

Technical Publications
© Apple Computer, Inc. 1999

A p p l e S h a r e I P 6 . 3
D e v e l o p e r ’ s K i t

User Authentication Modules

Apple Computer, Inc.
© 1998-1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 7

Preface About This Manual 9

Conventions Used in This Manual 9
For more information 10

Chapter 1 User Authentication Modules 13

UAM Architecture 14

Chapter 2 Server User Authentication Modules 17

Server UAM Functions 19
UAMChangeUID 19
UAMCreateObject 20
UAMGetAttribute 20
UAMGetAttributeID 22
UAMGetThreadID 23
UAMSetAttribute 23
UAMSetAttributeID 24
UAMSleep 25
UAMWakeup 25

Application-Defined Routines 26
_Initialize Routine 26
_Terminate Routine 27
UAMAuthenticate Routine 27
UAMInitialize Routine 28

Result Codes 29
3

Chapter 3 Client User Authentication Modules 33

Constants and Data Types 35
UAMArgs Structure 35
ClientUAMCallbackRec Structure 37
UAMChgPassBlk Structure 38
UAMVSDlogBlk Structure 38
UAMAuthBlk Structure 39
UAMPWDlogBlk Structure 39
UAMOpenBlk Structure 40
ClientInfo Structure 40
AFPClientInfo Structure 41
VolListElem Structure 42
UAMMessage Structure 42

Client UAM Routines 43
UAMCall Routine 43

UAMOpen Command 45
UAMPWDlog Command 46
UAMLogin Command 46
UAMChgPassDlg Command 46
UAMChgPass Command 47
UAMVSDlog Command 47
UAMGetInfoSize Command 47
UAMGetInfo Command 48
UAMClose Command 49

Callback Routines 49
EventProc Callback 49
GetClientInfo Callback 49
OpenSession Callback 50
SendRequest Callback 51
CloseSession Callback 51
SetMic Callback 52

Completion Routine 52
Resources 53

The 'uamg' Resource 53
The 'uamc' Resource 54
The 'uamn' Resource 55

Sample UAM Client 55
4

Index 61
5

6

Figures, Tables, and Listings

Chapter 1 User Authentication Modules 13

Figure 1-1 UAM architecture 15

Chapter 2 Server User Authentication Modules 17

Chapter 3 Client User Authentication Modules 33

Table 3-1 Typcial client UAM command sequence 44
Table 3-2 Bit values of configInfo 45
Listing 3-1 Sample client UAM 55
7

P R E F A C E

About This Manual

This document describes version 2.0 of the application programming interface
for client user authentication modules (UAMs). UAMs allow AppleTalk Filing
Protocol (AFP) clients to be authenticated with an AppleShare IP server using
an alternate authorization scheme, such as Kerberos, Network Information
Service (NIS), Windows NT domains, or Novell Directory Services (NDS). For
example, an NIS UAM could authenticate a user for a connection to an
AppleShare IP file server, mail server, or web server by accessing a central
database of user names and passwords stored on an NIS server running on a
Sun workstation. Such centralized authentication information would
substantially reduced the effort that would otherwise be required to maintain
multiple repositories of authentication information.

A UAM implementation consists of a client UAM and a server UAM. This
manual describes the method by which a client UAM communicates with a
server UAM to authenticate AFP clients. Segments of sample code are included
to help developers understand how to use the various calls.

Conventions Used in This Manual 0

The Courier font is used to indicate server control calls, code, and text that you
type. Terms that are defined in the glossary appear in boldface at first mention
in the text. This guide includes special text elements to highlight important or
supplemental information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲
9

P R E F A C E

▲ W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲

For more information 0

The following books provide information that is important for all AppleShare
developers:

■ AppleShare IP Administrator’s Manual. Apple Computer, Inc.

■ Inside Macintosh. Apple Computer, Inc.

For information on the programming interface for managing users and groups,
see the following publication:

■ AppleShare IP 6.3 Developer’s Kit: AppleShare Registry Library. Apple Computer,
Inc.

For information on the AppleTalk Filing Protocol (AFP), see the following
publications:

■ AppleShare IP 6.3 Developer’s Kit: AppleTalk Filing Protocol.
Apple Computer, Inc.

■ AppleShare IP 6.3 Developer’s Kit: AppleTalk Filing Protocol Version 2.1 and 2.2.
Apple Computer, Inc.

■ Inside AppleTalk, Second Edition. Apple Computer, Inc.

For information on controlling an AppleShare file server and handling server
events, see the following publication:

■ AppleShare IP 6.3 Developer’s Kit: Server Control Calls and Server Event
Handling. Apple Computer, Inc.

For information on AppleShare IP Print Server security mechanisms, see the
following publication:

■ AppleShare IP 6.3 Developer’s Kit: AppleShare IP Print Server Security Protocol.
Apple Computer, Inc.
10

P R E F A C E

For information on using an AppleShare IP 6.3 file server and Macintosh File
Sharing, see the following manuals:

■ AppleShare Client User’s Manual. Apple Computer, Inc.

■ Macintosh Networking Reference. Apple Computer, Inc.
11

P R E F A C E
12

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0
User Authentication Modules 1
13

C H A P T E R 1

User Authentication Modules

This chapter describes the mechanism by which AppleShare IP 6.1 supports
third-party user authentication modules (UAMs). Third-party UAMs allow
AppleShare IP servers to participate in networks that use an alternative
authorization scheme, such as Kerberos, Network Information Service (NIS),
Windows NT domains, or Novell Directory Services (NDS).

UAMs can be invoked under the following circumstances:

■ When the user uses the Chooser to connect to an AppleShare file server or to
connect to a another volume shared by a server to which the client is already
connected.

■ When an application calls PBVolumeMount and specifies the UAM by its
protocol name

■ When a client mail application connects to an AppleShare mail server.

■ When an FTP application connects to an AppleShare FTP server.

■ When a web browser connects to an AppleShare web server that is
configured to require user authentication.

A UAM implementation consists of two parts:

■ A server UAM that authenticates users. A server UAM is a PowerPC Code
Fragment Manager (CFM) library loaded by the AppleShare Registry at
system startup time and called at deferred task time.

■ A client UAM that requests a user authentication. A client UAM is a code
resource loaded on demand and called at main event time, so the client UAM
can use QuickDraw to display dialog boxes and perform other A5-dependent
operations.

UAM Architecture 1

The client UAM and server UAM use the AppleTalk Filing Protocol (AFP) to
communicate with each other. Figure 1-1 illustrates the flow of communication
between the client UAM and the server UAM.
14 UAM Architecture

C H A P T E R 1

User Authentication Modules

Figure 1-1 UAM architecture

For an AFP client logging on to an AppleShare file server, the flow of
communication between the client and server UAMs occurs in the following
sequence:

1. The AFP client calls AFPServerInfo in order to determine which UAMs the
AFP server supports.

2. If the server supports more than one UAM, the AFP client displays a list of
authentication methods for the user to choose from.

3. If the user chooses an authentication method that requires a UAM, the AFP
client loads and starts the selected client UAM.

4. Using a callback mechanism to the AFP client, the client UAM opens a
session with the AFP server and passes a UAM request that identifies the
UAM.

5. The AFP server passes the UAM request to the AppleShare Registry.

6. The AppleShare Registry calls the server UAM and passes the UAM request
as a parameter.

7. The server UAM calls the Registry to obtain the user’s password and
authenticates the user.

Client
UAM

Server

Registry

AFP
Client

Server
UAM
UAM Architecture 15

C H A P T E R 1

User Authentication Modules

8. The server UAM passes the authentication result to the Registry, which
returns the result to the AFP server.

9. The AFP server returns the authentication result to the AFP client.

10. The client and server UAM may continue to exchange messages in this way
until the server UAM is satisfied

For more information about server UAMs, see Chapter 2, “Server User
Authentication Modules.” For more information about client UAMs, see
Chapter 3, “Client User Authentication Modules.”
16 UAM Architecture

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Server User Authentication
Modules 2
17

C H A P T E R 2

Server User Authentication Modules

This chapter describes the AppleTalk Filing Protocol (AFP) server user
authentication module (UAM) interface. A server UAM is a Code Fragment
Manager (CFM) library loaded by the AppleShare Registry at system startup in
order to perform user authentication.

Server UAMs must meet the following requirements:

■ Have a creator code of 'asda' and type code of 'asru'.

■ Export the following symbols:

unsigned long UAMVersion = 0;
unsigned long UAMFlags = 0;
Str16 *UAMName = "\p<unique-uam-name>"; // The protocol name

// of the UAM

■ Reside in a folder named “AppleShare IP UAM” in the Extensions folder
inside the System Folder.

■ Implement and export a UAMAuthenticate routine that, at minimum
authenticates the user’s connection request. The UAMAuthenticate routine can
optionally perform these additional tasks:

■ Change the user’s password
■ Change to a specified user ID for a session
■ Create a new user

In addition to implementing a UAMAuthenticate routine, server UAMs may

■ provide an _Initialize Code Fragment Manager routine that initializes the
server UAM

■ provide a UAMInitialize routine that initializes the server UAM

■ provide an _Terminate Code Fragment Manager routine that prepares the
server UAM for shutdown

For additional information about these routines, see “Application-Defined
Routines” (page 26).

The server UAM programming interface consists of the following functions:

■ UAMChangeID (page 2-19), which changes the user ID for a session
■ UAMCreateObject (page 2-20), which adds a user to the Users & Groups Data

File

■ UAMGetAttribute (page 2-20), which gets the value of a user attribute
18

C H A P T E R 2

Server User Authentication Modules

■ UAMGetAttributeID (page 2-22), which gets the value of a user attribute by its
object ID

■ UAMSetAttribute (page 2-23), which sets the value of a user attribute

■ UAMSetAttributeID (page 2-24), which sets the value of a user attribute by
specifying its object ID

■ UAMGetThreadID (page 2-23), which gets the thread ID of the current thread

■ UAMSleep (page 2-25), which yields time

■ UAMWakeup (page 2-25), which wakes up a thread after yielding time

For additional information about these routines, see “Server UAM Functions”
later in this chapter.

Note
UAMs are loaded when the computer starts up. Changes to
the files in the AppleShare IP UAM folder do not take effect
until the next time the computer restarts. ◆

Server UAM Functions 2

Server UAMs can call the functions described in this section to communicate
with the AppleShare Registry.

UAMChangeUID 2

Change the user ID for a session.

extern UInt32 UAMChangeUID (UInt32 newID);

newID The new user ID.

function result A result code. For a list of possible values, see “Result Codes”
(page 29).
Server UAM Functions 19

C H A P T E R 2

Server User Authentication Modules

DISCUSSION

The UAMChangeUID function changes the user ID for the session to the user ID
specified by newID. The value of newID must be a valid user ID in the Users &
Groups Data File.

UAMCreateObject 2

Create an object in the Users & Groups Data File.

extern OAMStatus UAMCreateObject(OAMObjectSpec* object)

object An OAMObjectSpec structure that describes the type of object that
is being created (such as a user object). For more information,
see the AppleShare Registry Library in the AppleShare IP 6.1
Developer’s Kit.

function result A result code. For a list of possible values, see “Result Codes”
(page 29).

DISCUSSION

The following sample code creates a user object:

OAMObjectSpecaOAMObjectSpec;
aOAMObjectSpec.objectType = kUser;
aOAMObjectSpec.specType = kOAMObjectSpecByNameType;
char *userName = "\pRealUser";
memcpy(&(aOAMObjectSpec.u.name)userName,strlen(userName));

aOAMStatus = UAMCreateObject(&aOAMObjectSpec);

UAMGetAttribute 2

Obtain the value of an attribute.

extern UInt32 UAMGetAttribute
(OAMObjectSpec *spec,
OSType creator,
20 Server UAM Functions

C H A P T E R 2

Server User Authentication Modules
OSType type,
void *buffer,
UInt32* size);

spec Specifies the OAMObjectSpec for which the value of an attribute is
to be obtained. For information about the OAMObjectSpec
structures, see The AppleShare Registry Library, which is provided
as part of the AppleShare IP 6.1 Developer’s Kit.

creator Specifies the creator code of the attribute whose value is to be
obtained. For information about the attribute creator codes
defined by Apple Computer, see The AppleShare Registry Library,
which is provided as part of the AppleShare IP 6.1 Developer’s Kit.

type Specifies the type code of the attribute whose value is to be
obtained. For information about the attribute type codes defined
by Apple Computer, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP Developer’s Kit.

buffer On output, contains the value of the attribute identified by spec,
creator, and type.

size On input, specifies the length of buffer. On output, specifies the
length of the data in buffer.

function result A result code. For a list of possible values, see “Result Codes”
(page 29).

DISCUSSION

The UAMGetAttribute function obtains the value of the attribute identified by the
value of the spec, creator, and type parameters.

In the following code sample, the UAM calls UAMGetAttribute to obtain the user
name attribute:

STr32 userName;
UAMGetAttribute(id,kUser,kName,&userName,sizeof(Str32));
Server UAM Functions 21

C H A P T E R 2

Server User Authentication Modules
UAMGetAttributeID 2

Obtain the value of an attribute by specifying its object ID.

extern UInt32 UAMGetAttribute (
UInt32 id,
OSType creator,
OSType type,
void *buffer,
UInt32* size);

id A registry object ID obtained by searching the AppleShare
Registry by name and type. For information about attribute
names and types, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP 6.1 Developer’s Kit.

creator Specifies the creator code of the attribute ID whose value is to be
obtained. For information about the attribute creator codes
defined by Apple Computer, see The AppleShare Registry Library,
which is provided as part of the AppleShare IP 6.1 Developer’s Kit.

type Specifies the type code of the attribute ID whose value is to be
obtained. For information about the attribute type codes defined
by Apple Computer, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP Developer’s Kit.

buffer On output, contains the value of the attribute identified by the
id, creator, and type parameters.

size On output, specifies the length of the data in buffer.

function result A result code. For a list of possible values, see “Result Codes”
(page 29).

DISCUSSION

The UAMGetAttributeID function obtains the value of the attribute identified by
the objectID, creator, and type parameters.
22 Server UAM Functions

C H A P T E R 2

Server User Authentication Modules
UAMGetThreadID 2

Obtain the current thread’s thread ID.

extern UInt32 UAMGetThreadID (void);

function result The thread ID of the current thread.

DISCUSSION

The UAMGetThreadID function return the thread ID of the current thread for
subsequent use in calling UAMWakeup (page 25).

UAMSetAttribute 2

Set the value of an attribute.

extern UInt32 UAMSetAttribute (
OAMObjectSpec *spec,
OSType creator,
OSType type,
void *buffer,
UInt32* size);

spec An OAMObjectSpec structure that describes the object for which
an attribute is to be set.

creator Specifies the creator code of the attribute whose value is to be
set. For information about the attribute creator codes defined by
Apple Computer, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP Developer’s Kit.

type Specifies the type code of the attribute whose value is to be set.
For information about the type creator codes defined by Apple
Computer, see The AppleShare Registry Library, which is provided
as part of the AppleShare IP Developer’s Kit.

buffer On input, contains the value of the attribute that is to be set.

size On input, specifies the length of the data in buffer. If no error
occurs, on output, size contains the amount of data written in
bytes.
Server UAM Functions 23

C H A P T E R 2

Server User Authentication Modules
function result A result code. For a list of possible values, see “Result Codes”
(page 29).

DISCUSSION

The UAMSetAttribute function sets the value of the attribute identified by the
value of the id, creator, and type parameters.

UAMSetAttributeID 2

Set the value of an attribute by specifying its object ID.

extern UInt32 UAMSetAttributeID (
UInt32 id,
OSType creator,
OSType type,
void *buffer,
int size);

id A registry object ID obtained by searching the AppleShare
Registry by name and type. For information about attribute
names and types, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP 6.1 Developer’s Kit.

creator Specifies the creator code of the attribute whose value is to be
set. For information about the attribute creator codes defined by
Apple Computer, see The AppleShare Registry Library, which is
provided as part of the AppleShare IP Developer’s Kit.

type Specifies the type code of the attribute whose value is to be set.
For information about the type creator codes defined by Apple
Computer, see The AppleShare Registry Library, which is provided
as part of the AppleShare IP Developer’s Kit.

buffer On input, contains the value that is to be set.

size On input, specifies the length of the data in buffer. If no error
occurs, on output, size contains the amount of data written in
bytes.

function result A result code. For a list of possible values, see “Result Codes”
(page 29).
24 Server UAM Functions

C H A P T E R 2

Server User Authentication Modules
DISCUSSION

The UAMSetAttributeID function sets the value of the attribute identified by the
id, creator, and type parameters.

UAMSleep 2

Yield time to the AppleShare Registry.

extern UInt32 UAMSleep (UInt32 msec);

msec Specifies in milliseconds the time to sleep.

function result NoErr if not awakened by a call to UAMWakeup. If awakened by a
call to UAMWakeup, UAMSleep returns the value with which
UAMWakeup was called.

DISCUSSION

The UAMSleep function gives the AppleShare Registry time to run. You should
call UAMSleep before you make a network call. When the network call completes,
your completion routine should call UAMWakeup to wake up the sleeping thread.

If your completion routine calls UAMWakeup before it calls UAMSleep (for example,
when an asynchronous operation completes before you can call UAMSleep),
UAMSleep returns immediately.

UAMWakeup 2

Wake up a thread that has yielded time.

extern void UInt32 UAMWakeup (
ThreadID id,
UInt32 value);

id A thread ID obtained by calling UAMGetThreadID (page 23) that
identifies the thread that is to be awakened.

value The value returned by the UAMSleep call that put the thread
specified by id to sleep.
Server UAM Functions 25

C H A P T E R 2

Server User Authentication Modules
function result A result code. For a list of possible values, see “Result Codes”
(page 29).

DISCUSSION

The UAMWakeup function wakes up a thread that yielded time to the AppleShare
Registry due to a previous call to UAMSleep (page 2-25). Your server UAM’s
completion routine typically calls UAMWakeup to awaken a thread that was put to
sleep before the server UAM made a call over the network.

Application-Defined Routines 2

This section describes the server UAM application-defined routines, which are

■ _Initialize, an optional routine that initializes the server UAM

■ _Terminate, an optional routine that prepares a server UAM for system
shutdown

■ UAMAuthenticate, a required routine that authenicates users

■ UAMInitialize, an optional routine that performs initialization tasks

_Initialize Routine 2

The _Initialize routine is a Code Fragment Manager routine that, if exported,
performs initialization tasks. The _Initialize routine is called at system task
time, so it can call the Memory Manager to allocate memory.

Unlike the UAMInitialize routine, the _UAMIntialize routine cannot call
AppleShare Registry functions.

For information about writing your _Initialize routine, see Inside Macintosh:
Power PC System Software.

Note
Your server UAM can have both an _Initialize routine
and a UAMInitialize routine. ◆
26 Application-Defined Routines

C H A P T E R 2

Server User Authentication Modules
_Terminate Routine 2

The _Terminate routine is a Code Fragment Manager routine that, if exported,
performs tasks that must be done before the server shuts down, such as
deallocating memory. The _Terminate routine is called at system task time, so it
can call the Memory Manager.

For information about writing your _Terminate routine, see Inside Macintosh:
Power PC System Software.

UAMAuthenticate Routine 2

Authenticate a user.

SInt32 UAMAuthenticate (
SInt32 operation,
SInt32 id,
void* authState,
SInt32 authStateSize,
void* authData,
SInt32 authDataSize,
void* authStateOut,
SInt32* authStateSizeOut,
void* authDataOut,
SInt32* authDataSizeOut);

operation Specifies the authentication stage, which can be kUAMAuthLogin
or kUAMAuthLoginContinue.

id Contains the user ID that is being authenticated.

authState Contains authentication-stage dependent information specified
by the client UAM.

authStateSize Specifies in bytes the length of authState.

authData Contains input data from the FPLogin or FPLoginContinue
command block. For information on the FPLogin and
FPContLogin command block, see Inside AppleTalk, second
edition.

authDataSize Specifies in bytes the length of authData.
Application-Defined Routines 27

C H A P T E R 2

Server User Authentication Modules
authStateOut On output, contains at most 16 bytes of
authentication-stage–dependent information.

authStateSizeOut
Specifies in bytes the length of authStateOut.

authDataOut Contains a reply message from the server UAM that is to be
passed to the client UAM.

authDataSizeOut
On input, specifies in bytes the size of authDataOut; on output,
authDataSizeOut specifies the length of the reply message
returned in authDataOut.

DISCUSSION

Every server UAM must export a UAMAuthenticate routine. Before calling a
server UAM’s UAMAuthenticate routine, the AppleShare Registry verifies that
the user and the specified UAM exist.

The UAMAuthenticate routine is called at deferred task time, so it cannot call the
Memory Manager to allocate memory, but it can use other memory allocation
mechanisms, such as the Open Transport memory allocation functions, which
use the Apple Shared Library Manager.

Note
If your authentication method requires multiple steps, you
can use the authState parameter to maintain
state-dependent information. ◆

UAMInitialize Routine 2

Initialize a server UAM.

Boolean UAMInitialize (void);

result If the UAMInitialize routine completes successfully, it should
return TRUE; otherwise, it should return FALSE.
28 Application-Defined Routines

C H A P T E R 2

Server User Authentication Modules
DISCUSSION

Server UAMs may export a UAMInitialize routine that performs initialization
operations, such as allocating memory.

A server UAM’s UAMInitialize routine is called once during the startup process
at deferred task time, so it cannot call the Memory Manager to allocate memory,
but it can use other memory allocation mechanisms, such as the Open Transport
memory allocation functions, which use the Apple Shared Library Manager.

Server UAM initialization routines are called after the AppleShare Registry is
initialized but before the AppleShare Registry is made available for general use.
Unlike the _Initialize routine, the UAMIntialize routine can call AppleShare
Registry functions.

If a UAMInitialize routine encounters an error, it should return FALSE. When a
server UAM’s UAMInitialize routine returns FALSE, it is unloaded immediately.

Note
Your server UAM can have both a UAMInitialize routine
and an _Initialize routine. ◆

Result Codes 2

Server UAM functions return AppleShare Registry result codes, which are listed
here.

noErr 0 No error
kOAMErrInitializationError –29300 The AppleShare Registry

Library has not been
initialized.

kOAMErrParameterError –29301 A parameter is invalid.
kOAMErrGeneralError –29302 An internal error occurred.
kOAMErrObjectNotFound –29310 The specified object or

object type does not exist in
the Registry.

kOAMErrContainerObjectNotFound –29311 The specified group object
does not exist in the
Registry.

kOAMErrMemberObjectNotFound –29312 The specified group
member does not exist in
the Registry.
Result Codes 29

C H A P T E R 2

Server User Authentication Modules
kOAMErrDuplicateObject –29320 The specified object already
exists in the Registry.

kOAMErrMaximumObjects –29330 The user object already
contains the maximum
number of group members.

kOAMErrMaximumMemberObjects –29331 The group object already
has the maximum number
of members.

kOAMErrAttributeNotFound –29340 The specified attribute does
not exist in the Registry.

kOAMErrAttributeReadOnly –29341 The specified attribute
allows only read access. Its
value is maintained by the
Registry.

kOAMErrAttributeReadWriteOnly –29342 The specified attribute is a
required attribute that
cannot be deleted.

kOAMErrAttributeBufferTooSmall –29343 The specified buffer is too
small to store the data that
has been returned by an
AppleShare Registry
Library function.

kOAMErrAttributeBufferTooLarge –29344 The specified buffer is too
large to store the data that
has been passed to an
AppleShare Registry
Library function.

kOAMErrMaximumAttributes –29345 More than 20 attributes
have been specified.

kOAMErrBufferTooSmall –29350 The specified buffer is too
small to store the data that
has been returned by an
AppleShare Registry
Library function.

kOAMErrBufferTooLarge –29351 The specified buffer is too
large to store the data that
has been passed to an
AppleShare Registry
Library function.

kOAMErrAuthenticationError –29360 An authentication error. For
example, the specified
password is incorrect or the
user is not an administrator.
30 Result Codes

C H A P T E R 2

Server User Authentication Modules
kOAMErrAuthenticationInProgress –29361 The call to OAMAuthenticate
was successful, but
additional calls to
OAMAuthenticate must be
made to complete the
authentication process.

kOAMErrLoginDisabled –29362 Log-on privileges for the
user that was used to
authenticate this session
have been disabled.

kOAMErrAuthenticationServerError –29363 The server failed a key
challenge from the client.

kOAMErrUAMNotFound –29364 The requested user
authentication module does
not exist.

kOAMErrAdminDisabled –29365 Administrative privileges
for the user object used to
authenticate this session
have been disabled.

kOAMErrAuthenticationAdminError -29366 Administrator
authentication failed.

kOAMErrPasswordNeedsChange –29370 Authentication was
successful, but the
password of the user object
used to authenticate this
session must be changed
before it can be used again.

kOAMErrPasswordExpired –29371 Authentication failed. The
user’s password has
expired.

kOAMErrPasswordMinimumLen –29372 Authentication succeeded,
but the password is shorter
than the minimum allowed.

kOAMErrSamePassword –29373 The password specified in a
call to OAMChangeObjectKey
is the same as the current
password.

kOAMErrPasswordChangeDisabled –29374 The user object specified in
a call to OAMChangeObjectKey
is not allowed to change the
password attribute.

kOAMErrServerNotFound –29380 The specified agent was not
found on the network.
Result Codes 31

kOAMErrServerNotInstalled –29381 The AppleShare Registry
Agent is not installed on
this machine.

kOAMErrServerNotReady –29382 The agent is starting up.
Reissue the call after a short
delay.

kOAMErrNoMachineName –29383 The machine name is not
available to the local agent.

kOAMErrRequestTooLarge –29384 The call returned more than
the maximum amount of
allowable data. Adjust
parameters to return less
data.

kOAMErrNetworkError –29385 The connection to the
Registry has been lost
because of a network failure
or the termination of an
agent. Establish another
session when the network is
restored and the agent is
available.

kOAMErrSessionIDError –29386 The session ID is invalid.
kOAMErrMaximumSessions –29387 Your application tried to

open more sessions than it
specified when it called
OAMInitialize.

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
Client User Authentication
Modules 3
33

C H A P T E R 3

Client User Authentication Modules
Client user authentication modules (UAMs) are used by AppleTalk Filing
Protocol (AFP) clients to implement custom user authentication methods for
connecting to and authenticating with an AFP server.

Currently, a UAM is called when the following actions occur:

■ The user uses the Chooser to log on to an AFP server that supports the UAM
that the user has selected.

■ The user is already connected to an AFP server and is using the Chooser to
connect to another volume made available by that AFP server.

■ A program calls PBVolumeMount and specifies that a particular UAM is to be
used.

Client UAMs must implement a UAMCall routine that can be called by an AFP
client or by any other application that needs to authenticate a user. The UAMCall
routine must implement the following commands:

■ UAMOpen, to open a session with an AFP server

■ UAMLogin, to log on to an AFP server

■ UAMClose, to close a session with an AFP server

Client UAMs can optionally implement the following additional commands:

■ UAMPWDlog, to display a dialog box that allows the user to enter his or her
password

■ UAMVSDlog, to display a dialog box that allows the user to select the volumes
he or she wants to connect to

■ UAMChgPassDlg, to display a dialog box that allows the user to enter a new
password

■ UAMChgPass, to send a command to the server UAM to change the user’s
password

■ UAMGetInfoSize, to get the size of persistent authentication information

■ UAMGetInfo, to get the persistent authentication information for a connection
to a particular AFP server

IMPORTANT

The UAMCall routine is always called at system task time. ▲
34

C H A P T E R 3

Client User Authentication Modules
Client UAMs use callback routines to communicate with an AFP client. The
AFP client makes following callback routines available:

■ GetClientInfo, to obtain information about what the client, such as the
versions of AFP the client supports, Gestalt values, and the default user
name

■ OpenSession, to open a session with a server

■ SendMessage, to send a message to a server once a session has been opened
with that server

■ CloseSession, to close a session with a server

■ SetMic, to set the message integrity code key

■ EventProc, to handle events that the client UAM does not handle

UAM files reside in the AppleShare Folder inside the System Folder and have a
type code of 'uams'.

Setting bit 12 (gestaltAFPClientUAMv2) of the high word of the 'afps' Gestalt
response indicates that an AFP client supports the UAM interface described in
this chapter.

Constants and Data Types 3

UAMArgs Structure 3

The UAMArgs structure is the only parameter to the UAMCall function. The fields
of the UAMArgs structure define the command type and provide all of the
information necessary for UAMCall to complete the command successfully.

struct UAMArgs {
short command;
short sessionRefNum;
long result;
void *uamInfo;
long uamInfoSize;
ClientUAMCallbackRec *callbacks;
union {
Constants and Data Types 35

C H A P T E R 3

Client User Authentication Modules
struct UAMChgPassBlk chgPass;
struct UAMVSDlogBlk vsDlog;
struct UAMAuthBlk auth;
struct UAMPWDlogBlk pwDlg;
struct UAMOpenBlk open;

};
};

Field descriptions
command On input, the UAM command code, which must be one of

the following values:
enum {
 kUAMOpen = 0,
 kUAMPWDlog,
 kUAMLogin,
 kUAMVSDlog,
 kUAMChgPassDlg,
 kUAMChgPass,
 kUAMGetInfoSize,
 kUAMGetInfo,
 kUAMClose,
 kUAMPrOpen,
 kUAMPrAuthDlog,
 kUAMPrAuth
};

sessionRefNum An AFP session reference number. If an AFP session is not
already in progress, an AFP session reference number is
returned by the client UAM during the UAMLogin call. If an
AFP session is in progress, the AFP session reference
number is passed during the UAMOpen call and all
subsequent calls for a particular session.

result On output, an OSStatus reflecting the result of calling
UAMCall with a particular UAM command code. Typical
values are noErr, userCancelledError, afpUserNotAuthErr,
afpPwdTooShortErr, afpPwdExpiredErr, and
afpPwdNeedsChangeErr.

uamInfo On input, a pointer to the buffer (allocated by the AFP
client in the system heap) in which the GetUAMInfo call
(page 3-48) is to store persistent authentication information.
When logging in via the Chooser, the uamInfo field is nil
36 Constants and Data Types

C H A P T E R 3

Client User Authentication Modules
until the AFP client calls UAMCall with a command of
GetUAMInfo. All other UAM commands should treat this
field as a read-only field. The AFP client is responsible for
disposing of the buffer pointed to by uamInfo.

uamInfoSize On input, the size in bytes of uamInfo. On output, UAMCall
sets uamInfoSize to reflect the current size of uamInfo.

callbacks On input, a pointer to the ClientUAMCallbackRec structure
(page 3-37) for this session.

union If the value of command is kUAMChgPass or kUAMChgPassDlg, on
input,union is a UAMChgPassBlck structure (page 3-38).
If the value of command is kUAMVSDlog, on input,union is a
UAMVSDlogBlk structure (page 3-38).
If the value of command is kUAMLogin, on input.union is a
UAMAuthBlk structure (page 3-39).
If the value of command is kUAMPWDlog, on input,union is a
UAMPWDlogBlk structure (page 3-39).
If the value of command is kUAMOpen, on input,union is a
UAMOpenBlk structure (page 3-40).

ClientUAMCallbackRec Structure 3

The ClientUAMCallbackRec structure is a field in the UAMArgs structure used to
store pointers to callback routines. UAMs written for PowerPC-based
Macintosh computers must use the CallUniversalProc routine to call the UAM
callback routines; UAMs written for 68K -based Macintosh computers jump to
the callback routines as if they were function pointers.

struct ClientUAMCallbackRec {
UniversalProcPtr OpenSessionUPP;
UniversalProcPtr SendRequestUPP;
UniversalProcPtr CloseSessionUPP;
UniversalProcPtr GetClientInfoUPP;
UniversalProcPtr SetMicUPP;
UniversalProcPtr EventProcUPP;

};
Constants and Data Types 37

C H A P T E R 3

Client User Authentication Modules
Field descriptions
OpenSessionUPP A pointer to an AFP client’s OpenSession callback routine

(page 3-50).
SendRequestUPP A pointer to an AFP client’s SendRequest callback routine

(page 3-51).
CloseSessionUPP A pointer to an AFP client’s CloseSession callback routine

(page 3-51).
GetClientInfoUPP A pointer to an AFP client’s GetClientInfo call back routine

(page 3-49).
SetMicUPP A pointer to an AFP client’s SetMic callback routine

(page 3-52).
EventProcUpp A pointer to an AFP client’s EventProc callback routine

(page 3-52).

UAMChgPassBlk Structure 3

The UAMChgPassBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMChgPass or kUAMChgPassDlg.

struct UAMChgPassBlk {
StringPtr userName;
StringPtr oldPass;
StringPtr newPass;

};

Field descriptions
userName On input, a pointer to a string that contains the user name.
oldPass On input, a pointer to a string that contains the password

being changed.
newPass On input, a pointer to a string that contains the new

password.

UAMVSDlogBlk Structure 3

The UAMVSDlogBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMVSDlog.
38 Constants and Data Types

C H A P T E R 3

Client User Authentication Modules
struct UAMVSDlogBlk {
short numVolumes;
VolListElem *volumes;

};

Field descriptions
numVolumes On input, the number of volumes in volumes.
volumes On input, a VolListElem structure (page 3-42) that lists the

volumes the server makes available for mounting.

UAMAuthBlk Structure 3

The UAMAuthBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMLogin.

struct UAMAuthBlk {
StringPtr userName;
UInt8 * password;
OTAddress *srvrAddress;

};

Field descriptions
userName On input, a pointer to a 64-byte Pascal string that contains

the name of the user who is to be authenticated.
password On input, a pointer to a 64-byte value that contains the

user’s password.
OTAddress On input, a pointer to an OTAddress that contains the

address of the server.

UAMPWDlogBlk Structure 3

The UAMPWDlogBlk structure is passed as a field in a UAMArgs structure when the
value of UAMArgs.command is kUAMPWDlog.

struct UAMPWDlogBlk{
StringPtr userName;
UInt8 * password;

};
Constants and Data Types 39

C H A P T E R 3

Client User Authentication Modules
Field descriptions
userName A pointer to a 64-byte Pascal string that contains the name

of the user who is to be authenticated.
password A pointer to a 64-byte vale that contains the password.

UAMOpenBlk Structure 3

The UAMOpenBlk structure is passed as a parameter to UAMCall when UAMCall is
called with a command code of UAMOpen.

struct UAMOpenBlk {
StringPtr objectName;
StringPtr zoneName;
OTAddress *srvrAddress;
SrvrInfoBuffer *srvrInfo;

};

Field descriptions
objectName On input, the name of the server that is to be opened.
zoneName On input, the name of the zone in which the server, or nil if

there is no zone.
srvrAddress On input, the Open Transport address of the server.
srvrInfo On input, information returned by calling GetStatus.

ClientInfo Structure 3

The ClientInfo structure is used to return information about the AFP client to
the UAM.

struct ClientInfo {
short fInfoType;
StringPtr fDefaultUserName;

};
40 Constants and Data Types

C H A P T E R 3

Client User Authentication Modules
Field descriptions
fInfoType On input, the type of client information. The value of

fInfoType must be one of the following values:
enum {
 kAFPClientInfo = 0, // Information about the client
of
 // an AFP server
 kPrClientInfo = 1 // Reserved.
};

fDefaultUserName On input, a pointer to a string that contains the default user
name.

AFPClientInfo Structure 3

The AFPClientInfo structure is used to return information about the version of
AFP that an AFP client supports.

struct AFPClientInfo {
short fInfoType;
StringPtr fDefaultUserName;
short fConfigFlags;
short fVersion;
short fNumAFPVersions;
char **fAFPVersionStrs;

};

Field descriptions
fInfoType On input, the type of client information. For an

AFPClientInfo structure, the value of fInfoType must be
kAFPClientInfo.

fDefaultUserName On input, a pointer to a string that contains the default user
name.

fConfigFlags On input, the high 16 bits of the 'afps' Gestalt response.
fVersion On input, the low 16 bits of the 'afps' Gestalt response.
fNumAFPVersions On input, the number of AFP versions that this client

supports.
fAFPVersionStrs On input, a handle to an array of strings, each of which

describes a version of AFP that this client supports.
Constants and Data Types 41

C H A P T E R 3

Client User Authentication Modules
VolListElem Structure 3

The VolListElem structure is used in the UAMVSDlogBlk structure (page 3-42) to
store status information about volumes.

struct VolListElem {
byte flags;
Str32 volName;

};

Field descriptions
flags A bit field (obtained by calling GetSrvrParms) whose values

are interpreted by the following enumeration:

enum {
kMountFlag = 0, // On output, the UAM sets this bit to

// indicate that this volume is to be mounted
kAlreadyMounted = 1, // On input, a bit telling the UAM that this

// volume is currently mounted
kHasVolPw = 7 // On input, a bit telling the UAM that the

// volume has a volume password
};

volName The name of a volume.

UAMMessage Structure 3

The UAMMessage structure is used by the client UAM to pass information back to
the AFP client when the client UAM calls the AFP client’s OpenRequest and
SendRequest callback routines. A UAMMessage structure is also passed as a
parameter to the client UAM’s completion routine.

struct UAMMessage {
short commandCode;
short sessionRefNum;
unsigned char *cmdBuffer;
unsigned long cmdBufferSize;
unsigned char *replyBuffer;
unsigned long replyBufferSize;
CompletionPtr *completion;
42 Constants and Data Types

C H A P T E R 3

Client User Authentication Modules
void *contextPtr;
};
typedef struct UAMMessage UAMMessage, *UAMMessagePtr;

Field descriptions
commandCode A command code. The value of commandCode must be one of

the following:
enum {
 kOpenSession = 'UAOS'
 kSendRequest = 'UASR'
};

sessionRefNum The session reference number for this session, returned
when the value of commandCode is kOpenSession and passed
back in subsequent messages sent via the OpenSession
callback.

cmdBuffer A pointer to a buffer containing an AFP command, such as
afpLogin or afpContLogin, and the command parameters for
that command. For a complete list of AFP commands, see
Inside Macintosh: Networking.

cmdBufferSize The length of the command in cmdBuffer.
replyBuffer A pointer to a buffer that is used to return a reply.
replyBufferSize The length of the reply in replyBuffer.
completion A pointer to a completion routine.
contextPtr A pointer to a value that identifies this session. If

contextPtr is not nil, it is passed to a completion routine
when completion routine is called.

Client UAM Routines 3

UAMCall Routine 3

Send a command to a server UAM.

pascal OSErr UAMCall(UAMArgs *);
Client UAM Routines 43

C H A P T E R 3

Client User Authentication Modules
UAMArgs A UAMArgs structure whose fields define the command type and
provide the information required to complete the call
successfully.

If a fatal error occurs for which a client UAM puts up a dialog box, the client
UAM should return userCancelledErr to back out of the UAM call.

DISCUSSION

If you are implementing a client UAM, you must implement a UAMCall routine.
The AFP client must call UAMCall from it’s main event loop so the client UAM
can make A5-dependent calls, such as calls to QuickDraw and the Resource
Manager.

 shows the typical sequence of commands for three scenarios:

As noted in , some client UAM commands are optional. The value returned to
the AFP client by your UAM’s UAMOpen entry point indicates the optional
commands that your UAM supports and determines whether the AFP client
will call any optional commands supported by your UAM. The mechanism for

Table 3-1 Typcial client UAM command sequence

Chooser login Chooser already connected Alias resolution1

1. UAMOpen 1. UAMOpen 1. UAMOpen

1a. UAMPWDlog2 1a. UAMChgPassDlg2 1a. UAMPWDlog2

2. UAMLogin 1b. UAMChgPass2 2. UAMLogin

2a. UAMChgPassDlg2 1c. UAMVSDlog2 2a. UAMChgPassDlg2

2b. UAMChgPass2 1d. UAMGetInfoSize2 2b. UAMChgPass2

2c. UAMVSDlog2 1e. UAMGetInfo2 2c. UAMGetInfoSize2

2d. UAMGetInfoSize2 2. UAMClose 2d. UAMGetInfo2

2e. UAMGetInfo2 3. UAMClose

3. UAMClose
1This sequence is typical of any program that calls PBVolumeMount specifying the protocol name of the

UAM as a parameter.
2Optional commands.
44 Client UAM Routines

C H A P T E R 3

Client User Authentication Modules
indicating support for optional commands is described in the section
“UAMOpen Command” (page 45).

UAMOpen Command 3

Your UAM’s UAMCall routine is called with a command of UAMOpen after the
AppleShare client loads the clietn UAM’s code resource. The object name, object
zone (if available), Open Transport address, and the server information are
passed in. If the connection is already established the sessionRefNum field is
filled in; otherwise the value of the sessionRefNum field is 0.

Your UAM must return a 32-bit value named configInfo, which the AFP client
interprets as an OSStatus if its value is less than zero. Otherwise, set the bits in
configInfo as described in Table 3-2 to indicate the UAM commands that your
UAM supports.

Note
If your UAM does not return information in the UAMInfo
field of the UAMArgs structure, the UAMInfo pointer is nil and
the AFP client cannot call your UAMCall routine with a
command of UAMGetInfo or UAMGetInfoSize, ◆

Table 3-2 Bit values of configInfo

Bit Meaning

0 Your UAM provides its own password dialog box

1 Your UAM provides its own volume selection dialog box.

2 Your UAM supports change password

3 Your UAM provides its own change password dialog box

4 Your UAM returns information in the UAMInfo field of the UAMArgs
structure. Please see the note that follows.

5 to 31 Reserved and must be set to zero.
Client UAM Routines 45

C H A P T E R 3

Client User Authentication Modules
UAMPWDlog Command 3

When your UAM’s UAMCall routine is called with a command of UAMPWDlog, you
should display the standard password dialog box for obtaining the user’s name
and password. A UAMPWDlogBlk structure is used to store the user’s name and
password.

If you already have enough information to authenticate the user, you don’t
need to display the dialog box.

Note
Your UAM’s UAMCall routine is called with a command
of UAMPWDlog only if bit 0 is set in the configInfo value
returned by previously calling UAMCall with a command
of UAMOpen. ◆

UAMLogin Command 3

Your UAM’s UAMCall routine is called with a command of UAMLogin to connect to
the server. The values of the userName and password fields of the UAMAuthBlk
structure are the same as the userName and password fields of the UAMPWDlogBlk
structure.

Note
Before your UAM’s UAMLogin routine returns, it must store
the session reference number for the session in the
sessionRefNum field of the UAMArgs structure. ◆

UAMChgPassDlg Command 3

Your UAM’s UAMCall routine is called with a command of UAMChgPassDlg when
the user clicks the Change Password button in the standard password dialog
box or in the “Already connected” dialog box.

Note
Your UAM’s UAMCall routine is called with a command of
UAMChgPassDlg only if bit 3 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

If you implement UAMChgPassDlg, you should also implement UAMChgPass.
46 Client UAM Routines

C H A P T E R 3

Client User Authentication Modules
UAMChgPass Command 3

Your UAM’s UAMCall routine is called with a command of UAMChgPass after
calling UAMCall with a command of UAMChgPassDlg to change the password.

Note
Your UAM’s UAMCall routine is called with a command
of UAMChgPass only if bit 2 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

UAMVSDlog Command 3

Your UAM’s UAMCall routine is called with a command of UAMVSDlog to display
the volume selection list. The list does not contain volumes that are already
mounted from this server. The bits in the volume flags byte are set from the
GetSrvrParms reply. To specify that a volume should be mounted, the kMountFlag
bit in the volume flags must be set.

Note
Your UAM’s UAMCall routine is called with a command
of UAMVSDlog only if bit 1 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

Under certain circumstances, the UAMVSDlog is not used, such as when
Navigation Services builds a volume list. Do not depend on UAMVSDlog being
used for every volume mount.

UAMGetInfoSize Command 3

After a successful call to UAMCall with a command of UAMLogin, your UAM’s
UAMCall routine is called with a command of UAMGetInfoSize to obtain the size of
the persisitent authentication information for this session.

Your implementation of the UAMGetInfoSize command should store the size in
bytes of the persisent authentication information in the uamInfoSize field of the
UAMArgs structure.
Client UAM Routines 47

C H A P T E R 3

Client User Authentication Modules
Note
Your UAM’s UAMCall routine is called with a command of
UAMGetInfoSize only if bit 4 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

UAMGetInfo Command 3

Your UAM’s UAMCall routine is called with a command of UAMGetInfo to get
persistent authentication information.

Note
Your UAM’s UAMCall routine is called with a command of
UAMGetInfo only if bit 4 is set in the configInfo value
returned by previously calling UAMCall with a command of
UAMOpen. ◆

Before the AFP client calls UAMCall with a command of UAMGetInfo, it calls
UAMCall with a command of UAMGetInfoSize to get the size of the persistent
authentication information. Then the AFP client allocates a buffer of the
appropriate size in the system heap and sets UAMArgs.uamInfo to point to it.

Your implementation of the UAMGetInfo command should copy the persistent
authentication information into the buffer pointed to by UAMArgs.uamInfo. The
UAM info is part of the VolMountInfoBlk returned by the GetVolMountInfo call
and passed as a parameter to the PBMountVol call.

When the client UAM is called by code that implements the PBVolumeMount call,
UAMArgs.uamInfo points to the UAMInfo field in the VolMountInfoBlock (if that
field is present).

In the case of the PBVolumeMount call or when the AFP client already has a
connection to the server, UAMArgs.uamInfo points to a buffer that is of the size
returned by GetVolInfoSize.

Note
Your implementation of the UAMGetInfo command should
only copy persistent authentication information—it should
not copy volume information. ◆

The persistent authentication information returned by the client UAM is
read-only and should not be changed. Its persists until the AFP client calls the
client UAM’s UAMClose command.
48 Client UAM Routines

C H A P T E R 3

Client User Authentication Modules
The AFP client is responsible for disposing of the buffer that it allocated for
storing persistent authentication information.

UAMClose Command 3

Your UAM’s UAMCall routine is called with a command of UAMClose to close the
UAM. Your UAM should deallocate any memory that it has allocated and
unload any shared libraries that it may have loaded.

Callback Routines 3

Client UAMs use callback routines to communicate with an AFP client. The
AppleShare Client 3.7 makes available the callback routines described in this
section.

EventProc Callback 3

Passes an event record to an AFP client.

(void EventCallbackPtr) (EventRecord *theEvent);

DISCUSSION

The EventProc callback routine passes an event record to the AFP client. The
client UAM should call the EventProc callback whenever it receives an event
record for an event that does not belong to the client UAM.

GetClientInfo Callback 3

Returns information about an AFP client.

pascal ClientInfo *GetClientInfo(short infoType);

infoType A value the defines the type of information that is being
requested. The value of infoType must be one of the following:
Callback Routines 49

C H A P T E R 3

Client User Authentication Modules
enum {
 kAFPClientInfo = 0, // Information about the client of
 // an AFP server
 kPrClientInfo = 1 // Reserved
};

DISCUSSION

The GetClientInfo callback routine returns information about an AFP client,
such as the versions of AFP that it supports, Gestalt values, and the default user
name. If the AFP client does not support the UAMInfo type, GetClientInfo
returns nil.

OpenSession Callback 3

Opens a session at the specified address.

pascal OSStatus OpenSession(OTAddress *,
const char* endpointString,
UAMMessagePtr message);

OTAddress Address of the server.

endpointString
The endpoint string for the connection. To specify the default
endpoint string, set endpointString to nil. The endpoint string
provides a way to specify streams configuration information on
a per-connection basis. It is only used for TCP/IP connections
and is ignored for AppleTalk connections.

message Pointer to a UAMMessage structure (page 3-42).

DISCUSSION

The OpenSession callback routine opens a session at the address specified by
OTAddress. The value of the commandCode field in the UAMMessage structure must
be kOpenRequest. The session reference number for the opened session is
returned in the sessionRefNum the UAMMessage structure.
50 Callback Routines

C H A P T E R 3

Client User Authentication Modules
For sessions over AppleTalk, the size of cmdBuffer is limited to kMaxAFPCommand
(576 bytes), cmdBuffer must be afplogin , and the endpointString parameter is
ignored.

For synchronous operation, set the completion and contextPtr fields of the
UAMMessage structure to nil. For asynchronous operation, set the completion
field of the UAMMessage structure to point to your completion routine and set the
contextPtr field to a value that identifies this request.

SendRequest Callback 3

Sends a message to a server.

pascal OSStatus SendRequest(UAMMessagePtr message);

message Pointer to a UAMMessage structure (page 3-42).

DISCUSSION

The SendRequest callback routine sends a command to the server. The value of
UAMMessage.commandCode must be kSendRequest.

For AFP connections, the size of cmdBuffer is limited to kMaxAFPCommand (576
bytes) and cmdBuffer must contain an AFP command.

For synchronous operation, set UAMMessage.completion and
UAMMessage.contextPtr to nil. For asynchronous operation, set
UAMMessage.completion to point to your completion routine and set
UAMMessage.contextPtr to a value that identifies this request.

The value of UAMMessage.sessionRefNum is the session reference number
returned by previously calling the AFP client’s OpenSession callback routine.

CloseSession Callback 3

Closes a session with an AFP server.

pascal OSStatus CloseSession(short sessRefNum);

sessRefNum Identifies the session that is to be closed.
Callback Routines 51

C H A P T E R 3

Client User Authentication Modules
DISCUSSION

The CloseSession callback routine closes a session with an AFP server.

SetMic Callback 3

Sets the message integrity code key.

pascal OSStatus SetMic(short sizeInBytes,
Ptr micValue);

sizeInBytes The size of micValue.

micValue The message integrity code key.

DISCUSSION

If the connection supports using keyed HMAC-SHA1 for message integrity, the
client UAM can pass a key to the network layer using this call.

Note
This callback is still in development.

Completion Routine 3

This completion routine is called at interrupt time with the contextPtr passed in
to the OpenSession and SendRequest calls, when one of these calls completes. The
result parameter contains the AFP result. You cannot call any of the callback
routines from this completion routine, so you can’t do chained completion
routines.

typedef pascal void (*CompletionPtr)(
UAMMessagePtr message,
void* contextPtr,
OSStatus result);

CompletionPtr A pointer to the completion routine.

message A pointer to a UAMMessage structure.
52 Completion Routine

C H A P T E R 3

Client User Authentication Modules
contextPtr A value returned by the previous execution of the AFP client’s
OpenSession or SendRequest callback routine.

result An AFP result code indicating the status of the completion
routine. See the AppleTalk Filing Protocol document in the
AppleShare IP 6.1 Developer’s Kit for the list of result codes.

Resources 3

For system software versions 7 and 8, a client UAM is a safe fat code resource
that allows for 68k and PowerPC UAM implementations.

The 'uamg' Resource 3

All UAM files have a 'uamg' resource whose ID is 0. The 'uamg' resource is the
UAM Info resource and it contains the following information:

type 'uamg'
{

integer VersionNumber;
integer UAMClass;
integer PasswordLength;
byte PassDlogFlag;
byte VolDlogFlag;
byte UAMType;
byte UReserved;

};

Field descriptions
VersionNumber Denotes the version of the UAM API that this UAM

conforms to. For version 2.0 of the AFP client UAM
interface, VersionNumber must be 2.

UAMClass Denotes the class of the UAM. The value of UAMClass must
be one of the following values:
0 indicates that this UAM uses Apple Computer’s current
UAM support, which consists of no user authentication,
cleartext password, random number exchange, and
Resources 53

C H A P T E R 3

Client User Authentication Modules
two-way random number exchange. They cannot be
replaced.
1 indicates that this class supports cleartext passwords
longer than 8 characters. If you use this class, you don’t
need a 'uamc' resource because support for this class is
built into the client—you only need to implement a
server-side UAM.
2 indicates that this class supports encrypted passwords
longer than 8 characters. If you use this class, you don’t
need a 'uamc' resource because support for this class is
built into the client—you only need to implement a
server-side UAM.
3 indicates that this UAM uses a UAM-defined
authentication method. Use this class if you want to
provide your own user interface and write code that
handles the login sequence. Code that implements class 3
UAMs is stored as packed 'uamc' ID 0 resource.

PasswordLength Specifies the maximum password length that the UAM
supports. The value of PasswordLength can be from 0 to 64.

PassDlogFlag Obsolete. Replaced by the configInfo flags returned by
UAMOpen (page 3-45).

VolDlogFlag Obsolete. Replaced by the configInfo flags returned by
UAMOpen (page 3-45).

UAMType A user-defined ID in the range of 128 to 255. It is returned
by the GetVolParams call as well as other calls. The AFP
client does not depend on the value of UAMType to identify a
particular UAM; instead, the AFP client uses a UAM’s
protocol name, as described in “The 'uamn' Resource”
(page 55), to distinguish one UAM from another.

UReserved Reserved. The value of UReserved is always zero.

The 'uamc' Resource 3

Class 3 UAMs store the code that implements their user interface and logon
handling sequence in a packed 'uamc' resource whose ID is 0.
54 Resources

C H A P T E R 3

Client User Authentication Modules
The 'uamn' Resource 3

The 'uamn' resource is used to store strings.

type 'uamn' as 'STR '; // UAM string resources
resource 'uamn' (0, "UAM name") // Name shown in UAM select dialog
{

"Type 2 Class 3 UAM"
};

resource 'uamn' (1, "AFP UAM name") // Protocol name of UAM
{

"Cleartxt Passwrd"
};

resource 'uamn' (2, "UAM Description string") // Description shown in
// password dialog

{
"(Sample UAM)"

};

Sample UAM Client 3

The sample code shown in Listing 3-1 opens a session with an AFP server and
logs the user on.

Listing 3-1 Sample client UAM

#include <Types.h>
#include "ClientUAM.h"
#include <String.h>
#include <Resources.h>
#include <A4Stuff.h>
#include "SampleUAM.h"
#include "AFPPackets.h"
Sample UAM Client 55

C H A P T E R 3

Client User Authentication Modules
enum {
kSampleCfg = (1 << kUseVolDlog),// The value returned by UAMOpen

};

Boolean FindStringInBuf(StringPtr,Ptr,UInt32);
long SampleOpen(UAMArgs *theArgs);
OSStatusSampleLogin(UAMArgs *theArgs);

unsigned char commandBuffer[200];
unsigned char replyBuffer[512];
StringPtr gAFPVersion;

StringPtr FigureAFPVersion(AFPSrvrInfo *,ClientUAMCallbackRec *theCallbacks);

pascal OSErr main(UAMArgs *theArgs)
{

EnterCodeResource();
OSErr error;
switch(theArgs->command)
{

case UAMOpen:
error = SampleOpen(theArgs);
break;

case kUAMPWDlog:
error = kNotForUs;
break;

case kUAMLogin:
error = SampleLogin(theArgs);
break;

case kUAMVSDlog:
DebugStr("\pPut up a Volume Select dialog");
error = noErr;
break;

case kUAMChgPassDlg:
error = kNotForUs;
break;
56 Sample UAM Client

C H A P T E R 3

Client User Authentication Modules
case kUAMChgPass:
error = kNotForUs;
break;

case kUAMGetInfoSize:
error = kNotForUs;
break;

case kUAMGetInfo:
error = kNotForUs;
break;

case kUAMClose:
error = NoErr;
break;

default:
error = kNotForUs;
break;

}

ExitCodeResource();
return error;

}

longSampleOpen(UAMArgs *theArgs)
{

gAFPVersion = FigureAFPVersion(theArgs->Opt.open.srvrInfo,theArgs->callbacks);
theArgs->result = kSampleCfg;
return noErr;

}

OSStatus SampleLogin(UAMArgs *theArgs){
OSStatus theError = kUAMError
Ptr cmd;
unsigned long cmdSize;
Handle theUAMName;
UAMMessag message;
StringPtr user = theArgs->Opt.auth.userName;
StringPtr password = theArgs->Opt.auth.password;
Sample UAM Client 57

C H A P T E R 3

Client User Authentication Modules
if(!gAFPVersion){
// Put up an alert and return userCanceled error
DebugStr("\pno AFP version");
return userCanceledErr;

}

if(theArgs->callbacks)
{

commandBuffer[0] = kFPLogin;
cmd = (Ptr) &commandBuffer[1];
memcpy(cmd,(const char *)&gAFPVersion[0],gAFPVersion[0]+1);
cmd += gAFPVersion[0] + 1;

// Get the UAMString from the resource
theUAMName = Get1Resource(kUAMStr,kUAMProtoName);
if(!theUAMName)

return ResError();// Depends on ResLoad being TRUE

// Put the UAMString into the command buffer
HLock(theUAMName);
memcpy(cmd,(const char *)&((*theUAMName)[0]),(*theUAMName)[0]+1);
cmd += (*theUAMName)[0]+1;
HUnlock(theUAMName);
ReleaseResource(theUAMName);

// Copy in the username
memcpy(cmd,(const char *)&user[0],user[0]+1);
cmd += user[0]+1;

// Test for an odd boundary
if(((UInt32)cmd - (UInt32)commandBuffer) & 0x01)
{

*cmd++ = 0x00;// If an odd boundary, put in some padding
}

// Copy in the password (a maximum of 8 bytes)
memcpy(cmd,(const char *)&password[0],8);
cmd += 8;

// Get the size of the command buffer
cmdSize = (unsigned long)((unsigned long)cmd - (unsigned long)commandBuffer);
58 Sample UAM Client

C H A P T E R 3

Client User Authentication Modules
message.commandCode = kOpenSession;
message.cmdBuffer = commandBuffer;
message.cmdBufferSize = cmdSize;
message.replyBuffer = nil;
message.replyBufferSize = 0;
message.completion = nil;
message.contextPtr = nil;

//Make the login call.);

theError =
theArgs->callbacks->OpenSessionUPP(theArgs->Opt.auth.srvrAddress,nil,&message);
if(!theError){

theArgs->sessionRefNum = message.sessionRefNum;
}
theError = message.result;

}
return theError;

}

StringPtr FigureAFPVersion(AFPSrvrInfo *info,ClientUAMCallbackRec *callbacks);
{

struct AFPClientInfo *theClientInfo = nil;
short index;
Ptr versBuf;
UInt32 versBufsize;
GetClientInfoPtr *fcn;

callbacks->GetClientInfoUPP(kAFPClientInfo,(ClientInfo **)&theClientInfo);

if(theClientInfo){
// Go through the list of supported AFP versions and try to find them
// in the SrvrInfoBuffer. The first match is accepted,

versBuf = (Ptr)((UInt32)info + info->fVerCountOffset+1);
versBufsize = kMaxAFPCommand - info->fVerCountOffset;// The largest size

for(index = 0; index < theClientInfo->fNumAFPVersions; index++){
if(FindStringInBuf

(theClientInfo->fAFPVersionStrs[index],versBuf,versBufsize)){
Sample UAM Client 59

C H A P T E R 3

Client User Authentication Modules
return theClientInfo->fAFPVersionStrs[index];
}

}
}
return nil;

}

Boolean FindStringInBuf(StringPtr string, Ptr buf, UInt32 bufSize)
{

Ptr end = buf + bufSize;
Byte len = string[0] + 1;
short index;

while((buf < end) && (*buf++ != string[0])) ; // Scan for the proper length.

if(!(buf < end)){
return false;

}
for(index = 1; (index < len) && (buf > end); index++){

if(*buf++ != string[index])
return false;

}

if(!(buf < end)){
return false;

}
return true;

}

60 Sample UAM Client

Index
A

actions for invoking UAM 34
AFPClientInfo structure 41
attributes

obtaining 20, 22
setting 23, 24

C

callback routines
CloseSession 51–52
EventProc 49
GetClientInfo 49–50
OpenSession 50–51
SendRequest 51
SetMic 52

changing UIDs 19
ClientInfo structure 40–41
ClientUAMCallbackRec structure 37–38
CloseSession callback 51, 52
commands
UAMChgDlog 34
UAMChgPass 34, 47
UAMChgPassDlg 46
UAMClose 34, 49
UAMGetInfo 34, 48–49
UAMGetInfoSize 47–48
UAMLogin 34, 46
UAMOpen 34, 45
UAMPWDlog 34, 46
UAMVSDlog 34, 47

completion routine 52–53
creating objects 20
creator codes 18

E

EventProc callback 49

F

functions
UAMChangeUID 19
UAMCreateObject 20
UAMGetAttribute 20
UAMGetAttributeID 22
UAMGetThreadID 23
UAMSetAttribute 23
UAMSetAttributeID 24
UAMSleep 25
UAMWakeup 25

G

GetClientInfo callback 35, 49, 50

I

_Initialize routine 18, 26

O

objects, creating 20
obtaining

attributes 20, 22
thread IDs 23

OpenSession callback 35, 50, 51
61

I N D E X
P

PBVolumeMount call 34

R

resources
'uamc' 54
'uamg' 53–54
'uamn' 55

result codes 29–32
routines

completion 52–53
_Initialize 26
_Terminate 27
UAMAuthenticate 18, 27
UAMCall 43–45
UAMInitialize 28–29

S

sample code 55–60
SendRequest callback 51
SetMic callback 52
setting attributes 23, 24
sleeping 25
structures
AFPClientInfo 41
ClientInfo 40–41
ClientUAMCallbackRec 37–38
UAMArgs 35–37
UAMAuthBlk 39
UAMChgPassBlk 38
UAMMessage 42–43
UAMOpenBlk 40
UAMPWDlogBlk 39–40
UAMVSDlogBlk 38–39
VolListElem 42

symbols, exported 18

T

_Terminate routine 18, 27
threads

IDs, obtaining 23
waking up 25

time, yielding 25
type codes 18

U

UAMArgs structure 35–37
UAMAuthBlk structure 39
UAMAuthenticate routine 27
UAMAuthenticateroutine 18
UAMCallroutine 43–45
UAMChangeUID function 19
UAMChgDlog command 34
UAMChgPassBlk structure 38
UAMChgPass command 34, 47
UAMChgPassDlg command 46
UAMClose command 34, 49
UAMCreateObject function 20
'uamc' resource 54
UAMGetAttribute function 20
UAMGetAttributeID function 22
UAMGetInfo command 34, 48–49
UAMGetInfoSize command 47–48
UAMGetThreadID function 23
'uamg' resource 53–54
UAMInitialize routine 18, 28–29
UAMLogin command 34, 46
UAMMessage structure 42–43
'uamn' resource 55
UAMOpenBlk structure 40
UAMOpen command 34, 45
UAMPWDlogBlk structure 39–40
UAMPWDlog command 34, 46
UAMs

invoking 34
optional commands 34
required commands 34

UAMSetAttribute function 23
62

I N D E X
UAMSetAttributeID function 24
UAMSleep function 25
UAMVSDlogBlk structure 38–39
UAMVSDlog command 34, 47
UAMWakeup function 25
UIDs, changing 19

V

VolListElem structure 42

W

waking up sleeping threads 25

Y

yielding time 25
63

	User Authentication Modules
	Contents
	About This Manual
	Conventions Used in This Manual
	For more information

	User Authentication Modules
	UAM Architecture

	Server User Authentication Modules
	Server UAM Functions
	UAMChangeUID
	UAMCreateObject
	UAMGetAttribute
	UAMGetAttributeID
	UAMGetThreadID
	UAMSetAttribute
	UAMSetAttributeID
	UAMSleep
	UAMWakeup

	Application-Defined Routines
	_Initialize Routine
	_Terminate Routine
	UAMAuthenticate Routine
	UAMInitialize Routine

	Result Codes

	Client User Authentication Modules
	Constants and Data Types
	UAMArgs Structure
	ClientUAMCallbackRec Structure
	UAMChgPassBlk Structure
	UAMVSDlogBlk Structure
	UAMAuthBlk Structure
	UAMPWDlogBlk Structure
	UAMOpenBlk Structure
	ClientInfo Structure
	AFPClientInfo Structure
	VolListElem Structure
	UAMMessage Structure

	Client UAM Routines
	UAMCall Routine
	UAMOpen Command
	UAMPWDlog Command
	UAMLogin Command
	UAMChgPassDlg Command
	UAMChgPass Command
	UAMVSDlog Command
	UAMGetInfoSize Command
	UAMGetInfo Command
	UAMClose Command

	Callback Routines
	EventProc Callback
	GetClientInfo Callback
	OpenSession Callback
	SendRequest Callback
	CloseSession Callback
	SetMic Callback

	Completion Routine
	Resources
	The 'uamg' Resource
	The 'uamc' Resource
	The 'uamn' Resource

	Sample UAM Client

	Index

