



10/8/98
Technical Publications
© Apple Computer, Inc. 1998



M A C O S R U N T I M E F O R
J A V A

Programming Note

Using JDirect to Access Mac OS
Code From Java

For MRJ 2.1

9/21/98



 Apple Computer, Inc.



Apple Computer, Inc.
© 1997, 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Contents

10/8/98



 Apple Computer, Inc.

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Using JDirect to Access Mac OS
Code From Java
Changes From JDirect 1.0 5
JDirect Versus JNI 6
Calling Native Code Using JDirect 7
Searching Multiple Shared Libraries 10
Parameter Passing between Java and C 11
Using Wrapper Objects 14

Accessing Memory 15
Representing Pointers and Handles 18
Representing Strings 19
Representing C Data Structures 19
Representing Opaque Structures 21
Handling Callbacks 21

Using the Mac OS Binding Sample Code 24
3

C H A P T E R 1

4 Contents

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java 1

JDirect is a programming interface that allows you to access native PowerPC C
code from a Java™ application. You can use JDirect if you have either of the
following needs:

■ You want to call Mac OS system functions from your Java application

■ You want your Java application to call an existing C library

You can use JDirect to access any Mac OS functions that are stored in Code
Fragment Manager–based shared libraries (or fragments). For more detailed
information about the Code Fragment Manager and shared libraries, you
should read the document Mac OS Runtime Architectures.

Note
Standard Java classes, such as java.io.File already call
through to the Mac OS Toolbox. In addition, you can access
many basic Mac OS–specific functions using MRJToolkit,
which uses JDirect to handle calls. Before using JDirect, you
should make sure that the functionality you require is not
already handled by MRJToolkit or MRJ itself. ◆

You can use JDirect with any Java application (but not applet) that can run in
the Mac OS Runtime for Java (MRJ) Java environment.

Changes From JDirect 1.0 1

This document describes the version of JDirect available with MRJ 2.1 and later.

▲ W AR N I N G

The JDirect mechanism as well as the Apple-defined
wrapper classes described in JDirect 1.0 documentation
have changed and may not work with versions of MRJ later
than 2.0 ▲

JDirect 2.0 no longer uses com.apple.NativeObject to denote native functions
that use JDirect. You must now create interfaces to represent the shared library
fragments containing the native functions and implement them in your Java
code. See “Calling Native Code Using JDirect” (page 7) for more details.
Changes From JDirect 1.0 5
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

JDirect 2.0 changes names and packages for the existing wrapper classes, and
adds new classes to handle opaque structures and callback functions. Table 1-1
lists changes to the wrapper classes.

In addition, Apple now supplies generated interfaces for many Mac OS system
software functions. In most cases you can access Mac OS functions by simply
copying the appropriate classes to your Java program and making the calls. If
you only want to access Mac OS system software functions, read “Using the
Mac OS Binding Sample Code” (page 24).

JDirect Versus JNI 1

If you want to call Mac OS C code from your Java code, there are currently two
mechanisms for doing so: JDirect and the Java Native Interface (JNI). Each has
advantages and disadvantages. Generally you would want to use JNI if

■ You are writing your Java code and C code concurrently

■ You want your code to be cross-platform

■ You need to access full Java functionality from your C code (for example, if
you need to manipulate Java objects in C)

JDirect is useful if

■ You want to call older C functions from Java, or code whose source you
cannot change (for example, legacy code or system software functions).

■ You do not want the overhead of writing C glue code to establish a JNI
environment and translating parameters for native calls

Table 1-1 Changes to wrapper classes

Old New

com.apple.memory.MemoryObject com.apple.mrj.jdirect.Struct

com.apple.memory.ByteObject com.apple.mrj.jdirect.ByteArrayStruct

com.apple.memory.PointerObject com.apple.mrj.jdirect.PointerStruct

com.apple.memory.HandleObject com.apple.mrj.jdirect.HandleStruct
6 JDirect Versus JNI

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

Overall, JDirect provides a simpler interface to native C code, but it does not
allow the full flexibility of JNI.

Calling Native Code Using JDirect 1

JDirect lets you access Mac OS code with minimal overhead and no extra C glue
code. For example, say you want to call a Mac OS function that has the header
declaration shown in Listing 1-1.

Listing 1-1 Declaration for Mac OS C code

int someFunc (short firstParam, long secondParam, infoStruct* moreInfo);

struct infoStruct {
long data1;
float data2;
}

To use JDirect to access Mac OS code, you must take the following steps:

1. Create an interface that extends com.apple.jdirect.SharedLibrary.

2. Define a static value named libraryInstance of type Object that is initialized
by the method JDirectLinker.loadLibrary. The parameter you pass to
loadLibrary should be the name of the shared library fragment that contains
the methods you want to call.

3. Create a class that implements the interface you created in step 1.

4. If your native code manipulates pointers or data structures, you must create
“wrapper” classes to represent them in the Java environment. See “Using
Wrapper Objects” (page 14) for more information.

5. Declare your native methods within the class. These methods must be static,
and they must have the same case-sensitive name as the corresponding
symbol exported from the Mac OS shared library fragment.
Calling Native Code Using JDirect 7
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

IMPORTANT

The shared library fragment name is not necessarily the
same as the name of the shared library file (for example,
several different shared library fragments may be packaged
in one shared library file). For more information about
fragments, see Mac OS Runtime Architectures. ▲

Listing 1-2 shows the Java interface that you could use to call the someFunc
function from Java code.

Listing 1-2 An interface to call someFunc from Java

import com.apple.jdirect.SharedLibrary;
import com.apple.mrj.jdirect.ByteArrayStruct;

interface myCodeLib extends SharedLibrary {
static Object libraryInstance = JDirectLinker.loadLibrary ("myCodeLibFrag");
}

public class myCodeLibFuncs implements myCodeLib {
public static int someFunc (short firstParam, int secondParam, infoStructWrapper

moreInfo) {
return someFunc (short firstParam, int secondParam, moreInfo.getByteArray());
}

private native static int someFunc (short firstParam, int secondParam, byte[]
moreInfo);

}

…

public class infoStructWrapper extends ByteArrayStruct {
static final int sizeOfInfoStruct = 8;

infoStructWrapper () {
super (sizeOfInfoStruct);
}

int setData1 { return setIntAt (0);}
float setData2 { return setFloatAt (4);}
8 Calling Native Code Using JDirect

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

int getData1 { return getIntAt (0);}
float getData2 { return getFloatAt (4);}

}

The interface myCodeLib extends the interface com.apple.jdirect.SharedLibrary.

When a class is loaded, MRJ checks to see if the class implements an interface
derived from com.apple.JDirect.SharedLibrary. If it does, any native methods
are linked from the shared library specified in the libraryInstance object. In
this example, JDirect will look for the someFunc function in the shared library
myCodeLibFrag.

Note
You can subclass any class that implements (or extends any
class that implements) com.apple.JDirect.SharedLibrary. ◆

The class myCodeLibFuncs declares the native methods you want to call (in this
case only someFunc). The types of the parameters may differ from the C
declarations depending on the mappings between C and Java data types. See
“Parameter Passing between Java and C” (page 11) for more information.

Note that the Java code uses a special class to represent the infoStruct data
structure. Since Java does not use data structures, in order to manipulate them
in the Java environment you must encapsulate them as objects. Apple provides
several predefined classes (such as ByteArrayStruct) that you can extend to
represent your data structures (as well as pointers and other references foreign
to Java). Rather than manipulate the structure directly, you must use accessor
methods to set or retrieve any elements within it. In Listing 1-2, the
infoStructWrapper class contains a constructor as well as get/set methods for
each field.

For more information about using wrapper objects for data structures and
pointers, see “Using Wrapper Objects” (page 14).
Calling Native Code Using JDirect 9
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

IMPORTANT

You must be very careful if you are calling native code that
retains pointers to objects after the call. During the call,
JDirect holds the Java heap in a fixed state, but afterwards,
the garbage collectors are free to compact the heap and
move the contents of objects around in memory; any
references retained by native code will likely become
invalid. For example, if during a call you pass a reference to
an array you have allocated in the Java heap, you should
not expect the native code to retain access to the array after
the call has completed. However, this restriction does not
apply to object that have been allocated in the Mac OS
heap. For example, if you had requested a new window
record (by calling Mac OS Toolbox function NewCWindow
using JDirect), references to it will always remain valid. ▲

Searching Multiple Shared Libraries 1

If you have a class whose native methods are implemented in several different
shared libraries, you can implement each of the necessary shared library
interfaces, such as in Listing 1-3.

Listing 1-3 Implementing multiple shared library interfaces

public class someFuncs implements InterfaceLib, someLib, someOtherLib {

public native static void SysBeep(short duration);
public native static int OtherBeep (short duration);
}

However, problems may occur if multiple libraries implement the same
methods. For example, if both someLib and someOtherLib implement OtherBeep,
which one will get called? To minimize confusion, you must understand how
JDirect prepares and searches shared libraries.

JDirect searches the shared library list from left to right. That is, in Listing 1-3
InterfaceLib is searched first, followed by someLib and someOtherLib. Note,
10 Searching Multiple Shared Libraries

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java

however, that JDirect will search “up” the interface hierarchy before moving to
the next library. For example, say you have the following three shared libraries:

■ Interface A, which extends SharedLibrary

■ Interface B, which extends SharedLibrary

■ Interface C, which extends interface B

Given the class definition

public class someFuncs implements C, A{
…
}

JDirect searches the libraries in the order C, B, A.

Note
JDirect uses a “lazy” binding method. That is, it will not
search the libraries for a function until the native method is
actually called for the first time. ◆

Parameter Passing between Java and C 1

When the native method is called, the actual signature of the method (the types
of its arguments) is used to build a parameter list for the Mac OS function. All
of the basic Java types – boolean, byte, char, short, int, long, float, and double
– are passed as is, by value, in the order specified. Table 1-2 shows the
correspondence between Java and Mac OS C data types.

Table 1-2 Java versus C data types in parameters

Java Type C Type

void void

boolean unsigned char (only 0x00 or 0x01 allowed)

byte signed char

char unsigned short
Parameter Passing between Java and C 11
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Note
Data type long long is a 64-bit scalar type provided by the
PowerPC ABI. ◆

Java arrays are passed as a pointer to the first element of the array. Boolean
arrays are not supported.

IMPORTANT

Unlike in Java, native methods in C have no way to
determine the length of an array unless it is explicitly
stated (for example, if the length is passed as an additional
parameter). ▲

Return values are mapped in the same fashion as the function parameters, but
only built-in types are allowed. That is, JDirect does not support return types

short signed short

int signed long

long signed long long

float float

double double

byte[] signed char*

char[] unsigned short*

short[] signed short*

int[] signed long*

long[] signed long long*

float[] float*

double[] double*

Table 1-2 Java versus C data types in parameters

Java Type C Type
12 Parameter Passing between Java and C

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
that are arrays or Java objects. Table 1-2 shows the correspondence between
Java and Mac OS C return types.

Note that JDirect compares the low byte of the C return value against zero to
determine the value of a boolean.

Table 1-4 shows some examples of C function declarations and their
corresponding Java versions.

Table 1-3 Java versus C data types in return values

Java Type C Type

void void

boolean unsigned char or bool

byte signed char

char unsigned short

short signed short

int signed long

long signed long long

float float

double double

Table 1-4 Some C function declarations and their Java versions.

C Version Java Version

extern short MyGetResCount(
 ResType theType);

static native short
 MyGetResCount(int theType);

extern Handle MyGetResource(
 ResType theType, short theID);

static native int
 MyGetResource(int theType,
 short theID);
Parameter Passing between Java and C 13
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Since method overloading is allowed in Java, C functions that pass arrays or
strings may be represented in more than one way in Java. For example, the Java
version of MyHashFunction could take an integer parameter rather than a byte
array:

static native int MyHashFunction(int cString);

Similarly, MyCompareString could also take type int parameters. The MyBlockCopy
method can be overloaded in any number of ways (such as taking type int[]),
since the C version takes void* parameters (which can represent any data type).

Note that if you pass an array value as null in Java, the value NULL is passed to
the C function. Doing so is useful in cases where the C code has an optional
parameter (pass NULL to ignore).

Using Wrapper Objects 1

To access Mac OS functions, the Java code must often be able to do things it was
not meant to do, such as manipulate pointers and structures. The way to
accomplish this is through wrapper classes,which hide the representation of the
native data structure. If you want to call your own Mac OS code, you will have
to create wrapper classes that encapsulate your data structures.

extern long MyHashFunction (
 const char* cString);

static native int
 MyHashFunction(byte [] cString);

extern Boolean MyCompareString(
 ConstStr255Param s1,
 ConstStr255Param s2);

static native boolean
 MyCompareString(byte [] s1,
 byte [] s2);

extern void MyBlockCopy (
 const void* src, void* dst,
 unsigned long length);

static native void
 MyBlockCopy(byte [] src,
 byte [] dst, int length);

Table 1-4 Some C function declarations and their Java versions.

C Version Java Version
14 Using Wrapper Objects

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
IMPORTANT

Apple has already created wrapper objects for many of the
structures used by Mac OS system software functions. If
you are calling system software, you should check to see if
appropriate wrappers exist before writing your own. See
“Using the Mac OS Binding Sample Code” (page 24) for
more information. ▲

If you choose not to use the Apple-defined wrapper classes described in this
section to encapsulate your objects, you must create your own. That is, you
must define any objects as byte[] arrays and enforce a field alignment within it.
Then, to access any fields (that is, elements in the array), you must define
additional methods to read them (for example, getByteAt(offset)).

MRJ 2.1 provides primitive classes in the package com.apple.mrj.jdirect,
which lets you manipulate memory from your Java code.

Accessing Memory 1

As mentioned earlier, the basic approach to representing toolbox objects in Java
is to provide wrapper classes that hide the representation of the Mac OS data
structure. Accessing the data inside such objects is accomplished by writing
“get” and “set” methods. Since toolbox objects are either pointer-based or
handle-based, we provide base-class wrapper objects, PointerStruct, and
HandleStruct, which provide get/set methods for primitive values at a known
offset. Both are subclasses of the abstract class Struct, which is shown in
Listing 1-4.

Listing 1-4 The Struct Class

package com.apple.mrj.jdirect;

public abstract class Struct {

protected abstract boolean getBooleanAt(int offset);
protected abstract byte getByteAt(int offset);
protected abstract byte[] getBytesAt(int offset, int numBytes);
protected abstract char getCharAt(int offset);
protected abstract short getShortAt(int offset);
protected abstract int getIntAt(int offset);
Using Wrapper Objects 15
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
protected abstract long getLongAt(int offset);
protected abstract float getFloatAt(int offset);
protected abstract double getDoubleAt(int offset);

protected abstract void setBooleanAt(int offset, boolean value);
protected abstract void setByteAt(int offset, byte value);
protected abstract void setBytesAt(int offset, byte[] byteVals);
protected abstract void setCharAt(int offset, char value);
protected abstract void setShortAt(int offset, short value);
protected abstract void setIntAt(int offset, int value);
protected abstract void setLongAt(int offset, long value);
protected abstract void setFloatAt(int offset, float value);
protected abstract void setDoubleAt(int offset, double value);
protected abstract void setStructAt(int offset, Struct value);

protected abstract byte[] getBytes();
protected abstract int getSize();
}

The classes ByteArrayStruct, PointerStruct, and HandleStruct implement the
abstract Struct method using a byte array in the Java heap, a Mac OS pointer,
and a Mac OS handle respectively. Listing 1-5 shows the ByteStruct class,
Listing 1-6 shows the PointerStruct class, and Listing 1-7 shows the
HandleStruct class.

Listing 1-5 The ByteArrayStruct class

package com.apple.mrj.jdirect;

public class ByteArrayStruct extends Struct {

/**
* Constructor that sets the size of the byte array.
* @param size the number of bytes for memory allocation.
* @return this.
*/

protected ByteArrayStruct(int size) {...}

/**
 * Returns the byte array containing the toolbox data structure.
16 Using Wrapper Objects

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
 * @return the actual byte array NOT a copy
 */
public final byte[] getByteArray() {...}

public final int getSize() { return bytes.length; }

protected byte[] bytes;

...

}

Listing 1-6 The PointerStruct class

package com.apple.mrj.jdirect;

public class PointerStruct extends Struct {

/**
 * Creates a PointerStruct from an existing pointer
 * @param address the address of an existing pointer
 */
public PointerStruct(int address) { ... }

public final int getPointer() { return this.pointer; }

protected int pointer;

...

}

Listing 1-7 The HandleObject class

package com.apple.mrj.jdirect;

public class HandleStruct extends Struct {
Using Wrapper Objects 17
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
/**
* Creates a HandleStruct from the specified memory handle.
* @param handle a handle to memory.
*/

public HandleStruct(int handle) { ... }

public final int getHandle() { return this.handle; }

protected int handle;

...

}

Representing Pointers and Handles 1

You can manipulate pointers and handles in the Java environment by creating
subclasses of PointerStruct or HandleStruct respectively. For example, you can
create a subclass of PointerStruct to represent a Mac OS window record. In
addition to being able to pass the window record in the Java environment, you
can include get/set methods to present a familiar interface to the fields of the
Mac OS data structure. Listing 1-8 shows an example wrapper class for a
Mac OS window record.

Listing 1-8 A wrapper class for a Window Record

import com.apple.mrj.jdirect.PointerStruct;

class WindowPtr extends PointerStruct {

public boolean isVisible() {
return (getByteAt(110) != 0); // offsetof(WindowRecord,

// visible)
}

}

This simple example shows how Mac OS Boolean values are mapped to Java
boolean values. Since any nonzero value can be a true value in C , we can
represent Mac OS Boolean values as byte values in Java, which we convert to a
18 Using Wrapper Objects

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
type boolean by comparing with zero. Note that you could also simply return
getBooleanAt(110) to accomplish the same result.

The value 110 is the offset of the visible field in the WindowRecord data structure.

In a similar manner, you can manipulate handles in Java by wrapping them as
objects derived from HandleStruct.

Representing Strings 1

Since JDirect allows you to pass a Java array directly to Mac OS functions as a
pointer to its first array element, you can represent C and Pascal strings as
byte[] array objects. C strings are merely byte arrays with an extra zero byte to
signal the end of string. Pascal strings are simply byte arrays with the first
element indicating the length of the string. Note that some Mac OS functions
accept C strings (such as those in the standard C library) and others require
Pascal string. JDirect does not perform string conversion.

Representing C Data Structures 1

Not all Mac OS objects are easily represented in Java. For example, C structures
can contain embedded arrays, as well as nested structures. In Java, arrays are
always separate objects, and fields that refer to objects are always references.
You can solve this representation problem by using an opaque representation of
the object defined by the ByteArrayStruct class.

Consider the file system specification record (FSSpec) in Listing 1-9.

Listing 1-9 A file system specification record

struct FSSpec {
short vRefNum;
long parID;
Str63 name ;
};

You can think of the structure as being one long array of byte values. You can
then access a field using offsets. For example, the parID field would begin at an
offset of 2 from the beginning of the structure (since vRefNum takes up 2 bytes).
Using Wrapper Objects 19
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
The file system specification record field name is a Pascal string consisting of a
length byte (name[0]) followed by 63 bytes to represent the filename.

The ByteArrayStruct class provides a way to represent a structure as a byte[]
array. To access the fields in your structure, you must write get/set methods in
your class. Listing 1-10 shows how you could implement the FSSpec structure
by representing it as a byte[] array.

Listing 1-10 Accessing a file system specification record using the ByteArrayStruct
class

import com.apple.mrj.jdirect.ByteArrayStruct;

class FSSpec extends ByteArrayStruct {

static final int sizeOfFSSpec = 70; // 70 bytes in size

FSSpec() {
super(sizeOfFSSpec); // allocate 70 bytes please.
}

short getVRefNum() { return getShortAt(0); }
int getParID() { return getIntAt(2); }

byte[] getName() {
int length = getByteAt(6); // filename is a Pascal string
byte result[] = new byte[length];
int offset = 7;
for (int i = 0; i < length; i++)

result[i] = getByteAt(offset++);
return result;
}

}

The getName method in thie example simply copies the bytes from the name and
then returns that value.
20 Using Wrapper Objects

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Representing Opaque Structures 1

JDirect uses the class OpaqueStruct to wrap opaque Mac OS data structures. For
example, structures of type DragReference used by the Drag Manager are
opaque and therefore inaccessible. If you wanted to handle a drag reference in
Java, you must encapsulate it as an object. Listing 1-11 shows a class that you
could use to wrap the drag reference.

Listing 1-11 A wrapper class for a drag reference

import com.apple.mrj.jdirect.OpaqueStruct;

public class DragReferenceOpaque extends OpaqueStruct {

public DragReferenceOpaque(int opaquePointer) {
super(opaquePointer);

}
}

Handling Callbacks 1

If you are calling a Mac OS function that calls back to your code, you normally
provide a pointer to your application-defined function. If you are calling from
Java code, however, you must encapsulate the pointer as a Java object. JDirect
provides the MethodClosure and MethodClosureUPP wrapper classes to
encapsulate pointers and allow C code to call back to Java code.

To create a MethodClosure object to pass to C code, you use the MethodClosure
constructor, which has the following declaration:

protected MethodClosure (
Object targetObject,
String methodName,
String methodSignature);

For example, say you have a Mac OS function InstallTwizzler that takes a
function pointer parameter as shown in Listing 1-12.
Using Wrapper Objects 21
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Listing 1-12 C Declaration of a function that takes a function pointer parameter

typedef short (*TwizzlerProcPtr)(long index);
extern void InstallTwizzler(TwizzlerProcPtr proc);

If you have a Java method named Twizzler that you would like to pass to
InstallTwizzler, you must create a method closure for Twizzler as shown in
Listing 1-13.

Listing 1-13 Creating a method closure for the Twizzle function

// declare class that handles Twizzler callbacks
public class MyTwizzler {

public short Twizzle(int index) { // this is our callback method
...

}
}

public class TwizzlerClosure extends MethodClosure {

public TwizzlerClosure(Object target) {
super(target, "Twizzle", "(I)S");

}
}

Note
The method closure constructor allocates an additional
block of memory in the Mac OS heap via NewPtr. This block
is initialized with the PowerPC code necessary to reenter
the Java VM and call the specified method on the specified
object. When you are finished with the closure object, you
should call the dispose() method to free this block. ◆

You must then create the standard JDirect interface to call the native function
InstallTwizzler, as shown in Listing 1-14. This example assumes that
InstallTwizzler is implemented in the shared library MyLib.
22 Using Wrapper Objects

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Listing 1-14 Setting up the JDirect interface for InstallTwizzler

// class with native method for InstallTwizzler
public class MyFuncs implements MyLib {

public static void InstallTwizzler(TwizzlerClosure closure) {
InstallTwizzler(closure.getProc();

}

public static native void InstallTwizzler(int proc);
}

You can then invoke the Mac OS function and pass a function pointer using the
code in Listing 1-15. The Mac OS code can then call back to your Java method
Twizzle.

Listing 1-15 Passing a method object to C code from Java

MyTwizzler callbackTarget = new MyTwizzler();
TwizzlerClosure thunk = new TwizzlerClosure(callbackTarget);
MyFuncs.InstallTwizzler(thunk);
…
thunk.dispose(); // remove closure object when finished

Note that you must maintain a reference to the method closure object in the
Java environment after you pass it to the Mac OS function. If not, the object may
be garbage-collected and the system could crash when the Mac OS code
attempts to call back to an object that no longer exists. You can remove the
reference when you no longer require the callback.

In a similar fashion, if the Mac OS function expects to receive a universal
procedure pointer (UPP) to the application-defined function, you can use the
MethodClosureUPP class to create the appropriate Java object.
Using Wrapper Objects 23
10/8/98  Apple Computer, Inc.

 C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
Using the Mac OS Binding Sample Code 1

To simplify development with JDirect, Apple supplies generated Java classes for
many of the Mac OS system software programming interfaces. You can easily
access Mac OS system calls by copying the appropriate classes into your code
base. For example, you can call the SysBeep function (contained in OSUtils.h) by
copying some or all of OSUtilFunctions and calling OSUtilFunctions.SysBeep.

Apple’s interface generator creates the following classes for each header file:

■ One class containing all the functions

■ One class containing all the constants

■ One class per data structure

■ One interface and one method closure class for every application-defined
function (that is, every callback).

The name of each class is derived from the header file. Generally this means the
class prefix is the name of the header without the .h suffix. However, if the
name ends in s, the s is dropped to make the name more readable. Also, any
header files that begin with Mac lose their prefix in the generated interfaces (that
is, any classes generated from MacWindows.h would simply have the prefix
Window).

For example, the file Quickdraw.h would have the following classes and
interfaces associated with it:

■ The class QuickDrawConstants, containing all the constants

■ The class QuickDrawFunctions, containing all the functions

■ A class ending with Struct for every data structure (for example, the class for
the structure QDGlobals would be QDGlobalsStruct).

■ An interface ending with Interface and a method closure class ending with
ClosureUPP for every application-defined function. For example, the class and
interface to support the application-defined function specified by
ColorSearchProcPtr are ColorSearchInterface and ColorSearchClosureUPP
respectively.
24 Using the Mac OS Binding Sample Code

10/8/98  Apple Computer, Inc.

C H A P T E R 1

Using JDirect to Access Mac OS Code From Java
For more information about obtaining generated Java equivalents for Mac OS
interfaces, see the following Web page and follow the links to download
prerelease software:

<http://developer.apple.com/java/ >
Using the Mac OS Binding Sample Code 25
10/8/98  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

10/2/98  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

Special thanks to Nick Kledzik and Steve
Zellers.

	Using JDirect to Access Mac OS Code From Java
	Changes From JDirect 1.0
	JDirect Versus JNI
	Calling Native Code Using JDirect
	Searching Multiple Shared Libraries
	Parameter Passing between Java and C
	Using Wrapper Objects
	Accessing Memory
	Representing Pointers and Handles
	Representing Strings
	Representing C Data Structures
	Representing Opaque Structures
	Handling Callbacks

	Using the Mac OS Binding Sample Code

