
WebObjects Web Services Programming
Guide
Internet & Web > Web Services

2007-07-11

Apple Inc.
© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS,
WebObjects, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to WebObjects Web Services Programming Guide 7

Organization of This Document 7
See Also 7

Chapter 1 Web Services Overview 9

What Are Web Services? 9
Web Service Discovery 10
Web Services and SOAP 10
Ingredients of a SOAP Message 11
Web Service Description 14
SOAP Engine 15

The Axis SOAP Engine 16
Serialization and Deserialization of Objects 18

Chapter 2 Security in Web Services 21

Web Services Security 22
Digital Signatures 22
Encryption 24

Canonical XML Documents 24

Chapter 3 Developing Web Service Applications 27

Providing a Web Service 27
Consuming a Web Service 28
Using Sessions in Web Services 30
Accessing the WOContext Object 35
Adding Security to Web Services 35
Web Service Deployment Descriptors 36
Adding Web Service Support to Existing Projects 38

Chapter 4 Developing Direct to Web Services Applications 39

The Data Model 39
Creating a Direct to Web Services Application Project 41
Web Services Assistant 42
Adding a Web Service 43
Adding an Operation 44
Testing an Operation 46
Using WODefaultWebService Operations 47

3
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

Observing SOAP Messages Using TCPMonitor 51
Freezing Operations 52
Unfreezing Operations 57
Component-Based Operations 58
Operations Derived From Fetch Specifications 59
Using Transactions 59
Using Global IDs 59
Default Return Values of Operations 61
Creating a Custom Rule File 62
Rule Editor Keys 62

Document Revision History 65

Glossary 67

4
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Web Services Overview 9

Figure 1-1 Structure of a SOAP message 12
Figure 1-2 Organization of a WSDL document 15
Figure 1-3 The SOAP Message processing cycle 16
Figure 1-4 Web service processing—provider view 17
Figure 1-5 Web service processing—consumer view 18
Table 1-1 The elements of a SOAP message 13
Table 1-2 Attributes defined in the SOAP specification 14
Table 1-3 Serializers and deserializers provided in WebObjects 18
Listing 1-1 Example of an RPC SOAP message 12
Listing 1-2 Example of a document-style SOAP message 12

Chapter 2 Security in Web Services 21

Figure 2-1 Structure of a digital signature element 23
Table 2-1 Features provided by the major security approaches 21
Listing 2-1 Example SOAP message using a digital signature 23
Listing 2-2 Person elements 24

Chapter 3 Developing Web Service Applications 27

Figure 3-1 A possible user interface to the Calculator Web service 30
Listing 3-1 Calculator.java class in Calculator project 27
Listing 3-2 CalculatorClient.java class in Calculator_Client project 28
Listing 3-3 Session_Client project—Application.java file 31
Listing 3-4 Session_Client project—SessionClient.java file 31
Listing 3-5 Session project—LogIn.java file 34
Listing 3-6 Session project—AccessData.java file 34
Listing 3-7 Accessing the WOContext object from a Web service class 35
Listing 3-8 The server.wsdd file of a Web service provider project 36
Listing 3-9 The client.wsdd file of a Web service consumer project 37

Chapter 4 Developing Direct to Web Services Applications 39

Figure 4-1 Listing entity defined in the RealEstate data model 40
Figure 4-2 ListingAddress entity defined in the RealEstate data model 41
Figure 4-3 Connect dialog of Web Services Assistant 42
Figure 4-4 The Web Services Assistant main window 43
Figure 4-5 The New Operation dialog 45
Figure 4-6 The findHouseByAskingPrice operation of the HouseSearch Web service 45

5
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

Figure 4-7 The test window of the findHouseByAskingPrice operation 47
Figure 4-8 TCPMonitor window 52
Figure 4-9 The FindHouseByCity component—the frozen version of the findHouseByCity

operation 54
Figure 4-10 Relationship between Author entity and Book entity 60
Figure 4-11 Definition of the addBook operation 61
Table 4-1 Default return values of operations 61
Table 4-2 Direct to Web Services rule keys 62
Listing 4-1 Properties file of the HousesForSale project 42
Listing 4-2 The WSDL document of the frozen findHouseByCity operation—the HTML file of

the FindHouseByCity component 54
Listing 4-3 addBookForAuthor method 60
Listing 4-4 addAuthor and addBooks methods 60

6
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The following tools are deprecated and no longer supported in WebObjects 5.4 and later:
EOModeler, RuleEditor, WebObjects Builder, WOALauncher, and Java Client. WebObjects templates are not
available for creating new projects in Xcode on Mac OS X v10.5 and later.

Note: This document was previously titled Web Services .

Web services

SOAP

Organization of This Document

This document has the following chapters:

 ■ “Web Services Overview” (page 9)

 ■ “Security in Web Services” (page 21)

 ■ “Developing Web Service Applications” (page 27)

 ■ “Developing Direct to Web Services Applications” (page 39)

 ■ “Document Revision History” (page 65)

See Also

The following list itemizes resources you can use to increase your Web services knowledge.

 ■ The AmazonClient project in /Developer/Examples/JavaWebObjects/AmazonClient is an
implementation of a client for Amazon.com Web services.

 ■ Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI (Sams) gives great detail on
the elements of Web-service development and deployment.

 ■ Architecting Web Services (Apress) provides a high-level view of Web-service development.

 ■ Java & XML (O'Reilly) introduces you to XML and processing XML documents using SAX (Simple API for
XML).

 ■ WebServicesRoutingProtocol (WS-Routing) (http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
routing.asp).

Organization of This Document 7
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects Web Services
Programming Guide

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-routing.asp

 ■ Simple Object Access Protocol (SOAP) 1.1 (http://www.w3.org/TR).

 ■ Axis (http://xml.apache.org/axis) is the SOAP implementation used in WebObjects.

 ■ Web Services Security Core Specification at http://www.oasis-open.org/committees/wss .

 ■ Canonical XML Version 1.0 (http://www.w3.org/TR).

 ■ Exclusive XML Canonicalization Version 1.0 (http://www.w3.org/TR).

 ■ Web Services Description Language (1.1) (http://www.w3.org/TR/wsdl).

In this document, SOAP (Simple Object Access Protocol) refers to SOAP version 1.1 of the specification.

8 See Also
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects Web Services Programming Guide

http://www.w3.org/TR
http://xml.apache.org/axis
http://www.oasis-open.org/committees/wss
http://www.w3.org/TR
http://www.w3.org/TR
http://www.w3.org/TR/wsdl

You can think of Web services as distributed applications. Instead of creating an instance of a class and
invoking its methods, a Web service consumer locates a Web service and invokes the operations it provides.
The Web service provider (the application implementing the Web service) can be on the same Java virtual
machine as the one using it, or it can be thousands of miles away. Furthermore, the applications may be
written in different languages and running in disparate platforms. Because of this, Web service consumers
as well as Web service providers need a way of transferring information that is language and platform
independent. This is where SOAP lends a hand.

Web services are based on SOAP (Simple Object Access Protocol). It provides an infrastructure for the exchange
of structured data in a distributed environment. SOAP itself is based on XML (Extensible Markup Language).
XML is an SGML (Standard Generalized Markup Language)-based language that facilitates the structuring of
data in documents. In addition, data elements in XML documents provide information about the data they
contain through element names and attributes.

SOAP was created to facilitate the exchange of information by heterogeneous systems. XML provides it with
structure through schemas and element scope through namespaces. SOAP is a transport-agnostic protocol:
messages can be sent using HTTP, SMTP, and other protocols. For more on XML, including XML Schema and
XML Namespaces, see Extensible Markup Language (XML) at http://www.w3.org/XML .

This chapter introduces Web service concepts. If you're familiar with Web service technology, you can go to
the next chapter.

The chapter has the following sections:

 ■ “What Are Web Services?” (page 9)

 ■ “Web Service Discovery” (page 10)

 ■ “Web Services and SOAP” (page 10)

 ■ “Ingredients of a SOAP Message” (page 11)

 ■ “Web Service Description” (page 14)

 ■ “SOAP Engine” (page 15)

 ■ “Serialization and Deserialization of Objects” (page 18)

What Are Web Services?

Web services provide an implementation-independent way for applications to communicate with each other.
Currently, many companies use electronic-data-interchange (EDI) systems to communicate with their business
partners. EDI, however, requires the use of slow modems and dedicated phone lines. Also, a change in the
structure of the data exchanged requires that the systems of all partners involved be updated. Web services,
which are based on SOAP messages that wrap XML documents, provide a flexible infrastructure that leverages
the ubiquitous HTTP (or HTTPS) over TCP/IP. This means that your organization probably has all the hardware

What Are Web Services? 9
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

http://www.w3.org/XML

and software infrastructure needed to deploy Web services already. In addition, thanks to XML's structure
and flexibility, each partner can extract only the information it needs from a message, which gives participants
a great deal of freedom.

But Web services provide more than an information-exchange system. When an application implements
some of its functionality using Web services, it becomes more than the sum of its parts. For example, you
can create a Web service operation that uses a Web service operation from another provider to give its
consumers (also known as service requestors) information tailored to their needs. Web service operations
are akin to the methods of a Java class; a provider is an entity that publishes a Web service, while the entities
that use the Web service are called consumers.

Current Web service technology allows an organization to easily integrate its systems, creating an
enterprise-wide solution that leverages the work that is performed best by smaller groups within the enterprise.
For example, the Payroll system is the one that should deal with an employee's compensation, while the
Human Resources system is more appropriate for the management of vacation and sick-leave time. However,
an Employee Information system should gather the information that both the Payroll and Human Resources
systems contain, but should not duplicate it. The Employee Information system could display a window or
Web page that an employee can view to analyze both her salary and accrued vacation time, without having
to directly access the data stores used by the other two systems. Payroll and vacation information would be
available through Web service operations provided by separate applications tailored to their particular
objectives.

Web services can also be deployed over the Internet; however, you should ensure that sensitive information
is not compromised. A SOAP message can hop through several computers across a network before reaching
its destination, which exposes it to be viewed and modified by entities that you don't know about. There are
several standards and specifications that help you protect the messages you send and to make sure that the
messages you receive have not been compromised. See “Security in Web Services” (page 21) for more
information.

What Web services really provide is access to business logic. This business logic can be implemented in any
language. Most companies implementing Web services for the first time only add a Web service front end
to their existing applications. WebObjects makes this easy.

Web Service Discovery

The Web Services Description Language (WSDL) is an XML-based language used to describe a Web service.
This description allows an application to dynamically determine a Web service's capabilities; for example,
the operations it provides, their parameters, return values, and so forth. A UDDI (Universal Description,
Discovery and Integration) repository is a searchable directory of Web services that Web service requestors
can use to search for Web services and obtain their WSDL documents. WSDL documents, however, do not
need to be published in a repository for consumers to take advantage of them. You can obtain a WSDL
document through a Web page or an email message.

Web Services and SOAP

SOAP is the messaging mechanism that you use when you consume Web service operations or provide Web
service operations to your clients.

10 Web Service Discovery
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

All Web service communication is done through SOAP messages. These messages have an envelope,
represented by the Envelope element, and a body, enclosed by the Body element, containing the message's
content. In addition, the Envelope can contain a Header element enclosing one or more header entries.
The header mechanism is what provides SOAP with decentralized extensibility; this is how extensions such
as Digital Signature and Web Services Security Core Language (WSS-Core) are implemented. For more
information on signatures and security, see “Security in Web Services” (page 21) .

SOAP provides two ways for representing Web service operation invocations: RPC (Remote Procedure Call)
messaging and document-style messaging. RPC messaging provides a way of representing method invocations
in SOAP messages. Because of this, however, the structure of the messages representing operation invocations
is fairly rigid. Document-style messaging, on the other hand, provides greater flexibility; it allows messages
to contain arbitrary data elements. However, parsing such messages is more complicated.

Direct to Web Services (a technology that allows you to rapidly create Web services based on a data model)
uses RPC because it allows the mapping of entity attributes to operation parameters. However, you can use
either RPC messaging or document-style messaging in the Web services that you write. Take into account
that document-style messaging requires specialized processing to extract the necessary data from the
message. You must also implement error processing in case required data elements are not present in a
message.

Ingredients of a SOAP Message

As Figure 1-1 shows, a SOAP message, represented by the Envelope element, contains a mandatory Body
element and an optional Header element. The Body element can contain a number of body entries. The
optional Fault element is present only in messages that report a processing exception.

Ingredients of a SOAP Message 11
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

Figure 1-1 Structure of a SOAP message

SOAP-ENV:Body

SOAP-ENV:Envelope
SOAP-ENV:encodingStyle

SOAP-ENV:Header

HeaderEntry
SOAP-ENV:encodingStyle
SOAP-ENV:actor
SOAP-ENV:mustUnderstand

BodyEntry
SOAP-ENV:encodingStyle

SOAP-ENV:Fault

SOAP-ENV:faultcode

SOAP-ENV:faultstring

SOAP-ENV:faultactor

SOAP-ENV:detail

DetailEntry
SOAP-ENV:encodingStyle

Listing 1-1 shows an RPC SOAP message.

Listing 1-1 Example of an RPC SOAP message

<soapenv:Envelope
 xmlns:soapenv="soap_ns"
 xmlns:xsd="xml_schema_ns"
 xmlns:xsi="type_ns">
 <soapenv:Body>
 <ns1:getStockPrice
 xmlns:ns1="app_ns"
 soapenv:encodingStyle="encoding_ns">
 <stockSymbol xsi:type="xsd:string">AAPL</stockSymbol>
 </ns1:getStockPrice>
 </soapenv:Body>
</soapenv:Envelope>

Listing 1-2 shows a document-style SOAP message.

Listing 1-2 Example of a document-style SOAP message

<soapenv:Envelope
 xmlns:soapenv="soap_ns"
 xmlns:xsd="xml_schema_ns"
 xmlns:xsi="type_ns">
 <soapenv:Body>
 <ns1:customerOrder

12 Ingredients of a SOAP Message
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

 soapenv:encodingStyle="encoding_ns"
 xmlns:ns1="app_ns">
 <order>
 <customer>
 <name>Plastic Pens, Inc.</name>
 <address>
 <street>123 Yukon Drive</street>
 <city>Phoenix</city>
 <state>AZ</state>
 <zip>85021</zip>
 </address>
 </customer>
 <orderInfo>
 <item>
 <partNumber>88</partNumber>
 <description>Blue pen</description>
 <quantity>250</quantity>
 </item>
 <item>
 <partNumber>563</partNumber>
 <description>Red stappler</description>
 <quantity>30</quantity>
 <item>
 </orderInfo>
 </order>
 </ns1:customerOrder>
 </soapenv:Body>
</soapenv:Envelope>

Table 1-1 describes the elements of a SOAP message.

Table 1-1 The elements of a SOAP message

DescriptionUseParentElement

Root element of the message.1NoneEnvelope

Encloses header entries.?EnvelopeHeader

Heather entries provide additional information on the message's
content. For example, digital signatures, authorization data, and so
on.

*HeaderHeader entries

Encloses the message's body entries.1EnvelopeBody

Body entries make up the content of the message. Their element
names depend on the message's content.

*BodyBody entries

Body entry used to report a problem. When used, no other body entry
can be present.

?BodyFault

Indicates the reason for the fault. Intended for application use.1Faultfaultcode

Human-readable version of the fault reason.1Faultfaultstring

Indicates which entity along the message path raised the fault.?Faultfaultactor

Ingredients of a SOAP Message 13
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

DescriptionUseParentElement

Encloses detail entries.?Faultdetail

Contain application-specific information about the fault.*detailDetail entries

All the attributes that the SOAP envelope schema defines are global (they are not associated with a particular
element). Also, each element in a SOAP message is free to use any attribute, regardless of where it's defined,
either in SOAP's schema or another one, which is one of SOAP's extensibility features. This means that elements
are free to use any number of attributes. Table 1-2 describes the attributes that the SOAP specification defines.

Table 1-2 Attributes defined in the SOAP specification

DescriptionValueAttribute

Specifies the entity that is to process the element. When absent, the
actor is the ultimate recipient of the message. This attribute is used
mainly to assign header entries to specific entities.

A URI.actor

Indicates whether the element's actor must process the element. When
set to 1 and if the actor is unable to process the element, the actor
must respond with a Fault .

"0" or "1" .mustUnderstand

Indicates the encoding style used for the element's content.A list of URIs.encodingStyle

For more information on SOAP, see Simple Object Access Protocol (SOAP) at http://www.w3.org/TR .

Web Service Description

For a consumer to be able to use a Web service's operations, it must know what operations the Web service
provides, the parameters they take, the type of the values they return, and so on. With intimate knowledge
of the Web service, you can write a Web service client that takes full advantage of the service. However, the
idea behind Web services is to provide a way for an application to dynamically find a Web service that satisfies
its requirements and to learn how to use it. One of the building blocks that bring that vision closer to reality
is WSDL (Web Services Description Language). Like SOAP, WSDL is an XML-based language. A WSDL document
tells a service requestor where a Web service is located and how to use it.

A WSDL document describes Web services in two ways: an abstract description or interface and a concrete
implementation. The interface section provides a high-level description of the operations the Web services
described by the document provide and their parameter types and return types. The implementation section
binds each operation described in the interface section with its implementation (the methods that perform
the work).

These are some of the XML elements that WSDL defines to describe Web services:

 ■ portType : This element provides the interface to one or more Web services. It describes each operation
provided by the services as a set of input (from the consumer) and output (from the provider) messages
that can be generated as a result of invoking the operation. Included in the list of possible messages are
fault messages, which the Web services way of notifying the occurrence of a processing problem or
exception.

14 Web Service Description
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

http://www.w3.org/TR

 ■ message : This element describes a SOAP message. It lists the message's elements, which are referred
to as parts , and their types.

 ■ types : This element list all the data types used as parameters or return types used in message elements.
Essentially, it's an XML Schema definition.

 ■ binding : This element specifies the transport used to send messages between the Web services'
consumers and their provider and implements a portType . It also defines the type of encoding used
for each message.

 ■ port : This element defines the URL that the Web service consumers use to access the Web service. It
implements a binding .

 ■ service : This element encloses one or more port elements.

Figure 1-2 shows the relationship between the major elements of a WSDL document. Missing from the figure
are the definitions element, which is the root element of WSDL document and the types element.

Figure 1-2 Organization of a WSDL document

message
input, output, or fault

operation
operation's message

operation
message encoding

service

port
service entry point

binding
SOAP RPC or messaging

portType
Web-service interface

For the most part, you don't have to concern yourself with reading or writing WSDL documents. WebObjects
generates the WSDL documents needed to provide Web services and makes available methods to access
the information contained in the WSDL documents for Web services you want to consume. For more
information on WSDL, see Web Services Description Language (WSDL) at http://www.w3.org/TR .

SOAP Engine

A SOAP engine (or processor) aids both consumers of Web services and their providers to accomplish their
task without having to worry about the intricacies of SOAP message handling. As far as the consumer is
concerned, it invokes an operation in a similar way a remote procedure call is invoked. The Web service
provider needs to implement only the logic required by the business problem it solves. The consumer's SOAP
processor converts the method invocation into a SOAP message. This message is transmitted through a
transport, such as HTTP or SMTP, to the service provider's SOAP processor, which parses the message into a
method invocation. The provider then executes the appropriate logic and gives the result to its SOAP processor,
which parses the information into a SOAP response message. The message is transmitted through a transport
to the consumer. It's SOAP processor parses the response message into a result object that it returns to the
invoking entity.

SOAP Engine 15
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

http://www.w3.org/TR

Axis is the third generation of Apache SOAP (an implementation of SOAP from the Apache Software
Foundation). Axis is a SOAP engine as well as a code generator and WSDL processing tool. WebObjects uses
Axis to both provide and consume Web services.

The idea behind Axis is to serve as a bridge between your time-tested code and the world of Web services.
By using Axis as its SOAP engine, WebObjects allows you to leverage the business logic you have already
created and use it as the backbone of your Web services strategy.

Axis processes SOAP messages using a series of handlers , which are classes responsible for processing a
message or part of a message in a certain way. In fact, you are free to add your own handlers to customize
message processing. For more information on Axis, visit http://xml.apache.org/axis .

The Axis SOAP Engine

WebObjects uses the Axis framework to both serve and consume Web services. Axis is an interface between
your business logic and the Web services world.

The Axis Web service processing model is shown in Figure 1-3 .

Figure 1-3 The SOAP Message processing cycle

Consumer SOAP Engine Transport SOAP Engine Provider

Parses and
generates result
values

Response Encodes as
SOAP message

Parses and
generates method
invocation

Encodes as
SOAP message

Request

Executes logic

Generates result

Invokes operation

Receives result

Axis implements a very extensible message processing model. It uses handlers and handler chains to allow
its functionality to be tailored to a wide variety of situations and requirements. A handler is an atomic
component that acts on a specific part of a SOAP message; for example, a handler can be in charge of
performing authentication on the message's sender before allowing it to be processed by the provider. A
special handler, the pivot handler (another name for the service's provider), is in charge of executing the Web
service's logic. It's called pivot handler because it is where the message's processing cycle changes from
request processing to response processing.

A handler chain is a group of handlers that can be viewed as a unit. An important concept to grasp is that
handlers and handler chains are not Web service–specific. For example, you can develop handlers that process
SOAP messages from transports other than HTTP or SMTP to increase security without having to change the
Web service implementation. If you start now, you may be able to sell those handlers to others for a nice
profit.

Handlers are simply Java classes that act on an org.apache.axis.MessageContext object. A
MessageContext contains several useful objects, but the most important are the requestMessage and the
responseMessage . Handlers processing incoming messages normally access the requestMessage object,
while those processing the outgoing messages access the responseMessage object. However, Axis provides
no restrictions; a handler can access and modify whatever it pleases. This is helpful if you need a handler to
act both on incoming and outgoing messages.

16 SOAP Engine
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

http://xml.apache.org/axis

Figure 1-4 shows the relationship between handlers and chains in Axis from the point of view of a Web
service provider, while Figure 1-5 does the same from the perspective of a consumer.

Figure 1-4 Web service processing—provider view

Transport response chain

Transport request chain

Request handler

Transport request chain

Request

Response

Global response chain

Request handler

Web service chain

Response handler

Web service
implementation

Response handler

Request handler

Request handler Request handler

Request handler

Pivot handler
(provider)

Request handler

Response handler

Response handler

Response handlerResponse handler

SOAP Engine 17
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

Figure 1-5 Web service processing—consumer view

Web service-request chain

Global request chain

Request

Operation
invocation

Transport request chain

Transport response chain

Global response chain

Request handler

Web service-response chain

Operation
invocation

Request handler Request handler

Request handler Request handler

Request handler Request handler

Message
sender

Response handlerResponse handler

Response handlerResponse handler

Response handlerResponse handler

Response

Notice that there are three types of chains: transport, global, and Web service. A transport chain can deal
with issues specific to the transport used to send and receive SOAP messages. A global chain is one that
processes every SOAP message, regardless of the transport used or the target Web service. Finally, a Web
service chain is one tailored for a specific Web service. For more information on handlers and chains, see
Axis's documentation at http://xml.apache.org/axis .

Serialization and Deserialization of Objects

Complex classes require a custom serialization and deserialization strategy. WebObjects provides serializers
and deserializers for some of its classes, as shown in Table 1-3 .

Table 1-3 Serializers and deserializers provided in WebObjects

DeserializerSerializerClass

xxcom.webobjects.eocontrol.EOEnterpriseObject

18 Serialization and Deserialization of Objects
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

http://xml.apache.org/axis

DeserializerSerializerClass

xxcom.webobjects.eocontrol.EOGlobalID

xcom.webobjects.foundation.NSArray

xxcom.webobjects.foundation.NSData

xcom.webobjects.foundation.NSDictionary

xxcom.webobjects.foundation.NSKeyValueCoding.Null

xxcom.webobjects.foundation.NSRange

xcom.webobjects.foundation.NSSet

xcom.webobjects.foundation.NSTimestamp

xxcom.webobjects.foundation.NSTimeZone

xxcom.webobjects.webservices.support.xml.WOStringKeyMap

xjava.util.Calendar

If you have special classes that require a special serializer and deserializer, you have to create them. Writing
serializer and deserializer classes is a simple process, but requires knowledge of SAX (Simple API for XML).
To learn how to process SAX callbacks in your serializers and deserializers, see Java & XML (O'Reilly).

Serialization and Deserialization of Objects 19
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

20 Serialization and Deserialization of Objects
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Web Services Overview

When you need to transmit sensitive information across a network, you should consider the security
implications of putting that information on the wire. You should use a level of security that corresponds with
the sensitivity of the information you transmit. You should also take into account that adding security
processing to message transmission has a detrimental effect on the performance of your applications.

One way you can address security concerns when serving Web services over an unsecure network, such as
the Internet, is by exposing them only to trusted entities and specific IP addresses. However, this could reduce
the speed at which you can add business partners to your enterprise because it would require manual
configuration.

Using standard transport security, such as HTTPS (HyperText Transmission Protocol, Secure) or Secure Sockets
Layer (SSL), you can ensure that a message is protected from eavesdroppers during transit. However, while
these protocols protect a message as it's transmitted, they do not protect such data once it has reached its
destination.

Web Services Security Core Specification (WSS-Core) is a specification that provides a security framework
that can be used to secure Web services. It encompasses two major areas: digital signatures and encryption.
With digital signatures you can ensure that a particular entity is the sender of a message, even when the
message itself may be unprotected. You use encryption when you want to keep communications private,
that is, when you want no entity other than the recipient to be able to read a message.

The following list itemizes the four areas that a security model for data communication should address:

 ■ Integrity : Allows a message's recipient to ensure that a message hasn't been modified in transit.

 ■ Confidentiality : Ensures that a message can be read only by the intended recipient.

 ■ Authentication : Allows a recipient to ensure that a particular party is the originator of a message.

 ■ Nonrepudiation : Allows a recipient to ensure that a sender cannot deny having sent a message.

Table 2-1 shows the level of security the protocols mentioned earlier provide.

Table 2-1 Features provided by the major security approaches

NonrepudiationAuthenticationConfidentialityIntegrity

xxSSL/HTTPS

xxxDigital signature

xxxxEncryption

This chapter has the following sections:

 ■ “Web Services Security” (page 22) provides an overview of the WSS-Core specification. It covers digital
signatures and encryption.

21
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

 ■ “Canonical XML Documents” (page 24) explains why it's necessary to normalize data before signing or
encrypting it.

Web Services Security

Web Services Security Core Language (WSS-Core) is a specification that specifies how to provide a security
infrastructure to SOAP (Simple Object Access Protocol) messages. This quality-of-protection model can be
extended to incorporate various security models and encryption technologies. Actually, the specification
does not provide for the management of keys, certificates, or encryption mechanisms. It just specifies the
elements that a SOAP message must have to ensure that it contains an acceptable level of protection against
snooping and other types of security threats. For detailed information on WSS-Core, see Web Services Security
Core Specification at http://www.oasis-open.org/committees/wss .

SOAP messages using WSS-Core include security tokens that represent claims. For example, a security token
can indicate that a Web service client is operating under the "Mary" user name and that she's authorized to
view certain data. The security token format is extensible, and a message can use more than one security-token
format.

WSS-Core itself is an extension of SOAP. It adds elements to a SOAP message that can be used to enclose
security-related information to its Header element. However, WSS-Core is not a security protocol and it does
not provide one.

Digital Signatures

The XML Signature specification, which is based on public-key infrastructure (PKI) is an very important part
of WSS-Core. It specifies the format of digital signatures in XML documents. XML Signature uses X.509
certificates (digital certificates) to authenticate the purported sender of a message. This is possible because
digital certificates, which are issued by a Certification Authority, bind the subject identified by a certificate
with its public key. For more information on PKI, see PKI Basics: A Technical Perspective at http://www.pkifo-
rum.org .

The most secure approach to protect a SOAP message is to encrypt the message's payload. However,
encrypting entire messages would bring about performance penalties. Therefore, as a general rule only a
portion of a message or the message's hash is encoded using the sender's private key. (A hash is a number
derived from a string such that any change to the string produces a different number.) This is the electronic
version of a manual signature. That way, the message can be easily read by people, while the signature
guarantees its integrity and identifies its sender. When the recipient receives a message, it creates a hash of
the signed content, decrypts the signature using the sender's public key, and compares the two; if they match
it means that the message is authentic.

XML Signature also adds support for integrity and nonrepudiation to XML-encoded messages. Digital signatures
can sign individual elements of an XML document. This provides the actors involved in a transaction the
ability to sign only the sections of the document for which they are responsible for. In addition, the signed
elements do not have to be of the same type.

Figure 2-1 shows the structure of a digital signature element.

22 Web Services Security
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

http://www.oasis-open.org/committees/wss
http://www.pkiforum.org
http://www.pkiforum.org

Figure 2-1 Structure of a digital signature element

ds:Signature
ld

ds:CanolicalizationMethod
Algorithm

ds:SignatureMethod
Algorithm

ds:Reference
ld
URl
Type

ds:DigestMethod
Algorithm

ds:SignedInfo
ld

ds:DigestValue

ds:Transforms
ds:Transform
Algorithm

ds:KeyInfo
ld

ds:Object
ld
MimeType
Encoding

ds:SignatureValue
ld

The signature element would normally be enclosed in a header-entry element named Security in a SOAP
message. Listing 2-1 shows a SOAP message with a digital signature. Notice that the message's Signature
element signs the content of the Body element.

Listing 2-1 Example SOAP message using a digital signature

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/xx/utility">
 <SOAP-ENV:Header>
 <wsse:Security
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/xx/secext">
 <ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www/w3.org/TR/2000/CR-xml-c14n20001026" />
 <ds:SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1" />
 <ds:Reference URI="#Secret">
 <ds:Transforms>
 <ds:Transform
 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026" />

Web Services Security 23
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

 </ds:Transforms>
 <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <ds:DigestValue>...</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>...</ds:SignatureValue>
 </ds:Signature>
 </wsse:Security>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"
 wsu:Id="Secret">
 <m:GetCurrentTemperature
 xmlns:m="My-URI">
 <m:zipCode>80913</m:zipCode>
 </m:GetCurrentTemperature>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For detailed information on XML Signature, see An Introduction to XML Digital Signatures at
http://www.xml.com/lpt/a/2001/08/08/xmldsig.html .

Encryption

You can encrypt parts of a message when you need to make sure that only its recipient is able to read it. In
public-key cryptography, you encrypt data using your private key. The recipient then uses your public key
to decrypt the encrypted information. This makes paramount the proper management of public and private
keys. Enter public-key infrastructure (PKI).

PKI provides for the creation and issuance of certificates and public and private keys that message encryption
and signing processes require. The W3C is developing a standard for XML-based key management. See XML
Key Management at http://www.w3.org for details.

Canonical XML Documents

During secure message processing, a message's recipient must ensure that the message was not modified
during its travel from the sender. Digital signatures provide proof that the content they sign has not been
altered. To make sure signed content—which is probably not encrypted—has not been modified, a recipient
must create a hash of the signed information and apply the sender's public key. If the result matches the
contents of the SignatureValue element, the content has not been modified.

The problem that arises is that an XML fragments that are functionally equivalent may not be identical. While
XML goes a long way in defining a format for structure data, it still leaves room for ambiguity. Look at Listing
2-2 .

Listing 2-2 Person elements

<person id="1001" group="admin">
 <last_name>Morton</last_name>
 <first_name>Ashley</last_name>

24 Canonical XML Documents
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

http://www.xml.com/lpt/a/2001/08/08/xmldsig.html
http://www.w3.org

</person>

<person id='1001' group='admin">
 <first_name>
 Ashley
 </first_name>
 <last_name>
 Morton
 </last_name>
</person>

The person elements listed are functionally the same; however, they would produce different hashes.

XML fragments (or documents) in canonical form are the normalized versions of XML fragments. These
fragments can be signed, verified, encrypted or decrypted with the assurance that formatting artifacts, such
as superfluous spaces or attribute ordering, do not play a role in the process. In other words, when you
encrypt a document in canonical form and then decrypt it, you get back a document that is almost identical
to the original. For more information, see Canonical XML at http://www.w3.org/TR .

The canonical form of an XML element includes all the namespaces in the element's scope, even if they don't
apply to the element being normalized. To solve this drawback, another initiative, called Exclusive XML
Canonicalization, is used. Essentially, a document in exclusive canonical form includes only the information
pertinent to the element being normalized. For more information, see Exclusive XML Canonicalization at
http://www.w3.org/TR .

Canonical XML Documents 25
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

http://www.w3.org/TR
http://www.w3.org/TR

26 Canonical XML Documents
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Security in Web Services

You can publish as Web service operations the public methods of any class that contains a no-argument
constructor. Also, methods that correspond to document-style operations, must return an
org.w3c.dom.Document . You can find documentation for these classes at http://xml.apache.org/axis , and
http://www.w3.org respectively.

This chapter contains the following sections:

 ■ “Providing a Web Service” (page 27)

 ■ “Consuming a Web Service” (page 28)

 ■ “Using Sessions in Web Services” (page 30)

 ■ “Accessing the WOContext Object” (page 35)

 ■ “Web Service Deployment Descriptors” (page 36)

 ■ “Adding Web Service Support to Existing Projects” (page 38)

Providing a Web Service

As a companion to this document, in projects/Calculator , you find the Calculator project. It's a simple
WebObjects application project used to build an application that serves a Web service called Calculator. The
service provides four operations: add , subtract , multiply , and divide . The operations take two
parameters of type double and return a value of type double . The Calculator.java class, the workhorse
of the Calculator Web service, is listed in Listing 3-1 .

Listing 3-1 Calculator.java class in Calculator project

public class Calculator extends Object {

 public static double add(double addend1, double addend2) {
 double sum = addend1 + addend2;
 return sum;
 }

 public static double subtract(double minuend, double subtrahend) {
 double difference = minuend - subtrahend;
 return difference;
 }

 public static double multiply(double multiplicand1, double multiplicand2) {
 double product = multiplicand1 * multiplicand2;
 return product;
 }

 public static double divide(double dividend, double divisor) {

Providing a Web Service 27
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

http://xml.apache.org/axis
http://www.w3.org

 double quotient = dividend / divisor;
 return quotient;
 }
}

To provide a Web service based on Calculator.java the Application object registers Calculator.java
as a Web service with the following method invocation:

WOWebServiceRegistrar.registerWebService(Calculator.class, true);

The WOWebServiceRegistrar class (com.webobjects.webservices.appserver) provides methods to
register and unregister classes as Web services, set a security delegate, register XSLT (Extensible Stylesheet
Language Transformations) scripts for operations, and so on.

To become a Web service provider, build and run the Calculator application. To view the WSDL document
for the Web service, point your Web browser to
http://localhost:4210/WebObjects/Calculator.woa/ws/Calculator?wsdl .

Consuming a Web Service

The companion project Calculator_Client, located in project/Calculator_Client , contains the source
files used to create the Calculator_Client application, which consumes the Calculator Web service described
in “Providing a Web Service” (page 27) . Its main class is CalculatorClient.java , shown in Listing 3-2 .

Listing 3-2 CalculatorClient.java class in Calculator_Client project

import java.net.*;
import java.util.Enumeration;

import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

public class CalculatorClient extends Object {

 /**
 * Object through which the Web service's operations are invoked.
 */
 private WOWebServiceClient _serviceClient = null;

 /**
 * Address for the Web service's WSDL document.
 */
 private String _service_address =
 "http://localhost:4210/cgi-bin/WebObjects/Calculator.woa/ws/Calculator?wsdl";

 /**
 */
 public CalculatorClient() {
 super();
 }

 /**
 * Obtains the Web service's operation names.
 * @return the Web service's operation names.

28 Consuming a Web Service
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 */
 public NSArray operations() {
 NSArray operations =
(serviceClient().operationsDictionaryForService(serviceName())).allValues();
 NSMutableArray operation_names = new NSMutableArray();
 Enumeration operations_enumerator = operations.objectEnumerator();
 while (operations_enumerator.hasMoreElements()) {
 WOClientOperation operation =
(WOClientOperation)operations_enumerator.nextElement();
 operation_names.addObject((String)operation.name());
 }
 return operation_names;
 }

 /**
 * Invokes the Web service's operations.
 * @param operation operation to invoke;
 * @param arguments argument list;
 * @return value returned by the operation.
 */

// 1 public Double invoke(String operation, Object[] arguments) {
 Object result = serviceClient().invoke(serviceName(), operation, arguments);
 return (Double)result;
 }

 /**
 * Obtains the Web service name.
 * Normally one WSDL file describes one Web service,
 * but it could describe one or more services.
 * @return Web service name.
 */

// 2 public String serviceName() {
 return (String)serviceClient().serviceNames().objectAtIndex(0);
 }

 /**
 * Obtains an WOWebServiceClient through which service operations are invoked.
 * @return Web service–client object.
 */
 private WOWebServiceClient serviceClient() {
 if (_serviceClient == null) {
 _serviceClient = clientFromAddress(_service_address);
 }
 return _serviceClient;
 }

 /**
 * Obtains a Web service–client object through which
 * service operations can be invoked.
 * @return Web service–client object.
 */
 private static WOWebServiceClient clientFromAddress(String address) {
 WOWebServiceClient service_client = null;

 // Create the Web service's URL.
 URL url;
 try {
 url = new URL(address);

Consuming a Web Service 29
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 }
 catch (MalformedURLException e) {
 url = null;
 }

 // Get a service-client object.
// 3 service_client = new WOWebServiceClient(url);

 return service_client;
 }
}

The following list highlights some aspects of CalculatorClient.java .

1. The invoke method defines as parameters the operation name and its arguments. It uses the invoke
method of WOWebServiceClient to invoke the Web service operation.

2. The serviceName method returns the name of the first Web service in the list of Web services defined
by the WSDL document used to create the WOWebServiceClient object. Most WSDL documents define
one Web service, but a WSDL document can define more than one Web service.

3. The WOWebServiceClient class (com.webobjects.webservices.client) provides a one-argument
constructor that takes a URL (java.net) object that points to a WSDL document. Therefore, to create
a WOWebServiceClient you must create a URL object from the URL (Uniform Resource Locator) of the
appropriate WSDL document.

Build and run the Calculator_Client application. Your Web browser should show a page like the one shown
in Figure 3-1 . If your Web browser didn't launch, launch it and connect to
http://localhost:4210/cgi-bin/WebObjects/Calculator_Client.woa .

Figure 3-1 A possible user interface to the Calculator Web service

Using Sessions in Web Services

Using sessions during Web service consumption is simple. You get a session from one Web service and share
it with other Web services served from the same application. For example, you can develop an application
that provides several related Web services. A practical way to share information among the services is to
store shared data in a session object.

30 Using Sessions in Web Services
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

The Session project, in projects/Session , showcases a simple Web service application that provides two
Web services: LogIn and AccessData. The LogIn service accepts user data and stores in a session. To give the
AccessData service access to the information recorded by LogIn, its session is set to the one used by LogIn.

The Session_Client project, in projects/Session_Client , implements a Web service client that consumes
LogIn and AccessData. It sets user name and password properties through LogIn and retrieves them through
AccessData. Listing 3-3 shows the logic behind this process.

Listing 3-3 Session_Client project—Application.java file

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

public class Application extends WOApplication {

 public static void main(String argv[]) {
 WOApplication.main(argv, Application.class);
 }

 public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");

 // Create the service client used to consume
 // both LogInService and AccessDataService.
 SecurityClient securityClient = new SecurityClient();

 // Log in as Susana with the password anasus.
 securityClient.logIn("Susana", "anasus");

 // Get session from LogInService.
 WOWebService.SessionInfo sessionInfo = securityClient.logInSessionInfo();

 // Set AccessDataService's session to the one obtained from LogInService.
 securityClient.setAccessDataSessionInfo(sessionInfo);

 // Get values of properties stored in session created by LogInService.
 String userName = securityClient.userName();
 String userPassword = securityClient.userPassword();

 // Print the properties' values.
 System.out.println();
 System.out.println("**");
 System.out.println("User name from AccessDataService: " + userName);
 System.out.println("User password from AccessDataService: " + userPassword);
 System.out.println("**");
 System.out.println();
 }
}

Listing 3-4 shows the SessionClient class in the Session_Client project.

Listing 3-4 Session_Client project—SessionClient.java file

import java.net.*;

Using Sessions in Web Services 31
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.webservices.client.*;

/**
 * Used to consume the LogIn and AccessData Web services.
 */
public class SecurityClient extends Object {

 private WOWebServiceClient _logInClient = null;
 private WOWebServiceClient _accessDataClient = null;

 private final String LogInServiceAddress =
"http://localhost:4220/cgi-bin/WebObjects/Security.woa/ws/LogIn?wsdl";
 private final String AccessDataServiceAddress =
"http://localhost:4220/cgi-bin/WebObjects/Security.woa/ws/AccessData?wsdl";

 private final String LogInService = "LogIn";
 private final String AccessDataService = "AccessData";

 public SecurityClient() {
 super();
 }

 /**
 * Invokes the setUserInfo operation of the LogIn Web service.
 */
 public void logIn(String name, String password) {
 Object[] arguments = { name, password };
 logInClient().invoke(LogInService, "setUserInfo", arguments);
 }

 /**
 * Invokes the userName operation of the AccessData Web service.
 * @return user name stored in shared session object.
 */
 public String userName() {
 Object result = accessDataClient().invoke(AccessDataService, "userName", null);
 return (String)result;
 }

 /**
 * Invokes the userPassword operation of the AccessData Web service.
 * @return user password stored in shared session object.
 */
 public String userPassword() {
 Object result = accessDataClient().invoke(AccessDataService, "userPassword",
null);
 return (String)result;
 }

 /**
 * Obtains a Web service client through which LogIn operations are invoked.
 * @return a Web service client for LogIn.
 */
 protected WOWebServiceClient logInClient() {
 if (_logInClient == null) {

32 Using Sessions in Web Services
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 _logInClient = clientFromAddress(LogInServiceAddress);
 }
 return _logInClient;
 }

 /**
 * Obtains a Web service client through which AccessData operations are invoked.
 * @return a Web service client for AccessData.
 */
 protected WOWebServiceClient accessDataClient() {
 if (_accessDataClient == null) {
 _accessDataClient = clientFromAddress(AccessDataServiceAddress);
 }
 return _accessDataClient;
 }

 /**
 * Obtains session information from LogInService.
 * @return session information from LogInService.
 */
 public WOWebService.SessionInfo logInSessionInfo() {
 return logInClient().sessionInfoForServiceNamed(LogInService);
 }

 /**
 * Sets the session used by AccessDataService.
 */
 public void setAccessDataSessionInfo(WOWebService.SessionInfo sessionInfo) {
 accessDataClient().setSessionInfoForServiceNamed(sessionInfo, AccessDataService);
 }

 /**
 * Obtains a Web service client through which
 * service operations are invoked.
 * @return Web service client object.
 */
 private WOWebServiceClient clientFromAddress(String address) {
 WOWebServiceClient service_client = null;

 // Create the Web service's URL.
 URL url;
 try {
 url = new URL(address);
 }
 catch (MalformedURLException e) {
 url = null;
 }

 // Get a service-client object.
 service_client = new WOWebServiceClient(url);

 return service_client;
 }
}

Listing 3-5 shows the LogIn class in the Session project.

Using Sessions in Web Services 33
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

Listing 3-5 Session project—LogIn.java file

import org.apache.axis.MessageContext;

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;

/**
 * Implements the LogIn Web service.
 */
public class LogIn {
 public static final String USER_NAME = "userName";
 public static final String USER_PASSWORD = "userPassword";

 /**
 * Sets a user's name and password properties in a session.
 */
 public void setUserInfo(String userName, String userPassword) {
 WOSession session = serviceSession();
 session.setObjectForKey(userName, USER_NAME);
 session.setObjectForKey(userPassword, USER_PASSWORD);
 }

 /**
 * Retrieves the session from the current context.
 * @return current context's session.
 */
 private WOSession serviceSession() {
 WOContext context =
(WOContext)MessageContext.getCurrentContext().getProperty("com.webobjects.appserver.WOContext");
 WOSession session = context.session();
 return session;
 }
}

Listing 3-6 shows the AccessData class in the Session project.

Listing 3-6 Session project—AccessData.java file

import org.apache.axis.MessageContext;

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;

/**
 * Implements the AccessData Web service.
 */
public class AccessData {

 /**
 * Obtains the value of the USER_NAME property from the session.
 * @return user name.
 */
 public String userName() {
 String userName = null;
 WOSession session = serviceSession();
 if (session != null) {
 userName = (String)session.objectForKey(LogIn.USER_NAME);

34 Using Sessions in Web Services
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 }
 return userName;
 }

 /**
 * Obtains the value of the USER_PASSWORD property from the session.
 * @return user password.
 */
 public String userPassword() {
 String userPassword = null;
 WOSession session = serviceSession();
 if (session != null) {
 userPassword = (String)session.objectForKey(LogIn.USER_PASSWORD);
 }
 return userPassword;
 }

 /**
 * Retrieves the session from the current context.
 * @return current context's session.
 */
 private WOSession serviceSession() {
 WOContext context = (WOContext)MessageContext.getCurrentContext().getProperty(
 "com.webobjects.appserver.WOContext");
 WOSession session = context.session();
 return session;
 }
}

Accessing the WOContext Object

Sometimes you may need to access the context (com.webobjects.appserver.WOContext) of an HTTP
request. For example, you can use the WOContext object to store data you want to share between methods
or classes as an operation is processed. To access the WOContext object associated with an operation's
invocation, use the code in Listing 3-7 .

Listing 3-7 Accessing the WOContext object from a Web service class

import com.webobjects.appserver.WOContext;
import org.apache.axis.MessageContext;
...
MessageContext message_context = MessageContext.getCurrentContext();
WOContext context =
(WOContext)message_context.getProperty("com.webobjects.appserver.WOContext");

Adding Security to Web Services

You can add security processing to Web services by creating a security delegate class that implements
methods of the WOSecurityDelegate interface in the com.webobjects.webservices.support package.
These methods are

Accessing the WOContext Object 35
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 ■ processClientRequest : Invoked by consumer applications before sending a request to the provider.

 ■ processClientResponse : Invoked by consumer applications before processing a response from the
provider.

 ■ processServerRequest : Invoked by provider applications before processing a request from a consumer.

 ■ processServerResponse : Invoked by provider applications before sending a response to a consumer.

 ■ onFaultClientRequest : Invoked by consumer applications when a processing exception occurs while
generating a request.

 ■ onFaultClientResponse : Invoked by consumer applications when a processing exception occurs
while processing a server response.

 ■ onFaultServerRequest : Invoked by provider applications when a processing exception occurs while
processing a consumer request.

 ■ onFaultServerResponse : Invoked by provider applications when a processing exception occurs while
generating a response.

The projects Security and Security_Client in projects/Security and projects/Security_Client ,
respectively, show how the methods of a security-delegate class are invoked before and after an operation
is executed.

Web Service Deployment Descriptors

Under Axis, Web services are deployed using XML-based files known as Web service deployment descriptors
(WSDD). The Resources group of Web service application projects contains one or two of these files, named
client.wsdd and server.wsdd . Application projects that only provide Web services have the server.wsdd
file, while projects that consume services contain both.

Listing 3-8 shows the server.wsdd file of a Web service provider project.

Listing 3-8 The server.wsdd file of a Web service provider project

<?xml version="1.0" encoding="UTF-8"?>
<deployment
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <globalConfiguration>
 <parameter name="sendMultiRefs" value="true"/>
 <parameter name="sendXsiTypes" value="true"/>
 <parameter name="sendXMLDeclaration" value="true"/>
 <requestFlow>
 <handler
type="java:com.webobjects.webservices.support._private.WOSecurityHandler"/>
 <handler
type="java:com.webobjects.appserver._private.WOServerSessionHandler"/>
 </requestFlow>
 <responseFlow>
 <handler
type="java:com.webobjects.appserver._private.WOServerSessionHandler"/>
 <handler
type="java:com.webobjects.webservices.support._private.WOSecurityHandler"/>

36 Web Service Deployment Descriptors
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

 </responseFlow>
 </globalConfiguration>
 <handler name="URLMapper" type="java:org.apache.axis.handlers.http.URLMapper"/>
 <handler name="HTTPActionHandler"
type="java:org.apache.axis.handlers.http.HTTPActionHandler"/>
 <handler name="RPCDispatcher" type="java:org.apache.axis.providers.java.RPCProvider"/>
 <handler name="MsgDispatcher" type="java:org.apache.axis.providers.java.MsgProvider"/>
 <transport name="http">
 <requestFlow>
 <handler type="HTTPActionHandler"/>
 <handler type="URLMapper"/>
 </requestFlow>
 </transport>
</deployment>

Listing 3-9 shows the client.wsdd file of a Web service consumer project.

Listing 3-9 The client.wsdd file of a Web service consumer project

<?xml version="1.0" encoding="UTF-8"?>
<deployment
 xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <globalConfiguration>
 <parameter name="sendMultiRefs" value="true"/>
 <parameter name="sendXsiTypes" value="true"/>
 <parameter name="sendXMLDeclaration" value="true"/>
 <requestFlow>
 <handler
type="java:com.webobjects.webservices.support._private.WOSecurityHandler"/>
 <handler
type="java:com.webobjects.webservices.client._private.WOClientSessionHandler"/>
 </requestFlow>
 <responseFlow>
 <handler
type="java:com.webobjects.webservices.client._private.WOClientSessionHandler"/>
 <handler
type="java:com.webobjects.webservices.support._private.WOSecurityHandler"/>
 </responseFlow>
 </globalConfiguration>
 <transport name="http" pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <transport name="https" pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <transport name="local" pivot="java:org.apache.axis.transport.local.LocalSender"/>
</deployment>

You can edit the server.wsdd and the client.wsdd files to add handlers or to add Web services that have
static WSDL documents. However, you must not remove any of the handlers defined in those files by default.
Also, you should consult the Axis documentation before making any changes to the WSDD files.

Web Service Deployment Descriptors 37
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

Adding Web Service Support to Existing Projects

To add Web service–provider support to an existing project, you have to add the JavaWebServiceSupport
framework to it. To add Web service–client support, you need to add the JavaWebServiceSupport and
JavaWebServiceClient frameworks. The frameworks are located in /System/Library/Frameworks
($NEXT_ROOT/Library/Frameworks on Windows).

38 Adding Web Service Support to Existing Projects
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Developing Web Service Applications

This chapter describes the creation of a Direct to Web Services application. Direct to Web Services allows you
to rapidly develop Web service–based applications that provide access to a data store. As other WebObjects
rapid-development approaches, Direct to Web Services is a data model–based and rule-based application
development approach.

You create a project called HousesForSale , which provides a Web service with two operations, one to find
information on houses for sale and another to find real-estate agents. If you don't want to create the project
by hand, you can find it in projects/HousesForSale .

The chapter contains the following sections:

 ■ “The Data Model” (page 39)

 ■ “Creating a Direct to Web Services Application Project” (page 41)

 ■ “Web Services Assistant” (page 42)

 ■ “Adding a Web Service” (page 43)

 ■ “Adding an Operation” (page 44)

 ■ “Testing an Operation” (page 46)

 ■ “Using WODefaultWebService Operations” (page 47)

 ■ “Observing SOAP Messages Using TCPMonitor” (page 51)

 ■ “Freezing Operations” (page 52)

 ■ “Unfreezing Operations” (page 57)

 ■ “Component-Based Operations” (page 58)

 ■ “Operations Derived From Fetch Specifications” (page 59)

 ■ “Using Transactions” (page 59)

 ■ “Using Global IDs” (page 59)

 ■ “Default Return Values of Operations” (page 61)

 ■ “Creating a Custom Rule File” (page 62)

 ■ “Rule Editor Keys” (page 62)

The Data Model

The HousesForSale project includes the JavaRealEstate framework located in /Library/Frameworks . The
framework contains the RealEstate data-model file. The data model defines several entities; you work with
only two of them: Listing and ListingAddress. Figure 4-1 shows the Listing entity definition and data from
its corresponding database table; Figure 4-2 does the same for the ListingAddress entity.

The Data Model 39
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services
Applications

Figure 4-1 Listing entity defined in the RealEstate data model

40 The Data Model
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Figure 4-2 ListingAddress entity defined in the RealEstate data model

Creating a Direct to Web Services Application Project

Follow these steps to create a Direct to Web Services–based application project:

1. Launch Project Builder, located in /Developer/Applications .

2. In the New Project pane of the Project Builder Assistant, select Direct to Web Services Application under
WebObjects.

To create the HousesForSale project:

1. Name the project HousesForSale .

2. In the Choose EOAdaptors pane, make sure the JDBC adaptor is selected.

3. In the Choose Frameworks pane, add the JavaRealEstate framework located in /Library/Frameworks
.

Creating a Direct to Web Services Application Project 41
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

4. In the Build and Launch Project pane, deselect "Build and launch project now."

5. Edit the Properties file so that it looks like Listing 4-1 .

Listing 4-1 Properties file of the HousesForSale project

WOAutoOpenInBrowser false
WOPort 5210

6. Build and run the application.

Web Services Assistant

To customize a Direct to Web Services application you use the Web Services Assistant. It's located in
/Developer/Applications . With it you define an operation's parameters and return values. In addition,
you determine whether the operation's result is returned as an array of enterprise-object instances or as a
SOAP document, which can be traversed using an NSDictionary.

After you launch the Assistant, the Connect dialog appears (Figure 4-3). Enter http://localhost:<port>
in the text input field and click Connect.

To connect to the HousesForSale application, enter http://localhost:5210 .

Figure 4-3 Connect dialog of Web Services Assistant

Figure 4-4 shows the Web Services Assistant main window.

42 Web Services Assistant
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Figure 4-4 The Web Services Assistant main window

Initially, your application contains one Web service named WODefaultWebService, which is disabled by
default. You should enable this service during development only. When the service is enabled and you add
an entity to the service's Public Entity list, the Assistant creates insert , update , search , and delete
operations for it, in addition to fetch-specification based operations. You can then copy those operations to
a custom service, intended for public consumption. See “Using WODefaultWebService Operations” (page
47) for details.

Adding a Web Service

These are the steps you need to perform to add a Web service to a Direct to Web Services application:

1. In the Web Services Assistant main window, select the server application in the left-hand side list.

2. Click the New Service toolbar button.

3. Enter the name of the service in the Service Name text input field.

4. Select the entities you want to use in the Web service.

To add the HouseSearch Web service to the HousesForSale application:

1. Select http://localhost:5210 in the left-hand side list.

2. Click New Service.

3. Enter HouseSearch in the Service Name text field.

4. Select Listing and ListingAddress in the Available list of the Public Entities pane and click the button
with the left-pointing arrow.

Adding a Web Service 43
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

5. Make sure Enabled is selected.

Adding an Operation

These are the steps you need to perform to add an operation to a Web service:

1. In the Web Services Assistant, click the New Operation toolbar button.

2. Set the name and type of the operation in the New Operation dialog:

a. Enter the name of the operation in the Name text input field.

b. From the Entity pop-up menu, choose the entity the operation is to act on.

c. From the Type pop-up menu, choose the type of the operation: search, insert, update, or delete.

d. Click OK.

3. Define the operation's arguments and return values in the Arguments and Return Values panes,
respectively.

To add the findHouseByAskingPrice operation to the HouseSearch Web service of the HousesForSale
application, follow these steps:

1. Click New Operation.

2. Enter findHouseByAskingPrice in the Name text field.

3. Choose Listing from the Entity pop-up menu.

44 Adding an Operation
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

4. Make sure Type is "search."

5. Make sure HouseSearch is selected in the Services list and click OK.

Figure 4-5 The New Operation dialog

6. In the main window (Figure 4-6), select askingPrice in the Available list in the Arguments pane and
click the button with the left-pointing arrow twice.

7. Select the first row of the Selected list, enter low in the Public Name text input field, and choose ">"
from the Operator pop-up menu.

8. Select the second row, enter high in the Public Name text field, and choose "<" from the Operator
pop-up menu.

Figure 4-6 The findHouseByAskingPrice operation of the HouseSearch Web service

Adding an Operation 45
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

9. In the Return Values pane, select askingPrice from the Available list and click the button with the
left-pointing arrow. Repeat for address.appNum , address.street , address.city , address.state
, and address.zip .

Notice that the Selected list of the Return Values pane contains two columns: Property Name and Public
Name. The Property Name column shows the fully qualified name of the property as shown in the Available
list—including key paths—such as address.city . The Public Name column shows the name to be used
for operation parameters and return values. You can use different names for those properties, especially
since periods cannot be used within the names of operation parameters and return values. The Web Services
Assistant removes periods from key paths and capitalizes the first letter of each node of the key path except
the first node. So, address.city becomes addressCity . See “Testing an Operation” (page 46) for an
example response to an invocation of the findHouseByAskingPrice operation.

Testing an Operation

To test an existing operation in the Web Services Assistant, perform these steps:

1. Select the operation you want to test from the left-hand side list.

For testing purposes, it's appropriate to select Return SOAP Struct. That setting is also appropriate when
the applications that consume the operation are not WebObjects applications.

2. Click the Test toolbar button.

The Testing pane of the test window, shown in Figure 4-7 (page 47) , has two panes: the Parameters
pane and the Result pane. In the Parameters pane you enter the values for the operation's parameters.
When you click Test, the Result pane shows the return values of the operation.

3. In the Parameters pane of the Test window, enter values for the operation's parameters and click Test.

46 Testing an Operation
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

To test the findHouseByAskingPrice operation of the HouseSearch service of the HousesForSale example,
follow these steps:

1. Select findHouseByAskingPrice under HouseSearch under http://localhost:5210 .

2. Select Return SOAP Struct.

3. Click the Test toolbar button.

4. Enter 250000 in the Low text input field, 350000 in the High text field, and click Test.

Figure 4-7 The test window of the findHouseByAskingPrice operation

Using WODefaultWebService Operations

Although creating operations is made easy by the Web Services Assistant, you may want to get a head start.
When you add entities to the WODefaultWebService service, the Assistant adds four operations: insert ,
update , search , and delete . By default only the search operation is enabled. In addition, operations
are created for all fetch specifications defined in the data model for the entity.

To use an operation from WODefaultWebService in another Web service provided by the same application,
follow these steps:

Using WODefaultWebService Operations 47
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

1. In the Web Services Assistant, select WODefaultWebService in the left-hand side list.

2. Add the necessary entities to the Public Entities list of WODefaultWebService.

Note that you cannot delete automatically generated operations from WODefaultWebService. But you
can remove an entity from the Public Entities list, which removes all the automatically generated
operations based on that entity.

3. Select the operation of WODefaultWebService you want to use in another Web service.

4. Click the Clone toolbar button.

5. In the Clone dialog, enter a name for the new operation and click Clone.

6. Select the new operation in the left-hand side list and display the Services pane.

7. Select the Web service you want to add the operation to in the Available list and click the button with
the left-pointing arrow.

You can remove the operation from WODefaultWebService by selecting WODefaultWebService in the
Selected list and clicking the "–" button.

To create the findHouseByCity operation for the HouseSearch Web service, based on the automatically
generated searchListingAddress operation of WODefaultWebService, follow these steps:

1. In the Web Services Assistant, select WODefaultWebService under http://localhost:5210 .

2. In the Public Entities pane, select ListingAddress in the Available list and click the button with the
left-pointing arrow.

Web Services Assistant adds four operations to WODefaultWebService: deleteListingAddress ,
insertListingAddress , searchListingAddress , and updateListingAddress . Notice that only
the searchListingAddress operation is enabled.

48 Using WODefaultWebService Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

3. Select searchListingAddress under WODefaultWebService.

4. Click the Clone toolbar button, enter findHouseByCity in the text input field of the Clone dialog, and
click Clone.

5. Select findHouseByCity under WODefaultWebService.

6. In the Services pane, select HouseSearch in the Available list and click the button with the left-pointing
arrow.

7. In the Selected pane, select WODefaultWebService and click the "–" button. The operation is now part
of the HouseSearch Web service.

8. Select findHouseByCity under HouseSearch and display the Arguments pane.

9. Select the aptNum property in the Selected list and click the button with the minus sign. Repeat for
street and zip .

10. In the Return Values pane, remove all properties from the Selected list.

Using WODefaultWebService Operations 49
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

11. Select listing.askingPrice in the Available list and click the button with the left-pointing arrow.
Repeat for listing.bathrooms , listing.bedrooms , and listing.yearBuilt .

12. Select Return SOAP Struct and test the operation.

50 Using WODefaultWebService Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Observing SOAP Messages Using TCPMonitor

Sometimes you may find it useful to see the SOAP messages as they are transmitted between Web service
consumers and providers. Follow these steps to observe the communication that occurs between the Web
Services Assistant and your Direct to Web Services application:

1. Make sure the Web Services Assistant is not connected to the Direct to Web Services application whose
communication you want to monitor and that the application itself is not running.

2. In Project Builder, add a custom rule file called d2w.d2wmodel (if it doesn't already exist), and assign it
to the Application Server target. See “Creating a Custom Rule File” (page 62) for details.

3. Open d2w.d2wmodel in Rule Editor.

Control-click d2w.d2wmodel and choose "Open with Finder."

4. In Rule Editor, add the following rule and save the d2w.d2wmodel file:

Left-Hand Side: (serviceName = '<serviceName>') .
Key: serviceLocationURL .
Value:
"http://<host>:<TCPMonitorListenPort>/cgi-bin/WebObjects/<applicationName>.woa/ws/<serviceName>"
.
Priority: 50 .

5. Launch TCPMonitor by double-clicking TCPMonitor in /Developer/Examples/JavaWebObjects , and
enter the appropriate values in the Listen Port and Target Port text input fields, the port that TCPMonitor
monitors and your application's port, respectively. Click Add.

6. In the Web Services Assistant, connect to your application through the port that TCPMonitor monitors.

To observe the communication that happens between the Web Services Assistant and HousesForSale, follow
these steps:

1. In the Web Services Assistant, save the application's Web service configuration and close the Web Services
Assistant window.

2. In Project Builder, add a custom rule file named d2w.d2wmodel to the application project if it doesn't
already exist.

3. Open the d2w.d2wmodel file in Rule Editor and add the following rule:

Left-Hand Side: (serviceName = 'HouseSearch') .
Key: serviceLocationURL .
Value:
"http://localhost:5299/cgi-bin/WebObjects/HousesForSale.woa/ws/HouseSearch"
.
Priority: 50 .

4. Save the d2w.d2wmodel file and build and run the application.

5. Launch TCPMonitor.

Observing SOAP Messages Using TCPMonitor 51
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

6. Enter 5299 in the Listen Port text input field and 5210 in the Target Port text field and click Add.

7. Display the Port 5299 pane of TCPMonitor.

8. In the Web Services Assistant, enter http://localhost:5299 in the text input field of the Connect
dialog and click Connect.

Notice that TCPMonitor shows you the request and response documents as the Web Services Assistant
communicates with the HousesForSale application.

9. If you test the findByCity or findByAskingPrice operations, TCPMonitor logs the SOAP request the
Assistant sends to the application as well as the response sent by the application as shown in Figure 4-8
.

Figure 4-8 TCPMonitor window

Freezing Operations

You can freeze operations when you need to customize their workings. Frozen operations take the form of
Web components in your application project. When you freeze an operation, the parts of the Web service's
WSDL document that correspond to the operation are frozen as well. In addition, you cannot use the Web

52 Freezing Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Services Assistant to customize further a frozen operation; for example, you cannot add or remove arguments
or return values with the Assistant. If you need to do so, you have to edit the Java file and WSDL document
manually.

The following list itemizes the steps needed to freeze an operation.

1. In the Web Services Assistant, select the operation you want to freeze and click the Freeze toolbar button.
In the Freeze dialog, enter the name of the frozen-operation component and click Freeze.

Freezing Operations 53
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

The Assistant adds the FindHouseByCity component to the HouseForSale project, as shown in Figure
4-9 .

Figure 4-9 The FindHouseByCity component—the frozen version of the findHouseByCity operation

2. Save the Web service configuration and close the Web Services Assistant window.

3. Restart the application.

The WSDL document corresponding to a frozen operation is stored in the HTML file of the corresponding
component. Listing 4-2 shows the WSDL document for the frozen findHouseByCity operation.

Listing 4-2 The WSDL document of the frozen findHouseByCity operation—the HTML file of the
FindHouseByCity component

<?xml version="1.0"?>
<definitions name="[AnyService]Definition"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://17.203.33.19/cgi-bin/WebObjects/HousesForSale.woa/ws/
[AnyService]/wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:lang="http://lang.java/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:webobjects="http://www.apple.com/webobjects/webservices/soap/"
 targetNamespace="http://17.203.33.19/cgi-bin/WebObjects/HousesForSale.woa/ws/
[AnyService]/wsdl">
 <types>
 </types>
 <message name="findHouseByCityInput">
 <part type="xsd:string" name="city"/>
 <part type="xsd:string" name="state"/>
 </message>
 <message name="findHouseByCityOutput">
 <part type="xsd:anyType" name="return"/>

54 Freezing Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

 </message>
 <message name="WSDLInput">
 </message>
 <message name="WSDLOutput">
 <part type="xsd:anyType" name="return"/>
 </message>
 <message name="beginTransactionInput">
 </message>
 <message name="beginTransactionOutput">
 <part type="xsd:anyType" name="return"/>
 </message>
 <message name="commitTransactionInput">
 </message>
 <message name="commitTransactionOutput">
 <part type="xsd:anyType" name="return"/>
 </message>
 <message name="rollbackTransactionInput">
 </message>
 <message name="rollbackTransactionOutput">
 <part type="xsd:anyType" name="return"/>
 </message>
 <portType name="[AnyService]PortType">
 <operation name="findHouseByCity" parameterOrder="city state">
 <input message="tns:findHouseByCityInput"/>
 <output message="tns:findHouseByCityOutput"/>
 </operation>
 <operation name="WSDL">
 <input message="tns:WSDLInput"/>
 <output message="tns:WSDLOutput"/>
 </operation>
 <operation name="beginTransaction">
 <input message="tns:beginTransactionInput"/>
 <output message="tns:beginTransactionOutput"/>
 </operation>
 <operation name="commitTransaction">
 <input message="tns:commitTransactionInput"/>
 <output message="tns:commitTransactionOutput"/>
 </operation>
 <operation name="rollbackTransaction">
 <input message="tns:rollbackTransactionInput"/>
 <output message="tns:rollbackTransactionOutput"/>
 </operation>
 </portType>
 <binding type="tns:[AnyService]PortType"
 name="[AnyService]SoapBinding"><soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="findHouseByCity">
 <soap:operation soapAction="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 <input>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/

Freezing Operations 55
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="WSDL">
 <soap:operation soapAction="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 <input>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="beginTransaction">
 <soap:operation soapAction="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 <input>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="commitTransaction">
 <soap:operation soapAction="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 <input>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="rollbackTransaction">
 <soap:operation soapAction="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 <input>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/

56 Freezing Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
namespace="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl" encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <service name="[AnyService]">
 <port name="[AnyService]Port" binding="tns:[AnyService]SoapBinding">
 <soap:address location="http://17.203.33.19/cgi-bin/WebObjects/
HousesForSale.woa/ws/[AnyService]/wsdl"/>
 </port>
 </service>
</definitions>

In addition to the findHouseByCity operation, the frozen WSDL document defines four additional operations:
WSDL , beginTransaction , commitTransaction , and rollbackTransaction . The WSDL method can
returns the WSDL document for the Web service. Consumers can use the rest of the additional operations
to implement rudimentary transaction processing. For more information, see “Using Transactions” (page 59)
.

Unfreezing Operations

To unfreeze a frozen operation follow these steps:

1. In the Web Services Assistant, select the operation you want to unfreeze.

2. Click Unfreeze in the Freezing pane.

3. Save the Web service configuration.

4. In Project Builder, delete the corresponding component.

a. Select the component under the Web Components group.

b. Choose Edit > Delete.

c. In the Delete References dialog, click Delete References & Files.

Unfreezing Operations 57
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Component-Based Operations

“Freezing Operations” (page 52) indicated that when you freeze an operation, the operation's WSDL document
as well as its parameters and return values cannot be customized using the Web Services Assistant. However,
you can create custom operations whose WSDL document is dynamically generated. For that you need to
copy the templates/Direct to Web Services Operation.pbfiletemplate.pbfiletemplate to
/Developer/ProjectBuilder Extras/File Templates/WebObjects .

Follow these steps to create an operation with a dynamic WSDL document for the HousesForSale application:

1. Create an operation using the Web Services Assistant.

2. Save the Web service configuration and close the Web Services Assistant window.

3. In Project Builder, select the Web Components group and add a Direct to Web Services Operation
component with the same name of the operation added in the Web Services Assistant.

To confirm that the component's invoke method is invoked, edit the invoke method of its Java file so
that it like this:

public Object invoke() {
 System.out.println("LogIn operation invoked.");
 return super.invoke();
}

4. Add the following rule to the d2w.d2wmodel file:

Left-Hand Side: (operationName = 'LogIn') .
Key: operationClassName .
Value: "LogIn" .
Priority: 50 .

5. Save d2w.d2wmodel .

6. Rebuild and run the application.

7. Connect to the application through the Web Services Assistant.

58 Component-Based Operations
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

8. Test the operation. Make sure that you see the test output in the console (Project Builder's Run pane).

Operations Derived From Fetch Specifications

When you make public an entity with fetch specifications in the Web Services Assistant, the Assistant creates
operations corresponding to those fetch specifications. You can see the arguments the operations require
and the return values in the Arguments pane and the Return Values panes, respectively.

To modify an operation that is based on a fetch specification from a data model, you must edit the fetch
specification in the model and rebuild the application.

Using Transactions

Direct to Web Services supports light-weight transactions. These transactions are editing context–based and
cannot be nested. See the reference documentation for com.webobjects.eocontrol.EOEditingContext
for more information on editing contexts.

When you select Allows Transactions in the Web Services Assistant for a given Web service and restart the
service-provider application, three additional operations become available: beginTransaction ,
commitTransaction , and rollbackTransaction . These transactions are not visible in the Assistant, but
you can view them in the Web service's WSDL document. The following list provides an overview of each
operation.

 ■ beginTransaction : You invoke this operation before invoking operations that modify data in a data
store. After invoking the operation, calls to EOEditingContext.saveChangesInEditingContext
have no effect. To learn more, see the reference documentation for WOBeginTransactionOperation in
com.webobjects.webservices.generation .

 ■ commitTransaction : Saves the changes made to the editing context
(com.webobjects.eocontrol.EOEditingContext) used by the Web service. To learn more, see the
reference documentation for WOCommitTransactionOperation in
com.webobjects.webservices.generation .

 ■ rollbackTransaction : Resets the editing context used by the Web service. To learn more, see the
reference documentation for WORollbackTransactionOperation in
com.webobjects.webservices.generation .

Using Global IDs

Using the Return SOAP Struct option in the Web Services Assistant you can determine whether an operation
returns a SOAP-struct element or one or more enterprise objects. When an operation is invoked from other
WebObjects applications, you should not select Return SOAP Struct. That way the client application can
access data, such as global IDs with relative ease.

Operations Derived From Fetch Specifications 59
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Sometimes you may need to create operations that create enterprise objects that are part of a relationship.
For example, Figure 4-10 shows the relationships between two data entities: the books relationship of Authors
and the author relationship of Book.

Figure 4-10 Relationship between Author entity and Book entity

Also notice that the authorId attribute of Book is part of the entity's primary key. This means that a Book
enterprise object cannot be added to the data store without a value for the authorId attribute. (You cannot
add a book to the data store without a corresponding author.) Creating an operation in Web Services Assistant
that creates an author record and a book record is not possible. However, a method in a client of an Author
Web service can invoke the addAuthor and addBook operations to perform the procedure. For that, you
have to use global IDs (com.webobjects.eocontrol.EOKeyGlobalID). Listing 4-3 shows a possible
implementation of such a method, named addBookForAuthor , while Listing 4-4 shows the methods that
invoke the Web service operations that interact with the data store.

Listing 4-3 addBookForAuthor method

/**
 * Adds a book and an author to the data store.
 * @param title book's title;
 * @param authorLastName last name of the author;
 * @param authorFirstName first name of the author;
 * @return <code>true</code> when successful; <code>false</code> otherwise.
 */
public boolean addBookForAuthor(String title, String authorLastName,
 String authorFirstName) {
 EOKeyGlobalID author_global_id = addAuthor(authorLastName, authorFirstName);
 addBook(title, author_global_id);
 return true;
}

Listing 4-4 addAuthor and addBooks methods

/**
 * Adds an author to the data store.
 * @param authorLastName last name of the book's author;
 * @param authorFirstName first name of the book's author;
 * @return global ID of the corresponding enterprise object.
 */
private EOKeyGlobalID addAuthor(String lastName, String firstName) {
 Object arguments[] = {lastName, firstName};
 Object[] result = (Object[])serviceClient().invoke(serviceName(),
 "addAuthor", arguments);
 WOStringKeyMap key_map = (WOStringKeyMap)result[0];
 EOKeyGlobalID author_global_id = (EOKeyGlobalID)key_map.valueForKey("globalID");
 return author_global_id;
}

60 Using Global IDs
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

/**
 * Adds a book to the data store.
 * @param title book's title;
 * @param author_global_id global ID of the enterprise object representing
 * the book's author;
 * @return <code>true</code> when successful; <code>false</code> otherwise.
 */
private boolean addBook(String title, EOKeyGlobalID author_global_id) {
 Object arguments[] = {title, author_global_id};
 Object result = serviceClient().invoke(serviceName(), "addBook", arguments);
 return true;
}

Figure 4-11 shows the definition of the addBook operation. Notice the author argument.

Figure 4-11 Definition of the addBook operation

The projects directory includes two projects Authors and Authors_Client that demonstrate the concepts
described earlier. To run them you must install the Authors database, located in the databases directory.

Default Return Values of Operations

Table 4-1 shows the return values of operations for which you don't enter return values in the Return Values
pane.

Table 4-1 Default return values of operations

Return valueType of operation

Global ID of enterprise object created.insert

Default Return Values of Operations 61
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

Return valueType of operation

Array of updated enterprise objects.update

Array of found enterprise objects.search

Empty array.delete

Creating a Custom Rule File

When you need to perform advanced customization in a Direct to Web Services application, you may have
to create a custom rule file named d2w.d2wmodel in which you place custom rules. The other rule file,
user.d2wmodel , is for the exclusive use of the Web Services Assistant. You must not edit user.d2wmodel
.

To add the d2w.d2wmodel file to a Direct to Web Services application project, add a new, empty file to the
Resources group, name the file d2w.d2wmodel , and assign it to the Application Server target

Rule Editor Keys

Table 4-2 lists the keys you can use in the d2w.d2wmodel file of a project to customize a Direct to Web
Services application. To learn more, see the reference documentation for
WOServiceUtilities.RuleSystemConstants in the com.webobjects.webservices.generation package.

Table 4-2 Direct to Web Services rule keys

DescriptionKey

The names of all the operations available in a Web service.AllOperationNames

The names of all the Web services available in an application.AllServiceNames

The class of a property.ClassForPropertyKey

The class name of a property.ClassNameForPropertyKey

The EOKeyComparisonQualifier used to build an EOQualifier for a
property.

ComparisonKey

The entity name for an operation.EntityName

The fetchLimit of a WOSearchOperation.FetchLimit

The name of the fetch specification used in a
WOFetchSpecSearchOperation.

FetchSpecificationName

Determines whether an enterprise object is to be serialized as an
EOGlobalID.

GidArgumentKey

62 Creating a Custom Rule File
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

DescriptionKey

The XML element names of an operation's input-message parts.InputPartNames

The arguments in an operation invocation.InputPartValues

Determines whether a Web service is the default Web Service in a
Direct to Web Services application.

IsDefaultService

Determines whether an operation is enabled.IsOperationEnabled

Determines whether an operation is frozen.IsOperationFrozen

Determines whether a Web service is enabled.IsServiceEnabled

Determines whether a Web services supports transactions.IsTransactionEnabled

The EOModelGroup of the current operation.ModelGroup

The class name of an operation.OperationClassName

The name of an operation.OperationName

The names of the operations of a Web service.OperationNames

The XML element names of the properties an operation returns.OutputPartNames

A property key.PropertyKey

The names of the public entities available in a Direct to Web Services
application.

PublicEntityNames

Determines whether an operation returns EOEnterpriseObjects as
serialized enterprise objects or a SOAP structures.

ReturnSOAPStruct

The name of a Web service.ServiceName

The EOProperty key path for an argument or result value.TranslatedAttributeName

The key used to determine whether a parameter is unspecified.UnspecifiedArgumentKey

Determines whether an operation uses a named fetch specification.UsesNamedFetchSpecification

The WOContext.WOContext

The name of the default Web service.WODefaultWebService

The name of the component containing the WSDL document for
an operation.

WSDLComponentName

Rule Editor Keys 63
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

64 Rule Editor Keys
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Developing Direct to Web Services Applications

This table describes the changes to WebObjects Web Services Programming Guide.

NotesDate

Updated for WebObjects 5.4.2007-07-11

Removed references to projects and companion files that are no longer part of
the WebObjects release.

2005-12-06

Changed the title from "Web Services."2005-08-11

First version of Inside WebObjects: Web Services .2002-11-01

65
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

66
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

consumer, Web service An application that executes
a Web service operation by sending a SOAP message
to a Web service provider.

Direct to Web Services A WebObjects development
technology that can generate a Web service
application from a model.

editing context Object that stores and manages a
group of enterprise-object instances. An editing
context, which is an instance of the EOEditingContext
class, provides an in-memory view of data in a data
store. Changes made to enterprise-object instances
in an editing context are pushed to the data store by
invoking a specific method. In adition, those changes
can be undone, even after they have been committed
to the corresponding data store.

handler A Java class used by Axis to process a SOAP
message or a part of it in a specific way. For example,
a handler can be implemented to perform
authentication on the message's sender before
allowing it to be processed by the receiver.

handler chain A group of handlers that can be
viewed as a unit.

hash Number derived from a string such that any
change to the string produces a different number.

operation A specific process or task that a Web
service implements. Much like Java methods, a Web
service operation can define an arbitrary number of
parameters and return values. Operations are invoked
by Web service consumers and executed by Web
service providers.

PKI (Public Key Infrastructure) Authorization
technology that uses a combination of private key
cryptography and public key cryptography. It provides
key management, data integrity, and data
confidentiality.

SOAP (Simple Object Access Protocol) XML-based,
lightweight, platform-agnostic protocol used to
exchange information in a decentralized, distributed
environment. The protocol defines the XML elements
that must be used to compose a message and how
the data in a message should be processed.

SOAP engine Application or framework used by
Web service providers and consumers to process
SOAP messages.

provider, Web service An application that executes
the logic that implements a Web service operation.

SSL (Secure Sockets Layer) Protocol used to provide
encrypted communication on the Internet.

UDDI (Universal Description, Discovery and
Integration) Searchable directory of Web services
that Web service requestors can use to search for Web
services and obtain their WSDL documents.

Web service A network-based repository of
processes or tasks that can be used by applications
to access data or execute operations across disparate
platforms.

WSDL (Web Services Description Language)
XML-based language used to describe Web services.
Web service consumers can dynamically parse a WSDL
document to determine the operations a Web service
provides and how to execute them.

WSS-Core (Web Services Security Core
Specification) Specification that defines a set of
SOAP extensions that can be used to provide
message-level data integrity and confidentiality.

67
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

Glossary

68
2007-07-11 | © 2002, 2007 Apple Inc. All Rights Reserved.

GLOSSARY

	WebObjects Web Services Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Web Services Overview
	What Are Web Services?
	Web Service Discovery
	Web Services and SOAP
	Ingredients of a SOAP Message
	Web Service Description
	SOAP Engine
	The Axis SOAP Engine

	Serialization and Deserialization of Objects

	Security in Web Services
	Web Services Security
	Digital Signatures
	Encryption

	Canonical XML Documents

	Developing Web Service Applications
	Providing a Web Service
	Consuming a Web Service
	Using Sessions in Web Services
	Accessing the WOContext Object
	Adding Security to Web Services
	Web Service Deployment Descriptors
	Adding Web Service Support to Existing Projects

	Developing Direct to Web Services Applications
	The Data Model
	Creating a Direct to Web Services Application Project
	Web Services Assistant
	Adding a Web Service
	Adding an Operation
	Testing an Operation
	Using WODefaultWebService Operations
	Observing SOAP Messages Using TCPMonitor
	Freezing Operations
	Unfreezing Operations
	Component-Based Operations
	Operations Derived From Fetch Specifications
	Using Transactions
	Using Global IDs
	Default Return Values of Operations
	Creating a Custom Rule File
	Rule Editor Keys

	Revision History
	Glossary

