

PRELIMINARY

12/17/97
Technical Publications
© Apple Computer, Inc. 1997

M A C O S R U N T I M E
F O R J A V A

Programming Note

Using JDirect to Access Mac OS
Code From Java

For MRJ 2.0

12/17/97

 Apple Computer, Inc.

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of
any documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to
ensure that the information in this
manual is accurate. Apple is not
responsible for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are
registered trademarks of
Linotype-Hell AG and/or its
subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER,
ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of such
damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Contents

12/17/97

 Apple Computer, Inc.

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Using JDirect to Access Mac OS
Code From Java
Calling Mac OS Code Using JDirect 5
Parameter Passing between Java and C 7
Using Wrapper Objects 9

Accessing Memory 9
Representing Strings 12
Representing C Data Structures 12
3

C H A P T E R 1

4 Contents

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java 1

JDirect is a programming interface that allows you to access Mac OS C code
from a Java™ application. You can use JDirect if you have either of the
following needs:

■ You want to access Mac OS system functions from your Java application

■ You want your Java application to use older legacy code written for the Mac
OS platform

For example, to be a good Mac OS citizen, an application must have a bundle
(creator and type registry) so the Finder will know which application to launch
when a document is double clicked. You can add a 'BNDL' resource and reserve
a unique creator code for your application (and attach them using JBindery),
but if you are writing your application in Java, you cannot ensure that
documents your application creates will have the correct creator and type.

Note
You can access many basic Mac OS Toolbox functions
using MRJToolkit, which uses JDirect to handle calls.
Before using JDirect, you should make sure that
MRJToolkit does not already handle the functionality that
you need. ◆

You can use JDirect with any Java application that can run in the Mac OS
Runtime for Java (MRJ) Java environment.

Calling Mac OS Code Using JDirect 1

Traditionally, if you wanted to access Mac OS methods from Java code, you had
to take the following steps:

1. Create a Java class that defines your Mac OS function.

2. Use the javah tool on the class file to create a C stub function that calls the
Mac OS function.

3. Create a shared library that exports the stub function.

4. Call the System.LoadLibrary method from your Java application to load the
library before making the call to the Mac OS function.
Calling Mac OS Code Using JDirect 5
12/17/97 Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

In addition to these steps, you would have the overhead of having to maintain
separate Java and C projects, and you would have to run javah and build a new
stub library every time you added a new method.

JDirect lets you access Mac OS code with minimal overhead and no extra C
code. To use JDirect to access Mac OS code, you must take the following steps:

1. Create a class that implements com.apple.NativeObject.

2. Declare your Mac OS methods within the class. These methods must be
static, and they must have the same case-sensitive name as the
corresponding symbol exported from the Mac OS shared library fragment.

3. Define a static String array named kNativeLibraryNames within the class.
This array should contain the names of the shared library fragments that
export the desired symbols.

IMPORTANT

The shared library fragment name is not necessarily the
same as the name of the shared library file (for example,
several different shared library fragments may be
packaged in one shared library file). For more information
about fragments, see Mac OS Runtime Architectures. ▲

Listing 1-1 shows an example of using JDirect to call the Mac OS Toolbox
function SysBeep contained in the fragment InterfaceLib.

Listing 1-1 Calling SysBeep from Java code

import com.apple.NativeObject;

public class Beeper implements NativeObject {

public native static void SysBeep(short duration);
private static String[] kNativeLibraryNames = { "InterfaceLib" };
}

When a class is loaded, MRJ checks to see if the class implements a special
interface, com.apple.NativeObject. If it does, any Mac OS methods are linked
from the shared libraries named by the String array, kNativeLibraryNames. This
list of shared libraries is local to each class, so even if two different classes have
6 Calling Mac OS Code Using JDirect

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

Mac OS methods of the same name, each class will get the method from its
own private list of libraries.

In cases where you might not be sure which library exports a symbol, you can
include all the possible candidates in the String array. JDirect then searches the
libraries in the order they are listed.

Note
You can subclass any class that implements
com.apple.NativeObject. ◆

Parameter Passing between Java and C 1

When the Mac OS method is called, the actual signature of the method (the
types of its arguments) is used to build a parameter list for the Mac OS
function. All of the basic Java types – byte, char, short, int, long, float, and
double – are passed as is, by value, in the order specified. Table 1-1 shows the
correspondence between Java and Mac OS C data types.

IMPORTANT

You should not use the Java long type (long long in C) as a
return value. ▲

Table 1-1 Java versus C data types

Java Type C Type

boolean Boolean or unsigned char

byte signed char

char unsigned short

short signed short

int signed long

long signed long long

float float

double double
Parameter Passing between Java and C 7
12/17/97 Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

Array references are passed as a pointer to the first element of the array.

Table 1-2 shows some examples of C function declarations and their
corresponding Java versions.

Any objects (such as data structures) must be encapsulated in a “wrapper,”
which hides the representation of the Mac OS object. If you choose not to use
the Apple-defined wrapper classes described in “Using Wrapper Objects”
(page 9) to encapsulate your objects, you must create your own. That is, you
must define any objects as byte[] arrays and enforce a field alignment within it.
Then, to access any fields (that is, elements in the array), you must define
additional methods to read them (for example, getByteAt(offset)).

IMPORTANT

Your Mac OS function or method should not retain object
and array pointer references, as these are likely to become
invalid soon after the call. This is because Java garbage
collectors are free to compact the heap and move the
contents of objects around in memory. Some objects, such
as windows, graphics ports, and anything represented as a
handle, must be managed in a separate heap, using
wrapper objects. ▲

Table 1-2 Some C function declarations and their Java versions.

C Version Java Version

extern short MyGetResCount(
 ResType theType);

static native short
 MyGetResCount(int theType);

extern Handle MyGetResource(
 ResType theType, short theID);

static native int
 MyGetResource(int theType,
 short theID);

extern long MyHashFunction (
 const char* cString);

static native int
 MyHashFunction(byte [] cString);

extern Boolean MyCompareString(
 ConstStr255Param s1,
 ConstStr255Param s2);

static native boolean
 MyCompareString(byte [] s1,
 byte [] s2);

extern void MyBlockCopy (
 const void* src, void* dst,
 unsigned long length);

static native void
 MyBlockCopy(byte [] src,
 byte [] dst, int length);
8 Parameter Passing between Java and C

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

Using Wrapper Objects 1

▲ W A R N I N G

The Apple-defined wrapper classes described in this
section are subject to change and are not guaranteed to
work with versions of MRJ later than 2.0 ▲

To access Mac OS functions, the Java code must often be able to do things it
was not meant to do, such as manipulate pointers and handles. The way to
accomplish this is through wrapper classes,which hide the representation of
the Mac OS data structure. If you want to call your own Mac OS code, you will
have to create wrapper classes that encapsulate your data types.

MRJ 2.0 provides primitive classes in the package com.apple.memory, which lets
you manipulate memory from your Java code.

Accessing Memory 1

As mentioned earlier, the basic approach to representing toolbox objects in Java
is to provide wrapper classes that hide the representation of the Mac OS data
structure. Accessing the data inside such objects is accomplished by writing
“get” and “set” methods. Since toolbox objects are either pointer-based or
handle-based, we provide base-class wrapper objects, PointerObject, and
HandleObject, which provide get/set methods for primitive values at a known
offset. Both are subclasses of the abstract class MemoryObject, which is shown in
Listing 1-2.

Listing 1-2 The MemoryObject Class

package com.apple.memory;

public abstract class MemoryObject implements NativeObject {

protected abstract byte getByteAt(int offset);
protected abstract short getShortAt(int offset);
protected abstract int getIntAt(int offset);
protected abstract long getLongAt(int offset);
Using Wrapper Objects 9
12/17/97 Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

protected abstract float getFloatAt(int offset);
protected abstract double getDoubleAt(int offset);

protected abstract void setByteAt(int offset, byte value);
protected abstract void setShortAt(int offset, short value);
protected abstract void setIntAt(int offset, int value);
protected abstract void setLongAt(int offset, long value);
protected abstract void setFloatAt(int offset, float value);
protected abstract void setDoubleAt(int offset, double value);

protected abstract byte[] getBytes();
protected abstract int getSize();
}

PointerObject and HandleObject each implement these abstract methods using
either pointer or handle dereferencing. Listing 1-3 shows the PointerObject
class, and Listing 1-4 shows the HandleObject class.

Listing 1-3 The PointerObject class

package com.apple.memory;

public class PointerObject extends MemoryObject {

/**
 * Creates a PointerObject from an existing pointer
 * @param address the address of an existing pointer
 * @param size the size of the memory block pointed to
 */
public PointerObject(int address, int size) { ... }

public final int getPointer() { return this.pointer; }

protected int pointer;

...

}

10 Using Wrapper Objects

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Listing 1-4 The HandleObject class

package com.apple.memory;

public class HandleObject extends MemoryObject {

/**
* Creates a HandleObject from the specified memory handle.
* @param handle a handle to memory.
*/

public HandleObject(int handle) { ... }

public final int getHandle() { return this.handle; }

protected int handle;

...

}

Subclasses of PointerObject or HandleObject can then define higher-level get/
set methods to present a familiar interface to the Mac OS data structures.
Listing 1-5 shows an example wrapper class for a MacOS window record.

Listing 1-5 A wrapper class for a Window Record

class WindowRef extends PointerObject {

public boolean isVisible() {
return (getByteAt(110) != 0); // offsetof(WindowRecord, visible)
}

}

This simple example shows how Mac OS Boolean values are mapped to Java
boolean values. Since any nonzero value can be a true value in C , we represent
Mac OS Boolean values as byte values in Java, which we convert to a type
boolean by comparing with zero.

The value 110 is the offset of the visible field in the WindowRecord data structure.
Using Wrapper Objects 11
12/17/97 Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Representing Strings 1

Since JDirect allows you to pass a Java array directly to Mac OS functions as a
pointer to its first array element, you can represent C and Pascal strings as
byte[] array objects. C strings are merely byte arrays with an extra zero byte to
signal the end of string. Pascal strings are simply byte arrays with the first
element indicating the length of the string. Note that since some Mac OS
functions accept C strings (such as those in the standard C library) and others
require Pascal strings, JDirect does not handle strings automatically.

Representing C Data Structures 1

Not all Mac OS objects are easily represented in Java. For example, C structures
can contain embedded arrays, as well as nested structures. In Java, arrays are
always separate objects, and fields that refer to objects are always references.
You can solve this representation problem by using an opaque representation
of the object defined by the ByteObject class.

Consider the file system specification record (FSSpec) in Listing 1-6.

Listing 1-6 A file system specification record

struct FSSpec {
short vRefNum;
long parID;
unsigned char name[64];
};

You can think of the structure as being one long array of byte values. You can
then access a field using offsets. For example, the parID field would begin at an
offset of 2 from the beginning of the structure (since vRefNum takes up 2 bytes).

The ByteObject class is a subclass of MemoryObject that provides a way to
represent a structure as a byte[] array. Listing 1-7 shows the ByteObject class.
12 Using Wrapper Objects

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Listing 1-7 The ByteObject class

package com.apple.memory;

public class ByteObject extends MemoryObject {

/**
* Constructor that sets the size of the byte array.
* @param size the number of bytes for memory allocation.
* @return this.
*/

protected ByteObject(int size) {...}

/**
 * Returns the byte array containing the toolbox data structure.
 * @return the actual byte array NOT a copy
 */
public final byte[] getBytes() { return bytes; }

public final int getSize() { return bytes.length; }

protected byte[] bytes;

...

}

To access the fields in your structure, you must write get/set methods in your
class. Listing 1-8 shows how you could implement the FSSpec structure by
representing it as a byte[] array.

Listing 1-8 Accessing a file system specification record using the ByteObject class

class FSSpec extends ByteObject {

static final int sizeOfFSSpec = 70; // 70 bytes in size

FSSpec() {
super(sizeOfFSSpec); // allocate 70 bytes please.
Using Wrapper Objects 13
12/17/97 Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
}

short getVRefNum() { return getShortAt(0); }
int getParID() { return getIntAt(2); }

String getName() {
int length = name0; // filename is a Pascal string
char value[] = new char[length];
int offset = 7;
for (int i = 0; i < length; i++)

value[i] = (char)getByteAt(offset++);
return new String(value);

}
}

The getName method builds the name of the file from an array of characters.

<More information to be added later>
14 Using Wrapper Objects

12/17/97 Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Using Wrapper Objects 15
12/17/97 Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

12/17/97 Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Line art was created using
Adobe™ Illustrator and Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

	Using JDirect to Access Mac OS Code From Java
	Calling Mac OS Code Using JDirect
	Parameter Passing between Java and C
	Using Wrapper Objects
	Accessing Memory
	Representing Strings
	Representing C Data Structures

