet container uses to locate WebObjects frameworks, local frameworks, and WebObjects
application bundles—WebObjects application (WOA) directories.

 ■ “Installing Servlets in WebSphere” (page 18) addresses special issues when installing WAR files in
WebSphere.

Servlets in WebObjects

Servlets are generic server extensions that expand the functionality of a Web server. By deploying WebObjects
applications as servlets running inside servlet containers, you can take advantage of the features that your
servlet container offers. Alternatively, you can deploy your applications using an HTTP adaptor that runs as
a plug-in in your Web server. The adaptor forwards requests to your servlet container.

WebObjects applications can be deployed as servlets inside a servlet container such as Tomcat, WebLogic,
or WebSphere. When an application runs as a servlet, instead of as a separate Java virtual machine (JVM)
process, it runs inside the servlet container’s JVM, along with other applications. Note, however, that you can
run only one instance of an application inside a servlet container. To run multiple instances of an application,
you have to use multiple servlet containers. In addition, WebObjects deployment tools such as Monitor and
wotaskd cannot be used with servlets.

To deploy an application as a servlet, you need to add the JavaWOJSPServlet framework to your project.
When you build the project, Project Builder generates a WAR (Web application archive) file in addition to the
WOA (WebObjects application) bundle. The WAR file has the appropriate classes and the web.xml file in the

Servlets in WebObjects 9
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

WEB-INF directory that your servlet container needs to launch the servlet. All you need to do in order to
deploy the servlet is copy the WAR file to the application deployment directory of your servlet container. See
“Installing Servlets in WebSphere” (page 18) for special steps required to install servlets in WebSphere.

You may have to modify web.xml.template, specifically the %WOClassPath% marker, to ensure that the
classpath to the application’s WOA bundle is correct. For WebLogic, the default Session class must be placed
in a package because it conflicts with an internal WebLogic class. In general, all your classes should be inside
packages.

The WAR file is not a complete application. WebObjects Deployment must be installed on the application
host, as well as the application’s WOA bundle. However, using the Servlet Single Directory Deployment
feature, you can deploy directories that contain all the necessary WebObjects classes. For more information,
see “Servlet Single Directory Deployment” (page 15).

Note: When a WebObjects application is deployed as a servlet, the main method of the Application class is
not executed.

Developing a Servlet

This section shows you how to create a simple servlet using Project Builder.

Start by creating a WebObjects application project named Hello. You can deploy other types of WebObjects
applications as servlets, such as Direct to Java Client, Direct to Web, Display Group, and Java Client.

In the Enable J2EE Integration pane of the Project Builder Assistant, select Deploy in a JSP/Servlet Container.

10 Developing a Servlet
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

The “Deploy as a WAR file” option tells Project Builder to create a WAR file, which should be placed in your
servlet container’s application directory. The WAR file contains all the files needed by an application except
WebObjects frameworks. Therefore, WebObjects needs to be installed on the computer on which you want
to deploy the application.

The “Deploy as a Servlet Single Directory Deployment” option tells Project Builder to include WebObjects
frameworks in the WAR file. With this option, WebObjects does not need to be installed on the deployment
computer.

The “Copy all JAR files into the application’s WEB-INF/lib directory” option tells Project Builder to copy
framework and application JAR files to the WEB-INF/lib directory (necessary only when the servlet uses
other servlets, or for JSPs that make use of actual objects).

As the right side of Figure 1-1 shows, the newly created project is, in all respects, a standard WebObjects
application project. However, Project Builder adds the Servlet Resources folder to the Resources group.
Anything you add to this folder is included in the WAR file or single deployment directory that Project Builder
creates when you build the project, following the same directory structure. The Servlet Resources folder is a
real directory in the project’s root directory; it’s shown on the left side of Figure 1-1.

Figure 1-1 Hello project directory and Project Builder window

Deploying a Servlet

The WEB-INF folder, under Server Resources, contains the web.xml.template file, which Project Builder
uses to generate the servlet’s deployment descriptor. You can edit this template to customize the deployment
descriptor for your deployment environment. There are several elements whose values are surrounded by
percent (%) characters (these are placeholders that Project Builder evaluates when you build the project).
These elements include cross-platform settings (see “Cross-Platform Deployment” (page 16) for details). You
can replace the placeholders with other values if your environment requires it.

Follow these steps to get to the JSP and servlet build settings in Project Builder:

Deploying a Servlet 11
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

1. Click the Targets tab, then click the Hello target in the Targets list. The Target pane appears. It contains
the target settings list and a content pane.

2. Click Expert View under Settings in the target settings list to display the Hello target’s build settings in
the content pane.

3. Locate the SERVLET_WEBAPPS_DIRbuild setting and enter the path of your servlet container’s application
directory, as shown in Figure 1-2.

Figure 1-2 Build settings for a servlet project

The SERVLET_COPY_JARS build setting tells Project Builder whether to copy framework and application JAR
files to the WEB-INF/lib directory (necessary only when the servlet uses other servlets, or for JSPs that make
use of actual objects).

The SERVLET_SINGLE_DIR_DEPLOYbuild setting indicates whether the application is to be deployed as a
WAR file or a single deployment directory (see “Servlet Single Directory Deployment” (page 15) for more
information). Set it to NO to deploy as a WAR file and YES to deploy as a single deployment directory.

The SERVLET_SINGLE_DIR_DEPLOY_LICENSEbuild setting must contain your WebObjects Deployment
license when SERVLET_SINGLE_DIR_DEPLOY is set to YES. If you don’t add your deployment license, you
will not be able to build the application.

You can tell Project Builder where to put the WAR file by setting the value of the SERVLET_WEBAPPS_DIR
build setting (this is especially convenient during development). By default, WAR files are placed in the build
directory of your project.

Project Builder WO (on Windows) adds two buckets to your project: JSP Servlet WEB-INF and JSP Servlet
Resources. The JSP Servlet WEB-INF bucket is a holding place for JAR files, classes, and TLD files (which are
auto-routed to the correct subdirectories in the WEB-INF directory of the generated WAR file or single
deployment directory—lib, class, and tld respectively; the web.xml.template file is also located here).
The JSP Servlet Resources bucket contains any other items you want to add to the WAR file or single
deployment directory (you can drag files and folders into this bucket; Project Builder WO preserves the
directory structure when it generates the WAR file). These items are not auto-routed.

12 Deploying a Servlet
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

There are also several new variables defined in Makefile.preamble. The SERVLET_APP_MODE variable
indicates whether Web server resources are loaded from the WOA bundle (the default) or the servlet container
(by setting it to "Deployment". The SERVLET_WEBAPPS_DIR, SERVLET_COPY_JARS,
SERVLET_SINGLE_DIR_DEPLOY, and SERVLET_SINGLE_DIR_DEPLOY_LICENSE variables perform the same
function described for Project Builder’s servlet-related build settings earlier.

This is how you set up the SERVLET_WEBAPPS_DIR variable in Project Builder WO:

export SERVLET_WEBAPPS_DIR = C:\Tomcat\webapps

You can test the servlet by setting the SERVLET_WEBAPPS_DIR build setting to the path of your servlet
container’s application deployment directory and building the project. Before you build, you can edit Main.wo
using WebObjects Builder to add a message to the page, such as Hello. I’m a servlet. When Project
Builder finishes building the application, it places the Hello.war file in your servlet container’s application
deployment directory. The contents of the Hello.war file are shown in Listing 1-1.

Listing 1-1 Contents of Hello.war file

Hello/
 META-INF/
 MANIFEST.MF
 WEB-INF/
 classes/
 lib/
 JavaWOJSPServlet_client.jar
 tlds/
 WOtaglib_1_0.tld
 web.xml

After restarting your servlet container you can connect to the Hello application through a Web browser. By
default, the connection URL is

http://host:port/AppName/WebObjects/AppName.woa

where host is the computer where the servlet container is running and port is the port the container runs
on. Table 1-1 lists the default host and port for Tomcat, WebLogic, and WebSphere.

Deploying a Servlet 13
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

Table 1-1 Default host and port in the supported servlet containers

PortHostContainer

8080 (9006 on Mac OS X Server)localhostTomcat

7001localhostWebLogic

9080localhostWebSphere

Adding Servlet Support to an Existing Application

To add servlet support to an existing application, all you need to do is add the JavaWOJSPServlet framework
to your project and rebuild it. On Mac OS X, follow these steps:

1. Open the project you want to add servlet support to in Project Builder.

2. Add the JavaWOJSPServlet framework.

a. Select the Frameworks group from the Files list.

b. Choose Project > Add Frameworks.

A sheet appears with the Frameworks folder selected.

c. Select JavaWOJSPServlet.framework from the file list, and click Open.

d. Select Application Server from the target list, and click Add.

Notice that the Servlet Resources folder is added to the Resources group.

3. Build the project using the Deployment build style.

4. Copy the WAR file or deployment directory in the build directory of your project to the application
deployment directory of your servlet container.

You can avoid this step by setting SERVLET_WEBAPPS_DIR to the path of your servlet container’s
application deployment directory. When using SSDD, you have to add your WebObjects Deployment
license number to the project, as explained in “Deploying a Servlet” (page 11).

5. If necessary, restart your servlet container.

The servlet should now be available through your servlet container.

On Windows, follow these steps:

1. Open the project you want to add servlet support to in Project Builder WO.

2. Add the JavaWOJSPServlet framework.

a. Select the Frameworks bucket.

14 Adding Servlet Support to an Existing Application
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

b. Choose Project > Add Files.

c. If necessary, navigate to the \Apple\Library\Frameworks directory (the directory should be
selected by default).

d. Select JavaWOJSPServlet.framework from the file list and click Open.

e. Add the servlet-support variables to the Makefile.preamble file. One way to do this is by creating
a new project with servlet support and copying its servlet-related variables to the
Makefile.preamble in the project you’re modifying.

3. Rebuild the project.

4. If necessary, copy the WAR file or single deployment directory in the project’s build directory to the
application deployment directory of your servlet container. On Windows, the WAR file or single deployment
directory is located at the top level of the project’s directory.

5. If necessary, restart your servlet container.

Servlet Single Directory Deployment

As mentioned earlier, Servlet Single Directory Deployment (SSDD) allows you to create an application directory
that you can deploy on a computer on which WebObjects is not installed.

To deploy an application using SSDD, do the following:

1. Set the SERVLET_SINGLE_DIRECTORY_DEPLOY build setting to YES.

2. Enter your WebObjects Deployment license as the value of the
SERVLET_SINGLE_DIRECTORY_DEPLOY_LICENSE build setting.

When you build the application, Project Builder creates a directory named after the project. Listing 1-2 lists
the contents of the Hello deployment directory.

Listing 1-2 Contents of the Hello single deployment directory

Hello/
 WEB-INF/
 classes/

// 1 Extensions
 Hello.woa
 lib/
 JavaWOJSPServlet_client.jar

// 2 Library
 Frameworks/

// 3 LICENSE
 tlds/
 WOtaglib_1_0.tld
 web.xml

The following list explains the numbered items in Listing 1-2.

Servlet Single Directory Deployment 15
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

1. The Extensions directory contains the JAR files in /Library/WebObjects/Extensions.

2. The Library directory contains the frameworks in the Frameworks group of the Files list of the project.

3. The LICENSE file contains the WebObjects Deployment license agreement.

Cross-Platform Deployment

To support cross-platform deployment, WebObjects uses three variables that tell the servlet container at
runtime where to find WebObjects frameworks (directories with the .framework extension) and the WOA
bundles (bundles with the extension .woa):

 ■ WOROOT indicates the path where WebObjects frameworks are installed. On Mac OS X, for example,
WebObjects frameworks are located in the /System/Library/Frameworks directory and WOROOT is
set to /System. On Windows, WOROOT could be set to C:\Apple, and on Solaris it may be /opt/Apple.

 ■ LOCALROOT indicates the path where local frameworks are installed. On Mac OS X, these frameworks
are located in the /Library/Frameworks directory, and LOCALROOT is set to /. On Windows, LOCALROOT
may be set to C:\Apple\Local, while on Solaris it could be /opt/Apple/Local.

 ■ WOAINSTALLROOT specifies the location of WOA bundles. On Mac OS X, the default is
/Library/WebObjects/Applications.

When you deploy the WAR file of your servlet on a computer where the framework and WOA files are in
different locations from the default ones, you can specify the correct paths using the variables described
above. You can accomplish this in two ways:

 ■ configuring the application’s deployment descriptor

 ■ configuring the servlet container

Note: Single directory deployments, described in “Servlet Single Directory Deployment” (page 15), are
platform independent.

Configuring the Deployment Descriptor

The deployment descriptor of a servlet is the web.xml file, located in the WEB-INF directory of the WAR file.
This file is generated from the web.xml.template file in your project.

To configure your application’s deployment descriptor during development, you edit the web.xml.template
file. Alternatively, you can edit the web.xml file of the WAR file (after expanding the WAR file). Locate the
<param-name> tags for the appropriate variables, and set the value for their corresponding <param-value>
tag.

This is an example of a web.xml.template file on Windows:

<web-app>
 <context-param>
 <param-name>WOROOT</param-name>

16 Cross-Platform Deployment
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

 <param-value>C:\WebObjectsFrameworks</param-value>
 </context-param>
 <context-param>
 <param-name>LOCALROOT</param-name>
 <param-value>C:\Apple\Local</param-value>
 </context-param>
 <context-param>
 <param-name>WOAINSTALLROOT</param-name>
 <param-value>C:\WebObjectsApplications</param-value>
 </context-param>
 ...
</web-app>

You expand the WAR file by executing the following commands in your shell editor:

mkdir filename
jar -xvf filename.war

When you’re done editing the web.xml file, you re-create the WAR file by executing

jar -cvf fileName.war .

Configuring the Servlet Container

This method allows your settings to be propagated to all applications and it overrides the values set in the
deployment descriptor. Using this approach, you can deploy WebObjects applications without worrying
about each application’s configuration. You can configure the servlet container in two ways:

 ■ editing the launch script of the servlet container

 ■ defining environment variables

This is an example of the launch script in Tomcat (startup.sh):

#! /bin/sh
...
$JAVACMD $TOMCAT_OPTS -DWOROOT=/System -DLOCALROOT=/
-DWOAINSTALLROOT=/Library/WebObjects/Applications
-Dtomcat.home=${TOMCAT_HOME} org.apache.tomcat.startup.Tomcat "$@" &

BASEDIR='dirname $0'
$BASEDIR/tomcat.sh start "$@"

This is an example of the launch-script format in WebLogic (startWLS.sh):

"${JAVA_HOME}/bin/java" ${JAVA_VM} ${MEM_ARGS}
-classpath ${CLASSPATH}"
-Dweblogic.Name=myserver
-Dbea.home="/opt/bea"
"-DWOROOT=/opt/Apple"
"-DLOCALROOT=/opt/Apple/Local"
"-DWOAINSTALLROOT=/applications/production"
-Dweblogic.management.username=${WLS_USER}
-Dweblogic.management.password=${WLS_PW}
-Dweblogic.ProductionModeEnabled=${STARTMODE}
-Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy"

Cross-Platform Deployment 17
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

weblogic.Server

This is how you would define environment variables using the bash or zsh shell editors:

% export TOMCAT_OPTS="-DWOROOT=/System -DWOAINSTALLROOT=/WebObjects/Applications
 -DLOCALROOT=/"

And this is how you would do it using the csh shell editor:

% setenv TOMCAT_OPTS "-DWOROOT=/System -DWOAINSTALLROOT=/WebObjects/Applications
 -DLOCALROOT=/"

Installing Servlets in WebSphere

To install a single deployment directory you need to create a WAR file from the directory. Execute the following
commands to create the WAR file:

cd <path-to-project>/AppName
jar -cvf AppName.war .

To install a WAR file, perform these steps using console:

1. Choose Nodes > Server > Enterprise Apps > Install.

2. Navigate to the WAR file’s location.

3. Enter the application’s name in the App Name text input field; for example, MyApp.

4. Enter the context name for the application in the Context Root text input field; for example, /MyApp.

18 Installing Servlets in WebSphere
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Servlets

JavaServer Pages (JSP) is a specification that describes what a servlet-based content creation system should
do. One of its main purposes is to facilitate the creation of dynamic Web pages.

You can directly access WebObjects components in your JSP pages. These components can be WOComponents
or WODirectActions. This allows you to create JSP-based applications that take advantage of WebObjects
technologies, such as Enterprise Objects.

When your servlet container receives a request addressed to a JSP page, the container reads the .jsp file
and compiles it into a workhorse servlet that processes the HTTP requests and produces responses to them.

This chapter addresses the following topics:

 ■ “JSP Page Writing Guidelines” (page 19) introduces the custom tag library that your JSP pages must
include to be able to access WebObjects components.

 ■ “Developing a JavaServer Pages–Based Application” (page 21) walks you through the steps needed to
create a simple JSP-based application.

 ■ “Passing Data From a JSP Page to a Component” (page 22) explains what you need to do in order to
pass data from a JSP page to a WebObjects component or direct action.

 ■ “Using WebObjects Classes in a JSP Page” (page 25) shows you how to write JSP pages that use
WebObjects classes.

 ■ “Using Direct Actions in JSP Pages” (page 28) explains how to use a direct action in a JSP page.

 ■ “Custom-Tag Reference” (page 31) provides a detailed explanation for each of the tags defined in the
custom tag library.

JSP Page Writing Guidelines

To be able to use WebObjects components in your JSP pages, you have to include the WOtaglib_1_0.tld
custom tag library. It’s located in
/System/Library/Frameworks/JavaWOJSPServlet.framework/Resources. This custom tag library
uses the tag library descriptor format defined in a DTD (Document Type Definition) from Sun. This DTD is
available at http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd.

The elements you use in your JSP pages have the form <wo:elementName>. elementName indicates the
type of element you want to use. For example, to use a component element within a JSP page, you add code
like the following to the .jsp file:

<wo:component ...>
 ...
</wo:component>

Version 1.0 of the custom tag library defines five tags as described in Table 2-1.

JSP Page Writing Guidelines 19
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd

Table 2-1 Custom elements defined in WOtaglib_1_0.tld

DescriptionChildrenElement

Top-level element. Specifies the component that is used
in the JSP page.

bindingextraHeaderwo:component

Top-level element. Specifies the direct action that is used
in the JSP page.

formValueextraHeaderwo:directAction

Specifies the extra HTTP headers to be passed to the
component or direct action.

Nonewo:extraHeader

Specifies the key-value pair to be passed to the
containing wo:component for binding.

Nonewo:binding

Specifies the form value to be passed to the containing
wo:directAction.

Nonewo:formValue

For detailed information on the WebObjects custom tag library, see “Custom-Tag Reference” (page 31).

To use the wo:component or wo:directAction elements on a JSP page, you must add the following
directive to the page:

<%@ taglib uri="/WOtaglib_1_0.tld" prefix="wo" %>

When you need to access WebObjects classes or objects from your JSP page, you need to copy all the
framework and application JAR files necessary into the WAR file or single deployment directory. You accomplish
this by calling the initStatics method of the WOServletAdaptor class:

<% WOServletAdaptor.initStatics(application); %>

Note that you need to invoke the initStatics method only once during the lifetime of an application.
Furthermore, the method is invoked automatically anytime wo:component or wo:directAction elements
are used in a JSP page.

You also need to import the appropriate packages before using the classes with the import attribute of the
page directive in your JSP page:

<%@ page import = "com.webobjects.jspservlet.*" %>

These directives need to be performed only once per page. However, additional invocations have no ill effect.
Referencing classes directly is useful when using components that require binding values. For example, a
WORepetition whose list attribute is bound to an array of enterprise-object instances.

This is an example of a directAction definition:

<wo:directAction actionName="random" className="DirectAction">
 <wo:formValue key = "formKey" value = '<%= "formValue" %>'/>
 <wo:extraHeader key = "headerKey" value = '<%= "headerValue" %>'/>
</wo:directAction>

This is an example of a component definition:

<wo:component className="MyImageComponent">
 <wo:binding key="filename" value='<%= "start.gif" %>' />

20 JSP Page Writing Guidelines
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

</wo:component>

To embed dynamic elements in a JSP page, such WOConditional and WORepetition, you have to wrap them
in a WebObjects component, which you then use in your JSP page.

Developing a JavaServer Pages–Based Application

This section shows you how to create a simple JSP-based WebObjects application. In it you learn how to use
wo:component elements in a JSP page.

1. Launch Project Builder and create a WebObjects application project called JSP_Example.

2. In the J2EE Integration pane of the Project Builder Assistant, select “Deploy in a servlet container.”

3. In Project Builder, create a component called Hello (make sure you assign it to the Application Server
target). Edit the component using WebObjects Builder so that it looks like Figure 2-1.

Figure 2-1 JSP_Example project—the Hello component

4. Set the servlet application directory. (See “Deploying a Servlet” (page 11) for details.)

5. In the Finder, navigate to the Servlet Resources folder, located in the JSP_Example folder, and create a
folder called jsp.

6. Using a text editor, create a file with the following contents:

<%-- Welcome.jsp --%>

<%@ taglib uri="/WOtaglib" prefix="wo" %>

Developing a JavaServer Pages–Based Application 21
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

<HTML>

<HEAD>
 <TITLE>Welcome to JavaServer Pages in WebObjects</TITLE>
</HEAD>

<BODY>
 <wo:component className="Hello">
 </wo:component>
</BODY>

</HTML>

7. Save the file as Welcome.jsp in the jsp directory.

8. Build the JSP_Example project (if necessary, restart your servlet container).

You should now be able to connect to your application. In Tomcat, you use the following URL:

http://localhost:8080/JSP_Example/jsp/Welcome.jsp

A page similar to the one in Figure 2-2 should appear in your browser. (Otherwise, consult your servlet
container’s documentation to make sure that it’s configured properly.)

Figure 2-2 JSP_Example project—the output of Welcome.jsp

Passing Data From a JSP Page to a Component

In this section, you expand the JSP_Example project to include

 ■ a new component called FavoriteFood

 ■ a JSP page, called DiningWell, that uses the Hello and FavoriteFood components to generate its output

22 Passing Data From a JSP Page to a Component
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

The FavoriteFood component contains two attributes:visitorName andfavoriteFood. When the DiningWell
workhorse servlet receives a request, it passes two strings to the FavoriteFood component. The FavoriteFood
component then uses those strings to render its HTML code.

1. Using a text editor, create a file with the following contents:

<%-- DiningWell.jsp --%>

<%@ taglib uri="/WOtaglib" prefix="wo" %>

<HTML>

<HEAD>
 <TITLE>What to eat?</TITLE>
</HEAD>

<BODY>
 <wo:component className="Hello" />
 <P><P>
 <wo:component className="FavoriteFood" bodyContentOnly="true">
 <wo:binding key="visitorName" value='<%= "Worf" %>' />
 <wo:binding key="favoriteFood" value='<%= "gagh" %>' />
 </wo:component>
</BODY>

</HTML>

Note that in this case the bodyContentOnly attribute of the wo:component element is set to true
(this is the default, so you don’t need to specify a value for it). This allows you to define the FavoriteFood
component as “Full document” (the default setting in WebObjects Builder) instead of “Partial document.”
This way, the component can be viewed as a Web page on its own and as a component within a JSP
page.

For faster processing, you can set the bodyContentOnly attribute to false if you are certain that the
component includes only the BODY element and not the HTML element.

2. Save the file as DiningWell.jsp in JSP_Example/Servlet Resources/jsp.

3. In Project Builder, create a component called FavoriteFood (make sure you assign it to the Application
Server target).

Passing Data From a JSP Page to a Component 23
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

4. Edit the component using WebObjects Builder so that it looks like Figure 2-3. Make sure to add accessor
methods to the visitorName and favoriteFood String keys. Also, ensure that the FavoriteFood
component is set to “Full document”.

Figure 2-3 JSP_Example project—the DiningWell component

When you’re done FavoriteFood.java should look like Listing 2-1.

Listing 2-1 FavoriteFood.java

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;

public class FavoriteFood extends WOComponent {
 protected String visitorName;
 protected String favoriteFood;

 public FavoriteFood(WOContext context) {
 super(context);
 }

 public String visitorName() {
 return visitorName;
 }
 public void setVisitorName(String newVisitorName) {
 visitorName = newVisitorName;
 }

 public String favoriteFood() {
 return favoriteFood;

24 Passing Data From a JSP Page to a Component
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

 }
 public void setFavoriteFood(String newFavoriteFood) {
 favoriteFood = newFavoriteFood;
 }
}

5. Build the project and restart your servlet container, if necessary.

If you’re using Tomcat, you can view the new page in your browser with this URL

http://localhost:8080/JSP_Example/jsp/DiningWell.jsp

The Web page should look like Figure 2-4.

Figure 2-4 JSP_Example project—the output of DiningWell.jsp

This is the HTML code your Web browser receives (the listing is indented for easy reading):

<HTML>
 <HEAD>
 <TITLE>What to eat?</TITLE>
 </HEAD>

 <BODY>
 Hello, World!
 <P><P>
 Worf's favorite food is gagh.
 </BODY>
</HTML>

Using WebObjects Classes in a JSP Page

This section continues work on the JSP_Example project. It explains how to write a JSP page that makes use
of two WebObjects classes, NSArray and NSMutableArray, to pass information to a component called
MusicGenres.

Using WebObjects Classes in a JSP Page 25
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

1. Using a text editor, create a file with the contents of Listing 2-2.

Listing 2-2 InternetRadio.jsp file

<%-- InternetRadio.jsp --%>

<%@ taglib uri="/WOtaglib" prefix="wo" %>

<%-- Import statements --%>
<%@ page import="com.webobjects.foundation.*" %>
<%@ page import="com.webobjects.jspservlet.*" %>

<%-- Initialize WebObjects–to–servlet-container integration system --%>
<%
 WOServletAdaptor.initStatics(application);
%>

<%-- Create musical-genre list --%>
<%
 NSMutableArray genres = new NSMutableArray();
 genres.addObject(new String("Classical"));
 genres.addObject(new String("Country"));
 genres.addObject(new String("Eclectic"));
 genres.addObject(new String("Electronica"));
 genres.addObject(new String("Hard Rock/Metal"));
 genres.addObject(new String("Hip-Hop/Rap"));
 genres.addObject(new String("Jazz"));
%>

<HTML>

<HEAD>
 <TITLE>Music Available on Internet Radio Stations</TITLE>
</HEAD>

<BODY>
 <wo:component className="MusicGenres" bodyContentOnly="true">
 <wo:binding key="genres" value='<%= genres %>' />
 </wo:component>
</BODY>

</HTML>

Note the invocation of the initStatics method of the WOServletAdaptor class. It performs the
initialization of objects needed to integrate WebObjects with your servlet container (for example, adding
a WOSession object to the JSPSession object).

2. Save the file as InternetRadio.jsp in the JSP_Example/Servlet Resources/jsp directory.

3. In Project Builder, create a component called MusicGenres (make sure you assign it to the Application
Server target).

4. Add the genres and genre keys to MusicGenres using WebObjects Builder. genres is an array of Strings
and genre is a String. Add a setter method for genres.

Alternatively, you can add the following code to MusicGenres.java:

26 Using WebObjects Classes in a JSP Page
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

protected String genre;

/** @TypeInfo java.lang.String */
protected NSArray genres;

public void setGenres(NSArray newGenres) {
 genres = newGenres;
}

5. Edit the component using WebObjects Builder so that it looks like Figure 2-5.

Figure 2-5 JSP_Example project—the MusicGenres component

6. Tell Project Builder to copy the necessary WebObjects classes to the WAR file or single deployment
directory by setting the SERVLET_COPY_JARS build setting to YES.

7. Build the application and restart your servlet container, if necessary.

To view the output of the InternetRadio JSP page in Tomcat use the following URL:

http://localhost:8080/JSP_Example/jsp/InternetRadio.jsp

Using WebObjects Classes in a JSP Page 27
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

You should see a page like the one in Figure 2-6.

Figure 2-6 JSP_Example project—the output of InternetRadio.jsp

Using Direct Actions in JSP Pages

This section shows you how to create a WebObjects component called FoodInquiry that contains a WOForm
element with two WOTextFields and a WOSubmitButton. The FoodInquiry page is displayed by a direct action,
which itself is invoked by a JSP page that provides the FoodInquiry component with initial values for its form
elements using wo:formValue elements.

1. Using a text editor, create a file with the following contents:

<%-- LogIn.jsp --%>

<%@ taglib uri="/WOtaglib" prefix="wo" %>

<wo:directAction actionName="login" className="DirectAction"
bodyContentOnly="false">
 <wo:formValue key="VisitorName" value='<%= "enter name" %>' />
 <wo:formValue key="FavoriteFood" value='<%= "enter food" %>' />
</wo:directAction>

2. Save the file as LogIn.jsp in JSP_Example/Servlet Resources/jsp.

3. In Project Builder, create a component called FoodInquiry (make sure you assign it to the Application
Server target).

4. Add the visitorName and favoriteFood String keys to the component (create accessor methods).
Also add the showFavoriteFood action returning the FavoriteFood component.

When you’re done, FoodInquiry.java should look like Listing 2-3. (Note that if you use WebObjects
Builder to add the keys and the action, you need to add a couple of lines of code to the
showFavoriteFood method.

28 Using Direct Actions in JSP Pages
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

Listing 2-3 FoodInquiry.java

import com.webobjects.foundation.*;
import com.webobjects.appserver.*;
import com.webobjects.eocontrol.*;
import com.webobjects.eoaccess.*;

public class FoodInquiry extends WOComponent {
 protected String visitorName;
 protected String favoriteFood;

 public FoodInquiry(WOContext context) {
 super(context);
 }

 public FavoriteFood showFavoriteFood() {
 FavoriteFood nextPage = (FavoriteFood)pageWithName("FavoriteFood");

 // Set the properties of the FavoriteFood component.
 nextPage.setVisitorName(visitorName);
 nextPage.setFavoriteFood(favoriteFood);

 return nextPage;
 }

 public String visitorName() {
 return visitorName;
 }
 public void setVisitorName(String newVisitorName) {
 visitorName = newVisitorName;
 }

 public String favoriteFood() {
 return favoriteFood;
 }
 public void setFavoriteFood(String newFavoriteFood) {
 favoriteFood = newFavoriteFood;
 }
}

Using Direct Actions in JSP Pages 29
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

5. Edit the component using WebObjects Builder so that it looks like Figure 2-7.

Figure 2-7 JSP_Example project—the FoodInquiry component

a. Bind the Submit button to the showFavoriteFood action.

b. Enter Food Inquiry as the component’s title.

c. Enter "VisitorName" as the value for the name attribute of the WOTextField that corresponds to
the Visitor Name label.

d. Enter "FavoriteFood" as the value for the name attribute of the WOTextField that corresponds to
the Favorite Food label.

6. Add the loginAction method (listed below) to the DirectAction class.

public WOActionResults loginAction() {
 FoodInquiry result = (FoodInquiry)pageWithName("FoodInquiry");

30 Using Direct Actions in JSP Pages
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

 // Get form values.
 String visitorName = request().stringFormValueForKey("VisitorName");
 String favoriteFood= request().stringFormValueForKey("FavoriteFood");

 // Set the component’s instance variables.
 result.setVisitorName(visitorName);
 result.setFavoriteFood(favoriteFood);

 return result;
}

To view the output of the LogIn JSP page, use the following URL (restart your servlet container, if necessary):

http://localhost:8080/JSP_Example/jsp/LogIn.jsp

You should see a page like the one in Figure 2-8.

Figure 2-8 JSP_Example project—the output of LogIn.jsp

Custom-Tag Reference

The following sections provide details about the custom WebObjects JSP tags that WOtaglib_1_0.tld
defines.

wo:component

You use this element to embed a WebObjects component within a JSP page. Table 2-2 describes its attributes.

Table 2-2 Attributes of the wo:component element

DescriptionRequiredAttribute

Class name of the WebObjects component.YesclassName

Custom-Tag Reference 31
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

DescriptionRequiredAttribute

Indicates whether the JSP page requires only the body content of
the response (without <HTML> and </HTML> tags). Values: true
or false. Default: true.

NobodyContentOnly

Indicates whether the WOResponse headers are to be merged with
the ServletResponse headers. Values: true or false. Default:
false.

NomergeResponseHeaders

wo:directAction

You use this element to embed a direct action within a JSP page. Table 2-3 describes its attributes.

Table 2-3 Attributes of the wo:directAction element

DescriptionRequiredAttribute

Specifies the direct action name.YesactionName

Specifies the direct action class name. Default: DirectAction.NoclassName

Specifies the source of the request’s content; it must be an
InputStream (or a subclass).

NocontentStream

Indicates whether the JSP page requires only the body content of
the response (without <HTML> and </HTML> tags). Values: true
or false. Default: true.

NobodyContentOnly

Indicates whether the WOResponse headers are to be merged with
the ServletResponse headers. Values: true or false. Default:
false.

NomergeResponseHeaders

wo:extraHeader

The wo:extraHeader element specifies a key-value pair to be passed to the component or direct action as
an HTTP header. A wo:extraHeader element has to be used for each header value; you can pass multiple
values for one header by using the same value for the key attribute in multiple wo:extraHeader elements.
If the value is not null, it must be a String. Otherwise, the corresponding header is removed from the request
before it’s passed to the component or direct action. Table 2-4 describes the attributes of this element.

Table 2-4 Attributes of the wo:extraHeader element

DescriptionRequiredAttribute

Specifies the HTTP header.Yeskey

Specifies the value for the HTTP header.Yesvalue

32 Custom-Tag Reference
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

wo:binding

This element specifies a key-value pair to be passed to the component to satisfy one of its bindings. You
need a wo:binding element for each of the component’s bindings. Table 2-5 describes its attributes.

Table 2-5 Attributes of the binding element

DescriptionRequiredAttribute

Specifies the component’s binding.Yeskey

Specifies the value for the binding.Yesvalue

wo:formValue

This element specifies a key-value pair to be passed to the direct action in a query string; it must be a String.
You need a wo:formValue for each item in the form. Table 2-6 describes the attributes of this element.

Table 2-6 Attributes of the formValue element

DescriptionRequiredAttribute

Specifies the form element.Yeskey

Specifies the value for the form element.Yesvalue

Custom-Tag Reference 33
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

34 Custom-Tag Reference
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

JavaServer Pages

There are two special issues regarding JSP and Servlet support in WebObjects that you should keep in mind:
deploying more than one WebObjects application within a single container and updating existing servlet-based
WebObjects applications to future versions of WebObjects. The following sections explain how to address
both of these.

Deploying Multiple WebObjects Applications in a Single Servlet
Container

Having more than one WebObjects application file in a servlet container is relatively safe. However, as each
application launches, it pushes the values of its launch properties to the system properties (the properties
maintained by the java.lang.System class. Therefore, the application launched last within a servlet
container overrides the properties set by previously launched applications in that container.

The solution is to ensure applications deployed within one servlet container use the same values for the
following properties:

 ■ NSProjectSearchPath

 ■ WOAdaptorURL

 ■ WOAdditionalAdaptors

 ■ WOAllowsCacheControlHeader

 ■ WOAllowsConcurrentRequestHandling

 ■ WOApplicationBaseURL

 ■ WOAutoOpenClientApplication

 ■ WOAutoOpenInBrowser

 ■ WOCachingEnabled

 ■ WOContextClassName

 ■ WODebuggingEnabled

 ■ WOFrameworksBaseURL

 ■ WOIncludeCommentsInResponse

 ■ WOMaxHeaders

 ■ WOMaxIOBufferSize

 ■ WOSMTPHost

 ■ WOSessionStoreClassName

Deploying Multiple WebObjects Applications in a Single Servlet Container 35
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Special Issues

Updating Servlet-Based Applications to Future Versions of
WebObjects

If future versions of WebObjects include changes to the JSP and Servlet system, it is likely that you will need
to update the web.xml.template file (on Mac OS X) or the Makefile.preamble file (on Windows) for
existing applications.

To update the web.xml.template in a project developed on Mac OS X follow these steps:

1. Open the project you want to update in Project Builder.

2. Create a new WebObjects application project that includes JSP and Servlet support by choosing “Deploy
in a JSP/Servlet Container” in the Enable J2EE Integration pane of the Project Builder Assistant.

3. Copy the contents of the new project’s web.xml.template file to the web.xml.template file of the
project you want to update.

On Mac OS X, if you have made changes to the web.xml.template file, you can use FileMerge to keep
your modifications in the updated version.

To update a WebObjects application developed on Windows perform the following steps:

1. Open the project you want to update in Project Builder WO.

2. Create a new Java WebObjects application project that includes JSP and Servlet support by choosing
“Deploy in a JSP/Servlet Container” in the Enable J2EE Integration pane of the WebObjects Application
Wizard.

3. Copy the contents of the new project’s Makefile.preamble file to the Makefile.preamble file of
the project you want to update.

In addition, you should also rebuild your projects (regenerate the WAR files or single deployment directories)
to update the applications with the latest version of the WebObjects frameworks.

36 Updating Servlet-Based Applications to Future Versions of WebObjects
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Special Issues

This table describes the changes to WebObjects J2EE Programming Guide.

NotesDate

Changed the title from "JavaServer Pages and Servlets."2005-08-11

Project examples now in
/Developer/Documentation/WebObjects/JSP_and_Servlets/projects.

2002-09-01

Added information on Servlet Single Directory Deployment.

Revised for WebObjects 5.2.

Document name changed to Inside WebObjects: JavaServer Pages and Servlets.

Document published as Inside WebObjects: Developing Applications Using
JavaServer Pages and Servlets.

2002-01-01

37
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

38
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

bundle On Mac OS X systems, a bundle is a directory
in the file system that stores executable code and the
software resources related to that code. The bundle
directory, in essence, groups a set of resources in a
discrete package.

CGI (Common Gateway Interface) A standard for
communication between external applications and
information servers, such as HTTP or Web servers.

component An object (of the WOComponent class)
that represents a Web page or a reusable portion of
one.

data-source adaptor A mechanism that connects
your application to a particular database server. For
each type of server you use, you need a separate
adaptor. WebObjects provides an adaptor for
databases conforming to JDBC.

deployment descriptor XML file that describes the
configuration of a Web application. It’s located in the
WEB-INF directory of the application’s WAR file and
named web.xml.

HTTP adaptor A process (or a part of one) that
connects WebObjects applications to a Web server.

HTTP server, Web server An application that serves
Web pages to Web browsers using the HTTP protocol.
In WebObjects, the Web server lies between the
browser and a WebObjects application. When the
Web server receives a request from a browser, it
passes the request to the WebObjects adaptor, which
generates a response and returns it to the Web server.
The Web server then sends the response to the
browser.

J2EE (Java 2 Platform, Enterprise
Edition) Specification that defines a platform for the
development and deployment of Web applications.

It describes an environment under which enterprise
beans, servlets, and JSP pages can share resources
and work together.

JAR (Java archive) A file created using the jar utility
(and saved with the .jar extension) that contains all
the files that make up a Java application.

JSP (JavaServer Pages) Technology that facilitates
the development of dynamic Web pages and Web
applications that use existing components, such as
JavaBeans and WebObjects components.

Monitor WebObjects application used to administer
deployed WebObjects applications. It’s capable of
handling multiple applications, application instances,
and applications hosts at the same time.

Project Builder Application used to manage the
development of a WebObjects application or
framework.

request A message conforming to the Hypertext
Transfer Protocol (HTTP) sent from the user’s Web
browser to a Web server that asks for a resource like
a Web page.

response A message conforming to the Hypertext
Transfer Protocol (HTTP) sent from the Web server to
the user’s Web browser that contains the resource
specified by the corresponding request. The response
is typically a Web page.

servlet A Java program that runs as part of a network
service, typically a Web server and responds to
requests from clients. Servlets extend a Web server
by generating content dynamically.

servlet container Java application that provides a
working environment for servlets. It manages the
servlet’s interaction with its client and provides the
servlet access to various Java-based services.

39
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Glossary

Containers can be implemented as standalone Web
servers, server plug-ins, and components that can be
embedded in an application.

TLD (tag library descriptor) XML document that
describes a tag library. A JSP container uses the
information contained in the TLD file to validate a JSP
page’s tags.

WAR (Web application archive) A file created using
the jar utility (and saved with the .war extension)
that contains all the files that make up a Web
application.

WOA (WebObjects application bundle) A bundle
that stores all the files needed by a WebObjects
application.

wotaskd (WebObjects task daemon) WebObjects
tool that manages the instances on an application
host. It’s used by Monitor to propagate site
configuration changes throughout the site’s
application hosts.

Web application, Web app File structure that
contains servlets, JSP pages, HTML documents and
other resources. This structure can be deployed on
any servlet-enabled Web server.

40
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

Symbols

\<BODY\> HTML tag 23
\<HTML\> HTML tag 23, 32

A

actionName JSP attribute 32
attributes, data
favoriteFood 23
visitorName 23

attributes, JSP
actionName 32
bodyContentOnly 23, 32
className 32
contentStream 32
import 20
key
wo:binding 33
wo:extraHeader 32
wo:formValue 33

mergeResponseHeaders 32
value
wo:binding 33
wo:extraHeader 32
wo:formValue 33

B

bash shell editor 18
bodyContentOnly JSP attribute 23, 32
buckets in Project Builder WO projects 12
build directory 12, 14
build settings list 12
build settings
SERVLET_APP_MODE 13
SERVLET_COPY_JARS 12, 13
SERVLET_SINGLE_DIR_DEPLOY 12

SERVLET_SINGLE_DIR_DEPLOY_LICENSE 12
SERVLET_WEBAPPS_DIR 12, 13, 14

C

classes
DirectAction 30, 32
FavoriteFood.java 24
InputStream 32
JAR files 12
MusicGenres.java 26
NSArray 25
NSMutableArray 25
System 35
WOComponent 19
WODirectAction 19
WOServletAdaptor 20, 26

className JSP attribute 32
components

FavoriteFood 22
MusicGenres 26

containers, servlet
configuring 17
deploying applications as servlets 9, 14
HTTP adaptor 9

contentStream JSP attribute 32
csh shell editor 18

D

deployment descriptors 11, 16, 17
DiningWell JSP page 25
DiningWell.jsp file 23
direct actions 32
DirectAction class 30, 32
directories
build 12, 14
jsp 21
JSP_Example 21

41
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Index

Servlet Resources 21
dynamic elements

WOConditional 21
WORepetition 21

E

elements, JSP
param-name 16
param-value 16
wo:binding 33
wo:component 20, 21, 23, 31
wo:directAction 20, 32
wo:extraHeader 32
wo:formValue 33

Enterprise Objects 19
environment variables
LOCALROOT 16
WOAINSTALLROOT 16
WOROOT 16

F

FavoriteFood component 22
favoriteFood data attribute 23
FavoriteFood.java class 24
FileMerge 36
files
DiningWell.jsp 23
Hello.war 13
InternetRadio.jsp 26
JAR 12, 20
WAR 9, 12, 16, 17, 36
web.xml.template 10, 36
Welcome.jsp 22

frameworks
JavaWOJSPServlet 9, 14
updating 36

H

Hello.war file 13
HTTP adaptors 9
HTTP headers 32

I

import JSP attribute 20
initStatics method 20, 26
InputStream class 32
InternetRadio JSP page 28
InternetRadio.jsp file 26

J

JAR files 12, 20
Java WebObjects Application projects 36
JavaWOJSPServlet framework 9, 14
jsp directory 21
JSP elements, custom 31–33
JSP pages

DiningWell 25
InternetRadio 28
LogIn 31

JSP Servlet Resources bucket 12
JSP Servlet WEB-INF bucket 12
JSP-based applications, creating 21
JSPSession object 26
JSP_Example directory 21
JSP_Example project 21, 22
JSP_Example target 12

K

key JSP attribute 32, 33

L

lib directory 11, 12
LOCALROOT environment variable 16
LogIn JSP page 31
loginAction method 30

M

Mac OS X 14, 36
main method 10
Makefile.preamble file 13
mergeResponseHeaders JSP attribute 32
methods
initStatics 20, 26
loginAction 30

42
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

main 10
MusicGenres component 26
MusicGenres.java class 26

N

NSArray class 25
NSMutableArray class 25
NSProjectSearchPath property 35

O

objects
JSPSession 26
WOSession 26

P

param-name JSP element 16
param-value JSP element 16
Project Builder 21, 23, 26, 36
Project Builder WO 12, 36
projects

JSP_Example 21, 22
properties
NSProjectSearchPath 35
WOAdaptorURL 35
WOAdditionalAdaptors 35
WOAllowsCacheControlHeader 35
WOAllowsConcurrentRequestHandling 35
WOApplicationBaseURL 35
WOAutoOpenClientApplication 35
WOAutoOpenInBrowser 35
WOCachingEnabled 35
WOContextClassName 35
WODebuggingEnabled 35
WOFrameworksBaseURL 35
WOIncludeCommentsInResponse 35
WOMaxHeaders 35
WOMaxIOBufferSize 35
WOSessionStoreClassName 35
WOSMTPHost 35

R

Resources group 11

S

scripts
startup.sh 17
startupWLS.sh 17

Servlet Resources directory 21
Servlet Resources folder 11
ServletResponse headers 32
servlets 9–18

adding support for 14–18
defined 9
deploying 11–13
developing 10–11

SERVLET_APP_MODE build setting 13
SERVLET_COPY_JARS build setting 12, 13
SERVLET_SINGLE_DIR_DEPLOY build setting 12
SERVLET_SINGLE_DIR_DEPLOY_LICENSE build setting

12
SERVLET_WEBAPPS_DIR build setting 12, 13, 14
shell editors 18
SSDD 15–16
startup.sh script 17
startupWLS.sh script 17
System class 35
system properties 35

T

tag library, WOtaglib_1_0.tld 19
tags, HTML
\<BODY\> 23
\<HTML\> 23, 32

TLDs 12
Tomcat 8, 9, 22

V

value JSP attribute 32, 33
visitorName data attribute 23

W

WAR files
deployment descriptor 16
expanding 17
generating 9, 12
updating WebObjects frameworks 36

Web servers 9

43
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

WEB-INF directory 10, 12, 16
web.xml file 9, 16
web.xml.template file

customizing 10
deployment descriptor 16
generating the deployment descriptor 11
updating 36
WEB-INF directory 12

WebLogic 8, 9
WebObjects Application projects 11, 21, 36
WebObjects Builder 23, 26
WebSphere 8, 18
Welcome.jsp file 22
Windows 2000 14
WOA bundles 9
WOAdaptorURL property 35
WOAdditionalAdaptors property 35
WOAINSTALLROOT environment variable 16
WOAllowsCacheControlHeader property 35
WOAllowsConcurrentRequestHandling property 35
WOApplicationBaseURL property 35
WOAutoOpenClientApplication property 35
WOAutoOpenInBrowser property 35
WOCachingEnabled property 35
wo:binding JSP element 33
wo:component JSP element 20, 21, 23, 31
wo:directAction JSP element 20, 32
wo:extraHeader JSP element 32
wo:formValue JSP element 33
WOComponent class 19
WOConditional dynamic element 21
WOContextClassName property 35
WODebuggingEnabled property 35
WODirectAction class 19
WOFrameworksBaseURL property 35
WOIncludeCommentsInResponse property 35
WOMaxHeaders property 35
WOMaxIOBufferSize property 35
WORepetition dynamic element 21
WOResponse headers 32
WOROOT environment variable 16
WOServletAdaptor class 20, 26
WOSession object 26
WOSessionStoreClassName property 35
WOSMTPHost property 35
WOtaglib_1_0.tld tag library 19

Z

zsh shell editor 18

44
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

	WebObjects J2EE Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Servlets
	Servlets in WebObjects
	Developing a Servlet
	Deploying a Servlet
	Adding Servlet Support to an Existing Application
	Servlet Single Directory Deployment
	Cross-Platform Deployment
	Configuring the Deployment Descriptor
	Configuring the Servlet Container

	Installing Servlets in WebSphere

	JavaServer Pages
	JSP Page Writing Guidelines
	Developing a JavaServer Pages–Based Application
	Passing Data From a JSP Page to a Component
	Using WebObjects Classes in a JSP Page
	Using Direct Actions in JSP Pages
	Custom-Tag Reference
	wo:component
	wo:directAction
	wo:extraHeader
	wo:binding
	wo:formValue

	Appendix A: Special Issues
	Deploying Multiple WebObjects Applications in a Single Servlet Container
	Updating Servlet-Based Applications to Future Versions of WebObjects

	Revision History
	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z

