

Technical Publications
© Apple Computer, Inc. 1999

A p p l e S h a r e I P 6 . 3
D e v e l o p e r ’ s K i t

Server Control Calls and
Server Event Handling

Apple Computer, Inc.
© 1997-1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings vii

Preface About This Manual ix

Conventions Used in This Manual ix
For More Information x

Chapter 1 Server Control Calls 1-1

About Server Control Calls 1-3
Main Elements of File Servers and Server Control Calls 1-4

AppleShare IP File Server Software Components 1-4
Macintosh File Sharing Software Components 1-8
Data Files 1-11

Using Server Control Calls 1-12
Determining If Server Control Calls Are Available 1-15
Calling Conventions 1-15
Starting and Stopping the File Server 1-16
Obtaining Status Information about Users, Volumes, and Shared

Items 1-19
Sending Messages to Users 1-21

Server Call Reference 1-24
SCCancelShutDown 1-24
SCClrCopyProtect 1-25
SCDisconnect 1-26
SCDisconnectVolUsers 1-27
SCGetCacheStats 1-29
SCGetExpFldr 1-32
SCGetExtUserName 1-34
SCGetPluginInfo 1-36
SCGetPluginMIMEType 1-38
SCGetServerActivityHistory 1-40
SCGetServerEventProc 1-41
iii

SCGetServerStatus 1-42
SCGetSetupInfo 1-44
SCGetUserMountInfo 1-47
SCGetUserNameRec 1-48
SCInstallServerEventProc 1-50
SCPollServer 1-51
SCRemoveServerEventProc 1-59
SCResetCache 1-60
SCSendMessage 1-61
SCServerVersion 1-63
SCServiceStateInfo 1-64
SCSetCopyProtect 1-66
SCSetHistorySampleTime 1-67
SCSetSetupInfo 1-67
SCShutDown 1-68
SCSleepServer 1-70
SCStartServer 1-72
SCWakeServer 1-72

Chapter 2 Server Event Handling 2-1

Using Server Events 2-4
Server Event Queue Entry 2-5
Server Event Record 2-6
Extended Server Event Record 2-7
Server Event Definitions 2-9
Constraints 2-11
Sample Server Event Handler Code 2-11
Application Event Loop 2-16

Appendix A Macintosh File Sharing
Server Control Calls A-1

SCDisconnect A-1
SCGetExpFldr A-2
SCGetSetupInfo A-2
iv

SCPollServer A-3
SCServerVersion A-3
SCSetSetupInfo A-3
SCShutDown A-3

Appendix B Interface Files B-1

Server Control Constants B-1
Server Control Parameter Blocks B-5
Server Control Records B-13
Server Control Routine B-16
Server Events B-16

Server Event Constants B-16
Server Event Data Types B-17

Application-Defined Routine B-18

Index IN-1
v

Figures, Tables, and Listings

Chapter 1 Server Control Calls 1-1

Figure 1-1 AppleShare IP file server components 1-5
Figure 1-2 Macintosh File Sharing components 1-9

Listing 1-1 Stopping and starting the file server 1-16
Listing 1-2 Determining whether the server is running 1-17
Listing 1-3 Starting the file server 1-18
Listing 1-4 Shutting down the file server 1-18
Listing 1-5 Canceling a file server shutdown 1-19
Listing 1-6 Getting information about shared volumes and folders 1-19
Listing 1-7 Getting the valid range of indices 1-21
Listing 1-8 Sending a message to all connected users 1-21
Listing 1-9 Determining the number of users 1-22
Listing 1-10 Determining the name and ID of a connected user 1-23
Listing 1-11 Sending the message to a user 1-23

Table 1-1 Summary of server control calls 1-13
Table 1-2 Parameter block for the SCCancelShutDown call 1-24
Table 1-3 Parameter block for the SCClrCopyProtect call 1-25
Table 1-4 Parameter block for the SCDisconnect call 1-26
Table 1-5 Parameter block for the SCDisconnectVolUsers call 1-28
Table 1-6 Parameter block for the SCGetCacheStats call 1-30
Table 1-7 Parameter block for the SCGetExpFldr call 1-33
Table 1-8 Parameter block for the SCGetExtUserName call 1-35
Table 1-9 Parameter block for the SCGetPluginInfo call 1-37
Table 1-10 Parameter block for the SCGetPluginMIMEType call 1-39
Table 1-11 Parameter block for the SCGetServerActivityHistory call 1-41
Table 1-12 Parameter block for the SCGetServerEventProc call 1-42
Table 1-13 Parameter block for the SCGetServerStatus call 1-43
Table 1-14 Parameter block for the SCGetSetupInfo Call 1-46
Table 1-15 Parameter block for the SCGetUserMountInfo call 1-47
Table 1-16 Parameter block for the SCGetUserNameRec call 1-49
Table 1-17 Parameter block for the SCInstallServerEventProc call 1-50
Table 1-18 Parameter block for the SCPollServer call 1-51
Table 1-19 Parameter block for the SCRemoveServerEventProc call 1-60
Table 1-20 Parameter block for the SCResetCache call 1-61
vii

Table 1-21 Parameter block for the SCSendMessage call 1-62
Table 1-22 Parameter block for the SCServerVersion call 1-63
Table 1-23 Parameter block for the SCServiceStateInfo call 1-65
Table 1-24 Parameter block for the SCSetCopyProtect call 1-66
Table 1-25 Parameter block for the SCSetHistorySampleTime call 1-67
Table 1-26 Parameter block for the SCSetSetupInfo call 1-68
Table 1-27 Parameter block for the SCShutDown call 1-69
Table 1-28 Parameter block for the SCSleepServer call 1-71
Table 1-29 Parameter block for the SCStartServer call 1-72
Table 1-30 Parameter block for the SCWakeServer call 1-73

Chapter 2 Server Event Handling 2-1

Figure 2-1 The server event mechanism 2-4

Listing 2-1 Installing and removing a server event handler 2-11
Listing 2-2 Preparing structures for use with queue manipulation

routines 2-12
Listing 2-3 Creating a queue entry for receiving events 2-13
Listing 2-4 Receiving and queuing events 2-14
Listing 2-5 Determining which server events to receive 2-14
Listing 2-6 Determining which server control calls to receive 2-15
Listing 2-7 Determining which AFP calls to receive 2-15
Listing 2-8 Processing server events 2-17

Table 2-1 Server event definitions 2-10

P R E F A C E

About This Manual

Server control calls and server event handling are two features of the
AppleShare IP file server that allow Apple Computer and third-party
developers to modify and extend the capabilities of AppleShare file services.
This manual is written for AppleShare developers and describes both server
control calls and server event handling. Useful segments of sample code are
included to help developers understand how to use the various calls. This
manual also includes a reference section that provides the parameter block,
field descriptions, and result codes for each server control call. Appendixes
explain the differences between the server control calls available with
Macintosh File Sharing and those available with the AppleShare IP file server,
and list the server control and server event interface files.

Conventions Used in This Manual 0

The Courier font is used to indicate server control calls, code, and text that you
type. Terms that are defined in the glossary appear in boldface at first mention
in the text. This guide includes special text elements to highlight important or
supplemental information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲

▲ W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲
ix

P R E F A C E

For More Information 0

The following books provide information that is important for all AppleShare
developers:

■ AppleShare IP Administrator’s Manual . Apple Computer, Inc.

■ Inside Macintosh . Apple Computer, Inc.

For information on the programming interface for managing users and groups,
see the following publication:

■ AppleShare IP 6.3 Developer’s Kit : AppleShare Registry Library. Apple
Computer, Inc.

For information on the AppleTalk Filing Protocol (AFP), see the following
publications:

■ AppleShare IP 6.3 Developer’s Kit : AppleTalk Filing Protocol.
Apple Computer, Inc.

■ AppleShare IP 6.3 Developer’s Kit : AppleTalk Filing Protocol Version 2.1
and 2.2. Apple Computer, Inc.

■ Inside AppleTalk , Second Edition. Apple Computer, Inc.

For information on user authentication modules (UAMs), see the following
publication:

■ AppleShare IP 6.3 Developer’s Kit : User Authentication Modules. Apple
Computer, Inc.

For information on the Print Server security protocol, see the following
publication:

■ AppleShare IP 6.3 Developer’s Kit : AppleShare IP Print Server Security
Protocol. Apple Computer, Inc.

For information on using the AppleShare IP File Server 6.3 and Macintosh File
Sharing, see the following manuals:

■ AppleShare Client User’s Manual. Apple Computer, Inc.

■ Macintosh Networking Reference . Apple Computer, Inc.
x

C H A P T E R 1

Contents

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Server Control Calls
About Server Control Calls 1-3
Main Elements of File Servers and Server Control Calls 1-4

AppleShare IP File Server Software Components 1-4
Macintosh File Sharing Software Components 1-8
Data Files 1-11

Using Server Control Calls 1-12
Determining If Server Control Calls Are Available 1-15
Calling Conventions 1-15
Starting and Stopping the File Server 1-16
Obtaining Status Information about Users, Volumes, and Shared

Items 1-19
Sending Messages to Users 1-21

Server Call Reference 1-24
SCCancelShutDown 1-24
SCClrCopyProtect 1-25
SCDisconnect 1-26
SCDisconnectVolUsers 1-27
SCGetCacheStats 1-29
SCGetExpFldr 1-32
SCGetExtUserName 1-34
SCGetPluginInfo 1-36
SCGetPluginMIMEType 1-38
SCGetServerActivityHistory 1-40
SCGetServerEventProc 1-41
SCGetServerStatus 1-42
SCGetSetupInfo 1-44
SCGetUserMountInfo 1-47
1-1

C H A P T E R 1

SCGetUserNameRec 1-48
SCInstallServerEventProc 1-50
SCPollServer 1-51
SCRemoveServerEventProc 1-59
SCResetCache 1-60
SCSendMessage 1-61
SCServerVersion 1-63
SCServiceStateInfo 1-64
SCSetCopyProtect 1-66
SCSetHistorySampleTime 1-67
SCSetSetupInfo 1-67
SCShutDown 1-68
SCSleepServer 1-70
SCStartServer 1-72
SCWakeServer 1-72
1-2 Contents

C H A P T E R 1

Server Control Calls 1

This chapter introduces the server control calls available with the AppleShare IP
file server and describes how server control calls interact with the main
elements of file server software. The chapter presents several sample code
segments and concludes with reference information for each server control call.

About Server Control Calls 1

Server control calls enable applications to monitor and control the major
functions of the AppleShare IP file server. These control calls let your programs

■ get and modify server configuration information

■ check a server’s status

■ start and stop file service

■ get information on users, volumes, and shared items

■ disconnect users (including the users of a specific volume)

■ send messages to users

■ set or clear the copy-protect status of files

■ use server event handlers

Server control calls, together with server event handling (described in Chapter
2, “Server Event Handling,”) make it possible to create any number of services
and utilities for the AppleShare IP file server. Because you can monitor file
usage—who uses files, which files are saved to or deleted from a server, where
files are copied to, and so on—you can create file-usage audit trails, generate
server-usage statistics, and perform other types of accounting services. You can
also control file servers remotely. By monitoring the number of active users,
logging off idle users, and controlling log-on access, you can perform
load-balancing services for a group of related servers. Many other services are
possible. AppleShare IP file server control calls and event handling form a
complete interface through which your applications and programs can control
and extend the capabilities of the file server software. This manual refers to
such programs and applications as server additions.
About Server Control Calls 1-3

C H A P T E R 1

Server Control Calls

Note
Macintosh File Sharing supports a subset of the AppleShare
IP file server control calls. See Appendix A for a list of these
calls. ◆

Main Elements of File Servers and Server Control Calls 1

This section describes the software components and data files that make up the
AppleShare IP file server and Macintosh File Sharing. Because the AppleShare
IP file server and Macintosh File Sharing perform similar functions, the
components for each are similar and both use the same types of data files.

AppleShare IP File Server Software Components 1

The AppleShare IP file server is composed of a number of files, as shown in
Figure 1-1. The AppleShare IP Web & File extension provides the actual
functionality of the file server. The AppleShare IP Web & File Server and the
AppleShare IP Web & File Admin applications provide the user interface for the
server.
1-4 About Server Control Calls

C H A P T E R 1

Server Control Calls

Figure 1-1 AppleShare IP file server components

This section describes each of AppleShare IP file server software components.
The section “Data Files,” later in this chapter, describes the Users & Groups
Data File and the AppleShare PDS file.

AppleShare IP Web & File Extension 1

The AppleShare IP Web & File extension contains the actual file server code. It
is an extension of the system and resides in the Extensions folder. The
AppleShare IP Web & File extension is a launchable file, though its file type is
'INIT' instead of 'APPL', which prevents users from starting it from the Finder.
(The 'INIT' file type also tells the system to put the file in the Extensions folder

Web and file server

AppleShare IP
Web & File
extension

AppleShare IP
Web & File Server

AppleShare IP
Web & File Admin

locally

remotely

Server
addition

Network
AppleShare

clients

User interface

Users & Groups
Data File

AppleShare
PDS

Network
SMB
clients

Network
FTP

clients

Network
HTTP
clients

CGIs

Web plug-ins

File Manager
About Server Control Calls 1-5

C H A P T E R 1

Server Control Calls

and causes the extension to be opened during system startup.) When the
AppleShare IP Web & File extension is launched, it runs as a background
application.

The AppleShare IP Web & File extension contains no user interface of its own.
The user interface is provided by the AppleShare IP Web & File Server and
AppleShare IP Web & File Admin applications (described next). These
applications communicate with the AppleShare IP Web & File extension
primarily by means of server control calls. Server control calls are also the
primary means of communication between server additions and the file server.

The AppleShare IP Web & File extension communicates with remote clients
through AppleTalk Filing Protocol (AFP), Server Message Block (SMB), File
Transfer Protocol (FTP), and Hypertext Transfer Protocol (HTTP) sessions, and,
locally, with shared volumes and files by means of Macintosh File Manager
routines.

When the AppleShare IP Web & File extension is launched, it checks its
environment, the Users & Groups Data File, and the desktop databases and
AppleShare PDS files of appropriate volumes. (The AppleShare IP Web & File
extension does not attempt to share remote volumes, or volumes such as floppy
disks or volumes that are ejected and off line during startup.) If an important
required condition is not satisfied, the offending volume will not be prepared
for use with the file server or the file server will not be enabled. If two volumes
have the same name, the AppleShare IP Web & File extension only shares the
first volume that it finds.

Once started, the AppleShare IP Web & File extension takes over the
dispatching of all file system calls—both local calls and remote requests.
Essentially, the file server acts as a mediator between the network and your
local volumes. The file server imposes access privilege constraints on AFP
requests and implements some calls that are not implemented in the file
system—such as those that govern byte-range locking, access privileges, and
extended file access permissions.

AppleShare IP Manager 1

The AppleShare IP Manager provides a convenient way to start AppleShare IP
servers and to start server administration applications.
1-6 About Server Control Calls

C H A P T E R 1

Server Control Calls

AppleShare IP Web & File Admin 1

Administrators can start the file server from the AppleShare IP Manager or by
opening the AppleShare IP Web & File Admin application and choosing Start
Web & File Server from Server menu. The AppleShare IP Web & File Admin
application provides the interface for controlling and monitoring the file server
while it is running, as well as the interface for defining users and groups for the
server. The AppleShare IP Web & File Admin application also lets the
administrator set preferences, set access privileges, and perform other
administrative tasks for the file server. (See the AppleShare IP
Administrator’s Manual for more information about the administrative
features of the AppleShare IP Web & File Admin application.)

The AppleShare IP Web & File Admin application communicates with the
AppleShare IP Web & File extension by means of server control calls and file
system calls. It communicates with the AppleShare Registry to store and
retrieve information about server volumes and the users and groups defined for
the server in the AppleShare PDS file and the Users & Groups Data File,
respectively.

AppleShare IP Web & File Server 1

The AppleShare IP Web & File Server application provides another way to start
and monitor the file server. The Server menu lets administrators unmount
volumes, disconnect users, send messages to users, reset the cache, and set the
greeting message. (See the AppleShare IP Administrator’s Manual for more
information about the features of the AppleShare IP file server user interface.)

The AppleShare Web & File Server application communicates with the
AppleShare IP Web & File extension primarily by means of server control calls.

AFP Clients 1

Computers with AppleShare client software installed can connect to the
AppleShare IP Web & File extension. AppleShare clients communicate with the
server through AFP sessions.

SMB Clients 1

Computers with Client for MS Networks software installed can connect to the
AppleShare IP Web & File extension. These computers communicate with the
server through SMB sessions.
About Server Control Calls 1-7

C H A P T E R 1

Server Control Calls

FTP Clients 1

Computers with Transmission Control Protocol (TCP) software installed can use
FTP to communication with the AppleShare IP Web & File extension.

HTTP Clients 1

Computers with Transmission Control Protocol (TCP) software installed can use
a web browser to connect to the AppleShare IP Web & File extension through
HTTP sessions.

File Manager 1

The Macintosh File Manager normally handles local requests for file access.
While the file server is running, however, the AppleShare IP Web & File
extension intercepts all file access calls from the File Manager.

Server Additions 1

Applications, INITs, extensions, and other types of programs can access the
AppleShare IP Web & File extension by using server control calls. A program
that uses server control calls is referred to as a server addition. This manual tells
you how to create server additions by using server control calls in your own
programs.

Macintosh File Sharing Software Components 1

Like the AppleShare IP file server, Macintosh File Sharing is composed of a
number of parts distributed across several files in the System Folder. Figure 1-2
shows the main elements of Macintosh File Sharing. The File Sharing Extension
provides the actual functionality of the AFP server. Three other files—the File
Sharing Library, the File Sharing control panels, and the Finder—work together
to provide the user interface.

The File Sharing Extension handles all requests for access to files residing on
local volumes, including local requests from the Macintosh File Manager and
server additions, and remote requests from AFP clients.
1-8 About Server Control Calls

C H A P T E R 1

Server Control Calls

Figure 1-2 Macintosh File Sharing components

This section describes the software components of Macintosh File Sharing. The
section “Data Files,” later in this chapter, describes the Users & Groups Data
File and the AppleShare PDS file.

File Sharing Extension 1

The File Sharing Extension contains the actual file server code. It is a system
extension that resides in the Extensions folder. The File Sharing Extension is a
launchable file, though its file type is 'INIT' instead of 'APPL', which prevents
users from starting it from the Finder. (The 'INIT' file type also tells the system

AFP server

File Sharing
Extension

locally

remotely

File Manager Server
addition

Network
AppleShare

clients

User interface

Users & Groups
Data File

Finder

File Sharing Library

File Sharing

AppleShare
PDS
About Server Control Calls 1-9

C H A P T E R 1

Server Control Calls

to put the file in the Extensions folder and causes the extension to be opened
during system startup.) When the File Sharing Extension is launched, it runs as
a background application.

The File Sharing Extension contains no user interface of its own. The user
interface is provided by the File Sharing Library, which allows users to start and
to control the File Sharing Extension. The File Sharing Extension communicates
with the File Sharing Library primarily by means of server control calls. The
File Sharing Extension communicates with the Finder by means of program
linking, and with a remote AppleShare client through AFP sessions. The File
Sharing Extension also communicates with local volumes and files by means of
File Manager routines, and with server additions by means of server control
calls.

When the File Sharing Extension is launched, it checks its environment, the
Users & Groups Data File, and the desktop databases and AppleShare PDS files
of appropriate volumes. (The File Sharing Extension does not attempt to share
remote volumes, or volumes such as floppy disks or volumes that are ejected
and off line during startup.) If an important required condition is not satisfied,
the offending volume will not be prepared for use with the file server or file
sharing will not be enabled.

Once started, the File Sharing Extension takes over the dispatching of all file
system calls—both local calls and remote requests. Essentially, the File Sharing
Extension acts as a mediator between the network and your local HFS volumes.
The File Sharing Extension imposes access privilege constraints on AFP
requests and implements some calls that are not implemented in HFS—such as
those that govern byte-range locking, access privileges, and extended file access
permissions.

File Sharing Library 1

The File Sharing Library provides the user interface for Macintosh File Sharing.
It is an extension of the Finder and resides in the Extensions folder. The File
Sharing Library is dynamically linked with the Finder code at startup time and
uses the Finder’s code to control its user interface. The user interface includes
what appears to users to be the File Sharing control panel.

Based on user interactions, the File Sharing Library communicates with the
server primarily by means of server control calls. The File Sharing Extension
communicates with users through the File Sharing Library by sending
high-level Apple events to display dialog boxes. The File Sharing Library relies
on the AppleShare PDS file and the Users & Groups Data File for information
1-10 About Server Control Calls

C H A P T E R 1

Server Control Calls
about server volumes and the users and groups defined for the server,
respectively.

Finder 1

The Finder provides part of the Macintosh File Sharing services. The Sharing
menu item in the Finder’s File menu lets users view and set the access
privileges for disks and folders. The Finder communicates with the file server
by using augmented Macintosh File Manager routines.

File Sharing 1

This control panel file triggers execution of the appropriate File Sharing Library
code.

Network AppleShare Clients 1

Network workstations with AppleShare client software installed can connect to
the File Sharing Extension. AppleShare clients communicate with the server by
means of AFP packets.

File Manager 1

The Macintosh File Manager normally handles local requests for file access.
When Macintosh File Sharing is turned on, however, the File Sharing Extension
intercepts all file access calls from the File Manager.

Server Additions 1

Applications, INITs, extensions, and other types of programs can access the File
Sharing Extension by using server control calls. A program that uses server
control calls is referred to as a server addition. This manual tells you how to
create server additions by using server control calls in your own programs.

Data Files 1

Both the AppleShare IP file server and Macintosh File Sharing use two data files
to store user and directory information: the Users & Groups Data File and the
AppleShare PDS file.
About Server Control Calls 1-11

C H A P T E R 1

Server Control Calls
Users & Groups Data File 1

The Users & Groups Data File contains a database of the users and groups
defined on your computer. You define users and groups for the AppleShare IP
file server by using the AppleShare IP Web & File Admin application. You
define users and groups with Macintosh File Sharing by using the Users &
Groups control panel. The data file is a B-Tree file. With the AppleShare IP file
server, the AppleShare IP Web & File Admin and the AppleShare IP Web & File
extension use the Users & Groups Data File. With Macintosh File Sharing, the
File Sharing Library and File Sharing Extension use the Users & Groups Data
File.

AppleShare PDS 1

The AppleShare PDS file is an invisible file that resides at the root of every
unlocked volume. PDS stands for parallel directory structure. The AppleShare
PDS file contains the access privilege and share-point information for the
volume on which the file resides. The PDS file determines the access privileges
of the volume’s users and groups, which are defined in the Users & Groups
Data File. Because the PDS file is created in conjunction with the Users &
Groups Data File, the Users & Groups Data File must not be removed from the
volume. (If the Users & Groups Data File is lost, the access privilege and
share-point information contained in the PDS file is lost as well.)

The PDS file for CD-ROM drives resides in the File Sharing folder (in the
Preferences folder) for Macintosh File Sharing, and in the Access Privileges
folder inside the AppleShare IP Preferences folder (in the Preferences folder) for
the AppleShare IP file server.

Using Server Control Calls 1

Table 1-1 lists the server control calls available with the AppleShare IP file
server.
1-12 Using Server Control Calls

C H A P T E R 1

Server Control Calls
Table 1-1 Summary of server control calls

Server control call

Supported by
Macintosh File
Sharing Function

SCCancelShutDown
(page 1-24)

Yes Cancels a shutdown of the file server.

SCClrCopyProtect
(page 1-25)

No Disables copy protection for the
specified file.

SCDisconnect (page 1-26) No1 Disconnects specified users from the file
server.

SCDisconnectVolUsers
(page 1-27)

No Disconnects specified users from the
specified volumes.

SCGetCacheStats (page 1-29) No Gets cache statistics, such as cache size,
utilization, and hits.

SCGetExpFldr (page 1-32) Yes Gets information about a specific shared
volume or folder.

SCGetExtUserNameRec
(page 1-34)

No Gets extended information, such as

SCGetPluginInfo
(page 1-36)

No Gets information about installed web
server plug-ins.

SCGetPluginMIMEType

(page 1-38)
No Gets the MIME type for a web server

plug-in.

SCGetServerActivityHistory
(page 1-40)

No Gets information about server activity,
such as minimum, maximum, and
average utilization of the server.

SCGetServerEventProc
(page 1-41)

No Gets a pointer to the head of the server
event handler queue.

SCGetServerStatus
(page 1-42)

No Gets information about the number of
active sessions, the date of the last
modification to the user list, the level of
server activity, and the date of the last
modification to the volume list.

continued
Using Server Control Calls 1-13

C H A P T E R 1

Server Control Calls
SCGetSetupInfo
(page 1-44)

No Gets the file server’s setup information,
including pointer to a SetupInfoRec
structure, as well as the maximum
number of volumes, share points, and
concurrent sessions that the server
supports.

SCGetUserMountInfo
(page 1-47)

Yes Gets information about how a user is
using a volume, such as whether the
volume is mounted as the owner, the
number of files the user has open, and
the number files that are open for
writing.

SCGetUserNameRec
(page 1-48)

No Gets the UNRecID ID for a connected user,
such as the user’s userID, name, log-on
time, time of last access, and address
from which this user is connected.

SCInstallServerEventProc
(page 1-50)

No Installs a server event handler on the file
server.

SCPollServer
(page 1-51)

Yes Gets information about the server’s
state, such as its disconnect state,
whether or not an error has occurred,
and how many seconds until the server
shuts down or disconnects a user.

SCRemoveServerEventProc
(page 1-59)

No Removes a server event handle from the
specified file server.

SCResetCache (page 1-60) No Flushes the cache.
SCSendMessage (page 1-61) No Sends a message to specified users.
SCServerVersion (page 1-63) Yes Gets the name of the file server

extension and the server’s type and
version.

SCServiceStateInfo
(page 1-64)

No Gets service state information, such as
whether AFP over TCP, HTTP, FTP, and
multihoming are enabled.

continued

SCSetCopyProtect
(page 1-66)

No Enables copy protection for the specified
file.

Server control call

Supported by
Macintosh File
Sharing Function
1-14 Using Server Control Calls

C H A P T E R 1

Server Control Calls
1 Macintosh File Sharing implements the SCDisconnect server control call but does not implement the
SCGetUserNameRec call, so there is no way to obtain a list of users to disconnect.

Determining If Server Control Calls Are Available 1

Before using any control call, use the TrapAvailable call to make sure that the
server dispatch trap is available. The following code tests directly for the
existence of the server dispatch trap:

Boolean
TrapAvailable (SInt16 trapNumber, TrapType trapType) {

/* Check and see if the trap exists. */
return (NGetTrapAddress (trapNumber, trapType) !=
GetTrapAddress (_Unimplemented));

} //TrapAvailable

gHasServerDispatch = TrapAvailable (_ServerDispatch, OSTrap);

Calling Conventions 1

After assuring that server control calls are available, issue the
ServerDispatchSync call with the following code:

pascal OSErr ServerDispatchSync (SCParamBlockRec *paramBlock);

SCSetHistorySampleTime
(page 1-67)

No Sets the size of each time slice returned
by SCGetActivityHistory.

SCSetSetupInfo (page 1-67) No Sets the file server’s setup information,
such as window visibility and login
message.

SCShutDown (page 1-68) Yes Shuts down the file server.
SCSleepServer (page 1-70) No Pauses the file server.
SCStartServer (page 1-72) Yes Starts the file server.
SCWakeServer (page 1-72) No Starts a file server that has been paused.

Server control call

Supported by
Macintosh File
Sharing Function
Using Server Control Calls 1-15

C H A P T E R 1

Server Control Calls
Starting and Stopping the File Server 1

In Listing 1-1, the StartStopServer routine stops or starts the file server, or
cancels a shutdown in progress, depending on the current state of the server. To
determine the current state of the server, StartStopServer calls the
GetServerState routine, which calls SCPollServer (page 1-51) to determine
whether the server is running, being shutdown, or not running.

Listing 1-1 Stopping and starting the file server

enum {
kRunningNormally,
kRunningButShuttingDown,
kNotRunning

};

OSErr StartStopServer (Boolean startIt, SInt16 howLong) {
OSErr err = noErr;
UInt16 serverState;

// To decide what to send the server, find out the state it's in.
// Then make the appropriate judgment.

err = GetServerState (&serverState);
if (err == noErr) {

if (startIt) {
if (serverState == kRunningNormally) {

// The file server is already running. Do nothing.
} else if (serverState == kRunningButShuttingDown) {

err = CancelShutDown ();
} else {

err = StartServer ();
} // if

} else {
if (serverState != kRunningNormally) {

// The file server is not running or soon will not be running. Do
// nothing.

} else {
err = ShutDownServer (howLong);
1-16 Using Server Control Calls

C H A P T E R 1

Server Control Calls
} // if
} // if

} // if
return err;

} // StartStopServer

In Listing 1-2, the GetServerState routine calls SCPollServer (page 1-51) to
determine whether the server is running, being shutdown, or not running.

Listing 1-2 Determining whether the server is running

OSErr GetServerState (UInt16* state) {
OSErr err = noErr;
SCParamBlockRec serverControl;
PollServerParamPtr pollParam = &serverControl.pollServerParam;
pollParam->scCode = kSCPollServer;
pollParam->scSecondsLeft = 0; // For MFS compatibility...
err = ServerDispatchSync (&serverControl);
if (pollParam->scServerState == kSCPollRunning) {

if (pollParam->scDisconnectState == kSCNotDisconnecting) {
*state = kRunningNormally;

} else {
*state = kRunningButShuttingDown;

} // if
} else if (pollParam->scServerState == kSCPollStartingUp) {

*state = kRunningNormally;// will soon be up...
} else {

*state = kNotRunning;
} // if

return err;

} // GetServerState

The StartServer routine shown in Listing 1-3 starts the file server.
Using Server Control Calls 1-17

C H A P T E R 1

Server Control Calls
Listing 1-3 Starting the file server

OSErr StartServer (void) {
OSErr err = noErr;
SCParamBlockRec serverControl;
StartParamPtr startParam = &serverControl.startParam;
startParam->scCode = kSCStartServer;
startParam->scStartSelect = kSCCurrentlyInstalled;
startParam->scEventSelect = kSCUseFinderExtension;
err = ServerDispatchSync (&serverControl);

return err;

} // StartServer

The ShutDownServer routine shown in Listing 1-4 stops the file server after a
specified period of time.

Listing 1-4 Shutting down the file server

OSErr ShutDownServer (SInt16 howLong) {
OSErr err = noErr;
SCParamBlockRec serverControl;
DisconnectParamPtr shutDownParam = &serverControl.disconnectParam;
shutDownParam->scCode = kSCShutDown;
shutDownParam->scNumMinutes = howLong;
shutDownParam->scFlags = 0;
shutDownParam->scMessagePtr = "\pServer is Shutting Down!";
err = ServerDispatchSync (&serverControl);

return err;

} // ShutDownServer

The CancelShutDown routine shown in Listing 1-5 cancels a shutdown of the file
server.
1-18 Using Server Control Calls

C H A P T E R 1

Server Control Calls
Listing 1-5 Canceling a file server shutdown

OSErr CancelShutDown (void) {

OSErr err = noErr;
SCParamBlockRec serverControl;
DisconnectParamPtr disconnectParam = &serverControl.disconnectParam;

disconnectParam->scCode = kSCCancelShutDown;

err = ServerDispatchSync (&serverControl);

return err;

} // CancelShutDown

Obtaining Status Information about Users, Volumes, and
Shared Items 1

This section describes the SCGetExpFldr call, which you can use to get
information about shared volumes and folders at a specified index position,
such as a folder’s AFP short name and directory ID, the number of users who
have mounted the volume or folder, and the index of a volume or folder. See
“SCGetExpFldr” (page 1-32) for detailed descriptions of the SCGetExpFldr call’s
return parameters.

The sample code shown in Listing 1-6 gets information about shared volumes
and folders.

Listing 1-6 Getting information about shared volumes and folders

OSErr GetSharedVolumeInfo (SInt16 vRefNum[], SInt32 dirID[], SInt16 logins[], UInt16 |
arraySize) {

OSErr err = noErr;
UInt16 arrayUsed = 0;
SInt16 curIndex, minIndex, maxIndex;
SCParamBlockRec serverControl;
StandardParamPtr standardParam = &serverControl.standardParam;
Using Server Control Calls 1-19

C H A P T E R 1

Server Control Calls
// Before beginning, determine the minimum and maximum index values for
// SCGetExpFldr.

err = GetMinMaxIndexBounds (&minIndex, &maxIndex);
if (err == noErr) {

curIndex = minIndex;
standardParam->scCode = kSCGetExpFldr;
standardParam->scNamePtr = NULL;// We'll ignore the names...
while ((arrayUsed < arraySize) && (curIndex <= maxIndex)) {

err = ServerDispatchSync (&serverControl);
if (err == noErr) {

vRefNum[arrayUsed] = standardParam->scVRefNum;
dirID[arrayUsed] = standardParam->scDirID;
logins[arrayUsed] = standardParam->scLogins;
arrayUsed += 1;

} // if

curIndex += 1;
if (err == fnfErr) {

err = noErr;// Just means the position was empty
} // if

if (err != noErr) {
break;

} // if

} // while
} // if

return err;
} // GetSharedVolumeInfo

The sample code shown in Listing 1-7 gets the range of indices that is valid for
calls to SCGetExpFolder.
1-20 Using Server Control Calls

C H A P T E R 1

Server Control Calls
Listing 1-7 Getting the valid range of indices

OSErr GetMinMaxIndexBounds (SInt16* minIndex, SInt16* maxIndex) {
OSErr err = noErr;
SCParamBlockRec serverControl;
SetupInfoRec setupInfo;
SetupParamPtr setupParam = &serverControl.setupParam;

setupParam->scCode = kSCGetSetupInfo;
setupParam->scSetupPtr = &setupInfo;
err = ServerDispatchSync (&serverControl);
*minIndex = -setupParam->scMaxVolumes;// Volumes are always negative.
*maxIndex = setupParam->scMaxExpFolders;

return err;

} // GetMinMaxIndexBounds

Sending Messages to Users 1

The SendGreetingToAll routine shown in Listing 1-8 calls GetNumberOfUsers
(page 1-22) to determine the number of connected users. Then it calls GetUser
(page 1-23) to get the user name and ID of each connected user. For each
connected user, SendGreetingToAll calls SendUserMessage (page 1-23) to send the
message.

Listing 1-8 Sending a message to all connected users

OSErr SendGreetingToAll (void) {

OSErr err = noErr;
SInt32 userIndex, numUsers;
SInt32 userID;
Str255 userName;

// The same message could be sent to all users in one operation, but this
// routine sends the message one at a time in order to customize the message.

err = GetNumberOfUsers (&numUsers);
Using Server Control Calls 1-21

C H A P T E R 1

Server Control Calls
if (err == noErr) {
userIndex = 0;
while (userIndex <= numUsers) {

err = GetUser (userIndex, userName, &userID);
if (err == noErr) {

err = SendUserMessage (userID, userName);
} else if (err == fnfErr) {

err = noErr;// User does not exist at this session ID...
} // if
if (err != noErr) {

break;
} // if
userIndex += 1;

} // while
} // if

return err;

} // SendGreetingToAll

The GetNumberOfUsers routine in Listing 1-9 calls SCGetSetupInfo to get the
number of users who are currently connected.

Listing 1-9 Determining the number of users

OSErr GetNumberOfUsers (SInt32* numUsers) {
OSErr err = noErr;
SCParamBlockRec serverControl;
SetupInfoRec setupInfo;
SetupParamPtr setupParam = &serverControl.setupParam;

setupParam->scCode = kSCGetSetupInfo;
setupParam->scSetupPtr = &setupInfo;
err = ServerDispatchSync (&serverControl);
*numUsers = setupParam->scCurMaxSessions;

return err;

} // GetNumberOfUsers
1-22 Using Server Control Calls

C H A P T E R 1

Server Control Calls
The GetUser routine in Listing 1-10 calls SCGetUserNameRec to get the name and
ID of a user who is connected to the file server.

Listing 1-10 Determining the name and ID of a connected user

OSErr GetUser (SInt32 index, StringPtr name, SInt32* userID){
OSErr err = noErr;
SCParamBlockRec serverControl;
UserInfoParamPtr userInfoParam = &serverControl.userInfoParam;

userInfoParam->scCode = kSCGetUserNameRec;
userInfoParam->scNamePtr = name;
userInfoParam->scPosition = index;

err = ServerDispatchSync (&serverControl);
*userID = userInfoParam->scUNRecID;

return err;

} // GetUser

The SendUserMessage routine in Listing 1-11 calls SCSendMessage to send the
message to the user.

Listing 1-11 Sending the message to a user

OSErr SendUserMessage (SInt32 userID, StringPtr name) {

OSErr err = noErr;
SCParamBlockRec serverControl;
DisconnectParamPtr messageParam = &serverControl.disconnectParam;
Str255 message = "\pHello ";

messageParam->scCode = kSCSendMessage;
messageParam->scDiscArrayPtr = &userID;// an array of 1
messageParam->scArrayCount = 1;
Using Server Control Calls 1-23

C H A P T E R 1

Server Control Calls
messageParam->scFlags = 0;
BlockMoveData (name, &message[StrLength(message) + 1], StrLength (name));
messageParam->scMessagePtr = message;

err = ServerDispatchSync (&serverControl);

return err;

} // SendUserMessage

Server Call Reference 1

This section provides detailed information about each of the AppleShare IP file
server control calls. This chapter gives a brief description of each call, shows the
structure of the parameter block, describes each field of the parameter block,
and lists the possible result codes. The calls are presented in alphabetical order.

SCCancelShutDown 1

SCCancelShutDown cancels the shutdown or disconnect in progress. If a
shutdown was in progress, a shutdown-canceled attention message is sent to all
affected users. Table 1-2 shows the parameter block for the SCCancelShutdown
call.

Table 1-2 Parameter block for the SCCancelShutDown call

Field descriptions
ioResult Word result value: Result code.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word
1-24 Server Call Reference

C H A P T E R 1

Server Control Calls
scCode Word input value: The server control code; always
kSCCancelShutDown (0x0003).

SCClrCopyProtect 1

SCClrCopyProtect is called by the AppleShare IP Web & File Admin application
or some other program executing locally on the server computer when the
program wants to clear the copy-protect status of a file. Table 1-3 shows the
parameter block for the SCClrCopyProtect call.

Note
Macintosh File Sharing does not support the
SCClrCopyProtect call. ◆

Table 1-3 Parameter block for the SCClrCopyProtect call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Long input value: Pointer to the name of the item for which

the copy-protect bit is to be cleared.
scVRefNum Word input value: The volume on which the item pointed

to by scNamePtr resides.
scDirID Long input value: The directory in which the item pointed

to by scNamePtr resides.

Result Codes noErr 0 No error.
paramErr –50 No shutdown or disconnect was in

progress.

Parameter StandardParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

l 22 scVRefNum word

l 26 scCode word

l 30 scDirID long
Server Call Reference 1-25

C H A P T E R 1

Server Control Calls
scCode Word input value: The server control code; always
kSCClrCopyProtect (0x0011).

Note
SCClrCopyProtect may also return errors returned by the
PBGetCatInfo and PBSetCatInfo routines. ◆

SCDisconnect 1

SCDisconnect disconnects every user whose user name record ID (UNRecID) is
contained in the array pointed to by scDiscArrayPtr and sends a disconnect
attention message to all of these users. Table 1-4 shows the parameter block for
the SCDisconnect call.

Note
Macintosh File Sharing implements the SCDisconnect server
control call but does not implement the SCGetUserNameRec
call, so there is no way to obtain a list of users to
disconnect. ◆

Table 1-4 Parameter block for the SCDisconnect call

Field descriptions
ioResult Word result value: Result code.

Result Codes noErr 0 No error.
paramErr –50 Server is not running.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scDiscArrayPtr long

l 22 scArrayCount word

l 26 scCode word

l 28 scNumMinutes word

l 30 scFlags word

l 32 scMessagePtr long
1-26 Server Call Reference

C H A P T E R 1

Server Control Calls
scDiscArrayPtr Longword input pointer: Points to the array of longs
containing the volume reference numbers specifying the
volumes affected.

scArrayCount Word input value: The number of elements in the array of
volume reference numbers.

scCode Word input value: The server control code; always
kSCDisconnect (0x0004).

scNumMinutes Word input value: The number of minutes until the users
are disconnected, in the range of 0–4094.

scFlags Word input value: Shutdown flag, as follows:
kSCUseMessagePtr The message pointed to by scMessagePtr
should accompany the disconnect. Note that this feature is
not supported by Macintosh File Sharing.

scMessagePtr Longword input value: A pointer to a Str199 containing the
message sent to the workstations.

SCDisconnectVolUsers 1

SCDisconnectVolUsers disconnects any users who have any of the specified
volumes mounted. In addition, this call prevents any new users from mounting
the volumes. Calling SCCancelShutdown cancels the shutdown in progress and
re-enables the mounting of volumes.

Note
Macintosh File Sharing does not support the disconnect
attention message. ◆

Result Codes noErr 0 No error.

kSCAlreadyShuttingDown –1 The server is already
shutting down.

kSCAlreadyDisconnecting –2 The server is already
disconnecting.

paramErr –50 The server is not
running, scNumMinutes
is out of range, an
unknown bit is set in
scFlags, or a UNRecID is
invalid.
Server Call Reference 1-27

C H A P T E R 1

Server Control Calls
Table 1-5 shows the parameter block for the SCDisconnectVolUsers call.

Table 1-5 Parameter block for the SCDisconnectVolUsers call

Field descriptions
ioResult Word result value: Result code.
scDiscArrayPtr Longword input pointer: Points to the array of longs

containing the volume reference numbers specifying the
volumes affected.

scArrayCount Word input value: The number of elements in the array of
volume reference numbers.

scCode Word input value: The server control code; always
kSCDisconnectVolUsers (0x0012).

scNumMinutes Word input value: The number of minutes until the users
are disconnected, in the range of 0–4094.

scFlags Word input value: Shutdown flag, as follows:
kSCUseMessagePtr The message pointed to by scMessagePtr
should accompany the disconnect. Note that this feature is
not supported by Macintosh File Sharing.

scMessagePtr Longword input value: A pointer to a buffer containing the
message sent to the workstations.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scDiscArrayPtr long

l 22 scArrayCount word

l 26 scCode word

l 28 scNumMinutes word

l 30 scFlags word

l 32 scMessagePtr long
1-28 Server Call Reference

C H A P T E R 1

Server Control Calls
SCGetCacheStats 1

SCGetCacheStats returns statistics about the file server cache.

Note
The SCGetCacheStats call requires AppleShare IP 6.0 or
later. ◆

Note
Macintosh File Sharing does not support the
SCGetCacheStats call. ◆

Table 1-6 shows the parameter block for the SCGetCacheStats call.

Result Codes noErr 0 No error.

kSCAlreadyShuttingDown –1 The server is already
shutting down.

kSCAlreadyDisconnecting –2 The server is already
disconnecting.

paramErr –50 The server is not
running, scArrayCount
is greater than
scMaxVolumes as
returned by
SCGetSetupInfo, a
volume reference
number is not valid,
scNumMinutes is out of
range, or an unknown
bit is set in scFlags.
Server Call Reference 1-29

C H A P T E R 1

Server Control Calls
Table 1-6 Parameter block for the SCGetCacheStats call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCGetCacheStats (0x0017).
scCacheStatsRecPtr Longword input value: A pointer to a scCacheStatsRec

structure that is to contain the cache statistics.
scCacheStatsRecSize

Longword input value: The size in bytes of the buffer
pointed to by SCCacheStatsRecPtr.

scCacheStatsActSize
Longword output value: The size in bytes of the
SCCachStatsRec structure containing the cache statistics.

The scCacheStatsRec structure is defined as follows:

struct SCCacheStatsRec {
SInt16 csVersion;
SInt32 csCacheTime;
SInt32 csRACacheAttempts;
SInt32 csRACacheHits;
SInt32 csRACacheTotalEntries;
SInt32 csRACacheEntriesInUse;
SInt32 csRACacheEntrySize;
SInt32 csDirCacheAttempts;
SInt32 csDirCacheHits;
SInt32 csDirCacheTotalEntries;
SInt32 csDirCacheEntriesInUse;
SInt32 csDirCacheEntrySize;
SInt32 csIconCacheAttempts;
SInt32 csIconCacheHits;
SInt32 csIconCacheTotalEntries;

Parameter GetCacheStatsParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

kl 30 scCacheStatsRecPtr long

l 34 scCacheStatsRecSize long

k 38 scCacheStatsActSize long
1-30 Server Call Reference

C H A P T E R 1

Server Control Calls
SInt32 csIconCacheEntriesInUse;
SInt32 csIconCacheEntrySize;
SInt32 csACtlCacheAttempts;
SInt32 csACtlCacheHits;
SInt32 csACtlCacheTotalEntries;
SInt32 csACtlCacheEntriesInUse;
SInt32 csACtlCacheEntrySize;
SInt32 csAUXCacheAttempts;
SInt32 csAUXCacheHits;
SInt32 csAUXCacheTotalEntries;
SInt32 csAUXCacheEntriesInUse;
SInt32 csAUXCacheEntrySize

};

Field descriptions
csVersion The version of the SCCacheStatsRec structure. For

AppleShare IP 6.0 or later, the value of csVersion is 3
(kSCCacheStatsRecVersion).

csCacheTime The time at which this cache information was obtained.
csRACacheCacheAttempts

The number of attempts to locate a file in the cache.
csRACacheHits The number of successful attempts to locate a file in the

cache.
csRACacheTotalEntries

The number of file entries available in the cache.
csRACacheEntriesInUse

The number of file entries used in the cache.
csRACacheEntrySize The size of each file entry in the cache.
csDirCacheAttempts

The number of attempts to locate a directory in the cache.
csDirCacheHits The number of successful attempts to locate a directory in

the cache.
csDirCacheTotalEntries

The number of directory entries available in the cache.
csDirCacheEntriesInUse

The number of directory entries used in the cache.
csDirCacheEntrySize

The size of each directory entry in the cache.
Server Call Reference 1-31

C H A P T E R 1

Server Control Calls
csIconCacheAttempts
The number of attempts to locate an icon in the cache.

csIconCacheHits The number of successful attempts to locate an icon in the
cache.

csIconCacheTotalEntries
The number of icon entries in the cache.

csIconCacheEntriesInUse
The number of icon entries used in the cache.

csIconCacheEntrySize
The size of each icon entry in the cache.

csAUXCacheAttempts Reserved.
csAUXCacheHits Reserved.
csAUXCacheTotalEntries

Reserved.

csAUXCacheEntriesInUse
Reserved.

csAUXCacheEntrySize
Reserved.

SCGetExpFldr 1

SCGetExpFldr returns information about shared folders and volumes.

Note
Macintosh File Sharing does not return fnfErr when there
is no shared volume or folder at a particular index position.
Instead, it returns noErr and takes no other action. To
determine if a particular location is in use, set scVRefNum to
zero before calling SCGetExpFldr. If scVRefNum is still zero
after SCGetExpFldr is called, then there is no shared volume
or folder at that particular index position. ◆

Table 1-7 shows the parameter block for the SCGetExpFldr call.
1-32 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-7 Parameter block for the SCGetExpFldr call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Longword input pointer: Points to the Str13 where the

shared folder’s AFP short name will be returned, or must
contain NULL. If scIndex is negative, then an empty Pascal
string (’ ’) is returned.

scVRefNum Word result value: Returns the reference number (vRefNum)
of the shared folder.

scLogins Word result value: Returns the number of people who have
mounted this folder. (For real volumes, this parameter
returns the total number of people who have mounted
either the whole volume or any of its shared folders.) Note
that this value is not returned under Macintosh File
Sharing.

scCode Word input value: The server control code; always
kSCGetExpFldr (0x0006).

scIndex Word input value: The index into the list of shared folders.
Use positive values to get shared folders (what users who
are not owners see). Use negative values to get shared
volumes (what users who are owners see). Use
SCGetSetupInfo to find the usable range for scIndex. scIndex
must be in the range –MaxVolumes to MaxExpFolder. An
scIndex of 0 is undefined.

scDirID Longword result value: Returns the directory ID (dirID) of
the shared folder.

Parameter StandardParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

k 22 scVRefNum word

k 24 scLogins word

l 26 scCode word

l 28 scIndex word

k 30 scDirID long
Server Call Reference 1-33

▲ W AR N I N G

When scIndex is negative,scNamePtr must be NULL .
Otherwise, Macintosh File Sharing writes invalid data into
memory. ▲

SCGetExtUserName 1

SCGetExtUserName returns information about a user by session index.

Note
The SCGetExtUserName call requires AppleShare IP 6.0 or
later. ◆

Note
Macintosh File Sharing does not support the
SCGetExtUserName call. ◆

Table 1-8 shows the parameter block for the SCGetExtUserName call.

Result Codes noErr 0 No error.

fnfErr –1 There is no shared folder at
that index position.

paramErr –50 The server is not running, or
scindex is either 0 or out of
range.

afpObjectNotFound –5018 scIndex is either 0 or out of
range under Macintosh File
Sharing.

C H A P T E R 1

Server Control Calls
Table 1-8 Parameter block for the SCGetExtUserName call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Long input value: A pointer to an Str31 where the user

name will be returned, or NULL.
scCode Word input value: The server control code; always

kSCGetExtUserName (0x0023).
scPosition Input value: An index of an active session between 0 and

one less than the maximum number of sessions. To get the
maximum number of sessions, call SCGetServerStatus
(page 1-42).

scUnRecID Output value: The session ID of the user’s session.
scUserID Output value: The user’s user ID.
scAttrVersion Input value: The version of the UserAttrRec structure

pointed to by scUserAttrPtr.
scUserAttrPtr Input value: Pointer to a UserAttrRec structure in which

SCGetExtUserName returns information about the user.
The UserAttrRec structure is defined as follows:

struct UserAttrRec {
SInt32 scLoginTime;
SInt32 scLastUseTime;
SInt32 scSocketNum;
FourCharCode scProtocolType;
FourCharCode scTransportType;
StringPtr scSessionNamePtr;
SInt32 scDisconnectID;

};

Parameter PluginInfoParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

l 26 scCode word

l 28 scPosition long

k 32 scUNRecID long

k 36 scUserID long

l 40 scAttrVersion word

l 42 scUserAttrPtr long
Server Call Reference 1-35

C H A P T E R 1

Server Control Calls
Field descriptions
scLoginTime The time this login started in seconds since January 1, 1904.
scLastUseTime The time the user was last active in n seconds since January

1, 1904.
scSocketNum The user’s AppleTalk or IP address.
scProtocolType The protocol for the session and one of the following

constants:
kSCSessionAFP = 'afp ';

kSCSessionHTTP = 'http';
kSCSessionFTP = 'ftp ';
kSCSessionSMB = 'smb ';

scTransportType The transport protocol for the session and one of the
following constants:
kSCTransportATP = 'atp ';

kSCTransportTCP = 'tcp ';

scSessionNamePtr A textual description of the session type (can be NULL).
scDisconnectID TRUE if the user is in the process of being disconnected via

the countdown timer.

SCGetPluginInfo 1

SCGetPluginInfo returns information about web server plug-ins.

Note
The SCGetPluginInfo call requires AppleShare IP 6.0 or
later. ◆

Note
Macintosh File Sharing does not support the
SCGetPluginInfo call. ◆

Result Codes noErr 0 No error.

paramErr –50 The server is not running, attrVersion is
not known, or scPosition is out of
range.

fnfErr –43 There is no valid user at this position.
1-36 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-9 shows the parameter block for the SCGetPluginInfo call.

Table 1-9 Parameter block for the SCGetPluginInfo call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCGetPluginInfo (0x0029).
version Word input value: The version of SCGetPluginInfo that

your application supports. For AppleShare IP 6.0 or later,
the value of version should be zero.

index Longword input value: A value specifying the plug-in for
which information is to be returned. Your application
should start with index set to kSCPlugInInfoParamVersion
(0x0000) and increment index until SCGetPluginInfo returns
a value of isLast that is TRUE.

error An error code that can be one of the following values:
enum {

 kSCPlugInNoErr= 0,
 kSCPlugInWrongVersionErr= 1,
 kSCPlugInBadIndexErr= 2,
 kSCPlugInPlugInsNotLoadedErr = 3,
 kSCPlugInBadPlugInRefErr= 4
};

Parameter PluginInfoParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 version word

l 30 index long

k 34 error word

k 36 name 32-byte array

k 68 versionStr 12-byte array

k 80 adminURL 256-byte array

k 336 plugInRef long

k 340 isLast word
Server Call Reference 1-37

C H A P T E R 1

Server Control Calls
name Output C string: The name of the plug-in.
versionStr Output C string: The plug-in’s version string.
adminURL Output C string: The universal resource locator (URL) of

the supporting plug-in.
plugInRef Output word value: A value that identifies a plug-in. You

can use plugInRef to make an SCGetPluginMIMEType call.
isLast Output word value: TRUE if SCGetPluginInfo returned

information about the last plug-in; otherwise, the value of
isLast is FALSE.

SCGetPluginMIMEType 1

SCGetPluginMIMEType returns information about the MIME types that the web
server’s plug-ins support.

Note
The SCGetPluginMIMEType call requires AppleShare IP 6.0 or
later. ◆

Note
Macintosh File Sharing does not support the
SCGetGetPluginMIMEType call. ◆

Table 1-10 shows the parameter block for the SCGetPluginMIMEType call.

Result Codes noErr 0 No error.

paramErr –50 The server is not running.
1-38 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-10 Parameter block for the SCGetPluginMIMEType call

Field descriptions
ioResult Word result value: Result code.
reserved Reserved input value.
reserved2 Reserved input value.
reserved3 Reserved input value.
scCode Word input value: The server control code; always

kSCGetPluginMIMEType (0x002A).
version Word input value: The version of SCGetPluginInfo that

your application supports. For AppleShare IP 6.0 or later,
the value of version should be zero.

plugInRef Input word value: A value returned by SCGetPluginInfo
that identifies the plug-in for which MIME type
information is to be obtained.

index Longword input value: A value specifying the MIME type
information that is to be returned. Your application should
start with index set to zero and increment index until
SCGetPluginMIMEType returns a value of isLast that is TRUE.

error Output An error code that can be one of the following
values:

Parameter PluginMIMETypeParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 version word

l 30 plugInRef long

l 34 index word

k 36 error word

k 38 mimetype 80-byte array

k 118 suffix 32-byte array

k 170 typeCode long

k 174 creatorCode long

k 178 isLast word
Server Call Reference 1-39

C H A P T E R 1

Server Control Calls
enum {
 kSCPlugInNoErr= 0,
 kSCPlugInWrongVersionErr= 1,
 kSCPlugInBadIndexErr= 2,
 kSCPlugInPlugInsNotLoadedErr = 3,
 kSCPlugInBadPlugInRefErr= 4
};

mimeType Output C string: A value that represents one of the MIME
types the plug-in supports.

suffix Output C string: A value that represents the suffix for the
MIME type contained by mimeType.

typeCode Output long: The plug-in’s type code.
creatorCode Output long: The plug-in’s creator code.
isLast Output word value: TRUE if SCGetPluginMIMEType returned

information about the last MIME type that the plug-in
supports; otherwise, the value of isLast is FALSE.

SCGetServerActivityHistory 1

SCGetServerActivityHistory returns information about file server activity,
including the minimum, maximum, and average utilization of the file server.

Note
The SCGetServerActivityHistory call requires AppleShare
IP 6.0 or later. ◆

By default, the AppleShare IP file server takes a sample every 10 milliseconds.
Information is returned in a server history record that contains 1024 samples,
which is enough to store about 10.25 seconds of history data at the default
sample rate.

Note
Macintosh File Sharing does not support the
SCGetServerActivityHistory call. ◆

Table 1-11 shows the parameter block for the SCGetServerActivityHistory call.

Result Codes noErr 0 No error.
paramErr –50 Server not running.
1-40 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-11 Parameter block for the SCGetServerActivityHistory call

Field descriptions
ioResult Word result value: Result code.
scHistory Input and output long: A server history record that

contains the history data.
numDataPointsRequested

The number of data points to return in the server history
record.

scCode Word input value: The server control code; always
kSCGetServerActivityHistory (0x002C).

SCGetServerEventProc 1

SCGetServerEventProc returns the head of the server event handler queue.

Note
Macintosh File Sharing does not support the
SCGetServerEventProc call. ◆

Table 1-12 shows the parameter block for the SCGetServerEventProc call.

Parameter GetHistoryParam variant of SCParamBlockRec

Block k 16 ioResult word

kl 18 scHistory long

l 22 numDataPointsRequested word

l 26 scCode word

Result Codes noErr 0 No error.
Server Call Reference 1-41

C H A P T E R 1

Server Control Calls
Table 1-12 Parameter block for the SCGetServerEventProc call

Field descriptions
ioResult Word result value: Result code.
scSEQEntryPtr Longword result pointer: Returns a pointer to an operating

system queue header (QHdr) of the server event handler
queue. The first server event handler in the handler queue,
if any, is at ((QHdrPtr)thePB.scSEQEntryPtr)->qHead.

scCode Word input value: The server control code; always
kSCGetServerEventProc (0x000D).

SCGetServerStatus 1

SCGetServerStatus returns server status information.

Note
Macintosh File Sharing does not support the
SCGetServerStatus call. ◆

Table 1-13 shows the parameter block for the SCGetServerStatus call.

Parameter ServerEventParam variant of SCParamBlockRec

Block k 16 ioResult word

k 18 scSEQEntryPtr long

l 26 scCode word

Result Codes noErr 0 No error.

paramErr –50 The server is not running.
1-42 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-13 Parameter block for the SCGetServerStatus call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Longword input value: A pointer to the name of the server.
scCode Word input value: The server control code; always

kSCGetServerEventProc (0x000A).
scServerFlags Word result value: Obsolete.
scNumSessions Word result value: The number of currently opened

sessions.
scUserListModDate Longword result value: The last date and time (DateTime)

that the user list was modified. (This value is helpful in
minimizing the amount of updating needed by a
monitoring application that updates some user list.)

scActivity Word result value: The server activity, in percent
(5%–100%).

scVolListModDate Longword result value: The last time (TickCount) that the
volume list was modified. (This value is helpful in
minimizing the amount of updating needed by a
monitoring application that updates some volume list.)

Parameter StatusParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

l 26 scCode word

k 28 scServerFlags word

k 30 scNumSessions word

k 32 scUserListModDate long

k 36 scActivity word

k 38 scVolListModDate long

Result Codes noErr 0 No error.

paramErr –50 The server is not running.
Server Call Reference 1-43

C H A P T E R 1

Server Control Calls
SCGetSetupInfo 1

SCGetSetupInfo returns server setup information in a SetupInfoRec structure.
The SetupInfoRec structure is defined as follows:

struct SetupInfoRec {
SInt16 siVersion;
SInt16 siFlags;
SInt16 siMaxLogins;
SInt16 siSrvrUsageLimit;
Point siVolInfoLocation;
Boolean siVolInfoVisible;
Boolean siReserved1;
Point siUserInfoLocation;
Boolean siUserInfoVisible;
Boolean siReserved2;
SInt16 siShutDownMins;
SInt16 siCacheControl; /* No longer used */
SInt16 siVolParmsStepSize; /* No longer used */
SInt16 siVolParmsIncrement; /* No longer used */
SInt16 siVolParmsFirstDelay; /* No longer used */
SInt16 siVolParmsMaxDelay; /* No longer used */
SInt32 siRACacheFileBufSize; /* No longer used */
SInt32 siRACacheSize; /* No longer used */
SInt16 siDirCacheMaxWidth; /* No longer used */
SInt32 siDirCacheSize; /* No longer used */
SInt32 siIconCacheSize; /* No longer used */
SInt32 siBTMemReservedFromCache;
SInt16 siSpare[1]; /* Reserved */
Str198 siLoginMsg;

};
typedef struct SetupInfoRecSetupInfoRec;

Field descriptions
siVersion The version of the SetupInfoRec structure. For AppleShare

IP 6.0 or later, the value of siVersion is 3
(kSCSetupRecordVersion).

siFlags Reserved. Set to zero.
siMaxLogins The maximum number of logins for which the server is

configured.
1-44 Server Call Reference

C H A P T E R 1

Server Control Calls
siSrvrUsageLimit The maximum amount of the computer’s processing power
that is allocated to the file server.

siVolInfoLocation The location of the Volume Info window.
siVolInfoVisible TRUE if the Volume Info window is visible; FALSE if the

Volume Info window is not visible.
siReserved1 Reserved.
siUserInfoLocation The location of the Connected Users window.
siUserInfoVisible TRUE if the Connected Users window is visible; FALSE if the

Connected Users window is not visible.
siReserved2 Reserved.
siShutDownMins The number of minutes that is used by default for shutting

down the file server.
siCacheControl Obsolete. To obtain this information, see

“SCGetCacheStats” (page 1-29).
siVolParmsStepSize Obsolete. To obtain this information, see

“SCGetCacheStats” (page 1-29).
siVolParmsIncrement

Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siVolParmsFirstDelay

Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siVolParmsMaxDelay Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siRACacheFileBufSize

Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siRACacheSize Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siDirCacheMaxWidth Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siDirCacheSize Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siIconCacheSize Obsolete. To obtain this information, see
“SCGetCacheStats” (page 1-29).

siBTMemReservedFromCache
The amount of memory that is reserved for applications
other than the file server.
Server Call Reference 1-45

C H A P T E R 1

Server Control Calls
siSpare Reserved.
siLoginMsg A string containing the message that is displayed when

users log on.
Table 1-14 shows the parameter block for the SCGetServerSetupInfo call.

Table 1-14 Parameter block for the SCGetSetupInfo Call

Field descriptions
ioResult Word result value: Result code.
scSetupPtr Longword input pointer: Points to the setup information

record (SetupInfoRec) where the server setup information
will be returned, or must contain NULL.

scMaxVolumes Word result value: Returns the maximum number of
volumes supported by the server. Note that this value is
not returned under Macintosh File Sharing. (The maximum
number of volumes supported under Macintosh File
Sharing is 10.)

scMaxExpFolders Word result value: Returns the maximum number of shared
folders supported by the server. Note that this value is not
returned under Macintosh File Sharing. (The maximum
number of folders supported under Macintosh File Sharing
is 10.)

scCode Word input value: The server control code; always
kSCGetSetupInfo (0x0007).

scCurMaxSessions Word result value: Returns the maximum number of logins
currently allowed. Note that this value is not returned
under Macintosh File Sharing.

Parameter SetupParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scSetupPtr long

k 26 scMaxVolumes word

k 28 scMaxExpFolders word

l 30 scCode word

k 32 scCurMaxSessions word
1-46 Server Call Reference

C H A P T E R 1

Server Control Calls
SCGetUserMountInfo 1

SCGetUserMountInfo returns information about how a user is using a particular
volume. For a shared folder (that is, if the value of acVRefNum is positive), these
values are for that shared folder only. For a real volume (that is, if the value of
acVRefNum is negative), these values represent totals for all shared folders on the
volume.

Table 1-15 shows the parameter block for the SCGetUserMountInfo call.

Table 1-15 Parameter block for the SCGetUserMountInfo call

Field descriptions
ioResult Word result value: Result code.
scVRefNum Longword input value: The volume specification or shared

folder specification.
scCode Word input value: The server control code; always

kSCGetUserMountInfo (0x0014).
scFilesOpen Word result value: Returns the total number of files the

user has open on the volume or shared folder.

Result Codes noErr 0 No error.

paramErr –50 The server is not running.

Parameter VolMountedParam variant of SCParamBlockRec

Block k 16 ioResult word

l 22 scVRefNum word

l 26 scCode word

k 28 scFilesOpen word

k 30 scWriteableFiles word

l 32 scUNRecID long

k 36 scMounted byte

k 37 scMountedAsOwner byte
Server Call Reference 1-47

C H A P T E R 1

Server Control Calls
scWriteableFiles Word input value: Returns the total number of files the user
has open for write access on the volume or shared folder.

scUNRecID Longword input value: Specifies the user name record ID
(UNRecID).

scMounted Word result value: Returns TRUE if the user has this volume
mounted.

scMountedAsOwner Byte result value: For real volumes only, returns TRUE if the
user has the whole volume mounted by virtue by being an
its owner.

SCGetUserNameRec 1

SCGetUserNameRec retrieves statistics on a connected user, and can be used to
enumerate all connected users.

Note
Macintosh File Sharing does not support the
SCGetUserNameRec call. ◆

Table 1-16 shows the parameter block for the SCGetUserNameRec call.

Result Codes noErr 0 No error.
nsvErr –35 No such volume with this reference

number (scVRefNum).

paramErr –50 The server is not running, the user name
record ID (scUNRecID) is invalid, or the
volume reference number (scVRefNum) is
out of range.
1-48 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-16 Parameter block for the SCGetUserNameRec call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Longword result pointer: Points to a Str31 where the user

name will be copied, or must contain NULL.
scCode Word input value: The server control code; always

kSCGetUserNameRec (0x0013).
scPosition Longword input/result value: Specifies the position in the

list of users. Set scPosition to zero to retrieve the first user.
Use the value returned in scPosition to retrieve the next
user.

scUNRecID Longword result value: Returns the user name record ID
(UNRecID).

scUserID Longword result value: Returns the user ID (UserID).
scLoginTime Longword result value: Returns the time at which the user

logged in.
scLastUseTime Longword result value: Returns the time at which the user

last access the server.
scSocketNum Longword result value: Returns the AppleTalk network

address or the IP address this user is connected from. The
value is returned in an AddrBlock record.

Parameter UserInfoParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

k 26 scCode word

kl 28 scPosition long

k 32 scUNRecID long

k 36 scUserID long

k 40 scLoginTime long

k 44 scLastUseTime long

k 48 scSocketNum long
Server Call Reference 1-49

C H A P T E R 1

Server Control Calls
SCInstallServerEventProc 1

SCInstallServerEventProc installs a server event object in the server event
handler queue. For sample code, see “Sample Server Event Handler Code”
(page 2-11).

Note
Macintosh File Sharing does not support the
SCInstallServerEventProc call. ◆

Table 1-17 shows the parameter block for the SCInstallServerEventProc call.

Table 1-17 Parameter block for the SCInstallServerEventProc call

Field descriptions
ioResult Word result value: Result code.
scServerEventQEntry

Longword input pointer: Points to the tSEQEntry server
event object to be installed in the server event handler
queue.

scCode Word input value: The server control code; always
kSCInstallServerEventProc (0x000B).

Result Codes noErr 0 No error.
nsvErr –43 There are no more users to enumerate.

paramErr –50 The server is not running, a UNRecID is
invalid, or scPosition is out of range.

Parameter ServerEventParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scServerEventQEntry long

l 26 scCode word
1-50 Server Call Reference

C H A P T E R 1

Server Control Calls
SCPollServer 1

SCPollServer provides information about the current status of the file server.
Table 1-18 shows the parameter block for the SCPollServer call.

Table 1-18 Parameter block for the SCPollServer call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCPollServer (0x0005).

Result Codes noErr 0 No error.

paramErr –50 The server is not running.

afpMiscErr –5014 There are already 15 server event
handlers (the maximum) in the
server event handler queue.

Parameter PollServerParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

k 28 scServerState word

k 30 scDisconnectState word

k 32 scServerError word

k 34 scSecondsLeft long
Server Call Reference 1-51

C H A P T E R 1

Server Control Calls

n;
“Less

n;

ds
tup

ting

here

 an

. Note
 by

ct;

e.”

e
scServerState Word result value: The state of the server, as follows:

scDisconnectState Word result value: The state of the server disconnect, as
follows:

kSCDisconnectWithin29Secs 0–29 seconds before shutdow
Network Setup message says
than a minute.

kSCDisconnect30To89Secs 30–89 seconds before shutdow
Network Setup message says
“About a minute.”

0x0002–0x0FFE (scServerState*60) – 30 to
(scServerState*60) + 29 secon
before shutdown; Network Se
message says “About
scServerState minutes.”

kSCPollRunning Server running normally.

kSCPollStartingUp Server is in the process of star
up.

kSCPollJustDisabled Server was just disabled and t
was no startup error.

kSCPollDisabledErr Server is disabled and there is
“SE” error in scServerError.

kSCPollSleeping Server is temporarily disabled
that this result is not returned
Macintosh File Sharing.

kSCDisconnectWithin29Secs 0–29 seconds before disconne
Network Setup message says
“Less than a minute.

kSCDisconnect30To89Secs 30–89 seconds before
disconnect; Network Setup
message says “About a minut

0x0002–0x0FFE (scDisconnectState*60) – 30 to
(scDisconnectState*60) + 29
seconds before disconnect;
Network Setup message says
“About scDisconnectState
minutes.”

kSCNotDisconnecting Server not disconnecting som
user or group of users.
1-52 Server Call Reference

C H A P T E R 1

Server Control Calls

r.

.
scServerError Word result value: If scServerState = SCPSDisabledwErr
then scServerError contains one of the following values:

kSCJustDisabled Server was just disabled and
there was no startup error.

kSCDisabledErr Server is disabled and there is
an “SE” error in scServerErro

kSCSleeping Server is temporarily disabled
Note that this result is not
returned by Macintosh File
Sharing.

kSCModernMemMgrOffErr The Modern Memory
Manager is not
enabled.

kSCNoThreadLibraryErr The Thread Manager
could not be found.

kSCServiceNotInstalledErr The specified service is
not installed.

kSCInsuffMFMemErr There was not enough
memory in the Process
Manager’s heap for the
server to start up.

kSCCantRegNameErr The file server’s name
could not be registered
on the AppleTalk
network.

kSCCantFindExtnFolderErr The file server could
not be started because
the Extensions folder
could not be found.

kSCUnExATalkErr An unexpected
AppleTalk error
occurred.

kSCNoMachineNameErr The computer on
which the file server is
installed does not have
a name.
Server Call Reference 1-53

C H A P T E R 1

Server Control Calls
kSCCantFindFSExtnErr The file server could
not start up because the
AppleShare IP Web &
File Server extension or
the File Sharing
Extension could not be
found.

kSCATalkOffErr AppleTalk is turned
off.

kSCNoInitRunErr The AppleShare IP Web
& File Server extension
or File Sharing
Extension is not
installed in the System
Folder.

kSCInsuffAppMemErr There was not enough
memory for the file
server to start up.

kSCBadConfigErr The file server
encountered a problem
with the current
configuration.

kSCNoDTOnStartupErr The desktop database
on the startup volume
could not be opened.

kSCDupNameErr Duplicate-name error
occurred when the
server was registering.
Choose another name
for this computer.

kSCBadFileBufParmsErr Obsolete.
kSCNeedRootUserErr Administrator

privileges are required
to complete the
specified action.

kSCBadSerialNumErr The specified
AppleShare IP serial
number is invalid.
1-54 Server Call Reference

C H A P T E R 1

Server Control Calls
kSCSysTooOldErr The System file is too
old for this version of
the AppleShare IP file
server.

kSCDupSerialNumberErr An other computer is
running AppleShare
using the same serial
number as this
computer.

kSCVMOnErr Obsolete.
kSCBadInitErr An inconsistency

between components
has been detected;
reinstall AppleShare IP.

kSCOpenTransportInstallErr The version of Open
Transport installed on
this computer is
incompatible with this
version of AppleShare
IP.

kSCNoAgentLibErr The AppleShare
Registry Library could
not be found.

kSCInvalidAgentErr The AppleShare
Registry Agent is not
running or is not
responding.

kSCAgentServerObjErr Bad server object type.
kSCCorruptedMimeTypesErr The defined set of

MIME types that the
server supports is
invalid.

kSCAgentGenesisErr The AppleShare
Registry could not start
up.

kSCAlreadyShuttingDown The server is already
shutting down.
Server Call Reference 1-55

C H A P T E R 1

Server Control Calls
kSCAlreadyDisconnecting The sever is already
scheduled to
disconnect users.

kSCDeletedPDSErr The PDS file could not
be found.

kSCContainsExpFolderErr A sharepoint contains
another sharepoint.

kSCCantPrepareVolumeErr The specified volume
could not be shared.

kSCTooManyExpFoldersErr Too many folders are
configured for sharing.

kSCFixedPDSErr The AppleShare PDS
file was damaged, but
the server has repaired
it.

kSCExpFolderNamConfErr Two or more share
points have the same
name.

kSCNoExportFolderErr No folders are being
shared.

kSCInsideExpFolderErr A share point is
contained within
another share point.

kSCInsideTrashErr A share point is in the
Trash.

kSCVolNameConflictErr Two or more volumes
have the same name.

kSCCacheReducedErr Obsolete.
kSCBadIPConfigErr The TCP/IP control

panel is configured
incorrectly.

kSCBadAccessPrivRecErr The access privilege
record is invalid.

kSCBadMimeTypeFileErr The file that contains
the MIME types that
the server supports is
invalid.

kSCAFPGenErr Generic AFP error.
1-56 Server Call Reference

C H A P T E R 1

Server Control Calls
kSCAFPTCPGenErr Generic TCP over AFP
error.

kSCAFPTCPMemErr A TCP over AFP
memory error
occurred.

kSCAFPTCPPortInUseErr The port used by TCP
over AFP is already in
use.

kSCFTPGenErr Generic FTP error.
kSCFTPPortInUseErr The port used by FTP

is already in use.
kSCFTPNotAvailErr FTP is not enabled.
kSCFTPMemErr An FTP memory error

occurred.
kSCHTTPGenErr Generic HTTP error.
kSCHTTPPortInUseErr The port used by HTTP

is already in use.
kSCHTTPFolderErr The folder that

contains the home page
cannot be found.

kSCHTTPFileErr The file that contains
the home page cannot
be found or contains an
error.

kSCHTTPMemErr An HTTP memory
error occurred.

kSCHTTPNoMimeTypesErr The web server does
not support any MIME
types.

kSCHTTPNoDefaultMimeErr The default MIME type
is not defined.

kSCPluginDirNotFoundErr The plug-in folder
cannot be found.

kSCPluginMemFullErr The memory allocated
for plug-ins is full.

kSCPluginPreProcNotFoundErr A plug-in preprocessor
could not be found.
Server Call Reference 1-57

C H A P T E R 1

Server Control Calls
kSCPluginPostProcNotFoundErr A plug-in
postprocessor could
not be found.

kSCErrorPluginNotFoundErr The plug-in specified
for handling errors
could not be found.

kSCPluginNotPreProcessorErr The plug-in specified
for preprocessing
requests could not be
found.

kSCPluginNotPostProcessorErr The plug-in specified
for postprocessing
requests could not be
found.

kSCPluginMemPoolFullErr The memory pool for
plug-ins could not be
allocated.

kSCPluginOutOfMemoryErr The plug-in failed to
load because it was out
of memory.

kSCCorruptedMimeTypesErr The list of MIME types
that the server
supports is invalid.

kSCPlugInLoggingErr A plug-in logging error
occurred.

kSCPlugInTypeConflictErr Two or more plug-ins
support the same
MIME type.

kSCPlugInCannotRegisterErr A plug-in failed to
register itself.

kSCPlugInMemSmallErr The requested amount
of memory for plug-ins
was not available, so a
smaller amount was
allocated.
1-58 Server Call Reference

C H A P T E R 1

Server Control Calls
scSecondsLeft Longword result value: Returns the number of seconds left
before the shutdown or disconnect. Zero is returned if no
shutdown or disconnect is in progress. This value is
undefined if the server is disabled (not running). Note that
this feature is not implemented under Macintosh File
Sharing.

SCRemoveServerEventProc 1

SCRemoveServerEventProc removes a server event object from the server event
handler queue.

Note
Macintosh File Sharing does not support the
SCRemoveServerEventProc call. ◆

Table 1-19 shows the parameter block for the SCRemoveServerEventProc call.

kSCWebAdminNetworkErr A low-level
networking error
occurred when the
server tried to allocate
resources for the web
administration port.
The port may be in use
by another program.

kSCSMBGenErr Generic SMB error.
kSCSMBPortInUseErr The port used by SBM

is already in use.
kSCSMBMemErr An SMB memory error

occurred.

Result Codes noErr 0 No error.
Server Call Reference 1-59

C H A P T E R 1

Server Control Calls
Table 1-19 Parameter block for the SCRemoveServerEventProc call

Field descriptions
ioResult Word result value: Result code.
scSEQEntryPtr Longword input pointer: Points to the ServerEventQEntry

server event object to be removed from the server event
handler queue.

scCode Word input value: The server control code; always
kSCRemoveServerEventProc (0x000C).

SCResetCache 1

SCResetCache flushes the file server cache.

Note
The SCResetCache call requires AppleShare IP 6.0 or later. ◆

Note
Macintosh File Sharing does not support the SCResetCache
call. ◆

Table 1-20 shows the parameter block for the SCResetCache call.

Parameter ServerEventParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scSEQEntryPtr long

l 26 scCode word

Result Codes noErr 0 No error.

paramErr –50 The server is not running.

afpMiscErr –5014 There are no server event objects, or
this server event object is not in the
server event handler queue.
1-60 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-20 Parameter block for the SCResetCache call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCResetCache (0x001F).
bitmap A bitmask consisting of a combination of the following

constants:
kSCShrinkCache, performs the specified action when
combined with one or more of the constants that follow.
kSCResetFileCache, resets the file cache of read ahead and
write behind data.
kSCResetCNodeCache, resets the cache of directory
information.
kSCResetDTCache, resets the desktop cache containing
permission information.
kSCShrinkAllCaches, resets all caches to their initial sizes.

SCSendMessage 1

SCSendMessage sends a server message to every user whose user name record ID
(UNRecID) is contained in the array pointed to by scDiscArrayPtr.

Note
Macintosh File Sharing does not support the SCSendMessage
call. ◆

Table 1-21 shows the parameter block for the SCSendMessage call.

Parameter ResetCacheParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 bitmap word

Result Codes noErr 0 No error.
Server Call Reference 1-61

C H A P T E R 1

Server Control Calls
Table 1-21 Parameter block for the SCSendMessage call

Field descriptions
ioResult Word result value: Result code.
scSEQEntryPtr Longword input pointer: Points to the array of user name

record IDs (UNRecID).
scArrayCount Word input value: The number of elements in the array of

user name record IDs (UNRecID).
scCode Word input value: The server control code; always

kSCSendMessage (0x0009).
scFlags Word input value: The following bit must be set:

scMessagePtr Longword input value: A pointer to a Str199 containing the
message sent to the workstations.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scSEQEntryPtr long

l 22 scArrayCount word

l 26 scCode word

l 30 scFlags word

l 32 scMessagePtr word

kSCUseMessagePtr There is a message pointed to by
scMessageErr.

Result Codes noErr 0 No error.

kSCAlreadyShuttingDown –1 The server is already
shutting down.

kSCAlreadyDisconnecting –2 The server is already
disconnecting.

paramErr –50 The server is not
running or a UnRecID is
invalid.
1-62 Server Call Reference

C H A P T E R 1

Server Control Calls
SCServerVersion 1

SCServerVersion returns the name of the file server extension and the server’s
type and version.

Note
Macintosh File Sharing does not return a valid value for
scServerVersion if the server is not running. ◆

Table 1-22 shows the parameter block for the SCServerVersion call.

Table 1-22 Parameter block for the SCServerVersion call

Field descriptions
ioResult Word result value: Result code.
scExtNamePtr Longword result pointer: Points to a Str31 where the server

application name (the name of the INIT) will be returned,
or must contain NULL.

scCode Word input value: The server control code; always
kSCServerVersion (0x000E).

scServerType Word result value: Returns the server type, as follows:

Parameter VersionParam variant of SCParamBlockRec

Block k 16 ioResult word

k 18 scExtNamePtr long

l 26 scCode word

k 28 scServerType word

k 30 scServerVersion word

0x0000 Macintosh File Sharing (kSCMFSServerType).

0x0001 AppleShare file server (kSCAFSServerType).
Server Call Reference 1-63

C H A P T E R 1

Server Control Calls
scServerVersion Word input value: Returns the server version, as follows.

SCServiceStateInfo 1

SCServiceStateInfo returns information about the services that are enabled on
the file server.

Note
The SCServiceStateInfo call requires AppleShare IP 6.0 or
later. ◆

Note
Macintosh File Sharing does not support the
SCGetServerStateInfo call. ◆

Table 1-23 shows the parameter block for the SCServiceStateInfo call.

0x0600 The value returned by
AppleShare IP 6.0. AppleShare
IP 6.0.1 returns 0x0601, and so
on.

0x0052 The value returned by
AppleShare IP 5.0, 5.0.1, 5.0.2,
and 5.0.3.

Result Codes noErr 0 No error.
1-64 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-23 Parameter block for the SCServiceStateInfo call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCServiceStateInfo (0x0026).
afpTCPState Output word value: TRUE if AFP over the Transmission

Control Protocol (TCP) is enabled on the server; FALSE if
AFP over TCP/IP is not enabled.

httpState Output word value: TRUE if the Hypertext Transfer Protocol
(HTTP) is enabled on the server; FALSE if HTTP is not
enabled.

ftpState Output word value: TRUE if the File Transmission Protocol
(FTP) is enabled on the server; FALSE if FTP is not enabled.

multihoming Output word value: TRUE if multihoming is enabled; FALSE
if multihoming is not enabled.

srvrUsageLimit Output word value: A value indicating the amount of the
computer’s processing power that is allocated to the file
server.

Parameter ServiceStateParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

k 28 afpTCPState word

k 30 httpState word

k 32 ftpState word

k 34 multihoming word

k 36 srvrUsageLimit word

Result Codes noErr 0 No error.

paramErr –50 The server is not running.
Server Call Reference 1-65

C H A P T E R 1

Server Control Calls
SCSetCopyProtect 1

SCSetCopyProtect is called by the AppleShare IP Web & File Admin application
or some other program executing locally on the server computer when the
program wants to set the copy-protect status of a file.

Note
Macintosh File Sharing does not support the
SCSetCopyProtect call. ◆

Table 1-24 shows the parameter block for the SCSetCopyProtect call.

Table 1-24 Parameter block for the SCSetCopyProtect call

Field descriptions
ioResult Word result value: Result code.
scNamePtr Longword input pointer: Points to the file name.
scVRefNum Word input value: The volume specification
scCode Word input value: The server control code; always

kSCSetCopyProtect (0x0010).
scDirID Longword input value: The parent directory ID.

Note
SCSetCopyProtect may also return errors returned by the
PBGetCatInfo and PBSetCatInfo routines. ◆

Parameter StandardParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scNamePtr long

l 22 scVRefNum word

l 26 scCode word

l 30 scDirID long

Result Codes noErr 0 No error.
paramErr -50 The file server is not running
1-66 Server Call Reference

C H A P T E R 1

Server Control Calls
SCSetHistorySampleTime 1

SCSetHistorySampleTime sets the history sample time.

Note
The SCSetHistorySampleTime call requires AppleShare IP 6.0
or later. ◆

Note
Macintosh File Sharing does not support the
SCSetHistorySampleTime call. ◆

Table 1-25 shows the parameter block for the SCSetHistorySampleTime call.

Table 1-25 Parameter block for the SCSetHistorySampleTime call

Field descriptions
ioResult Word result value: Result code.
historySampleTime Size of time slice to be returned by

SCGetServerActivityHistory (page 1-40).
scCode Word input value; always kSCSetHistorySampleTime

(0x002B).

SCSetSetupInfo 1

SCSetSetupInfo sets the server setup information. All changes take effect
immediately except those affecting the Volume Info window and the Connected
Users window. Specifically, changes to the following four fields of the setup
information record (SetupInfoRec structure) do not take effect until the next
time the AppleShare IP file server application starts up:

■ siVolInfoLocation, which defines the location of Volume Info window.

■ siVolInfoVisible, which defines whether the Volume Info window is visible.

Parameter SetHistoryParam variant of SCParamBlockRec

Block k 16 ioResult word

l 24 historySampleTime word

l 26 scCode word
Server Call Reference 1-67

C H A P T E R 1

Server Control Calls
■ siUserInfoLocation, which defines the location of the Connected Users
window.

■ siUserInfoVisible, which defines whether the Connected Users window is
visible.

The SetupInfoRec structure is described in “SCGetSetupInfo” (page 1-44).

Note
Macintosh File Sharing does not support the
SCSetSetupInfo call. ◆

Table 1-26 shows the parameter block for the SCSetSetupInfo call.

Table 1-26 Parameter block for the SCSetSetupInfo call

Field descriptions
ioResult Word result value: Result code.
scSetupPtr Longword input pointer: Points to a valid pre-allocated

server setup information record (SetupInfoRec).
scCode Word input value: The server control code; always

SCSetSetupInfo (0x0008).

SCShutDown 1

SCShutDown shuts down the file server and sends a shutdown attention message
to all connected users.

Parameter SetupParam variant of SCParamBlockRec

Block k 16 ioResult word

l 18 scSetupPtr long

l 26 scCode word

Result Codes noErr 0 No error.
paramErr –50 The server is not running, scSetupPtr is

NULL, or SetupInfoRec contains a value
that is out of range.
1-68 Server Call Reference

C H A P T E R 1

Server Control Calls
Note
Macintosh File Sharing does not support the shutdown
attention message. ◆

IMPORTANT

The AppleShare IP Web & File Server application
automatically quits if the AppleShare IP file server is shut
down with the SCShutDown call. ▲

Table 1-27 shows the parameter block for the SCShutDown call.

Table 1-27 Parameter block for the SCShutDown call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

ksSCShutDown (0x0002).
scNumMinutes Word input value: The number of minutes until server

shutdown, in the range 0–4094.
scSFlags Word input value: Shutdown flag, as follows:

scMessagePtr Longword input value: A pointer to a Str199 containing the
message sent to the workstations. Note that this feature is
not supported by Macintosh File Sharing.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 scNumMinutes word

l 30 scSFlags word

l 32 scMessagePtr long

kSCUseMessagePtr The message pointed to by
scMessagePtr should accompany
the disconnect. Note that this
feature is not supported by
Macintosh File Sharing.
Server Call Reference 1-69

C H A P T E R 1

Server Control Calls
SCSleepServer 1

SCSleepServer shuts down the file server temporarily. This call has the same
parameters as SCShutDown except that once the server has shut down, the
AppleShare IP file server does not quit, and the server can be restarted by
means of the SCWakeServer call (assuming that no SCShutDown call is made while
the server is asleep). You might want to put a file server to sleep before
switching networks or temporarily turning off AppleTalk.

SCSleepServer fails if the server is starting up.

Note
Macintosh File Sharing does not support the SCSleepServer
call. ◆

Table 1-28 shows the parameter block for the SCSleepServer call.

Result Codes noErr 0 No error.
kSCAlreadyShuttingDown –1 The server is already

shutting down.
kSCAlreadyDisconnecting –2 The server is already

disconnecting.
paramErr –50 The server is not

running, scNumMinutes
is out of range, or an
unknown bit is set in
scFlags.
1-70 Server Call Reference

C H A P T E R 1

Server Control Calls
Table 1-28 Parameter block for the SCSleepServer call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

SCSleepServer (0x0016).
scNumMinutes Word input value: The number of minutes until server

sleep, in the range 0–4094.
scSFlags Word input value: Shutdown flag, as follows:

scMessagePtr Longword input value: A pointer to a Str199 containing the
message sent to the workstations.

Parameter DisconnectParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 scNumMinutes word

l 30 scSFlags word

l 32 scMessagePtr long

kSCUseMessagePtr The message pointed to by
scMessagePtr should accompany
the disconnect.

Result Codes noErr 0 No error.
kSCAlreadyShuttingDown –1 The server is already

shutting down.
kSCAlreadyDisconnecting –2 The server is already

disconnecting.
paramErr –50 The server is not

running, scNumMinutes
is out of range, or an
unknown bit is set in
scFlags.
Server Call Reference 1-71

C H A P T E R 1

Server Control Calls
SCStartServer 1

SCStartServer starts the file server.

Table 1-29 shows the parameter block for the SCStartServer call.

Table 1-29 Parameter block for the SCStartServer call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCStartServer (0x0021).
scNumMinutes Word input value: Determines the server to start, as

follows:

scEventSelect Word input value: Always kFinderExtn.
scMessagePtr Longword input value: A pointer to a Str199 containing the

message sent to the workstations.

Note
Other errors from the launching of the server—such as
fnfErr and memFullErr—may also be returned. ◆

SCWakeServer 1

SCWakeServer starts the file server.

Parameter StartParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

l 28 scNumMinutes word

l 30 scSFlags word

kCurInstalled Use this value to start up the currently
installed server, either an AppleShare
file server or Macintosh File Sharing.

Result Codes noErr 0 No error.
paramErr –50 The file server is not running.
1-72 Server Call Reference

C H A P T E R 1

Server Control Calls
Note
Macintosh File Sharing does not support the SCWakeServer
call. ◆

Table 1-30 shows the parameter block for the SCWakeServer call.

Table 1-30 Parameter block for the SCWakeServer call

Field descriptions
ioResult Word result value: Result code.
scCode Word input value: The server control code; always

kSCWakeServer (0x0015).

Note
Other errors from waking the server—such as fnfErr and
memFullErr—may also be returned. ◆

Parameter StartParam variant of SCParamBlockRec

Block k 16 ioResult word

l 26 scCode word

Result Codes noErr 0 No error.
paramErr –50 The server is not sleeping.
Server Call Reference 1-73

C H A P T E R 1

Server Control Calls
1-74 Server Call Reference

C H A P T E R 2

Contents

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 Server Event Handling
Using Server Events 2-4
Server Event Queue Entry 2-5
Server Event Record 2-6
Extended Server Event Record 2-7
Server Event Definitions 2-9
Constraints 2-11
Sample Server Event Handler Code 2-11
Application Event Loop 2-16
2-1

C H A P T E R 2
Server Event Handling 2

This chapter explains how your applications can monitor server events and
respond to these events by using server event handlers. A sample handler is
included to show how you might implement server event handlers in your own
server additions.

The AppleShare IP file server event mechanism enables programs (and INITs)
to monitor and respond to a file server’s activities. This mechanism allows
developers to create programs that work in concert with file servers to extend
the services provided by the servers. For example, server statistics reporting,
audit trailing, and extended security could all be added to existing file services.

The server event mechanism comprises two parts: the server event handler and
the application program. The server event handler is a server-addition
procedure, installed in the server by the SCInstallServerEventProc server
control call. The server calls the server event handler whenever a server event
occurs. A server event is a condition or operation occurring in the file server,
such as the receipt of an AFP or server control call, the mounting of a volume by
a user, or a client disconnect. When a server notifies the server event handler of
an event, the handler passes information to the application program so that the
program can respond to the event. An application typically allocates a buffer
and passes the buffer’s address to the server event handler when the handler is
installed. The server event handler fills the buffer asynchronously, while the
installing program analyzes the buffer’s contents from the application’s event
loop. Figure 2-1 shows how the server event mechanism works.
2-3

C H A P T E R 2

Server Event Handling
Figure 2-1 The server event mechanism

Using Server Events 2

To monitor server events from your server addition, you must first install a
server event handler in the file server. You install a server event handler from
your program by issuing the SCInstallServerEventProc server control call, as
described in “SCInstallServerEventProc” in Chapter 1, “Server Control Calls.”
Installing a server event handler is very similar to the process of installing the
AppleTalk Transition Queue. (For information about installing an entry into the
AppleTalk Transition Queue, see Inside Macintosh: Networking .)

Once the server event handler is installed, it gains control whenever one of the
specified server events occurs. When a server event occurs, the server
determines whether any server event handlers are installed. For each installed
handler, the server checks the serverEventMask, serverControlMask, and the
afpCommandMask array as appropriate to see if the handler is interested in the
event that just occurred. If it is, the server calls the handler, passing pointers to
the ServerEventQEntry record and a server event record owned by the server. It
is up to the event handler to copy the server event record into the application’s
own buffer.

Event occurs

Application program

Server event
handler

Copies the server
event record

Buffer
Server event

record

Memory

Server event
mechanism

AppleShare IP file server
2-4 Using Server Events

C H A P T E R 2

Server Event Handling
If an AFP event occurs and you want to handle that event, set the bit
corresponding to the AFP event in afpCommandMask and then set either the
kSCStartAFPRequestEvt bit or the kSCSendAFPResponseEvt bit in serverEventMask
to specify whether you want the handler to be called before or after the event is
processed, respectively.

If a server control call is made that you want to intercept, set the bit
corresponding to the command number in serverControlMask and set
kSCServerControlCallEvt in serverEventMask. To intercept other events, set the
corresponding bit in serverEventMask.

Server Event Queue Entry 2

The server event queue entry structure is defined as follows:

struct ServerEventQEntry {
ServerEventQEntry* next;
SInt16 queuetype;
ServerEventHandlerUPP callBack;
SInt32 serverEventMask;
SInt32 afpCommandMask[2];
SInt32 serverControlMask;

};

Field descriptions
next Filled in by the server.
queuetype Filled in by the server.
callBack The event handler itself.
serverEventMask Server event mask. A combination of one or more of the

following values:
kSCStartAFPRequestEvt = 0 /* AFP before processing */

kSCSendAFPResponseEvt = 1 /* AFP after processing */

kSCServerControlCallEvt = 4 /* SC call made */
kSCServerBusyEvt = 2 /* Server-generated events */
kSCServerShutdownEvt = 3
kSCShareEvt = 5
kSCUnShareEvt = 6
kSCSetDirAccessEvt = 7
kSCServerNameChangeEvt = 8
Using Server Events 2-5

C H A P T E R 2

Server Event Handling
kSCVolumePrepEvt = 9
kSCVolumeUnmountEvt = 10
kSCServerStartupEvt = 11
kSCSessionTornDownEvt = 12
kSCOutOfSequenceEvt = 13
kSCWksClosedSessionEvt = 14
kSCSessionTimedOutEvt = 15
kSCSrvrClosedSessionEvt = 16

afpCommandMask Bit positions corresponding to AFP command codes. For an
example, see Listing 2-7 in Inside AppleTalk . This field is
only relevant if kSCStartAFPRequestEvt,
kSCSendAFPResponseEvt, or both, is set in serverEventMask.

serverControlMask Bit position corresponding to server control calls. This field
is only relevant if kSCServerControlCallEvt is set in
serverEventMask.

Note
kSCStartAFPRequestEvt and kSCSendAFPResponseEvt must be
set in combination with afpCommandMask.
kSCServerControlCallEvt must be set in combination with
serverControlMask. ◆

Server Event Record 2

AppleShare 5.0.3 and earlier uses server event records to store information
about server events. The ServerEventRecord structure defines the server event
record:

struct ServerEventRecord {
SInt32 eventNumber;
UInt32 serverTimeInSeconds;
SInt16 result;
SInt16 bufferSize;
char buffer[48];
Str31 nameStr;
SInt16 afpCommand;
SInt32 sessionID;
SInt32 userID;
Str31 userName;
SInt16 vRefNum;
2-6 Using Server Events

C H A P T E R 2

Server Event Handling
SInt32 dirID;
UserAddress addr;

};
typedef struct ServerEventRecord ServerEventRecord;

Field descriptions
eventNumber The server event that occurred.
serverTimeInSeconds

The time that the event occurred in standard Macintosh
date/time form

result Any error code associated with the event.
bufferSize The size in bytes of the valid data in buffer.
buffer The AFP packet, SCParamBlockRec, HParamBlockRec, or the

new server name (up to a maximum of 48 bytes)
nameStr The name of the file or directory upon which the operation

is being performed (if applicable).
afpCommand The AFP command.
sessionID The session ID.
userID The user’s user ID.
userName The user name of the user performing this operation

(registered users only).
vRefNum The reference number of the volume upon which this

operation was performed (if applicable).
dirID The directory ID of the volume upon which this operation

was performed (if applicable).
addr The socket address of this user (provided in address block

(AddrBlock) format (net number:node ID:socket number) or
an IP address if the user connects via TCP/IP.

Extended Server Event Record 2

AppleShare IP 6.0 and later uses extended server event records to store
information about server events. AppleShare 5 and earlier uses server event
records to store information about server events. The
ExtendedServerEventRecord structure defines the extended server event record:
Using Server Events 2-7

C H A P T E R 2

Server Event Handling
struct ExtendedServerEventRecord {
SInt32 eventNumber;
UInt32 serverTimeInSeconds;
SInt16 result;
SInt16 bufferSize;
char buffer[48];
Str31 nameStr;
SInt16 afpCommand;
SInt32 sessionID;
SInt32 userID;
Str31 userName;
SInt16 vRefNum;
SInt32 dirID;
UserAddress addr;
FourCharCode transportType;
UInt32 annexVersion;

};

Field descriptions
eventNumber The server event that occurred.
serverTimeInSeconds

The time that the event occurred in standard Macintosh
date/time form

result Any error code associated with the event.
bufferSize The size in bytes of the valid data in buffer.
buffer The AFP packet, SCParamBlockRec, HParamBlockRec, or the

new server name (up to a maximum of 48 bytes)
nameStr The name of the file or directory upon which the operation

is being performed (if applicable).
afpCommand The AFP command.
sessionID The session ID.
userID The user’s user ID.
userName The user name of the user performing this operation

(registered users only).
vRefNum The reference number of the volume upon which this

operation was performed (if applicable).
dirID The directory ID of the volume upon which this operation

was performed (if applicable).
2-8 Using Server Events

C H A P T E R 2

Server Event Handling
addr The socket address of this user (provided in address block
(AddrBlock) format (net number:node ID:socket number) or
an IP address if the user connects over TCP/IP.

transportType The transport type (kSCTransportATP for AppleTalk or
kSCTransportTCP for TCP/IP).

annexVersion The version of the record. For AppleShare IP 6.0 or later,
the value of annexVersion is kServerEventAnnexVersion6.

Server Event Definitions 2

Table 2-1 lists server event constants and codes.
Using Server Events 2-9

C H A P T E R 2

Server Event Handling
Table 2-1 Server event definitions

Constant Code Meaning

kSCStartAFPRequestEvt 0 The server received an AFP request.
kSCSendAFPResponseEvt 1 The server sent a reply to an AFP

request.
kSCServerBusyEvt 2 The server is too busy to respond; for

example, the server may not have a
socket to allocate for a connection
request.

kSCServerShutdownEvt 3 The server is being shut down.
kSCServerControlCallEvt 4 The server received a server control call.
kSCShareEvt 5 A new share point is being shared.
kSCUnShareEvt 6 A previously shared share-point is no

longer being shared.
kSCSetDirAccessEvt 7 New access privileges have been

applied to a shared folder.
kSCServerNameChangeEvt 8 The server’s name has been changed.
kSCVolumePrepEvt 9 A sharable volume has been prepared;

for example, a CD-ROM disc has been
inserted.

kSCVolumeUnmountEvt 10 A volume was unmounted.
kSCServerStartupEvt 11 The server was started.
kSCSessionTornDownEvt 12 A user disconnected or was

disconnected.
kSCOutOfSequenceEvt 13 A client sent a duplicate request or sent

an unexpected sequence number.
kSCWksClosedSessionEvt 14 A user disconnected.
kSCSessionTimedOutEvt 15 A session timed out.
kSCSrvrClosedSessionEvt 16 A session closed but has not yet

disconnected.
kSCExtendedServerEvtRec 31 Indicates that your event handler can

assume that it will receive extended
server event records (page 2-7) from the
server (as opposed to server event
records).
2-10 Using Server Events

C H A P T E R 2

Server Event Handling
Constraints 2

This section describes constraints that you must observe for the server event
mechanism to work properly. It is the server event handler’s responsibility to
copy the desired information from the server event record into its own
pre-allocated buffers. The server event handler cannot make file system or
Memory Manager calls while inside its thread of control. Furthermore, because
it is really part of a completion routine in the file server’s code, the handler
must relinquish control to the server as soon as possible. It is useful to consider
that the server event handler is dynamically linked into one of the completion
routines of the file server and is thus an extension to it. Therefore, it is as
important to minimize the time spent in the server event handler as it is to
minimize the time spent in the completion routines. Every microsecond spent in
the server event handler results in a corresponding delay in the completion of
file server client’s call.

Although you can use server events only as notification that a condition has
been satisfied, you can use server events in conjunction with server control calls
to respond to the condition. For example, you can shut the server down,
disconnect a user, or send a message to any or all connected users as a response
to a server event.

Sample Server Event Handler Code 2

This section contains sample code that implements the server event mechanism
in a server addition. The sample includes all of the necessary parts; you need
only plug in your specific code segments to make it work. Comments within the
code explain the purpose of each part. You can copy as much of the sample
code as you want to use in your own server additions.

In Listing 2-1, the InstallRemoveEventHandler routine installs an event handle
queue entry on the server and removes the event handler when it is no longer
needed.

Listing 2-1 Installing and removing a server event handler

OSErr InstallOrRemoveEventHandler (Ptr seqEntry, Boolean install);
OSErr err = noErr;
SCParamBlockRec serverControl;
ServerEventParamPtr serverEventParam = &serverControl.serverEventParam;
Using Server Events 2-11

C H A P T E R 2

Server Event Handling
if (install) {
serverEventParam->scCode = kSCInstallServerEventProc;

} else {
serverEventParam->scCode = kSCRemoveServerEventProc;

} // if
serverEventParam->scSEQEntryPtr = seqEntry;

err = ServerDispatchSync (&serverControl);

return err;

} // InstallOrRemoveEventHandler

In Listing 2-2, the OurServerEventRecord structure adds some fields before
ExtendedServerEventRecord structure so that you can manipulate the structure
with the standard OS queue manipulation routines. Similarly, the
OurServerEventQEntry structure adds two fields after the ServerEventQEntry
structure so it can be accessed from the event handler.

Listing 2-2 Preparing structures for use with queue manipulation routines

typedef struct {
QElemPtr qLink; // Make OS queue-compatible
SInt16 qType;
ExtendedServerEventRecord eventRec;

} OurServerEventRecord;

typedef struct {
ServerEventQEntry queueEntry; // Actual queue entry
QHdr freeQ; // List of free OurServerEventRecord
QHdr usedQ; // List of used OurServerEventRecord

} OurServerEventQEntry;

In Listing 2-3, InitServerEventQueueData creates a queue entry for receiving
events.
2-12 Using Server Events

C H A P T E R 2

Server Event Handling
Listing 2-3 Creating a queue entry for receiving events

OSErr InitServerEventQueueData (OurServerEventQEntry* eventQueueEntry,
OurServerEventRecord toQueue[], UInt32 numEventRecords) {

OSErr err = noErr;
QHdr emptyQueueInit = { 0, NULL, NULL };
static ServerEventHandlerUPP ourCallBack = NULL;

// Create the callback...
if (ourCallBack == NULL) {

ourCallBack = NewServerEventHandlerProc (ServerEventHandler);
} // if

eventQueueEntry->queueEntry.callBack = ourCallBack;

// Initially, clear all flags.
eventQueueEntry->queueEntry.serverEventMask = 0;
eventQueueEntry->queueEntry.afpCommandMask[0] = 0;
eventQueueEntry->queueEntry.afpCommandMask[1] = 0;
eventQueueEntry->queueEntry.serverControlMask = 0;

// Caller returned a block of OurServerEventRecords; push on the free queue.
eventQueueEntry->freeQ = emptyQueueInit;
eventQueueEntry->usedQ = emptyQueueInit;

while (numEventRecords > 0) {
numEventRecords -= 1;
Enqueue ((QElemPtr) &toQueue[numEventRecords], &eventQueueEntry->freeQ);

} // while

return err;

} // InitServerEventQueueData

In Listing 2-4, ServerEventHandler receives events and puts them on a queue for
the application to process later.
Using Server Events 2-13

C H A P T E R 2

Server Event Handling
Listing 2-4 Receiving and queuing events

pascal void ServerEventHandler (OurServerEventQEntry* mainEntry,
ExtendedServerEventRecord* event) {

OSErr err = noErr;
OurServerEventRecord* newEntry;

// If there is free space in the queue, get it; if there is not, purge the oldest
// item in the used queue (you may want to behave differently, such as purging
// items that are of less interest, etc.)

newEntry = (OurServerEventRecord*) mainEntry->freeQ.qHead;
if (newEntry != NULL) {

err = Dequeue ((QElemPtr) newEntry, &mainEntry->freeQ);
} else {

newEntry = (OurServerEventRecord*) mainEntry->usedQ.qHead;
err = Dequeue ((QElemPtr) newEntry, &mainEntry->usedQ);

} // if

// Now you have an entry; stuff the event record into it and requeue it on the
// "used" side.
if (err == noErr) {

newEntry->eventRec = *event;
Enqueue ((QElemPtr) newEntry, &mainEntry->usedQ);

} // if

} // ServerEventHandler

The SetEventFlag routine shown in Listing 2-5 determines which server events
the handler will receive.

Listing 2-5 Determining which server events to receive

void SetEventFlag (OurServerEventQEntry* mainEntry, UInt32 whichEvent, Boolean onOff) {
UInt32 maskValue = 0x1 << whichEvent;
if (onOff) {

mainEntry->queueEntry.serverEventMask |= maskValue;
2-14 Using Server Events

C H A P T E R 2

Server Event Handling
} else {
mainEntry->queueEntry.serverEventMask &= ~maskValue;

} // if

} // SetEventFlag

The SetControlFlag routine shown in Listing 2-6 determines which server
control calls the handler will receive.

Listing 2-6 Determining which server control calls to receive

// SetControlFlag determines what server _control_ calls a handler will receive.
void SetControlFlag (OurServerEventQEntry* mainEntry, UInt32 whichEvent,

Boolean onOff) {
UInt32 maskValue = 0x1 << whichEvent;
if (onOff) {

mainEntry->queueEntry.serverControlMask |= maskValue;
} else {

mainEntry->queueEntry.serverControlMask &= ~maskValue;
} // if

} // SetControlFlag

The SetAFPFlag routine shown in Listing 2-7 determines which AFP calls the
handler will receive.

Note
The handler can intercept only calls that are in the range of
1 to 64. ◆

Listing 2-7 Determining which AFP calls to receive

void SetAFPFlag (OurServerEventQEntry* mainEntry, UInt32 whichEvent, Boolean inDo,
Boolean inReply, Boolean onOff) {

UInt32 maskValue0 = 0;
UInt32 maskValue1 = 0;

// Special case of AddIcon gets remapped to bit 0.
Using Server Events 2-15

C H A P T E R 2

Server Event Handling
if (whichEvent == afpAddIcon) {
whichEvent = 0;

} // if

if (whichEvent >= 32) {
maskValue0 = 1 << (whichEvent % 32);

} else {
maskValue1 = 1 << whichEvent;

} // if

if (onOff) {
mainEntry->queueEntry.afpCommandMask[0] |= maskValue0;
mainEntry->queueEntry.afpCommandMask[1] |= maskValue1;

} else {
mainEntry->queueEntry.afpCommandMask[0] &= ~maskValue0;
mainEntry->queueEntry.afpCommandMask[1] &= ~maskValue1;

} // if

// Set the appropriate Event flag(s) so this actually gets called.
if (inDo) {

SetEventFlag (mainEntry, kSCStartAFPRequestEvt, onOff);
} // if

if (inReply) {
SetEventFlag (mainEntry, kSCSendAFPResponseEvt, onOff);

} // if

} // SetAFPFlag

Application Event Loop 2

The heart of any Macintosh program is the event loop, which causes the
application to wait for an event—such as a user’s attempt to choose a menu
item or open a file. When an event occurs, the application can respond
accordingly.

In Listing 2-8, the ProcessQueuedEvents routine goes through the events that
have been queued by the ServerEventHandler routine shown in Listing 2-4
(page 2-14) and processes them (in this case, it simply beeps).
2-16 Using Server Events

C H A P T E R 2

Server Event Handling
Listing 2-8 Processing server events

void ProcessQueuedEvents (OurServerEventQEntry* mainEntry) {
OSErr err = noErr;
OurServerEventRecord* nextEntry;
nextEntry = (OurServerEventRecord*) mainEntry->usedQ.qHead;
if (nextEntry != NULL) {

err = Dequeue ((QElemPtr) nextEntry, &mainEntry->usedQ);
if (err == noErr) {

SysBeep (0);
Enqueue ((QElemPtr) nextEntry, &mainEntry->freeQ);

} // if
} // if

} // ProcessQueuedEvents
Using Server Events 2-17

C H A P T E R 2

Server Event Handling
2-18 Using Server Events

Appendixes

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Macintosh File Sharing
Server Control Calls A

Macintosh File Sharing supports a subset of the AppleShare IP 5.0 file server
control calls. This appendix lists the calls available with Macintosh File Sharing
and discusses the differences between using server control calls with the
AppleShare IP 6.0 file server and using them with Macintosh File Sharing.

Macintosh File Sharing supports the following server control calls:

■ SCCancelShutDown

■ SCDisconnect

■ SCGetExpFldr

■ SCGetSetupInfo

■ SCPollServer

■ SCServerVersion

■ SCSetSetupInfo

■ SCShutDown

■ SCStartServer

Of the server control calls that are supported, some of these calls behave
differently under Macintosh File Sharing than they do under the AppleShare IP
6.0 file server. The sections that follow explain those differences.

SCDisconnect A

The SCDisconnect call does not send disconnect attention messages under
Macintosh File Sharing.
SCDisconnect A-1

A P P E N D I X A

Macintosh File Sharing Server Control Calls
SCGetExpFldr A

With Macintosh File Sharing, your program should call SCGetExpFldr as shown
in the sample code in the section “Obtaining Status Information about Users,
Volumes, and Shared Items” on page 1-19 in Chapter 1, “Server Control Calls.”

SCNamePtr must be NULL when scIndex is negative. Otherwise, Macintosh File
Sharing writes garbage into memory. See the comments in the sample function
code listed in the section “Obtaining Status Information about Users, Volumes,
and Shared Items” on page 1-19 in Chapter 1, “Server Control Calls.”

Macintosh File Sharing does not return fnfErr when there is no shared volume
or folder at a particular index position. Instead, it returns noErr and takes no
other action. To determine if a particular location is in use, set scVRefNum to zero
before calling SCGetExpFldr. If scVRefNum is still zero after SCGetExpFldr is called,
then there is no shared volume or folder at that particular index position.

The SCGetExpFldr call does not return scLogins under Macintosh File Sharing.

SCGetSetupInfo A

The SCGetSetupInfo call does not return the following results under Macintosh
File Sharing:

■ scMaxVolumes (Use the value 10.)

■ scMaxExpFolders (Use the value 10.)

■ scCurMaxSession (Use siMaxLogins, which is equal to 5.)

The SCGetSetupInfo call also does not use the following fields of the setup
information record (SetupInfoRec):

■ siVolInfoVisible

■ siUserInfoLocation

■ siUserInfoVisible

■ siShutDownMins

■ siSpare

■ siLoginMsg
A-2 SCGetExpFldr

A P P E N D I X A

Macintosh File Sharing Server Control Calls
SCPollServer A

The SCPollServer call does not return the following values under Macintosh
File Sharing:

■ the SCPSSleeping value of the scServerState result

■ scSecondsLeft

SCServerVersion A

Macintosh File Sharing does not return a valid value for SCServerVersion if the
server is not running.

SCSetSetupInfo A

The SCSetSetupInfo call does not use the following fields of the setup
information record (SetupInfoRec):

■ siVolInfoVisible

■ siUserInfoLocation

■ siUserInfoVisible

■ siShutDownMins

■ siSpare

■ siLoginMsg

SCShutDown A

The SCShutDown call does not send shutdown attention messages under
Macintosh File Sharing.
SCPollServer A-3

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Interface Files B

The AppleShareFileServerControl.h, AppleShareFileServerControl.p, and
AppleShareFileServerControl.a files contain all of the definitions for the server
control calls used to control Macintosh File Sharing and the AppleShare IP 6.0
file server, for C, Pascal, and assembly language, respectively. This appendix
presents portions of the AppleShareFileServerControl.h file.

Server Control Constants B

The server control constants are defined as follows:

enum {
kSCStartServer = 0, /* Use StartParam variant */
kSCShutDown = 2, /* Use DisconnectParam variant */
kSCCancelShutDown = 3, /* Use DisconnectParam variant */
kSCDisconnect = 4, /* Use DisconnectParam variant */
kSCPollServer = 5, /* Use PollServerParam variant */
kSCGetExpFldr = 6, /* Use StandardParam variant */
kSCGetSetupInfo = 7, /* Use SetupParam variant */
kSCSetSetupInfo = 8, /* Use SetupParam variant */
kSCSendMessage = 9, /* Use DisconnectParam variant */
kSCGetServerStatus = 10, /* Use StatusParam variant */
kSCInstallServerEventProc = 11, /* Use ServerEventParam variant */
kSCRemoveServerEventProc = 12, /* Use ServerEventParam variant */
kSCGetServerEventProc = 13, /* Use ServerEventParam variant */
kSCServerVersion = 14, /* Use VersionParam variant */
kSCSetCopyProtect = 16, /* Use StandardParam variant */
kSCClrCopyProtect = 17, /* Use StandardParam variant */
kSCDisconnectVolUsers = 18, /* Use DisconnectParam variant */
kSCGetUserNameRec = 19, /* Use UserInfoParam variant */
kSCGetUserMountInfo = 20, /* Use VolMountedParam variant */
kSCWakeServer = 21, /* Use StartParam variant */
kSCSleepServer = 22, /* Use DisconnectParam variant */
kSCGetCacheStats = 23, /* Use GetCacheStatsParam variant */
kSCResetCache = 31, /* Use ResetCacheParam variant */
kSCServiceStateInfo = 38, /* Use ServiceStateParam variant */
B-1

A P P E N D I X B

Interface Files
kSCGetPlugInInfo = 41, /* Use PlugInInfoParam variant */
kSCGetPlugInMimeType = 42, /* Use PlugInMimeTypeParam variant */
kSCSetHistorySampleTime = 43, /* Use SetHistoryParam variant */
kSCGetServerActivityHistory = 44 /* Use GetHistoryParam variant */

};

/* scFlags bits and masks for DisconnectParam */
kSCUseMessagePtr = 1;

{some constants for SCStartServer}
kSCCurrentlyInstalled = 0; {use currently installed server}
kSCUseFinderExtension = 0; {use the Finder extension}

enum {
kSCMFSServerType= 0x0000, /* Macintosh File Sharing */
kSCAFSServerType= 0x0001 /* AppleShare/AppleShare IP File Server*/

};

enum {
kSCPollRunning = -1,
kSCPollStartingUp = -2,
kSCPollJustDisabled = -3,
kSCPollDisabledErr = -4,
kSCPollSleeping = -5

};

/* Disconnect state responses returned by SCPollServer */
enum {

kSCNotDisconnecting = -1,
kSCDisconnectWithin29Secs = 0,
kSCDisconnect30To89Secs = 1 /* Any other value is the number

of minutes remaining, rounded. */
};

/* Server errors returned by SCPollServer */
enum {

kSCModernMemMgrOffErr = 1, /* Must run with Modern Memory Manager */
kSCNoThreadLibraryErr = 2,
kSCServiceNotInstalledErr = 3,
kSCInsuffMFMemErr = 4,
kSCCantRegNameErr = 5,
kSCCantFindExtnFolderErr = 6,
B-2

A P P E N D I X B

Interface Files
kSCUnExATalkErr = 7,
kSCNoMachineNameErr = 8,
kSCCantFindFSExtnErr = 9,
kSCATalkOffErr = 10,
kSCNoInitRunErr = 12,
kSCInsuffAppMemErr = 14,
kSCBadConfigErr = 15,
kSCNoDTOnStartupErr = 16,
kSCDupNameErr = 17,
kSCBadFileBufParmsErr = 19,
kSCNeedRootUserErr = 20,
/* The range 21-28 are reserved for future use by Apple Computer. */
kSCBadSerialNumErr = 29,
kSCSysTooOldErr = 34,
kSCDupSerialNumberErr = 36, /* NBP duplicate serial number detected */
kSCVMOnErr = 37, /* On the server, virtual memory is on */
kSCNoPPCErr = 38, /* Server only runs on a PPC machine */
kSCBadInitErr = 39,
kSCOpenTransportInstallErr = 40, /* Incompatible version of Open

Transport */
kSCNoAgentLibErr = 41, /* No ASRLib */
kSCNoAgentSessionErr = 42, /* Could not open an agent session */
kSCInvalidAgentErr = 43, /* No agent or a problem with the agent */
kSCAgentServerObjErr = 44, /* Bad server object type */
kSCCorruptedMimeTypesErr = 45,
kSCAgentGenesisErr = 46,
kSCAlreadyShuttingDown = -1,
kSCAlreadyDisconnecting = -2,
kSCDeletedPDSErr = -2,
kSCContainsExpFolderErr = -3,
kSCCantPrepareVolumeErr = -4,
kSCTooManyExpFoldersErr = -5,
kSCFixedPDSErr = -6,
kSCExpFolderNamConfErr = -7,
kSCNoExportFolderErr = -8,
kSCInsideExpFolderErr = -9,
kSCInsideTrashErr = -10,
kSCVolNameConflictErr = -11,
kSCCacheReducedErr = -12,
kSCBadIPConfigErr = -20,
kSCBadAccessPrivRecErr = -21,
B-3

A P P E N D I X B

Interface Files
kSCBadMimeTypeFileErr = -22,
/* -100 to -199 are AFP errors */

kSCAFPGenErr = -100,
kSCAFPTCPGenErr = -150,
kSCAFPTCPMemErr = -151,
kSCAFPTCPPortInUseErr = -152,

/* -200 to -299 are FTP errors */
kSCFTPGenErr = -200,
kSCFTPPortInUseErr = -201,
kSCFTPNotAvailErr = -202,
kSCFTPMemErr = -203,

/* -300 to -399 are Web errors */
kSCHTTPGenErr = -300,
kSCHTTPPortInUseErr = -302,
kSCHTTPFolderErr = -303,
kSCHTTPFileErr = -304,
kSCHTTPMemErr = -305,
kSCHTTPNoMimeTypesErr = -306,
kSCHTTPNoDefaultMimeErr = -307,
kSCPluginDirNotFoundErr = -308,
kSCPluginMemFullErr = -309,
kSCPluginPreProcNotFoundErr = -310,
kSCPluginPostProcNotFoundErr = -311,
kSCErrorPluginNotFoundErr = -312,
kSCPluginNotPreProcessorErr = -313,
kSCPluginNotPostProcessorErr = -314,
kSCPluginMemPoolFullErr = -315,
kSCPluginOutOfMemoryErr = -316,
kSCCorruptedMimeTypesErr = -317,
kSCPlugInLoggingErr = -318,
kSCPlugInTypeConflictErr = -319,
kSCPlugInCannotRegisterErr = -320,
kSCPlugInMemSmallErr = -321,
kSCWebAdminNetworkErr = -330,

/* -400 to -499 are SMB errors */
kSCSMBGenErr = -400,
kSCSMBPortInUseErr = -402,
kSCSMBMemErr = -405

};
B-4

A P P E N D I X B

Interface Files
Server Control Parameter Blocks B

The server control parameter blocks are defined as follows:

union SCParamBlockRec {
StartParam startParam;
DisconnectParam disconnectParam;
PollServerParam pollServerParam;
StandardParam standardParam;
SetupParam setupParam;
StatusParam statusParam;
ServerEventParam serverEventParam;
VersionParam versionParam;
UserInfoParam userInfoParam;
VolMountedParam volMountedParam;
GetCacheStatsParam getCacheStatsParam;
ResetCacheParam resetCacheParam;
ExtUserInfoParam extUserInfoParam;
ServiceStateParam serviceStateParam;
PlugInInfoParam plugInInfoParam;
PlugInMimeTypeParam plugInMimeTypeParam;
SetHistoryParam setHistoryParam;
GetHistoryParam getHistoryParam;

};
typedef union SCParamBlockRec SCParamBlockRec;

struct StartParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
SInt32 reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 scStartSelect;
SInt16 scEventSelect;
SInt32 scWhere;
SInt32 scReceiverID;
B-5

A P P E N D I X B

Interface Files
SInt32 scDataType;
SInt32scStartOptions;

};
typedef struct StartParam StartParam;
typedef StartParam *StartParamPtr;

struct DisconnectParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
SInt32 * scDiscArrayPtr;
SInt16 scArrayCount;
SInt16 reserved;
SInt16 scCode;
SInt16 scNumMinutes;
SInt16 scFlags;
StringPtr scMessagePtr;

};
typedef struct DisconnectParam DisconnectParam;
typedef DisconnectParam *DisconnectParamPtr;

struct PollServerParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
SInt32 reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 scServerState;
SInt16 scDisconnectState;
SInt16 scServerError;
SInt32 scSecondsLeft;
B-6

A P P E N D I X B

Interface Files
};
typedef struct PollServerParam PollServerParam;
typedef PollServerParam *PollServerParamPtr;

struct StandardParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
StringPtr scNamePtr;
SInt16 scVRefNum;
SInt16 scLogins;
SInt16 scCode;
SInt16 scIndex;
SInt32 scDirID;

};
typedef struct StandardParam StandardParam;
typedef StandardParam *StandardParamPtr;

struct SetupParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap*/
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
SetupInfoPtr scSetupPtr;
SInt16 scMaxVolumes;
SInt16 scMaxExpFolders;
SInt16 scCode;
SInt16 scCurMaxSessions;

};
typedef struct SetupParam SetupParam;
typedef SetupParam *SetupParamPtr;

struct StatusParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
B-7

A P P E N D I X B

Interface Files
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
StringPtr scNamePtr;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 scServerFlags;
SInt16 scNumSessions;
SInt32 scUserListModDate;
SInt16 scActivity;
SInt32 scVolListModDate;

};
typedef struct StatusParam StatusParam;
typedef StatusParam *StatusParamPtr;

struct ServerEventParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to*/
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
Ptr scSEQEntryPtr;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;

};
typedef struct ServerEventParam ServerEventParam;
typedef ServerEventParam *ServerEventParamPtr;

struct VersionParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code*/
StringPtr scExtNamePtr;
SInt16 reserved2;
SInt16 reserved3;
B-8

A P P E N D I X B

Interface Files
SInt16 scCode;
SInt16 scServerType;
SInt16 scServerVersion;

};
typedef struct VersionParam VersionParam;
typedef VersionParam *VersionParamPtr;

struct UserInfoParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
StringPtr scNamePtr;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt32 scPosition;
SInt32 scUNRecID;
SInt32 scUserID;
SInt32 scLoginTime;
SInt32 scLastUseTime;
SInt32 scSocketNum;

};
typedef struct UserInfoParam UserInfoParam;
typedef UserInfoParam *UserInfoParamPtr;

struct VolMountedParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap*/
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
Ptr reserved;
SInt16 scVRefNum;
SInt16 reserved3;
SInt16 scCode;
SInt16 scFilesOpen;
SInt16 scWriteableFiles;
B-9

A P P E N D I X B

Interface Files
SInt32 scUNRecID;
Boolean scMounted;
Boolean scMountedAsOwner;

};
typedef struct VolMountedParam VolMountedParam;
typedef VolMountedParam *VolMountedParamPtr;

struct GetCacheStatsParam {
QElemPtr qLink; /* queue link in header*/
SInt16 qType; /* type byte for safety check*/
SInt16 ioTrap; /* FS: the Trap*/
Ptr ioCmdAddr; /* FS: address to dispatch to*/
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls)*/
OSErr ioResult; /* result code*/
Ptr reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 reserved4;
SCCacheStatsRecPtr scCacheStatsPtr;
SInt16 scCacheStatsReqSize;
SInt16 scCacheStatsActSize;

};
typedef struct GetCacheStatsParam GetCacheStatsParam;
typedef GetCacheStatsParam *GetCacheStatsParamPtr;

struct ResetCacheParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code*/
SInt32 reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 bitmap;

};
typedef struct ResetCacheParam ResetCacheParam;
typedef ResetCacheParam *ResetCacheParamPtr;
B-10

A P P E N D I X B

Interface Files
struct ExtUserInfoParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
StringPtr scNamePtr;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt32 scPosition;
SInt32 scUNRecID;
SInt32 scUserID;
SInt16 attrVersion;
UserAttrPtr scUserAttrPtr;

};
typedef struct ExtUserInfoParam ExtUserInfoParam;
typedef ExtUserInfoParam *ExtUserInfoParamPtr;

struct ServiceStateParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code*/
StringPtr reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 afpTCPState;
SInt16 httpState;
SInt16 ftpState;
SInt16 multiHoming;
SInt16 srvrUsageLimit;

};
typedef struct ServiceStateParam ServiceStateParam;
typedef ServiceStateParam *ServiceStateParamPtr;
B-11

A P P E N D I X B

Interface Files
struct PlugInInfoParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code*/
SInt32 reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 version;
SInt32 index;
SInt16 error;
char name[32];
char versionStr[12];
char adminURL[256];
UInt32 plugInAttributes;
SInt32 plugInRef;
SInt16 isLast;

};
typedef struct PlugInInfoParam PlugInInfoParam;
typedef PlugInInfoParam *PlugInInfoParamPtr;

struct PlugInMimeTypeParam {
QElemPtr qLink; /* Queue link in header */
SInt16 qType; /* Type byte for safety check */
SInt16 ioTrap; /* FS: the Trap */
Ptr ioCmdAddr; /* FS: address to dispatch to */
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code */
SInt32 reserved;
SInt16 reserved2;
SInt16 reserved3;
SInt16 scCode;
SInt16 version;
SInt32 plugInRef;
SInt32 index;
SInt16 error;
char mimetype[80];
char suffix[32];
B-12

A P P E N D I X B

Interface Files
OSType typeCode;
OSType creatorCode;
SInt16 isLast;

};
typedef struct PlugInMimeTypeParam PlugInMimeTypeParam;
typedef PlugInMimeTypeParam *PlugInMimeTypeParamPtr;

struct SetHistoryParam {
QElemPtr qLink; /* Queue link in header*/
SInt16 qType; /* Type byte for safety check*/
SInt16 ioTrap; /* FS: the Trap*/
Ptr ioCmdAddr; /* FS: address to dispatch to*/
SCCompletionUPP ioCompletion; /* Completion routine addr (0 for sync calls) */
OSErr ioResult; /* Result code*/
SInt32 reserved;
SInt16 reserved2;
SInt16 historySampleTime;
SInt16 scCode;

};
typedef struct SetHistoryParam SetHistoryParam;
typedef SetHistoryParam *SetHistoryParamPtr;

Server Control Records B

The server control records are defined as follows:z

struct SetupInfoRec {
SInt16 siVersion;
SInt16 siFlags;
SInt16 siMaxLogins;
SInt16 siSrvrUsageLimit;
Point siVolInfoLocation;
Boolean siVolInfoVisible;
Boolean siReserved1;
Point siUserInfoLocation;
Boolean siUserInfoVisible;
Boolean siReserved2;
SInt16 siShutDownMins;
SInt16 siCacheControl; /* No longer used */
SInt16 siVolParmsStepSize;
SInt16 siVolParmsIncrement;
B-13

SInt16 siVolParmsFirstDelay;
SInt16 siVolParmsMaxDelay;
SInt32 siRACacheFileBufSize; /* No longer used */
SInt32 siRACacheSize; /* No longer used */
SInt16 siDirCacheMaxWidth; /* No longer used */
SInt32 siDirCacheSize; /* No longer used */
SInt32 siIconCacheSize; /* No longer used */
SInt32 siBTMemReservedFromCache;
SInt16 siSpare[1]; /* Reserved */
Str198 siLoginMsg;

};
typedef struct SetupInfoRec SetupInfoRec;
typedef SetupInfoRec *SetupInfoPtr;

struct SCCacheStatsRec {
SInt16 csVersion;
SInt32 csCacheTime;
SInt32 csRACacheAttempts; /* File cache */
SInt32 csRACacheHits;
SInt32 csRACacheTotalEntries;
SInt32 csRACacheEntriesInUse;
SInt32 csRACacheEntrySize;
SInt32 csDirCacheAttempts; /* Directory cache */
SInt32 csDirCacheHits;
SInt32 csDirCacheTotalEntries;
SInt32 csDirCacheEntriesInUse;
SInt32 csDirCacheEntrySize;
SInt32 csIconCacheAttempts; /* Desktop cache */
SInt32 csIconCacheHits;
SInt32 csIconCacheTotalEntries;
SInt32 csIconCacheEntriesInUse;
SInt32 csIconCacheEntrySize;
SInt32 csACtlCacheAttempts; /* PDS info, part of directory cache */
SInt32 csACtlCacheHits;
SInt32 csACtlCacheTotalEntries;
SInt32 csACtlCacheEntriesInUse;
SInt32 csACtlCacheEntrySize;
SInt32 csAUXCacheAttempts; /* Not used */
SInt32 csAUXCacheHits;
SInt32 csAUXCacheTotalEntries;
SInt32 csAUXCacheEntriesInUse;

A P P E N D I X B

Interface Files
SInt32 csAUXCacheEntrySize;
/* New fields for version 3 record*/

SInt32 csEnumCacheAttempts;
SInt32 csEnumCacheHits;
SInt32 csEnumCacheTotalEntries;
SInt32 csEnumCacheEntriesInUse;
SInt32 csEnumCacheEntrySize;
SInt32 csMaxFBUsed;
SInt32 csSkipPrsAttempts;
SInt32 csSkipPrsHits;

};
typedef struct SCCacheStatsRec SCCacheStatsRec;
typedef SCCacheStatsRec *SCCacheStatsRecPtr;

/* Used in extended user call if attrVersion is kOldUserAttrRecVersion */
struct OldUserAttrRec {

SInt32 scLoginTime;
SInt32 scLastUseTime;
SInt32 scSocketNum;
SInt16 scConnectionType;
SInt16 scDisconnectID;

};
typedef struct OldUserAttrRec OldUserAttrRec;
typedef OldUserAttrRec *OldUserAttrPtr;

/* Used in extended user call if attrVersion is kUserAttrRecVersion */
struct UserAttrRec {

SInt32 scLoginTime;
SInt32 scLastUseTime;
SInt32 scSocketNum;
FourCharCode scProtocolType; /* The session protocol, i.e. AFP, FTP, SMB */
FourCharCode scTransportType; /* The transport, i.e. ATP, TCP/IP */
StringPtr scSessionNamePtr; /* Str63 */
SInt32 scDisconnectID;

};
typedef struct UserAttrRec UserAttrRec;
typedef UserAttrRec *UserAttrPtr;

struct HistoryData {
UInt8 dpMin;
UInt8 dpMax;
B-15

A P P E N D I X B

Interface Files
UInt8 dpAverage;
UInt8 filler;

};
typedef struct HistoryDataHistoryData;

struct ServerHistoryRec {
UInt32 historySyncCount;
UInt32 historyLastSample;
UInt16 historySampleTime;
UInt16 numDataPoints;
HistoryData dataPoint[1024];

};

typedef struct ServerHistoryRec ServerHistoryRec;
typedef ServerHistoryRec *ServerHistoryPtr;

Server Control Routine B

/* C */
pascal OSErr ServerDispatchSync (SCParamBlockRec* paramBlock);

; Assembly
$A094 ServerDispatch;

Server Events B

Server Event Constants B

/* Bit names for the serverEventMask field of ServerEventQEntry; event numbers
 returned in ServerEventRecord.
*/

enum {
kSCStartAFPRequestEvt = 0,
kSCSendAFPResponseEvt = 1,
kSCServerBusyEvt = 2,
kSCServerShutdownEvt = 3,
B-16

A P P E N D I X B

Interface Files
kSCServerControlCallEvt = 4,
kSCShareEvt = 5,
kSCUnShareEvt = 6,
kSCSetDirAccessEvt = 7,
kSCServerNameChangeEvt = 8,
kSCVolumePrepEvt = 9,
kSCVolumeUnmountEvt = 10,
kSCServerStartupEvt = 11,
kSCSessionTornDownEvt = 12,
kSCOutOfSequenceEvt = 13,
kSCWksClosedSessionEvt = 14,
kSCSessionTimedOutEvt = 15,
kSCSrvrClosedSessionEvt = 16,
kSCExtendedServerEvtRec = 31

};

/* Maximum size of the Buffer in the ServerEventRecord... */
enum {
kBufferMax = 48
};

Server Event Data Types B

struct ServerEventQEntry {
ServerEventQEntry* next;
SInt16 queuetype;
ServerEventHandlerUPP callBack;
SInt32 serverEventMask;
SInt32 afpCommandMask[2];
SInt32 serverControlMask;

};

struct ServerEventRecord {
SInt32 eventNumber;
UInt32 serverTimeInSeconds;
SInt16 result;
SInt16 bufferSize;
char buffer[48];
Str31 nameStr;
SInt16 afpCommand;
B-17

A P P E N D I X B

Interface Files
SInt32 sessionID;
SInt32 userID;
Str31 userName;
SInt16 vRefNum;
SInt32 dirID;
UserAddress addr;

};
typedef struct ServerEventRecord ServerEventRecord;

/* For annexVersion field; set by server to indicate version of record... */
enum {

kServerEventAnnexVersion6 = 0x06000000
};

struct ExtendedServerEventRecord {
SInt32 eventNumber;
UInt32 serverTimeInSeconds;
SInt16 result;
SInt16 bufferSize;
char buffer[48];
Str31 nameStr;
SInt16 afpCommand;
SInt32 sessionID;
SInt32 userID;
Str31 userName;
SInt16 vRefNum;
SInt32 dirID;
UserAddress addr;
FourCharCode transportType;
UInt32 annexVersion;

};
typedef struct ExtendedServerEventRecord ExtendedServerEventRecord;

Application-Defined Routine B

pascal void
ServerEventHandlerProcPtr (ServerEventQEntryPtr entry,
ExtendedServerEventRecord* event);
B-18

A P P E N D I X B

Interface Files
To make your code work on a PowerPC, you need to create a
ServerEventHandlerUPP by calling NewServerEventHandlerProc:

ServerEventHandlerUPP NewServerEventHandlerProc
(ServerEventHandlerProcPtr yourProc);

When you’re done, call DisposeRoutineDescriptor:

void DisposeRoutineDescriptor (ServerEventHandlerUPP yourUPP);
B-19

A P P E N D I X B

Interface Files
B-20

Index
A, B

activity, server history 1-40 to 1-41
AFP sessions 1-6, 1-7, 1-10
AppleShare IP 6.0 software components 1-4 to

1-8
AppleShare IP Manager 1-6
AppleShare IP Web & File Admin application 1-7
AppleShare IP Web & File extension 1-5 to 1-6,

1-7
AppleShare IP Web & File Server application 1-7
AppleShare PDS files 1-6, 1-10, 1-12
AppleShare Registry 1-7
AppleTalk Filing Protocol sessions. See AFP

sessions
application event loop 2-16

C

cache, resetting 1-60 to 1-61
cache stats, getting 1-29 to 1-32
calling conventions 1-15
canceling shutdowns 1-24
connected users, information about 1-48 to 1-50
constants

server event B-16
control constants B-1 to B-4
control panels 1-11
conventions, calling 1-15
copy protection

clearing 1-25 to 1-26
setting 1-66

D

disconnecting users 1-26 to 1-29, A-1

E

event handler, server
installing 2-4

event loop 2-16
event object, server

installing 1-50 to 1-51
removing 1-59 to 1-60

extended server event record 2-7 to 2-9
extensions

AppleShare IP Web & File 1-5 to 1-6, 1-7
File Sharing Extension 1-8, 1-9 to 1-10
File Sharing Library 1-10 to 1-11

F, G

File Manager 1-6, 1-8, 1-11
File Sharing control panel 1-11
File Sharing Extension 1-8, 1-9 to 1-10
File Sharing Library 1-10 to 1-11
Finder 1-11
folders, information about shared 1-32 to 1-34,

1-47 to 1-48, A-2
FTP sessions 1-8

H, I, J, K, L

head of server event handler queue,
obtaining 1-41 to 1-42

HTTP sessions 1-8
IN-1

I N D E X
M, N, O

Macintosh File Manager 1-6, 1-8, 1-11
Macintosh File Sharing

software components 1-8 to 1-11
supported calls A-1

messages, sending 1-61 to 1-62
MIME types, obtaining 1-38 to 1-40

P

parameter blocks B-5 to B-13
plug-ins, getting information about 1-36 to 1-38
polling servers 1-51 to 1-59, A-3
program linking 1-10
protection, copy

clearing 1-25 to 1-26
setting 1-66

Q

queue, server event handler 1-41 to 1-42

R

records, server control B-13 to B-16
resetting cache 1-60 to 1-61

S, T

sample time, setting 1-67
SCCancelShutdown call 1-24
SCClrCopyProtect call 1-25 to 1-26
SCDisconnect call 1-26 to 1-27, A-1
SCDisconnectVolUsers call 1-27 to 1-29
SCExtUserName call 1-34 to 1-36
SCGetCacheStats call 1-29 to 1-32
SCGetExpFldr call 1-32 to 1-34, A-2

SCGetPluginInfo call 1-36 to 1-38
SCGetPluginMIMEType call 1-38 to 1-40
SCGetServerActivityHistory call 1-40 to 1-41
SCGetServerEventProc call 1-41 to 1-42
SCGetServerStatus call 1-42 to 1-43
SCGetSetupInfo call 1-44 to 1-47, A-2
SCGetUserMountInfo call 1-47 to 1-48
SCGetUserNameRec call 1-48 to 1-50
SCInstallServerEventProc call 1-50 to 1-51, 2-4
SCPollServer call 1-51 to 1-59, A-3
SCRemoveServerEventProc call 1-59 to 1-60
SCResetCache call 1-60 to 1-61
SCSendMessage call 1-61 to 1-62
SCServerVersion call 1-63 to 1-64, A-3
SCServiceStateInfo call 1-64 to 1-65
SCSetCopyProtect call 1-66
SCSetHistorySampleTime call 1-67
SCSetSetupInfo call 1-67 to 1-68, A-3
SCShutdown call 1-68 to 1-70, A-3
SCSleepServer call 1-70 to 1-71
SCStartServer call 1-72
SCWakeServer call 1-72 to 1-73
sending messages 1-61 to 1-62
server

additions, definition of 1-8
control calls

availability of, determining 1-15
calling conventions 1-15
capabilities of 1-3
SCCancelShutdown 1-24
SCDisconnect 1-26 to 1-27, A-1
SCDisconnectVolUsers 1-27 to 1-29
SCGetCacheStats 1-29 to 1-32
SCGetExpFldr 1-32 to 1-34, A-2
SCGetExtUserName 1-34 to 1-36
SCGetPluginInfo 1-36 to 1-38
SCGetPluginMIMEType 1-38 to 1-40
SCGetSetupInfo 1-44 to 1-47, A-2
SCGetUserMountInfo 1-47 to 1-48
SCGetUserNameRec 1-48 to 1-50
SCInstallServerEventProc 1-50 to 1-51,

2-4
SClrCopyProtect 1-25 to 1-26
SCPollServer 1-51 to 1-59, A-3
SCRemoveServerEventProc 1-59 to 1-60
IN-2

I N D E X
SCResetCache 1-60 to 1-61
SCSendMessage 1-61 to 1-62
SCServerActivityHistory 1-40 to 1-41
SCServerEventProc 1-41 to 1-42
SCServerStatus 1-42 to 1-43
SCServerVersion 1-63 to 1-64, A-3
SCServiceStateInfo 1-64 to 1-65
SCSetCopyProtect 1-66
SCSetHistorySampleTime 1-67
SCSetSetupInfo 1-67 to 1-68, A-3
SCShutdown 1-68 to 1-70, A-3
SCSleepServer 1-70 to 1-71
SCStartServer 1-72
SCWakeServer 1-72 to 1-73

control constants B-1 to B-4
control records B-13 to B-16
event, definition of 2-3
event constants B-16
event handler

application event loop 2-16
constraints 2-11
definition of 2-3
installing 2-4
overview 2-4 to 2-5
sample code 2-11 to 2-17

event handler queue, obtaining head of 1-41 to
1-42

event object
installing 1-50 to 1-51
removing 1-59 to 1-60

parameter blocks B-5 to B-13
polling 1-51 to 1-59, A-3
setup information

getting 1-44 to 1-47, A-2
setting 1-67 to 1-68, A-3

starting 1-72
status, obtaining 1-42 to 1-43
version, obtaining 1-63 to 1-64, A-3
waking 1-72 to 1-73

server event data types B-17 to B-18
server event queue entry 2-5 to 2-6
server event record 2-6 to 2-7
service state information 1-64 to 1-65
shutting down servers

canceling 1-24

starting 1-68 to 1-70, A-3
sleep, setting server to 1-70 to 1-71
SMB sessions 1-7
software components

AppleShare IP 6.0 1-4 to 1-8
Macintosh File Sharing 1-8 to 1-11

starting servers 1-72
status of server, obtaining 1-42 to 1-43
structures
ExtendedServerEventRecord 2-7 to 2-9
ServerEventQEntry 2-5 to 2-6
ServerEventRecord 2-6 to 2-7

U

users
disconnecting 1-26 to 1-29, A-1
getting information about 1-34 to 1-36
information about 1-48 to 1-50

Users & Groups control panel 1-11
Users & Groups Data File 1-6, 1-10, 1-12

V

version of server, obtaining 1-63 to 1-64, A-3
volumes, information about shared 1-32 to 1-34,

1-47 to 1-48, A-2

W, X, Y, Z

waking servers 1-72 to 1-73
IN-3

	Server Control Calls and Server Event Handling
	Contents
	Figures, Tables, and Listings
	About This Manual
	Conventions Used in This Manual
	For More Information

	Server Control Calls
	About Server Control Calls
	Main Elements of File Servers and Server Control Calls
	AppleShare IP File Server Software Components
	Macintosh File Sharing Software Components
	Data Files

	Using Server Control Calls
	Determining If Server Control Calls Are Available
	Calling Conventions
	Starting and Stopping the File Server
	Obtaining Status Information about Users, Volumes, and Shared Items
	Sending Messages to Users

	Server Call Reference
	SCCancelShutDown
	SCClrCopyProtect
	SCDisconnect
	SCDisconnectVolUsers
	SCGetCacheStats
	SCGetExpFldr
	SCGetExtUserName
	SCGetPluginInfo
	SCGetPluginMIMEType
	SCGetServerActivityHistory
	SCGetServerEventProc
	SCGetServerStatus
	SCGetSetupInfo
	SCGetUserMountInfo
	SCGetUserNameRec
	SCInstallServerEventProc
	SCPollServer
	SCRemoveServerEventProc
	SCResetCache
	SCSendMessage
	SCServerVersion
	SCServiceStateInfo
	SCSetCopyProtect
	SCSetHistorySampleTime
	SCSetSetupInfo
	SCShutDown
	SCSleepServer
	SCStartServer
	SCWakeServer

	Server Event Handling
	Using Server Events
	Server Event Queue Entry
	Server Event Record
	Extended Server Event Record
	Server Event Definitions
	Constraints
	Sample Server Event Handler Code
	Application Event Loop

	Macintosh File Sharing Server Control Calls
	SCDisconnect
	SCGetExpFldr
	SCGetSetupInfo
	SCPollServer
	SCServerVersion
	SCSetSetupInfo
	SCShutDown

	Interface Files
	Server Control Constants
	Server Control Parameter Blocks
	Server Control Records
	Server Control Routine
	Server Events
	Server Event Constants
	Server Event Data Types

	Application-Defined Routine

	Index

