
WebObjects Web Applications Programming
Guide
Tools > WebObjects

2007-07-11

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Logic, Mac, Mac OS,
Pages, QuickTime, Safari, WebObjects, and
Xcode are trademarks of Apple Inc., registered
in the United States and other countries.

Enterprise Objects and iWeb are trademarks of
Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to WebObjects Web Applications Programming Guide 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

How Web Applications Work 9

Application Architecture 9
Request-Response Loop 11
Component Action URLs 12
Request-Response Loop Messages 13
Processing the Request 14
Generating the Response 16
Backtracking Cache 17

Creating Projects 19

Choosing a Template 19
Creating a Web Application Project 19
Project Groups and Files 24

Classes 24
Web Components 24
Resources 25
Web Server Resources 26
Frameworks 26
Products 27

Targets 27
Building Your Application 27
Installing Your Application 27

Creating Enterprise Objects 29

Model-View-Controller Design Pattern 29
Models 29
Views 29
Controllers 30

Object Modeling 30
Entities 30
Attributes 30
Relationships 30

Key-Value Coding 31

3
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Keys 31
Values 32
Key Paths 32

Enterprise Object Models 32
Creating an EO Model 33
Adding Business Logic 34

Default EOGenericRecord Class 34
Subclassing EOGenericRecord 35

Creating Frameworks 35

Creating Web Components 37

Main Component 37
Java Files 38
HTML and WOD Files 38
How Dynamic Elements Work 39
Maintaining State 40

Example: Displaying the Page Count 41
How Maintaining State Works 45

Using the Application and Session Objects 47

The Application 47
The Session 47
Shopping Cart Example 48

Backtracking and Cache Management 51

Client-Side Page Cache 51
Server-Side Component Definition Cache 53
Server-Side Page Cache 53
Web Browser Backtracking Behavior 54

Viewing the HTML Headers 54
Standard Webpage Backtracking 55
Refreshing Pages When Backtracking 56
Disallowing Server-Side Caching 56
Setting the Size of the Server-Side Cache 57

Document Revision History 59

4
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

How Web Applications Work 9

Figure 1 A dynamic publishing website 11
Figure 2 The request-response loop 12
Figure 3 Structure of a component action URL 13
Table 1 Request-response processing phases 13
Table 2 Request-response processing timeline 14
Listing 1 Example of a component action URL 13
Listing 2 Overriding the sleep method 16

Creating Projects 19

Figure 1 Selecting a WebObjects template 20
Figure 2 Entering a project name 21
Figure 3 Adding web service support 22
Figure 4 Choosing frameworks 23
Figure 5 Classes group 24
Figure 6 Web components group 25

Creating Enterprise Objects 29

Figure 1 Example EO model 33
Figure 2 Creating a new entity 34
Figure 3 Generating Java source code 35

Creating Web Components 37

Figure 1 Web component files 38
Figure 2 Adding a key 42
Figure 3 Binding a WOString 43
Figure 4 Adding an action 44
Listing 1 Sample HTML file 39
Listing 2 Sample WOD file 39
Listing 3 HTML code interpreted by WebObjects 40
Listing 4 HTML code WebObjects sends to web browser 40
Listing 5 Adding a variable 42
Listing 6 Implementing an action method 45
Listing 7 URL that causes the instantiation of a Session object 45
Listing 8 URL with session ID 45

5
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Using the Application and Session Objects 47

Figure 1 Relationship between application and session 48
Listing 1 Pet Store Session Class 48

Backtracking and Cache Management 51

Figure 1 Structure of a component action URL 53
Figure 2 Backtracking error page 57
Table 1 HTTP response headers that deactivate client-side page caching 52

6
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Important: The following tools are deprecated and no longer supported in WebObjects 5.4 and later:
EOModeler, RuleEditor, WebObjects Builder, WOALauncher, and Java Client. WebObjects templates are not
available for creating new projects in Xcode on Mac OS X v10.5 and later.

Note: This document was previously titled Web Applications.

Web applications are a type of WebObjects application that generates HTML-based dynamic webpages
accessed via a client-side web browser. Web applications are object-oriented programs written in Java.
Webpages are created from templates called web components. Web components are a combination of a
WOComponent Java subclass and an HTML template. You create dynamic content in your webpages by
adding dynamic elements to web components and binding them to variables and methods in your application.
You can create web components graphically using WebObjects Builder or indirectly using Direct to Web. If
you use Direct to Web, you can also freeze components, add them to your project, and edit them using
WebObjects Builder.

Who Should Read This Document?

This document focuses on web application programming concepts and tasks. Read this document if you are
developing a web application and need to learn more about programming web components, managing
state in application and session objects, and using editing contexts. This document also explains how web
applications work by tracing the request-response loop and explains how to create web application projects
using Xcode. This document covers common tasks that web application developers need to know such as
creating an EO model and deploying applications for testing.

Organization of This Document

This document contains the following articles:

 ■ “How Web Applications Work” (page 9) describes the architecture of web applications and explains
the messages invoked by the request-response loop.

 ■ “Creating Projects” (page 19) explains the Xcode templates you can use to create a web application.

 ■ “Creating Enterprise Objects” (page 29) explains how to create a simple Enterprise Objects (EO)
model—the first step if you are using a back-end database to populate your webpages with dynamic
content.

Who Should Read This Document? 7
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Introduction to WebObjects Web Applications
Programming Guide

 ■ “Creating Web Components” (page 37) explains how to create and reuse web components from a
programmer's perspective. This article also covers more details about the methods invoked by the
request-response loop.

 ■ “Using the Application and Session Objects” (page 47) explains how to use the Application and Session
objects in your web application to maintain state.

If you are new to WebObjects, read “How Web Applications Work” (page 9), “Creating Projects” (page 19),
and “Creating Enterprise Objects” (page 29) first. Also, read WebObjects Builder User Guide for step-by-step
instructions on how to create web components using WebObjects Builder. Read the rest of the articles in
this document when you are ready to customize your web application and add advanced features.

See Also

For more information on related WebObjects subjects, see these documents"

 ■ WebObjects Overview to learn about other WebObjects technologies.

 ■ WebObjects Builder User Guide for how to create web components graphically.

 ■ WebObjects Direct to Web Guide for how to use Direct to Web to create a web application.

 ■ WebObjects Enterprise Objects Programming Guide for an in depth description of Enterprise Objects.

 ■ WebObjects 5.3 Reference and for details about the WebObjects and Enterprise Objects APIs.

 ■ WebObjects Deployment Guide Using JavaMonitor for details on how to deploy web applications.

8 See Also
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Introduction to WebObjects Web Applications Programming Guide

Web applications generate dynamic HTML-based webpages accessed through a web browser. Since
WebObjects applications are object-oriented and written in Java, your application generates webpages by
creating instances of objects called web components.

A web component is a combination of a Java subclass of WOComponent and an HTML template. Web
components can contain any standard HTML elements and components including Flash animations, QuickTime
movies, JavaScript programs, and Java applets. Web components also support Cascading Style Sheets (CSS).

You add dynamic content to your webpages by adding special WebObjects elements with HTML
counterparts—called dynamic elements—to your web components. Some dynamic elements don't have
HTML counterparts and are just used to control the generation of content—for example, content that is
conditional or iterative. Dynamic elements are translated into static HTML when responding to client browser
requests.

You can use either WebObjects Builder or Direct to Web to construct web components. WebObjects Builder
is a graphical tool for creating web components and binding dynamic elements to variables and methods
in your application.

Direct to Web is a rapid prototyping tool that creates a working web application from a given EO model.
You use the Web Assistant to change the content of Direct to Web components. You can also freeze
pages—create and add web components to your project—and modify them using WebObjects Builder.

You should have a basic understanding of the architecture of a web application before customizing your
web application. This section describes the architecture of web applications and explains how dynamic
elements work within the context of the application's request-response loop. It contains a brief description
of the sequence of methods invoked when processing a request and generating a response page. This section
also explains how backtracking works in WebObjects.

This document does not explain how to use the various WebObjects tools. Read WebObjects Builder User
Guide for the steps involved in creating forms and binding dynamic elements. Read WebObjects Direct toWeb
Guide for how to use Direct to Web.

Application Architecture

Not only can your web application generate dynamic content but you can present forms to the user allowing
them to author content. You obtain input from users using HTML-based forms, buttons, and other dynamic
elements. Connecting form elements to variables and methods in your web component is similar to binding
other dynamic elements that just display content.

You create forms by placing dynamic elements into a standard form element in your web component. The
web component generates HTML that web browsers can interpret and display. This process includes translating
user-entered data or selections back into variables in your application. If you are programming web
components, it helps to understand how web applications process user input.

Application Architecture 9
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

WebObjects applications are event driven, but instead of responding to mouse and keyboard events, they
respond to HTTP (Hypertext Transfer Protocol) requests. The application receives an HTTP request for an
action, responds to it, and then waits for the next request. The application continues to respond to requests
until it terminates. The main loop that handles these requests is called the request-response loop.

Inside the request-response loop, WebObjects fills in the content of dynamic elements when the page needs
to be generated in response to a request. The information your applications publish can reside in a database
or other data-storage medium or it can be generated at the time a page is accessed. The pages are also highly
interactive—you can fully specify the way the user navigates through them and what data they can view
and modify.

Figure 1 shows a WebObjects-based website. Again, the request (in the form of a URL) originates from a web
browser. The web server detects that the request should be handled by a WebObjects application and passes
the request to an HTTP adaptor. The adaptor packages the incoming request in a form the WebObjects
application can understand and forwards it to the application. Based upon web components you define and
the relevant data from the data store, the application generates a webpage that it passes back through the
adaptor to the web server. The web server sends the page to the web browser, which renders it.

This type of WebObjects application is referred to as a web application, since the result is a series of
dynamically generated HTML webpages.

10 Application Architecture
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

Figure 1 A dynamic publishing website

Data store

Data store

Web server

HTTP
adaptor

Web
application

(Web service
consumer)

Web
application

(Web service
provider)

Static
webpage

Web
browser

Web
browser

Web
browser

Webpage
template

Request-Response Loop

Each action taken by a user is communicated to your application via the web server and the WebObjects
adaptor. All the pertinent details of the user’s action—the contents of text fields, the state of radio buttons
and checkboxes, and the selections in pop-up menus—as well as information about the session and the
button or link activated is encoded in the HTTP request.

The request is decoded by the action of the WebObjects adaptor and default application behavior. This
decoding process, which culminates in the generation of a response page to be returned to the web browser,
constitutes the request-response loop. Figure 2 shows the sequence of messages invoked when processing
a request.

Request-Response Loop 11
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

Figure 2 The request-response loop

Web browser HTTP server HTTP adaptor WebObjects applications

Request

2.	Invoke
	 action

Response

1. Take value
	 from
	 request

Request

Response 3.	Generate
	 response

Response
page

User
sees the
next page

Request
component

Returns
response
component

Request
page

User
performs
an action

Response
component

Generates
response
page

WebObjects has two request-processing models: component actions and direct actions.

 ■ The component actions model allows you to maintain state in applications; therefore, it requires and
uses session objects. By default, web applications use this model.

 ■ The direct actions model is used by applications that don’t require state management—for example,
search engines, product catalogs, document libraries, and dynamic publishing. Applications that use
this model don’t have session objects by default.

When developing an application, you are not restricted to one request-processing model. Applications can
use the model most appropriate to implement specific features. Component actions are generally useful in
web applications with interconnected components; however, they do not give the user a great deal of control
over an application’s flow. For example, a user cannot directly execute a method defined in the Java source
file of a web component. Direct actions, on the other hand, are better suited at providing users such access.
For example, using the appropriate URL, users can execute specific methods of an application.

Refer to the API documentation for the WODirectAction class in WebObjects 5.3 Reference. This article explains
component actions in more detail.

Component Action URLs

When you deploy a web application and access it from a web browser, the URL displayed by the browser
has a specific format that identifies the web application, page, session, context, and even the element. Figure
3 shows the parts of the URL. The URL contains all the information necessary for an application to reconstruct
the state of the session and web components that were last generated for a given client. Listing 1 shows an
example of a component action URL.

12 Component Action URLs
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

Figure 3 Structure of a component action URL

http://foo.com/cgi-bin/WebObjects/HelloWebObjects.woa/instance/wo/PageName.wo/sessionID/contextID.elementID

Web
server

hostname
Web

server’s
cgi-bin

directory

WebObjects
adaptor
name

WebObjects
application

Application
instance
number

Request
handle

key

Page
name

(optional)
Session ID Element ID

Context ID

Listing 1 Example of a component action URL

http://foo.com:49663/cgi-bin/WebObjects/TimeDisplay.woa/wo/NDdW3uF2xRVjvbXUgRCVM/0.5

Request-Response Loop Messages

Table 1 lists the phases of the request-response process. Table 2 shows the order in which the methods
involved are invoked. The process is explained in detail in “Processing the Request” (page 14) and “Generating
the Response” (page 16). The primary objects that receive messages from the request-response loop are the
application, session, and web component objects.

The application object is an instance of Application where Application is a subclass of WOApplication. A
session object is an instance of Session where Session is a subclass of WOSession. An instance of Application
is created when your application launches, and an instance of Session is created for each initial user. Note
that sessions may time out. You can configure the time out duration when deploying an application.

If you select one of the web applications templates in Xcode when creating a project, Application and Session
classes are automatically added to your project. Read “Creating Projects” (page 19) for how to create a
WebObjects Xcode project.

Table 1 Request-response processing phases

DescriptionMethodPhase

The application, session, and component objects are
awakened. Custom initialization logic can be added in this
phase.

public void awake()Awake

Form data is read into the instance variables the
WebObjects elements are bound to. Key-value coding set
methods are invoked.

public void
takeValuesFromRequest
(WORequest, WOContext)

Sync

The action the user triggered—with a link or a submit
button—is performed. The action could create a new page.

public WOActionResults
invokeAction (WORequest,
WOContext)

Action

The response page is generated. The form elements’
contents are set to the values stored in the instance
variables the WebObjects elements are bound to. Key-value
coding accessor methods are invoked.

public void
appendToResponse
(WOResponse, WOContext)

Response

Request-Response Loop Messages 13
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

DescriptionMethodPhase

The application, session, and component objects are put
to sleep. Custom deactivation logic can be added in this
phase.

public void sleep()Sleep

Table 2 Request-response processing timeline

ComponentSessionApplication

awake

awake

awake

takeValuesFromRequest

takeValuesFromRequest

takeValuesFromRequest

Set methods invoked.

invokeAction

invokeAction

invokeAction

appendToResponse

appendToResponse

appendToResponse

Accessor methods invoked.

Response page generated.

sleep

sleep

sleep

Processing the Request

Request processing takes place in three stages: awake, sync, and action.

 ■ Awake. This stage is carried out when WebObjects sends awake messages to several objects.

14 Processing the Request
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

In a multi-user system, limited resources need to be used as efficiently as possible. To this end, applications
are active only while they perform a task. A single server can be running several applications or many
instances of the same application. Application instances are active only while processing requests. See
“Generating the Response” (page 16) for more information.

The application object’s awake method is invoked first, then the session object’s awake method, and,
for component action–based requests, the web component’s awake method. You can customize the
method in each of the corresponding classes to add logic that needs to be performed before processing
the request. Even though the default implementations of these awake methods do nothing, you should
invoke the superclass implementation before executing custom logic, as here:

public void awake() {
 super.awake();

 /* Custom logic goes here. */
}

 ■ Sync. During this stage, the takeValuesFromRequest method is invoked, which causes the values
entered in form elements by the user to be copied into the corresponding instance variables. This stage
is skipped if the component contains no form elements or if the values of the form elements are not
changed.

WebObjects invokes the application object’s takeValuesFromRequest method. The application then
invokes the session object’s corresponding method, which in turn invokes the web component’s method
(for component action–based requests). The component invokes each dynamic element’s
takeValuesFromRequest method, which causes form elements to copy the values from the request
into the appropriate component bindings. WebObjects uses key-value coding—implemented by the
NSKeyValueCoding interface in (com.webobjects.foundation—to determine how to set the value
of the binding.

To set the value of a key named key, key-value coding looks for an available set method or an instance
variable in the following order:

1. public void setKey()

2. private _setKey()

3. _key

4. key

 ■ Action. During this stage, the action the user chose is executed by invoking the invokeActionmethod.

Like the takeValuesFromRequest method, WebObjects invokes the application’s invokeAction
method. The application then invokes the session’s method, which in turn invokes the web component’s
method (for component action–based requests). The component then sends invokeAction to each of
its dynamic elements.

When the invokeAction method of the dynamic element that triggered the request is invoked—for
example, a submit button—the dynamic element sends the message bound to its action attribute.

Processing the Request 15
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

Generating the Response

After the form values are gathered and the action method is invoked, the application creates a response
page. This is the web component returned by the action method. The response-generation process has two
phases: response and sleep.

 ■ Response. The response page is generated during this phase. Each dynamic element’s
appendToResponse method is invoked, so that it can add its content to the rendered webpage.

WebObjects invokes the application’s appendToResponse method. Then the application invokes the
session’s method, which in turn invokes the web component’s method. The component goes through
its HTML code creating the page’s content. When it finds a WEBOBJECT element, it invokes its
appendToResponse method, so that it can get the values of its bindings and add the resulting content
to the page. The process continues recursively until the entire response page is generated.

Again, WebObjects uses key-value coding when a variable needs to be accessed or set. When the value
of a key named key is requested, key-value coding first looks for an accessor method. If one is not found,
it accesses the instance variable itself. The order in which key-value coding tries to obtain the value for
key is as follows:

1. public [...] getKey()

2. public [...] key()

3. private [...] _getKey()

4. private [...] key()

5. [...] _key

6. [...] key

 ■ Sleep. When the response process is completed, the sleep methods of the web component, session,
and application objects are invoked. (The order in which the objects’ sleep method is called is the
opposite of the order in which the awake methods are invoked in the awake phase.) When overriding
the sleep method, you should incorporate the superclass implementation at the end of the method as
shown in Listing 2. After all the objects involved in the request-response process are put to sleep, the
new page is sent to the WebObjects adaptor.

Listing 2 Overriding the sleep method

public void sleep() {
 /* Custom logic goes here. */

 super.sleep();
}

16 Generating the Response
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

Backtracking Cache

WebObjects supports the use of a web browser’s Back button by keeping a cache of recently viewed pages
on the server. This process is called backtracking. By default, a cache is configured to hold 30 pages per
session, but you can customize it to meet your needs. To change the default size of the cache, add code to
the Application class’s constructor. For example, to change the page cache size to 45 pages, you add this
code line:

setPageCacheSize(45);

When a response page is generated, it and its state information are added to the cache. That way, when the
user clicks the browser’s Back button, WebObjects can retrieve the correct web component and its state.

For backtracking to work properly with dynamic data, a web browser’s own cache must be disabled, so that
all page requests go to the web server and, therefore, your application. You can do this by adding this code
to the Application class’s constructor method:

setPageRefreshOnBacktrackEnabled(true);

When the cache becomes full, the oldest page in it is discarded to make room to store a new page. When
the user backtracks past the oldest page in the cache, WebObjects alerts the user with a special webpage.

For more information on backtracking, read “Backtracking and Cache Management” (page 51).

Backtracking Cache 17
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

18 Backtracking Cache
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

How Web Applications Work

A WebObjects project contains all the files you need to build and run your application. You use Xcode to
create a new WebObjects project. In Xcode, you select the appropriate WebObjects project template and an
assistant guides you through the process of creating the project. The types of files added to your Xcode
project and their organization depends on the Xcode template you choose. The organization of web
applications—applications that generate dynamic HTML content—are very similar although the frameworks,
targets, settings, and build configurations may differ slightly.

This article explains how to use Xcode to create web applications. This article describes the different templates,
provides step-by-step instructions to create your project, explains the organization of files in the project,
explains web application specific targets, and contains tips on building and installing your application. Read
Xcode 2.2 User Guide for complete instructions on how to use Xcode.

Choosing a Template

When you create a project in Xcode, you need to select the appropriate WebObjects template in the assistant.
The templates that create a web application are Direct To Web Application, Display Group Application, and
WebObjects Application. You can also select WebObjects Framework.

 ■ Choose Direct To Web Application if you have an EO model you created earlier with either EOModeler
or Xcode and want to build a quick prototype. This is a good choice for developers new to WebObjects.

 ■ Choose Display Group Application if you have an EO model or intend to create one—that is, you want
to populate your webpages with content from a back-end database—and you want to build custom
web components.

 ■ Choose WebObjects Application if you don't want to use Enterprise Objects.

 ■ Choose WebObjects Framework if you want to create a framework. Typically, you select this template
to create a framework containing your business logic—your enterprise objects and EO model—which
can be reused in other types of applications such as Web Services. You can also create a framework of
reusable web components.

If you want to create a Direct to Web or display group application, read “Creating Enterprise Objects” (page
29) for how to create your EO model.

Creating a Web Application Project

When you create a project from a template, the Xcode Assistant will guide you through the process by
displaying a number of panes. The first few panes are the same for all types of web applications. The later
panes may differ depending on the template you select. The default settings in the assistant will work for

Choosing a Template 19
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

most applications. Typically, you just need to enter a project name and click the Next button and on the final
pane, click Finish. Follow these general steps to create a web application. Read WebObjects Direct to Web
Guide for details on using the Direct to Web Application template.

1. Launch Xcode located in /Developer/Applications.

2. Choose File > New Project.

The Assistant panel appears displaying a list of templates.

3. Select one of the WebObjects templates and click Next as shown in Figure 1.

Read “Choosing a Template” (page 19) if you are not sure what template to use.

Figure 1 Selecting a WebObjects template

20 Creating a Web Application Project
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

4. Enter a project name and location and click Next as shown in Figure 2 (page 21). If you selected the
WebObjects Framework template, click Finish and skip the remaining steps.

Figure 2 Entering a project name

5. If you want to deploy your web application in a J2EE servlet container, select the "Deploy in a servlet
container" option on the J2EE Integration pane and then click Next.

J2EE integration is optional. Just click Next if you don't want to use this feature.

6. If your application is a web service, select "Add Web service support" on the Web Service Support pane.
If your application uses a web service, click "Add Web services client support." Then click Next as shown
in Figure 3.

Creating a Web Application Project 21
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Using web services is optional. Just click Next if you don't want to use this feature.

Figure 3 Adding web service support

7. If you use the JDBC adaptor, select JavaJDBCAdaptor.framework on the Choose EOAdaptors pane.
If you use the JNDI adaptor, select JavaJNDIAdaptor.framework.

The default database adaptor is JDBC since most modern databases support JDBC. Just click Next if you
are unsure about which database you will use.

8. Click Add on the Choose Frameworks pane if you need to add additional frameworks to your project—for
example, third-party database frameworks—as shown in Figure 4. Otherwise, click Next to continue.

22 Creating a Web Application Project
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

The assistant adds the appropriate Java and WebObjects frameworks to your project depending on the
template you selected. Just click Next if you don't need to add any more frameworks.

Figure 4 Choosing frameworks

9. Next you add an EO model by clicking Add on the Choose EOModels pane.

If you have an existing EO model that you created using either EOModeler or Xcode, you can add it to
your project now. If you selected the Direct to Web Application or Display Group Application template,
then selecting an EO model is mandatory.

10. If you selected the Web Application template, click Finish and skip the remaining steps.

11. If you selected the Direct to Web Application template, then a few panes specific to Direct to Web appear.
Read WebObjects Direct to Web Guide for how to create a Direct to Web application.

12. If you selected the Display Group Application template, then a few panes specific to configuring a display
group appear.

13. Choose the main entity on the Choose the Main EOEntity pane. Select the entity that represents the root
objects and click Next.

14. Choose a layout for the page on the Choose a Layout pane and click Next.

15. Choose the properties to display on the page similar to configuring a Direct to Web application on the
Choose Attributes to Display pane. Click Finish when done.

When you click the Finish button, the Assistant panel closes and a project window opens containing all your
application files. Read “Project Groups and Files” (page 24) for a description of your project files.

Creating a Web Application Project 23
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Project Groups and Files

The groups and files displayed in Xcode are different depending on which WebObjects template you choose
when creating a Xcode project. This section describes some of the groups that appear when you create a
web application.

Classes

The Classes group contains Java classes that do not correspond to web components as shown in Figure
5 (page 24). Typically, this group contains Application.java , Session.java , and DirectAction.java
. Classes that corresponding to web components are located in the Web Component group. For example,
Main.java is located in Web Components/Main.

Figure 5 Classes group

The default classes in a WebObjects project are:

 ■ Application.java is a subclass of WOApplication. The application object is automatically created
when your application launches and corresponds to the application instance.

 ■ Session.java is a subclass of WOSession. A session object is automatically created when a user makes
a connection to your web application.

 ■ DirectAction.java is a subclass of WODirectAction.

Web Components

The Web Components group contains all the files pertaining to web components as shown in Figure 6. A
web component represents a page, or part of a page, in your application. An application can have one or
more web components. For example, every WebObjects application has at least one component called Main
which appears in the Web Components group. The Main component implements the first page displayed
by your web application.

24 Project Groups and Files
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Figure 6 Web components group

There's a folder for each web component in the Web Components group. A web component folder contains
several files that specify the component's look and behavior. Each file has the same prefix but with different
extensions. These are the files contained in a web component folder:

 ■ A web component with a .wo extension that stores the layout of HTML elements and bindings to dynamic
elements.

 ■ A class file with a .java extension that implements the component's behavior. Each component is a
subclass of WOComponent. Your class typically implements variables and methods that are bound to
dynamic elements.

 ■ An API file with a .api extension that contains the keys defined by a component that other components
can bind to and the rules for binding the keys. WebObjects Builder uses these files to check if a reusable
component is used correctly.

Typically, you edit a component using WebObjects Builder—just double-click a folder with a .wo extension
to edit it in WebObjects Builder. However, you can sometimes edit these files directly if you understand the
format. For example, these are the files in the Main.wo folder:

 ■ Main.html is the HTML template for the component. This file contains HTML tags, just like any webpage;
in addition, it can contain tags for dynamic elements.

 ■ Main.wod is the declarations file that specifies bindings between the dynamic elements and variables
or methods in your Java file.

 ■ Main.woo is used to store information about display groups—for example, if your project accesses a
database—and encodings for HTML templates. You rarely edit this file directly.

Resources

The Resources group contains files that are needed by your application at runtime, but which do not need
to be in the web server's document root and hence will not be accessible to users. Resource files may include
miscellaneous configuration files, EO model files, and icons.

Project Groups and Files 25
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Web Server Resources

The Web Server Resources group contains files, such as images and sounds, that must be under the web
server's document root at runtime. When developing your application, you place these files in your project
directory and add them to the project in the Web Server Resources group. When you build your project,
Xcode copies the files in this group into the WebServerResources folder of your application wrapper.

Frameworks

The Frameworks group contains the frameworks you selected in the assistant when creating your WebObjects
project, as well as the frameworks that Xcode adds to your project automatically.

A framework is a collection of classes and resources that multiple applications can use. By storing items such
as components and images in frameworks, you can reuse them in multiple projects without having to create
multiple copies.

Every WebObjects project includes several frameworks by default depending on the template you select in
Xcode. A WebObjects application that uses Enterprise Objects contains these frameworks:

 ■ JavaEOControl.framework corresponds to the control layer in Enterprise Objects, which provides
infrastructure for creating and managing enterprise objects.

 ■ JavaEOAccess.framework corresponds to the access layer in Enterprise Objects which, provides the
data access mechanisms for the Enterprise Objects technology.

Read WebObjects Enterprise Objects Programming Guide for more information about Enterprise Objects.

If you selected the JDBC adaptor to access your database, your project contains this framework:

 ■ JavaJDBCAdaptor.framework provides an implementation of an Enterprise Objects adaptor for JDBC
data sources.

A web application contains these frameworks:

 ■ JavaFoundation.framework provides a set of robust and mature core classes, including utility,
collection, key-value coding, time and date, notification, and debug logging classes.

 ■ JavaWebObjects.framework contains the core web application server, session management, web
component, and request-response loop classes.

 ■ JavaWOExtensions.framework contains additional reusable web components.

 ■ JavaXML.framework contains support for XML content—for example, contains Apache XML parsers.

A Direct to Web application contains these frameworks:

 ■ JavaDTWGeneration.framework provides support for generating Direct to Web pages.

 ■ JavaDirectToWeb.frameworkprovides classes for rapid development of HTML-based web applications.

 ■ JavaEOProject.framework provides services for WebObjects Builder—for example, returns the keys
and actions from a web component Java file.

26 Project Groups and Files
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Products

After you build your application, the Products group contains the application wrapper, which is a folder
whose name is the project name with a .woa extension—for example, MyWebApp.woa if the project name
is MyWebApp. The application wrapper has a structure similar to that of a framework. It contains the following:

 ■ The executable application—for example, MyWebApp.

 ■ The application's resources in the Contents group.

The Resources group includes the application's web components as well as other files that are needed
by your application at runtime.

 ■ The application's web server resources in the Contents group. If your application has no web server
resources, then the Web Server Resources group does not appear in the Contents group.

When you build and install your application, Xcode copies all the files from your Web Server Resources group
to a folder called WebServerResources inside the application wrapper. If you have client-side Java
components in your project, these are also copied to the WebServerResources folder.

Targets

The targets of a web application are:

 ■ The application—for example, MyWebApp.

 ■ Application Server builds the part of your application that creates web components and enterprise
objects.

 ■ Web Server sets up the resources that can be used by the HTTP server, such as images and QuickTime
movies not stored in the database.

Building Your Application

Building and running your web application is simple. Just select the application target and click the Build
and Go button in Xcode. You use a web browser to run and test your application. For example, if you selected
the Direct to Web template, your direct to web application is built and launched. Safari will also launch and
connect to your application via the WebObjects application URL.

Installing Your Application

You may wish to install your application on your development machine for testing. Before installing or
deploying your application, you should understand how a web server works and where files need to be
installed.

Targets 27
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

Some files in a web application—for example, images and sound files—must be stored under the web server's
document root in order for the server to access them. This is because the files are part of the dynamic HTML
that the web server sends to web clients. The remaining files—for example, your components and source
code—must be accessible by your application but not necessarily by the web server itself. Therefore, when
you install or deploy a web application, your product files are split—those files needed by the web server
are placed in the document root, and all other files are stored elsewhere. This type of installation is referred
to as a split install.

28 Installing Your Application
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Projects

If you want to populate your dynamic webpages with content from a back-end data store, the first task is to
design your enterprise objects and create your object model. The enterprise objects encapsulate your business
data and logic. They are the objects that persist beyond the lifetime of your application. They are also the
objects that can be reused in other types of web and non-web applications.

However, before doing so, you should understand a few design patterns that are fundamental to how
WebObjects works. Specifically, WebObjects relies on the Model-View-Controller design pattern, object
modeling, and key-value coding. These concepts are fundamental to how enterprise objects, dynamic
elements, and web components work.

After you understand these concepts, you can create your model and add your business logic. Optionally,
create a framework containing your enterprise objects so that you can reuse them in multiple applications.
If you are creating a Direct to Web or display group application, then you need to create your EO model first.
Then read “Creating Projects” (page 19) for how to create a web application in Xcode.

Model-View-Controller Design Pattern

Many Apple frameworks use a Model-View-Controller (MVC) design pattern including the Application Kit,
Core Data, Sync Services, and WebObjects. MVC has been around since the early days of object-oriented
programming and is a proven design pattern used to build robust, extensible, and maintainable applications.
The design pattern has three components: a model, a view, and a controller.

Models

Models represent special knowledge and expertise. They hold an application’s data and define the logic that
manipulates that data. A well-designed MVC application has all its important data encapsulated in model
objects. Any data that is part of the persistent state of the application should reside in the model objects
once the data is loaded into the application. In WebObjects, models are enterprise objects.

Views

Views know how to display and possibly edit data from the application’s model. A view should not be
responsible for storing the data it displays. A view object can be in charge of displaying just one part of a
model object, or a whole model object, or even many different model objects. Views come in many different
varieties. In web applications, views are the HTML-based elements and components you use to construct
your web component.

Model-View-Controller Design Pattern 29
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Controllers

Controllers act as the intermediary between the application’s view objects and its model objects. Typically
controller objects have logic in them that is specific to an application. Controllers are often in charge of
making sure the views have access to the model objects they need to display and often act as the conduit
through which views learn about changes to models. In web applications, high-level controllers are the
Session and Application objects. Other examples of controllers are the web component objects and display
groups.

Object Modeling

Object modeling is a way of representing objects typically used to describe a data source's data structures
in a way that allows those data structures to be mapped to objects in an object-oriented system. It is a
representation that facilitates storage and retrieval of objects in a data source. A data source can be a database,
a file, a web service, or any other persistent store. Because it is not dependent on any type of data source, it
can also be used to represent any kind of object and its relationship to other objects. Object modeling is
similar to entity-relationship modeling, a popular discipline with a set of rules and terms that are documented
in database literature. This section defines object modeling terms used throughout WebObjects APIs and
tools.

Entities

In the MVC design pattern, models are the objects in your application that encapsulate specified data and
provide methods that operate on that data. Models are usually persistent but more importantly, models are
not dependent on how the data is displayed to the user.

In the object model, models are called entities, the components of an entity are called attributes, and the
references to other models are called relationships. Together, attributes and relationships are known as
properties. With these three simple building blocks (entities, attributes, and relationships), arbitrarily complex
systems can be modeled.

Attributes

Attributes represent structures that contain data. An attribute of an object may be a simple value, such as
a scalar—for example, integer, float, or double—but can also be a C structure or an instance of a primitive
class. An attribute may correspond to a model’s instance variable or accessor method. For example, Employee
has firstName, lastName, and salary instance variables.

Relationships

Not all properties of a model are attributes—some properties are relationships to other objects. Your
application is typically modeled by multiple classes. At runtime, your object model is a collection of related
objects that make up an object graph. These are typically the persistent objects that your users create and
save to some data store. The relationships between these model objects can be traversed at runtime to access
the properties of the related objects.

30 Object Modeling
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Cardinality

Every relationship has a cardinality; the cardinality tells you how many destination objects can (potentially)
resolve the relationship. If the destination object is a single object, then the relationship is called a to-one
relationship. If there may be more than one object in the destination, then the relationship is called a to-many
relationship.

Mandatory

Relationships can be mandatory or optional. A mandatory relationship is one where the destination is
required—for example, every employee must be associated with a department. An optional relationship
is, as the name suggests, optional—for example, not every employee has direct reports.

Ownership

A delete rule is used to specify ownership. You can specify that the destination of a relationship be deleted
when the source object is deleted. For example, should an employee be deleted if its department is deleted?
What delete rule you use is application-specific.

Key-Value Coding

In order for models, views, and controllers to be independent of each other, you need to be able to access
properties in a way that is independent of a model’s implementation. This is accomplished by using key-value
coding.

Keys

You specify properties of a model using a simple key, often a string. The corresponding view or controller
uses the key to look up the corresponding attribute value. The “value for an attribute” construction enforces
the notion that the attribute itself doesn’t necessarily contain the data—the value can be indirectly obtained
or derived.

Key-value coding is used to perform this lookup—it is a mechanism for accessing an object’s properties
indirectly and, in certain contexts, automatically. Key-value coding works by using the names of the object’s
properties—typically its instance variables or accessor methods—as keys to access the values of those
properties.

For example, you might obtain the name of a Department object using a name key. If the Department object
either has an instance variable or method called name, then a value for the key can be returned. Similarly,
you might obtain Employee attributes using the firstName, lastName, and salary keys.

Key-Value Coding 31
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Values

All values for a particular attribute of a given entity are of the same data type. The data type of an attribute
is specified in the declaration of its corresponding instance variable, the return value of its accessor method,
or simply in the object model. For example, the data type of the Department object name attribute may be
an String object in Java. Note that key-value coding returns only object values.

The value of a to-one relationship is simply the destination object of that relationship. For example, the value
of the department property of an Employee object is a Department object.

The value of a to-many relationship is a collection object (an array) that contains the destination objects of
that relationship. For example, the value of the employees property of Department object is a collection
containing Employee objects.

Key Paths

A key path is a string of dot-separated keys that specify a sequence of object properties to traverse. The
property of the first key is determined by, and each subsequent key is evaluated relative to, the previous
property. Key paths allow you to specify the properties of related objects in a way that is independent of the
model implementation. Using key paths you can specify the path through an object graph, of arbitrary depth,
to a specific attribute of a related object.

The key-value coding mechanism implements the lookup of a value given a key path similar to key-value
pairs. For example, you might access the name of a department via an Employee object using the
department.name key path where department is a relationship of Employee and name is an attribute of
Department.

Not every relationship in a key path necessarily has a value. For example, the manager relationship can be
null if the employee is the CEO. In this case, the key-value coding mechanism does not break—it simply
stops traversing the path and returns an appropriate value, such as null.

Enterprise Object Models

Enterprise Objects is a suite of tools and frameworks that allow you to create applications that store your
models, called enterprise objects, in a database. It is divided into several layers concerned with connecting
to the database, converting result sets to enterprise-object instances, and ensuring that the state of the
enterprise objects and the database are always synchronized. WebObjects adds many more classes used to
manipulate enterprise objects and display their data.

The enterprise object (EO) model is a folder added to your Xcode project that defines the mapping between
your entities and the tables in the database. It also defines relationships between entities, which are reflected
in the database tables using primary and foreign keys.

The EO model maps attributes to table columns for each entity. It also maps Java to database data types. For
example, an EO model specifies whether an attribute value of type Number (java.lang) is mapped to int
when an enterprise object is stored in a database.

32 Enterprise Object Models
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

The EO model contains many more specifications for how enterprise objects are added, stored, fetched, and
deleted. The EO model can also specify the information needed to connect to the database, including network
and password information.

Creating an EO Model

If you do not have an existing EO model or database, you need to design your enterprise objects per your
application requirements. You should do some object-oriented analysis and design before creating your first
model. Fortunately, WebObjects supports an iterative development cycle so your model can evolve with
your application.

You can create your object model using either EOModeler or the EO Model design tool in Xcode. Whatever
tool you choose, the steps to create your EO model are similar:

1. Create your model file using the tool.

2. Add entities that represent your objects.

3. Add attributes to each entity.

4. Add primary keys to each entity.

5. Add relationships to each entity.

6. Optionally, add fetch specifications and sort orderings to your entities.

7. Verify your model.

8. Generate your schema.

Figure 1 shows an example of an EO model in the graphical view of the EO Model Xcode design tool. In the
example, the Media entity has a to-one relationship to the Event entity and the Event entity has a startDate
attribute.

Figure 1 Example EO model

If you have an existing database that has a JDBC or other SQL-based interface, you can use EOModeler to
create your model directly from the database schema—essentially reverse-engineer your EO model from a
legacy database. Read EOModeler User Guide for specific steps on how to use EOModeler, and read Xcode 2.2
User Guide for how to create a model using Xcode. Read WebObjects Enterprise Objects Programming Guide
for a deeper understanding of how Enterprise Objects works. Refer to WebObjects 5.3 Reference for API details.

Creating an EO Model 33
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Adding Business Logic

Once you create your EO model, you can add business logic to your enterprise objects. All enterprise objects
inherit from a root class that provides common behavior such as support for key-value coding and
introspection. You create a subclass of this class to add business logic but need to follow some guidelines
so you don't lose enterprise object behavior.

Default EOGenericRecord Class

By default, the instances of entities you create are instances of EOGenericRecord. When you create an entity,
the entity's class is set to EOGenericRecord as shown in Figure 2. Some entities never have a specific class.
For example, PlotSummary, Review, Movie, and Director in Movies.eomodeld are all EOGenericRecord
classes.

Figure 2 Creating a new entity

Instances of EOGenericRecord are generic containers—they have attributes and relationships defined by
their entity in the EO model but have no special methods that process those properties. Instances of
EOGenericRecord and its subclasses simply represent database rows or records. EOGenericRecord is suitable
for many entities and saves you time in implementing Java classes with key-value coding compliant methods.

However, if you want to add some business logic or implement derived properties, you need to create a
corresponding Java class for your entity. Derived properties are properties that are computed at runtime
from the values of other properties or the state of your application. For example, you can create a derived
property called fullName that is a concatenation of firstName and lastName. To do this, you create a
custom enterprise-object class as a subclass of EOGenericRecord, so it inherits the default enterprise-object
behavior. Then you add a fullName accessor method to the class.

EOGenericRecord uses the key-value coding mechanism to store entity properties. Each key is named for the
database column it represents. When an enterprise object is instantiated from a row in the database, the
values of its keys are obtained from their corresponding columns in the row. WebObjects dynamic elements
use key-value coding to get and set the values of enterprise-object attributes.

34 Adding Business Logic
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Subclassing EOGenericRecord

EOModeler provides an easy way to create a custom enterprise object, a Java class for your entity. Just select
the entity in EOModeler, enter a class name in the inspector window, and click the jav button. The Java source
files is added to your Xcode project as shown in Figure 3.

Figure 3 Generating Java source code

The class created by EOModeler is a subclass of EOGenericRecord. The subclass has no instance variables
although properties may be defined in EOModeler. Instead, property values are accessed using key-value
coding methods: valueForKey() and takeValueForKey(). By using these key-value coding methods to
modify properties of a custom enterprise object, you ensure that your changes are stored in the database
and all controller objects are notified of changes.

See WebObjects 5.3 Reference for the order in which NSKeyValueCoding searches for an accessor method.
Read EOModeler User Guide for complete instructions on how to use EOModeler to generate Java code.

Creating Frameworks

You might create a framework using Xcode to contain your EO model and any custom enterprise object
classes. You especially need to do this if you plan to reuse your enterprise objects in multiple applications.
You can use the same EO model and business logic to implement any other type of WebObjects
applications—for example, Direct to Web, Direct to Java Client, and Direct to Web Services. You can use these

Creating Frameworks 35
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

prototypes to evaluate different approaches or simply to verify and test your enterprise objects. It is not
uncommon to maintain two WebObjects applications in parallel. Read “Creating Projects” (page 19) for how
to create a WebObjects framework.

36 Creating Frameworks
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Enterprise Objects

Web components are fundamental to how dynamic content works in WebObjects. Typically, you choose
WebObjects if the information on your website changes frequently or varies based on some conditions.
Examples of dynamic websites include online news, stores, polls and statistics. WebObjects is also ideal for
any website that tracks user sessions and offers personal services such as authoring content and custom
pages. Dynamic content can be tuned to user preferences and search criteria.

You use web components to represent webpages or partial webpages generated by your website. Web
components are actually templates for generating HTML pages. Web components are constructed from static
and dynamic elements. You use dynamic elements to bind HTML counterparts to variables and methods in
your web component class. Some elements are abstract and are used just to control the generation of
HTML—for example, conditionals and repetitions.

Although you can create a web application without using Enterprise Objects, typically, your website renders
HTML pages that are populated with data obtained from your enterprise objects stored in a back-end database.
Hence, web components behave similarly to controllers in the MVC design pattern by being the intermediary
between the views (dynamic elements) and your models (enterprise objects). You can also use abstract
elements and display groups—controllers that manipulate many enterprise objects—in interesting ways to
create smart webpages.

Web components benefit from all the advantages of object-oriented systems. Web components are reusable,
extensible, and maintainable. Web components can contain other web components–those that represent
partial pages—as well as dynamic elements, static elements, and plain text. Any HTML tag can be added to
a web component's HTML template.

Web components are folders you add to your Xcode project. Each folder contains an HTML, WOD, API and
Java file. The HTML file represents the template, the WOD file contains the dynamic element bindings, the
API file contains any bindings that your component exports, and the Java file is the class that implements
controller logic. You add your controller logic—variables and methods—to the Java class using Xcode. You
can edit the other files directly but typically, you use WebObjects Builder, a graphical editor, to design your
web components. WebObjects Builder creates the files located in the web component folder.

This section describes how to reuse and extend web components from a Java programmer's perspective.
For a complete guide on how to create web components graphically, read WebObjects Builder User Guide.

If you use a back-end database to store your enterprise objects, you should create your EO Model first and
then your Xcode project before you create web components. Read “Creating Enterprise Objects” (page 29)
to create an EO model and custom enterprise objects. Read “Creating Projects” (page 19) for how to create
an Xcode project.

Main Component

By default, every WebObjects application includes a Main component. This component, initially empty, is
the first page displayed to users unless you specify otherwise. It is the tunnel or login page for the rest of
your application.

Main Component 37
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

For example, if you select the Web Applications template when creating your Xcode project, Main.wo appears
in the Web Components group as shown in Figure 1. Double-click Main.wo to open the Main component
in WebObjects Builder.

Figure 1 Web component files

Java Files

Every web component contains a Java file that you use to add controller and business logic.

For example, if your Main component is a login page, it might contain a user and password field to allow the
user to log in to your website, then you might have username and password variables to store the text that
the user enters. You also need an action method when the user enters Return or clicks the Login button. You
add these variables and methods to Main.java which is in the Web Components group, as shown in Figure
1 (page 38). Then you bind the dynamic elements, the WOTextField, WOPasswordField, and WOSubmitButton
elements, to your variables and methods using WebObjects Builder.

Alternatively, you can add variables and methods to your component using WebObjects Builder which will
edit the Java file for you.

HTML and WOD Files

Occasionally, you might need to edit one of the web component files directly. However, since these files are
created by WebObjects Builder, you should be aware of their file formats before doing so. If you change the
format of these files, the component may not validate or open in WebObjects Builder.

For example, suppose you create a main component using WebObjects Builder that contains a text string,
"The current time is", followed by a WOString element that displays the current time. In addition, you bind
the WOString element to the currentTime method in your main component that returns the current time.
This information is stored in the web component's HTML and WOD files that you can view in Xcode.

38 Java Files
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

The HTML file shown in Listing 1, contains a WEBOBJECT element that represents the location where the
WOString inserts the value returned by the currentTime method. Notice that the element is defined as
<WEBOBJECT NAME=String1></WEBOBJECT>. There's a corresponding entry in the WOD file that uses the
same name, String1.

Listing 1 Sample HTML file

<BODY>
 The current time is <WEBOBJECT NAME=String1></WEBOBJECT>
</BODY>

The connection between the WOString element and the currentTime method is declared in the WOD file
shown in Listing 2. The entry has only one binding listed, the connection between the value attribute and
the currentTime method. This method is called whenever the WOString element needs to display its value.
The WOD file can contain other element settings that do not appear in WebObjects Builder.

Listing 2 Sample WOD file

String1: WOString {
 value = currentTime;
}

How Dynamic Elements Work

When programming with web components, it helps to understand how dynamic elements work in the context
of the request-response loop.

When you run a simple application that displays the current time on the main page as described in “HTML
and WOD Files” (page 38), the page displayed by the web browser replaces the WOString element you added
to the Main component with the current time. If you reload the page, the time gets updated. WebObjects
assembles the page dynamically during the request-response loop.

When you access the URL corresponding to your application in a web browser, the web server hands control
to the WebObjects adaptor—a process that connects WebObjects application instances to web servers. This
program goes through a couple of steps in generating the response:

1. Read the HTML file

Much like a regular web server, WebObjects first reads an HTML file.

2. Render WebObjects elements

Unlike a regular web server, WebObjects parses WEBOBJECT elements before handing the file to the web
server.

When WebObjects encounters a WEBOBJECT element, it consults the WOD file for the corresponding
web component. All the WEBOBJECT elements in the HTML file of a web component template are named,
and each one is listed by its name in the WOD file as shown in Listing 2 (page 39).

Each type of WebObjects element has special logic for constructing the HTML code to return to the web
server. Customization of this process is done with attributes defined by the web component’s developer.
Each binding in a WOD file can be either static or dynamic. If a binding is static, the value supplied is
used directly.

How Dynamic Elements Work 39
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

If a binding is dynamic—that is, an attribute is bound to a method or instance variable—WebObjects
invokes the method or accesses the instance variable to obtain the value at runtime. For example, when
the WOString element is evaluated, it invokes the method named in its value binding, currentTime,
to get the value to display. The implementation of WOString turns the NSTimestamp object into text
that’s incorporated into the webpage returned to the web browser. Before returning the webpage to
the browser, WebObjects converts the component’s HTML code shown in Listing 3 to a markup similar
to the one shown in Listing 4.

Listing 3 HTML code interpreted by WebObjects

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
 <HEAD>
 <META NAME="generator" CONTENT="WebObjects 5">
 <TITLE>Untitled</TITLE>
 </HEAD>
 <BODY>
 The current time is <WEBOBJECT NAME=String1></WEBOBJECT>
 </BODY>
</HTML>

Listing 4 HTML code WebObjects sends to web browser

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
 <HEAD>
 <META NAME="generator" CONTENT="WebObjects 5">
 <TITLE>Untitled</TITLE>
 </HEAD>
 <BODY>
 The current time is 01:19:47 PM
 </BODY>
</HTML>

This process takes place each time a web browser requests the Main page. If you reload the page, the method
is invoked again and a new time value is displayed.

For more information on the request-response loop, read “Request-Response Loop” (page 11).

Maintaining State

Understanding the connection between a web component’s HTML, WOD, and Java files is an important part
of WebObjects development. Not only do you add variables and methods to your component to bind dynamic
elements, but you can also add variables and methods to maintain state of a component.

When you add methods to a component in WebObjects Builder, you are actually editing the component’s
Java source file. When you modify how the component looks by adding elements, you modify its HTML file.
When you bind dynamic elements to your component variables, you modify its WOD file.

40 Maintaining State
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

Typically, after using WebObjects Builder to define the major parts of a web component, you can add details
by editing the HTML and Java files directly (you rarely need to edit a WOD file). To edit the HTML file of a
web component in WebObjects Builder, simply use the Source mode—click the Source button on the toolbar
to use the HTML editor. You can edit the Java file using Xcode.

When you deploy your application and users connect to your website via a web browser, webpages are
created from web components as needed. In programming terms, web components are all subclasses of
WOComponent and instantiated as needed. For example, when the user requests the main component
described in “HTML and WOD Files” (page 38), a Main instance is created. When it’s time for WebObjects to
add the content for the WOString, it looks up the element’s value binding in the WOD file. The value
binding is set to the currentTime method. Therefore, WebObjects sends currentTime to the web
component instance, which returns the current time.

An instance of a web component lives for at least two cycles of the request-response loop: In the first cycle
the webpage is rendered, and in the second cycle the component determines which page to display next.
If the page is not the same as the previous page, WebObjects creates an instance of the new component.
The old component is then discarded or stored in a server cache to allow users to backtrack to previous
pages. However, if the component to display is the same, the instance lives on. In this case, the previous
version of the component is stored in the backtracking cache. Read “Backtracking and Cache
Management” (page 51) for more information on backtracking.

Another way to use variables and methods in your Java source file is to maintain other state—for example,
tracking user actions as they interact with your application.

Example: Displaying the Page Count

The following sections show how to maintain state in your web component by implementing a simple web
application that counts the number of times the main component is displayed by a single user. This example
adds a counter and page refresh hyperlink to the main component. It uses the web component to maintain
the state of the counter for the duration of the session.

Create Your Project

Create a simple web application as follows:

1. Launch Xcode and choose File > New Project.

2. Select the WebObjects Application template and click Next.

3. Click Next on all the remaining assistant panes to select all the default values.

4. Click Finish on the final pane to create the project.

Add Variables to Your Component

First you add a variable and code to the Main component to increment a counter each time the page is
displayed.

1. Open Main.wo in WebObjects Builder by double-clicking it in Xcode.

2. Choose Add Key from the Interface menu on the toolbar of the Main.wo window.

Maintaining State 41
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

3. Add a key of type int named loadCount and click the Add button as shown in Figure 2.

Figure 2 Adding a key

4. Examine the Main.java file in Xcode to confirm that the variable was added. Modify the code to initialize
loadCount to 1 as shown in Listing 5:

Listing 5 Adding a variable

public class Main extends WOComponent {
 public int loadCount = 1;

 public Main(WOContext context) {
 super(context);
 }
}

Add Dynamic Elements to Your Component

Next you use the variable to display the number of times the page is loaded. To display the load count in
the webpage, you need to add a WOString element to the Main component using WebObjects Builder.

1. Add a label and a WOString element to Main.wo.

a. Enter This page has been viewed.

b. Add a space and a WOString element to the right of the label.

c. Add a space and times. to the right of the WOString element.

42 Maintaining State
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

2. Drag from loadCount in the object browser to the WOString element to bind it to the value attribute
of the WOString element as shown in Figure 3.

Figure 3 Binding a WOString

Add Methods to Your Component

Now, you need to add a way to reload the page using a hyperlink.

In WebObjects, regular hyperlinks, WOHyperlink elements, can call web component methods—methods
defined in the component’s Java source file. These methods are called action methods. All action methods
return a web component representing the next page. If an action method returns null, then the same page
is redisplayed. Action methods are covered in greater detail in “Processing the Request” (page 14).

Follow these steps to add a refreshTime action method:

1. Add the action method.

Open the Main component template in WebObjects Builder and choose Add Action from the Interface
menu on the toolbar.

a. Name the action refreshTime.

b. Select null from the Component pop-up menu as shown in Figure 4.

Maintaining State 43
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

The value returned by an action method represents the next page (web component) to be displayed.
When you return null, the current page is redrawn.

Figure 4 Adding an action

c. Click Add.

2. Add a hyperlink.

Position the cursor below the line where the load count is displayed.

Choose Dynamic > WOHyperlink.

By default, the text for a new link is Hyperlink. You can replace this by selecting the text and typing
something more appropriate over it, such as Refresh Time.

3. Connect the refreshTime method to the WOHyperlink element.

Much like a WOString element, a WOHyperlink element has several attributes. Bind the refreshTime
method to the action attribute of WOHyperlink.

Drag from the refreshTime method in the Main list to the WOHyperlink element. When you release
the mouse button, a pop-up list of attributes appears. Choose the action attribute to indicate that you
want the refreshTime method called when the link is clicked.

4. Save Main.wo.

Add Logic to Your Methods

Finally, modify the refreshTime method using Xcode so that it increments the loadCount variable each
time it is invoked as shown in Listing 6.

44 Maintaining State
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

Listing 6 Implementing an action method

public WOComponent refreshTime() {
 loadCount++;
 return null;
}

How Maintaining State Works

If you build and run the application created in “Example: Displaying the Page Count” (page 41), and click
Refresh Time, the time and the load count are updated. The load count increments every time a specific user
displays the page. This is accomplished using the Session object, an object that represents a connection
between an application and a particular client.

Each time the user clicks the hyperlink WebObjects creates a Main object and associates it with your web
browser window through a session object. Each time you interact with the application, by clicking Refresh
Time, the same Main object is used. If you open another browser window and connect to the application
again using the URL shown in Xcode’s Run pane, a separate instance of Main is created and associated with
that window. From then on, you can work with both windows individually. As a matter of fact, not only is a
new instance of Main created, a new Session object is created as well.

WebObjects determines that a new session needs to be created when the incoming URL does not contain a
session ID. The first time you connect to the application using a URL like the one in Listing 7, WebObjects
creates a session and assigns it a session ID and other information. That information is added to the URL
returned to your browser together with the webpage to be displayed (see Listing 8). When you send another
request from your browser—for example, by clicking Refresh Time—WebObjects uses the session ID encoded
in the URL to locate the session that will process the request. This is the default mechanism WebObjects uses
to keep track of the state of each user.

For more on managing state using application and session objects, read “Using the Application and Session
Objects” (page 47).

Listing 7 URL that causes the instantiation of a Session object

http://foo.com:49361/cgi-bin/WebObjects/WebApp

Listing 8 URL with session ID

http://foo.com:49361/cgi-bin/WebObjects/WebApp.woa/wo/whcV5sauLNtG8Tfh6xCuvM/0.1

Maintaining State 45
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

46 Maintaining State
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Creating Web Components

The web—by its nature—is a stateless medium. A web server receives a request, produces a response, and
returns it to the requesting web browser—without any knowledge of previous requests from the same user.

A web application, however, can maintain state between requests from the same user to provide an acceptable
user experience. For example, many websites allow you to purchase items using a shopping cart. Such
applications have to remember the contents of your shopping cart as you navigate the website. WebObjects
encodes a unique identifier with each incoming request. This identifier is used to maintain state over an
otherwise stateless medium. Read “How Web Applications Work” (page 9) for more information on
responding to requests.

While you can pass information back and forth between web components, you frequently need to maintain
state that is shared between web components. Rather than pass this information from web component to
component, you can store it at a higher level per application or per session.

The Application

When you create your application using one of the web application Xcode templates, Application.java
is added to your project. Application is a subclass of WOApplication. WebObjects instantiates an Application
object at startup. Every web component in your application has a relationship to this Application object—send
application() to a web component to get the Application object programmatically. The application and
session objects also appear in the object browser in WebObjects Builder so that you can bind dynamic
elements directly to their properties.

You can override methods inherited from WOApplication to customize the behavior of your web application.
For example, you can invoke WOApplication methods from the initializer to change the default behavior of
backtracking (read “Backtracking and Cache Management” (page 51) for details).

You can also add variables and methods to the Application class to store objects and add business logic that
you want to share between sessions and web components. For example, any objects that are read-only and
shared by sessions, can be stored in the Application object to improve performance.

However, use the EOSharedEditingContext, not the Application class, if you want to share enterprise objects.
See WebObjects Enterprise Objects Programming Guide and EOModeler User Guide for how to configure a fetch
specification in your model that places enterprise objects in the shared editing context.

The Session

A session is a period of time in which one user interacts with your application. Since each application can
have multiple users simultaneously, it may have multiple open sessions. Each session has its own data and
its own cached copies of the components that the user requests, as shown in Figure 1.

The Application 47
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Using the Application and Session Objects

Figure 1 Relationship between application and session

F00000RN400aE1003

zA1000G5800zx7001

F00000RN400aE1002

Dr7000Na800r06001

http://ursa/cgi-bin/WebObjects/Authors.woa/wo/zA1000G5800zx7001/0.3

WebObjects
application
"Authors"

HTTP server
"ursa"

Session
store

Session

Session

Session

Session

The session is represented as an instance of the Session class (Session.java in a WebObjects application
project). Session is a subclass of WOSession. Initially, Session has only inherited behavior, but you can add
custom methods and variables. For example, if you are building an online shopping application, the session
would be an appropriate place to store a user’s shopping cart, because the session is tied to one particular
user and persists as long as the user utilizes the application.

When an incoming request is processed, WebObjects automatically activates the Session object associated
with the user who originated the request, as described in “Request-Response Loop” (page 11).

The WOComponent class includes a method for accessing the currently active session. The Java classes of
web components are subclasses of WOComponent and WebObjects automatically activates the correct
session when a request is processed. Sending the session() message to a WOComponent object returns
the Session object for the current user.

Shopping Cart Example

If you are implementing an online store then your users need a shopping cart to store their purchases before
they checkout. Since a shopping cart belongs to a single user and is only valid during the lifetime of a session,
it is reasonable to store the shopping cart in the Session object. For example, the Pet Store example located
in/Developer/Examples/JavaWebObjects/PetStoreWOJava addscurrentAccount andcart attributes
to the Session class as shown in Listing 1 (page 48).

Listing 1 Pet Store Session Class

public class Session extends WOSession {

 Account account;
 Cart cart;

48 Shopping Cart Example
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Using the Application and Session Objects

 public Session() {
 super();
 cart = new Cart();
 }

 public Account currentAccount() {
 return account;
 }

 public void setCurrentAccount(Account newAccount) {
 account = newAccount;
 }

 public Cart cart() {
 return cart;
 }
}

Shopping Cart Example 49
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Using the Application and Session Objects

50 Shopping Cart Example
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Using the Application and Session Objects

Backtracking, client-side page caching, and web component caching are three closely related issues that
cause many headaches for web application developers. Fortunately, WebObjects offers a number of
mechanisms that help you deal with the collective problem of managing page state.

Dynamic web applications are possible because of, among other things, server-side state persistence and
state management. HTTP, the protocol of the web, is inherently stateless. However, storing state in an
application server makes persistence management in web applications possible. In WebObjects, the Session
object holds state but is not solely responsible for state management. The Session object tracks sessions,
flags WOComponent and WOElement objects with special identifiers, and uses other mechanisms to hold
and manage state. WOComponent objects manage the state of their internal instance variables and dynamic
elements.

Along with these mechanisms, caching plays an important role in managing the state of visual components.
Caching allows a user to view a previously viewed webpage (even a dynamically generated one) without the
application needing to regenerate the page. Caching also plays a crucial role in providing a good user
experience in web applications. Caching lets users backtrack using their web browser’s Back button, which
often allows for instantaneous loading of pages from the client-side cache rather than requesting a previously
viewed page from the application server. However, because there are diverse implementations of the HTTP
protocol in web browsers, backtracking behavior is inconsistent and requires considerable attention when
developing web applications.

In addition to client-side page caching, WebObjects also caches components in a server-side cache. If used
correctly, this is a valuable feature that can improve performance and user experience. But you must be
conscious of the relationship between server-side component caching and client-side page caching, and
how inconsistencies in backtracking behavior affect the result when either or both caching features are active.

Client-Side Page Cache

A web component is the aggregate of WebObjects elements and subcomponents. When a web browser
caches a webpage from a WebObjects application, it caches the static HTML code of a generated page (which
does not include a web component’s programmatic entities, such as instance variables). In contrast, server-side
component caching caches a web component’s definition and state.

Client-side page caching is a feature implemented by web browsers to improve performance and user
experience. Although WebObjects applications primarily publish dynamic webpages, many websites serve
static pages: They do not change as rapidly as content-driven dynamic sites.

For instance, consider a website that publishes news stories and other articles. Although the front page of
the site probably changes a few times each day, it likely would not change in the few minutes an average
user spends browsing headlines and reading a few articles.

With client-side page caching active, the front page of the news website is cached on the client’s computer
upon the first visit. The first page could be large, containing images, banner ads, and text. The user could
select an article, read part of it, and access other articles through URLs in the first article. Then, having visited

Client-Side Page Cache 51
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

five or six pages within the website, the user could backtrack to the main page. Since the content of that
page is not likely to change in the time the user took to peruse the five or six pages, the page should be
reloaded from the local cache. So the web browser—instead of requesting and downloading the main page
from the web server again—would retrieve it from the local cache, avoiding a round trip over the network
to the web server. In this case, page caching serves a sensible and user-friendly function.

Now, consider the case of an online store: A user chooses items to buy and adds them to a shopping cart.
It’s generally not a good idea for the user to view a cached webpage representing the shopping cart as it
likely does not contain the most up-to-date information. If client-side page caching is active, however, this
is a real possibility.

WebObjects offers a number of mechanisms to deal with the problems of backtracking and client-side caching.
The first one you should use is a flag on the Application object that you set using the
setPageRefreshOnBacktrackEnabledmethod of the WOApplication class (com.webobjects.appserver).
When pageRefreshOnBacktrackEnabled is true, a number of HTTP headers are added to each response
generated by the WebObjects application to disable client-side page caching. Table 1 shows these headers
and their values.

Table 1 HTTP response headers that deactivate client-side page caching

ValueHeader

The time the response page was generated.date

The time the response is to expire. (Same as date.)expires

no-cachepragma

private, no-cache, no-store, must-revalidate, max-age = 0cache-control

See section 14.9 of the HTTP 1.1 specification (RFC 2616) for more details on each of these headers.

The pageRefreshOnBacktrackEnabled property affects all responses generated by an application. If you
want to restrict the behavior to a specific response, invoke the disableClientCaching method of the
WOResponse object (com.webobjects.appserver). WOResponse also includes the methods setHeader
and setHeaders, which allow you to explicitly set the HTTP headers for a particular response.

When a web browser receives a response page with the headers shown in Table 1, it should not add the
page to its local cache and it should invalidate the page as soon as it is displayed. In other words, when users
backtrack to retrieve previously viewed pages, the web browser should request the response page from the
application server. However, not all web browsers follow this protocol, as demonstrated in “Web Browser
Backtracking Behavior” (page 54). The first few times the user backtracks to previously viewed pages, most
web browsers ignore the HTTP headers and render the page stored in the cache.

When a web browser needs to refresh an expired page, it sends a request to the application server, which
accesses the server-side cache to reconstruct the page (see “Server-Side Page Cache” (page 53) for more
information on server-side caching). “Request-Response Loop Messages” (page 13) explains the phases of
the request-response loop in detail. The main phases are sync, action, and response. When processing a
refresh request, an application does not go through the sync and action phases; it performs only the response
phase.

So how does an application know to perform only the response phase (just returning the response page
stored in the server cache, rather than regenerating it)? WebObjects assigns each response a context ID. The
context ID is increased by 1 each time a web browser requests a specific page from the application server

52 Client-Side Page Cache
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

during a session. It identifies a specific instance of the corresponding WOComponent. (Figure 1 shows the
elements of a WebObjects URL.) Specifically, an application assigns the outermost component of a
WOComponent a context ID each time that component is part of a response. So, if the same component is
dynamically generated multiple times, each instance of the page (each response) is assigned a unique context
ID.

Figure 1 Structure of a component action URL

http://foo.com/cgi-bin/WebObjects/HelloWebObjects.woa/instance/wo/PageName.wo/sessionID/contextID.elementID

Web
server

hostname
Web

server’s
cgi-bin

directory

WebObjects
adaptor
name

WebObjects
application

Application
instance
number

Request
handle

key

Page
name

(optional)
Session ID Element ID

Context ID

Server-Side Component Definition Cache

When a web component is accessed for the first time, its definition is placed on the server-side cache.
Subsequent requests for the same component use the definition stored in the cache. Using the web component
cache improves performance because the application looks up a component’s definition only one time during
the lifetime of the application. You can control web component caching at the application level and the
component level. You can set a caching policy for the application (either active or inactive) for all components,
but you can also override such policy on specific components. To set the caching policy for an application
or a web component you use the setCachingEnabled method of WOApplication or WOComponent,
respectively. Sending true as the argument activates web component–definition caching, while sending
false deactivates it.

Server-Side Page Cache

In addition to component-definition caching, WebObjects applications can also cache responses sent to a
client. When an already-generated page is requested from the application server, WebObjects checks the
context ID of the requested page with the context ID of pages in its cache. If it finds a match, it performs the
response phase of the request-response loop. This returns a response that has a new context ID and updated
content from the invocation of the response phase of the request-response loop (dynamic bindings are again
resolved in the response phase).

By default, the WebObjects application server maintains a page cache for each session. Each page a user
accesses is added to the session’s page cache. When a user backtracks, accesses a URL, or selects a bookmark
of a page that is cached but expired in the local cache, the web browser requests a refreshed version of that
page from the application server. The server-side page cache preserves resources as it hands out the result
of previously generated pages. When the page the user backtracks to is no longer in the cache, WebObjects
returns an error page.

If you deactivate the server-side page cache (by passing 0 to the setPageCacheSize method of
WOApplication), the application assumes that you intend to provide custom component state persistence
rather than rely on WebObjects inherent support. Deactivating the component cache means that new
WOComponent objects are instantiated (that is, each request for a component creates a new instance of that
component) with each cycle of the request-response loop, even for component action requests that return

Server-Side Component Definition Cache 53
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

the invoking page. This means that any nondefault instance variable values are discarded with each subsequent
cycle of the request-response loop. In large applications, this redundancy and overhead could hinder
performance.

WebObjects also provides a permanent page cache that is useful for storing subcomponents such as navigation
bars or page headers, or when using frame sets. You have to explicitly add components to it using the
savePageInPermanentCache method of WOSession (com.webobjects.appserver). Read WebObjects
5.3 Reference for details.

Web Browser Backtracking Behavior

To better understand the concepts of backtracking, client-side page caching, and component-definition
caching, perform the tasks described in the following sections.

Viewing the HTML Headers

Open the web application you developed in “Creating Web Components” (page 37) or any other simple web
application.

In Main.java, add a method called outgoingHeaders:

public String outgoingHeaders() {
 return context().response().headers().toString();
}

This gets the headers that are attached to each outgoing WOResponse object. To view these headers, override
the sleep method in the Main class so that it prints the headers to the console:

public void sleep() {
 System.out.println("<Main.sleep> headers=" + outgoingHeaders());
}

Build and run the application. You should see output similar to this in the console:

Welcome to WebApp!
[2003-01-08 17:53:56 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/WebApp.woa
[2003-01-08 17:53:56 PST] <main> Waiting for requests...
<Main.sleep> headers={cache-control = ("private", "no-cache", "no-store",
"must-revalidate", "max-age=0");
 expires = ("Thu, 09-Jan-2003 01:53:54 GMT"); date = ("Thu, 09-Jan-2003 01:53:54
 GMT"); pragma = ("no-
cache"); content-type = ("text/html"); }

The expires header is set to the time the component is generated, so that when the web browser receives
the webpage, it is already expired in the web browser’s cache. These headers (except content-type) are
appended to the response when the isPageRefreshOnBacktrackEnabled method of WOApplication
returns true, which it does by default.

In Application.java, set the pageRefreshOnBacktrackEnabled property to false in the constructor:

public Application() {

54 Web Browser Backtracking Behavior
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

 super();
 System.out.println("Welcome to " + this.name() + "!");
 setPageRefreshOnBacktrackEnabled(false);
}

Build and run the application. You should see output similar to the following in the console:

Welcome to WebApp!
[2003-01-08 17:57:15 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/WebApp.woa
[2003-01-08 17:57:15 PST] <main> Waiting for requests...
<Main.sleep> headers={content-type = ("text/html"); }

Notice that the headers disabling client-side caching are not generated in the response.

Standard Webpage Backtracking

So, how does the pageRefreshOnBacktrackEnabled property of WOApplication affect user backtracking?
You need to add some more code to trace what WebObjects does behind the scenes. Modify the constructor
in the Main class to look like this:

public Main(WOContext context) {
 super(context);
 System.out.println("<Main> context ID="+ context().contextID());
}

Each time an instance of Main is created, this code outputs the context ID of the WOResponse object associated
with the new instance. This allows you to see when user actions like clicking the Refresh hyperlink on the
webpage or the web browser’s Back button produce a new instance of the Main component. While this is
useful information, you may also want to know when a user action causes the application to send a new
response page to the client web browser. You can trace this by adding similar code to the refreshTime
method:

public WOComponent refreshTime() {
 System.out.println("<Main.refresh> context ID=" + context().contextID());
 loadCount++;
 return null;
}

Now, remove the sleep and outgoingHeaders methods and build and run the application.

Click Refresh Time three times. This prints the incremental context ID of the instance of Main through which
you navigate. When you click Refresh Time, the application invokes the refreshTimemethod, which outputs
the context ID of the outgoing response to the console:

Welcome to WebApp!
[2003-01-08 18:56:18 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/WebApp.woa
[2003-01-08 18:56:18 PST] <main> Waiting for requests...
<Main> context ID=0
<Main.refreshTime> context ID: 1
<Main.refreshTime> context ID: 2
<Main.refreshTime> context ID: 3

Web Browser Backtracking Behavior 55
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

Now, click your browser’s Back button three times. Notice that nothing is printed to the console. This is
because, when pageRefreshOnBacktrackEnabled is set to false, backtracking does not result in a
request to the application; the page is simply rendered using the copy in the browser’s cache. Similarly,
choosing the bookmark of a page cached in the web browser does not result in a request to the application.

Refreshing Pages When Backtracking

When pageRefreshOnBacktrackEnabled is set to true, backtracking should result in a request to the
application (you should see a context ID line with a new context ID) when a user backtracks, although the
actual behavior differs among various web browsers.

In Mac OS X, web browsers that use the Gecko HTML rendering engine (such as Chimera and Mozilla), comply
most closely to the HTTP specification. Clicking the Back button causes the browser to ask for an updated
version of an expired webpage. Other browsers, such as Internet Explorer and OmniWeb, behave differently:
The first few clicks (two to three, depending on the browser) of the Back button reload the page from the
cache. Subsequent clicks cause the browser to send a request to the application.

Notice that when the browser requests the updated version of the webpage from the application, the
page-load counter doesn’t decrease, but the time is updated.

You must test your application on many configurations to ensure that it provides a good user experience.

Disallowing Server-Side Caching

A WebObjects application can hand back only the response of a previously generated page when server-side
page caching is active, which is the default. When this feature is inactive, the println statement in the
constructor of the Main class (of the web application described earlier in this article) is invoked each time
you click the Refresh Time link. This indicates that the application instantiates a Main object each time the
refreshTime method of Main is invoked, instead of returning the current Main object.

Modify the constructor in the Main class by adding a call to setPageCacheSize:

public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");
 setPageRefreshOnBacktrackEnabled(true);
 setPageCacheSize(0);
}

Build and run the application. After clicking Refresh Time three times, you should see the following console
output:

Welcome to WebApp!
[2003-01-08 20:31:58 PST] <main> Opening application's URL in browser:
http://17.203.33.19:8888/cgi-bin/WebObjects/WebApp.woa
[2003-01-08 20:31:57 PST] <main> Waiting for requests...
<Main> context ID=0
<Main> context ID=1
<Main.refreshTime> context ID: 1
<Main> context ID=2
<Main.refreshTime> context ID: 2
<Main> context ID=3
<Main.refreshTime> context ID: 3

56 Web Browser Backtracking Behavior
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

Notice that the constructor in the Main class is invoked each time you click Refresh Time, before the
refreshTime method is executed. An instance of Main is created during each cycle of the request-response
loop. Also notice that the page-view counter does not increase. The primary consequence of deactivating
server-side page caching is that the values of variables in components are lost after each response is generated.

Setting the Size of the Server-Side Cache

Instead of completely disallowing server-side caching, you can use the setPageCacheSize method of
WOApplication to define the number of instances of a component an application is to keep in its cache. For
example, if you want to maintain state between cycles of the request-response loop (that is, to ensure that
state is transferred between user actions), set the pageCacheSize to 1.

Modify the constructor in the Application class by adding a call to setPageCacheSize, setting the
pageCacheSize property to 10.

public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");
 setPageRefreshOnBacktrackEnabled(true);
 setPageCacheSize(10);
}

Figure 2 shows the page an application sends to a web browser when a user backtracks too far (the page is
no longer in the cache).

Figure 2 Backtracking error page

You can customize the error page users receive by implementing the
handlePageRestorationErrorInContext method in the Application class:

public WOResponse handlePageRestorationErrorInContext(WOContext aContext) {
 WOComponent nextPage;
 nextPage = (Error)pageWithName("Error", aContext);
 return nextPage.generateResponse();

}

In this code listing, a page is instantiated from a web component named Error, which you must build. The
contents of the component are completely up to you, but should include the name of the application, your
company’s name, and a friendly message that tells the user that something went wrong and suggests ways
they can return to normal operation.

Web Browser Backtracking Behavior 57
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

58 Web Browser Backtracking Behavior
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Backtracking and Cache Management

This table describes the changes to WebObjects Web Applications Programming Guide.

NotesDate

Updated for WebObjects 5.4.2007-07-11

Completely rewritten to describe how to create HTML-based WebObjects
applications. This document was previously titled "Web Applications."

2006-01-10

Corrected addUser method’s definition in "Conditional Display With
WOConditional Elements" to suppress NullPointerException generated when
either personName or favoriteFood are null. Made the same correction in
the
projects/Managing_User_Input/1-Using_Instance_Variables/UserEntry/Main.java.

2003-04-01

Changed incorrect reference to WORepetition to WOForm in "Create the
ConfirmAuthorDelete Component."

Added Chapter 6, “Backtracking and Cache Management” (page 51).2003-02-01

Made editorial changes, including changing Web to web, Web page to webpage,
and keypath to key path.

Document name changed to Inside WebObjects: Web Applications.2002-09-01

Project examples now in
/Developer/Documentation/WebObjects/Web_Applications/projects.

Revised for WebObjects 5.2.

Document published as Inside WebObjects: Discovering WebObjects for HTML.2001-05-01

59
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

60
2007-07-11 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	WebObjects Web Applications Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	How Web Applications Work
	Application Architecture
	Request-Response Loop
	Component Action URLs
	Request-Response Loop Messages
	Processing the Request
	Generating the Response
	Backtracking Cache

	Creating Projects
	Choosing a Template
	Creating a Web Application Project
	Project Groups and Files
	Classes
	Web Components
	Resources
	Web Server Resources
	Frameworks
	Products

	Targets
	Building Your Application
	Installing Your Application

	Creating Enterprise Objects
	Model-View-Controller Design Pattern
	Models
	Views
	Controllers

	Object Modeling
	Entities
	Attributes
	Relationships
	Cardinality
	Mandatory
	Ownership

	Key-Value Coding
	Keys
	Values
	Key Paths

	Enterprise Object Models
	Creating an EO Model
	Adding Business Logic
	Default EOGenericRecord Class
	Subclassing EOGenericRecord

	Creating Frameworks

	Creating Web Components
	Main Component
	Java Files
	HTML and WOD Files
	How Dynamic Elements Work
	Maintaining State
	Example: Displaying the Page Count
	Create Your Project
	Add Variables to Your Component
	Add Dynamic Elements to Your Component
	Add Methods to Your Component
	Add Logic to Your Methods

	How Maintaining State Works

	Using the Application and Session Objects
	The Application
	The Session
	Shopping Cart Example

	Backtracking and Cache Management
	Client-Side Page Cache
	Server-Side Component Definition Cache
	Server-Side Page Cache
	Web Browser Backtracking Behavior
	Viewing the HTML Headers
	Standard Webpage Backtracking
	Refreshing Pages When Backtracking
	Disallowing Server-Side Caching
	Setting the Size of the Server-Side Cache

	Revision History

