
WebObjects XML Serialization Guide
Internet & Web > WebObjects

2005-08-11

Apple Inc.
© 2002, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
WebObjects are trademarks of Apple Inc.,
registered in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to WebObjects XML Serialization Guide 7

What You Should Already Know 7
Organization of This Document 7
See Also 8

Additional Resources 8

Chapter 1 XML Serialization Overview 11

XML Documents 11
XML Namespaces 13
Benefits of XML Serialization 15
Transforming XML Documents 15

Chapter 2 XML Serialization Essentials 17

Serialization Process 18
Deserialization Process 19
Secure Serialization 20
Validation of Deserialized Data 21
Multiple Class Version Support 23
Serialization With Keys 24
Application Security 24

Chapter 3 Serializing Objects and Data 27

Binary Serialization Example 27
Creating the Serialization Project 27
Adding the BinarySerializer Class 28
Serializing an NSArray of Strings 28
Serializing Primitive-Type Values 30
Serializing Custom Objects 33

XML Serialization Example 38
Adding the XMLSerializer Class 39
Serializing an NSArray of Strings to an XML Document 39
Serializing Primitive-Type Values to an XML Document 41
Serializing With Keys 43
Serializing Custom Objects to an XML Document 44
Formatting Serialized Output 46

3
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Chapter 4 XML Transformation 49

Structure of Serialized Data in WebObjects 49
XSL Transformations 50
XML Parsers and XSLT Processors 52
Serialization and Transformation Performance 53

Chapter 5 Transforming XML Documents 55

The Transformation Process 55
Creating the Transformation Project 57
Transforming Primitive-Type Values Using Keys 58
Transforming an Array of Movies 60

Appendix A XML Schema and DTD Files 63

XML Schema File 63
DTD Document File 72

Appendix B Code Listings 79

BinarySerialization.java 79
XMLSerializer.java 83
SimpleTransformation.xsl 88

Document Revision History 93

Glossary 95

Index 97

4
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 XML Serialization Overview 11

Figure 1-1 Graphical representation of the service-request document 12
Listing 1-1 Service-request document 11
Listing 1-2 Service-response document 13
Listing 1-3 Service-response document using namespaces 14
Listing 1-4 Service-response document using a default namespace for the provider entity 14

Chapter 2 XML Serialization Essentials 17

Table 2-1 Compatible and incompatible changes for new class versions 23
Listing 2-1 Example of a serialization method 18
Listing 2-2 Example of a deserialization method 19
Listing 2-3 Example of a secure class 20
Listing 2-4 Example of a class that disallows serialization and deserialization by throwing

NotSerializableException 21
Listing 2-5 Example of a class that validates deserialized data 22
Listing 2-6 Security-manager policies required for XML serialization in WebObjects for Mac OS

X 25
Listing 2-7 Security-manager policies required for XML serialization in WebObjects for Windows

25

Chapter 3 Serializing Objects and Data 27

Figure 3-1 Project Builder's Run pane when running the array-serialization example 30
Figure 3-2 BinaryTitles_data.binary file viewed through a text editor 30
Figure 3-3 Project Builder's Run pane when running the primitive-values serialization example

33
Figure 3-4 Project Builder's Run pane when running the Movie-object serialization example

37
Figure 3-5 Project Builder's Run pane when running the Movie-array serialization example

38
Figure 3-6 The element hierarchy of the BoolTitles_data.xml document 41
Table 3-1 Output-format properties accessible through NSXMLOutputFormat 46
Listing 3-1 The serializeArray, deserializeArray, and arraySerializationmethods

in Application.java 29
Listing 3-2 The constructor in Application.java 29
Listing 3-3 The serializePrimitives, deserializePrimitives, and

primitiveSerialization methods in Application.java 31
Listing 3-4 Movie.java using binary serialization 33
Listing 3-5 The serializeMovie, deserializeMovie, and movieSerializationmethods

in Application.java 36

5
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Listing 3-6 The serializeMovieArray, deserializeMovieArray, and
movieArraySerialization methods of Application.java 37

Listing 3-7 The serializeArray and deserializeArraymethods in Application.java
using XML serialization 39

Listing 3-8 BookTitles_data.xml (serialized array of Strings) 40
Listing 3-9 The serializePrimitives, deserializePrimitives and

primitiveSerialization methods in Application.java using XML
serialization 41

Listing 3-10 The PrimitiveValues_data.xml file 43
Listing 3-11 The serializePrimitivesmethod of Application.java using keys to identify

elements in XML document 44
Listing 3-12 The PrimitiveValues_data.xml file with keys identifying each element 44
Listing 3-13 The writeObject method in Movie.java using XML serialization with keys 45
Listing 3-14 The Movies_data.xml file 45
Listing 3-15 Setting the indenting and encodingproperties of an NSXMLOutputFormat object

and applying them to an NSXMLOutputStream object 47

Chapter 4 XML Transformation 49

Figure 4-1 Diagram of the schema for WebObjects XML serialization 50
Listing 4-1 Example of a target document 50
Listing 4-2 Section of SimpleTransformation.xsl that processes woxml:object elements

51

Chapter 5 Transforming XML Documents 55

Listing 5-1 The transformObject method in XMLSerializer .java 55
Listing 5-2 The openStream method in XMLSerializer.java 56
Listing 5-3 The initializeTransformer method in XMLSerializer.java 57
Listing 5-4 The transformPrimitives method in the Application class 58
Listing 5-5 The source document: produced by NSXMLOutputStream before transformation

59
Listing 5-6 The target document: PrimitivesTransformed.xml 59
Listing 5-7 The transformMovieArray method in Application.java 60
Listing 5-8 The MoviesTransformed.xml file 60

Appendix A XML Schema and DTD Files 63

Listing A-1 The woxml.xsd file 63
Listing A-2 The woxml.dtd file 72

Appendix B Code Listings 79

Listing B-1 BinarySerializer.java class 79
Listing B-2 XMLSerializer.java class 83
Listing B-3 SimpleTransformation.xsl file 88

6
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled XML Serialization.

This document explains how to you can use XML serialization in your applications. Binary serialization is a
simple and efficient way of serializing data. To see this appealing format, invoke the cat command on an
executable file. Binary is a wonderful format for computers to use, but it's not easy for people to understand.
XML (Extensible Markup Language) is a specification that defines a format that can be used to represent data
in a way that is more understandable to human beings than binary is.

The Java language has an excellent API for binary serialization. WebObjects extends that API to provide you
with XML serialization.

Encoding objects and data into XML documents allows you to easily view and modify objects and data in
their serialized form. It also lets you share information between applications, systems, and even organizations
using a standard format. In addition, when receiving streams of serialized data over the Internet, you may
want to make sure that the document is valid before deserializing it. XML serialization provides you with
facilities to accomplish this.

What You Should Already Know

This document assumes that you are familiar with XML, binary serialization in Java, and Sun's security manager.
If you plan on using the XSLT processor included with WebObjects or one of your own, you should have
enough knowledge of Extensible Stylesheet Language Transformations (XSLT) to develop XSLT stylesheets.
“Additional Resources” (page 8) provides a list of resources that get you started in Java binary serialization
and XSLT.

You should also have experience developing WebObjects applications. In particular, you need to know how
to create applications using Project Builder (the project-management tool of WebObjects). See “Additional
Resources” (page 8) for a list of documents that address this and other essential subjects.

Organization of This Document

The document contains the following chapters and appendixes:

 ■ “XML Serialization Overview” (page 11) provides you with an overview of XML, XML Schema files,
document type definition (DTD) files, XML namespaces, and XSLT.

 ■ “XML Serialization Essentials” (page 17) explains XML serialization in WebObjects. In particular, you learn
about the API used to serialize and deserialize objects and data, security, and versioning.

 ■ “Serializing Objects and Data” (page 27) walks you through the creation of a project that implements
both binary and XML serialization.

What You Should Already Know 7
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects XML Serialization
Guide

 ■ “XML Transformation” (page 49) explains the process of transforming XML documents using an XSLT
processor. It also contains details on how you can use your favorite XML parser and transformer in
WebObjects applications and some performance issues to keep in mind when serializing and transforming
data.

 ■ “Transforming XML Documents” (page 55) expands the project introduced in “Serializing Objects and
Data” (page 27) by adding transformation of serialized data.

 ■ “The woxml.dtd file” (page ?) contains listings of the XML Schema and DTD files that define the format
of XML documents that represent serialized data.

 ■ “Code Listings” (page 79) contains listings of example classes and the XSLT script introduced in
“Transforming XML Documents” (page 55).

This document also contains a glossary of terms and an index.

“Serializing Objects and Data” (page 27) and “Transforming XML Documents” (page 55) walk you through
developing applications that use binary and XML serialization. The projects created in those chapters are
included in/Developer/Documentation/WebObjects/XML_Serialization/Projects. As a companion
to the document, there is a compressed version of the projects at http://developer.apple.com/documenta-
tion/WebObjects.

See Also

If you need to learn the basics about developing WebObjects applications, you can find that information in
the following documents:

 ■ WebObjects Overview provides you with a survey of WebObjects technologies and capabilities.

 ■ WebObjects Web Applications Programming Guide shows you how to develop HTML-based applications
with WebObjects.

 ■ WebObjects Java Client Programming Guide explains how to develop Swing-based applications with
WebObjects.

For additional WebObjects documentation and links to other resources, visit http://developer.apple.com/we-
bobjects.

Additional Resources

In addition to WebObjects development experience, you also need to be acquainted with the Java binary
serialization API and XML.

The following resources provide information on serialization and XML:

 ■ "Advanced Object Serialization" (http://developer.java.sun.com/developer/technicalArticles/ALT/in-
dex.html)

 ■ Java and XML (published by O'Reilly)

 ■ XSLT (published by O'Reilly)

 ■ XSLT Programmer's Reference (published by Wrox Press Ltd.)

8 See Also
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects XML Serialization Guide

http://developer.apple.com/documentation/WebObjects
http://developer.apple.com/documentation/WebObjects
http://developer.apple.com/webobjects
http://developer.apple.com/webobjects
http://developer.java.sun.com/developer/technicalArticles/ALT/index.html
http://developer.java.sun.com/developer/technicalArticles/ALT/index.html

Other related resources:

 ■ JAXP Tutorial (https://jaxp.dev.java.net/)

 ■ http://xml.apache.org contains information on the Apache Xerces XML parser and the Apache Xalan
XSLT processor.

 ■ XSL Transformations (XSLT) Version 1.0 (http://www.w3.org/TR/xslt)

 ■ Working With XML (http://java.sun.com/xml/tutorial_intro.html)

 ■ XML From the Inside Out (http://xml.com) is a great resource of XML-related information.

 ■ XML Schema (http://www.w3.org/XML/Schema)

 ■ Mulberry Technologies, Inc. (http://www.mulberrytech.com)

 ■ Security in Java 2 SDK 1.2 (http://java.sun.com/docs/books/tutorial/index.html)

See Also 9
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects XML Serialization Guide

https://jaxp.dev.java.net/
http://xml.apache.org
http://www.w3.org/TR/xslt
http://java.sun.com/xml/tutorial_intro.html
http://xml.com
http://www.w3.org/XML/Schema
http://www.mulberrytech.com
http://java.sun.com/docs/books/tutorial/index.html

10 See Also
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to WebObjects XML Serialization Guide

If you plan to have your applications exchange data with other applications over the Internet, you will most
probably use Extensible Markup Language (XML), either because of its flexibility or because of its widespread
use in Internet applications. XML is a text-based markup language based on Standard Generalized Markup
Language (SGML) and it's used mostly to represent structured data. XML is similar to HTML, but has stricter
rules regarding the form and validity of documents.

This chapter contains the following sections:

 ■ “XML Documents” (page 11) describes two essential concepts related to XML documents: being well
formed and being valid.

 ■ “XML Namespaces” (page 13) explains how XML namespaces help to differentiate elements that have
identical names but are in different contexts.

 ■ “Benefits of XML Serialization” (page 15) lists a few benefits that XML serialization provides to your
applications.

 ■ “Transforming XML Documents” (page 15) explains what it means to transform an XML document and
why you would want to do it.

XML Documents

To be usable, XML documents must be well formed. Well-formed documents have open and close tags for
all their elements (in the correct sequence) and contain one root element. In addition, XML documents must
have at least one XML declaration, an element that provides XML parsers with essential information needed
to process a document.

Listing 1-1 shows an example of an XML document.

Listing 1-1 Service-request document

<?xml version="1.0" encoding="UTF-8"?>
<service_request>
 <company name="Kilocomp">
 <contact>Melinda Smith</contact>
 <address>
 <street>123 Market Street</street>
 <city>Townsville</city>
 <state>IN</state>
 <zip>65045</zip>
 </address>
 <phone_number>345-555-1234</phone_number>
 </company>
 <service priority="1">
 <description>Fix vending machine in lobby.</description>
 </service>

XML Documents 11
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

</service_request>

The XML declaration of the service-request document indicates that the document is written using the XML
1.0 standard and the UTF-8 character encoding. The service_request element is the root element; it
encloses the data the document contains. service_request contains two elements: company and service.
The company element contains one attribute, name, and three elements: contact, address, and
phone_number. The service element has one attribute, priority, and one element, description. The
address element contains four elements, street, city, state, and zip; it has no attributes. Figure 1-1
provides a graphical representation of the service-request document.

Figure 1-1 Graphical representation of the service-request document

Service-request document

xml
version = "1.0"
encoding = "UTF-8"

service_request

company
name = "Kilocomp"

contact
Melinda Smith

service
priority = "1"

description
Fix vending machine in lobby.

address

phone_number
Melinda Smith

street
123 Market Street

city
Townsville

state
IN

zip
65045

Note: As a general rule, XML elements describe proper content data (for example, a phone number or an
inventory item), whereas XML attributes describe metadata, such as priority or ID number.

To be usable in a particular context, an XML document must be well formed and valid. A valid document is
one that follows the structure specified by a schema file, which can be either a document type definition
(DTD) file or file. The schema determines the layout of an XML document's elements, the attributes and
subelements that each can have, and the constraints that the attribute data and element data must adhere
to. XML Schema filenames usually have the .xsd extension, while DTD filenames usually have the .dtd
extension. You can think of a schema as a Java class and an XML document as an instance of the schema.
For more information on document schemas, see XML Schema at http://www.w3.org/XML/Schema.

12 XML Documents
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

http://www.w3.org/XML/Schema

Document type definition files can also be used to validate XML documents. However, because DTD files are
not written in XML and are not as powerful as XML Schema files, XML Schema files are increasingly taking
their place.

XML Namespaces

With the interoperability of XML documents comes the problem of differentiating between the element
names you use in your documents and the names used in documents from other sources. Take a look at the
document in Listing 1-2.

Listing 1-2 Service-response document

<?xml version="1.0" encoding="UTF-8"?>
<service_response>
 <service_request>

// 1 <company name="Kilocomp">
 <contact>Melinda Smith</contact>
 <address>
 <street>123 Market Street</street>
 <city>Townsville</city>
 <state>IN</state>
 <zip>65045</zip>
 </address>
 <phone_number>345-555-1234</phone_number>
 </company>
 <service priority="1">
 <description>Fix vending machine in lobby.</description>
 </service>
 </service_request>
 <appointment>

// 2 <company>We Fix It</company>
 <contact name="Nancy Garcia" phone="345-555-2334"
 pager="345-555-1112" />
 <date>2002-05-02</date>
 <time>1500</time>
 </appointment>
</service_response>

Unless you add information about the element hierarchy of the document to your logic, it's difficult to
differentiate between the company element of the service_request element (the line numbered 1) and
the company element of the appointment element (2). This is where XML namespaces provide a great deal
of assistance.

A namespace is like a Java package: It's a way of grouping related elements. Listing 1-3 shows a version of
the service-response document that uses namespaces. Observe that the document has two distinct elements
that enclose information about a company: client:company and provider:company. The prefixes tell
you the category of each element.

To avoid having to put prefixes on all element names and to reduce the size of XML documents, you can
define a default namespace for the document. By not including a prefix in the namespace definition, the line
numbered 1 of Listing 1-4 defines a default namespace for the service_response element and the

XML Namespaces 13
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

subelements of service_response that do not themselves define a namespace, such as appointment
starting at the line numbered 2. You can find more information on XML namespaces in Namespaces in XML,
located at http://www.w3.org/TR/REC-xml-names.

Listing 1-3 Service-response document using namespaces

<?xml version="1.0" encoding="UTF-8"?>
<provider:service_response xmlns:provider="http://provider.com/b_to_b">
 <client:service_request xmlns:client="http://client.com/svcs">

// 1 <client:company name="Kilocomp">
 <client:contact>Melinda Smith</client:contact>
 <client:address>
 <client:street>123 Market Street</client:street>
 <client:city>Townsville</client:city>
 <client:state>IN</client:state>
 <client:zip>65045</client:zip>
 </client:address>
 <client:phone_number>345-555-1234</client:phone_number>
 </client:company>
 <client:service priority="1">
 <client:description>Fix vending machine in lobby.</client:description>
 </client:service>
 </client:service_request>
 <provider:appointment>

// 2 <provider:company>We Fix It</provider:company>
 <provider:contact name="Nancy Garcia" phone="345-555-2334" pager="345-555-1112"
 />
 <provider:date>2002-05-02</provider:date>
 <provider:time>1500</provider:time>
 </provider:appointment>
</provider:service_response>

Listing 1-4 Service-response document using a default namespace for the provider entity

<?xml version="1.0" encoding="UTF-8"?>
// 1<service_response xmlns="http://provider.com/b_to_b">

 <client:service_request xmlns:client="http://client.com/svcs">
 <client:company name="Kilocomp">
 <client:contact>Melinda Smith</client:contact>
 <client:address>
 <client:street>123 Market Street</client:street>
 <client:city>Townsville</client:city>
 <client:state>IN</client:state>
 <client:zip>65045</client:zip>
 </client:address>
 <client:phone_number>345-555-1234</client:phone_number>
 </client:company>
 <client:service priority="1">
 <client:description>Fix vending machine in lobby.</client:description>
 </client:service>
 </client:service_request>

// 2 <appointment>
 <company>We Fix It</company>
 <contact name="Nancy Garcia" phone="345-555-2334"
 pager="345-555-1112" />
 <date>2002-05-02</date>
 <time>1500</time>

14 XML Namespaces
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

http://www.w3.org/TR/REC-xml-names

 </appointment>
</service_response>

Benefits of XML Serialization

There are many benefits of using XML to encode data, including the ability to read and modify serialized or
archived information easily. Java provides a great binary serialization API. WebObjects XML serialization
leverages this well-known API to allow you to easily serialize your objects and data into XML documents. For
more information on XML, visit http://www.w3.org/XML.

Serializing data into XML documents provides you with several benefits:

 ■ Long-term persistence: By storing XML-encoded data in a database, you can perform searches on
columns that would be unsearchable otherwise.

 ■ Transparent protocol for component communication: Useful in communication among components
of disparate applications, which could be running on separate computers.

 ■ Debugging aid: Serializing objects into XML documents can help you debug complex class hierarchies
because the serialized versions of the objects are easy to read. Although the output produced by the
WebObjects XML serialization process is verbose, you can transform it into a succinct document. See
“Transforming an Array of Movies” (page 60) for an example.

 ■ Configuration files: Serializing the values of configuration settings into an XML document can help
streamline the management of the configuration options of your applications. From your application's
perspective, writing and reading an entire configuration can be as simple as serializing and deserializing
a single object.

 ■ Human-modifiable files: Once an object is serialized, you can change the values of its fields using a text
editor.

Transforming XML Documents

You may need to transform the XML documents generated by NSXMLOutputStream to a format that your
customers or service providers are more familiar with. (NSXMLOutputStream is the WebObjects class that
serializes objects and data into XML documents, while NSXMLInputStream is the class that deserializes XML
documents into objects.) This can help expedite the creation of data-exchange systems. In other words, you
can easily transfer information to and from your business partners. Keep in mind, however, that, unless the
data transfer is one-way, you may have to create transformation scripts that convert your data to the format
your partners need and data from your partners to the format that your applications require. In addition, you
can deserialize data (using NSXMLInputStream) only from untransformed NSXMLOutputStream output.

XSL Transformations, or XSLT, is a specification that allows you to convert an XML document into another
XML document or into any other type of document. An XSLT stylesheet or script contains instructions that
tell a transformer how to process an input document (the product of XML serialization) to produce an output
document. For more information on XSLT, see XSL Transformations (XSLT) Version 1.0, located at
http://www.w3.org/TR/xslt.

Benefits of XML Serialization 15
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

http://www.w3.org/XML
http://www.w3.org/TR/xslt

16 Transforming XML Documents
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

XML Serialization Overview

XML serialization is a great way for applications to maintain state, read and write configuration files, and
transfer data between processes, applications, and enterprises over a network, including the Internet. Because
XML documents are text-based, you can view and modify serialized data with a text editor.

Java's binary serialization API (whose major classes are ObjectOutputStream and ObjectInputStream) provides
an infrastructure that supports data serialization into binary form. Binary data, however, is not easily read by
people nor appropriate for communication across disparate applications or systems.

WebObjects allows you serialize objects and data into XML documents using the API defined for binary
serialization. The classes NSXMLOutputStream and NSXMLInputStream extend ObjectOutputStream and
ObjectInputStream, respectively. These classes use the Java API for XML Processing (JAXP)to communicate
with the XML parser. See “XML Parsers and XSLT Processors” (page 52) for more information.

As in binary serialization, an NSXMLOutputStream object writes enough data to a stream for an
NSXMLInputStream object to be able to reconstruct the object graph and data that the stream represents.
This includes fully qualified class names, field names, and data types. This level of verbosity is adequate for
serialization and deserialization by similar systems, but may not be appropriate for data transmission between
companies, for example. “Transforming an Array of Movies” (page 60) shows you how to transform the
output of NSXMLOutputStream into a simpler XML document suitable for communication among business
partners.

Most of this chapter is based on Sun's Java Object Serialization Specification,. If you are familiar with that
document, you can just skim through the chapter. You should, however, read “Application Security” (page
24), as it contains information on how to set up the security manager to allow WebObjects's serialization
classes to work unrestricted.

This chapter contains the following sections:

 ■ “Serialization Process” (page 18) lists the steps you perform to serialize data.

 ■ “Deserialization Process” (page 19) lists the steps you perform to deserialize data.

 ■ “Secure Serialization” (page 20) explains how to exclude fields from the serialization process.

 ■ “Validation of Deserialized Data” (page 21) briefly explains how to validate an object after it's deserialized.

 ■ “Multiple Class Version Support” (page 23) lists issues to consider when you update a Serializable class
to maintain compatibility with previous versions.

 ■ “Serialization With Keys” (page 24) provides an overview of key-based serialization.

 ■ “Application Security” (page 24) explains how to set up Sun's security manager to grant WebObjects
classes permissions to allow them to perform XML serialization.

17
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

Serialization Process

To serialize objects and data you perform the following steps:

1. Open an output stream of type java.io.OutputStream or a subclass of it.

2. Initialize an NSXMLOutputStream with the output stream.

3. Invoke the writeObject method to serialize objects or the appropriate write method to serialize
primitive-type data (see the API documentation for the java.io.DataOutput interface for a list of
primitive-data serialization methods).

4. Close the OutputStream and the NSXMLOutputStream.

Listing 2-1 shows an example of a method that serializes an object and an integer value.

Listing 2-1 Example of a serialization method

/**
 * Serializes an object and an integer.
 */
public void serialize() {
 // Filename of the output file.
 String filename = "/tmp/example.xml";

 try {
 // Create a stream to the output file.
 FileOutputStream output_stream = new FileOutputStream(filename);

 // Create an XML-output stream.
 NSXMLOutputStream xml_stream = new NSXMLOutputStream(output_stream);

 // Write the data.
 xml_stream.writeObject("Hello, World!");
 xml_stream.writeInt(5);

 // Close the streams.
 xml_stream.flush(); // not really needed, but doesn't hurt
 xml_stream.close();
 output_stream.close();
 }

 catch (IOException e) {
 e.printStackTrace();
 }
}

When an object is serialized, all the objects it refers to are also serialized. But this brings up the issue of cyclic
references or multiple references to the same object. The problem is addressed by uniquely identifying each
object as it is serialized. As each object is written to the output stream, its id attribute is set to a number
that is unique within the XML document being generated. References to previously serialized objects use
those objects' identification numbers instead of writing additional copies of them. This method is also used
by object instances when referring to their class descriptions. See “Serializing Custom Objects to an XML
Document” (page 44) for an example.

18 Serialization Process
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

Deserialization Process

To deserialize data from an untransformed XML stream encoded with NSXMLOutputStream, you perform
the following steps:

1. Open an input stream of type java.lang.InputStream or a subclass of it.

2. Initialize an NSXMLInputStream with the input stream.

3. Invoke the readObject method to deserialize objects or the appropriate read method to deserialize
primitive-type data (see the API documentation for the java.io.DataInput interface for a list of
primitive-data serialization methods).

4. Close the InputStream and the NSXMLInputStream.

Listing 2-2 shows an example of a method that deserializes an object and an integer value.

Listing 2-2 Example of a deserialization method

/**
 * Deserializes an object and an integer.
 */
public void deserialize() {
 // Filename of the input file.
 String filename = "/tmp/example.xml";

 try {
 // Create a stream from the input file.
 FileInputStream input_stream = new FileInputStream(filename);

 // Create an XML-input stream.
 NSXMLInputStream xml_stream = new NSXMLInputStream(input_stream);

 // Read the data.
 String theString = xml_stream.readObject();
 int theInt = xml_stream.readInt();

 // Close the streams.
 xml_stream.close();
 output_stream.close();
 }

 catch (IOException e) {
 e.printStackTrace();
 }

 catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
}

Deserialization Process 19
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

When you deserialize an object, the original object graph is recreated by restoring the values of nontransient
and nonstatic fields. Objects referred to in the original object graph are restored recursively. After deserializing
an object with transient or static fields, you must set those fields to the appropriate values. See “Validation
of Deserialized Data” (page 21) and “Secure Serialization” (page 20) for more information.

You may want to have the parser validate source documents before deserializing objects; this is helpful in
debugging and when transferring data across a network, such as an intranet or the Internet. However, you
incur a performance penalty when the parser validates the documents it processes. To turn on parser validation,
set the NSXMLValidation system property to true. As a general rule, you should turn on validation during
application development and turn it off in deployed applications.

Secure Serialization

When you deserialize an object, its private state is restored. To protect sensitive data you may have to remove
certain fields from the serialization and deserialization processes. You can accomplish this in two ways:

 ■ Define fields whose data you want to protect as private transient or static.

 ■ Implement writeObject and readObject in the class you want to protect and serialize nonsensitive
fields only.

To prevent serialization, a class must not implement the java.io.Serializable or
java.io.Externalizable interfaces. In subclasses of classes that implement those interfaces, you can
throw a NotSerializableException. Listing 2-3 shows an example of a class with a transient field.

Listing 2-3 Example of a secure class

/**
 * Encapsulates secret data.
 */
public class Secret extends Object implements Serializable {
 private transient String details; // do not serialize
 private int id;

 /*
 * Creates a Secret object.
 *
 * @param id identification
 * @param details sensitive information
 */
 Secret(int id, String details) {
 super();

 this.id = id;
 this.details = details;
 }

 /*
 * Gets this secret's id.
 *
 * @return secret id.
 */
 public int id() {

20 Secure Serialization
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

 return this.id;
 }

 /*
 * Gets this secret's details.
 *
 * @return secret details.
 */
 public String details() {
 return this.details;
 }
}

Note: You should also define as transient fields that contain objects whose class does not implement
Serializable or Externalizable.

Listing 2-4 shows a class that extends a serializable class, but inhibits instances from being serialized or
deserialized.

Listing 2-4 Example of a class that disallows serialization and deserialization by throwing
NotSerializableException

/**
 * This class must inhibit serialization and deserialization
 * of its instances.
 */
public class SuperSecret extends GeneralInfo {
 ...

 /**
 * Prevents deserialization.
 */
 private void readObject(ObjectInputStream stream) throws IOException,
 ClassNotFoundException {
 throws new java.io.NotSerializableException("SuperSecret");
 }

 /**
 * Prevents serialization.
 */
 private void writeObject(ObjectOutputStream stream) throws IOException {
 throws new java.io.NotSerializableException("SuperSecret");
 }
}

Validation of Deserialized Data

Sometimes, especially when deserializing objects with transient or static fields, you may want to validate an
object before it is returned to the method that invoked readObject. To do that, you invoke the
registerValidation method to tell the ObjectInputStream which object to notify when the deserialized
object graph has been restored, but before readObject returns. The callback method is named
validateObject. If the object's data is invalid, validateObject throws an InvalidObjectException. For

Validation of Deserialized Data 21
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

more information, see the API documentation on java.io.ObjectInputStream,
java.io.ObjectInputValidation, java.io.InvalidObjectException, and
com.webobjects.foundation.xml.NSXMLObjectInputStream.

Listing 2-5 shows an example of a class that validates the data of an object using validateObject. In this
case, the validation code is contained in the class of the object being deserialized, but this need not be the
case. You may instead choose to have a validation class that contains all XML-document validation logic.

Listing 2-5 Example of a class that validates deserialized data

import java.io.InvalidObjectException;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectInputValidation;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.sql.Timestamp;

/**
 * Manages movie information.
 */
public class ValidMovie extends Object implements ObjectInputValidation,
Serializable {
 ...

 /**
 * Serializes this object.
 *
 * @param stream object stream to serialize this object to
 */
 private void writeObject(ObjectOutputStream stream) throws IOException {
 ...
 }

 /**
 * Deserializes this object.
 *
 * @param stream object stream from which the serialized data
 * is obtained
 */
 private void readObject(ObjectInputStream stream) throws IOException,
 ClassNotFoundException {
 ...
 }

 /**
 * Validates a deserialized ValidMovie object.
 *
 * @throws InvalidObjectException when the deserialized ValidMovie
 * is not valid.
 */
 public void validateObject() throws InvalidObjectException {
 // Determine validity of this object.
 boolean valid = someValidationMethod();

 if (!valid) {

22 Validation of Deserialized Data
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

 throw new InvalidObjectException("Deserialized ValidMovie object
contains invalid data.");
 }
 }
}

Multiple Class Version Support

Both binary serialization in Java and XML serialization in WebObjects allow you to support more than one
version of the same class for serialization and deserialization.

When dealing with multiple versions of a class, you must keep the class's identity in mind. Classes are identified
by their name and API. For versioning to succeed, you must ensure that the changes you make when creating
a new version of a class are compatible with the previous version. In other words, the new class's API must
be a superset of the API defined in the previous version.

You can address versioning by implementing and maintaining writeObject and readObject in a class.
However, binary serialization and, by extension, XML serialization provide facilities for the automatic
management of multiple versions of an evolving, serializable class. In particular, binary and XML serialization
provide support for bidirectional communication between class versions. This means that a class can read
data serialized by a newer version. It also allows a class to write a stream from which an instance of a previous
version can be successfully created.

When a later version of a class adds fields to the class, you need to initialize only the added fields when
deserializing data from a stream created with the previous version of the class. However, when the new
version changes field usage and you need to map fields of the new version to fields of the old version or
perform conversions on existing fields, you can take advantage of the ObjectStreamField class. See "Advanced
Object Serialization," located at http://developer.java.sun.com/developer/technicalArticles/ALT/index.html
for details.

Listing 2-1 lists compatible and incompatible changes for new class versions. It summarizes the information
provided in Sun's Java Object Serialization Specification.

Table 2-1 Compatible and incompatible changes for new class versions

IncompatibleCompatibleChange

xAdding fields, or changing a field from transient to nontransient or static to
nonstatic.

xAdding fields, or changing a field from transient to nontransient or static to
nonstatic.

xAdding classes or implementing java.io.Serializable.

xRemoving classes or removing extends Serializable from a class
declaration.

xAdding writeObject and readObject methods.

xRemoving writeObject and readObject methods.

Multiple Class Version Support 23
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

http://developer.java.sun.com/developer/technicalArticles/ALT/index.html

IncompatibleCompatibleChange

xChanging a field's access modifier.

xDeleting fields.

xModifying the class hierarchy.

xChanging a field from nontransient to transient or nonstatic to static.

xChanging the type of a field.

xChanging writeObject so that it no longer writes default field data.

xChanging readObject so that it reads default field data when the previous
version does not write default field data.

xChanging a class from Serializable to Externalizable or from Externalizable
to Serializable.

Serialization With Keys

WebObjects XML serialization provides a useful feature: the ability to serialize objects and data with keys. To
use this feature you add an additional argument to writeObject and write method invocations: the key,
which is a String object.

Adding keys to your XML documents can help in performing useful transformations; that is, you can use the
keys in the source document to create the elements in the target document. For example, the element
<int>32</int> (created by executing writeInt(32)) provides no information about the integer 32.
However, if you use writeInt(32, "age") to serialize the value, a transformation script can use the
additional information about the datum to create the element <age>32</age>. See “Transforming
Primitive-Type Values Using Keys” (page 58) for details.

Application Security

Generally, security-minded environments run Sun's security manager to protect their systems from potentially
damaging activities by malicious applications. The security manager is disabled by default. You activate the
security manager by adding

-Djava.security.manager

to the command line when launching the application manually or to the application project's Properties
file, located in the Resources group. For more information on the security manager, see Security in Java 2 SDK
1.2, located at http://java.sun.com/docs/books/tutorial/index.html.

If you use the security manager, you must add the policy shown in Listing 2-6 for Mac OS X systems or Listing
2-7 for Windows systems to the policy file for XML serialization to work correctly in WebObjects applications.
Pay special attention to the lines that deal with java.net.SocketPermission, as they are required when
the NSXMLValidation property is set to true.

24 Serialization With Keys
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

http://java.sun.com/docs/books/tutorial/index.html

Listing 2-6 Security-manager policies required for XML serialization in WebObjects for Mac OS X

grant codeBase
"file:/System/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar"
{
permission java.io.SerializablePermission "enableSubclassImplementation";
permission java.lang.RuntimePermission "XMLSerializationAccess";
permission java.lang.RuntimePermission "accessDeclaredMembers";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

// General permissions required to read configuration files, system properties, and so
 on.
permission java.io.FilePermission "<<ALL FILES>>", "read";
permission java.util.PropertyPermission "*", "read, write";

// If the NSXMLValidation property is set to true, uncoment the following line.
// permission java.net.SocketPermission "www.w3.org", "connect, resolve";
};

grant codeBase
"file:/System/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar"
{
// General permissions required to read configuration files, system properties, and so
 on.
permission java.io.FilePermission "<<ALL FILES>>", "read, write";

// Required by Xalan during transformation.
permission java.util.PropertyPermission "user.dir", "read";

// If the NSXMLValidation property is set to true, uncoment the following line.
// permission java.net.SocketPermission "www.w3.org", "connect, resolve";
};

Listing 2-7 Security-manager policies required for XML serialization in WebObjects for Windows

grant codeBase
"C:/Apple/Library/Frameworks/JavaFoundation.framework/Resources/Java/javafoundation.jar"
{
permission java.io.SerializablePermission "enableSubclassImplementation";
permission java.lang.RuntimePermission "XMLSerializationAccess";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission java.lang.RuntimePermission "accessDeclaredMembers";

// General permissions required to read configuration files, system properties, and so
 on.
permission java.io.FilePermission "<<ALL FILES>>", "read";
permission java.util.PropertyPermission "*", "read, write";

// If the NSXMLValidation property is set to true, uncoment the following line.
// permission java.net.SocketPermission "www.w3.org", "connect, resolve";
};

grant codeBase "C:/Apple/Library/Frameworks/JavaXML.framework/Resources/Java/javaxml.jar"
{
// General permissions required to read configuration files, system properties, and so
 on.
permission java.io.FilePermission "<<ALL FILES>>", "read, write";

Application Security 25
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

// Required by Xalan during transformation.
permission java.util.PropertyPermission "user.dir", "read";

// If the NSXMLValidation property is set to true, uncoment the following line.
// permission java.net.SocketPermission "www.w3.org", "connect, resolve";
};

26 Application Security
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

XML Serialization Essentials

“XML Serialization Essentials” (page 17) explained that serialization is a useful way to implement
component-to-component communication or application-to-application communication. This chapter guides
you through the creation of a simple WebObjects application that shows how serialization, both binary-based
and XML-based, can be implemented.

The chapter is divided in two sections:

 ■ “Binary Serialization Example” (page 27) walks you through the creation of the Serialization project,
which includes an example utility class called BinarySerializer, used to serialize objects and data into
binary files.

 ■ “XML Serialization Example” (page 38) shows how to use WebObjects XML serialization with the example
class named XMLSerializer to serialize objects and data. It demonstrates that serializing to XML documents
is just as easy as serializing to binary files. In addition, it teaches you how to include keys in the XML
documents that represent serialized data. These keys can make it easier to transform those documents
into a format that other applications expect. Finally, it explains the use of NSXMLOutputFormat objects
to set output-format properties for NSXMLOutputStream objects.

Binary Serialization Example

This section guides you through the creation of a straightforward application that serializes and deserializes
objects and primitive values into and from binary form using Java's binary-serialization facilities.

Creating the Serialization Project

Using Project Builder, create a WebObjects application project named Serialization. You don't need to add
any frameworks to the project, such as the Java JDBC Adaptor framework. (You can look at the finalized
project in projects/Serializing/Binary/Serialization.)

Binary Serialization Example 27
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Adding the BinarySerializer Class

The BinarySerializer class manages binary serialization and deserialization to and from files. To save yourself
some typing, you can add the BinarySerializer.java file in
projects/Serializing/Binary/Serialization to your project's Application Server target. Otherwise,
follow the steps below.

1. Select the Classes group in the Serializer project.

2. Choose File > New File.

3. In the New File pane of the Project Builder Assistant, select Java Class under WebObjects and click Next.

4. In the New Java Class pane, name the class BinarySerializer and click Finish.

5. Replace the template code in BinarySerializer.javawith the code in “BinarySerialization.java” (page
79).

BinarySerializer.java provides two main functions: serialization and deserialization of objects and
creation and disposal of ObjectOutputStream and ObjectInputStream objects.

The serializeObject and deserializeObject methods serialize and deserialize objects to and from a
file. You can use the openStream and closeStream methods to serialize primitive-type values or individual
objects. See “Serializing Primitive-Type Values to an XML Document” (page 41) for an example.

Serializing an NSArray of Strings

Now that you have the BinarySerializer class as part of your project, you can use it to serialize objects.

The first step is to add three methods to the Application class: one that instantiates, populates, and serializes
an NSArray of Strings; a second one that deserializes and displays the data; and a third one that invokes the
other two. Listing 3-1 shows the methods.

28 Binary Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Listing 3-1 The serializeArray, deserializeArray, and arraySerialization methods in
Application.java

/**
 * Creates and serializes an NSArray of Strings.
 * @param identifier identifies the target file, without a
 * path or an extension
 */
public void serializeArray(String identifier) {
 // Instantiate object to serialize.
 NSArray book_titles = new NSArray(new Object[] {"The Chestry Oak", "A Tree for
Peter", "The White Stag"});

 // Serialize the object.
 BinarySerializer.serializeObject(book_titles, identifier);
}

/**
 * Deserializes an NSArray and writes its contents to the console.
 * @param identifier identifies the source file, without a
 * path or an extension
 */
public void deserializeArray(String identifier) {
 // Deserialize the data and assign it to an NSArray object.
 NSArray books = (NSArray)BinarySerializer.deserializeObject(identifier);

 // Display the contents of <code>books</code> on the console
 // (the Run pane in Project Builder).
 System.out.println("");
 System.out.println("** Deserialized NSArray **");
 System.out.println(books);
 System.out.println("");
}

/**
 * Invokes the <code>serializeArray</code> and
 * <code>deserializeArray</code> methods.
 */
public void arraySerialization() {
 String identifier = "BookTitles";

 // Serialize NSArray object.
 serializeArray(identifier);

 // Deserialize NSArray object.
 deserializeArray(identifier);
}

Finally, modify the Application class's constructor so that it looks like Listing 3-2.

Listing 3-2 The constructor in Application.java

/**
 * Creates an Application object. Invoked once during application startup.
 */
public Application() {
 super();
 System.out.println("Welcome to " + this.name() + "!");

Binary Serialization Example 29
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 // Test serialization of an array.
 arraySerialization();
}

After you build and run the application, Project Builder's Run pane should look similar to Listing 3-1.

Figure 3-1 Project Builder's Run pane when running the array-serialization example

If you open /tmp/BookTitles_data.binary (generated by the serialization process) in a text editor, you
should see something similar to Listing 3-2.

Figure 3-2 BinaryTitles_data.binary file viewed through a text editor

This hardly qualifies as human-readable. “XML Serialization Essentials” (page 17) shows you how to create
files with serialized data that are easier for people to read and modify.

Serializing Primitive-Type Values

This section shows you how to serialize primitive-type values that are not encapsulated by objects. To
accomplish this, you instantiate an ObjectOutputStream and invoke one or more of its write methods.

30 Binary Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Add three methods to the Application class of the Serialization project: one that serializes values of type int,
boolean, char and double; a second that deserializes the data; and a third one that calls the other two.
Listing 3-3 gives you an example of such methods.

Listing 3-3 The serializePrimitives, deserializePrimitives, and primitiveSerialization
methods in Application.java

/**
 * Serializes a set of primitive values.
 *
 * @param filename identifies the target file, including its
 * path and extension
 *
 * @param an_int value to serialize
 * @param a_boolean value to serialize
 * @param a_char value to serialize
 * @param a_double value to serialize
 */
public void serializePrimitives(String filename, int an_int, boolean a_boolean, char
a_char, double a_double) {
 try {
 // Open an output stream.
 ObjectOutputStream stream = BinarySerializer.openOutputStream(filename);

 // Write values.
 stream.writeInt(an_int);
 stream.writeBoolean(a_boolean);
 stream.writeChar(a_char);
 stream.writeDouble(a_double);

 // Close the stream.
 BinarySerializer.closeStream(filename);
 }

 catch (IOException e) {
 e.printStackTrace();
 }
}

/**
 * Deserializes a set of primitive values.
 *
 * @param filename identifies the source file, including its
 * path and extension
 */
public void deserializePrimitives(String filename) {
 try {
 // Open an input stream.
 ObjectInputStream stream = BinarySerializer.openInputStream(filename);

 // Read values.
 int the_int = stream.readInt();
 boolean the_boolean = stream.readBoolean();
 char the_char = stream.readChar();
 double the_double = stream.readDouble();

 BinarySerializer.closeStream(filename);

Binary Serialization Example 31
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 // Write values to console (Run pane in Project Builder).
 System.out.println("");
 System.out.println("** Deserialized primitives **");
 System.out.println("int: " + the_int);
 System.out.println("boolean: " + the_boolean);
 System.out.println("char: " + the_char);
 System.out.println("double: " + the_double);
 System.out.println("");
 }

 catch (IOException e) {
 e.printStackTrace();
 }
}

/**
 * Invokes the <code>serializePrimitives</code> and
 * <code>deserializePrimitives</code> methods.
 */
public void primitiveSerialization() {
 String filename = "/tmp/PrimitiveValues_data.binary";

 // Serialize primitive values.
 serializePrimitives(filename, 5, true, 'u', 3.14);

 // Deserialize primitive values.
 deserializePrimitives(filename);
}

You also need to add the following to the Application class:

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

Finally, add a call to the primitiveSerialization method in the Application class's constructor:

// Test serialization of primitive values.
primitiveSerialization();

Build and run the application. Project Builder's Run pane should look similar to Listing 3-3.

32 Binary Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Figure 3-3 Project Builder's Run pane when running the primitive-values serialization example

Serializing Custom Objects

Now that you've mastered the art of serializing an instance of a WebObjects Serializable class and primitive-type
values, you're ready to tackle the serialization of custom objects. For this, you create a Movie class that includes
writeObject and readObject methods.

Add a class named Movie to the Serialization project and assign it to the Application Server target. Modify
Movie.java so that it looks like Listing 3-4. (Alternatively, you can add the Movie.java file in
projects/Serializing/Binary/Serialization to your project.)

Listing 3-4 Movie.java using binary serialization

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.foundation.xml.*;
import com.webobjects.eocontrol.*;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.sql.Timestamp;

/**
 * Manages movie information.
 */
public class Movie extends Object implements Serializable {
 private String title;
 private String studio;
 private NSTimestamp releaseDate;

 /**
 * Creates a Movie object.
 *
 * @param name movie title

Binary Serialization Example 33
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 * @param studio studio that released the movie
 * @param release_date date the movie was released
 */
 Movie(String title, String studio, NSTimestamp releaseDate) {
 super();

 setTitle(title);
 setStudio(studio);
 setReleaseDate(releaseDate);
 }

 /**
 * Gets this movie's title.
 *
 * @return movie title.
 */
 public String title() {
 return this.title;
 }

 /**
 * Sets this movie's title.
 *
 * @param value movie's title
 */
 public void setTitle(String value) {
 this.title = value;
 }

 /**
 * Gets this movie's studio.
 *
 * @return movie studio.
 */
 public String studio() {
 return this.studio;
 }

 /**
 * Sets this movie's studio.
 *
 * @param value studio's name
 */
 public void setStudio(String value) {
 this.studio = value;
 }

 /**
 * Gets this movie's release date.
 *
 * @return movie release date.
 */
 public NSTimestamp releaseDate() {
 return this.releaseDate;
 }

 /**
 * Sets this movie's release date.

34 Binary Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 *
 * @param value release date
 */
 public void setReleaseDate(NSTimestamp value) {
 this.releaseDate = value;
 }

 /**
 * Gets the string representation of this movie.
 *
 * @return string representing this movie.
 */
 public String toString() {
 return "(Movie: (Title: " + title() + "), (Studio: " + studio() + "), (Release
 Date: " + releaseDate().toString() + "))";
 }

 /**
 * Serializes this object.
 *
 * @param stream object stream to serialize this object to
 */
 private void writeObject(ObjectOutputStream stream) throws IOException {
 // Serialize the object's instance members.
 // (This is where you put special encoding logic,
 // such as the one used to encode the releaseDate field.)
 stream.writeObject(title());
 stream.writeObject(studio());
 stream.writeObject(releaseDate().toString());
 }

 /**
 * Deserializes this object.
 *
 * @param stream object stream from which the serialized data
 * is obtained
 */
 private void readObject(ObjectInputStream stream) throws IOException,
ClassNotFoundException {
 // Deserializes the data a put it in the object's instance members.
 // (This is where you would put special de-encoding logic
 // such as the one used to decode the releaseDate field.)
 setTitle((String)stream.readObject());
 setStudio((String)stream.readObject());
 setReleaseDate(_timestampFromString((String)stream.readObject()));
 }

 /**
 * Converts a string into an NSTimestamp.
 *
 * @param timestampAsString string to convert
 *
 * @return NSTimestamp object represented by timestampAsString.
 */
 private NSTimestamp _timestampFromString(String timestampAsString) {
 NSTimestampFormatter formatter = new NSTimestampFormatter();
 java.text.ParsePosition pp = new java.text.ParsePosition(0);

Binary Serialization Example 35
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 return (NSTimestamp)formatter.parseObject(timestampAsString, pp);
 }
}

Now add the methods in Listing 3-5 to Application.java.

Listing 3-5 The serializeMovie, deserializeMovie, and movieSerialization methods in
Application.java

/**
 * Serializes a Movie object.
 *
 * @param identifier identifies the target file, without a
 * a path or an extension
 */
public void serializeMovie(String identifier) {
 // Set the local time zone.
 NSTimeZone timeZone = NSTimeZone.timeZoneWithName("America/Los_Angeles", true);

 Movie movie = new Movie("Alien", "20th Century Fox", new NSTimestamp(1979, 10, 25,
 0, 0, 0, timeZone));

 BinarySerializer.serializeObject(movie, identifier);
}

/**
 * Deserializes Movie data into an object.
 *
 * @param identifier identifies the source file, without a
 * a path or an extension
 */
public void deserializeMovie(String identifier) {
 Movie movie = (Movie)BinarySerializer.deserializeObject(identifier);

 System.out.println("");
 System.out.println("** Deserialized Movie object **");
 System.out.println(movie.toString());
 System.out.println("");
}

/**
 * Invokes the <code>movieSerialization</code> and
 * <code>movieDeserialization</code> methods.
 */
public void movieSerialization() {
 String identifier = "Movie";

 serializeMovie(identifier);
 deserializeMovie(identifier);
}

Finally, modify the Application class's constructor by adding a call to the movieSerialization method:

// Serialize a Movie object.
movieSerialization();

After building and running the application, you should see something similar to Listing 3-4.

36 Binary Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Figure 3-4 Project Builder's Run pane when running the Movie-object serialization example

The remainder of the section shows you how to serialize an NSMutableArray of Movies and deserialize the
data into an NSArray.

Add the methods shown in Listing 3-6 to Application.java.

Listing 3-6 TheserializeMovieArray,deserializeMovieArray, andmovieArraySerialization
methods of Application.java

/**
 * Serializes a Movie array.
 *
 * @param identifier identifies the target file, without a
 * a path or an extension
 */
public void serializeMovieArray(String identifier) {
 // Set the local time zone.
 NSTimeZone timeZone = NSTimeZone.timeZoneWithName("America/Los_Angeles", true);

 // Initialize the array.
 NSMutableArray movies = new NSMutableArray();
 movies.addObject(new Movie("Alien", "20th Century Fox", new NSTimestamp(1979, 10,
25, 0, 0, 0, timeZone)));
 movies.addObject(new Movie("Blade Runner", "Warner Brothers", new NSTimestamp(1982,
 1, 3, 0, 0, 0, timeZone)));
 movies.addObject(new Movie("Star Wars", "20th Century Fox", new NSTimestamp(1977,
12, 29, 0, 0, 0, timeZone)));

 // Serialize the array.
 BinarySerializer.serializeObject(movies, identifier);
}

/**
 * Deserializes Movie data into an NSArray.
 *
 * @param identifier identifies the source file, without a
 * a path or an extension

Binary Serialization Example 37
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 */
public void deserializeMovieArray(String identifier) {
 // Create an empty array.
 NSArray movies = new NSArray();

 // Deserialize data into movies.
 movies = (NSArray)BinarySerializer.deserializeObject(identifier);

 System.out.println("");
 System.out.println("** Deserialized Movie array **");
 System.out.println(movies.toString());
 System.out.println("");
}

/**
 * Invokes the <code>movieArraySerialization</code> and
 * <code>movieArrayDeserialization</code> methods.
 */
public void movieArraySerialization() {
 String identifier = "Movies";

 serializeMovieArray(identifier);
 deserializeMovieArray(identifier);
}

Add a call to the movieArraySerialization method in the Application class's constructor and build and
run the application. The Project Builder Run pane should look like Listing 3-5.

Figure 3-5 Project Builder's Run pane when running the Movie-array serialization example

XML Serialization Example

As you learned in “XML Serialization Essentials” (page 17) WebObjects XML serialization works essentially
the same way Java binary serialization does. This section shows how to modify the Serialization project so
that it uses a new class, XMLSerializer, to serialize and deserialize objects and data.

38 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

If you did not create the Serialization project in “Binary Serialization Example” (page 27), you can get it from
this document's example projects in projects/Serializing/Binary.

Adding the XMLSerializer Class

Start by adding a new class called XMLSerializer.java to the project and assigning it to the Application
Server target. Then modify the class so that it looks like “XMLSerializer.java” (page 83). (Alternatively, you
can add the XMLSerializer.java file in projects/Serializing/XML/Serialization to your project.)

Serializing an NSArray of Strings to an XML Document

Now that the Serialization project contains the utility class XMLSerializer, modify the serializeArray and
deserializeArray methods in Application.java so that they look like Listing 3-7. (All you need to do
is change occurrences of BinarySerializer to XMLSerializer in the lines numbered 1 and 2.)

Listing 3-7 The serializeArray and deserializeArraymethods in Application.java using XML
serialization

/**
 * Creates and serializes an NSArray of Strings.
 * @param identifier identifies the target file, without a
 * path or an extension
 */
public void serializeArray(String identifier) {
 // Instantiate object to serialize.
 NSArray book_titles = new NSArray(new Object[] {"The Chestry Oak", "A Tree for
Peter", "The White Stag"});

 // Serialize the object.
 XMLSerializer.serializeObject(book_titles, identifier);
}

/**
 * Deserializes an NSArray and writes its contents to the console.
 * @param identifier identifies the source file, without a
 * path or an extension
 */
public void deserializeArray(String identifier) {
 // Deserialize the data and assign it to an NSArray object.
 NSArray books = (NSArray)XMLSerializer.deserializeObject(identifier);

 // Display the contents of <code>books</code> on the console
 // (the Run pane in Project Buider).
 System.out.println("");
 System.out.println("** Deserialized NSArray **");
 System.out.println(books);
 System.out.println("");
}

After building and running the application, you can find the BookTitles_data.xml file (shown in Listing
3-8) in /tmp.

XML Serialization Example 39
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Listing 3-8 BookTitles_data.xml (serialized array of Strings)

<?xml version="1.0" encoding="UTF-8"?>
<content xmlns="http://www.apple.com/webobjects/XMLSerialization"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.apple.com/webobjects/XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">
 <object id="2">
 <class flag="3" id="0" name="com.webobjects.foundation.NSArray" suid="-
3789592578296478260">
 <field name="objects" type="java.lang.Object[]"/>
 </class>
 <array field="objects" id="4" ignoreEDB="1" length="3" type="java.lang.Object[]">
 <string id="5">The Chestry Oak</string>
 <string id="6">A Tree for Peter</string>
 <string id="7">The White Stag</string>
 </array>
 </object>
</content>

As you can see, the serialized version of the NSArray object is easier to read than BookTitles_data.binary,
created in “Serializing an NSArray of Strings” (page 28). Listing 3-6 graphically depicts BookTitles_data.xml.
However, the document is somewhat verbose. “Transforming XML Documents” (page 55) shows you how
to transform XML streams generated by NSXMLOutputStream into streamlined XML documents.

40 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Figure 3-6 The element hierarchy of the BoolTitles_data.xml document

BookTitle_data.xml

xml
version = "1.0"
encoding = "UTF-8"

contents
xmls = "http://..."
xmls:xsi = "http://..."
xsi:schemaLocation = "http://..."

object
id = "2"

class
flag = "3"
id = "0"
name = "com.webobjects.foundation.NSArray"
suid = "..."

array
field = "objects"
id = "4"
length = "3"
type = "java.lang.Object[]"

field
name = "objects"
type = "java.lang.Object[]"

string
id = "5"
The Chestry Oak

string
id = "6"
A Tree for Peter

string
id = "7"
The White Stag

Serializing Primitive-Type Values to an XML Document

By now you've probably noticed how easy it is to serialize objects into XML documents. This section shows
you how to serialize primitive-type values.

First, add the following code line to Application.java:

import com.webobjects.foundation.xml.*;

Now, modify the serializePrimitives and deserializePrimitives methods so that they match
Listing 3-9 (You need to modify only the five numbered lines.)

Listing 3-9 The serializePrimitives, deserializePrimitives and primitiveSerialization
methods in Application.java using XML serialization

/**
 * Serializes a set of primitive values.

XML Serialization Example 41
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 *
 * @param filename identifies the target file, including its
 * path and extension
 * @param an_int value to serialize
 * @param a_boolean value to serialize
 * @param a_char value to serialize
 * @param a_double value to serialize
 */
public void serializePrimitives(String filename, int an_int, boolean a_boolean,
char a_char, double a_double) {
 try {
 // Open an output stream.
 NSXMLOutputStream stream = XMLSerializer.openOutputStream(filename, null);

 // Write values.
 stream.writeInt(an_int);
 stream.writeBoolean(a_boolean);
 stream.writeChar(a_char);
 stream.writeDouble(a_double);

 // Close the stream.
 XMLSerializer.closeStream(filename);
 }

 catch (IOException e) {
 e.printStackTrace();
 }
 }

/**
 * Deserializes a set of primitive values.
 *
 * @param filename identifies the source file, including
 * its path and extension
 */
public void deserializePrimitives(String filename) {
 try {
 // Open an input stream.
 NSXMLInputStream stream = XMLSerializer.openInputStream(filename);

 // Read values.
 int the_int = stream.readInt();
 boolean the_boolean = stream.readBoolean();
 char the_char = stream.readChar();
 double the_double = stream.readDouble();

 XMLSerializer.closeStream(filename);

 // Write values to console (Run pane in Project Builder).
 System.out.println("");
 System.out.println("** Deserialized primitives **");
 System.out.println("int: " + the_int);
 System.out.println("boolean: " + the_boolean);
 System.out.println("char: " + the_char);
 System.out.println("double: " + the_double);
 System.out.println("");
 }

42 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 catch (IOException e) {
 e.printStackTrace();
 }
 }

/**
 * Invokes the <code>serializePrimitives</code> and
 * <code>deserializePrimitives</code> methods.
 */
public void primitiveSerialization() {
 String filename = "/tmp/PrimitiveValues_data.xml";

 // Serialize primitive values.
 serializePrimitives(filename, 5, true, 'u', 3.14);

 // Deserialize primitive values.
 deserializePrimitives(filename);
}

Notice the signature of the openOutputStream method of the XMLSerializer class (Listing B-2 (page 83)):

openOutputStream(String filename, String transformation) throws IOException;

The invoking code specifies the type of transformation to perform on the serialized data through the
transformation parameter. In this case, however, serializePrimitives does not perform a
transformation; therefore, it invokes openOutputStream with transformation set to null. See “XML
Transformation” (page 49) for more information on transforming XML documents.

After building and running the application, your /tmp directory should contain the
PrimitiveValues_data.xml. file. Listing 3-10 shows its contents.

Listing 3-10 The PrimitiveValues_data.xml file

<?xml version="1.0" encoding="UTF-8"?>
<content xmlns="http://www.apple.com/webobjects/XMLSerialization"
xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xsi:schemaLocation="http://www.apple.com/webobjects/
XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">
 <int>5</int>
 <boolean>true</boolean>
 <ch>u</ch>
 <double>3.14</double>
</content>

Serializing With Keys

Keys can help a great deal in describing what a data element represents. Adding keys to values as they are
serialized is a simple process. Modify serializePrimitives so that it looks like Listing 3-11 (change the
numbered code lines), and build and run the application.

XML Serialization Example 43
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Listing 3-11 The serializePrimitivesmethod of Application.java using keys to identify elements
in XML document

public void serializePrimitives(String filename, int an_int, boolean a_boolean,
 char a_char, double a_double) {
 try {
 // Open an output stream.
 NSXMLOutputStream stream = XMLSerializer.openOutputStream(
 filename, null);

 // Write values.
 stream.writeInt(an_int, "my_integer");
 stream.writeBoolean(a_boolean, "my_boolean");
 stream.writeChar(a_char, "my_char");
 stream.writeDouble(a_double, "my_double");

 // Close the stream.
 XMLSerializer.closeStream(filename);
 }

 catch (IOException e) {
 e.printStackTrace();
 }
}

Now, after building and running the project, the PrimitiveValues_data.xml file looks like Listing 3-12.

Listing 3-12 The PrimitiveValues_data.xml file with keys identifying each element

<?xml version="1.0" encoding="UTF-8"?>
<content xmlns="http://www.apple.com/webobjects/XMLSerialization"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.apple.com/webobjects/XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">
 <int key="my_integer">5</int>
 <boolean key="my_boolean">true</boolean>
 <ch key="my_char">u</ch>
 <double key="my_double">3.14</double>
</content>

The code in “Transforming Primitive-Type Values Using Keys” (page 58) takes advantage of the key attribute
on each element of the content element to transform the source XML document in Listing 3-12 to one that
uses the values of those keys as the tag names of the elements that contain the data values in the target
document, shown in Listing 5-6 (page 59).

Serializing Custom Objects to an XML Document

You can take advantage of keys in custom Serializable objects by invoking the writeObject(Object,
String) method of NSXMLOutputStream in the writeObject method of your custom class. To accomplish
this, however, you have to cast the ObjectOutputStream argument to NSXMLOutputStream before invoking
the writeObject(Object, String) method.

Modify the writeObject method of Movie.java so that it looks like Listing 3-13.

44 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Listing 3-13 The writeObject method in Movie.java using XML serialization with keys

private void writeObject(ObjectOutputStream stream) throws IOException {
 // Serialize the object's instance members.
 // (This is where you put special encoding logic;
 // this example doesn't perform any special encoding.)

 // Cast stream to NSXMLOutputStream to gain access to
 // <code>writeObject(Object, String)</code>.
 NSXMLOutputStream xml_stream = (NSXMLOutputStream)stream;

 xml_stream.writeObject(title(), "title");
 xml_stream.writeObject(studio(), "studio");
 xml_stream.writeObject(releaseDate().toString(), "release_date");
}

Now, modify the serializeMovie, deserializeMovie, serializeMovieArray and
deserializeMovieArray methods in Application.java so that they use the XMLSerializer class's
serializeObject and deserializeObject methods, respectively.

Build and run the application. If you open /tmp/Movies_data.xml in a text editor, you'll see something
similar to the contents of Listing 3-14. Notice the key attribute included in the data elements of each object
element corresponding to a Movie object. The key attribute is used by the transformation script in
“Transforming an Array of Movies” (page 60) to generate the data elements of the target document.

Also notice that the third Movie object in Movies_data.xml (starting at the line numbered 2) contains a
reference to the studio defined in the first Movie object (the line numbered 1) instead of the name of the
studio. This is how multiple references to the same object are represented in XML documents generated by
NSXMLOutputStream.

Listing 3-14 The Movies_data.xml file

<?xml version="1.0" encoding="UTF-8"?>
<content xmlns="http://www.apple.com/webobjects/XMLSerialization"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.apple.com/webobjects/XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">
 <object id="3">
 <class flag="2" id="0"
 name="com.webobjects.foundation.NSMutableArray" suid="-3909373569895711876">
 <super flag="3" id="1"
 name="com.webobjects.foundation.NSArray" suid="-3789592578296478260">
 <field name="objects" type="java.lang.Object[]"/>
 </super>
 </class>
 <array field="objects" id="5" ignoreEDB="1" length="3" type="java.lang.Object[]">
 <object id="10">
 <class flag="3" id="6" name="Movie" suid="-791832868721905865">
 <field name="releaseDate"
type="com.webobjects.foundation.NSTimestamp"/>
 <field name="studio" type="java.lang.String"/>
 <field name="title" type="java.lang.String"/>
 </class>
 <string id="11" key="title" xml:space="preserve">Alien</string>
 <string id="12" key="studio" xml:space="preserve">20th Century
Fox</string>

XML Serialization Example 45
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

 <string id="13" ignoreEDB="1" key="release_date"
xml:space="preserve">1979-10-25 07:00:00 Etc/GMT</string>
 </object>
 <object id="14">
 <class idRef="6" name="Movie"/>
 <string id="15" key="title" xml:space="preserve">Blade Runner</string>
 <string id="16" key="studio" xml:space="preserve">Warner Brothers</string>
 <string id="17" ignoreEDB="1" key="release_date"
xml:space="preserve">1982-01-03 08:00:00 Etc/GMT</string>
 </object>
 <object id="18">
 <class idRef="6" name="Movie"/>
 <string id="19" key="title" xml:space="preserve">Star Wars</string>
 <string idRef="12" key="studio"/>
 <string id="20" ignoreEDB="1" key="release_date"
xml:space="preserve">1977-12-29 08:00:00 Etc/GMT</string>
 </object>
 </array>
 </object>
</content>

Formatting Serialized Output

The XML documents produced so far are nicely indented to facilitate their comprehension by people. However,
most of the time, these documents are intended for applications. Therefore, indentation (and the extra
characters it adds to a stream) is not needed. You can determine whether the output produced by an
NSXMLOutputStream object is indented using a NSXMLOutputFormat (com.webobjects.foundation.xml)
object. NSXMLOutputFormat objects encapsulate formatting information that can be applied to an
NSXMLOutputStream object.

Table 3-1 lists the output-format properties you can set with NSXMLOutputFormat.

Table 3-1 Output-format properties accessible through NSXMLOutputFormat

Default valueDescriptionProperty

"UTF-8"Determines the encoding used in the document.encoding

trueDetermines whether the XML document generated is indented.indenting

falseDetermines whether the XML declaration is omitted from the
document.

omitXMLDeclaration

"1.0"Determines the document's XML version.version

You can use WebObjects-style accessors to get and set the values of the properties listed in Table 3-1. The
value of the indenting property can also be set through one of the constructors of NSXMLOutputFormat,
NSXMLOutputFormat(boolean).

Listing 3-15 shows a method that creates an XML stream to a file and sets the indenting and encoding
properties for the stream.

46 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Listing 3-15 Setting the indenting and encoding properties of an NSXMLOutputFormat object and
applying them to an NSXMLOutputStream object

/**
 * Opens an XML output stream to a file.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open
 *
 * @return object stream, <code>null</code> when the stream
 * could not be created.
 */
public Object xmlOutputStream(String filename) throws IOException {
 BufferedOutputStream file_output_stream;
 NSXMLOutputStream xml_stream;
 NSXMLOutputFormat format;

 // Create an output stream to the file.
 file_output_stream = new BufferedOutputStream(new FileOutputStream(filename));

 // Create object output stream.
 xml_stream = new NSXMLOutputStream(file_output_stream);

 // Set the format of the output document.
 format = new NSXMLOutputFormat(true); // turn indentation on
 format.setEncoding("UTF-16"); // set encoding to UTF-16
 xml_stream.setOutputFormat(format); // apply format to the stream

 return xml_stream;
}

For more information on NSXMLOutputFormat, see the API documentation.

XML Serialization Example 47
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

48 XML Serialization Example
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Serializing Objects and Data

Serializing objects and data into XML documents is a great way of sharing information between applications
within an organization. However, communicating that data between companies can be difficult. For example,
you can serialize an NSArray containing InventoryItem objects into an XML document and send that document
to your business partners over the Internet. But, unless your business partners are also running WebObjects
(in fact, they would have to be running the same version of WebObjects that you are running), they will find
it difficult to make use of the document. Of course, they can create an XSLT stylesheet that transforms your
XML document into a format that they can use, but you can make their job easier by doing the transformation
yourself.

Because your application generates XML documents, you're in an excellent position for converting
serialized-data documents into a standard format that the recipients of your documents can use. If you're
comfortable with XSL Transformations (XSLT), you can create an XSLT file that WebObjects can use to transform
the output of XML serialization into other formats.

While this document does not teach XSLT, this chapter gives you an overview of the transformation process.
It contains the following sections:

 ■ “Structure of Serialized Data in WebObjects” (page 49) shows you the structure of the XML documents
generated by NSXMLOutputStream.

 ■ “XSL Transformations” (page 50) gives an overview of the transformation process.

 ■ “XML Parsers and XSLT Processors” (page 52) explains how WebObjects uses the Java API for XML
Processing (JAXP) to communicate with XML parsers and transformers, which allows you to install and
use your preferred implementations.

 ■ “Serialization and Transformation Performance” (page 53) touches on performance issues with XML
serialization and transformation.

Structure of Serialized Data in WebObjects

The structure of the XML documents created by the WebObjects XML serialization process is described by
the woxml.xsd and woxml.dtd files, which are listed in “The woxml.dtd file” (page ?). Figure 4-1 illustrates
the structure that the files define, while Listing 4-1 shows an example of a target document.

Structure of Serialized Data in WebObjects 49
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

Figure 4-1 Diagram of the schema for WebObjects XML serialization

woxml:content
woxml:super

woxml:field

woxml:interface

woxml:object

woxml:boolean

woxml:byte

woxml:ch

woxml:short

woxml:int

woxml:long

woxml:float

woxml:double

woxml:string

woxml:array

woxml:finalException

Content

woxml:string

woxml:object

woxml:array

one of

woxml:class

woxml:proxy

Class Info

Class Info

Content

0..1

*

0..1
0..1

*

0..1

*

*

*

Listing 4-1 Example of a target document

<?xml version="1.0" encoding="UTF-8"?>
<content xmlns="http://www.apple.com/webobjects/XMLSerialization"
xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://www.apple.com/webobjects/XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">
 <int>5</int>
 <boolean>true</boolean>
 <ch>u</ch>
 <double>3.14</double>
</content>

XSL Transformations

This document does not teach you XSL Transformations (XSLT). There are several books available on the
subject that explain the specification and different implementations of it in detail. However, this section
explains some segments of the SimpleTransformation.xsl script used in this document's
transformation-example project. You can find the entire listing of the transformation script in Listing B-3 (page
88).

XSLT is a declarative language. This means that the transformation of an XML document is expressed as a
set of rules or templates that are applied to elements of the source document to create elements of the
target document. For example, you can specify a rule that changes every date element in a document to
an invoice_date element.

50 XSL Transformations
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

Listing 4-2 shows the segment of SimpleTransformation.xsl that processes woxml:object elements.

Listing 4-2 Section of SimpleTransformation.xsl that processes woxml:object elements

<!-- Processes woxml:object elements. -->
<xsl:template name="process_object" match="woxml:object">
 <!-- extract class name -->
 <xsl:variable name="className">
 <xsl:value-of select="woxml:class/@name" />
 </xsl:variable>

 <!-- get base class name -->
 <xsl:variable name="class">
 <xsl:call-template name="basename">
 <xsl:with-param name="path" select="$className"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- determine the element name -->
 <xsl:variable name="tag">
 <xsl:choose>
 <xsl:when test="$class='NSDictionary' or
 $class='NSMutableDictionary'">
 <xsl:value-of select="'dictionary'" />
 </xsl:when>
 <xsl:when test="$class='NSArray' or $class='NSMutableArray'">
 <xsl:value-of select="'array'" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$class" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- create the element -->
 <xsl:element name="{$tag}">
 <xsl:choose>
 <xsl:when test="$class='NSDictionary' or
 $class='NSMutableDictionary'">
 <xsl:call-template name="process_dictionary" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:call-template name="process_object_content" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
</xsl:template>

Here's an explanation of the numbered lines:

1. Gets the class name that the object represents and stores it in a variable called className. The rule
gets the class name from the name attribute of the woxml:class element of woxml:object.

2. Calls a utility template that extracts the base class name from the fully qualified class name. This base
class name is stored in the class variable.

XSL Transformations 51
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

3. Determines the name of the element in the target document that corresponds to the woxml:object
element of the source document. The element name is dictionary (when class is 'NSDictionary'
or 'NSMutableDictionary'), array (when class is 'NSArray' or 'NSMutableArray'), or the name
of the base class that the woxml:object element contains.

4. Creates the element and its contents by invoking one of two templates: process_dictionary or
process_object_content. The process_dictionary template creates a dictionary element in
the target document using either two arrays (one for the keys and another for the values) or a set of
item elements, each containing a key and a value element.

For more details on transforming XML documents using SimpleTransformation.xsl, see “Transforming
XML Documents” (page 55). To learn XSLT, check out XSLT (published by O'Reilly) or XSLT Programmer's
Reference (published by Wrox Press).

XML Parsers and XSLT Processors

An XML parser is software that allows you to read and write XML documents. An XSLT processor (also known
as transformer) converts an XML document into another document, whose format can be XML, HTML, PDF,
or any other format supported by the transformer. There are some parsers that can also convert XML
documents, such as Microsoft's MSXML3 parser.

One of a parser's duties is to validate the input document, to make sure that it's well formed and that its
contents conform to the document's XML Schema file or DTD file. The WebObjects XML Schema files are
listed in “The woxml.dtd file” (page ?). In WebObjects the source document is not validated by default;
however, you can turn validation on to debug an application.

WebObjects uses the Java API for XML Processing (JAXP), implemented in the javax.xml.parsers and
javax.xml.tranform packages (including javax.xml.transform.sax, javax.xml.transform.dom,
and javax.xml.transform.stream) to instantiate and communicate with the XML parser and XSLT
transformer. This allows you to install your preferred parser and transformer for use by your applications. See
the API documentation of those packages for additional details. You can also consult Sun's JAXP tutorial,
located at https://jaxp.dev.java.net/.

A standard WebObjects installation includes the Xerces XML parser and the Xalan XSLT processor. However,
thanks to JAXP, you can use other parsers and processors if you wish. Just install the pertinent JAR files on
your computer, make sure that they are in the Java classpath, and point
javax.xml.parsers.SAXParserFactory to the class that implements the factory class. For example, if
the JAR file for the Crimson parser is in the classpath, you would add the following line to the Properties
file of the application project (which you can find under the Resources group) or to the command line to set
the property's value:

-D"javax.xml.parsers.SAXParserFactory=
org.apache.crimson.jaxp.SAXParserFactoryImpl"

Keep in mind that if you have two parser-factory classes in your classpath, the parser that your application
actually uses may not be the one you want. The parser that is loaded last is the one that the application uses.
The same applies to the system properties javax.xml.transform.TransformerFactory and
javax.xml.parsers.DocumentBuilderFactory: The application that is loaded last determines the
system-wide values of these properties.

52 XML Parsers and XSLT Processors
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

https://jaxp.dev.java.net/

Serialization and Transformation Performance

XML serialization is slower than binary serialization because data is converted to XML code while objects are
serialized. XML deserialization is slower than binary deserialization because XML documents need to be
parsed before their contents can be deserialized. However, the actual speed at which data is serialized and
deserialized is highly dependent on disk and network throughput.

To maximize the performance of XML serialization and deserialization in WebObjects, make sure that XML
validation is not turned on (it's turned off by default). You turn XML validation on or off by setting the
NSXMLValidation property in the command line or the Properties file:

-DNSXMLValidation=<true|false>

XML-parsing technology should improve over time. In addition, as mentioned in “XML Parsers and XSLT
Processors” (page 52), WebObjects uses JAXP to ensure that a standard API is used to communicate with
the parser. This allows you to install and use parsers as they become available.

Serialization and Transformation Performance 53
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

54 Serialization and Transformation Performance
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

XML Transformation

In “Serializing Objects and Data” (page 27) you learned how to serialize and deserialize objects and
primitive-type values. This chapter explains how you transform a stream containing serialized data into an
XML document using an XSLT script.

The chapter contains the following sections:

 ■ “The Transformation Process” (page 55) contains example code fragments that perform transformations.

 ■ “Creating the Transformation Project” (page 57) shows how to create the project.

 ■ “Transforming Primitive-Type Values Using Keys” (page 58) explains how to create an XML document
from data serialized using keys.

 ■ “Transforming an Array of Movies” (page 60) explains how to transform an NSArray of custom objects
into an XML document.

The Transformation Process

The XMLSerializer class of the Serialization project, introduced in“XML Serialization Essentials” (page 17) and
listed in Listing B-2 (page 83) includes the transformObject method, shown in Listing 5-1.

Listing 5-1 The transformObject method in XMLSerializer .java

/**
 * Serializes objects and data to a stream, which can also be
 * transformed. The product of the process is written to a file.
 *
 * @param source object to serialize or transform
 * @param filename filename of the target document,
 * including path and extension
 * @param transformation type of transformation to perform;
 * indicates which transformation script to use.
 * When <code>null</code>, no transformation
 * is performed, only serialization.
 *
 * @return <code>true</code> when the process succeeds.
 */
public static boolean transformObject(Object source, String filename, String
transformation) {
 boolean success = false;

 try {
 // Create a stream to the output file.

// 1 NSXMLOutputStream stream = (NSXMLOutputStream)openStream(filename, false,
transformation);

The Transformation Process 55
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

 // Serialize data to XML output stream.
 stream.writeObject(source);

 stream.flush();
 closeStream(filename);

 success = true;
 }

 catch (IOException e) {
 e.printStackTrace();
 }

 return success;
}

The transformObject method opens an output stream (line numbered 1) to a file using the openStream
method (Listing 5-2), which initializes the XML transformer using the initializeTransformer method
(line 1), shown in Listing 5-3 (page 57). The openStream method also turns indenting on using the
NSXMLOutputFormat(boolean) constructor of the NSXMLOutputFormat class (lines 2 and 3).

Listing 5-2 The openStream method in XMLSerializer.java

/**
 * Opens a file stream to or from a file and a corresponding
 * output or input object stream.
 * Adds the pair of streams to an internal dictionary for use by
 * the <code>closeStream</code> method.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open
 * @param input_stream indicates whether the stream returned
 * is an input stream or an output stream:
 * <code>true</code> for an input stream and
 * <code>false</code> for an output stream.
 * @param transformation type of transformation to perform;
 * indicates which transformation script to use.
 * When <code>null</code>, no transformation
 * is performed, only serialization.
 *
 * @return object stream, <code>null</code> when the stream
 * could not be created.
 */
private static Object openStream(String filename, boolean input_stream, String
transformation) throws IOException {
 BufferedOutputStream file_output_stream = null;
 BufferedInputStream file_input_stream = null;
 Channel channel;
 Object xml_stream = null;

 if (input_stream) {
 // Create an input stream from the file.
 file_input_stream = new BufferedInputStream(new FileInputStream(filename));

 // Create object input stream.
 xml_stream = new NSXMLInputStream(file_input_stream);

56 The Transformation Process
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

 channel = new Channel(file_input_stream, xml_stream, input_stream);
 } else {
 // Create an output stream to the file.
 file_output_stream = new BufferedOutputStream(new FileOutputStream(filename));

 // Create object output stream.
 if (transformation != null) {

// 1 xml_stream = initializeTransformer(file_output_stream, transformation);
 } else {
 xml_stream = new NSXMLOutputStream(file_output_stream);
 }

 // Set the format of the output document (XML).
// 2 NSXMLOutputFormat format = new NSXMLOutputFormat(true);
// 3 ((NSXMLOutputStream)xml_stream).setOutputFormat(format);

 channel = new Channel(file_output_stream, xml_stream, input_stream);
 }
 channels.setObjectForKey(channel, filename);

 return xml_stream;
}

Listing 5-3 The initializeTransformer method in XMLSerializer.java

/**
 * Initializes the transformer.
 *
 * @param file_stream target file stream
 * @param transformation type of transformation to perform;
 * indicates which transformation file to use
 *
 * @throws IOException when there's a problem initializing the transformer.
 */
private static NSXMLOutputStream initializeTransformer(BufferedOutputStream file_stream,
 String transformation) throws IOException {

// 1 NSXMLOutputStream xml_stream = new NSXMLOutputStream(file_stream, new
File(transformationURI(transformation)));
 Transformer transformer = ((NSXMLOutputStream)xml_stream).transformer();
 transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");

 return xml_stream;
}

The initializeTransformer method takes a stream to a file in the file_stream parameter, which it
uses to create the NSXMLOutputStream object (1) that transforms whatever is written to it using the
transformation script indicated by the transformation parameter. Then it sets an output property of the
transformer; in this case it sets the indentation level of the new document.

Creating the Transformation Project

This section shows you how to create the Transformation project, which is based on the Serialization project
created in “Serializing Objects and Data” (page 27). (You can avoid all the manual work by copying the
Transformation folder in projects/Transformation/Starter to your working directory.)

Creating the Transformation Project 57
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

1. In Project Builder, create a WebObjects application project and name it Transformation.

2. Add an empty file to the project's Resources group and name it SimpleTransformation.xsl and
enter the XSLT transformation script in Listing B-3 (page 88) as the file's contents. (Alternatively, you
can add the SimpleTransformation.xsl file in
projects/Transforming/Starter/Transformation to your project.) Assign
SimpleTransformation.xsl to the Application Server target.

3. Copy the Application.java file from the Serialization project's folder into the Transformation project's
folder.

4. Add Movie.java and XMLSerializer.java from the Serialization project to the Transformation
project. Make sure to copy the files to the Transformation folder and to assign them to the Application
Server target.

Transforming Primitive-Type Values Using Keys

This section shows you how to convert a stream generated by NSXMLOutputStream into an XML document
in which the element name of each data element is derived from the value of the key attribute of each
serialized object.

All you have to do is copy the serializePrimitives method of Application.java and paste it at the
bottom of the file. Then edit the method so that it looks like Listing 5-4 (change the numbered lines). Listing
B-3 (page 88) shows the XSLT script used to perform the transformation.

Listing 5-4 The transformPrimitives method in the Application class

/**
// 1 * Transforms a set of primitive values.

 *
// 2 * @param filename identifies the target file including its

 * path and extension
 * @param an_int value to serialize

58 Transforming Primitive-Type Values Using Keys
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

 * @param a_boolean value to serialize
 * @param a_char value to serialize
 * @param a_double value to serialize
 */

// 3public void transformPrimitives(filename, int an_int, boolean a_boolean, char a_char,
double a_double) {
 try {
 // Open an output stream.

// 4 NSXMLOutputStream stream = XMLSerializer.openOutputStream(filename,
XMLSerializer.TRANSFORM_SIMPLE);

 // Write values.
 stream.writeInt(an_int, "my_integer");
 stream.writeBoolean(a_boolean, "my_boolean");
 stream.writeChar(a_char, "my_char");
 stream.writeDouble(a_double, "my_double");

 // Close the stream.
 XMLSerializer.closeStream(filename);
 }

 catch (IOException e) {
 e.printStackTrace();
 }
}

Now, add a call to the transformPrimitives method to Application's constructor, (for example, the code
lines below) and build and run the application.

// Transform a set of primitive values.
transformPrimitives("/tmp/PrimitivesTransformed.xml", 5, true, 'u', 3.14);

In the transformation process, the document in Listing 5-5 is transformed into the one in Listing 5-6. The first
document is not written to a file; it's the source document that the XSLT processor uses to produce the
document that is actually written to the file system.

Listing 5-5 The source document: produced by NSXMLOutputStream before transformation

<?xml version="1.0" encoding="UTF-8"?>
<content ...>
 <int key="my_integer">5</int>
 <boolean key="my_boolean">true</boolean>
 <ch key="my_char">u</ch>
 <double key="my_double">3.14</double>
</content>

Listing 5-6 The target document: PrimitivesTransformed.xml

<?xml version="1.0" encoding="UTF-8"?>
<content>
 <my_integer>5</my_integer>
 <my_boolean>true</my_boolean>
 <my_char>u</my_char>
 <my_double>3.14</my_double>
</content>

Transforming Primitive-Type Values Using Keys 59
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

Transforming an Array of Movies

As you may recall, “Serializing Custom Objects to an XML Document” (page 44), explains how to serialize a
custom object with key values. Listing 3-14 (page 45) shows the document generated. This section explains
how to transform that document into another XML document.

Copy the serializeMovieArray method of Application.java to the end of the file and rename it to
transformMovieArray. Edit the new method so that it looks like Listing 5-7 (change the numbered lines).

Listing 5-7 The transformMovieArray method in Application.java

/**
// 1 * Transforms a Movie array.

 *
 * @param filename identifies the target file, including
 * its path and extension
 */

// 2public void transformMovieArray(String filename) {
 // Set the local time zone.
 NSTimeZone timeZone = NSTimeZone.timeZoneWithName("America/Los_Angeles", true);

 // Initialize the array.
 NSMutableArray movies = new NSMutableArray();
 movies.addObject(new Movie("Alien", "20th Century Fox", new NSTimestamp(1979, 10,
25, 0, 0, 0, timeZone)));
 movies.addObject(new Movie("Blade Runner", "Warner Brothers", new NSTimestamp(1982,
 1, 3, 0, 0, 0, timeZone)));
 movies.addObject(new Movie("Star Wars", "20th Century Fox", new NSTimestamp(1977,
12, 29, 0, 0, 0, timeZone)));

 // Transform the array.
// 3 XMLSerializer.transformObject(movies, filename, XMLSerializer.TRANSFORM_SIMPLE);

}

Add the following code lines to Application's constructor and build and run the application.

// Transform an array of Movie objects.
transformMovieArray("/tmp/MoviesTransformed.xml");

Listing 5-8 shows the product of the transformation. Notice how the transformation script (Listing B-3 (page
88)) replaced the reference to the studio of Star Wars (see Listing 3-14 (page 45)) with the correct value
(20th Century Fox).

Listing 5-8 The MoviesTransformed.xml file

<?xml version="1.0" encoding="UTF-8"?>
<content>
 <array>
 <Movie>
 <title>Alien</title>
 <studio>20th Century Fox</studio>
 <release_date>1979-10-25 07:00:00 Etc/GMT</release_date>
 </Movie>
 <Movie>
 <title>Blade Runner</title>

60 Transforming an Array of Movies
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

 <studio>Warner Brothers</studio>
 <release_date>1982-01-03 08:00:00 Etc/GMT</release_date>
 </Movie>
 <Movie>
 <title>Star Wars</title>
 <studio>20th Century Fox</studio>
 <release_date>1977-12-29 08:00:00 Etc/GMT</release_date>
 </Movie>
 </array>
</content>

Transforming an Array of Movies 61
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

62 Transforming an Array of Movies
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Transforming XML Documents

The following sections include the listings of the XML Schema file and DTD file used to validate XML documents
generated by NSXMLOutputStream.

XML Schema File

“The woxml.xsd file” shows the contents of the woxml.xsd file, located at http://www.apple.com/webob-
jects/5.2/schemas/woxml.xsd.

Listing A-1 The woxml.xsd file

<?xml version="1.0" encoding="US-ASCII"?>
<!--
(c) 2002, Apple Computer, Inc. All rights reserved.
This document and the product to which it pertains are distributed under license
restricting its use, copying, distribution, and decompilation. This document may
be reproduced and distributed but may not be changed without prior written
authorization of Apple Computer, Inc. (Apple) and its licensors, if any. Any
redistribution must retain the above copyright notice and this list of
conditions regarding its use. TO THE EXTENT PERMITTED BY LAW, THIS DOCUMENT IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS LICENSORS, IF
ANY, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Apple and WebObjects are trademarks
of Apple Computer, Inc. registered in the U.S. and other countries.
-->

<!--
This is the schema of WebObjects default XML serialization output.
-->
<schema targetNamespace="http://www.apple.com/webobjects/XMLSerialization"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:woxml="http://www.apple.com/webobjects/XMLSerialization"
 elementFormDefault="qualified">

 <annotation>
 <documentation xml:lang="en">
 Copyright 2002 Apple Computer. All rights reserved.
 </documentation>
 </annotation>

 <!--

XML Schema File 63
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

http://www.apple.com/webobjects/5.2/schemas/woxml.xsd
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd

 The root element.
 -->
 <element name="content">
 <complexType>
 <sequence>

 <!--
 An unordered list of elements. See "woxml:ContentType" for more details
 about what is allowed in this list.
 -->
 <group ref="woxml:ContentType" minOccurs="0" maxOccurs="unbounded" />

 <!--
 This type describes the exception that caused the serialization process
 to terminate. See "woxml:FinalExceptionType" for more information.
 -->
 <element name="finalException" type="woxml:FinalExceptionType" minOccurs="0"
maxOccurs="1" />
 </sequence>
 </complexType>
 </element>

 <!--
 This type defines the unordered list of elements that constitute the root element.
 It contains eight primitive types and three object types.
 -->
 <group name="ContentType">
 <choice>
 <element name="boolean" type="woxml:BooleanType" />
 <element name="byte" type="woxml:ByteType" />
 <element name="ch" type="woxml:CharType" />
 <element name="short" type="woxml:ShortType" />
 <element name="int" type="woxml:IntType" />
 <element name="long" type="woxml:LongType" />
 <element name="float" type="woxml:FloatType" />
 <element name="double" type="woxml:DoubleType" />
 <element name="string" type="woxml:StringType" />
 <element name="object" type="woxml:ObjectType" />
 <element name="array" type="woxml:ArrayType" />
 </choice>
 </group>

 <!--
 ///
 /////////////////// Basic Primitive Types Definition ////////////////////
 -->

 <!--
 If an element represents the content of a member that is part of a Java
 object, it has field attributes.
 -->
 <attributeGroup name="FieldAttributes">

 <!--
 Name of the field the element represents.
 -->
 <attribute name="field" type="string" />

64 XML Schema File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 <!--
 Sometimes a field of the same name and type exists somewhere in the
 class hierarchy that the object is an instance of; this attribute
 identifies the field unambiguously. The absence of this attribute means that the
 field is in the leaf class.
 -->
 <attribute name="classId" type="int" />
 </attributeGroup>

 <!--
 Primitive boolean type.
 -->
 <complexType name="BooleanType">
 <simpleContent>
 <extension base="boolean">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive byte type.
 -->
 <complexType name="ByteType">
 <simpleContent>
 <extension base="byte">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive char base type. Note that not all Unicode characters are
 representable in XML. Notably, \u0000 - \u001f, \u007f, \ufffe and \uffff
 cannot be written natively as XML data. All illegal characters,
 including those just mentioned, are written out in the familiar Java
 notation \uXXXX. For further explanation of illegal XML characters, consult
 the official XML recommendation from W3C.
 -->
 <simpleType name="char">
 <restriction base="string">

 <!--
 Length could be 6 because of illegal XML chars; for example, \u0001.
 -->
 <minLength value="1" fixed="true"/>
 <maxLength value="6" fixed="true"/>
 </restriction>

XML Schema File 65
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 </simpleType>

 <!--
 Primitive char type.
 -->
 <complexType name="CharType">
 <simpleContent>
 <extension base="woxml:char">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive short type.
 -->
 <complexType name="ShortType">
 <simpleContent>
 <extension base="short">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive integer type.
 -->
 <complexType name="IntType">
 <simpleContent>
 <extension base="int">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive long type.
 -->
 <complexType name="LongType">
 <simpleContent>
 <extension base="long">

 <!--

66 XML Schema File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive float type.
 -->
 <complexType name="FloatType">
 <simpleContent>
 <extension base="float">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 Primitive double type.
 -->
 <complexType name="DoubleType">
 <simpleContent>
 <extension base="double">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </extension>
 </simpleContent>
 </complexType>

 <!--
 ///
 ///////////////////////// Object Types Definition ///////////////////////
 -->

 <!--
 The "id" attribute refers to the identification number of an element
 representing an object. It is generated the first time the object is
 encountered during serialization. Subsequent references to the same object use
 the attribute "idRef" instead of a new element with the complete object
 description.

 Both "id" and "idRef" should be declared as type ID and IDREF, respectively.
 Unfortunately, the current XML specification states that values of those types
 have to start with a letter or underscore character (_). In the name of clarity,
 we chose not to use prefixes.

 For a null object, neither "id" nor "idRef" are required.

XML Schema File 67
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 -->
 <attributeGroup name="IdAttributes">
 <attribute name="id" type="long" />
 <attribute name="idRef" type="long" />
 </attributeGroup>

 <!--
 Attributes that belong to an element representing an object.
 -->
 <attributeGroup name="ObjectAttributes">

 <!--
 A key that can be used in XSLT to become the tag name for this content.
 -->
 <attribute name="key" type="string" />
 <attributeGroup ref="woxml:IdAttributes" />
 <attributeGroup ref="woxml:FieldAttributes" />
 </attributeGroup>

 <!--
 This element represents java.lang.String objects. Because of ambiguity related to
 \u0009(tab) and \u000a(newline), it uses the more cryptic notation ![CDATA[]]
 to ensure that these characters are represented correctly. If a string has no
 whitespace, it's simply represented as normal text.

 If the string contains illegal characters, they are represented by the "ch" element
 with \uXXXX as the text data. See the definition for "char" above for more details.
 Carriage return has to be encoded as <ch>\u000d</ch> because of reasons given
 in http://www.w3.org/TR/2000/REC-xml-20001006#sec-line-ends

 Examples:

 <string id="20">Testing<ch>\u0009</ch>illegal<ch>\u0001</ch>chars</string>

 <string id="39">Well Done!</string>

 <string id="42">There is a tab <!CDATA[]]> here</string>

 When you serialize a string using the writeUTF method, the corresponding string
 element does not have an "id" attribute and, thus, is not referenced by an "idRef"
 attribute elsewhere in the document. It is essentially "unshared".
 -->
 <complexType name="StringType" mixed="true">
 <sequence>
 <element name="ch" type="woxml:CharType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="woxml:ObjectAttributes" />
 </complexType>

 <!--
 An ordinary object, everything that is not a string or an array. If an object
 is null, it is represented as an empty element. If an object has already
 been written out before, with a unique "id" attribute, it is
 represented as an empty element with its "idRef" attribute set to the same value
 as the "id" of the original object. This eliminates the circular-object-graph problem.
 -->
 <complexType name="ObjectType">
 <sequence>

68 XML Schema File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 <!--
 When the element represents an object element, the first child element
 describes the class structure. The class can be a real class or a
 proxy class.
 -->
 <choice minOccurs="0" maxOccurs="1">
 <element name="class" type="woxml:ClassType" />
 <element name="proxy" type="woxml:ProxyType" />
 </choice>

 <!--
 The actual content of the object.
 -->
 <group ref="woxml:ObjectContentType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>

 <!--
 When "type" is present, it refers to two special, degenerated objects, which
 are instances of java.lang.Class and java.io.ObjectStreamClass. They are
 degenerated because they are represented in a more concise manner (only
 their content is written out). Ordinary objects have their class structure
 written out as well.
 -->
 <attribute name="type" type="string" />
 <attributeGroup ref="woxml:ObjectAttributes" />
 </complexType>

 <!--
 This defines the "class" element, which describes the class structure of an
 object. Multiple references to the same class in a document are handled using
 the mechanism described in Object Types Definition above.
 -->
 <complexType name="ClassType">
 <sequence>

 <!--
 A serializable field of a class.
 -->
 <element name="field" type="woxml:FieldType" minOccurs="0" maxOccurs="unbounded"
 />

 <!--
 The usual superclass description.
 -->
 <element name="super" type="woxml:ClassType" minOccurs="0" />
 </sequence>
 <attributeGroup ref="woxml:IdAttributes" />

 <!--
 This attribute gives more detail about the class, such as whether it is
 Serializable or Externalizable, whether it has overridden the writeObject
 method, and so on.

 The attribute is important only for deserialization using NSXMLInputStream; you
 can ignore it otherwise.
 -->
 <attribute name="flag" type="int" />

XML Schema File 69
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 <!--
 Name of the class. Even when the "idRef" attribute is present, this attribute
 is required for clarity (and perhaps ease of transformation using XSLT).
 -->
 <attribute name="name" type="string" use="required" />

 <!--
 This attribute identifies the unique, original class version of this class. It is
 used for version control and is tied to the SerialVersionUID
 in the Java Binary Serialization specification.

 The attribute is important only for deserialization using NSXMLInputStream; you
 can ignore it otherwise.
 -->
 <attribute name="suid" type="long" />
 </complexType>

 <!--
 A serializable field of a class.
 -->
 <complexType name="FieldType">
 <attribute name="name" type="string" use="required" />

 <!--
 The class type of the field.
 -->
 <attribute name="type" type="string" use="required" />
 </complexType>

 <!--
 Instead of a regular class, the type of an object could be
 java.lang.reflect.Proxy.
 -->
 <complexType name="ProxyType">
 <sequence>
 <element name="interface" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 <attributeGroup ref="woxml:IdAttributes" />
 </complexType>

 <!--
 Similar to "woxml:ContentType", with the additional choice "Ignore_EndDataBlock".
 -->
 <group name="ObjectContentType">
 <choice>
 <group ref="woxml:ContentType" />

 <!--
 This is important only for deserialization using NSXMLInputStream; you
 can ignore it otherwise.
 -->

70 XML Schema File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 <element name="Ignore_EndDataBlock" />
 </choice>
 </group>

 <!--
 This type describes the primitive array object in Java; for example, int[], which
 is a legitimate Java object. However, as opposed to an ordinary "object"
 element, there is no need for an elaborate class description. Instead, it is
 succinctly represented with the "type" attribute.

 Primitive types in an array are simply represented as text separated by a
 space (0x0020). If the character 0x0020 is present as part of an array of
 characters, it is escaped as \u0020.

 Examples:
 <array id="174" length="2" type="int[]">3 4 </array>
 <array id="200" length="6" type="char[]">a b \ \u0020 c d </array>

 Multiple references to the same array in a document are handled using
 the mechanism described in Object Types Definition above.
 -->
 <complexType name="ArrayType" mixed="true">
 <sequence>
 <group ref="woxml:ObjectComponentType" minOccurs="0" maxOccurs="1" />
 </sequence>

 <!--
 Length of the array.
 -->
 <attribute name="length" type="int" />

 <!--
 Array type. If the type is "base64", it means that Base64 encoding was used to
 output an array of bytes.

 Examples:
 int[] array of ints
 char[][] two-dimensional array of chars
 java.lang.String[] array of Strings
 -->
 <attribute name="type" type="string" />
 <attributeGroup ref="woxml:ObjectAttributes" />
 </complexType>

 <!--
 If the component type of an array object is an object type, each
 component is represented as a "string", "object" or "array" element.
 -->
 <group name="ObjectComponentType">
 <choice>
 <element name="string" type="woxml:StringType" minOccurs="0" maxOccurs="unbounded"
 />
 <element name="object" type="woxml:ObjectType" minOccurs="0" maxOccurs="unbounded"
 />
 <element name="array" type="woxml:ArrayType" minOccurs="0" maxOccurs="unbounded"
 />
 </choice>
 </group>

XML Schema File 71
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 <!--
 This type describes the exception that caused the serialization process
 to terminate.
 If the serialization has an exception that causes the process to abort,
 that exception is considered final and is written out.
 NSXMLInputStream can actually read in this final exception and make
 sense of the failure.
 -->
 <complexType name="FinalExceptionType">
 <sequence>
 <choice minOccurs="0" maxOccurs="1">
 <element name="class" type="woxml:ClassType" />
 <element name="proxy" type="woxml:ProxyType" />
 </choice>
 <group ref="woxml:ObjectContentType" minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 <attributeGroup ref="woxml:IdAttributes" />
 </complexType>

</schema>

DTD Document File

“The woxml.dtd file” shows the contents of woxml.dtd.

Listing A-2 The woxml.dtd file

<!--
(c) 2002, Apple Computer, Inc. All rights reserved.
This document and the product to which it pertains are distributed under license
restricting its use, copying, distribution, and decompilation. This document may
be reproduced and distributed but may not be changed without prior written
authorization of Apple Computer, Inc. (Apple) and its licensors, if any. Any
redistribution must retain the above copyright notice and this list of
conditions regarding its use. TO THE EXTENT PERMITTED BY LAW, THIS DOCUMENT IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS LICENSORS, IF
ANY, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Apple and WebObjects are trademarks
of Apple Computer, Inc. registered in the U.S. and other countries.
-->

<!--
This is the DTD of WebObjects default XML serialization output. There is an equivalent
XML Schema file (woxml.xsd) that is semantically tighter due to use of namespaces and
type definitions. You should use the XML Schema file whenever possible.
-->

<!--

72 DTD Document File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

///
////////////////////////// Entity Definition ////////////////////////////
-->

<!--
This entity defines the unordered list of elements that constitute the
root element. It contains eight primitive types and three object types.
-->
<!ENTITY % ContentType "(boolean | byte | ch | short | int | long | float | double |
string | object | array)" >

<!--
///
//////////////////////////// The Root Element ///////////////////////////
-->

<!ELEMENT content ((%ContentType;)*, finalException?)>

<!--
The root element has a few XML Schema attributes. We are faking them here.
-->
<!ATTLIST content
 xmlns CDATA #FIXED "http://www.apple.com/webobjects/XMLSerialization"
 xmlns:xsi CDATA #FIXED "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation CDATA #FIXED "http://www.apple.com/webobjects/XMLSerialization
http://www.apple.com/webobjects/5.2/schemas/woxml.xsd">

<!--
///
/////////////////// Basic primitive types definition ////////////////////
-->
<!--
Primitive boolean type.
-->
<!ELEMENT boolean (#PCDATA)>

<!--
key: A key that can be used in XSLT to become the tag name for this content.

field:
 Name of the field the element represents.

classId:
 Sometimes a field of the same name and type exists somewhere in the
 class hierarchy that the object is an instance of. The "classId" attribute
 identifies the field unambiguously. The absence of this attribute means that the
 field is in the leaf class.
-->
<!ATTLIST boolean
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive byte type.
-->
<!ELEMENT byte (#PCDATA)>
<!ATTLIST byte

DTD Document File 73
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive char type.
-->
<!ELEMENT ch (#PCDATA)>
<!ATTLIST ch
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive short type.
-->
<!ELEMENT short (#PCDATA)>
<!ATTLIST short
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive integer type.
-->
<!ELEMENT int (#PCDATA)>
<!ATTLIST int
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive long type.
-->
<!ELEMENT long (#PCDATA)>
<!ATTLIST long
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
Primitive float type.
-->
<!ELEMENT float (#PCDATA)>
<!ATTLIST float
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>
<!--
Primitive double type.
-->
<!ELEMENT double (#PCDATA)>
<!ATTLIST double
 key CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--

74 DTD Document File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

///
///////////////////////// Object Types Definition ///////////////////////
-->

<!--
This element represents java.lang.String objects. Because of ambiguity related to
\u0009(tab) and \u000a(newline), it uses the more cryptic notation ![CDATA[]]
to ensure that these characters are represented correctly. If a string has no
whitespace, it's simply represented as normal text.

If the string contains illegal characters, they are represented by the "ch" element
with \uXXXX as the text data. See the definition for "char" above for more details.
Carriage return has to be encoded as <ch>\u000d</ch> because of reasons given
in http://www.w3.org/TR/2000/REC-xml-20001006#sec-line-ends

Examples:

 <string id="20">Testing<ch>\u0009</ch>illegal<ch>\u0001</ch>chars</string>

 <string id="39">Well Done!</string>

 <string id="42">There is a tab <!CDATA[]]> here</string>

When you serialize a string using the writeUTF method, the corresponding string
element does not have an "id" attribute and, thus, is not referenced by an "idRef"
attribute elsewhere in the document. It is essentially "unshared".
-->
<!ELEMENT string (#PCDATA | ch)*>

<!--
key: A key that can be used in XSLT to become the tag name for this content.

id, idRef:
 The "id" attribute refers to the identification number of an element
 representing an object. It is generated when the object is encountered the
 first time during serialization. Subsequent references to the same object use
 the attribute "idRef" instead of a new element with the complete object
 description.

 Both "id" and "idRef" should be declared as type ID and IDREF respectively.
 Unfortunately, the current XML specification insists that values of those types
 have to start with a letter or an underscore character (_). In the name of clarity,
 we chose not to use prefixes.

 For a null object, neither "id" nor "idRef" are required.

field:
 Name of the field the element represents.

classId:
 Sometimes a field of the same name and type exists somewhere in the
 class hierarchy that the object is an instance of. The "classId" attribute
 identifies the field unambiguously. The absence of this attribute means that the
 field is in the leaf class.
-->
<!ATTLIST string
 key CDATA #IMPLIED

DTD Document File 75
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 id CDATA #IMPLIED
 idRef CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>
<!--
An ordinary object, everything that is not a string or an array. If an object
is null, it will be represented as an empty element. If an object has already
been written out before, with a unique "id" attribute, it is
represented as an empty element with its "idRef" attribute set to
the same value as the "id" of the original object. This eliminates the
circular-object-graph problem.

When the element represents an object element, the first child element
describes the class structure. The class can be a real class or a
proxy class.
-->
<!ELEMENT object ((class | proxy)?, (%ContentType; | Ignore_EndDataBlock)*)>

<!--
type:
 When type is present, it refers to two special, degenerated objects, which
 are instances of java.lang.Class and java.io.ObjectStreamClass. They are
 degenerated because they are represented in a more concise manner (only
 their content is written out). Ordinary objects have their class structure
 written out as well.
-->
<!ATTLIST object
 type CDATA #IMPLIED
 key CDATA #IMPLIED
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED>

<!--
This defines the "class" element, which describes the class structure of an
object. Multiple references to the same class in a document are handled using
the mechanism described in Object Types Definition above.
-->
<!ELEMENT class (field*, super?)>

<!--
flag:
 This attribute gives more detail about the class, such as whether it is
 Serializable or Externalizable, whether it has overridden the writeObject
 method, and so on.

 The attribute is important only for deserialization using NSXMLInputStream; you
 can ignore it otherwise.

name:
 Name of the class. Even if the "idRef" attribute is present, this
 attribute is required for clarity (and perhaps ease of transformation using
 XSLT).

suid:
 This attribute identifies the unique, original class version of this class.
 It is used for version control and is tied to the SerialVersionUID

76 DTD Document File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

 in the Java Binary Serialization specification.

 The attribute is important only for deserialization using NSXMLInputStream; you
 can ignore it otherwise.
-->
<!ATTLIST class
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED
 flag CDATA #IMPLIED
 name CDATA #IMPLIED
 suid CDATA #IMPLIED>
<!--
A serializable field of a class.
-->
<!ELEMENT field EMPTY>

<!--
type:
 The class type of the field.
-->
<!ATTLIST field
 name CDATA #REQUIRED
 type CDATA #REQUIRED>

<!--
The usual superclass description.
-->
<!ELEMENT super (field*, super?)>
<!ATTLIST super
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED
 flag CDATA #IMPLIED
 name CDATA #IMPLIED
 suid CDATA #IMPLIED>

<!--
Instead of a regular class, the type of an object could be
java.lang.reflect.Proxy.
-->
<!ELEMENT proxy (interface+)>
<!ATTLIST proxy
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED>

<!ELEMENT interface EMPTY>
<!ATTLIST interface
 name CDATA #REQUIRED>

<!--
This element describes the primitive array object in Java; for example, int[], which is
a legitimate Java object. However, as opposed to an ordinary "object"
element, there is no need for an elaborate class description. Instead, it is
succinctly represented with the "type" attribute.

Primitive types in an array are simply represented as text separated by a
space (0x0020). If the character 0x0020 is present as part of an array of
characters, it is escaped as \u0020.

DTD Document File 77
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

Examples:
<array id="174" length="2" type="int[]">3 4 </array>
<array id="200" length="6" type="char[]">a b \ \u0020 c d </array>

Multiple references to the same array in a document are handled using
the mechanism described in Object Types Definition above.
-->
<!ELEMENT array (#PCDATA | string | object | array)*>

<!--
length:
 Length of the array.

type:
 Array type. If the type is "base64", it means that Base64 encoding was used to
 output an array of bytes.

 Examples:
 int[] array of ints
 char[][] two-dimensional array of chars
 java.lang.String[]array of Strings
-->
<!ATTLIST array
 key CDATA #IMPLIED
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED
 field CDATA #IMPLIED
 classId CDATA #IMPLIED
 length CDATA #IMPLIED
 type CDATA #IMPLIED>
<!--
This element is important only for deserialization using NSXMLInputStream; you
can ignore it otherwise.
-->
<!ELEMENT Ignore_EndDataBlock EMPTY>

<!--
This type describes the exception that caused the serialization process
to terminate.
If the serialization has an exception that causes the process to abort,
that exception is considered final and is written out.
NSXMLInputStream can actually read in this final exception and make
sense of the failure.
-->
<!ELEMENT finalException ((class | proxy)?, (%ContentType; | Ignore_EndDataBlock)*)>
<!ATTLIST finalException
 id CDATA #IMPLIED
 idRef CDATA #IMPLIED>

78 DTD Document File
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

XML Schema and DTD Files

This appendix contains the listings of the example serialization utility classes used in “Serializing Objects and
Data” (page 27) and “Transforming XML Documents” (page 55) and the example transformation script,
which is also used in the transformation of XML documents.

BinarySerialization.java

Listing B-1 shows the implementation of the BinarySerialization example class.

Listing B-1 BinarySerializer.java class

import com.webobjects.appserver.*;
import com.webobjects.foundation.*;
import com.webobjects.eocontrol.*;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.lang.ClassNotFoundException;

/**
 * Manages serialization and deserialization of objects
 * to and from binary files.
 */
public class BinarySerializer {
 /**
 * Encapsulates a file stream and an object stream (a channel).
 */
 private static class Channel {
 protected Object file_stream;
 protected Object object_stream;
 protected boolean input_stream;

 Channel(Object file_stream, Object object_stream, boolean input_stream) {
 this.file_stream = file_stream;
 this.object_stream = object_stream;
 this.input_stream = input_stream;
 }
 }

 /**
 * Stores open channels.
 */

BinarySerialization.java 79
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 private static NSMutableDictionary channels = new NSMutableDictionary();

 /**
 * Directory in which serialized data intended for
 * deserialization is stored.
 */
 private static final String FILE_PREFIX = "/tmp/";

 /**
 * Suffix (including extension) of files used to store serialized data.
 */
 private static final String FILE_SUFFIX = "_data.binary";

 /**
 * Serializes data to a file.
 *
 * @param source object to serialize
 * @param identifier file identifier for deserialization
 * (name of the file without the extension)
 *
 * @return <code>true</code> when the process succeeds.
 */
 public static boolean serializeObject(Object source, String identifier) {
 ObjectOutputStream binary_stream;
 String filename = FILE_PREFIX + identifier + FILE_SUFFIX;
 boolean success = false;

 try {
 // Create a stream to the output file.
 binary_stream = (ObjectOutputStream)BinarySerializer.openStream(filename,
false);

 // Serialize data to output stream.
 binary_stream.writeObject(source);

 // Close the stream.
 binary_stream.flush();
 closeStream(filename);

 success = true;
 }

 catch (IOException e) {
 e.printStackTrace();
 }

 return success;
 }

 /**
 * Deserializes data from a file.
 *
 * @param identifier file identifier (name of the file
 * without the extension)
 *
 * @return deserialized object.
 */
 public static Object deserializeObject(String identifier) {

80 BinarySerialization.java
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 ObjectInputStream binary_stream;
 String filename = FILE_PREFIX + identifier + FILE_SUFFIX;
 Object object = null;

 try {
 // Create a stream to the input file.
 binary_stream = (ObjectInputStream)openStream(filename, true);

 // Deserialize data from input stream.
 object = (Object)binary_stream.readObject();

 // Close the stream.
 closeStream(filename);
 }

 catch (IOException e) {
 e.printStackTrace();
 }
 catch (ClassNotFoundException e) {
 e.printStackTrace();
 }

 return object;
 }

 /**
 * Opens an output stream.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open.
 */
 public static ObjectOutputStream openOutputStream(String filename) throws IOException
 {
 return (ObjectOutputStream)openStream(filename, false);
 }

 /**
 * Opens an input stream.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open.
 */
 public static ObjectInputStream openInputStream(String filename) throws IOException
 {
 return (ObjectInputStream)openStream(filename, true);
 }

 /**
 * Opens a file stream to or from a file and a corresponding
 * output or input object stream.
 * The method adds the pair of streams to an internal dictionary
 * for use by the <code>closeStream</code> method.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open.

BinarySerialization.java 81
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 * @param input_stream indicates whether the stream returned
 * is an input stream or an output stream:
 * <code>true</code> for an input stream and
 * <code>false</code> for an output stream.
 *
 * @return object stream, <code>null</code> when the stream could not
 * be created.
 */
 private static Object openStream(String filename, boolean input_stream) throws
IOException {
 BufferedOutputStream file_output_stream = null;
 BufferedInputStream file_input_stream = null;
 Channel channel;
 Object binary_stream = null;

 if (input_stream) {
 // Create an input stream from the file.
 file_input_stream = new BufferedInputStream(new FileInputStream(filename));

 // Create object-input stream.
 binary_stream = new ObjectInputStream(file_input_stream);

 channel = new Channel(file_input_stream, binary_stream, input_stream);
 } else {
 // Create an output stream to the file.
 file_output_stream = new BufferedOutputStream(new FileOutputStream(filename));

 // Create object-output stream.
 binary_stream = new ObjectOutputStream(file_output_stream);

 channel = new Channel(file_output_stream, binary_stream, input_stream);
 }
 channels.setObjectForKey(channel, filename);

 return binary_stream;
 }

 /**
 * Closes an object stream and its corresponding file stream.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the streams to close.
 */
 public static void closeStream(String filename) throws IOException {
 Channel channel = (Channel)channels.objectForKey(filename);

 if (channel.input_stream) {
 ((ObjectInputStream)channel.object_stream).close();
 ((BufferedInputStream)channel.file_stream).close();
 } else {
 ((ObjectOutputStream)channel.object_stream).close();
 ((BufferedOutputStream)channel.file_stream).close();
 }

 channels.removeObjectForKey(filename);
 }
}

82 BinarySerialization.java
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

XMLSerializer.java

Listing B-2 shows the implementation of the XMLSerializer example class.

Listing B-2 XMLSerializer.java class

import com.webobjects.appserver.WOApplication;
import com.webobjects.appserver.WOResourceManager;
import com.webobjects.eocontrol.*;
import com.webobjects.foundation.*;
import com.webobjects.foundation.xml.*;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import javax.xml.transform.Transformer;

/**
 * Manages serialization and deserialization of objects
 * to and from XML files.
 */
public class XMLSerializer extends Object {
 /**
 * Encapsulates a file stream and an object stream (a channel).
 */
 private static class Channel {
 protected Object file_stream;
 protected Object object_stream;
 protected boolean input_stream;

 Channel(Object file_stream, Object object_stream, boolean input_stream) {
 this.file_stream = file_stream;
 this.object_stream = object_stream;
 this.input_stream = input_stream;
 }
 }

 /**
 * Identifier for a simple transformation.
 */
 public static final String TRANSFORM_SIMPLE = "SimpleTransformation";

 /**
 * Directory where serialized data is stored.
 */
 private static final String FILE_PREFIX = "/tmp/";

 /**
 * Suffix (including extension) of files used to store serialized data.

XMLSerializer.java 83
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 */
 private static final String FILE_SUFFIX = "_data.xml";

 /**
 * Stores open channels.
 */
 private static NSMutableDictionary channels = new NSMutableDictionary();

 /**
 * Serializes data to a file.
 *
 * @param source object to serialize
 * @param identifier file identifier for deserialization
 * (name of the file without its path or extension)
 *
 * @return <code>true</code> when the process succeeds.
 */
 public static boolean serializeObject(Object source, String identifier) {
 String filename = FILE_PREFIX + identifier + FILE_SUFFIX;

 boolean success = transformObject(source, filename, null);

 return success;
 }

 /**
 * Deserializes data from a file.
 *
 * @param identifier file identifier
 * (name of the file without the extension)
 *
 * @return deserialized object.
 */
 public static Object deserializeObject(String identifier) {
 String filename = FILE_PREFIX + identifier + FILE_SUFFIX;
 Object object = null;

 try {
 // Create a stream from the input file.
 NSXMLInputStream stream = (NSXMLInputStream)openStream(filename, true, null);

 // Deserialize data from input stream.
 object = stream.readObject();

 // Close stream
 closeStream(filename);
 }

 catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 catch (ClassNotFoundException e) {
 e.printStackTrace();
 }

84 XMLSerializer.java
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 return object;
 }

 /**
 * Serializes objects and data to a stream, which can also be
 * transformed. The product of the process is written to a file.
 *
 * @param source object to serialize or transform
 * @param filename filename of the target document,
 * including path and extension
 * @param transformation type of transformation to perform;
 * indicates which transformation script to use.
 * When <code>null</code>, no transformation
 * is to be performed, only serialization.
 *
 * @return <code>true</code> when the process succeeds.
 */
 public static boolean transformObject(Object source, String filename, String
transformation) {
 boolean success = false;

 try {
 // Create a stream to the output file.
 NSXMLOutputStream stream = (NSXMLOutputStream)openStream(filename, false,
transformation);

 // Serialize data to object output stream.
 stream.writeObject(source);

 stream.flush();
 closeStream(filename);

 success = true;
 }

 catch (IOException e) {
 e.printStackTrace();
 }

 return success;
 }

 /**
 * Opens an output stream.
 *
 * @param filename fully qualified filename of the target
 * or source file; identifies the channel to open.
 * @param transformation type of transformation to perform
 * (indicates which transformation file to use)
 */
 public static NSXMLOutputStream openOutputStream(String filename, String
transformation) throws IOException {
 return (NSXMLOutputStream)openStream(filename, false, transformation);
 }

 /**
 * Opens an input stream.
 *

XMLSerializer.java 85
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 * @param filename fully qualified filename of the target
 * or source file; identifies the channel to open.
 */
 public static NSXMLInputStream openInputStream(String filename) throws IOException
 {
 return (NSXMLInputStream)openStream(filename, true, null);
 }

 /**
 * Opens a file stream to or from a file and a corresponding
 * output or input object stream.
 * Adds the pair of streams to an internal dictionary for use by
 * the <code>closeStream</code> method.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to open
 * @param input_stream indicates whether the stream returned
 * is an input stream or an output stream:
 * <code>true</code> for an input stream and
 * <code>false</code> for an output stream.
 * @param transformation type of transformation to perform;
 * indicates which transformation script to use.
 * When <code>null</code> no transformation
 * is performed, only serialization.
 *
 * @return object stream, <code>null</code> when the stream
 * could not be created.
 */
 private static Object openStream(String filename, boolean input_stream, String
transformation) throws IOException {
 BufferedOutputStream file_output_stream = null;
 BufferedInputStream file_input_stream = null;
 Channel channel;
 Object xml_stream = null;

 if (input_stream) {
 // Create an input stream from the file.
 file_input_stream = new BufferedInputStream(new FileInputStream(filename));

 // Create object-input stream.
 xml_stream = new NSXMLInputStream(file_input_stream);

 channel = new Channel(file_input_stream, xml_stream, input_stream);
 } else {
 // Create an output stream to the file.
 file_output_stream = new BufferedOutputStream(new FileOutputStream(filename));

 // Create object-output stream.
 if (transformation != null) {
 xml_stream = initializeTransformer(file_output_stream, transformation);
 } else {
 xml_stream = new NSXMLOutputStream(file_output_stream);
 }

 // Set the format of the output document (XML).
 NSXMLOutputFormat format = new NSXMLOutputFormat(true);
 ((NSXMLOutputStream)xml_stream).setOutputFormat(format);

86 XMLSerializer.java
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 channel = new Channel(file_output_stream, xml_stream, input_stream);
 }
 channels.setObjectForKey(channel, filename);

 return xml_stream;
 }

 /**
 * Closes an object stream and its corresponding file stream.
 *
 * @param filename fully qualified filename of the
 * target or source file; identifies
 * the channel to close
 */
 public static void closeStream(String filename) throws IOException {
 Channel channel = (Channel)channels.objectForKey(filename);

 if (channel.input_stream) {
 ((NSXMLInputStream)channel.object_stream).close();
 ((BufferedInputStream)channel.file_stream).close();
 } else {
 ((NSXMLOutputStream)channel.object_stream).close();
 ((BufferedOutputStream)channel.file_stream).close();
 }

 channels.removeObjectForKey(filename);
 }

 /**
 * Computes the URI of a transformation file.
 *
 * @param transformation type of transformation (does not
 * include the .xsl extension);
 * for example, "SimpleTransformation"
 *
 * @return relative path to the transformation file.
 */
 private static String transformationURI(String transformation) {
 WOApplication application = WOApplication.application();
 WOResourceManager resource_manager = application.resourceManager();
 String transformationURI =
resource_manager.pathForResourceNamed("SimpleTransformation" + ".xsl", null, null);

 return transformationURI;
 }

 /**
 * Initializes the transformer.
 *
 * @param file_stream target file stream
 * @param transformationtype of transformation to perform;
 * indicates which transformation script to use
 *
 * @throws IOException when there's a problem initializing
 * the transformer.
 */

XMLSerializer.java 87
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 private static NSXMLOutputStream initializeTransformer(BufferedOutputStream
file_stream, String transformation) throws IOException {
 NSXMLOutputStream xml_stream = new NSXMLOutputStream(file_stream, new
File(transformationURI(transformation)));
 Transformer transformer = ((NSXMLOutputStream)xml_stream).transformer();
 transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "2");

 return xml_stream;
 }
}

SimpleTransformation.xsl

Listing B-3 shows an example of an XSLT file that is used by an XML transformer or XSLT processor to transform
an XML document generated by NSXMLOutputStream into another XML document.

Listing B-3 SimpleTransformation.xsl file

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:woxml="http://www.apple.com/webobjects/XMLSerialization"
 exclude-result-prefixes="woxml"
 version="1.0">

<xsl:output method="xml" encoding="UTF-8" omit-xml-declaration="no" indent = "yes"/>

<!-- ** Constants ** -->
<!-- Indicates how dictionaries are encoded: key-value or two-array. -->
<xsl:variable name="dictionary_encoding">
 <xsl:value-of select="'key-value'" />
</xsl:variable>

<!-- ** Utilities ** -->
<!-- Gets the base class name from a fully-qualified class name. -->
<xsl:template name="basename">
 <xsl:param name="path"/>
 <xsl:choose>
 <xsl:when test="contains($path, '.')">
 <xsl:call-template name="basename">
 <xsl:with-param name="path" select="substring-after($path, '.')"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$path"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<!-- ** Element Processing ** -->
<!-- Processes the tree root. -->
<xsl:template match="/">
 <xsl:element name="content">
 <xsl:apply-templates select="woxml:content" />

88 SimpleTransformation.xsl
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 </xsl:element>
</xsl:template>
<!-- Processes the root element (woxml:content). -->
<xsl:template match="woxml:content">
 <xsl:apply-templates select="*"/>
</xsl:template>

<!-- Processes woxml:object elements. -->
<xsl:template name="process_object" match="woxml:object">
 <!-- extract class name -->
 <xsl:variable name="className">
 <xsl:value-of select="woxml:class/@name" />
 </xsl:variable>

 <!-- get base class name -->
 <xsl:variable name="class">
 <xsl:call-template name="basename">
 <xsl:with-param name="path" select="$className"/>
 </xsl:call-template>
 </xsl:variable>

 <!-- determine the element name -->
 <xsl:variable name="tag">
 <xsl:choose>
 <xsl:when test="$class='NSDictionary' or $class='NSMutableDictionary'">
 <xsl:value-of select="'dictionary'" />
 </xsl:when>
 <xsl:when test="$class='NSArray' or $class='NSMutableArray'">
 <xsl:value-of select="'array'" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="$class" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- create the element -->
 <xsl:element name="{$tag}">
 <xsl:choose>
 <xsl:when test="$class='NSDictionary' or $class='NSMutableDictionary'">
 <xsl:call-template name="process_dictionary" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:call-template name="process_object_content" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
</xsl:template>

<!-- Processes the content of a woxml:object element. -->
<xsl:template name="process_object_content">
 <xsl:apply-templates select="*" />
</xsl:template>

<!-- Processes woxml:class elements. -->
<xsl:template match="woxml:class" />

<!-- Processes woxml:array elements. -->

SimpleTransformation.xsl 89
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

<xsl:template match="woxml:array">
 <xsl:for-each select="woxml:object">
 <xsl:call-template name="process_object" />
 </xsl:for-each>
</xsl:template>

<!-- Processes primitive-type and woxml:string elements. -->
<xsl:template match="woxml:boolean|woxml:byte|woxml:ch|woxml:short|woxml:int|
 woxml:long|woxml:float|woxml:double|woxml:string">
 <!-- determine the element name -->
 <xsl:variable name="element_name">
 <xsl:choose>
 <xsl:when test="@key">
 <xsl:value-of select="@key" />
 </xsl:when>
 <xsl:when test="@field">
 <xsl:value-of select="@field" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="name()" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>

 <!-- store possible reference to another element -->
 <xsl:variable name="ref">
 <xsl:value-of select="@idRef" />
 </xsl:variable>

 <!-- create the element -->
 <xsl:element name="{$element_name}">
 <xsl:choose>
 <xsl:when test="string(number($ref))='NaN'">
 <!-- $ref is not a number, therefore there's no reference -->
 <xsl:value-of select="." />
 </xsl:when>
 <xsl:otherwise>
 <!-- $ref is a number and, by extension, a reference -->
 <xsl:value-of select="//*[@id=$ref]" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:element>
</xsl:template>

<!-- Processes woxml:object elements that contain a NSDictionary or NSMutableDictionary.
 -->
<xsl:template name="process_dictionary">
 <xsl:choose>
 <xsl:when test="$dictionary_encoding='key-value'">
 <!-- output the two arrays as key-value pairs within item elements -->
 <xsl:for-each select="woxml:array[1]">
 <xsl:for-each select="*">
 <xsl:variable name="current_position">
 <xsl:value-of select="position()" />
 </xsl:variable>

 <xsl:element name="item">
 <xsl:element name="key">

90 SimpleTransformation.xsl
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

 <xsl:apply-templates select="." />
 </xsl:element>

 <xsl:element name="value">
 <xsl:apply-templates
select="ancestor::*[position()=2]/child::woxml:array[2]/child::*[position()=$current_position]"
 />
 </xsl:element>
 </xsl:element>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <!-- output the two arrays on separate nodes -->
 <xsl:for-each select="woxml:array">
 <xsl:element name="array">
 <xsl:apply-templates select="*"/>
 </xsl:element>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

</xsl:stylesheet>

SimpleTransformation.xsl 91
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

92 SimpleTransformation.xsl
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Code Listings

This table describes the changes to WebObjects XML Serialization Guide.

NotesDate

Changed the title from "XML Serialization."2005-08-11

Removed references that contained broken links.2004-12-02

Made editorial changes.2003-02-01

First version of this document.2002-10-01

93
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

94
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

DTD (document type definition) File that describes
the structure of an XML document.

JAXP (Java API for XML Processing) Specification
that provides API for processing XML documents.

NSXMLInputStream WebObjects class that
deserializes untransformed XML documents produced
by NSXMLOutputStream into objects.

NSXMLOutputFormat WebObjects class that
encapsulates format properties for an
NSXMLOutputStream object.

NSXMLOutputStream WebObjects class that
serializes objects and data into XML documents.

Project Builder Application used to manage the
development of a WebObjects application or
framework.

schema File that describes the structure of an XML
document. This file can be a DTD file or an XML
Schema file.

SGML (Standard Generalized Markup
Language) Language that allows the creation of
sharable documents with a formal type and element
structure.

URI (Uniform Resource Identifier) The Web naming
and addressing technology. A URI is a string of
characters that identify a resource. Some typical URI
schemes are HTTP and FTP.

XML (Extensible Markup Language) Markup
language used to represent structured information
in a standard way.

XML namespaces Specification that allows qualifying
element names by associating element-name prefixes
to URIs.

XML parser Software engine that reads and writes
XML documents.

XML Schema Specification used to describe the
structure of XML documents. XML Schema is more
powerful than document type definition (DTD)
because it includes facilities to specify the data type
of elements and it is based on XML.

XSLT (Extensible Stylesheet Language
Transformations Specification that allows the
conversion of an XML document into another XML
document or any other type of document.

XSLT stylesheet File written in XSLT that specifies
how a source document is to be converted into
another document.

XSLT transformer Software that converts an XML
document into another document using an XSLT
stylesheet.

95
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Glossary

96
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

B

benefits of XML serialization 15
binary serialization 17, 27–38
BinarySerializer class 28–38, 79–83

C

class versions 23
classes

BinarySerializer 28, 38, 79, 83
NSXMLInputStream 15, 17, 19
NSXMLOutputFormat 46, 56
NSXMLOutputStream 15, 17, 18, 44
XMLSerializer 38, 45, 55, 83–88

custom objects
binary serialization 33, 38
transformation 60
XML serialization 44, 45

cyclic references 18, 45

D

deserialization
custom objects 33–38, 44–45
InvalidObjectException 21
performance 53
primitive types 30, 32, 41, 43
process 19–20
validation 20, 21, 22, 24, 52

DTD files 12–13, 49, 72

E

encoding property 46
exceptions

InvalidObjectException 21
NotSerializableException 20

F

format of output 46–47

I

indenting property 46, 56
InvalidObjectException exception 21

J

JAXP 17, 52, 53

K

keys
using to serialize 24, 43–44
using to transform primitive types 58–59

M

multiple class versions 23
multiple references 18, 45

N

namespaces 13, 14
NotSerializableException exception 20
NSXMLInputStream class 15, 17, 19
NSXMLOutputFormat class 46, 56

97
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Index

NSXMLOutputStream class 15, 17, 18, 44
NSXMLValidation property 20, 24, 53

O

omitXMLDeclaration property 46

P

parsers
Xerces 52

performance 53
primitive types

binary serialization 30, 32
transforming 58, 59
XML serialization 41, 43

projects
Serialization 27, 47
Transformation 60

properties
encoding 46
indenting 46, 56
NSXMLValidation 20, 24, 53
omitXMLDeclaration 46
version 46

S

schema files 12, 49, 63, 72
security

of applications 24–25
of data 20–21

serialization 17–24
XML. See XML Serialization
binary 17, 27, 38
indenting 46, 56
overview of 18
performance 53
primitive types 30–32, 41–43

Serialization project 27–47
SimpleTransformation.xsl script 50, 88
strings, serializing arrays of 28–30, 39–41
stylesheets, XSLT 15

T

transformation 49–53, 55–60

example code 55–57
introduced 15
of custom objects 60
overview of 50–52
performance 53

Transformation project
transformer, Xalan 52

V

validateObject method 22
validation

of data by validateObject method 24
of document by parser 20, 21–22, 52

version property 46

X

Xalan transformer 52
Xerces parser 52
XML declarations 11
XML documents 11–13

example 11
valid 12
well-formed 11

XML namespaces 13–14
XML Schema files 12, 49, 63–72
XML serialization

benefits of 15
example of 38–47
overview of 18

XMLSerializer class 38–45, 55, 83, 88
XSLT 50–52

defined 15
stylesheet 15

98
2005-08-11 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

	WebObjects XML Serialization Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	XML Serialization Overview
	XML Documents
	XML Namespaces
	Benefits of XML Serialization
	Transforming XML Documents

	XML Serialization Essentials
	Serialization Process
	Deserialization Process
	Secure Serialization
	Validation of Deserialized Data
	Multiple Class Version Support
	Serialization With Keys
	Application Security

	Serializing Objects and Data
	Binary Serialization Example
	Creating the Serialization Project
	Adding the BinarySerializer Class
	Serializing an NSArray of Strings
	Serializing Primitive-Type Values
	Serializing Custom Objects

	XML Serialization Example
	Adding the XMLSerializer Class
	Serializing an NSArray of Strings to an XML Document
	Serializing Primitive-Type Values to an XML Document
	Serializing With Keys
	Serializing Custom Objects to an XML Document
	Formatting Serialized Output

	XML Transformation
	Structure of Serialized Data in WebObjects
	XSL Transformations
	XML Parsers and XSLT Processors
	Serialization and Transformation Performance

	Transforming XML Documents
	The Transformation Process
	Creating the Transformation Project
	Transforming Primitive-Type Values Using Keys
	Transforming an Array of Movies

	Appendix A: XML Schema and DTD Files
	XML Schema File
	DTD Document File

	Appendix B: Code Listings
	BinarySerialization.java
	XMLSerializer.java
	SimpleTransformation.xsl

	Revision History
	Glossary
	Index
	B
	C
	D
	E
	F
	I
	J
	K
	M
	N
	O
	P
	S
	T
	V
	X

