
i

Inside the Macintosh®

Communications Toolbox

ii Contents

 APPLE COMPUTER, INC.

Copyright © 1991 by Apple
Computer, Inc.

All rights reserved. No part of this
publication may be reproduced,
stored in a retrieval system, or
transmitted, in any form or by
any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer,
Inc. Printed in the United States
of America.

© Apple Computer, Inc., 1991
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408)996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
HyperCard, LaserWriter, Macintosh,
MacTerminal, and MultiFinder are
registered trademarks of Apple
Computer, Inc.

Apple Desktop Bus, QuickDraw,
and SuperDrive are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript
are registered trademarks of
Adobe Systems, Inc.

DEC, VAX, VT52, VT100, VT101,
VT102, VT220, VT300, and VT320
are trademarks of Digital
Equipment Corp.

ITC Garamond and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corp.

Linotronic is a registered
trademark of Linotype Co.

MacPaint is a registered trademark
of Claris Corp.

Microsoft is a registered
trademark of Microsoft Corp.

Teletype is a registered trademark of AT&T
Teletype Corp.

Varityper is a registered trademark of Varityper,
Inc.

ISBN 0-201-57775-5
1 2 3 4 5 6 7 8 9-MU-9594939291

Publications staff for Inside the
Macintosh Communications
Toolbox

Writer: Rob Berkowitz

Editors: Scott Smith, Becky Reece
Art Director: Tamara Whiteside

Production Editors:
Charlotte Clark, Ron Morton

Designer: Lisa Mirski

Manufacturing Supervisor:
Robin Kerns

iii

Contents

Figures and Tables / ix

Foreword / xi

Preface / xiii

1 About the Macintosh Communications Toolbox / 1

Communications Toolbox contents / 3
Understanding routines and tools / 4
System requirements and installation / 5

2 Programming with the Macintosh Communications Toolbox / 7

Menu events / 10
Handling menu choices / 10
Initiating a connection /11
Terminating the connection / 11
Starting to send a file / 12
Starting to receive a file / 13
Configuring a connection / 14
Configuring a terminal emulation / 14
Configuring a file transfer / 15
Making a new session document / 16
Closing the session document / 19

Other events / 20
Activate events / 20
Resume events / 20
Update events / 21
Keyboard events / 22
Mouse events / 23

Main program loop / 24

iv Contents

3 Connection Manager / 27

About the Connection Manager / 29
Connection channels: data, attention, and control / 30

The connection record / 31
Connection record data structure / 31

Connection Manager routines / 35
Preparing to open a connection / 36
Custom configuration of a connection tool / 43
Interfacing with a scripting language / 47
Opening, using, and closing the connection / 48
Reading and writing data / 56
Handling events / 61
Localizing configuration strings / 63
Miscellaneous routines / 64
Completion routines / 66
Quick reference / 67

4 Terminal Manager / 75

About the Terminal Manager / 77
The terminal emulation window / 78

The terminal emulation region / 79
The cache region / 79

The terminal record / 80
Terminal record data structure / 80

Terminal Manager routines / 87
Preparing for a terminal emulation / 88
Custom configuration of a terminal tool / 94
Interfacing with a scripting language / 98
Using terminal emulation routines / 99
Searching the terminal emulation buffer / 102
Manipulating selections / 104
Handling events / 105
Localizing configuration strings / 108
Miscellaneous routines / 109
Routines that must be in your application / 114

Sample routine for sending data / 115
Sample showing how to break a connection / 115
Sample showing how to cache lines / 116
Sample terminal-environment routine / 118

Quick reference / 119

Contents v

5 File Transfer Manager / 127

About the File Transfer Manager / 129
The file transfer record / 130

File transfer record data structure / 131
File Transfer Manager routines / 137
Preparing for a file transfer / 138
Custom configuration of a file transfer tool / 144
Interfacing with a scripting language / 148
Transferring files / 149
Handling events / 151
Localizing configuration strings / 153
Miscellaneous routines / 154
Routines your application provides / 156

Sample send routine / 157
Sample receive routine / 158
Sample connection-environment routine / 160

Quick reference / 161

6 Communications Resource Manager / 167

About the Communications Resource Manager / 169
Device management / 170
Resource management / 170

The communications resource record / 171
Communications resource record data structure / 171

Communications Resource Manager routines / 173
Resource management routines / 177
Resource-mapping routines / 180
Registering a device / 182

Data structures / 182
Searching for serial port devices / 184
Quick reference / 185

7 Macintosh Communications Toolbox Utilities / 189

Communications Toolbox utilities / 191
Manipulating dialog item lists (DITLs) / 198

Special ways to append items / 200
Showing AppleTalk entities: NULookup and NuPLookup / 202
Hook and filter procedures / 206
Quick reference / 211

vi Contents

8 Fundamentals of Writing Your Own Tools / 215

About writing a tool / 217
The six resources / 217

The bundle resource / 218
The validation code resource / 219
The setup definition code resource / 221
The scripting language interface code resource 226
The localization code resource / 229

Quick reference / 231

9 Writing Connection Tools / 233

Your connection tool’s main code resource / 235
Quick reference / 251

10 Writing Terminal Tools / 255

Your terminal tool’s main code resource / 257
Quick reference / 273

11 Writing File Transfer Tools / 277

Your file transfer tool’s main code resource / 279
Quick reference / 283

Appendix A Guidelines for Communications Tools / 285

Design goals / 286
Keeping your tool self-contained / 286
Keeping your tool task-specific / 286

User interface considerations / 287
Modeless tool operation / 288
The standard tool-settings dialog box / 288
Windows and status dialog boxes / 289
Error alerts / 290
Menus / 290
Handling errors / 290
Using the right words / 291

Compatibility requirements / 291
Keyboard considerations / 291

Contents vii

Appendix B Communications Tools Scripting Interfaces / 293

Six rules for configuration strings / 294
ADSP Tool scripting interface / 295
Apple Modem Tool scripting interface / 299
LAT Tool scripting interface / 301
Serial Tool and Serial NB Tool scripting interface / 302
Text Tool scripting interface / 303
TTY Tool scripting interface / 304
VT102 Tool scripting interface / 305
VT320 Tool scripting interface / 309
XMODEM Tool scripting interface / 313

Appendix C Useful Code Samples / 315

Using FTExec and TMIdle effectively / 316
Determining events for Communications Toolbox managers / 319
The custom tool-settings dialog box / 323

Choose.p / 323
Choose.r / 330

Determining whether the managers are installed / 332
Using the scripting interface / 333

Glossary / 337

Index / 339

viii Contents

ix

Figures and Tables

CHAPTER 1 About the Macintosh Communications Toolbox

Figure 1-1 Where the Macintosh Communications Toolbox fits in / 3
Figure 1-2 How Macintosh Communications Toolbox managers interact

with applications and tools / 5

CHAPTER 3 Connection Manager

Figure 3-1 Data flow into and out of the Connection Manager / 29
Figure 3-2 A sample tool-settings dialog box / 41

CHAPTER 4 Terminal Manager

Figure 4-1 Data flow into and out of the Terminal Manager / 77
Figure 4-2 A terminal emulation window / 78
Figure 4-3 Bounds of viewRect and termRect / 84
Figure 4-4 The text selection mode selTextNormal / 86
Figure 4-5 The text selection mode selTextBoxed / 86
Figure 4-6 A sample tool-settings dialog box / 92
Figure 4-7 Additional space in the terminal emulation region / 113
Table 4-1 TmAddsearch search-area delimiters / 102

CHAPTER 5 File Transfer Manager

Figure 5-1 Data flow into and out of the File Transfer Manager / 129
Figure 5-2 A sample tool-settings dialog box / 142

CHAPTER 6 Communications Resource Manager

Figure 6-1 Data flow into and out of the Communications Resource
Manager / 169

CHAPTER 7 Macintosh Communications Toolbox Utilities

Figure 7-1 Pop-up menu in its inactive and active states / 193
Figure 7-2 Pop-up menu control when system justification is

teJustRight / 196
Figure 7-3 Initial dialog box and to-be-appended items / 198
Figure 74 Dialog box after appended items are superimposed / 199
Figure 7-5 Dialog box after items are appended to the right / 199
Figure 7-6 Dialog box after items are appended to the bottom / 199

x Figures and Tables

Figure 7-7 Dialog box after items are appended relative to
item 2 / 200

Figure 7-8 Network look-up dialog box / 202
Table 7-1 TMAddSearch search-area delimiters / 205

CHAPTER 8 Fundamentals of Writing Your Own Tool

Table 8-1 Connection Manager messages and parameters / 232

CHAPTER 9 Writing Connection Tools

Table 9-1 Connection Manager messages and parameters / 253

CHAPTER 10 Writing Terminal Tools

Table 10-1 Terminal Manager messages and parameters / 275

CHAPTER 11 Writing File Transfer Tools

Table 11-1 File Transfer Manager messages and parameters / 284

APPENDIX A Guidelines for Communications Tools

Figure A-1 A sample tool-settings dialog box for a connection tool / 288
Figure A-2 Example file transfer tool status dialog box / 289

xi

Foreword

One thing I like most about being at Apple is the gifted people who make
innovation the norm. Also, it’s a rush to feel the energy people radiate when they
believe that what they do can make a difference in the world. The creators of the
Macintosh Communications Toolbox embody these ideas, which are manifest in a
product that lives up to the Apple standard.

Since you are reading the foreword to an operating system reference book,
you probably have more interest in the product than simply finding parameter and
field descriptions. So I’ll take this opportunity to tell you why the
Communications Toolbox was, is, and will continue to be a good idea.

Initially conceived as a better way to engineer MacTerminal 2.0—it enabled
MacTerminal to support new protocols without having to be revised—the
Communications Toolbox has evolved into an integral component of our system
software. By helping programmers incorporate communications features into their
applications, the Communications Toolbox provides a gateway to the ever-
expanding world of information.

Bill Stevens planted the seed that first sprouted in MacTerminal 2.0. Byron
Han and Tom Dowdy developed the extensibility concept with the notion of
communications tools. These are the guys who thought the Communications
Toolbox was a good idea.

Now, a lot more people agree that the Communications Toolbox is a good
idea. The system software folks think enough of the Communications Toolbox to
make it a part of system software version 7.0. As evidenced by the dozens of
currently shipping products that use the Communications Toolbox, a large and
growing number of developers also agree. Not only are traditional
communications applications (MacTerminal, for instance) supporting the
Communications Toolbox, but typically desktop-bound applications are as well.

As the Communications Toolbox takes root in the inventive minds of
Macintosh developers, expect to see new tools and enhancements based on
developer feedback. This is how we intend to ensure the Communications
Toolbox will continue to be a good idea. For instance, we’ve already announced
support for ISDN and we’re working on other interesting ideas.

Thanks and congratulations are appropriate here. Byron Han is, in many
ways, the person most responsible for the currently shipping Communications
Toolbox. Not only did Byron write abundant and fine code, he truly believed the
Communications Toolbox was, and is, a good idea. In the

xii Foreword

finest Apple tradition, he lobbied, cajoled, and ultimately convinced the right
Apple people. Other key members of the engineering team include Mary Chan,
who developed most of the Terminal Manager and tools; Jerry Godes, who worked
on all the tools in the Basic Connectivity Set; Alex Kazim, who crafted major
enhancements to the human interface of the managers and tools; and Carol Lee,
who produced the File Transfer Manager. While others contributed their time and
talents, these are the engineers who were with the project from the beginning
through the release of version 1.0. Paul Rekieta was the engineering manager,
handily piloting some stormy seas.

There is a lot more to a product like the Communications Toolbox than
design and coding, so I’d like to thank more stars for their commitment. Veronica
Dullaghan was the product manager who weathered the project from conception
to initial product ship. Rob Neville was the Quality group leader who balanced
high quality standards with the weighty issue of schedules. His team included Tom
Atwood, Glen Austin, Jeanne DeVoto, and Craig Hotchkiss. Mark Baumwell and
James Beninghaus were the DTS mainstays who supported developers. Steve
Richard and Dan Fitch provided project leadership. Rob Berkowitz provided
written illumination in a first-rate document that’s a key to the success of the
software.

Thanks again to these talented people, and to the other contributors I’ve
not mentioned, for an accomplishment of which they can be proud. To our
developers, I sincerely hope you find the Communications Toolbox a useful
addition to the Macintosh Operating System.

Buzz Dean

Director, Communications Products Development
Cupertino, California
May 1991

xiii

Preface

Inside the Macintosh Communications Toolbox provides definitive

information for application software developers, communications tools

developers, and hardware developers who want to use services provided

by the Macintosh® Communications Toolbox. For application software

developers, this document describes and shows how to use the four

Communications Toolbox managers and utilities that make it easier to

write communications software for the Apple® Macintosh computer.

For communications tools developers, this document shows how to

develop communications tools that can be used by the Communications

Toolbox managers. And for hardware developers, this document shows

what protocols to follow to register hardware—like internal modems or

serial cards—with the Communications Toolbox Communications

Resource Manager.

About this document

Chapter 1 contains an overview of the Communications Toolbox.
Chapter 2 presents a sample application that uses the Communications
Toolbox. The next five chapters discuss the Communications Toolbox
managers and utilities, describing the routines and data structures that
an application uses. Each of these chapters contains a table that lists the
routines in that chapter in the order in which they are described.
Chapters 3-11 conclude with “Quick References” that summarize the
contents of the chapter. Chapters 8-11 show how to create a tool to add
to the Communications Toolbox. While tool developers will be
interested in reading these chapters, application developers may have
little need to read them. Appendix A contains guidelines that
communications tool developers should read to ensure that the tools
they create are fully compatible with the Communications Toolbox.
Appendix B describes the scripting interface for communications tools.
Appendix C provides sample code solutions to common programming
problems.

xiv Inside the Macintosh Communications Toolbox

Inside the Macintosh Communications Toolbox is written for experienced
programmers. Readers should know how to program the Macintosh
and have some familiarity with communications or networking
applications. To use each manager requires specific programming
knowledge; suggestions on where to find more information are
included at the beginning of each chapter. In addition, the next section
lists resources for reference information about the technical concepts
used in this document.

For more information

Refer to the following books in the Apple Technical Library and Apple
Communications Library, published by Addison-Wesley, for additional
information about the subjects covered in this manual:

� Designing Cards and Drivers for the Macintosh Family

� Human Interface Guidelines: The Apple Desktop Interface

� Inside Macintosh (Volumes I-V, X-Ref)

� Programmer’s Introduction to the Macintosh Family

� Technical Introduction to the Macintosh Family

� AppleTalk Network System Overview

� Inside AppleTalk

You may also refer to the following documents from APDA® (Apple
Programmers and Developers Association):

� Software Development for International Markets. A Technical Reference

� Macintosh Technical Notes

APDA offers worldwide access to a broad range of programming
products, resources, and information for anyone developing on Apple
platforms. You’ll find the most current versions of Apple and third-
party development tools, debuggers, compilers, languages, and technical
references for all Apple platforms. To establish an APDA account, obtain
additional ordering information, or find out about site licensing and
developer training programs, please contact.

APDA
Apple Computer, Inc.
20525 Mariani Avenue, M/S 33-G
Cupertino, CA 950l4-6299
1-800-282-2732 (United States)
1-800-637-0029 (Canada)
1-408-562-3910 (International)
Fax 1-0408-562-3971
Telex: 171-576
AppleLink® address: APDA

Preface xv

If you provide commercial products and services, please call 1-408-974-4897
for information on the developer support programs available from Apple.

If you plan to develop Apple-compatible hardware or software products for
sale through retail channels, you can get valuable support from Apple
Developer Programs. Write to:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, M/S 51-W
Cupertino, CA 95014-6299

Conventions used in this document

The following notations are used in this document to draw attention to
particular items of information:

® Note: a note that may be interesting or useful

® Assembly note: a note of interest to assembly-language
programmers only

D Important a note that is particularly important

▲ Warning a point that you need to be cautious about

Words that appear in the glossary are presented in bold typeface when first
introduced in the text.

Names of routines (procedures or functions), constants, and code
fragments appear in a special typeface, as in the following example:

PROCEDURE GetDown(andBoogie : ONEMORETIME);

xvi Inside the Macintosh Communications Toolbox

Chapter 1 About the Macintosh
Communications Toolbox

2 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R gives you an overview of the Macintosh ® Communications Toolbox. It tells you about the

managers and utilities that are part of the Communications Toolbox, and then discusses a fundamental concept, the

difference between routines and tools. The last part of the chapter provides system hardware and software

requirements, and shows how to install Communications Toolbox tools.

Chapter 1: About the Macintosh Communications Toolbox 3

Communications Toolbox contents

The Communications Toolbox consists of four managers and a set of utilities. These managers and utilities are an
extension to the Macintosh Toolbox and provide basic networking and communications services. Just as the
Macintosh Toolbox makes it easier for you to develop stand-alone Macintosh applications, the Communications Toolbox
helps you add networking and communications functions to applications.

Each of the managers in the Communications Toolbox handles a different aspect of networking and
communications: connection management, terminal emulation management, file transfer management, and
communications resource management. The managers provide routines that your application can call to indirectly
interact with the operating system. Figure 1-1 shows how the Communications Toolbox fits between your application
and the operating system.

� Figure 1-1 Where the Macintosh Communications Toolbox fits in

4 Inside the Macintosh Communications Toolbox

Although the managers in the Communications Toolbox handle distinctly different aspects of networking and
communications, your application might need to call routines from more than one of the managers to implement a
feature. For instance, in order to perform terminal emulation, in writing your program you might make use of
Connection Manager routines to maintain the data connection, and Terminal Manager routines to handle the
specifics of the terminal emulation.

However, your application does not have to use Communications Toolbox routines to perform all of its
networking and communications tasks; for example, your application can maintain the data connection itself and use
only the Terminal Manager to perform a terminal emulation. Keep in mind, though, that using Communications
Toolbox routines ensures greater compatibility for your application with new tools as they become available.

Understanding routines and tools

There are two interfaces (besides the user interface) to consider when programming with the Communications Toolbox:
the interface between the application and the Communications Toolbox, and the one between the Communications
Toolbox and the Macintosh Operating System.

The interface between an application and the Communications Toolbox is defined by the routines in each of the
managers. By calling routines, an application can request basic networking and communications services. If you are
writing applications (not tools), this is the interface with which you need to be most concerned; it is discussed in
Chapters 3-7.

The interface between the Communications Toolbox and the Macintosh Operating System is controlled by tools.
Tools are units of code that implement the networking and communications services that your application requests.
When an application calls a Communications Toolbox routine, it does so without concern for the underlying protocols.
It is the job of the tool to implement basic networking and communications services according to a specific protocol. If
you are writing tools (not applications), this is the interface with which you need to be most concerned; it is discussed in
Chapters 8-11. Tools writers need to read at least two of these chapters: Chapter 8, which discusses concepts common
to all types of tools, and one of the other chapters that deal with a specific type of tool.

Figure 1-2 shows the interaction between an application and one of the Communications Toolbox managers, in this
case the Connection Manager. Notice that the application interacts with the Connection Manager, which in turn interacts
with the connection tool The connection tool, in turn, communicates with a driver and passes back to the application
(through the manager) any relevant information. (Chapter 3 contains a complete discussion of the Connection
Manager.)

Chapter 1: About the Macintosh Communications Toolbox 5

� Figure 1-2 How Macintosh Communications Toolbox managers interact with applications and tools

System requirements and installation

The Communications Toolbox can be run on all Macintosh computers that have at least 1 megabyte (MB) of random-
access memory (RAM), Macintosh Plus (128K) read-only memory (ROM) or later, and system software 6.0.4 or a later
version. Minimum disk-space requirements are two floppy disk drives, a single Apple ® SuperDrive™ disk drive, or a
hard disk (which is recommended).

To install the Communications Toolbox, use the Installer script on the Communications 1 disk. If your machine will
not start up using Communications 1, use a Network Products Installer disk. These disks are available from APDA®

(Apple Programmers and Developers Association).

You can install communications tools by dragging the icon for each tool into the folder named Communications
Folder, which is inside the System Folder. Your application can access tools immediately after you have installed them
(you don’t have to restart).

6 Inside the Macintosh Communications Toolbox

Chapter 2 Programming with the Macintosh
Communications Toolbox

8 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R provides an example of how applications can use the Communications Toolbox to implement

communications services. The example focuses on use of the Communications Toolbox, rather than on Macintosh programming in

general.

Thus, the sample code is not a complete program. It contains the parts of a program that handle communications functions; the

rest of the program has been replaced with comments. This sample shows you where in an application to put the hooks to which

you can attach Communications Toolbox routines.

The sample application, if it were a real, working program, would allow you to perform functions that span the three major

Communications Toolbox managers: the Connection Manager, the Terminal Manager, and the File Transfer Manager.

Specifically, the sample source code shows you how to

� open and close a connection

� send and receive files

� configure connections, terminal emulations, and file transfers

� clear the screen

� reset the terminal

Chapter 2: Programming with the Macintosh Communications Toolbox 9

The sample code is split into three sections to make it easier to understand. The first section shows how your application can deal
with events that result from menu selections; the sample application contains routines that handle basic communications services,
like opening a connection and sending a file. The second section shows how your application can deal with events like scrolling and
mouse clicks. The last section shows the sample application’s main code loop. You might find it helpful to read some of the
chapters that discuss the managers before reading through the code.

Assume the following globals

VAR

gTerm : TermHandle; { tool records }
gFT : FTHandle;
gConn : ConnHandle;
gBuffer : Ptr; { My data buffer }
gCache : Handle; { 1-line cache }

done : BOOLEAN; { Main Event Loop Flag }
gStartFT : BOOLEAN; { Flag to start a transfer }
gWasFT : BOOLEAN; { Flag set during a transfer }

10 Inside the Macintosh Communications Toolbox

Menu events

Handling menu choices

PROCEDURE DoCommand(mResult : LONGINT);
VAR

theItem : INTEGER; { menu info }
theMenu : INTEGER;

BEGIN
theItem := LoWord(mResult); { which item }
theMenu := HiWord(mResult); { which menu }

{ First see if the menu belonged to a tool }
{ If the tool handles it, then leave }

IF gTerm <> NIL THEN

IF TMMenu(gTerm, theMenu, theItem) THEN BEGIN
HiliteMenu(0);
Exit(DoCommand); { Terminal tool handled it }

END;

IF gConn <> NIL THEN

IF CMMenu(gConn, theMenu, theItem) THEN BEGIN
HiliteMenu(0);
Exit(DoCommad); { Connection tool handled it }

END;

IF gFT <> NIL THEN

IF FTMenu(gFT, theMenu, theItem) THEN BEGIN
HiliteMenu(0);
Exit(DoCommand); { File transfer tool handled it }

END;

{ Must be an application menu }

(*
Application menu handling goes here
*)

HiliteMenu(0);
END; { DoCommand }

Chapter 2: Programming with the Macintosh Communications Toolbox 11

Initiating a connection

PROCEDURE DoInitiate;

VAR

theErr: CMErr; { Problem Flag }
sizes : CMBufferSizes; { Conn tool channel sizes }
status: CMStatFlags; { Conn tool states }

BEGIN

IF gConn<> NIL THEN BEGIN

{ Get the state of the connection }
theErr := CMStatus(gConn, sizes, status);

{ If it's not already open or opening, then open it }
{ In this case, open it synchronous, no timeout }

IF BAND (status, cmStatusOpen + cmStatusOpening) = 0
THEN

theErr := CMOpen (gConn, FALSE, NIL, -1);

IF theErr <> noErr THEN
{ The tool will put up its own error alert }

END; { Good handle }
END; { DoInitiate }

Terminating the connection

PROCEDURE DoKill;

VAR

theErr: CMErr; { Error codes }
sizes : BufferSizes; { Tool channel sizes }
status: CMStatFlags; { State of the connection }

BEGIN

IF gConn<> NIL THEN BEGIN

{ Get the connection status }
theErr := CMStatus(gConn, sizes, status);

{ Close it only if it's open or opening }
{ In this case: synchronous, no timeout }

12 Inside the Macintosh Communications Toolbox

IF BAND(status, cmStatusOpen + cmStatusOpening) <> 0 THEN
theErr := CMClose(gConn, FALSE, NIL, 0, TRUE);

IF theErr <> noErr THEN
; { The tool will put up its own error alert }

END; { Good Connection }
END; { DoKill }

Starting to send a file

PROCEDURE DoSend;

VAR

theReply: SFReply; (File Info }
where : Point; { upper-left corner of File dialog }
numTypes: INTEGER; { File Types to display }
typeList: SFTypeList;
anyErr : FTErr; { Error handler }

BEGIN

IF gFT <> NIL THEN BEGIN { Good handle }

{ Set location of the SFGetFile dialog }
SetPt(where, 100, 100);

{ If the FT tool can only send text files, then }
{ only display text files, else display all types }

{ Check to see if Text Only flag is set }
IF BAND(gFT^^.attributes, ftTextOnly) <> 0 THEN BEGIN

typeList[0] := 'TEXT';
numTypes := 1;

END
ELSE

numTypes := -1;

SFGetFile(where, 'File to Send', NIL,
numTypes, typeList, NIL, theReply);

{ Did the user hit OK or Cancel }
IF theReply.good THEN BEGIN

{ Transfer the file TO the remote
}

Chapter 2: Programming with the Macintosh Communications Toolbox 13

anyErr := FTStart(gFT,ftTransmitting,theReply);

IF (anyErr <> noErr) THEN
; { Handle any errors here }

END; { Good file }

END; { Good FTHandle }

END; { DoSend }

Starting to receive a file

PROCEDURE DoReceive;

VAR

theReply : SFReply; { File Info }
anyErr : OSErr; { Errors on Start }

BEGIN

IF gFT <> NIL THEN BEGIN

{ Let the FT tool use its own default file info }
theReply.vRefNum, := 0;
theReply.fName := '';

{ Remove the search temporarily in case it }
{ comes across during the transfer }
(*
Use CMRemoveSearch() to get rid of the file
transfer auto-receive string search
*)

{ Start receiving the file }
{ The rest gets transferred in the Idle loop }

anyErr := FTStart(gFT,ftReceiving,theReply);

IF (anyErr <> noErr) THEN
; { Handle error conditions }

END; { Good Handle }

END; { DoReceive }

14 Inside the Macintosh Communications Toolbox

Configuring a connection

PROCEDURE DoConnectionConfig;

VAR

result : INTEGER; { Choose went OK? }
where : Point; { upper-left corner of the choose dialog

}
tempStr : Str255;

BEGIN

{ Set the dialog box as close as possible to upper-left corner of
screen }

{ because the dialog box will grow down and/or to the right }

SetPt(where, 10, 40);

IF gConn <> NIL THEN BEGIN

{ Put up the standard tool chooser }
result := CMChoose(gConn, where, NIL);

(*
Handle the result here.
If the tool has changed, need to re-add the file
transfer auto-receive search to the new connection tool.
*)

END; { Good handle }

END;{ DoConnectionConfig }

Configuring a terminal emulation

PROCEDURE DoTerminalConfig;

VAR
result : INTEGER; { Choose went OK? }
where : Point; { Upper-left corner of the choose dialog }

BEGIN
{ Set the dialog box as close as possible to top-left corner of

screen }
{ because the dialog box will grow down and/or to the right }

SetPt(where, 10, 40);

IF gTerm <> NIL THEN BEGIN

Chapter 2: Programming with the Macintosh Communications Toolbox 15

{ Put up the standard tool chooser }
 result := TMChoose(gTerm, where, NIL);

(*
- Handle the result here
*)

END; { Good handle }

END; { DoTerminalConfig }

Configuring a file transfer

PROCEDURE DoFileTransferConfig;
VAR

result : INTEGER; { User chose all right }
where : Point; { upper-left corner of the dialog }
tempString: str255; { Search for FT sequence }

BEGIN
{ Set the dialog box as close as possible to top-left corner of scree
{ because the dialog box will grow down and/or to the right }

SetPt(where, 10, 40);

IF gFT <> NIL THEN BEGIN

{ Put up the standard box }
result := FTChoose(gFT, where, NIL);

(*
If the result = OKMajor or OKMinor, we may need to:

remove the old file transfer auto-receive search (if any)
add the new file transfer tool’s auto-receive string (if any)

*)

END; { Good Handle }

END; { DoFileTransferConfig }

16 Inside the Macintosh Communications Toolbox

Making a new session document

PROCEDURE MakeNew;
VAR

err : OSErr; { Errors from Environ call }
theWindow : WindowPtr; { Home for the terminal }
theRect : Rect { TermRect for terminal }
sizes : BufferSizes; { Connection tool buffers }
termEnvironment : TermEnvironRec;
termID,
ftID,
connID : INTEGER; { proc IDs for the tools }
toolName : Str255; { who are they? }
tempStr : Str255; { AutoReceive string for FT }

BEGIN
{ Need a home }
theWindow := GetNewWindow(128, NIL, POINTER(-1));

IF (theWindow = NIL) THEN BEGIN
; { Handle Error }
Exit (MakeNew);

END;

SetPort(theWindow);

{ Set up the termRect/viewRect for Term tool }
theRect := theWindow^.portRect;

{ If we have scroll bars, we'll need to inset theRect }
{to account for their widths }

gTerm := NIL;
gConn := NIL;
gFT := NIL;
gBuffer := NIL;
gCache := NIL;

gStartFT := FALSE;
gWasFT := FALSE;

Chapter 2: Programming with the Macintosh Communications Toolbox 17

{ ------------------------- }
{ New terminal tool }
{ ------------------------- }

{*
Get the terminal tool's proc ID by calling either
CRMGetIndToolName() and/or TMGetProcID()
*)

{ New Terminal tool }
gTerm := TMNew(theRect, theRect, tmSaveBeforeClear, termID,

theWindow, @SendProc, @CacheProc, @BreakProc,
NIL, @TermGetConnEnvirons, 0, 0);

IF (gTerm = nil) THEN BEGIN
{ Handle error }
Exit (MakeNew);

END;

{ ------------------------- }
{ New connection tool }
{ ------------------------- }

{ Set the desired sizes }
sizes[cmDataIn] := 1024; { I only want data in this example }
sizes[cmDataOut] := 1024;
sizes[cmCntlIn] := 0; { Ignore these channels }
sizes[cmCntlOut] := 0;
sizes[cmAttnIn] :=0;
sizes(cmAttnOut] : 0;

(*
Get the connection tool's proc ID by calling either
CRMGetIndToolName () and/or CMGetProcID ()
*)

{Only want the data channel }
gConn := CMNew(connID, cmData, sizes, 0, 0);

IF (gConn = nil) THEN BEGIN
{ Handle error }
Exit(MakeNew);

END;

18 Inside the Macintosh Communications Toolbox

{ ------------------------- }
{ New file transfer tool }
{ ------------------------- }

(*
Get the file transfer tool's proc ID by calling either
CRMGetIndToolName () and/or FTGetProcID ()
*)

{ ReadProc and WriteProc are nil to let }
{ the tool handle the file input and output }

gFT := FTNew(ftID, 0, @FTsendProc, @FTreceiveProc, NIL, NIL,
@FTGetConnEnvirons,theWindow, 0, 0);

IF (gFT = nil) THEN BEGIN
{ Handle error }
Exit(MakeNew);

END;

(*
If the file transfer tool's auto-receive string isn't empty
then add it with CMAddSearch(gFT,theString,flags,@AutoRecCallBack)
*)

gBuffer := NewPtr(1024); { the data buffer }
IF (gBuffer = NIL) THEN

; { Handle Errors }

END; { MakeNew }

{ Call Back Proc if a FT auto-receive string is found }
PROCEDURE AutoRecCallback(gConn: ConnHandle; data: Ptr; refNum:
LONGINT);
BEGIN

{ We can't call FTStart () or CMRemoveSearch () here as }
{ this proc might be called from Interrupt level }

gStartFT := TRUE; { Set the flag to call FTStart in
Idle }
END; { AutoRecCallBack }

Chapter 2: Programming with the Macintosh Communications Toolbox 19

Closing the session document

PROCEDURE DoClose(theWindow: WindowPtr);

BEGIN

IF theWindow <> NIL THEN BEGIN
IF gTerm <> NIL THEN

TMDispose(gTerm); { Get rid of the tools }

IF gConn <> NIL THEN
CMDispose(gConn); { Tools should dispose of }

{ their own windows }

IF gFT <> NIL THEN
FTDispose(gFT);

IF gBuffer <> NIL THEN { Get rid of my data space
}

DisposPtr(gBuffer);

DisposeWindow(theWindow); { Get rid of the window }
END; { Good Window }

END; { DoClose }

20 Inside the Macintosh Communications Toolbox

Other events

Activate events

PROCEDURE DoActivate(theEvent : EventRecord);
VAR

theWindow : WindowPtr;
processed : BOOLEAN; { Activate or Deactivate }

BEGIN
theWindow := WindowPtr(theEvent.message);
SetPort(theWindow); { Focus on the target }

{ Is this an activate or a deactivate }
processed := BAND(theEvent.modifiers, activeFlag) <> 0;

(*
(Deactivate application stuff here
*)

{ Tools need to adjust their menus, text selection, etc. }
IF gTerm <> NIL THEN

TMActivate(gTerm, processed); { Send message to the tool
}

IF gConn <> NIL THEN
CMActivate(gConn, processed); { Send message to the tool

}

IF gFT <> NIL THEN
FTActivate(gFT, processed); { Send message to the tool }

END; { DoActivate }

Resume events

PROCEDURE DoResume(theEvent : EventRecord);
CONST

resumeFlag = 1;

VAR
theWindow : WindowPtr;
isResume : BOOLEAN; { Resume/Suspend Event }
savedPort : GrafPtr;

BEGIN
GetPort (savedPort); { Current Focus }

Chapter 2: Programming with the Macintosh Communications Toolbox 21

theWindow := FrontWindow; { Get the target }

{ Tools way work in background }
IF theWindow <> NIL THEN BEGIN

SetPort(theWindow);

isResume := BAND(theEvent.message, resumeFlag) <> 0;

IF gTerm <> NIL THEN
TMResume(gTerm, isResume);

IF gConn <> NIL THEN
CMResume(gConn, isResume);

IF gFT <> NIL THEN
FTResume(gFT, isResume);

SetPort(savedPort);
END; { if good window }

END; { DoResume }

Update events

PROCEDURE DoUpdate(theEvent:EventRecord);
VAR

theWindow : WindowPtr; { The target to update }
savedPort : GrafPtr; { Temporarily saved }
savedClip : RgnHandle; { Clipping for the terminal }

BEGIN
theWindow := WindowPtr(theEvent.message);

IF theWindow <> NIL THEN BEGIN
savedClip := NewRgn; { Allocating for QD }

GetPort(savedPort); { Change the focus }
SetPort(theWindow);

GetClip(savedClip); { Save the old area }
ClipRect(theWindow^.portRect); { Just the window }

BeginUpdate(theWindow);
{ Clear the old data }

22 Inside the Macintosh Communications Toolbox

EraseRect(theWindow^.portRect);

(*
Update application stuff here
*)

{ Terminal tool will redraw }
IF gTerm <> NIL THEN

TMUpdate(gTerm, theWindow^.visRgn);

EndUpdate(theWindow);

SetClip(savedClip); { Put it all back }
DisposeRgn(savedClip); { Clean up }

SetPort(savedPort);
END; { Good Window }

END; { DoUpdate }

Keyboard events

PROCEDURE DoKey(theEvent : EventRecord);
VAR

theKey : CHAR; { The character hit }
processed : BOOLEAN; { Did the application handle it }
result : LONGINT; { value MenuKey() returns }

BEGIN
{ Get the character }
theKey := CHAR(BAND(theEvent.message, charCodeMask));

processed := FALSE; { Haven't intercepted it }

{ Was it a command equivalent }
IF BAND(theEvent.modifiers, cmdKey) <> 0 THEN BEGIN

result := MenuKey(theKey); { Get the key equivalent }
{ Valid menu key? }

IF theMenu <> 0 THEN BEGIN
processed := TRUE; { Application will

redirect }
DoCommand(result); { Calls the above routine

}
END; (Good Menu Equivalent }

END; { Cmd-key down? }

Chapter 2: Programming with the Macintosh Communications Toolbox 23

{ If it wasn't a valid menu command then pass the event to the termin

IF (gTerm <> NIL) AND NOT processed THEN
TMKey(gTerm, theEvent);

END; { DoKey }

Mouse events

PROCEDURE DoClick(theEvent : EventRecord);
VAR

theWindow : WindowPtr; { The target }

BEGIN
{ Where was the click }

thePart := FindWindow(theEvent.where, theWindow);

CASE thePart OF
inMenuBar: BEGIN

{ Get the menu info }
result := MenuSelect(theEvent:where);
DoCommand(result); { call above routine }

END;

inGrow: BEGIN
{ Resize the Window, scroll bars, etc. }

{ Tell the terminal }
TMResize(gTerm,theWindow^.portRect);

END;

inContent:
IF gTerm <> NIL THEN BEGIN

(*
Call TMScroll() if the click was in a scroll bar
*)

TMClick(gTerm, theEvent); { For mouse selection }
END;{ valid term rec }

otherwise
; Perform standard event action

END; { case }
END; { DoClick }

24 Inside the Macintosh Communications Toolbox

Main program loop

PROCEDURE MainLoop;
VAR

theEvent : EventRecord; { World Happenstances }
theWindow : WindowPtr; { The desired target }

BEGIN
WHILE NOT done DO BEGIN

DoIdle; { Call our idle proc once thru }

IF WaitNextEvent(everyEvent,theEvent, 0, NIL) THEN BEGIN

{ get the target window }
CASE theEvent.what OF

autoKey, keyDown:
theWindow := FrontWindow;

mouseDown:
IF FindWindow(theEvent.where,theWindow)=0 THEN

;
otherwise

theWindow := WindowPtr(theEvent.message);
END; { case }

{ All windows created by a tool are supposed to }
{ have their RefCons = LONGINT(theToolHandle) }

(*
Call the tool event proc if the window is a tool
window. i.e. TMEvent()
*)

IF (theWindow <> NIL) THEN BEGIN
SetPort(theWindow);

CASE theEvent.what OF { App Window }
autoKey, keyDown:

{ May set done to true }
DoKey(theEvent);

mouseDown:
{ May set done to true }
DoClick(theEvent);

updateEvt:
DoUpdate(theEvent);

Chapter 2: Programming with the Macintosh Communications Toolbox 25

app4Evt:
DoResume(theEvent);

activateEvt:
DoActivate(theEvent);

END; { case }

END; { Good Window }

END; { WaitNextEvent }

END; { while not done }

END; { DoMainLoop }

26 Inside the Macintosh Communications Toolbox

Chapter 3 Connection Manager

28 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R describes the Connection Manager, the Communications Toolbox manager that allows

applications to establish and maintain connections. This chapter describes some of the fundamental concepts

about the Connection Manager. Then it describes the connection record which is the most important data

structure to the Connection Manager. Next, this chapter presents a detailed functional description of each

routine provided by the Connection Manager. At the end of the chapter, you’ll find a “Quick Reference” to

routines, data structures, and routine selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh, which will

implement communications services for users. Be careful not to confuse the services your application provides

with the services that tools provide.

To use the Connection Manager, you need to be familiar with

� the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Device Manager (described in Inside Macintosh, Volumes II, IV, V)

Chapter 3: Connection Manager 29

About the Connection Manager

By using Connection Manager routines, your application can implement basic connection services without
having to take into account underlying connection protocols. Connection tools, which are discussed in
Chapter 9, are responsible for implementing connection services according to specific protocols.

The Connection Manager provides a generic connection—a channel that carries data between your
application and another computer process. The other process can be running on the same computer as your
application or on any other computer.

Here’s what happens inside the Connection Manager. An application makes a request of the Connection
Manager when it needs a connection service, such as opening a connection. The Connection Manager then
sends this request to one of the tools that it manages. The tool provides the service according to the specifics
of the connection protocol that is implemented for the data connection. Once the tool has finished, it passes
back to the application (through the manager) any relevant parameters and return codes.

The data is sent along the connection in a byte stream (a reliable byte stream, if the connection protocol
supports error correction), rather than on a transaction-by-transaction basis. Although the Connection
Manager does not provide flow control, error correction, error detection, and data encapsulation, a tool or
application can provide these services.

Figure 3-1 shows the data flow into and out of the Connection Manager.

� Figure 3-1 Data flow into and out of the connection Manager

30 Inside the Macintosh Communications Toolbox

The most important data structure maintained by the Connection Manager is the connection record, which
stores all the specifics about a connection. For example, the connection record might show that a connection
takes place over a direct serial port connection transmitting at 9,600 bits per second (bps).

One important aspect of the connection record is that it allows for protocol-independent routines.
Protocol-independent routines allow applications to use Connection Manager services without regard for the
underlying communications protocols. In other words, when an application wants to read data from a remote
entity, it tells the Connection Manager to read, and the connection tool figures out exactly how to implement a
read operation on a given connection.

Another important feature of the connection record is that it lets you use multiple instances of the same
tool. The same tool can be used by different processes at the same time, as in a MultiFinder® operating system
environment, or by different threads in a given application.

The connection record is described in greater detail later in this chapter.
Besides providing basic connection routines, the Connection Manager includes routines that make it easy

for your application to configure a connection tool, either by presenting the user with a dialog box or by
interfacing directly with a scripting language. The Connection Manager also contains routines that make it
easier for you to localize your applications in other languages.

You can use the Connection Manager with other Communications Toolbox managers to create a
communications application with file transfer and terminal emulation capabilities. Or, you can use the
Connection Manager with some other data transfer or terminal emulation service. You can also write your own
connection tool for the Connection Manager to use. (This procedure is discussed in Chapters 8 and 9.)
Regardless of which method you choose, your application should be able to handle different connection tools
so that users can change tools and still be able to use your program.

Connection channels: data, attention, and control

When data is sent along a connection, there is a certain amount of overhead that sometimes accompanies it.
This “extra” information could be a warning that the connection is about to go down or that the sending entity
should slow its rate of transmitting data. Some connection protocols are designed in such a way that this sort
of information can be sent simultaneously with the data stream on a channel. The Connection Manager
supports up to three channels on each connection—data, attention, and control—that can be thought of as
three separate lines of communication between each entity. The data channel, however, is for all protocols the
primary channel for transmitting information between entities. The other two channels are used by only some
connection protocols.

When you design your application, keep in mind that some protocols support all three channels,
whereas others support only one (the data channel). Your application should be able to handle different
connection tools in a way that allows users to change tools and still be able to use your program.

Chapter 3: Connection Manager 31

The connection record

The connection record contains information that describes a connection, as well as pointers to Connection
Manager internal data structures. The Connection Manager uses this information to “translate” the protocol-
independent routines used by an application into a service implemented according to a specified protocol.
Most of the fields in the connection record are filled in when an application calls CMNew, described later in
this chapter.

Because the connection record describes how communications take place on a given
connection, an application can communicate on more than one connection at the same time. All the
application has to do is create a new connection record every time it initiates a new connection.

D Important Your application, in order to be compatible with future releases of the Connection
Manager, should not directly manipulate the fields of the connection record (with the
exception of config and oldConfig).The Connection Manager provides routines that
applications and tools can use to change connection record fields. These routines are
discussed later in this chapter. D

Connection record data structure

TYPE
ConnHandle = ^ConnPtr;
ConnPtr = ^ConnRecord;
ConnRecord = RECORD

procID : INTEGER;

flags : CMRecFlags;
errCode : CMErr;

refCon : LONGINT;
userData : LONGINT

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

reserved0 : LONGINT;
reservedl : LONGINT;
reserved2 : LONGINT;

cmPrivate : Ptr;

bufferArray : CMBuffers;
bufSizes : CMBufferSizes;

32 Inside the Macintosh Communications Toolbox

mluField : LONGINT;

asyncCount: CMBufferSizes;

END;

procID
procID is the connection tool ID. This value is dynamically assigned by the Connection Manager when your
application calls CMGetProcID.

flags
flags is a bit field that indicates certain specifics about a connection when the connection record is first
created. The bit masks for flags are as follows:

TYPE
CMRecFlags = LONGINT;

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
CmCntlClean = $00000200;
cmAttnClean = $00000400;

cmNoMenus = $00010000;
cmQuiet = $00020000;

Your application can turn on the cmNoMenus or cmQuiet bits when it calls CMNew (discussed later in this
chapter). The connection tool will set the rest of these bits.

If the tool sets the cmData, cmCntl, or cmAttn bit, your application can use a data, control, or
attention channel. If the tool sets the cmDataClean, cmCntlClean, or cmAttnClean bit, your
application can use a reliable (error-free, in order delivery) data, control, or attention channel.

The connection tool will not display any custom menus if your application sets the cmNoMenus bit. The
connection tool will not display any status dialog boxes or error alerts if your application sets the cmQuiet
bit. If your application turns the cmQuiet bit on, it is responsible for displaying status dialog boxes and
error alerts that the tool would have displayed. Applications typically use these two bits to hide the connection
tool from the user.

errCode
errCode contains the last error encountered by the Connection Manager. Valid error codes are as follows:

Chapter 3: Connection Manager 33

TYPE
CMErr = OSErr;

CONST
cmGenericError = -1;
cmNoErr = 0;
cmRejected = 1;
cmFailed = 2;
cmTimeOut = 3;
cmNotOpen = 4;
cmNotClosed = 5;
cmNoRequestPending = 6;
cmNotSupported = 7;
cmNoTools = 8;
cmUserCancel = 9;

refCon
refCon is a four-byte field that your application can use.

userData
userData is a four-byte field that your application can use.

defProc
defProc is a procedure pointer to the main code resource of the connection tool that will implement the
connection protocol. The connection tool’s main code resource is of type 'cdef'.

config
config is a pointer to a data block that is private to the connection tool. It can contain information such as
data transfer rate or parity for direct asynchronous connections, phone numbers for modem connections, or an
address for an AppleTalk ® network connection; the contents vary from tool to tool.

Your application can store the contents of config to save the state of a connection in a document.
The structure, size, and contents of the configuration record are set by the tool. Your application can
determine the size of the configuration record by calling GetPtrSize, overwrite its contents using
BlockMove, and validate the contents with CMValidate.

Your application can use CMGetConfig and CMSetConfig to manipulate fields in this record.
For details, see “Interfacing with a Scripting Language,” later in this chapter. Your application can save the
state of the connection record by saving the string returned from CMGetConfig. Also, your application can
restore the configuration of the connection record by passing a saved string to CMSetConfig.

You can find more information about config from a connection tool perspective in Chapter 8.

oldConfig
oldConfig is a pointer to a data block that is private to the connection tool and contains the most recently
saved version of config. Your application is responsible for setting oldConfig when the user saves a
session document.

34 Inside the Macintosh Communications Toolbox

reserved0, reserved1, and reserved2
reserved0, reserved1, and reserved2 are fields that are reserved for the Connection Manager.
Your application must not use these fields.

cmPrivate
cmPrivate is a pointer to a data block that is private to the connection tool. Your application must not use
this field.

bufferArray
bufferArray is a set of pointers to buffers for the data, control, and attention channels. These are the
buffers that are used to read data to or write data from the entity. These buffers are allocated by the
connection tool and are the exclusive property of the connection tool; your application should not use these
buffers. The data type for bufferArray is CMBuffers and is defined under the description of
bufSizes.

bufSizes
bufSizes contains the actual sizes of the buffers and it, too, should not be manipulated directly by an
application. The data type for bufSizes is CMBufferSizes, and is defined as follows:

TYPE
CMBufFields=(

cmDataIn,
cmDataOut
cmCntlIn
cmCntlOut
cmAttnIn
cmAttnOut
cmRsrvIn { Reserved for Apple }
cmRsrvOut); { Reserved for Apple }

CMBuffers = ARRAY[CMBufFields] OF Ptr;
CMBufferSizes = ARRAY(CMBufFields] OF LONGINT;

mluField
mluField is a pointer to a private data structure that the Connection Manager uses when searching the data
stream.

asyncCount
asyncCount is used by completion routines to determine how many bytes were actually transmitted or
received on a particular channel. Completion routines are discussed in more detail later in this chapter.

Chapter 3: Connection Manager 35

Connection Manager routines

The following sections describe the routines that tools and applications can use to access Connection Manager
services. These routines are protocol independent; your application does not need to be familiar with the
specifics of a particular communications protocol in order to use the connection. Your application can call
three Connection Manager routines from interrupt level: CMRead, CMWrite, and CMStatus. The other
routines cannot be called from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.

InitCM / 36 CMIOKill / 52
CMGetProcID / 37 CMReset / 53
CMNew / 38 CMBreak / 53
CMDefault /40 CMGetConnEnvirons / 54
CMValidate / 40 CMRead / 56
CMChoose / 41 CMWrite / 58
CMSetupPreFlight / 43 CMAddSearch / 59
CMSetupSetup / 44 CMRemoveSearch / 60
CMSetupFilter / 44 CMClearSearch / 60
CMSetupItem / 45 CMActivate / 61
CMSetupCleanup / 45 CMResume / 61
CMSetupPostFlight / 46 CMMenu / 61
CMGetConfig / 47 CMEvent / 62
CMSetConfig / 47 CMIntlToEnglish / 63
CMOpen / 48 CMEnglishToIntl / 63
CMClose / 49 CMGetToolName / 64
CMAbort / 49 CMSetRefCon / 64
CMDispose / 50 CMGetRefcon / 64
CMIdle / 50 CMSetUserData / 65
CMListen / 50 CMGetUserData /65
CMStatus / 51 CMGetVersion / 65
CMAccept / 52 CMGetCMVersion / 65

36 Inside the Macintosh Communications Toolbox

Preparing to open a connection

Before your application can open a connection, it must initialize the Connection Manager (by calling
InitCM), find out the procID of the tool it requires (by calling CMGetProcID), create a connection
record (by calling CMNew), and then configure the connection tool (by restoring config from a saved
document; or by calling CMChoose, the connection tool custom configuration routines, or CMSetConfig).

InitCM

Initializing the Connection Manager

InitCM initializes the Connection Manager. Your application should call this routine
only once, after calling the standard Macintosh Toolbox initialization routines.

▲ Warning Your application must initialize the Communications Resource Manager (by
calling InitCRM) and then the Communications Toolbox Utilities (by calling
InitCTBUtilities), whether or not it uses any of their calls, before it initializes the
Connection Manager. ▲

Function InitCM : CMErr;

Description InitCM returns an operating system error code if appropriate. Your application must
check for the presence of the Communications Toolbox before calling this function.
Sample code under “Determining Whether the Managers are Installed” in Appendix C shows
you how your application can make this check.

Result Codes cmGenericError, cmNoErr, cmNoTools.

Chapter 3: Connection Manager 37

CMGetProcID

Getting current procID information

Your application should call CMGetProcID just before creating a new connection
record, to find out the procID of a tool.

Function CMGetProcID (name: Str255): INTEGER;

Description name specifies a connection tool. If a connection tool is available with the specified
name, its procID is returned. If name references a nonexistent connection tool,
CMGetProcID returns -1.

38 Inside the Macintosh Communications Toolbox

CMNew

Creating a connection record

Before your application can open a connection, it must create a connection record so the
Connection Manager knows what type of connection to establish. CMNew creates a new
connection record; fills in the fields that it can, based upon the parameters that were
passed to it; and returns a handle to the new record in ConnHandle. CMNew
automatically makes two calls to CMDefault (which is described later in this chapter) to
fill in config and oldConfig. The Connection Manager then loads the connection
tool main code resource, moves it high in the current heap, and locks it. If an error occurs
that prevents a new connection record from being created (for example, running out of
memory), CMNew passes back NIL in ConnHandle.

Function CMNew(procID : INTEGER; flags : CMRecFlags; desiredSizes :
CMBufferSizes; refCon : LONGINT; userData : LONGINT) :
ConnHandle;

Description procID is dynamically assigned by the Connection Manager to tools at run time.
Applications should not store procID values in settings files. Instead, they should store
tool names, which can be converted to procID values with the CMGetProcID routine.
Your application should use the ID that CMGetProcID returns for procID.

flags is a bit field with the following masks:

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
cmCntlClean = $00000200;
cmAttnClean = $00000400;

cmNoMenus = $00010000;
cmQuiet = $00020000;

flags represents a request from your application for a level of connection service. If
your application sets cmNoMenus, the connection tool will not display any custom
menus. If your application sets cmQuiet, the connection tool will not display any
windows. Applications typically use these bits to hide the connection tool from the user.

The connection tool sets the other bits, and returns in the flags field of the
connection record the level of connection service that it grants your application. The
flags field is discussed in “Connection Record Data Structure,” earlier in this chapter.

Apple Computer, Inc. has reserved the bits of flags not shown in this manual. Do
not use them, or your code may not work in the future.

Chapter 3: Connection Manager 39

desiredSizes specifies buffer sizes that your application requests for its read, write,
control read, control write, attention read, and attention write channels. Your application
can specify the sizes that it wants when it calls CMNew, but the connection tool might not
provide the requested sizes. To have the tool set the size of these buffers, your application
should put zeros in the array. These buffers become the exclusive property of the
connection tool and should not be manipulated by the application in any way. The actual
buffer sizes are kept in the bufSizes field of the connection record.

refCon and userData are fields that your application can use.

40 Inside the Macintosh Communications Toolbox

CMDefault

Initializing the configuration record

CMDefault fills the specified configuration record with the default configuration
specified by the connection tool. CMNew calls this procedure automatically when it fills in
the config and oldConfig fields in a new connection record.

Procedure CMDefault (VAR theConfig: Ptr; procID: INTEGER; allocate:
BOOLEAN);

Description If allocate is TRUE, the tool allocates space for the config in the current heap zone.

CMValidate

Validating the configuration record

CMValidate performs an internal consistency check on the configuration and private
data records of the connection record. CMNew and CMSetConfig call this routine after
they have created a new connection record, to make sure that the record contains values
identical to those specified by the connection tool.

Function CMValidate(hConn: ConnHandle): BOOLEAN;

Description If the validation fails, the Connection Manager returns TRUE and the tool fills the
configuration record with default values by calling CMDefault.

Your application can call this routine after restoring a configuration, to verify that the
connection record contains the correct information, in a manner similar to that shown next.

BlockMove(saveConfig,hConn^^.config,GetPtrSize(hConn^^.con
fig));
IF CMValidate(hConn) THEN BEGIN

{ validate failed }
END
ELSE BEGIN

{ validate succeeded }
END

Chapter 3: Connection Manager 41

CMChoose

Configuring a connection tool

An application can configure a connection tool in one of three ways. The easiest and most
straightforward way is by calling the CMChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 3-2.

� Figure 3-2 A sample tool-settings dialog box

The second way an application can configure a connection tool is by presenting the user
with a custom tool-settings dialog box. This method is much more difficult, and involves
calling six routines. The routines are described in the next section, “Custom Configuration
of a Connection Tool,” and “The Custom Tool-Settings Dialog Box” in Appendix C provides
example code.

The third way your application can configure a connection tool is by using the
scripting language interface, described in “Interfacing With a Scripting Language,” later in
this chapter. This method allows your application to bypass user interface elements.

Function CMChoose(VAR hConn:ConnHandle; where: Point; idleProc:
ProcPtr): INTEGER;

Description where is the point, specified in global coordinates, where the upper-left comer of the
dialog box should appear. It is recommended that your application place the dialog box as
close as possible to the upper-left corner of the screen, because the size of the dialog box
varies from tool to tool.

This area is filled
in by the
connection tool.

42 Inside the Macintosh Communications Toolbox

idleProc is a procedure with no parameters that the Connection Manager will
automatically call every time CMChoose calls the setup dialog box filter procedure. Pass
NIL if your application has no idleProc.

CMChoose returns one of the following values:

CONST

chooseDisaster = -2;
chooseFailed = -1;
chooseAborted = 0;
chooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

chooseDisaster means that the CMChoose operation failed, destroyed the
connection record, and returned NIL in the connection handle.

chooseFailed means that the CMChoose operation failed and the connection
record was not changed.

chooseAborted means that the user started to change the connection while it
was still open but did not commit the changes. When users try to change connection tools
while the connection is still open, the Connection Manager prompts them with a dialog box
that asks if they want to make the change. If the user clicks No in this dialog box, the
CMChoose routine returns chooseAborted.

chooseOKMinor means that the user clicked OK in the dialog box but did not
change the connection tool being used.

chooseOKMajor means that the user selected OK in the dialog box and also
changed the connection tool being used. The Connection Manager then destroys the old
connection handle by calling CMDispose. The connection is closed down, all pending
read and write operations are terminated, and a new connection handle is returned in
hConn.

chooseCancel means that the user clicked Cancel in the dialog box.

Chapter 3: Connection Manager 43

Custom configuration of a connection tool

Your application creates a custom tool-settings dialog box and presents it to the user by using the six
Connection Manager routines: CMSetupPreflight, CMSetupSetup, CMSetupFilter,
CMSetupItem, CMSetupCleanup, and CMSetupPostflight. Using these routines is more
involved than calling CMChoose, but they provide your application with much more flexibility. Refer to the
code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an application calls these
routines.

To build a list of available connection tools, use the routine CRMGetIndToolName, which is
described in Chapter 6.

CMSetupPreflight

Setting up the custom tool-settings dialog box

CMSetupPreflight returns a handle to a dialog item list that your application
appends to the custom tool-settings dialog box. The handle comes from the connection
tool. (The calling application uses AppendDITL, discussed in Chapter 7.) This handle is
not a resource handle. Your application is responsible for disposing of the handle when
done with it.

The connection tool can use CMSetupPreflight to allocate a block of private
storage, and to store the pointer to that block in magicCookie. The magicCookie
value should be passed to the other routines that are used to set up the custom tool-
settings dialog box.

Function CMSetupPreflight(procID: INTEGER; VAR magicCookie:
LONGINT): Handle;

Description procID is the ID for the connection tool that is being configured. Your application
should get this value by using the CMGetProcID routine, discussed earlier in this
chapter.

® Note. The refcon of the custom tool-settings dialog box should point to a data structure
(shown next) in which the first two bytes are the tool procID and the next four bytes are
magicCookie UserItem routines, for example, may require procID to obtain tool
resources.

TYPE
chooseDLOGdata = RECORD

procID : INTEGER
magicCookie : LONGINT

END;

44 Inside the Macintosh Communications Toolbox

CMSetupSetup

Setting up custom tool-settings dialog box items

CMSetupSetup tells the connection tool to set up controls (such as radio buttons or
check boxes) in the dialog item list returned by CMSetupPreflight.

Procedure CMSetupSetup(procID: INTEGER; theConfig: Ptr; count:
INTEGER;
 theDialog: DialogPtr; VAR magicCookie: LONGINT);

Description procID is the ID for the connection tool that is being configured. Your application
should use the same value for procID as it passed to CMSetupPreflight.

theConfig is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box in which configuration is taking place.

magicCookie is a pointer to private storage for the connection tool.

CMSetupFilter

Filtering custom tool-settings dialog box events

Your application calls CMSetupFilter as a filter procedure before it calls the standard
modal dialog box filter procedure for the custom tool-settings dialog box. This routine
allows connection tools to filter events in the custom tool-settings dialog box.

Function CMSetupFilter(procID: INTEGER; theConfig: Ptr;
count:INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT): BOOLEAN;

Description procID is the ID for the connection tool that is being configured. Your application
should use the same value for procID as it passed to CMSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the item clicked in the dialog box.

magicCookie is a pointer to private storage for the connection tool.

If the event passed in was handled, CMSetupFilter returns TRUE. FALSE
indicates that your application should perform standard dialog box filtering.

Chapter 3: Connection Manager 45

CMSetupItem

Processing custom tool-settings dialog box events

CMSetupItem processes events for controls in the custom tool-settings dialog box.

Procedure CMSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER; VAR
magicCookie: LONGINT);

Description procID is the ID for the connection tool being configured. Your application should use
the same value for procID as it passed to CMSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theItem is the item clicked in the dialog box. This value can be modified and sent
back.

magicCookie is a pointer to private storage for the connection tool.

CMSetupCleanup

Performing clean-up operations

CMSetupCleanup disposes of any storage allocated in CMSetupPreflight and
performs other clean-up operations. If your application needs to shorten a dialog box, it
should do so after calling this routine.

Procedure CMSetupCleanup(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

Description procID is the ID for the connection tool that is being configured. Your application
should use the same value for procID as it passed to CMSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

magicCookie is a pointer to private storage for the connection tool.

46 Inside the Macintosh Communications Toolbox

CMSetupPostflight

Closing the tool file

CMSetupPostflight closes the tool file if it is not being used by any sessions.

Procedure CMSetupPostflight(procID:INTEGER);

Description procID is the ID for the connection tool that is being configured. Your application
should use the same value for procID as it passed to CMSetupPreflight.

Chapter 3: Connection Manager 47

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to configure a
connection tool. CMGetConfig and CMSetConfig provide the services that your application needs to
interface with a scripting language.

CMGetConfig

Getting the configuration string

CMGetConfig gets a configuration string from the connection tool.

Function CMGetConfig(hConn: ConnHandle): Ptr;

Description CMGetConfig returns a null-terminated, C-style string from the connection tool
containing tokens that fully describe the configuration of the connection record. For an
example, see the description of the next routine. If an error occurs, CMGetConfig
returns NIL.
It is the responsibility of your application to dispose of Ptr.

CMSetConfig

Setting the configuration with a string

CMSetConfig passes a configuration string to the connection tool.

Function CMSetConfig(hConn: ConnHandle; thePtr: Ptr): INTEGER;

Description CMSetConfig passes a null-terminated, C-style string (see the example string later in this
section) to the connection tool for parsing. The string is pointed to by thePtr and must
contain tokens that describe the configuration of the connection record. The string can be
any length.

CMSetConfig ignores items it does not recognize or find relevant; such an
occurrence causes the connection tool to stop parsing the string and to return the character
position where the error occurred. If the connection tool successfully parses the string, it
returns cmNoErr. If the connection tool does not successfully parse the string, it returns
one of the following values: a number less than -1 to indicate an OSErr, -1 to indicate an
unknown error, or a positive number to indicate the character position where parsing was
stopped.

Individual connection tools are responsible for the parsing operation.

Sample A null-terminated, C-style configuration string

Baud 9600 dataBits 8 Parity None StopBits 1 Port "Modem
Port" Handshake None HoldConnection False RemindDisconnect
False\0

48 Inside the Macintosh Communications Toolbox

Opening, using, and closing the connection

Once your application has performed the required tasks described in the previous sections, it can open and use
a connection.

CMOpen

Opening a connection

CMOpen attempts to open a connection, based on information contained in a connection
record.

Function CMOpen(hConn: ConnHandle; async: BOOLEAN; completor:
ProcPtr; timeout: LONGINT): CMErr;

Description hConn points to the connection record for the new connection.

async specifies whether the opening request is asynchronous. If your application makes
an asynchronous request, CMOpen returns cmNoErr immediately.

completor specifies the completion routine to be called upon completion of an
asynchronous open request. Completion routines are discussed in greater detail later in
this chapter, in the section “Completion Routines.”

timeout specifies a time period, in ticks, within which CMOpen must be completed
before the connection tool returns a cmTimeOut error. For no timeout, use -l. For a
single attempt to open the connection, use 0. Some connection tools ignore this parameter.

If no error occurs during the open attempt, CMOpen returns cmNoErr. CMOpen
returns a negative number if an operating system error occurred, or a positive number if a
Connection Manager error occurred.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmTimeout,
cmNotClosed, cmNotSupported, cmUserCancel.

Chapter 3: Connection Manager 49

CMClose

Closing a connection

CMClose closes a connection that is already open or in the process of opening.

Function CMClose(hConn: ConnHandle; async: BOOLEAN; completor:
ProcPtr; timeout: LONGINT; now: BOOLEAN): CMErr;

Description async specifies whether or not the close request is asynchronous. If your application
requests an asynchronous close, CMClose returns noErr immediately.

completor specifies the completion routine to be called upon completion of an
asynchronous close request. Completion routines are discussed in greater detail later in
this chapter, in the section “Completion Routines.”

timeout specifies a time period, in ticks, within which the close operation must be
completed before the connection tool returns a cmTimeOut error. For no timeout, use -1.
For a single attempt to close the connection, use 0. Some connection tools ignore this
parameter.

When now is TRUE, the connection tool closes the connection immediately. When now is
FALSE, the connection tool waits until all pending input and output have finished before
closing the connection.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmTimeout,
cmNotOpen, cmNotSupported, cmUserCancel.

CMAbort

Aborting a connection

CMAbort tells the Connection Manager to stop trying to complete a pending asynchronous
open request. Any open completion routines are executed. Your application can also call
this routine to stop an outstanding CMListen.

Function CMAbort(hConn: ConnHandle): CMErr;

Description hConn specifies the connection this routine affects.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmNotOpen,
cmNoRequestPending, cmNotSupported.

50 Inside the Macintosh Communications Toolbox

CMDispose

Disposing of a connection record

CMDispose disposes of the connection record and all associated data structures. It is up
to the connection tool to decide whether or not to wait for all pending read and write
operations to complete before closing and disposing of the connection.

Procedure CMDispose(hConn: ConnHandle);

Description hConn specifies the connection record disposed of by this routine.

CMIdle

Idle procedure

Your application should call CMIdle at least once every time it goes through its main
event loop, so that the connection tool can perform idle-loop tasks.

Procedure CMIdle(hConn: ConnHandle);

Description hConn specifies the connection for which idle-loop tasks are to be performed.

CMListen

Listening for incoming connection requests

CMListen “listens” for a connection request from another entity. Your application, after
it calls CMListen, should call CMStatus (which is described later in this section) to
see if a connection request has been received (by checking the
cmStatusIncomingCallPresent bit).

Function CMListen(hConn: ConnHandle; async: BOOLEAN; completor:
ProcPtr; timeout: LONGINT): CMErr;

Description async specifies whether or not the opening request is asynchronous. If your application
makes an asynchronous request, CMListen returns cmNoErr immediately. If your
application makes a synchronous request, CMListen stays in a “listen loop” until it
receives the connection request.

completor specifies the completion routine that the Connection Manager calls after it is
done listening for the connection request. Completion routines are called only after
asynchronous calls to CMListen. “Completion Routines,” later in this chapter, discusses
completion routines in more detail.

timeout specifies a time period, in ticks, within which a connection request must be
received before the connection tool returns a cmTimeout error. For no timeout, use
-1. For a single listen, use 0. Some connection tools ignore this parameter.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmTimeout,
cmNotClosed, cmNotSupported, cmUserCancel.

Chapter 3: Connection Manager 51

CMStatus

Getting connection status information

CMStatus returns a variety of useful status information about a connection. Your
application can call this routine at interrupt level.

Function CMStatus (hConn: ConnHandle; VAR sizes: CMBufferSizes; VAR
flags: CMStatFlags): CMErr;

Description sizes is a variable of type CMBufferSizes that contains the number of characters to
be read or written on the data, control, and attention channels. The indexes of the array
are as follows:

cmDataIn, cmDataOut, cmCntlIn, cmCntlOut, cmAttnIn,
cmAttnOut, cmRsrvIn, cmRsrvOut.

flags is a bit field with the following masks:
CONST

{ tool is opening connection }
cmStatusOpening = $00000001;

{ connection is open }
cmStatusOpen = $00000002;

{ tool is closing connections}
cmStatusClosing = $00000004;

{ data present on data channel }
cmStatusDataAvail = $00000008;

{ data present on cntl channel }
cmStatusCntlAvail = $00000010;

{ data present on attn channel }
cmStatusAttnAvail = $00000020;

{ data read pending }
cmStatusDRPend = $00000040;

{ data write pending }
cmStatusDWPend = $00000080;

{ cntl read pending }
cmStatusCRPend = $00000100;

{ cntl write pending }
cmStatusCWPend = $00000200;

{ attn read pending }
cmStatusARPend = $00000400;

{ attn write pending }
cmStatusAWPend = $00000800;

{ tool is breaking the
connection }
cmStatusBreakPending = $00001000;

{ tool is listening for data }
cmStatusListenPend = $00002000;

{ call waiting for tool to
handle }
cmStatusIncomingCallPresent = $00004000;

TYPE
CMStatFlags = LONGINT;

Result Codes cmGenericError, cmNoErr, cmNotSupported.

52 Inside the Macintosh Communications Toolbox

CMAccept

Accepting or rejecting a connection request

CMAccept accepts or rejects an incoming connection request.

Function CMAccept(hConn:ConnHandle; accept:BOOLEAN): CMErr;

Description Typically, an application will perform some actions after a CMListen, the results of which
determine whether to accept the request. CMAccept cannot be called from interrupt level.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed,
cmNoRequestPending, cmNotSupported.

CMIOKill

Stopping an asynchronous input/output request

CMIOKill terminates any pending input/output (I/O) requests on the specified channel.

Function CMIOKill (hConn: ConnHandle; which: INTEGER): CMErr;

Description which indicates the channel, and can take one of the following values:
cmDataIn, cmDataOut, cmCntlIn, cmCntlOut, cmAttnIn,
cmAttnOut.

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmNotOpen,
cmNotSupported.

Chapter 3: Connection Manager 53

CMReset

Resetting the connection

CMReset causes the connection to be reset. The exact state to which the connection is
reset depends upon the connection protocol being implemented. The connection tool
clears all local read and write buffers.

Procedure CMReset(hConn: ConnHandle);

CMBreak

Sending breaks

CMBreak effects a break operation upon the connection. The exact effect of this
operation depends upon the tool in use.

Procedure CMBreak(hConn: ConnHandle; duration; LONGINT; async:
BOOLEAN; completor: ProcPtr);

Description duration specifies in ticks the length of the break.

completor specifies the completion routine to be called upon completion of the break.
Completion routines are called only after asynchronous calls to CMBreak. “Completion
Routines,” later in this chapter, discusses completion routines in more detail.

54 Inside the Macintosh Communications Toolbox

CMGetConnEnvirons

Getting the connection environment

CMGetConnEnvirons provides a means for obtaining connection environment
information.

Function CMGetConnEnvirons (hConn : ConnHandle; VAR theEnvirons :
ConnEnvironRec) : CMErr;

Description CMGetConnEnvirons returns the connection environment record in
theEnvirons for the connection specified by ConnHandle. The connection tool
is responsible for filling in each field of ConnEnvironRec with either a value (if it
has a valid value to supply) or 0.

The structure for version 0 of the connection environment record is as follows:

TYPE
ConnEnvironRecPtr = ^ConnEnvironRec;
ConnEnvironRec = RECORD;

version : INTEGER;
{version of this data

structures}
baudRate : LONGINT;

{data transfer rate}
dataBits : INTEGER;

{number of significant bits per
byte}
channels : CMChannel;

{supported channels}
swFlowControl : BOOLEAN;

{if software flow control is in
use}
hwFlowControl : BOOLEAN;

{if hardware flow control is in
use}
flags : CMFlags;

END;

The version field takes on the following value:
CONST

curConnEnvRecVers = 0;

The flags field of the ConnEnvironRec is a bit field with the following value:
TYPE

CMFlags = INTEGER;

CONST
cmFlagsEOM = $0001;

Other bits of flags are reserved by Apple Computer, Inc.

Chapter 3: Connection Manager 55

channels is a bit field with the following values:
TYPE

CMChannel = INTEGER;

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
cmCntlClean = $00000200;
cmAttnClean = $00000400;

Other bits of channels are reserved by Apple Computer, Inc.

Result Codes cmGenericError, cmNoErr, cmNotSupported, envVersTooBig

56 Inside the Macintosh Communications Toolbox

Reading and writing data

The Connection Manager provides routines that read from and write data to a buffer. Your application can
also use the Connection Manager routine that reads data, CMRead, to search the incoming data stream for a
specified pattern of bytes. Data stream searching is discussed later in this chapter in the section
“CMAddSearch Adding a Data Stream Search.”

CMRead

Reading data
CMRead reads data into a block of memory. Your application cannot queue multiple read
requests for the same channel on the same connection. However, your application can have
both a pending read and a pending write on the same channel at the same time. Your
application can call this routine at interrupt level.

® Note: Your application should not check for an open channel prior to reading data. The
connection tool might be interpreting data locally and, therefore, not need an open
connection.

Function CMRead(hConn: ConnHandle; theBuffer: Ptr; VAR toRead:
LONGINT; theChannel: CMChannel; async: BOOLEAN; completor:
ProcPtr; timeout: LONGINT; VAR flags: CMFlags): CMErr;

Description theBuffer specifies the buffer to which the connection tool should read data.

toRead specifies the number of bytes to be read. If your application calls this routine
synchronously, the connection tool returns the actual number of bytes it read in toRead.
Your application can call CMStatus to see if an asynchronous read is pending. If your
application calls this routine asynchronously, the asyncCount field of the connection
record contains the actual number of bytes read when the connection tool calls the
completion routine.

theChannel specifies the channel on which reading takes place. Acceptable values are as
follows:
CONST

cmData = $00000001;

cmCntl = $00000002;

cmAttn = $00000004;

async specifies whether or not the request is asynchronous. If an asynchronous request is
made, cmNoErr is returned immediately.

Chapter 3: Connection Manager 57

completor specifies the completion routine to be called upon completion of an
asynchronous read request. Completion routines are discussed in greater detail later in
this chapter in the section “Completion Routines.”

timeout specifies a time period, in ticks, within which the connection tool must complete
the read operation. If it does not finish within the specified time, a timeout error occurs.
For no timeout, use -1. If your application specifies 0, the connection tool reads as many
bytes, up to toRead bytes, as it can in one read attempt. Some connection tools ignore
this parameter.

flags indicates whether your application received an end-of-message indicator. If your
application calls this routine asynchronously, the connection tool returns the end of
message indicator in the reserved0 field of the connection record when the completion
routine is called.

CONST
cmFlagsEOM = $0001;

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmTimeout,
cmNotOpen, cmNoRequestPending, cmNotSupported.

58 Inside the Macintosh Communications Toolbox

CMWrite

Writing data

CMWrite writes data from a block of memory. Your application cannot queue multiple
write requests for the same channel on the same connection. However, your application
can have both a pending read and a pending write on the same channel at the same time.
Your application can call this routine at interrupt level.

® Note. Your application should not check for an open channel prior to writing data. The
connection tool might be interpreting data locally and, therefore, not need an open
connection.

Function CMWrite(hConn: ConnHandle; theBuffer: Ptr; VAR toWrite:
LONGINT; theChannel: CMChannel; async: BOOLEAN; completor:
ProcPtr; timeout: LONGINT; flags: CMFlags): CMErr;

Description theBuffer specifies the buffer from which the connection gets the data to write.

toWrite specifies the number of bytes to be written. If your application calls this routine
synchronously, the connection tool returns the actual number of bytes it wrote in
toWrite. Your application can call CMStatus to see if an asynchronous write is
pending. If your application calls this routine asynchronously, the asyncCount field of
the connection record contains the actual number of bytes written when the completion
routine is called.

theChannel specifies the channel on which writing takes place. Acceptable values are as
follows:
CONST

cmData = $00000001;

cmCntl = $00000002;

cmAttn = $00000004;

async specifies whether or not the request is asynchronous. If your application makes an
asynchronous request, CMWrite returns cmNoErr immediately.

completor specifies the completion routine to be called upon completion of an
asynchronous write request. Completion routines are discussed in greater detail later in
this chapter in the section “Completion Routines.”

timeout specifies a time period, in ticks, within which the connection tool must complete
the write operation. If it does not finish within the specified period, a timeout error
occurs. For no timeout, use -1. If your application specifies 0, the connection tool writes
as many bytes, up to toWrite bytes, as it can in one write attempt. Some connection
tools ignore this parameter.

Chapter 3: Connection Manager 59

flags indicates whether the connection tool should send an end-of-message indicator.
An end-of-message indicator needs to be supported by the particular communications
protocol being used; if an end-of-message indicator is not supported by the connection
protocol, your application should ignore this field.

CONST
cmFlagsEOM = $0001;

Result Codes cmGenericError, cmNoErr, cmRejected, cmFailed, cmTimeout,
cmNotopen, cmNoRequestPending, cmNotSupported.

CMAddSearch

Adding a data stream search

When an application is reading data with CMRead, you can have the data stream searched
for one or more patterns of bytes. To perform the search, your application must pass
information to the Connection Manager, such as the connection on which the data stream
is coming in and the sequence of bytes for which to look. CMAddSearch tells the
Connection Manager to perform the search, passing it search-specific information as well.
Each time your application calls CMAddSearch, the Connection Manager searches for an
additional sequence of bytes.

Function CMAddSearch(hConn: ConnHandle; theString: Str255; flags:
CMSearchFlags; callBack: ProcPtr): LONGINT;

Description The value CMAddSearch returns is a search reference number that is used by the
CMRemoveSearch routine (described later in this section). If CMAddSearch returns
-1 the connection tool did not successfully add the search. Your application uses the search
reference number to distinguish among different searches that may be occurring
simultaneously on the same connection.

flags is a field that describes the search to be performed. The appropriate values are as
follows:
TYPE

CMSearchFlags = INTEGER;

CONST

cmSearchSevenBit = $0001;

If cmSearchSevenBit is on, the Connection Manager matches only the low 7 bits of a
character; otherwise, it matches all 8 bits. The other bits of flags are reserved by Apple
Computer, Inc.

callBack is a pointer to a routine the Connection Manager will call during CMRead in
the event that the connection tool finds a match. The calling conventions for the call-back
procedure are given in the next section.

60 Inside the Macintosh Communications Toolbox

MySearchCallBack

What to do when there’s a match

The Connection Manager will pass control to a search call-back procedure in the event that
the connection tool finds a match in the incoming data stream. This routine may be called
at interrupt level.

Procedure MySearchCallBack(hConn: ConnHandle; matchPtr: Ptr; refNum:
LONGINT);

Description matchPtr points to the last matched character in the read buffer.

MySearchCallBack uses the search reference number CMAddSearch returns.

® Note: The Connection Manager calls MySearchCallBack when a read is completed, and
therefore might be called at interrupt level. If your application makes asynchronous calls,
MySearchCallBack has the same restrictions as the standard Device Manager
completion routines.

CMRemoveSearch

Stopping a data stream search

CMRemoveSearch removes the search with the specified reference number for the
specified connection record. This routine cannot be called at interrupt level (making it
impossible for MySearchCallBack to call this routine).

Procedure CMRemoveSearch(hConn: ConnHandle; refNum: LONGINT);

Description refnum is the search reference number returned by CMAddSearch.

CMClearSearch

Clearing all data stream searches

CMClearSearch removes all searches associated with the specified connection record.

Procedure CMClearSearch(hConn: ConnHandle);

Description CMClearSearch cannot be called from interrupt level.

Chapter 3: Connection Manager 61

Handling events

The Connection Manager event-processing routines provide useful extensions to the Macintosh Toolbox Event
Manager. This section explains the four routines the Connection Manager provides. See “Other Events” in
Chapter 2 for sample code showing how an application can determine if an event needs to be handled by one
of these routines.

CMActivate

Activate events

CMActivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the connection.

Procedure CMActivate(hConn: ConnHandle; activate: BOOLEAN);

Description If activate is TRUE, the connection tool processes the activate event. Otherwise, it
processes a deactivate event.

CMResume

Resume events

CMResume processes a resume or suspend event for a window associated with the
connection.

Procedure CMResume(hConn: ConnHandle; resume: BOOLEAN);

Description If resume is TRUE, the connection tool processes a resume event. Otherwise, it processes
a suspend event.

CMMenu

Menu events

Your application must call CMMenu when the user chooses an item from a menu that is
installed by the connection tool.

Function CMMenu(hConn: ConnHandle; menuID: INTEGER; item: INTEGER):
BOOLEAN;

Description CMMenu returns FALSE if the connection tool did not handle the menu event. CMMenu
returns TRUE if the connection tool did handle the menu event.

62 Inside the Macintosh Communications Toolbox

CMEvent

Other events

When your application receives an event, it should check whether the refcon of the
window is a tool’s ConnHandle. Such an event occurs, for example, when the user
clicks a button in a dialog box displayed by the connection tool. If it does belong to a
connection tool’s window, your application can call CMEvent.

Procedure CMEvent(hConn: ConnHandle; theEvent: EventRecord);

Description A window (or dialog box) created by a connection tool has a connection record handle stored
in the refcon field for WindowRecord.

Chapter 3: Connection Manager 63

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

CMIntlToEnglish

Translating into English

CMIntlToEnglish converts a configuration string, which is pointed to by inputPtr,
to an American English configuration string pointed to by outputPtr.

Function CMIntlToEnglish(hConn: ConnHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description The function returns an operating system error code if any internal errors occur.
The connection tool allocates space for outputPtr. Your application is responsible for
disposing of the pointer with DisposPtr when done with it.
language specifies the language from which the string is to be converted. Valid values
for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, this routine returns cmNoErr, but
outputPtr is NIL.

CMEnglishToIntl

Translating from English

CMEnglishToIntl converts an American English configuration string, which is pointed
to by inputPtr, to a configuration string pointed to by outputPtr.

Function CMEnglishToIntl(hconn: ConnHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description The function returns an operating system error code if any internal errors occur.
The connection tool allocates space for outputPtr; your application is

responsible for disposing of the pointer with DisposPtr when done with it.
language specifies the language to which the string is to be converted. Valid

values for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, cmNoErr is still returned, but
outputPtr is NIL.

64 Inside the Macintosh Communications Toolbox

Miscellaneous routines

The routines described in this section perform a variety of tasks.

CMGetToolName
Getting the name of a tool

CMGetToolName returns in name the name of the tool specified by procID.

Procedure CMGetToolName(procID: INTEGER; VAR name: Str255);

Description If procID references a connection tool that does not exist, the Connection Manager sets
name to an empty string.

CMSetRefCon
Setting the connection record’s reference constant

CMSetRefCon sets the connection record’s refCon field to the specified value. It is
very important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

Procedure CMSetRefCon(hConn: ConnHandle; refCon : LONGINT);

CMGetRefCon
Getting the connection record’s reference constant

CMGet RefCon returns the connection record’s reference constant.

Function CMGetRefCon(hConn: ConnHandle): LONGINT;

Chapter 3: Connection Manager 65

CMSetUserData
Setting the userData field

CMSetUserData sets the connection record’s userData field to the specified value.
It is very important that your application use this routine to change the value of the
userData field, instead of changing it directly.

Procedure CMSetUserData(hConn: ConnHandle; userData: LONGINT);

CMGetUserData
Getting the userData field

CMGetUserData returns the connection record’s userData field.

Function CMGetUserData(hConn: ConnHandle): LONGINT;

CMGetVersion

Getting 'vers' resource information

CMGetVersion returns a handle to a relocatable block, which contains the information
in the connection tool’s 'vers' resource with ID=1. Your application is responsible for
disposing of the handle when done with it.

® Note: The handle returned is not a resource handle.

Function CMGetVersion(hConn:ConnHandle): Handle;

CMGetCMVersion

Getting the Connection Manager version number

CMGetCMVersion returns the version number of the Connection Manager.

Function CMGetCMVersion: INTEGER;

Description The version number of the Connection Manager described in this document is:
CONST

curCMVersion = 1;

66 Inside the Macintosh Communications Toolbox

Completion routines

This section describes the syntax and conventions that apply to completion routines in your application.

MyCompletion

Writing a completion routine

Completion routines have the same restrictions as do standard Device Manager completion
routines. For example, your routines should not allocate memory. See the Device Manager
chapters in Inside Macintosh for more information.

Procedure MyCompletion(hConn: ConnHandle);

Description When the Connection Manager calls MyCompletion, the errCode field of the
connection record contains the appropriate error code. The asyncCount field of the
connection record contains the actual number of bytes read or written. Because the
errCode field of the connection record is used by all of the Connection Manager
routines, it contains the error code for the asynchronous operation only during execution
of MyCompletion.

Chapter 3: Connection Manager 67

Quick reference

This section provides a reference to Connection Manager routines and data structures. At the end of this
section is a listing of routine selectors for programming in assembly language.

Routines

Connection Manager routines See page
CMAbort(hConn: ConnHandle): CMErr; 49

CMAccept(hConn: ConnHandle; accept:BOOLEAN): CMErr; 52

CMActivate(hConn: ConnHandle; activate: BOOLEAN); 61

CMAddSearch(hConn: ConnHandle; theString: Str255; 59
flags: CMSearchFlags; callBack: ProcPtr): LONGINT;

CMBreak(hConn: ConnHandle; duration: LONGINT; async: 53
BOOLEAN; completor: ProcPtr);

CMChoose(VAR hConn:ConnHandle; where: Point; 41
idleProc: ProcPtr): INTEGER;

CMClearSearch(hConn: ConnHandle); 60

CMClose(hConn: ConnHandle; async: BOOLEAN; completor: 49
ProcPtr; timeout: LONGINT; now: BOOLEAN): CMErr;

CMDefault(VAR theConfig: Ptr; procID: INTEGER; 40
allocate: BOOLEAN);

CMDispose(hConn: ConnHandle); 50

CMEnglishToIntl(hConn: ConnHandle; inputPtr: Ptr; VAR 63
outputPtr: Ptr; language: INTEGER): OSErr;

CMEvent(hConn: ConnHandle; theEvent: EventRecord); 62

CMGetCMVersion: INTEGER; 65

CMGetConfig(hConn: ConnHandle): Ptr; 47

CMGetConnEnvirons(hConn : ConnHandle; VAR 54
theEnvirons : ConnEnvironRec) : CMErr;

CMGetToolName(procID: INTEGER; VAR name: Str255); 64

CMGetProcID(name: Str255): INTEGER; 37

CMGetRefCon(hConn: ConnHandle): LONGINT; 64

CMGetUserData(hConn:ConnHandle): LONGINT; 65

CMGetVersion(hConn: ConnHandle): Handle; 65

CMIdle(hConn: ConnHandle); 50

CMIntlToEnglish(hConn: ConnHandle; inputPtr: Ptr; VAR 63
outputPtr: Ptr; language: INTEGER): OSErr;

68 Inside the Macintosh Communications Toolbox

Connection Manager routines See page
CMIOKill(hConn: ConnHandle; which: INTEGER): CMErr; 52

CMListen(hConn: ConnHandle; async: BOOLEAN; 50
completor: ProcPtr; timeout: LONGINT): CMErr;

CMMenu(hConn: ConnHandle; menuID: INTEGER; item: 61
INTEGER) : BOOLEAN;

CMNew(procID : INTEGER; flags : CMRecFlags; 38
desiredSizes : CMBufferSizes; refCon : LONGINT;
userData : LONGINT) : ConnHandle;

CMOpen(hConn: ConnHandle; async: BOOLEAN; completor: 48
ProcPtr; timeout: LONGINT): CMErr;

CMRead(hConn: ConnHandle; theBuffer: Ptr; VAR toRead: 56
LONGINT; theChannel: CMChannel; async: BOOLEAN;
completor: ProcPtr; timeout: LONGINT; VAR flags:
CMFlags) : CMErr;

CMRemoveSearch(hConn: ConnHandle; refNum: LONGINT); 60

CMReset(hConn: ConnHandle); 53

CMResume(hConn: ConnHandle; resume: BOOLEAN); 61

CMSetConfig(hConn: ConnHandle; thePtr: Ptr): INTEGER; 47

CMSetRefCon(hConn: ConnHandle; refCon: LONGINT); 64

CMSetupCleanup(procID: INTEGER; theConfig: Ptr; 54
count: INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

CMSetupFilter(procID: INTEGER; theConfig: Ptr; 44
count:INTEGER; theDialog: DialogPtr; VAR theEvent: EventRecord;
VAR theItem: INTEGER; VAR magicCookie: LONGINT): BOOLEAN;

CMSetupItem(procID: INTEGER; theConfig: Ptr; count: 45
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER;
VAR magicCookie: LONGINT);

CMSetupPostflight(procID:INTEGER); 46

CMSetupPreflight(procID: INTEGER; VAR magicCookie: 43
LONGINT): Handle;

CMSetupSetup(procID: INTEGER; theConfig: Ptr; count: 44
INTEGER; theDialog: DialogPtr; VAR magicCookie:
LONGINT);

CMSetUserData(hConn: ConnHandle; userData: LONGINT); 65

CMStatus(hConn: ConnHandle; VAR sizes: CMBufferSizes; 51
VAR flags: CMStatFlags): CMErr;

CMValidate(hConn: ConnHandle): BOOLEAN; 40

Chapter 3: Connection Manager 69

Connection Manager routines See page

CMWrite(hConn: ConnHandle; theBuffer: Ptr; VAR 58
toWrite: LONGINT; theChannel: CMChannel; async:
BOOLEAN; completor: ProcPtr; timeout: LONGINT; flags:
CMFlags): CMErr;

InitCM : CMErr; 36

Routines in your application See page

MySearchCallBack(hConn: ConnHandle; matchPtr: Ptr; 60
refNum: LONGINT);

MyCompletion(hConn: ConnHandle); 66

Connection Record

TYPE
ConnHandle = ^ConnPtr;
ConnPtr = ^ConnRecord;
ConnRecord = RECORD

procID : INTEGER;

flags : CMRecFlags;
errCode : CMErr;

refCon : LONGINT;
userData : LONGINT

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

reserved0 : LONGINT;
reservedl : LONGINT;
reserved2 : LONGINT;

cmPrivate : Ptr;

bufferArray : CMBuffers;
bufSizes : CMBufferSizes;

mluField : LONGINT;

asyncCount : CMBufferSizes;

END;

70 Inside the Macintosh Communications Toolbox

Constants and data types

TYPE
CMBufFields=(

cmDataIn,
cmDataOut,
cmCntlIn,
cmCntlOut,
cmAttnIn,
cmAttnOut,
cmRsrvIn,
cmRsrvOut);

CMBuffers = ARRAY(CMBufFields] OF Ptr;
CMBufferSizes = ARRAY[CMBufFields] OF LONGINT;

Connection Environment Record

TYPE
ConnEnvironRecPtr = ^ConnEnvironRec;
ConnEnvironRec = RECORD

version : INTEGER;
baudRate : LONGINT;
dataBits : INTEGER;
channels : CMChannel;
swFlowControl : BOOLEAN;
hwFlowControl : BOOLEAN;
flags : CMFlags;

END;

TYPE
CMFlags = INTEGER;

CONST
cmFlagsEOM = 1;

TYPE
CMChannel = INTEGER;

Chapter 3: Connection Manager 71

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
cmCntlClean = $00000200;
cmAttnClean = $00000400;

cmNoMenus = $00010000;
cmQuiet = $00020000;

Version constants

CONST
curConnEnvRecVers = 0;
curCMVersion = 1;

Connection record flags bit masks

TYPE
CMRecFlags = LONGINT;

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
cmCntlClean = $00000200;
cmAttnClean = $00000400;

cmNoMenus = $00010000;
cmQuiet = $00020000;

Search flags

TYPE
CMSearchFlags = INTEGER;

CONST
cmSearchSevenBit= 0001;

72 Inside the Macintosh Communications Toolbox

Values returned by CMChoose

CONST
chooseDisaster = -2;
chooseFailed = -1;
chooseAborted = 0;
chooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

Connection status flags

TYPE
CMStatFlags = LONGINT;

CONST
cmStatusOpening = $00000001; {tool is opening connection}
cmStatusOpen = $00000002; {connection is open}
cmStatusClosing = $00000004; {tool is closing connection}
cmStatusDataAvail = $00000008; {data present on data channel}
cmStatusCntlAvail = $00000010; {data present on cntl channel}
cmStatusAttnAvail = $00000020; {data present on attn channel}

cmStatusDRPend = $00000040; {data read pending}
cmStatusDWPend = $00000080; {data write pending}
cmStatusCRPend = $00000100; {cntl read pending}
cmStatusCWPend = $00000200; {cntl write pending}
cmStatusARPend = $00000400; {attn read pending}
cmStatusAWPend = $00000800; {attn write pending}

cmStatusBreakPending = $00001000; {tool is breaking the
connection}

cmStatusListenPend = $00002000; {tool is "listening" for data}
cmStatusIncomingCallPresent = $00004000; {call waiting for tool

to
handle}

Errors

TYPE
CMErr = OSErr;

CONST
cmGenericError = -1;
cmNoErr = 0;
cmRejected = 1;
cmFailed = 2;
cmTimeout = 3;
cmNotOpen = 4;
cmNotClosed = 5;
cmNoRequestPending= 6;
cmNotSupported = 7;
cmNoTools = 8;
cmUserCancel = 9;

Chapter 3: Connection Manager 73

Connection Manager routine selectors

® Assembly note. Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto the
stack and invokes the trap macro that has the same name as the routine, preceded by an underscore.
When expanded, these macros place the routine selector onto the stack, set A0 to point to the selector,
and invoke the trap _ CommToolboxDispatch ($A08B). Upon returning from the trap, the trap
macro pops the routine selector off the stack and places the return value into D0. It is your application’s
responsibility to clean up the stack by removing the parameters that were pushed onto the stack prior to
invoking the trap macro.

CMAbort .EQU 271 CMIOKill .EQU 297

CMAccept .EQU 269 CMListen .EQU 268

CMActivate .EQU 275 CMMenu .EQU 277

CMAddSearch .EQU 294 CMNew EQU 264

CMBreak .EQU 293 CMOpen .EQU 267

CMChoose .EQU 292 CMRead .EQU 273

CMClearSearch .EQU 296 CMRemoveSearch .EQU 295

CMClose .EQU 270 CMReset .EQU 278

CMDefault .EQU 280 CMResume .EQU 276

CMDispose .EQU 265 CMSetConfig .EQU 285

CMEnglishToIntl .EQU 287 CMSetRefCon .EQU 258

CMEvent .EQU 298 CMSetupCleanup .EQU 283

CMGetCMVersion .EQU 289 CMSetupFilter .EQU 290

CMGetConfig .EQU 284 CMSetupItem .EQU 282

CMGetConnEnvirons .EQU 300
CMSetupPostflight .EQU 299

CMGetProcID .EQU 263 CMSetupPreflight .EQU 291

CMGetRefCon .EQU 259 CMSetupSetup .EQU 281

CMGetToolName .EQU 262 CMSetUserData .EQU 260

CMGetUserData .EQU 261 CMStatus .EQU 272

CMGetVersion .EQU 288 CMValidate EQU 279

CMIdle .EQU 266 CMWrite .EQU 274

CMIntlToEnglish .EQU 286 InitCM .EQU 257

74 Inside the Macintosh Communications Toolbox

Chapter 4 Terminal Manager

76 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R describes the Terminal Manager, the Communications Toolbox manager that allows

applications to perform terminal emulation independent of a specific type of terminal. This chapter begins by

describing fundamental concepts about the Terminal Manager. It goes on to describe the terminal emulation

window and the data structure most important to the Terminal Manager, the terminal record. Next, this

chapter presents a detailed functional description of each routine provided by the Terminal Manager. It then

describes the routines that need to be in your application. At the end of the chapter, you’ll find a quick

reference to routines, data structures, and routine selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh, which will

implement communications services for users. Be careful not to confuse the services your application provides

with the services that tools provide.

To use terminal tools in an application, you need to be familiar with

� the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

� the QuickDraw™ application (described in Inside Macintosh, Volumes I, V)

� the Event Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Scrap Manager (described in Inside Macintosh, Volume I)

� the Dialog Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Connection Manager (described in Chapter 3 of this document)

Chapter 4: Terminal Manager 77

About the Terminal Manager

By using Terminal Manager routines, your application can implement a terminal emulation without having to
take into account the characteristics of any one type of terminal. Terminal tools, which are discussed in
Chapter 10, are responsible for implementing the characteristics of specific terminal types.

The Terminal Manager provides a generic terminal emulation that is best described with an example.
Suppose your application needs to tell a mainframe at the other end of an existing data connection that the
user has typed the letter a. Your application detects that the user has pressed a key, and passes this event on to
the Terminal Manager by calling the TMKey routine. The Terminal Manager passes this event on to a
previously selected terminal tool. The terminal tool figures out the appropriate value to transmit for a and
sends it out on the data connection. This example, of course, is a very simple one. But it is meant to give you
a general feel for what goes on inside the Terminal Manager. The rest of this chapter goes into much more
detail.

Figure 4-1 shows the data flow into and out of the Terminal Manager.

� Figure 4-1 Data flow into and out of the Terminal Manager

The most important data structure maintained by the Terminal Manager is the terminal record, which is where
all the specifics of a terminal emulation are stored. For example, the terminal record might show that your
application is emulating a VT320™ terminal, and that the Terminal Manager should try to cache the terminal
window before clearing it.

78 Inside the Macintosh Communications Toolbox

One important aspect of the terminal record is that it allows you to write routines independent of
specific terminal characteristics. For instance, when an application wants to transmit a keystroke to a host
computer, it tells the Terminal Manager to transmit the keystroke, and the terminal tool figures out exactly how
to transmit the keystroke for a specific type of terminal.

Another important aspect of the terminal record is that it allows for multiple instances of the same tool.
This means that the same tool can be used by different processes at the same time, as in a MultiFinder
environment, or by different threads in a given application. The terminal record is described in greater detail
later in this chapter.

Besides providing access to basic terminal emulation services, the Terminal Manager includes routines
that make it easy for your application to configure a terminal tool, either by presenting the user with a dialog
box or by interfacing directly with a scripting language. The Terminal Manager also contains routines that
make it easier for you to localize your applications in other languages.

You can use the Terminal Manager in conjunction with other Communications Toolbox managers to
create a communications application with basic connection, terminal emulation, and file transfer capabilities.
Or, you can use the Terminal Manager with some other connection service or file transfer service instead of the
Connection Manager and File Transfer Manager. You can also write your own terminal tool for the Terminal
Manager to use (this procedure is discussed in Chapters 8 and 10). Regardless of which method you choose,
your application should be able to handle different terminal tools so that users can change tools and still be
able to use your program.

The terminal emulation window

The Terminal Manager provides terminal tools with a terminal emulation window. In addition to title bar,
scroll bars, and other standard user interface elements, the terminal emulation window has two major parts:
the terminal emulation region and the cache region. Figure 4-2 shows these parts.

� Figure 4-2 A terminal emulation window

Chapter 4: Terminal Manager 79

The terminal emulation region

The terminal emulation region is the area of the terminal window in which the terminal tool displays data in a
manner that emulates a specific terminal. Terminal tools use a terminal emulation buffer to store the data
displayed in the terminal emulation region. Your application and the terminal tools exchange this data
through a TermDataBlock, which is an extensible data structure that handles text and graphics
information. For text terminals, the TermDataBlock describes a line of text in the terminal emulation
region. For graphics terminals, the TermDataBlock describes a picture in the terminal emulation region.
The format of TermDataBlock is as follows:

TYPE
TermDataBlockH = ^TermDataPtr;
TermDataBlockPtr = ^TermDataBlock;
TermDataBlock = RECORD

flags : TMTermTypes;
theData : Handle;
auxData : Handle;
reserved : LONGINT;

END;

flags describes the data in the TermDataBlock. Valid values are: TMTextTerminal and
TMGraphicsTerminal.

theData is a handle to data, which is text characters for text terminals and a QuickDraw picture
for graphics terminals. Your application can get the size of theData by calling
GetHandleSize(theData).

auxData and reserved are reserved by Apple Computer, Inc. Do not use them or your application may not
work in the future.

The cache region

The cache region is an optional area in the window, which your application can use to display data that scrolls
off the top of the terminal emulation region. Because terminal tools do not maintain this area of the terminal
emulation window, your application must provide all the necessary code if you want a cache region.

80 Inside the Macintosh Communications Toolbox

The terminal record

The terminal record contains information that describes a terminal emulation, as well as pointers to Terminal
Manager internal data structures. The Terminal Manager uses this information to “translate” the protocol-
independent routines used by an application or tool into a service implemented according to a specified
terminal emulation. Most of the fields in the terminal record are filled in when an application calls TMNew,
described later in this chapter.

Because the context for a given terminal emulation is maintained in a terminal record, an application
can maintain more than one terminal emulation at the same time. All the application has to do is create a new
terminal record every time it initiates a terminal emulation.

D Important Your application, in order to be compatible with future releases of the Terminal Manager,
should not directly manipulate the fields of the terminal record (with the exception of
config and oldConfig). The Terminal Manager provides routines that applications
and tools can use to change terminal record fields. These routines are discussed later in
this chapter. D

Terminal record data structure

TYPE
TermHandle = ^TermPointer;
TermPointer = ^TermRecord;
TermRecord = RECORD

procID : INTEGER;

flags : TMFlags;
errCode : TMErr;

refCon : LONGINT;
userData : LONGINT;

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

environsProc : ProcPtr;
reservedl : LONGINT;
reserved2 : LONGINT;

Chapter 4: Terminal Manager 81

tmPrivate : Ptr;

sendProc : ProcPtr;
breakProc : ProcPtr;
cacheProc : ProcPtr;
clikLoop : ProcPtr;

owner : WindowPtr;
termRect : Rect;
viewRect : Rect;
visRect : Rect;

lastIdle : LONGINT;

selection : TMSelection;
selType : TMSelTypes;

mluField : LONGINT;

END;

procID
procID is the terminal tool ID. This value is dynamically assigned by the Terminal Manager when your
application calls TMGetProcID.

flags
flags is a bit field with the following masks:

CONST
tmInvisible = $00000001;
tmSaveBeforeClear= $00000002;
tmNoMenus = $00000004;
tmAutoScroll = $00000008;

TYPE
TMFlags = LONGINT;

If your application sets tmInvisible, the Terminal Manager maintains a terminal emulation but
does not display it. Your application can use the terminal emulation and cache region to create some other
presentation service, instead of a terminal emulation.

If your application sets tmSaveBeforeClear, the terminal tool will try to cache the entire terminal
emulation region in response to any clear-screen operation. Clear-screen operations are generated from a
user’s request, a clear-screen character sequence, or a terminal-reset character sequence.

If your application sets tmNoMenus, the terminal tool will not put up any custom menus.
If your application sets tmAutoScroll, the terminal tool will automatically scroll the terminal

emulation window (if necessary) while the user is highlighting a selection.

82 Inside the Macintosh Communications Toolbox

errCode
The Terminal Manager does not use errCode; it is included in this version (version 1.0) of the terminal
record for reasons of historical preservation. Your application must not use this field.

refCon
refCon is a LONGINT that your application can use.

userData
userData is a LONGINT that your application can use.

defProc
defProc is a pointer to the main code resource of the terminal tool that will implement the specifics of the
terminal emulation. The terminal tool’s main code resource is of type 'tdef'

config
config is a pointer to a data block that is private to the terminal tool.

Your application can store the contents of config to save the state of a terminal in a document. The
structure, size, and contents of the configuration record are set by the tool. Your application can determine
the size of the configuration record by calling GetPtrSize, overwrite its contents using BlockMove, and
validate the contents with TMValidate.

Your application can use TMGetConfig and TMSetConfig to manipulate fields in this record.
For details, read “Interfacing with a Scripting Language,” later in this chapter. Your application can save the
state of the terminal record by saving the string TMGetConfig returns, Also, your application can restore
the configuration of the terminal record by passing a saved string to TMSetConfig.
You can find a description of config from a terminal tool perspective in Chapter 8.

oldConfig
oldConfig is a pointer to a data block that is private to the terminal tool and contains the most recently
saved version of config. Your application is responsible for setting oldConfig when the user saves a
session document.

environsProc
environsProc is a pointer to a routine in your application that the terminal tool can call to obtain a
record describing the connection environment. A more detailed description of environsProc appears later
in this chapter in “Routines That Must Be in Your Application.”

reserved1 and reserved2
reserved1 and reserved2 are reserved for the Terminal Manager. Your application must not use these
fields.

Chapter 4: Terminal Manager 83

tmPrivate
tmPrivate is a pointer to a data block that is private to the terminal tool. Your application must not use
this field.

sendProc
sendProc is a pointer to a routine your application calls when it needs to send data to another application.
A more detailed description of sendProc appears later in this chapter in “Routines That Must Be in Your
Application.”

breakProc
breakProc is a pointer to a routine in your application that performs a break operation. The effect the
break has depends on the terminal emulation being used. A more detailed description of breakProc
appears later in this chapter in “Routines That Must Be in Your Application.”

cacheProc
cacheProc is a pointer to a routine in your application that saves lines that scroll off the top of the
terminal emulation region. The terminal tool also uses this routine to save the terminal screen before a clear-
screen operation (if the tmSaveBeforeClear bit is set in the flags field of the terminal record). A
more detailed description of cacheProc appears later in this chapter in “Routines That Must Be in Your
Application.”

clikLoop
clikLoop is a pointer to a routine in your application that handles mouse clicks. The terminal tool calls the
click loop repeatedly when the user is clicking or dragging an object. A more detailed description of this
routine appears later in this chapter in “Routines That Must Be in Your Application.”

owner
owner is a pointer to the window in which your application displays the terminal emulation.

termRect
termRect is the portRect of the current window, minus the scroll bars. This portRect represents the
boundaries of the terminal emulation region. Figure 4-3 shows how termRect relates to the terminal
emulation window.

® Note: Your application can display the terminal emulation region in an area that is smaller than
termRect, but it must not display the combination of the cache region and terminal emulation region in
an area larger than termRect.

84 Inside the Macintosh Communications Toolbox

viewRect
viewRect is a rectangle, measured in pixels, that represents the screen of an actual terminal. For some
terminal types (for instance, Teletype or VT102™) viewRect has 24 lines and 80 columns. The dimensions
of viewRect remain constant except when elements such as a tab ruler or status bar appear in the terminal
emulation window, or when the size of the display font changes. The relationship of termRect to
viewRect determines how much of viewRect is visible in the terminal emulation window.

Figure 4-3 shows how viewRect relates to the terminal emulation window.

� Figure 4-3 bounds of viewRect and termRect

visRect
visRect is a rectangle that represents the currently visible rows and columns in the terminal emulation
region (for text terminals). Numbering of rows and columns begins with the number 1.

visRect.top is the top visible line, and visRect.left is the leftmost visible column in the
terminal emulation region. visRect.bottom is the bottom visible line, and visRect.right is the
rightmost visible column in the terminal region. These values are used by the application to determine scroll-
bar values.

Bounds of

viewRect

Bounds of

termRect

Chapter 4: Terminal Manager 85

lastIdle
lastIdle is the last time, in ticks, that the idle procedure was called for the specified terminal record.

selection
selection is a data structure that describes the extent of the current selection in the terminal emulation
window. Since selection can describe either a rectangle or a region, it describes the selection in one of
two kinds of data structures: a Rect or a RgnHandle. The format of the TMSelection data structure is
as follows:

TYPE
TMSelection = RECORD
CASE INTEGER OF
1: (

selRect : : Rect;
);

2: (
selRgnHandle : RgnHandle;
filler : LONGINT;
};

END;

selRect is of type Rect and describes the rectangle that has been selected. On a text terminal, it
contains the row/column pairs, with counting beginning at 1. On a graphics terminal, it contains pixel
coordinates, with (1,1) being the topLeft corner of the terminal region.

On a graphics terminal, if the selection is a MacPaint® program-style lasso, selection is a
selRgnHandle that represents the selection region.

selType
selType is a field that further describes a selection; it indicates the highlighting mode that is used to show
the selection. Valid values are as follows:

CONST
selTextNormal = $0001;
selTextBoxed = $0002;
selGraphicsMarquee= $0004;
selGraphicsLasso = $0008;

TYPE

TMSelTypes = INTEGER;

Figure 4-4 and Figure 4-5 show that even though two selections may have the same coordinates, different
values for selType yield different highlighting results. Figure 4-4 shows the text selection mode
selTextNormal. Figure4-5 shows a text selection in selTextBoxed mode.

86 Inside the Macintosh Communications Toolbox

� Figure 4-4 The text selection mode
selTextNormal

� Figure 4-5 The text selection mode
selTextBoxed

selGraphicsMarquee is a standard rectangular MacPaint-style marquee. selGraphicsLasso
is a standard MacPaint-style lasso. Your application uses these types of highlighting with graphics
terminals.

mluField
mluField is a LONGINT that terminal tools use. Your application does not need to be concerned
with this field.

Chapter 4: Terminal Manager 87

Terminal Manager routines

This section describes the routines that tools and applications can use to access Terminal Manager
services. Your application cannot call these routines from interrupt level.

Below is a listing of the routines described in this section in the order in which they are
presented.

InitTM / 88 TMClearSearch / 103
TMGetProcID / 88 TMSetSelection / 104
TMNew / 89 TMGetSelect / 104
TMDefault / 91 TMActivate / 105
TMValidate / 91 TMResume / 105
TMChoose / 92 TMMenu / 105
TMSetupPreflight / 94 TMClick / 106
TMSetupSetup / 95 TMKey / 106
TMSetupFilter / 95 TMUpdate / 106
TMSetupItem / 96 TMEvent / 107
TMSetupCleanup / 96 TMIntlToEnglish / 108
TMSetupPostflight / 97 TMEnglishToIntl / 108
TMGetConfig / 98 TMGetToolName / 109
TMSetConfig / 98 TMSetRefCon / 109
TMStream / 99 TMGetRefCon / 109
TMPaint / 99 TMSetUserData / 110
TMIdle / 99 TMGetUserData / 110
TMGetLine / 100 TMGetVersion / 110
TMScroll / 100 TMGetTMVersion / 110
TMClear / 100 TMGetCursor / 111
TMReset / 101 TMDoTermKey / 111
TMResize / 101 TMCountTermKeys / 112
TMDispose / 101 TMGetIndTermKey / 112
TMAddSearch / 102 TMGetTermEnvirons / 112
TMRemoveSearch / 103

88 Inside the Macintosh Communications Toolbox

Preparing for a terminal emulation

Before your application can start a terminal emulation, it must initialize the Terminal Manager (by calling
InitTM), find out the procID of the tool it requires (by calling TMGetProcID), create a terminal
record (by calling TMNew), and then configure the terminal tool (by restoring config from a saved
document; or by calling TMChoose, the terminal tool custom configuration routines, or
TMSetConfig).

InitTM

Initializing the Terminal Manager

InitTM initializes the Terminal Manager. Your application should call this routine
after it calls the standard Macintosh Toolbox initialization routines.

▲ Warning Your application must initialize the Communications Resource Manager (by
calling InitCRM) and then the Communications Toolbox Utilities (by calling
InitCTBUtilities), whether or not it uses any of their calls, before it initializes
the Terminal Manager. ▲

Function InitTM: TMErr;

Description InitTM returns an operating system error code if appropriate.
Your application must check for the presence of the Communications Toolbox before
calling this function. Sample code under “Determining Whether the Managers are
Installed” in Appendix C shows you how your application can make this check.

Result Codes tmGenericError, tmNoErr, tmNoTools

TMGetProcID

Getting current procID information

Your application should call TMGetProcID just before creating a new terminal
record, to find out the procID of a tool.

Function TMGetProcID(name: Str255): INTEGER;

Description name specifies a terminal tool. If a terminal tool is available with the specified name,
its procID is returned. If name references a nonexistent terminal tool,
TMGetProcID returns -1.

Chapter 4: Terminal Manager 89

TMNew
Creating a terminal record

Once the Terminal Manager has been initialized, your application needs to call TMNew
to create a terminal record to describe the terminal emulation that is to take place.
TMNew creates a new terminal record, fills in the fields it can, based on the parameters
that were passed to it, and returns a handle to the new record in TermHandle.
TMNew automatically makes two calls to TMDefault (which is described later in this
chapter) to fill in config and oldConfig. The Terminal Manager then loads the
terminal tool’s main definition procedure, moves it high in the current heap, and locks
it. If an error occurs that prevents a new terminal record from being created (for
example, running out of memory), TMNew passes back NIL in TermHandle.

Your application must set the current port to the terminal window before it calls
TMNew.

Function TMNew(termRect: Rect; viewRect: Rect; flags: TMFlags; procID:
INTEGER; owner: WindowPtr; sendProc: ProcPtr; cacheProc:
ProcPtr; breakProc: ProcPtr; clikLoop: ProcPtr; environsProc:
ProcPtr; refCon: LONGINT; userData: LONGINT): TermHandle;

Description termRect is a rectangle in local coordinates that represents the boundaries of the
terminal emulation region. Your application initially sets this value by passing it as a
parameter to TMNew.

viewRect is a subset of termRect, which the terminal tool can actually write into.
Your application initially sets this value by passing it as a parameter to TMNew, but the
terminal tool may resize it.

flags is a bit field with the following masks:

CONST
tmInvisible = $00000001;
tmSaveBeforeClear = $00000002;
tmNoMenus = $00000004;
tmAutoScroll = $00000008;

flags represents a request from your application for a level of service.
Apple Computer, Inc. has reserved the bits of flags that are not shown in this
document. Do not use them, or your code may not work in the future.
If your application sets tmInvisible, the Terminal Manager maintains a terminal
emulation but does not display it. Your application can use the terminal emulation
and cache regions to create some other presentation service instead of a terminal
emulation.
If your application sets tmSaveBeforeClear, the terminal tool attempts to cache
the entire terminal emulation region in response to any clear-screen operation. Clear-
screen operations are generated from either a user’s request, a clear-screen character
sequence, or a terminal-reset character sequence.
If your application sets tmNoMenus, the terminal tool does not display any custom
menus.

90 Inside the Macintosh Communications Toolbox

If your application sets tmAutoScroll, the terminal tool automatically scrolls the
terminal emulation window (if necessary) while the user highlights a selection.

procID values are dynamically assigned by the Terminal Manager to tools at run
time. Applications should not store procID values in “settings” files. Instead, they
should store tool names, which can be converted to procID values with
TMGetProcID. Use the ID that TMGetProcID returns for procID.

owner is a pointer to the window in which your application is displaying the
terminal emulation. If tmInvisible is FALSE, owner should be a GrafPort
that the terminal tool has control over.

sendProc is a pointer to a routine the terminal tool calls when it needs to send
data on a connection. A more detailed description of sendProc appears later in
this chapter, in the section “Routines That Must Be in Your Application.”

cacheProc is a pointer to a routine in your application that saves lines that scroll
off the top of the terminal emulation region. This routine also saves the terminal
screen before a clear-screen operation (if tmSaveBeforeClear is set). If your
application does not have a cacheProc, specify NIL in this field. A more detailed
description of cacheProc appears later in this chapter in the section “Routines
That Must Be in Your Application.”

breakProc is a pointer to a routine in your application that performs some sort of
break operation. The effect the break has depends upon the terminal emulation tool
that your application is using. A more detailed description of breakProc appears
later in this chapter in the section “Routines That Must Be in Your Application.”

clikLoop is a pointer to a routine in your application that is called when the
mouse button is held down. The terminal tool calls the click loop repeatedly when
users are clicking and dragging the mouse. A more detailed description of
clikLoop appears later in this chapter, in the section “Routines That Must Be in
Your Application.” Specify NIL in this field if your application has no clikLoop
procedure.

environsProc is a pointer to a routine that the terminal tool calls when it
requires information about the connection. See “Connection Manager Routines” in
Chapter 3 for information about the CMGetConnEnvirons routine.

userData and refCon are fields your application can use.

Chapter 4: Terminal Manager 91

TMDefault

Initializing the terminal record

TMDefault fills the configuration record pointed to by theConfig with the
default configuration, which is specified by the terminal tool with the given procID.
TMNew calls this procedure automatically when it fills in the config and
oldConfig fields in a new terminal record.

Procedure TMDefault(VAR theConfig: Ptr; procID: INTEGER;
allocate: BOOLEAN);

Description If allocate is TRUE, the tool allocates space for theConfig in the current
heap zone.

TMValidate

Validating the terminal record

TMValidate performs an internal consistency check on the configuration and
private data records of the terminal record. TMNew and TMSetConfig call this
routine after they have created a new terminal record, to make sure that the record
contains values identical to those specified by the terminal tool.

Function TMValidate(hTerm: TermHandle): BOOLEAN;

Description If the validation fails, the Terminal Manager returns TRUE and the terminal tool fills
the configuration record with default values by calling TMDefault.

Your application can call this routine after restoring a configuration, to verify that the
terminal record contains the correct information, in a manner similar to that shown
next.

BlockMove(saveConfig,hTerm^^.config,GetPtrSize(hTerm^^
.config));

IF TMValidate(hTerm) THEN BEGIN
(validate failed)
END
ELSE BEGIN

(validate succeeded)
END

92 Inside the Macintosh Communications Toolbox

TMChoose

Configuring a terminal tool

An application can configure a terminal tool in one of three ways. The easiest and
most straightforward way is by calling the TMChoose routine. This routine presents
the user with a dialog box similar to the one shown in Figure 4-6.

� Figure 4-6 A sample tool-settings dialog box

The second way an application can configure a terminal tool is by presenting the user
with a custom tool-settings dialog box. This method is much more difficult and
involves calling six routines. The routines are described in the next section, “Custom
Configuration of a Terminal Tool,” and “The Custom Tool-Settings Dialog Box” in
Appendix C provides example code

The third way your application can configure a terminal tool is by using the
scripting language interface, described in “Interfacing with a Scripting Language,”
later in this chapter. This method allows your application to bypass user interface
elements.

Function TMChoose(VAR hTerm: TermHandle; where: Point;
idleProc: ProcPtr): INTEGER;

Description where is the point specified in global coordinates, where the upper-left corner of
the dialog box should appear. It is recommended that your application place the
dialog box as close to the upper-left corner of the screen as possible because the size
of the dialog box varies from tool to tool.

idleProc is a procedure with no parameters that the Terminal Manager will
automatically call every time TMChoose loops through the setup dialog box filter
procedure. Pass NIL if your application has no idleProc.

This area is filled in
by the terminal tool

Chapter 4: Terminal Manager 93

TMChoose returns one of the following values:

CONST
chooseDisaster = -2;
chooseFailed = -1;
chooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

chooseDisaster means that the TMChoose operation failed, destroyed the
terminal record, and returned NIL in the terminal handle.

chooseFailed means that the TMChoose operation failed and the terminal
record was not changed.

chooseOKMinor means that the user clicked OK in the dialog box, but did not
change the terminal tool being used.

chooseOKMajor means that the user clicked OK in the dialog box and also
changed the terminal tool being used. The Terminal Manager then destroys the old
terminal handle by calling TMDispose, and returns a new terminal handle in
hTerm

chooseCancel means that the user clicked Cancel in the dialog box.

94 Inside the Macintosh Communications Toolbox

Custom configuration of a terminal tool

Your application creates a custom tool-settings dialog box and presents it to the user by using six
Terminal Manager routines: TMSetupPreflight, TMSetupSetup, TMSetupFilter,
TMSetupItem, TMSetupCleanup, and TMSetupPostflight. Using these routines is a bit
more involved than calling TMChoose, but they provide your application with much more flexibility.
Refer to the code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an
application calls these routines.

To build a list of available terminal tools, use the routine CRMGetIndToolName, described in
Chapter 6.

TMSetupPreflight

Setting up the custom tool-settings dialog box

TMSetupPreflight returns a handle to a dialog item list that your application
appends to the tool-settings dialog box. The handle comes from the terminal tool.
(The calling application uses AppendDITL, which is discussed in Chapter 7.) This
handle is not a resource handle. Your application is responsible for disposing of the
handle when done with it.

The terminal tool can use TMSetupPreflight to allocate a block of private
storage, and to store the pointer to that blocking magicCookie.
magicCookie should be passed to the other routines that are used to set up the
custom tool-settings dialog box.

Function TMSetupPreflight(procID: INTEGER; VAR magicCookie:
LONGINT): Handle;

Description procID is the ID for the terminal tool that is being configured. Your application
should get this value by using the TMGetProcID routine, which is discussed
earlier in this chapter.

® Note: The refcon of the custom tool-settings dialog box should point to a data
structure (an example of which is shown next) in which the first two bytes are the tool
procID and the next four bytes are magicCookie. UserItem routines, for
example, may require procID to obtain tool resources.

TYPE
chooseDLOGdata = RECORD

procID : INTEGER
magicCookie : LONGINT

END;

Chapter 4: Terminal Manager 95

TMSetupSetup

Setting up the custom tool-settings dialog box items

TMSetupSetup tells the terminal tool to set up controls (like radio buttons or
check boxes) in the dialog item list returned by TMSetupPreflight.

Procedure TMSetupSetup(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie:
LONGINT);

Description procID is the ID for the terminal tool being configured. Your application should
use the same value for procID as it passed to TMSetupPreflight.
theConfig is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box in which configuration is taking place.

magicCookie is a pointer to private storage for the terminal tool.

TMSetupFilter

Filtering custom tool-settings dialog box events

Your application calls TMSetupFilter as a filter procedure before it calls the
standard modal dialog box filter procedure for the custom tool-settings dialog box.
This routine allows terminal tools to filter events in the custom tool-settings dialog
box.

Function TMSetupFilter(procID: INTEGER; theConfig: Ptr;
count:INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT): BOOLEAN;

Description procID is the ID for the terminal tool that is being configured. Your application
should use the same value for procID as it passed to TMSetupPreflight.

theConfig is the pointer to the configuration record for the tool being
configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the item clicked in the dialog box.

magicCookie is a pointer to private storage for the terminal tool.

If the event passed in was handled, TMSetupFilter returns TRUE. Otherwise,
FALSE indicates that your application should perform standard dialog box filtering.

96 Inside the Macintosh Communications Toolbox

TMSetupItem
Processing custom tool-settings dialog box events

TMSetupItem processes events for controls in the custom tool-settings dialog box.

Procedure TMSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER;
VAR magicCookie: LONGINT);

Description procID is the ID for the terminal tool being configured. Your application should
use the same value for procID as it passed to TMSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theItem is the item clicked in the dialog box. This value can be modified and sent
back.

magicCookie is a pointer to private storage for the terminal tool.

TMSetupCleanup

Performing clean-up operations

TMSetupCleanup disposes of any storage allocated in TMSetupPreflight
and performs other clean-up operations. If your application needs to shorten a
dialog box, it should do so after calling this routine.

Procedure TMSetupCleanup(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie:
LONGINT);

Description procID is the ID for the terminal tool that is being configured. Your application
should use the same value for procID as it passed to TMSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

magicCookie is a pointer to private storage for the terminal tool.

Chapter 4: Terminal Manager 97

TMSetupPostflight

Closing the tool file

TMSetupPostflight closes the tool file if it is not being used by any session.

Procedure TMSetupPostflight(procID:INTEGER);

Description procID is the ID for the terminal tool that is being configured. Your application
should use the same value for procID as it passed to TMSetupPreflight.

98 Inside the Macintosh Communications Toolbox

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to
configure a terminal tool. TMGetConfig and TMSetConfig provide the services that your
application needs to interface with a scripting language.

TMGetConfig

Getting the configuration string

TMGetConfig gets a configuration string from the terminal tool.

Function TMGetConfig(hTerm: TermHandle): Ptr;

Description TMGetConfig returns a null-terminated, C-style string from the terminal tool
containing tokens that fully describe the configuration of the terminal record. For an
example, see the description of the next routine. If an error occurs, TMGetConfig
returns NIL.

It is the responsibility of your application to dispose of Ptr.

TMSetConfig

Setting the configuration with a string

TMSetConfig passes a configuration string to the terminal tool.

Function TMSetConfig(hTerm: TermHandle; thePtr: Ptr): INTEGER;

Description TMSetConfig passes a null-terminated, C-style string (see the example string later
in this section) to the terminal tool for parsing. The string is pointed to by thePtr
and must contain tokens that describe the configuration of the terminal record.
The string can be any length.

TMSetConfig ignores items it does not recognize or find relevant; such an
occurrence causes the terminal tool to stop parsing the string and to return the
character position where the error occurred. if the terminal tool successfully parses
the string, it returns tmNoErr. If the terminal tool does not successfully parse the
string, it returns one of the following values: a number less than -1 to indicate an
OSErr, -1 to indicate an unknown error, or a positive number to indicate the
character position where parsing was stopped.

Individual terminal tools are responsible for the parsing operation.

Sample A null-terminated, C-style configuration string
FontSize 9 Width 80 Cursor Underline Online True LocalEcho False

AutoRepeat True Repeat Controls False AutoWrap False NewLine False

SmoothScroll False Transparent False SwapBSDelete False\0

Chapter 4: Terminal Manager 99

Using terminal emulation routines

Once your application has performed the required tasks described in the previous sections, it can use the
routines described next to perform terminal emulations.

TMStream

Putting data into the terminal

Your application should use TMStream to give the terminal tool data to write into
the terminal emulation buffer.

Function TMStream(hTerm: TermHandle; theBuffer: Ptr; theLength:
LONGINT; flags: CMFlags): LONGINT;

Description TMStream returns the number of bytes that it processed.

theBuffer is the data that is either to be placed in the terminal emulation buffer
or processed by the terminal tool. Typically the data theBuffer points to has
been provided by the connection tool your application is using.

CMFlags is described under the description of CMRead in Chapter 3.

TMPaint

Drawing part of the terminal emulation region

TMPaint draws the data in theTermData into the rectangle theRect,
which is in local window coordinates.

Procedure TMPaint(hTerm: TermHandle; theTermData:TermDataBlock;
theRect: Rect);

Description theTermData.theData must be a handle to a block on the heap.

TMIdle

Providing necessary idle time

Your application should call TMIdle at least once every time it goes through its
main event loop, so that the terminal tool can perform idle-loop tasks (like blinking
the cursor or searching the terminal emulation buffer).

Procedure TMIdle(hTerm: TermHandle);

Description hTerm specifies the terminal for which idle-loop tasks are to be performed.

100 Inside the Macintosh Communications Toolbox

TMGetLine

Getting lines from the terming emulation buffer

TMGetLine returns a line from the terminal emulation buffer.

Procedure TMGetLine(hTerm: TermHandle; lineNo: INTEGER; VAR
theTermData:TermDataBlock);

Description lineNo specifies the line number of a line of data in the terminal emulation buffer.
(Line numbering in the buffer begins with 1.)

Your application must allocate theTermData.theData with a length of 0. For
example, theTermData. theData: =NewHandle (0). The terminal
tool copies the text into theTermData. theData, and increases the size of the
handle if necessary. Your application is responsible for disposing of
theTermData.theData.

TMScroll

Scrolling the terminal emulation region

TMScroll causes the terminal emulation region to scroll horizontally, vertically, or
both.

Procedure TMScroll(hTerm: TermHandle; dH, dV: INTEGER);

Description dH and dV specify the number of pixels to scroll horizontally and vertically. If your
application specifies positive values for dH and dV, the terminal emulation region
scrolls down and to the right. If your application specifies negative values, the
terminal emulation region scrolls up and to the left.

TMClear

Clearing the terminal emulation region

TMClear causes the terminal to clear the display screen and to place the cursor in
the home position. Nothing is transmitted to the remote computer.

Procedure TMClear(hTerm: TermHandle);

Description If the tmSaveBeforeClear flag is on in the terminal record, the terminal tool
caches the data that is cleared from the terminal emulation region.

Chapter 4: Terminal Manager 101

TMReset

Resetting the terminal

When your application calls TMReset, the terminal tool puts the specified terminal
into a state that appears as if the terminal had just been turned on. in actuality, the
screen representation structure and internal state tables (if the tool has any) are reset
to the values specified by the terminal tool, and the configuration record for the
terminal is reset to its last saved state.

Procedure TMReset(hTerm: TermHandle);

Description If the tmSaveBeforeClear flag is on in the terminal record, the terminal
tool caches the data that is cleared from the terminal emulation region prior to
resetting the terminal.

TMResize

Resizing the terminal region

TMResize resizes the terminal emulation region to the coordinates specified in
newTermRect.

Procedure TMResize(hTerm: TermHandle; newTermRect: Rect);

Description newTermRect specifies bounds of the new termRect. The terminal tool
automatically resizes the value of viewRect.

TMDispose

Disposing of a terminal record

TMDispose disposes of the terminal record and all associated data structures and
controls.

Procedure TMDispose(hTerm: TermHandle);

D Important Your application must call TMDispose before disposing of the terminal
emulation window with DisposeWindow. Since DisposeWindow clears all
controls in the control list, a subsequent call to TMDispose may cause problems. D

102 Inside the Macintosh Communications Toolbox

Searching the terminal emulation buffer

A terminal tool can search the terminal emulation buffer any time your application requires it to, but
typically a tool will perform a search during your application’s idle procedure. To tell a tool to search
for as specified string, your application calls the TMAddSearch routine. To tell the terminal tool to
stop performing a search, your application calls TMRemoveSearch. To tell the terminal tool to stop
all searches, your application calls TMClearSearch.

TMAddSearch

Adding a data stream search

TMAddSearch tells the terminal tool to search for a specified string.

Function TMAddSearch(hTerm: TermHandle; theString: str255; where: Rect;
searchType: TMSearchTypes; callBack: ProcPtr): INTEGER;

Description If the search was successfully added, this function returns the reference number
assigned to the search. if the search was not successfully added, TMAddSearch
returns -1. The tool searches for theString in the area specified by where and
within the selection specified by searchType.

where is a rectangle that contains two row/column pairs, with row and column
numbers starting at 1.
By specifying a -1 as a value in the row/column pairs, your application can limit the
search to one row, one column, or the intersection of one row and one column.
Table 4-1 shows how your application can use -1 as a search-area delimiter.

� Table 4-1 TMAddSearch search-area delimiters

Area to search Row/column pair to use

rectangle bounded by n, m, o,p (n, m) (o.p)

row n, any column (n, -1) (-1, -1)

any row, column m (-1, m) (-l;-l)

rows n through o (inclusive), any column (n, -1) (o, -1)

column m through p (inclusive), any row (-1, m) (-1, p)

anywhere (any row, any column) (-1,-1) (-1,-1)

Chapter 4: Terminal Manager 103

Your application should pass in searchType the sum of three values that
describes the search: searchNoDiacrit (to ignore diacritical marks),
searchNoCase (to ignore case), and one of the constants that describes the
selection.

Valid values are as follows:
TYPE

TMSearchTypes = INTEGER;

CONST
{ search modifiers }

searchNoDiacrit = $0100;
searchNoCase = $0200;

{ constants that describe the selection }
selTextNormal = $0001;
selTextBoxed = $0002;
selGraphicsMarquee = $0004;
selGraphicsLasso = $0008;

callBack is a procedure that the tool automatically calls when it finds a match.
callBack must be supplied by your application, and is described later in this
chapter in the section “Routines That Must Be in Your Application.”

TMRemoveSearch

Stopping a data stream search

TMRemoveSearch stops the search specified by refNum.

Procedure TMRemoveSearch(hTerm: TermHandle; refNum: INTEGER);

Description This routine cannot be called at interrupt level, but can be called by MyCallBack.
(MyCallBack is discussed later in this chapter under “Routines That Must Be in Your
Application.”)

TMClearSearch

Clearing A data stream searches

TMClearSearch stops all searches associated with the specified terminal record.

Procedure TMClearSearch(hTerm: TermHandle);

Description hTerm specifies the terminal record. TMClearSearch cannot be called from
interrupt level.

104 Inside the Macintosh Communications Toolbox

Manipulating selections

The Terminal Manager provides two routines that make it easier for your application to manipulate
selections in the terminal emulation window. TMSetSelection highlights a selection, and
TMGetSelect retrieves the data in the selection.

TMSetSelection

Setting and highlighting selections

TMSetSelection makes theSelection the current selection.

Procedure TMSetSelection(hTerm: TermHandle; theSelection:
TMSelection; selType: TMSelTypes);

Description selType determines the type of highlighting for the selection. Valid values are:

TYPE
TMSelTypes = INTEGER;

CONST
selTextNormal = $0001;
selTextBoxed = $0002;
selGraphicsMarquee = $0004;
selGraphicsLasso = $0008;

TMGetSelect

Getting data from a selection

TMGetSelect returns either the number of bytes in the selection, or an
appropriate operating system error code.

Function TMGetSelect(hTerm: TermHandle; theData: Handle; VAR
theType: ResType): LONGINT;

Description If nothing is selected, TMGetSelect returns 0. Otherwise, it returns the size of the
selected data.

theData must be a handle to a block of size0. TMGetSelect will resize this
block as necessary.

theType specifies the type of data this routine returns. If theType is TEXT,
theData is a handle to textual data. theType and theData may be passed
directly to the Scrap Manager.

Chapter 4: Terminal Manager 105

Handling events

The Terminal Manager event-processing routines provide useful extensions to the Macintosh Toolbox
Event Manager. This section explains the seven routines that the Terminal Manager provides. See
“Other Events” in Chapter 2 for sample code showing how an application can determine if an event
needs to be handled by one of these routines.

TMActivate

Activate events

TMActivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the terminal tool.

Procedure TMActivate(hTerm: TermHandle; activate: BOOLEAN);

Description If activate is TRUE, the terminal tool processes an activate event. Otherwise, it
processes a deactivate event.

TMResume

Resume events

TMResume processes a resume or suspend event for a terminal window. Resume
and suspend events are processed only if a tool has a custom menu to install or
remove from the menu bar.

Procedure TMResume(hTerm: TermHandle; resume: BOOLEAN);

Description If resume is TRUE, then the terminal processes a resume event. Otherwise, it
processes a suspend event.

TMMenu

Menu events

Your application must call TMMenu when the user chooses an item from a menu that
is installed by the terminal tool.

Function TMMenu(hTerm: TermHandle; menuID: INTEGER; item:
INTEGER): BOOLEAN;

Description TMMenu returns FALSE if the terminal tool did not handle the menu event.
TMMenu returns TRUE if the terminal tool did handle the menu event.

106 Inside the Macintosh Communications Toolbox

TMClick

Mouse events

TMClick processes a mouseDown event in the terminal emulation region. The
routine pointed to by myclikLoop, discussed later in this chapter in the section
“Routines That Must Be in Your Application,” is called repeatedly by TMClick.

Procedure TMClick(hTerm: TermHandle; theEvent: EventRecord);

TMKey

Keyboard events

TMKey processes a keyDown or autoKey event. The terminal tool translates the
keystroke into a sequence of bytes. The terminal tool then calls your application’s
sendProc routine (discussed later in this chapter under “Routines That Must Be in
Your Application.”) to transmit this sequence of bytes.

Procedure TMKey(hTerm: TermHandle; theEvent: EventRecord);

Description Your application can create its own event record for specific keyboard events by filling
in the event record with the character code and -1 for the key code in the message
field.

TMUpdate

Update events

Your application will typically call TMUpdate between BeginUpdate and
EndUpdate.

Procedure TMUpdate(hTerm: TermHandle; visRgn: RgnHandle);

Description visRgn specifies the region to be updated.

Chapter 4: Terminal Manager 107

TMEvent

Other events

When your application receives an event, it should check whether the refcon of the
window is a tool’s hTerm. Such an event occurs, for example, when the user clicks
a button in a dialog box displayed by the terminal tool. If it does belong to a
terminal tool’s window, your application can call TMEvent.

Procedure TMEvent(hTerm: TermHandle; theEvent: EventRecord);

Description A window (or dialog box) created by a terminal tool has a terminal record handle
stored in the refCon field for windowRecord.

108 Inside the Macintosh Communications Toolbox

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

TMIntlToEnglish

Translating into English

TMIntlToEnglish converts a configuration string, which is pointed to by
inputPtr, to an American English configuration string pointed to by
outputPtr.

Function TMIntlToEnglish(hTerm: TermHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description The function returns an operating system error code if any internal errors occur.
The terminal tool allocates space for outputPtr. Your application should

dispose of this pointer when done with it.
language specifies the language from which the string is to be converted. Valid
values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. If the language specified is not supported, this routine returns
tmNoErr, but outputPtr is NIL.

TMEnglishToIntl

Translating from English

TMEnglishToIntl converts an American English configuration string, which is
pointed to by inputPtr, to a configuration string pointed to by outputPtr.

Function TMEnglishToIntl(hTerm: TermHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description The function returns an operating system error code if any internal errors occur.
The terminal tool allocates space for outputPtr. Your application is

responsible for disposing of the pointer with DisposPtr when done with it.
language specifies the language to which the string is to be converted. Valid
values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. if the language specified is not supported, tmNoErr is still
returned, but outputPtr is NIL.

Chapter 4: Terminal Manager 109

Miscellaneous routines

The routines described in this section perform a variety of tasks.

TMGetToolName

Getting the name of a tool

TMGetToolName returns in name the name of the tool specified by procID.

Procedure TMGetToolName(procID: INTEGER; VAR name: Str255);

Description If procID references a terminal tool that does not exist, the Terminal Manager sets
name to an empty string.

TMSetRefCon

Setting the terminal tool’s reference constant

TMSetRefCon sets the terminal record’s refCon to the specified value. It is very
important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

Procedure TMSetRefCon(hTerm: TermHandle; refCon: LONGINT);

TMGetRefCon

Getting the terminal tool’s reference constant

TMGetRefCon returns the terminal record’s reference constant.

Function TMGetRefCon(hTerm: TermHandle): LONGINT;

110 Inside the Macintosh Communications Toolbox

TMSetUserData

Setting the userData field

TMSetUserData sets the terminal record’s user Data field to the value specified
by userData. It is very important that your application use this routine to change
the value of the userData field, instead of changing it directly.

Procedure TMSetUserData(hTerm: TermHandle; userData: LONGINT);

TMGetUserData

Getting the userData field

TMGetUserData returns the terminal record’s userData field.

Function TMGetUserData(hTerm: TermHandle): LONGINT;

TMGetVersion

Getting 'vers' resource information

TMGetVersion returns a handle to a relocatable block that contains the
information that is in the terminal tool’s 'vers' resource with ID=1. Your
application is responsible for disposing of the handle when done with it.

® Note: The handle returned is not a resource handle.

Function TMGetVersion(hTerm: TermHandle): Handle;

TMGetTMVersion

Getting the Terminal Manager version number

TMGetTMVersion returns the version number of the Terminal Manager.

Function TMGetTMVersion: INTEGER;

Description The version number of the Terminal Manager described in this document is:

CONST
curTMVersion = 1;

Chapter 4: Terminal Manager 111

TMGetCursor

Getting the current cursor position

TMGetCursor returns the current position of the cursor. Numbering of rows and
columns begins with 1.

Function TMGetCursor(hTerm: TermHandle; cursType:
TMCursorTypes): Point;

Description Valid values for cursType are as follows:

CONST
cursorText = 1;
cursorGraphics = 2;

TYPE

TMCursorTypes = INTEGER;

For cursorText, the position returned is in row/column format, and for
cursorGraphics the position is in pixel coordinates.

TMDoTermKey

Emulating a special terminal key

TMDoTermKey emulates a special terminal key specified by theKey.

Function TMDoTermKey(hTerm: TermHandle; theKey: Str255):
BOOLEAN;

Description If the terminal tool does not understand the key specified by theKey, this routine
returns FALSE. Otherwise, if the key specified is processed, this routine returns
TRUE.
For information about the terminal keys supported by a terminal tool, refer to that
tool’s documentation.

This example shows how an application can use TMDoTermKey to emulate the
user’s pressing a PF1 key:

IF TMDoTermKey(hTerm, 'PF1') THEN
BEGIN

END;

112 Inside the Macintosh Communications Toolbox

TMCountTermKeys

Counting special terminal keys

TMCountTermKeys returns the number of special terminal keys that the terminal
tool supports.

Function TMCountTermKeys(hTerm): INTEGER;

Description TMCountTermKeys returns 0 if the terminal tool supports no special terminal keys.

TMGetIndTermKey

Getting a terminal key

TMGetIndTermKey returns the name of a specified key.

Procedure TMGetIndTermKey(hTerm:TermHandle; id:INTEGER; VAR theKey:Str255);

Description TMGetIndTermKey returns in theKey the terminal key specified by id. If id
specifies a key that does not exist, this routine returns an empty string.

TMGetTermEnvirons

Getting general terminal tool information

TMGetTermEnvirons returns theEnvirons, which reflects the internal
conditions of the terminal tool. The caller of this routine must fill in the version
field of theEnvirons before calling TMGetTermEnvirons.

Function TMGetTermEnvirons(hTerm: TermHandle; VAR theEnvirons:
TermEnvironRec): TMErr;

Description This routine returns tmNoErr, envVersTooBig, or an operating system error
code. The fields in theEnvirons are as follows:
TYPE

TermEnvironPtr = ^TermEnvironRec;
TermEnvironRec = RECORD

version : INTEGER;
termType : TMTermTypes;
textRows : INTEGER;
textCols : INTEGER;
cellSize : Point;
graphicSize : Rect;
slop : Point;
auxSpace : Rect;

END;

Chapter 4: Terminal Manager 113

version is the version number of the requested terminal environment record
which is curTermEnvRecVers in this release of the Terminal Manager. The
caller of the routine must fill in this field before calling TMGetTermEnvirons.

termType is the type of terminal. termType can contain one or both of the
following values:
CONST

tmTextTerminal = $0001;
tmGraphicsTerminal = $0002;
curTermEnvRecVers = 0;

TYPE
TMTermTypes = INTEGER;

textRows is the number of rows in the terminal emulation region. The first row is
row number 1.

textCols is the number of columns in the terminal emulation region. The first
column is column number 1.

cellSize is the height and width of each cell.

graphicSize is the size of the default rectangle of the graphics terminal tool
measured in pixels.

slop is the border of the terminal emulation region.

auxSpace is a rectangle that specifies any additional space that is required at the
top, bottom, right, or left of the terminal emulation region, as shown in Figure 4-7

� Figure 4-7 Additional space in the terminal emulation region

Result Codes tmGenericError, tmNoErr, tmNotSupported, envVersTooBig.

114 Inside the Macintosh Communications Toolbox

Routines that must be in your application

Terminal tools do not provide all the code necessary to perform terminal emulations; your application
must also provide some code (or at least pointers to code provided by other managers). This section
describes the routines that must be in your application, which give the terminal tool important
information about

� how to send data on the connection

� what to do with lines that scroll out of the terminal emulation region

� what to do when a specified string is found in the terminal emulation buffer

� what to do when the user wants to effect a break on the terminal

� what to do when the user is dragging the mouse in the terminal emulation region

� what the connection environment is like

MySendProc

Sending data out along the connection

When a tool needs to send data to another entity, it looks to your application to
provide MySendProc. MySendProc may Simply be the routine that the
Connection Manager uses to send data (as is the case in the next example), or it can
be a routine that you have written.

Function MySendProc (thePtr: Ptr; theSize: LONGINT; refCon:
LONGINT; flags: CMFlags): LONGINT;

Description thePtr is a pointer to the data to be sent.

theSize is the number of characters to be sent.

refCon is the reference constant field for sending terminal’s terminal.

MySendProc returns the actual number of characters sent.

flags indicates whether the connection tool should send an end-of-message
indicator. An end-of-message indicator needs to be supported by the particular
communications protocol being used; if an end-of-message indicator is not supported
by the connection protocol, your application should ignore this field.

Chapter 4: Terminal Manager 115

Sample routine for sending data

FUNCTION MySendProc(thePtr: Ptr;theSize: LONGINT;
refcon: LONGINT;flags: INTEGER): LONGINT;

VAR
theErr : CMErr; { Any errors }

BEGIN
MySendProc = 0; { Assume the worst }

IF gConn <> NIL THEN BEGIN

{ DO NOT check to see if the connection is first open before sending }
{ as the tool might be handling the data locally }

{ Send the data }
theErr :=

CMWrite(gConn,thePtr,theSize,cmData,FALSE,NIL,0,flags);

IF (theErr = noErr) THEN
MySendProc := theSize { If ok, we sent all }

ELSE
{ Handle errors }

END; { Good Connection }

END; { MySendProc }

MyBreakProc

Sending a break

Your application needs to contain information about how to send a break on a
connection. Although it can contain the code that performs the break operation, your
application can also point to a connection tool routine that performs the break. This
section gives an example.

Procedure MyBreakProc(duration: LONGINT; refCon: LONGINT);

Description duration specifies, in ticks, how long the break should last.

refCon is the reference constant field of the terminal record.

Sample showing how to break a connection

PROCEDURE MyBreakProc(duration: LONGINT; refcon : LONGINT);
BEGIN

{ Here we choose to issue a synchronous break }
IF gConn <> NIL THEN

CMBreak(gConn, duration, FALSE, NIL);
END; { MyBreakProc }

116 Inside the Macintosh Communications Toolbox

MyCacheProc

Caching lines from the terminal region

Your application can cache lines that scroll off the top of the terminal emulation
region and, if desired, display them in the terminal emulation window. If you want
your application to display these lines, you have to provide the necessary code. If
you do not want your application to display these lines, then your application should
specify NIL for MyCacheProc when it calls TMNew.

Function MyCacheProc(refCon: LONGINT;
theTermData:TermDataBlock): LONGINT;

Description MyCacheProc must return tmNoErr if no error occurred during processing.
Otherwise, it should return an appropriate error code.

refcon is the reference constant for the terminal record.

theTermData is a data structure of type TermDataBlock:

TYPE
TermDataBlockH = ^TermDataPtr;
TermDataBlockPtr = ^TermDataBlock;
TermDataBlock = RECORD

flags : TMTermTypes;
theData : Handle;
auxData : Handle;
reserved : LONGINT;

END;
theTerm.theData is a handle to a block on the heap. Your application can

calculate the size of this block with GetHandleSize. Your application must copy
any data it needs because theTermData belongs to the terminal tool and may not
exist after MyCacheProc has finished. Your application can use HandToHand
to copy the data.

Sample showing how to cache lines

FUNCTION MyCacheProc (refcon : LONGINT; theTermData TermDataBlock) :LONGINT;
VAR

sizeCached : LONGINT;

BEGIN
{ Check for data integrity }
IF (theTermData.theData = NIL) THEN BEGIN

MyCacheProc := -1;
EXIT(MyCacheProc);

END; (Bad Data }

{ Cache either graphics or text }
HLock(theTermData.theData);

{ Get rid of the old cached data }
IF (gCache <> NIL) THEN

Chapter 4: Terminal Manager 117

DisposHandle(gCache);

{ make a copy of new text }
gCache := theTermData.theData;
IF (HandToHand(gCache) <> noErr) THEN BEGIN

gCache := NIL; (* Handle errors)
sizeCached := -1;

END
ELSE

sizeCached := GetHandleSize(gCache);

HUnlock(theTermData.theData);

IF (theTermData.flags = tmGraphicsTerminal) THEN BEGIN
{ theTermData.theData is a handle to a QD Picture }
(*
Could save it as PICT
*)

END { cache graphics }
ELSE IF (theTermData.flags = tmTextTerminal) THEN BEGIN

{ theTermData.theData is a handle to text }

(*
Could write it out to the data fork
*)

END; { cache text }
MyCacheProc := sizeCached;

END; { MyCacheProc }

MyCallBack

Responding to a matched search parameter

Your application can selectively filter data in the terminal emulation buffer by making
use of a search call-back procedure. Since a tool will automatically call
MyCallBack when it finds a match to the search string, your application can
respond in any way that you want it to.

Procedure MyCallBack(hTerm: TermHandle; refNum: INTEGER;
foundRect: Rect);

Description refNum is the reference number associated with a particular search. Reference
numbers are assigned by the Terminal Manager when a search is added to a terminal
record with the TMAddSearch routine.

foundRect describes in row/column format where the match was found, with row and column
numbers starting at 1.

118 Inside the Macintosh Communications Toolbox

MyClikLoop

Responding to mouse clicks

This routine is called when the user is dragging the mouse in the terminal emulation
window. Initially, your application should process a mouse-down event by calling
TMClick, which in turn calls this routine.

Function MyClikLoop(refCon: LONGINT): BOOLEAN;

Description This routine returns TRUE when the mouse is clicked within the cache region.
Otherwise, it returns FALSE.

MyEnvironsProc

Getting connection environment information

To get information about the connection environment, the terminal tool calls a
routine in your application, MyEnvironsProc.

Function MyEnvironsProc(refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec): CMErr;

Description refCon is the reference constant for the terminal tool.

the Environs is a data structure containing the connection-environment record.
Your application can either construct theEnvirons or use the Connection
Manager routine CMGetConnEnvirons. For more information about
theEnvirons, see “CMGetConnEnvirons” in Chapter 3.
The example that follows shows how MyEnvironsProc can point to a Connection
Manager routine to retrieve information about the connection environment.

Sample terminal-environment routine

FUNCTION MyEnvironsProc(refCon: LONGINT;VAR theEnvirons:
ConnEnvironRec): OSErr;
BEGIN

MyEnvironsProc:= envNotPresent; { pessimism }
theEnvirons.version := curConnEnvRecVers; { fill in version

field }

IF (gConn <> NIL) THEN { Tool sets the version
)

MyEnvironsProc:= CMGetConnEnvirons(gConn,theEnvirons);

END; { MyEnvironsProc)

Chapter 4: Terminal Manager 119

Quick reference

This section provides a reference to Terminal Manager routines and data structures. At the end of this section is a
listing of routine selectors for programming in assembly language.

Routines

Terminal Manager routines See page

InitTM:TMErr; 88

TMActivate(hTerm: TermHandle; activate: BOOLEAN); 105

TMAddSearch(hTerm: TermHandle; theString: Str255; 102
where: Rect; searchType: TMSearchTypes; callBack:
ProcPtr): INTEGER;

TMChoose(VAR hTerm: TermHandle; where: Point; 92
idleProc: ProcPtr): INTEGER;

TMClear(hTerm: TermHandle); 100

TMClearSearch(hTerm: TermHandle); 103

TMClick(hTerm: TermHandle; theEvent: EventRecord); 106

TMCountTermKeys(hTerm): INTEGER; 112

TMDefault(VAR theConfig: Ptr; procID: INTEGER; 91
allocate: BOOLEAN);

TMDispose(hTerm: TermHandle); 101

TMDoTermKey(hTerm: TermHandle; theKey: Str255): 111
BOOLEAN;

TMEnglishToIntl(hTerm: TermHandle; inputPtr: Ptr; VAR 108
outputPtr: Ptr; language: INTEGER): OSErr;

TMEvent (hTerm: TermHandle; theEvent: EventRecord); 107

TMGetConfig (hTerm: TermHandle): Ptr; 98

TMGetCursor(hTerm TermHandle; cursType: 111
TMCursorTypes): Point;

TMGetIndTermKey(hTerm:TermHandle; id:INTEGER; VAR 112
theKey:Str255);

TMGetLine(hTerm: TermHandle; lineNo: INTEGER; VAR 100
theTermData:TermDataBlock);

TMGetProcID(name: Str255): INTEGER; 88

TMGetRefCon(hTerm: TermHandle): LONGINT; 109

TMGetSelect (hTerm: TermHandle; theData: Handle; VAR 104
theType: ResType): LONGINT;

120 Inside the Macintosh Communications Toolbox

Terminal Manager routines See page

TMGetTermEnvirons (hTerm: TermHandle; VAR theEnvirons: 112
TermEnvironRec): TMErr;

TMGetToolName(procID: INTEGER; VAR name: Str255); 109

TMGetTMVersion: INTEGER; 110

TMGetUserData (hTerm: TermHandle): LONGINT; 110

TMGetVersion (hTerm: TermHandle): Handle; 110

TMIdle (hTerm: TermHandle); 99

TMIntlToEnglish (hTerm: TermHandle; inputPtr: Ptr; VAR 108
outputPtr: Ptr; language: INTEGER): OSErr;

TMKey (hTerm: TermHandle; theEvent: EventRecord); 106

TMMenu (hTerm: TermHandle; menuID: INTEGER; item: 105
INTEGER): BOOLEAN;

TMNew(termRect: Rect; viewRect: Rect; flags: TMFlags; 89
procID: INTEGER; owner: WindowPtr; sendProc: ProcPtr;
cacheProc: ProcPtr; breakProc: ProcPtr; clikLoop:
ProcPtr; environsProc: ProcPtr; refCon: LONGINT;
userData: LONGINT): TermHandle;

TMPaint(hTerm: TermHandle; theTermData:TermDataBlock; 99
theRect: Rect);

TMRemoveSearch (hTerm: TermHandle; refNum: INTEGER); 103

TMReset (hTerm: TermHandle); 101

TMResize (hTerm: TermHandle; newTermRect: Rect); 101

TMResume (hTerm: TermHandle; resume: BOOLEAN); 105

TMScroll (hTerm: TermHandle; dH, dV: INTEGER); 100

TMSetConfig (hTerm: TermHandle; thePtr: Ptr): INTEGER; 98

TMSetRefCon(hTerm: TermHandle; refCon: LONGINT); 109

TMSetSelection (hTerm: TermHandle; theSelection: 104
TMSelection; selType: TMSelTypes);

TMSetupCleanup(procID: INTEGER; theConfig: Ptr; 96
count: INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

TMSetupFilter(procID: INTEGER; theConfig: Ptr; count: 95
INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT): BOOLEAN;

TMSetupItem(procID: INTEGER; theConfig: Ptr; count: 96
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER;
VAR magicCookie: LONGINT);

Chapter 4: Terminal Manager 121

Terminal Manager routines See page

TMSetupPostflight(procID: INTEGER); 97
TMSetupPreflight(procID: INTEGER; VAR magicCookie: 94
LONGINT): Handle;
TMSetupSetup(procID: INTEGER; theConfig: Ptr; count: 95
INTEGER; theDialog: DialogPtr; VAR magicCookie:
LONGINT);
TMSetUserData(hTerm: TermHandle; userData: LONGINT); 110
TMStream(hTerm: TermHandle; theBuffer: Ptr; 99
theLength: LONGINT; flags: CMFlags): LONGINT;
TMUpdate(hTerm: TermHandle; visRgn: RgnHandle); 106
TMValidate(hTerm: TermHandle): BOOLEAN; 91

Routines in your application See page

MySendProc (thePtr: Ptr; theSize: LONGINT; refCon: 114
LONGINT; flags: CMFlags): LONGINT;
MyBreakProc(duration: LONGINT; refCon: LONGINT); 115
MyCacheProc(refCon: LONGINT; 116
theTermData:TermDataBlock): LONGINT;
MyCallBack(hTerm: TermHandle; refNum: INTEGER; 117
foundRect: Rect);
MyClikLoop(refCon: LONGINT): BOOLEAN; 118
MyEnvironsProc(refCon: LONGINT; VAR theEnvirons: 118
ConnEnvironRec): CMErr;

Terminal record

TYPE
TermHandle = TermPointer;
TermPointer = ^TermRecord;
TermRecord = RECORD

procID, = INTEGER

flags : TMFlags;
errCode : TMErr;

refCon : LONGINT;
userData: LONGINT;

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

122 Inside the Macintosh Communications Toolbox

environsProc: ProcPtr;
reservedl : LONGINT;
reserved2 : LONGINT;

tmPrivate : Ptr;

sendProc : ProcPtr;
breakProc : ProcPtr;
cacheProc : ProcPtr;
clikLoop : ProcPtr;

owner : WindowPtr;
termRect : Rect;
viewRect. : Rect;
visRect : Rect;

lastIdle : LONGINT;

selection : TMSelection;
selType : TMSelTypes;

mluField : LONGINT;
END;

Constants and data types
TYPE

TMSelection = RECORD
CASE INTEGER OF
1: (

selRect : Rect;
);

2 (
selRgnHandle: RgnHandle;
filler : LONGINT;
);

END;

TYPE

TermDataBlockH = ^TermDataPtr;
TermDataBlockPtr = ^TermDataBlock;
TermDataBlock = RECORD

flags : TMTermTypes;
theData : Handle;
auxData : Handle;
reserved : LONGINT;

END;

Chapter 4: Terminal Manager 123

TYPE

TermEnvironPtr = ^TermEnvironRec;
TermEnvironRec = RECORD

version : INTEGER;
termType : TMTermTypes;
textRows : INTEGER;
textCols : INTEGER;
cellSize : Point;
graphicSize : Rect;
slop : Point;
auxSpace : Rect;

END;

TYPE
TMErr = OSErr;

CONST
tmGenericError = -1;
tmNoErr = 0;
tmNotSupported = 7;
tmNoTools = 8;

CONST
curTermEnvRecVers = 0;
curTMVersion = 1;

{ bit masks for flags field of terminal record }
tmInvisible = $00000001;
tmSaveBeforeClear = $00000002;
tmNoMenus = $00000004;
tmAutoScroll = $00000008;

{ selection types }
selTextNormal = $0001;
selTextBoxed = $0002;
selGraphicsMarquee = $0004;
selGraphicsLasso = $0008;

{ search modifiers)
searchNoDiacrit = $0100;
searchNoCase = $0200;

124 Inside the Macintosh Communications Toolbox

TYPE

TMSearchTypes = INTEGER;

{ terminal types in TermEnvironRec data structure }
CONST

TmTextTerminal = $0001;
TmGraphicsTerminal = $0002;

{ TMChoose return values }
chooseDisaster = -2;
chooseFailed = -1;
hooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

Terminal Manager routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, Set A0 to
point to the selector, and invoke the trap _CommToolboxDispatch ($A08B) Upon
returning from the trap, the trap macro pops the routine selector off the stack and places the return
value into DO. It is your application’s responsibility to clean up the stack by removing the
parameters that were pushed onto the stack prior to invoking the trap macro.

InitTM .EQU 769 TMEnglishToIntl .EQU 798

TMActivate .EQU 775 TMEvent .EQU 813

TMAddSearch .EQU 807 TMGetConfig .EQU 795

TMChoose .EQU 812 TMGetCursor .EQU 810

TMClear .EQU 781 TMGetIndTermKey .EQU 816

TMClearSearch .EQU 809 TMGetLine .EQU 784

TMClick .EQU 777 TMGetProcID .EQU 799

TMCountTermKeys .EQU 815 TMGetRefCon .EQU 802

TMDefault .EQU 789 TMGetSelect .EQU 783

TMDispose .EQU 771 TMGetTermEnvirons .EQU
811

TMDoTermKey .EQU 814 TMGetTVersion .EQU 806

Chapter 4: Terminal Manager 125

MGetToolName .EQU 800 TMSetConfig .EQU 796

TMGetUserData .EQU 804 TMSetRefCon .EQU 801

TMGetVersion .EQU 805 TMSetSelection .EQU 785

TMIdle .EQU 787 TMSetupCleanup .EQU 794

TMIntlToEnglish .EQU 797 TMSetupFilter .EQU 792

TMKey .EQU 772 TMSetupItem .EQU 793

TMMenu .EQU 779 TMSetupPostflight .EQU 817

TMNew .EQU 770 TMSetupPreflight .EQU 790

TMPaint .EQU 774 TMSetupSetup .EQU 791

TMRemoveSearch .EQU 808 TMSetUserData .EQU 803

TMReset .EQU 780 TMStream .EQU 778

TMResize .EQU 782 TMUPdate .EQU 773

TMResume .EQU 776 TMValidate .EQU 788

TMScroll .EQU 786

126 Inside the Macintosh Communications Toolbox

Chapter 5: File Transfer Manager 1

Chapter 5 File Transfer Manager

128 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R describes the File Transfer Manager, the Communications Toolbox manager that

allows applications to implement file transfer services without having to take into account underlying file

transfer protocols. This chapter describes fundamental concepts about the File Transfer Manager. Then

it describes the file transfer record, which is the most important record of the File Transfer Manager.

Next, this chapter presents a detailed description of each routine provided by the File Transfer Manager.

At the end of the chapter, you’ll find a “Quick Reference” to routines, data structures, and routine

selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh,

which will implement communications services for users. Be careful not to confuse the services your

application provides with the services that tools provide.

To use the File Transfer Manager, you need to be familiar with

n the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

n the File Manager (described in Inside Macintosh, Volumes II, IV, V)

n the Standard File Package (described in Inside Macintosh, Volumes I, IV)

n the Connection Manager (described in Chapter 3 of this document)

Chapter 5: File Transfer Manager 129

About the File Transfer Manager

By using File Transfer Manager routines, your application can send files to or receive files from another
entity without having to take into account underlying file transfer protocols. File transfer tools, which
are discussed in Chapter 11, are responsible for implementing file transfer services according to specific
protocols.

The File Transfer Manager provides generic file transfer services for a transfer between your
application and another computer process. The other process can be running on the same computer as
your application, or on any other type of computer.

Here’s what happens inside the File Transfer Manager. An application makes a request of the File
Transfer Manager when it needs it to send a file or perform some other file transfer function. The File
Transfer Manager then sends this request to one of the tools that it manages. The tool provides the
service according to the specifics of its file transfer protocol. Once the tool has finished, it passes back to
the application any relevant parameters and return codes.

Figure 5-1 shows the data flow into and out of the File Transfer Manager.

n Figure 5-1 Data flow into and out of the File Transfer Manager

The most important data structure maintained by the File Transfer Manager is the file transfer record,
which contains all the specifics about a file transfer. For example, the file transfer record might show
that the File Transfer Manager should use the XMODEM tool to perform file transfers, and that the tool
should not display any custom menus while transferring files.

130 Inside the Macintosh Communications Toolbox

One important aspect of the file transfer record is that it allows you to use protocol-independent
routines. Protocol-independent routines allow applications to use File Transfer Manager services
without regard for the underlying file transfer protocols. In other words, when an application wants to
transfer a file from a remote entity, it tells the File Transfer Manager to get the file, and the File Transfer
Manager figures out exactly how to implement the transfer for a specific protocol.

Another important feature of the file transfer record is that it lets you use multiple instances of the
same tool. The same tool can be used by different processes at the same time, as in a MultiFinder
environment, or by different threads in a given application.

The file transfer record is described in greater detail later in this chapter.
Besides providing basic file transfer routines, the File Transfer Manager includes routines that help

your application configure a file transfer tool, either by presenting the user with a dialog box or by
interfacing directly with a scripting language. The File Transfer Manager also contains routines that can
help you localize your applications in other languages.

You can write applications that use the File Transfer Manager with other Communications Toolbox
managers to create a communications application with basic connection, terminal emulation, and file
transfer capabilities. Or, you can use the File Transfer Manager with some other connection service and
terminal emulation service. You can also write your own file transfer tool for the File Transfer Manager
to use. (This procedure is discussed in Chapters 8 and 11.) Regardless of which you choose, your
application needs to be able to handle different file transfer tools so that users can change tools and still
be able to use your program.

The file transfer record

The file transfer record contains information needed by your application and the file transfer tool to
send files, such as whether to send data or receive data, and where to find the routines that perform the
actual sending and receiving of files. The file transfer record also contains pointers to File Transfer
Manager internal data structures. Most of the fields in the file transfer record are filled in when an
application calls FTNew, described later in this chapter.

Because the context for a given file transfer is maintained in a file transfer record, an application can
perform several file transfers simultaneously (using one or more file transfer tools), by creating a
separate file transfer record for each transfer. For details, see “FTNew Creating a File Transfer Record,”
later in this chapter.

� Important Your application, in order to be compatible with future releases of the File Transfer
Manager, should not directly manipulate the fields of the file transfer record (with
the exception of config and oldConfig). The File Transfer Manager provides
routines that applications and tools can use to change the fields in the file transfer
record. These routines are discussed later in this chapter. �

Chapter 5: File Transfer Manager 131

File transfer record data structure

TYPE
FTHandle = ^FTPtr;
FTPtr = ^FTRecord;
FTRecord = PACKED RECORD

procID : INTEGER;

flags : FTFlags;
errCode : FTErr;

refCon : LONGINT;
userData : LONGINT;

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

environsProc : ProcPtr;
reserved1 : LONGINT;
reserved2 : LONGINT;

ftPrivate : Ptr;

sendProc : ProcPtr;
recvProc : ProcPtr;
writeProc : ProcPtr;
readProc : ProcPtr;

owner : WindowPtr;

direction : FTDirection;
theReply : SFReply;

writePtr : LONGINT;
readPtr : LONGINT;
theBuf : ^char;
bufSize : LONGINT;
autoRec : Str255;
attributes : FTAttributes;

END;

132 Inside the Macintosh Communications Toolbox

procID

procID is the file transfer tool ID. This value is dynamically assigned by the File Transfer Manager
when your application calls FTGetProcID.

flags

flags is a bit field that your application can use to determine when a file transfer has finished, and if
the file transfer was successful. Valid values are as follows:

CONST

ftIsFTMode = $00000001;
ftNoMenus = $00000002;
ftQuiet = $00000004;
ftSucc = $00000080;

TYPE
FTFlags = LONGINT;

ftIsFTMode indicates whether a file transfer is in progress. A tool turns this bit on just prior to
performing the actual file transfer, and turns it off when the file transfer stops.

The file transfer tool will not display any custom menus if your application sets the ftNoMenus
bit. The file transfer tool will not display any status dialog boxes or error alerts if your application sets
the ftQuiet bit. If your application turns ftQuiet on, it is responsible for displaying status dialog
boxes and error alerts that the tool would have displayed. Applications typically use these two bits to
hide the file transfer tool from the user.

ftSucc is a bit set by the file transfer tool when a file transfer is completed successfully.
Your application can first check to see if ftIsFTMode toggles from on to off to find out when the

file transfer has been completed. Then, it can check ftSucc to see if the file transfer was completed
successfully.

The other bits of flags are reserved by Apple Computer, Inc.

errCode

errCode contains the last error reported to the File Transfer Manager. If errCode is negative, an
operating system error occurred. If errCode is positive, a File Transfer Manager error occurred. Valid
values are as follows:

CONST
ftGenericError = -1;
ftNoErr = 0;
ftRejected = 1;
ftFailed = 2;
ftTimeOut = 3;
ftTooManyRetry = 4 ;
ftNotEnoughDspace = 5;
ftRemoteCancel = 6;
ftWrongFormat = 7;
ftNoTools = 8;
ftUserCancel = 9;
ftNotSupported = 10;

Chapter 5: File Transfer Manager 133

TYPE

FTErr = OSErr;

refCon

refCon is a four-byte field that your application can use.

userData

userData is a four-byte field that your application can use.

defProc

defProc is a pointer to the file transfer tool’s main definition procedure, which is contained in a code
resource of type 'fdef'

config

config is a pointer to a data block that is private to the file transfer tool. It can contain information
like retry and timeout values, but the contents vary from tool to tool.

Your application can store the contents of config to save the state of a file transfer in a document.
The structure, size, and contents of the configuration record are set by the tool. Your application can
determine the size of the configuration record by calling GetPtrSize, overwrite its contents using
BlockMove, and validate the contents with FTValidate.

Your application can use FTGetConfig and FTSetConfig to manipulate fields in this
record. For details, read “Interfacing with a Scripting Language,” later in this chapter. Your application
can save the state of the file transfer record by saving the string FTGetConfig returns. Also, your
application can restore the configuration of the file transfer record by passing a saved string to
FTSetConfig. You can find a description of config from a file transfer tool perspective in
Chapter 8.

oldConfig

oldConfig is a pointer to a data block that is private to the file transfer tool and contains the most
recently saved version of config. Your application is responsible for setting oldConfig when the
user saves a session document.

environsProc

environsProc is a pointer to a routine in your application that the file transfer tool calls to obtain a
record describing the connection environment. For more information about environsProc, see
“MyEnvironsProc Getting Connection Environment Information,” later in this chapter.

reserved1 and reserved2

reserved1 and reserved2 are fields reserved for the File Transfer Manager. Your application
must not use this field.

ftPrivate

ftPrivate is a pointer to a data block that is private to the file transfer tool. Your application must
not use this field.

134 Inside the Macintosh Communications Toolbox

sendProc

sendProc is a pointer to a routine that your application uses to send data. This routine is discussed
under “MySendProc Sending Data,” later in this chapter.

recvProc

recvProc is a pointer to a routine that your application uses to request data. This routine is
discussed under “MyRecvProc Receiving Data,” later in this chapter.

writeProc

writeProc is a pointer to a routine in your application that writes data to a file. If this field is NIL,
the file transfer tool performs standard file operations (that is, writing to a disk). The file transfer tool
checks this field to see if your application has a writeProc routine. If it does, the tool lets
writeProc handle writing data.

This routine can be used to perform postprocessing upon a file being received, and is discussed
under “MyWriteProc Writing Data,” later in this chapter.

readProc

readProc is a pointer to a routine in your application that reads data from a file. If this field is NIL,
the file transfer tool performs standard file operations (that is, reading data from a disk). The file
transfer tool checks this field to see if your application has a readProc routine. If it does, the tool
lets readProc handle reading data.
This routine can be used to perform preprocessing upon a file being sent, and is discussed under
“MyReadProc Reading Data,” later in this chapter.

owner

owner is a pointer to a window (or grafPort) relative to which the file transfer status dialog box is
positioned. if this field is NIL, the file transfer tool will not display a file transfer status dialog box.

direction

direction is a field that indicates whether a file is being sent to or received from another entity.
Your application passes this field as a parameter to FTStart (described later in this chapter).Valid
values in this field are as follows:

CONST
ftReceiving = 0;
ftTransmitting = 1;
ftFullDuplex = 2;

TYPE
FTDirection = INTEGER;

Chapter 5: File Transfer Manager 135

theReply

theReply is an SFReply data structure. The SFReply data structure should contain the
reference number of the working directory of the default volume for files being sent or received. If a file
is being sent, the data structure should also contain the name of the file to be sent. If a file is being
received and your application has information about the filename (for example, from a scripting
language), the data structure should contain the filename to be used. Otherwise, pass an empty string
for theReply.filename.

writePtr, readPtr, theBuf, and bufSize

writePtr, readPtr, theBuf, and bufSize are properties of a particular file transfer tool.

autoRec

autoRec is a string that represents the start sequence a remote entity sends, causing the Macintosh to
enter a file-reception mode. If this string is of length 0, remote-entity-initiated file transfers are not
supported by the file transfer tool. It is the application’s responsibility to make use of this field by
searching the data stream for this sequence of characters. The Connection Manager, described in
Chapter 3, provides routines that your application can use to search an incoming data stream for a
specified sequence of characters.

attributes

attributes is a field that describes the file transfer protocol supported by the file transfer tool. The
bits in attributes areas follows:

CONST

ftSameCircuit = $0001;
ftSendDisable = $0002;
ftReceiveDisable = $0004;
ftTextOnly = $0008;

TYPE
FTAttributes = INTEGER

ftSameCircuit indicates whether the file transfer tool creates its own data connection or
expects the application to provide the connection. If this bit is set, the file transfer tool uses the data
connection provided by the application. This bit is set by the file transfer tool.

ftSendDisable indicates that the file transfer tool does not allow users to send files. Some
tools that support sending files turn this bit on when they are in a mode that does not allow users to
initiate sending files. When this bit is on, your application should dim any menu items that allow users
to send files.

ftReceiveDisable indicates that the file transfer tool does not allow users to receive files.
Some tools that support receiving files turn this bit on when they are in a mode that does not allow users
to initiate receiving files. When this bit is on, your application should dim any menu items that allow
users to receive files.

ftTextOnly indicates that the file transfer tool sends and receives only text files (files of type
TEXT); the tool does not handle resource forks. The file transfer tool sets this bit.

The other bits of this field are reserved by Apple Computer, Inc.

136 Inside the Macintosh Communications Toolbox

Chapter 5: File Transfer Manager 137

File Transfer Manager routines

The following sections describe the routines that tools and applications can use to access File Transfer
Manager services. Your application cannot call these routines from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.

InitFT / 138 FTAbort / 150

FTGetProcID / 139 FTDispose / 150

FTNew / 139 FTActivate / 151

FTDefault / 141 FTResume / 151

FTValidate / 141 FTMenu / 152

FTChoose / 142 FTEvent / 152

FTSetupPreFlight / 144 FTIntlToEnglish / 153

FTSetupSetup / 145 FTEnglishToIntl / 153

FTSetupFilter / 145 FTGetToolName / 154

FTSetupItem / 146 FTSetRefCon / 154

FTSetupCleanup / 146 FTGetRefCon / 154

FTSetupPostFlight / 147 FTSetUserData / 155

FTGetConfig / 148 FTGetUserData / 155

FTSetConfig / 148 FTGetVersion / 155

FTStart / 149 FTGetFTVersion / 155

FTExec / 150

138 Inside the Macintosh Communications Toolbox

Preparing for a file Transfer

Before your application can start a file transfer, it must initialize the File Transfer Manager (by calling
initFT), find out the procID of the tool it requires (by calling FTGetProcID), create a file
transfer record (by calling FTNew), and then configure the file transfer tool (by restoring config from
a saved document; or by calling FTChoose, the file transfer tool custom tool-settings routines, or
FTSetConfig).

InitFT

Initializing the File Transfer Manager

InitFT initializes the File Transfer Manager. Your application must call this routine
after calling the standard Macintosh Toolbox initialization routines.

s Warning Your application must initialize the Communications Resource Manager (by
calling InitCRM) and then the Communications Toolbox Utilities (by calling
InitCTBUtilities), regardless of whether it uses any of their calls, before it
initializes the File Transfer Manager. s

Function InitFT: FTErr;

Description InitFT returns an operating system error code if appropriate. Your application
must check for the presence of the Communications Toolbox before calling this
function. Sample code under “Determining Whether the Managers are installed” in
Appendix C shows you how your application can make this check.

Result Codes ftGenericError, ftNoErr, ftNoTools

Chapter 5: File Transfer Manager 139

FTGetProcID

Getting current procID information

Your application should call FTGetProcID just before creating a new file transfer
record, to find out the procID of a tool.

Function FTGetProcID (name: Str255): INTEGER;

Description name specifies a file transfer tool. if a file transfer tool is available with the specified
name, its procID is returned. If name refers to a nonexistent file transfer tool,
FTGetProcID returns-1.

FTNew
Creating a file transfer record

Before your application can transfer files, it must create a file transfer record.
FTNew creates a new file transfer record, fills in the fields that it can, based upon
the parameters that were passed to it, and returns a handle to the new record in
FTHandle. FTNew automatically makes two calls to FTDefault (described
later in this chapter)to fill in config and oldConfig. The File Transfer
Manager then loads the file transfer tool’s main definition procedure, moves it high
in the current heap, and locks it. if an error occurs that prevents a new file transfer
record from being created (for example, running out of memory), FTNew passes
back NIL in FTHandle.

Function FTNew(procID: INTEGER; flags: FTFlags; sendProc:
ProcPtr; recvProc: ProcPtr; readProc: ProcPtr;
writeProc: ProcPtr; environsProc: ProcPtr; owner:
WindowPtr; refCon: LONGINT; userData: LONGINT):
FTHandle;

Description procID specifies the file transfer tool the File Transfer Manager will use to transfer
data.

flags is a bit field with the following masks:

CONST
ftIsFTMode = $0001;
ftNoMenus = $0002;
ftQuiet = $0004;
ftSucc = $0080;

TYPE
FTFlags = LONGINT;

flags represents a request from your application for a level of service. Your
application can set only two of these bits, ftNoMenus and ftQuiet. if your
application sets ftNoMenus, the file transfer tool will not display any custom
menus. If your application sets ftQuiet, the file transfer tool will not display any
windows. Applications typically use these bits to hide the file transfer tool from the
user.

140 Inside the Macintosh Communications Toolbox

Apple Computer, Inc. has reserved the bits of flags that are not shown in this document. Do not
use them, or your code may not work in the future.

ftSucc is a bit that is set by the file transfer tool when a file transfer is completed successfully.
Your application should not set this bit.

Your application can check to see if ftIsFTMode toggles from on to off to find out when the file
transfer has been completed. Then it can check ftSucc to see if the file transfer was completed
successfully.

sendProc is a pointer to a routine that the application uses to send data.

recvProc is a pointer to a routine that the application uses to request data.

readProc is a pointer to a routine in your application that reads data from a file. The file transfer
tool checks this field to see if your application has a readProc routine. If it does, the tool lets
readProc handle reading data. If NIL, the file transfer tool performs standard file operations (that
is, reading data from a disk).

This function can be used to perform preprocessing upon a file being sent, and is discussed later in
this chapter, in “Routines Your Application Provides.”

writeProc is a pointer to a routine in your application that writes data to a file. The file transfer tool
checks this field to see if your application has a writeProc routine. If it does, the tool lets the
writeProc handle writing data. If NIL, the file transfer tool performs standard file operations (that
is, writing to a disk).

This function can be used to perform post-processing upon a file being received, and is discussed
later in this chapter, in “Routines Your Application Provides.”

environsProc is a pointer to a routine that the file transfer tool can call when it wants to get
information about the connection. See Chapter 3 for more information about the
CMGetConnEnvirons routine.

owner is a pointer to a window, relative to which the file transfer status dialog box is positioned. If this
field is NIL, the File Transfer Manager will not display a file transfer status dialog box.

refCon and userData are fields that your application can use.

Chapter 5: File Transfer Manager 141

FTDefault

Initializing the file transfer record

FTDefault fills the specified configuration record with the default configuration
specified by the file transfer tool. FTNew calls this procedure automatically when it
fills in the config and oldConfig fields in a new file transfer record.

Procedure FTDefault (VAR theConfig: Ptr; procID: INTEGER;
allocate: BOOLEAN);

Description If allocate is TRUE, the tool allocates space for theConfig in the current
heap zone.

FTValidate

Validating the file transfer record

FTValidate performs an internal consistency check on the configuration and
private data records of the file transfer record. FTNew and FTSetConfig call
this routine after they have created a new file transfer record, to make sure that the
the record contains values identical to those specified by the file transfer tool.

Function FTValidate(hFT: FTHandle): BOOLEAN;

Description If the validation falls, the File Transfer Manager returns TRUE and the file transfer
tool fills the configuration record with default values by calling FTDefault.

Your application can call this routine after restoring a configuration, to verify that
the file transfer record contains the correct information, in a manner similar to that
shown next.

BlockMove(saveConfig,hFT^^.config,GetPtrSize(hFT^^.conf
ig));
IF FTValidate(hFT) THEN BEGIN

{ validate failed }
END
ELSE BEGIN

{ validate succeeded }
END

142 Inside the Macintosh Communications Toolbox

FTChoose
Configuring a file transfer tool

An application can configure a file transfer tool in one of three ways. The easiest and most
straightforward way is by calling the FTChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 5-2.

n Figure 5-2 A sample tool-settings dialog box

The second way an application can configure a file transfer tool is by presenting the
user with a custom tool-settings dialog box. This method is much more difficult and
involves calling six routines. The routines are described in the next section, “Custom
Configuration of a File Transfer Tool,” and “The Custom Tool-Settings Dialog Box” in
Appendix C provides example code.

The third way your application can configure a file transfer tool is by using the scripting
language interface, described under “Interfacing with a Scripting Language,” later in this
chapter. This method allows your application to bypass user interface elements.

Function FTChoose(VAR hFt :FTHandle; where: Point; idleProc:
ProcPtr): INTEGER;

Description where is the point, specified in global coordinates, where theupper-left corner of the
dialog box should appear. It is recommended that your application place the dialog box as
close as possible to the upper-left corner of the screen, because the size of the dialog box
varies from tool to tool.

idleProc is a procedure with no parameters that the File Transfer Manager will
automatically call every time FTChoose loops through the setup dialog filter procedure.
Pass NIL if your application has no idleProc.

This area
is filled in
by the file
transfer
tool.

Chapter 5: File Transfer Manager 143

FTChoose returns one of the following values:

CONST
chooseDisaster = -2;
chooseFailed = -1;
chooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

chooseDisaster means that the FTChoose operation failed, destroyed the file transfer
record, and returned NIL in the file transfer handle.

chooseFailed means that the FTChoose operation failed and the file transfer record was not
changed.

chooseOKMinor means that the user clicked OK in the dialog box, but did not change the file
transfer tool being used.

chooseOKMajor means that the user clicked OK in the dialog box and also changed the file
transfer tool being used. The old file transfer handle is destroyed by the File Transfer Manager, by
calling FTDispose. The file transfer is closed down, all pending read and write operations are
terminated, and a new file transfer handle is returned in hFT.

chooseCancel means that the user clicked Cancel in the dialog box.

144 Inside the Macintosh Communications Toolbox

Custom configuration of a file transfer tool

Your application creates a custom tool-settings dialog box and presents it to the user by using six File
Transfer Manager routines: FTSetupPreflight, FTSetupSetup, FTSetupItem
FTSetupFilter, FTSetupCleanup, and FTSetupPostflight. Using these routines is
more involved than calling FTChoose, but they provide your application with much more flexibility.
Refer to the code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an
application calls these routines.

To build a list of file transfer tools, use the routine CRMGetIndToolName, which is described in
Chapter 6.

FTSetupPreflight

Setting up the tool-settings dialog box

FTSetupPreflight returns a handle to a dialog item list that your application
appends to the tool-settings dialog box. The handle comes from the file transfer
tool. (The calling application uses AppendDITL, discussed in Chapter 7.) This
handle is not a resource handle. Your application is responsible for disposing of the
handle when done with it.

The file transfer tool can use FTSetupPreflight to allocate a block of
private storage, and to store the pointer to that block in magicCookie.
magicCookie should be passed to the other routines that are used to set up the
tool-settings dialog box.

Function FTSetupPreflight(procID: INTEGER; VAR magicCookie:
LONGINT): Handle;

Description procID is the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGetProcID routine, discussed earlier in this
chapter.

u Note: The refcon of the custom tool-settings dialog box should point to a data
structure (an example of which is shown next) in which the first two bytes are the tool
procID and the next four bytes are magicCookie. UserItem routines, for
example, may require procID to obtain tool resources.

TYPE
chooseDLOGdata=RECORD

procID:INTEGER
magicCookie:LONGINT

END;

Chapter 5: File Transfer Manager 145

FTSetupSetup

Setting up tool-settings dialog box items

FTSetupSetup tells the file transfer tool to set up controls (such as radio buttons or
checkboxes) in the dialog item list returned by FTSetupPreflight.

Procedure FTSetupSetup(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

Description procID is the ID for the file transfer tool being configured. Your application should
use the same value for procID as it passed to FTSetupPreflight.

theConfig is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box in which configuration is taking place.

magicCookie is a pointer to private storage for the file transfer tool.

FTSetupFilter
Filtering tool-settings dialog box events

Your application calls FTSetupFilter as a filter procedure before it calls the
standard modal dialog box filter procedure for the tool-settings dialog box. This
routine allows file transfer tools to filter events in the tool-settings dialog box.

Function FTSetupFilter(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT): BOOLEAN;

Description procID is the ID for the file transfer tool that is being configured. Your application
should use the same value for procID as it passed to FTSetupPreflight.

theConfig is the pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theEvent is the event record for which filtering is to take place.

theItem can return the item clicked in the dialog box.

magicCookie is a pointer to private storage for the file transfer tool.

If the event passed in was handled, FTSetupFilter returns TRUE. FALSE
indicates that your application should perform standard dialog box filtering.

146 Inside the Macintosh Communications Toolbox

FTSetupItem
Processing tool-settings dialog box events

FTSetupItem processes events for controls in the custom tool-settings dialog box.

Procedure FTSetupItem(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER; VAR
magicCookie: LONGINT);

Description procID is the ID for the file transfer tool being configured. Your application should
use the same value for procID as it passed to FTSetupPreflight.

theConfig is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

theItem is the item clicked in the dialog box. This value can be modified and sent
back.

magicCookie is a pointer to private storage for the file transfer tool.

FTSetupCleanup
Performing clean-up operations

FTSetupCleanup disposes of any storage allocated in FTSetupPreflight and
performs other clean-up operations.

Procedure FTSetupCleanup(procID: INTEGER; theConfig: Ptr; count:
INTEGER; theDialog: DialogPtr; VAR magicCookie: LONGINT);

Description procID is the ID for the file transfer tool that is being configured. Your application
should use the same value for procID as it passed to FTSetupPreflight.

theConfig is the pointer to the configuration record for the tool being
configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

theDialog is the dialog box performing the configuration.

magicCookie is a pointer to private storage for the file transfer tool.

Chapter 5: File Transfer Manager 147

FTSetupPostflight

Closing the tool file

FTSetupPostflight closes the tool file if it is not being used by any session.

Procedure FTSetupPostflight(procID:INTEGER);

Description procID is the ID for the file transfer tool that is being configured. Your application
should use the same value for procID as it passed to FTSetupPreflight.

148 Inside the Macintosh Communications Toolbox

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to
configure a file transfer tool. FTGetConfig and FTGetConfig provide the services that your
application needs to interface with a scripting language.

FTGetConfig
Getting the configuration string

FTGetConfig gets a configuration string from the file transfer tool.

Function FTGetConfig(hFT: FTHandle): Ptr;

Description FTGetConfig returns a null-terminated, C-style string from the file transfer tool
containing tokens that fully describe the configuration of the file transfer record. For
an example, see the description of the next routine. If an error occurs, FTGetConfig
returns NIL.

It is the responsibility of your application to dispose of Ptr.

FTSetConfig
Setting the configuration with a string

FTSetConfig passes a configuration string to the file transfer tool.

Function FTSetConfig(hFT: FTHandle; thePtr: Ptr): INTEGER;

Description FTSetConfig passes a null-terminated, C-style string (see the example string later in
this section)to the file transfer tool for parsing. The string is pointed to by thePtr and
must contain tokens that describe the configuration of the file transfer record. The string
can be any length.

FTSetConfig ignores items it does not recognize or find relevant; such an
occurrence causes the file transfer tool to stop parsing the string and to return the
character position where the error occurred. if the file transfer tool successfully parses the
string, it returns ftNoErr. if the file transfer tool does not successfully parse the string,
it returns one of the following values: a number less than -1 to indicate an OSErr, -1 to
indicate an unknown error, or a positive number to indicate the character position where
parsing was stopped.

Individual file transfer tools are responsible for the parsing operation.

Sample A null-terminated, C-style configuration string

InterCharDelay 0 InterLineDelay 0 WordWrap False Ending CR\0

Chapter 5: File Transfer Manager 149

Transferring files

When your application has performed the necessary steps described in the previous sections, it is ready
to start transferring files. Your application must perform two steps: first, it must call FTStart to open
the file and initialize tool-private variables; second, it must call FTExec to process data every time it
goes through its main event loop.

FTStart

Starting a file transfer

FTStart opens the file that is going to be involved in the file transfer, and initializes
tool-private variables.

The value in the owner field in the file transfer record controls the appearance
of a status dialog box.

The code that performs the actual sending, receiving, reading, and writing of data
is the responsibility of your application. Your application specifies these routines
when it creates the file transfer record. For a description of the parameters that will be
passed to these routines, see “Routines Your Application Provides,” later in this
chapter.

Function FTStart (hFT: FTHandle; direction:FTDirection; fileInfo:SFReply): FTErr;

Description direction describes the direction of the file transfer and can be either
ftReceiving, ftTransmitting, or ftFullDuplex.

Once the file transfer has started, your application needs to call FTExec every
time it goes through its main event loop. Calling FTExec gives the tool time to send
and receive a packet of data, among other things.

Result Codes ftGenericError, ftNoErr, ftRejected, ftFailed,
ftTimeout, ftTooManyRetry, ftNotEnoughDspace,
ftRemoteCancel, ftWrongFormat, ftUserCancel,
ftNotSupported.

150 Inside the Macintosh Communications Toolbox

FTExec:
Processing file transfer data

FTExec is the soul of the file transfer process because it allows the file transfer tool to
implement the file transfer protocol. FTExec handles the disk input and output,
either through your application or by performing local disk input and output, if
specified by your application. Every time your application calls FTExec, a little piece
of data is processed until there is no more data.

When sending files, the file transfer tool reads data from your application with a
readProc, and sends it to the connection with a sendProc. When receiving files,
the file transfer tool gets data from your application with a recvProc, and checks if
the data arrived correctly. The file transfer tool then writes the data with a
writeProc.

The readProc, sendProc, recvProc, and writeProc routines are
discussed in “Routines Your Application Provides” later in this chapter.

At the end of the file transfer, the file transfer tool is responsible for closing the
file, releasing any memory allocated, and resetting the ftIsFTMode bit in the file
transfer record.

Procedure FTExec(hFT: FTHandle);

FTAbort
Stopping a file transfer

FTAbort aborts a file transfer in progress. The file transfer tool sends the
appropriate canceling characters to the remote computer, and stops the file transfer.

Function FTAbort(hFT: FTHandle): FTErr;

Result Codes ftGeneric, ftNoErr, ftRejected, ftFailed,
ftNotSupported.

FTDispose
Disposing of a file transfer record

FTDispose disposes of the file transfer record and all associated data structures.
The file transfer tool stops any file transfer in progress (as specified by the file transfer
record).

Procedure FTDispose(hFT: FTHandle);

Chapter 5: File Transfer Manager 151

Handling events

The File Transfer Manager event-processing routines provide useful extensions to the Macintosh Toolbox
Event Manager. This section explains the three procedures that the Communications Toolbox provides:
FTActivate, FTResume, and FTEvent. See “Other Events” in Chapter 2 for sample code
showing how an application can determine if an event needs to be handled by one of these routines.

FTActivate

Activate events

FTActivate processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the file transfer.

Procedure FTActivate(hFT: FTHandle; activate: BOOLEAN);

Description If activate is TRUE, the file transfer tool processes an activate event. Otherwise, it
processes a deactivate event.

FTResume

Resume events
FTResume is called when your application receives a suspend or a resume event.
The file transfer tool may decide to change timeout values or other parameters,
depending on whether the application is running in the foreground.

Procedure FTResume(hFT: FTHandle; resume: BOOLEAN);

Description If resume is TRUE, the file transfer tool processes a resume event. Otherwise, it
processes a suspend event.

152 Inside the Macintosh Communications Toolbox

FTMenu

Menu events

Your application must call FTMenu when the user chooses an item from a menu
installed by the file transfer tool.

Function FTMenu (hFT: FTHandle; menuID: INTEGER; item: INTEGER):
BOOLEAN;

Description FTMenu returns FALSE if the file transfer tool did not handle the menu event.
FTMenu returns TRUE if the file transfer tool did handle the menu event.

FTEvent

Other events
When your application receives an event, it should check if the refcon of the window
is a tool’s hFT. Such an event occurs, for example, when the user clicks a button in a
dialog box displayed by the file transfer tool. If it does belong to a file transfer tool’s
window, your application can call FTEvent.

Procedure FTEvent (hFT: FTHandle; theEvent: EventRecord);

Description A window (or dialog box) created by a file transfer tool has a file transfer record handle
stored in the refCon field for windowRecord.

Chapter 5: File Transfer Manager 153

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

FTIntlToEnglish

Translating into English

FTIntlToEnglish converts a configuration string, which is pointed to by
inputPtr, to an American English configuration string pointed to by outputPtr.

Function FTIntlToEnglish (hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description This function returns an operating system error code if any internal errors occur.
The file transfer tool allocates space for outputPtr. Your application is

responsible for disposing of the pointer with DisposPtr when done with it.
language specifies the language from which the string is to be converted. Valid

values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. If the language specified is not supported, this routine returns
noErr, but outputPtr is NIL.

FTEnglishToIntl

Translating from English

FTEnglishToIntl converts an American English configuration string, which is
pointed to by inputPtr, to a configuration string pointed to by outputPtr.

Function FTEnglishToIntl(hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: INTEGER): OSErr;

Description This function returns an operating system error code if any internal errors occur.
The file transfer tool allocates space for outputPtr; your application is

responsible for disposing of the pointer with DisposPtr when done with it.
language specifies the language to which the string is to be converted. Valid

values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. if the language specified is not supported, noErr is still
returned, but outputPtr is NIL.

154 Inside the Macintosh Communications Toolbox

Miscellaneous routines

The routines described in this section perform a variety of tasks.

FTGetToolName

Getting the name of a tool

FTGetToolName returns in name the name of the tool specified by procID.

Procedure FTGetToolName(procID: INTEGER; VAR name: Str255);

Description If procID references a file transfer tool that does not exist, the File Transfer Manager
sets name to an empty string.

FTSetRefCon

Setting the file transfer record’s reference constant

FTSetRefCon sets the file transfer record refCon to the given value. It is very
important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

Procedure FTSetRefCon(hFT: FTHandle; refCon: LONGINT);

FTGetRefCon

Getting the file transfer record reference constant

FTGetRefCon returns the file transfer record reference constant.

Function FTGetRefCon (hFT: FTHandle) : LONGINT;

Chapter 5: File Transfer Manager 155

FTSetUserData
Setting the userData field

FTSetUserData sets the file transfer record’s userData field to the given value.
It is very important that your application use this routine to change the value of the
userData field, instead of changing it directly.

Procedure FTSetUserData(hFT: FTHandle; userData: LONGINT);

FTGetUserData
Getting the userData field

FTGetUserData returns the file transfer record’s userData field.

Function FTGetUserData(hFT: FTHandle) : LONGINT;

FTGetVersion
Getting 'vers' resource information

FTGetVersion returns a handle to a relocatable block that contains the information
in the file transfer tool’s 'vers' resource with ID=1. Your application is responsible for
disposing of the handle when done with it.

u Note: The handle returned is not a resource handle.

Function FTGetVersion(hFT: FTHandle): Handle;

FTGetFTVersion
Getting the File Transfer Manager version number

FTGetFTVersion rectums the version number of the File Transfer Manager.

Function FTGetFTVersion: INTEGER;

Description The version number of the File Transfer Manager described in this document is:

CONST
curFTVersion = 1;

156 Inside the Macintosh Communications Toolbox

Routines your application provides

Your application is responsible for providing routines it will use to send, receive, read, and write data
during a file transfer. Your application might also need to include a routine that can provide
information to the file transfer tool about the connection environment. When your application creates a
new file transfer record, it specifies pointers to these routines.

Sending and receiving files are both two-step processes. When sending a file, the file transfer tool
calls MyReadProc to read the data into a buffer, and then MySendProc to send the processed data.
When receiving a file, the file transfer tool calls MyRecvProc to get the data, and then
MyWriteProc to write the processed data to the appropriate medium.

Your application must include the send and receive routines described in this section. The other
routines are optional.

MyReadProc
Reading data

MyReadProc is a routine in your application that the file transfer tool calls to read
data from a file. After MyReadProc reads the data, the file transfer tool typically sends
the data by calling the MySendProc routine, which is described next. MyReadProc
is also responsible for opening and closing the file from which the outgoing data is read.

Function MyReadProc(VAR count : LONGINT; bufPtr : Ptr; refCon :
LONGINT; fileMsg : INTEGER) : OSErr;

Description MyReadProc must return an error code when appropriate.

count is a bit field with the following bit masks defined:

CONST

ftOpenDataFork = $00000001;

ftOpenRsrcFork = $00000002;

refCon is the reference constant of the file transfer record.

fileMsg specifies which service the file transfer tool requires MyReadProc to
provide.

CONST

ftReadOpenFile = 0;

ftReadDataFork = 1;

ftReadRsrcFork = 2;

ftReadAbort = 3;

ftReadComplete = 4;

ftReadOpenFile

ftReadOpenFile indicates that the file transfer tool requires MyReadProc to
open a file. The bits set in count specify whether MyReadProc should open the
resource fork, data fork, or both. bufPtr points to a parameter block that specifies the
file MyReadProc should open. The parameter block the file transfer tool passes to
MyReadProc is the same as that returned from calling PBGetFInfo.

Chapter 5: File Transfer Manager 157

ftReadDataFork and ftReadRsrcFork

These messages indicate that the file transfer tool requires MyReadProc to read data
from an open file, which it had previously opened in response to
ftReadOpenFile. count specifies the number of bytes MyReadProc should
read. When finished reading, MyReadProc puts the actual number of bytes read into
count. bufPtr points to the buffer into which MyReadProc should read data.

ftReadAbort and ftReadComplete

These messages indicate that MyReadProc should close the file it had opened in
response to ftReadOpenFile.

MySendProc
Sending data

MySendProc is a routine in your application that the file transfer tool calls to send
data that is in a buffer.

Function MySendProc (thePtr: Ptr; theSize: LONGINT; refCon:
LONGINT; channel: CMChannel; flags: CMFlags):LONGINT;

Description MySendProc must return the actual number of bytes it sent.

thePtr is a pointer to a block of data in memory that is to be sent.

theSize is the length of that block.

refCon is the reference constant of the file transfer record.

channel specifies the channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMData, CMCntl, or
CMAttn.

flags is described in Chapter 3 under the description of CMWrite.

Sample send routine

FUNCTION MySendProc (thePtr: Ptr;theSize: LONGINT;refcon: LONGINT;
channel: CMChannel;flags: INTEGER) : LONGINT;

VAR
theErr : CMErr; { Errors on a write }

BEGIN
MySendProc:= 0; { Assume the worst}

IF gConn <> NIL THEN BEGIN { Send the data }
theErr :=
CMWrite(gConn,thePtr,theSize,channel,FALSE, NIL,
0, flags);

IF (theErr = noErr) THEN
MySendProc:= theSize { if ok, we sent all }

ELSE
; { Handle errors }

END; { Good Connection }

END; { MySendProc }

158 Inside the Macintosh Communications Toolbox

MyRecvProc

Receiving data
MyRecvProc is a routine in your application that the file transfer tool uses to receive
data into a buffer from the connection.

Function MyRecvProc (thePtr: Ptr; theSize: LONGINT; refCon: LONGINT;
channel: CMChannel; VAR flags: CMFlags):LONGINT;

Description MyRecvProc must return the actual number of bytes it received.

thePtr is a pointer to a block of data in memory where the incoming data is to be placed.

theSize is the length of that data.

refcon is the reference constant of the file transfer record.

channel specifies the data channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMData, CMCntl, or CMAttn.

flags is described in Chapter 3 under the description of CMRead.

Sample receive routine

FUNCTION MyRecvProc (thePtr: Ptr;theSize: LONGINT;refcon: LONGINT;
channel: CMChannel;VAR flags: INTEGER): LONGINT;

VAR
theErr : CMErr; { Any errors }

BEGIN
MyRecvProc := 0; { Assume the worst }

IF gConn <> NIL THEN BEGIN
{ Read all the data }

theErr :=
CMRead(gConn,thePtr,theSize,channel,FALSE,NIL,0,flags);

IF (theErr <> noErr) THEN
MyRecvProc := theSize { if ok, we got all }

ELSE
; { Handle errors }

END; { Good Connection }

END; { MyRecvProc }

Chapter 5: File Transfer Manager 159

MyWriteProc
Writing data

MyWriteProc is a routine in your application that the file transfer tool calls to write
data to a file. MyWriteProc is also responsible for opening and closing the file to
which the outgoing data is written.

Function MyWriteProc(VAR count: LONGINT; bufPtr: Ptr; refCon:
LONGINT; fileMsg: INTEGER): OSErr;

Description MyWriteProc must return an error code when appropriate.

count is a bit field with the following bit masks defined:

CONST
ftOpenDataFork = 1;

ftOpenRsrcFork = 2;

refCon is the reference constant of the file transfer record.

fileMsg specifies which service the file transfer tool requires MyWriteProc to
provide.

CONST
ftWriteOpenFile = 0;

ftWriteDataFork = 1;

ftWriteRsrcFork = 2;

ftWriteAbort = 3;

ftWriteComplete = 4;

ftWriteFileInfo = 5;

ftWriteOpenFile

ftWriteOpenFile indicates that the file transfer tool requires MyWriteProc to
open a file. The bits set in count specify whether MyWriteProc should open the
resource fork, data fork, or both. bufPtr points to a parameter block that specifies
the file MyWriteProc should open. The parameter block the file transfer tool passes
to MyWriteProc is the same as that returned from calling PBGetFInfo.

Note that MyWriteProc creates the file specified by the parameter block. If the file
transfer protocol in use does not specify the filename for the incoming file,
MyWriteProc must generate one. Your application must handle filename conflicts
and AppleShare® file server permission problems if they arise.

ftWriteDataFork and ftWriteRsrcFork

These messages indicate that the file transfer tool requires MyWriteProc to open a
file. count specifies the number of bytes to write. When finished writing data,
MyWriteProc should set count to the actual number of bytes written. bufPtr
points to the buffer into which MyWriteProc should write data.

160 Inside the Macintosh Communications Toolbox

ftWriteAbort

ftWriteAbort indicates that MyWriteProc should close the open file and delete
it.

ftWriteComplete

ftWriteComplete indicates that MyWriteProc should close the open file.

ftWriteFileInfo

ftWriteFileInfo indicates that the file transfer tool requires MyWriteProc to
change file information. bufPtr points to a parameter block that MyWriteProc
can pass to the File Manager routine PBSetFInfo.

MyEnvironsProc

Getting the connection environment

Sometimes the file transfer tool needs to know about the type of connection on which to
transfer files. For example, some file transfer protocols require an 8-bit data channel. To
get this information, the file transfer tool calls a routine in your application,
MyEnvironsProc.

Function MyEnvironsProc(refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec): CMErr;

Description refCon is the reference constant of the file transfer record.

theEnvirons is a data structure containing the connection-environment record.
Your application can either construct theEnvirons or use the Connection Manager
routine CMGetConnEnvirons. For more information about theEnvirons, See
“CMGetConnEnvirons Getting the Connection Environment” in Chapter 3.

The example that follows shows how MyEnvironsProc can point to a
Connection Manager routine to retrieve information about the connection environment.

Result Codes cmGenericError, cmNoErr, cmNotSupported, envVersTooBig.

Sample connection-environment routine

FUNCTION MyEnvironsProc(refCon: LONGINT; VAR theEnvirons:
ConnEnvironRec): OSErr;

BEGIN
MyEnvironsProc:= envNotPresent; { pessimism }

{ Get the connection info }
IF gConn <> NIL THEN { Tool sets the version }

MyEnvironsProc:= CMGetConnEnvirons(gConn,theEnvirons);

END; { MyEnvironsProc }

Chapter 5: File Transfer Manager 161

Quick reference

This section provides a reference to File Transfer Manager routines and data structures. At the end of
this section is a listing of routine selectors for programming in assembly language.

Routines

File Transfer Manager routines See page

FTAbort(hFT: FTHandle): FTErr; 150

FTActivate(hFT: FTHandle; activate: BOOLEAN); 151

FTChoose(VAR hFT: FTHandle; where: Point; idleProc: 142
ProcPtr): INTEGER;

FTDefault(VAR theConfig: Ptr; procID: INTEGER; 141
allocate: BOOLEAN);

FTDispose(hFT: FTHandle); 150

FTEnglishToIntl(hFT: FTHandle; inputPtr: Ptr; VAR 153
outputPtr: Ptr; language: INTEGER): OSErr;

FTEvent(hFT: FTHandle; theEvent: EventRecord); 152

FTExec(hFT: FTHandle); 150

FTGetConfig(hFT: FTHandle): Ptr; 148

FTGetFTVersion: INTEGER; 155

FTGetToolName(procID: INTEGER; VAR name: Str255); 154

FTGetProcID(name: Str255): INTEGER; 139

FTGetRefCon(hFT: FTHandle): LONGINT; 154

FTGetUserData(hFT: FTHandle) : LONGINT; 155

FTGetVersion(hFT: FTHandle): Handle; 155

FTIntlToEnglish(hFT: FTHandle; inputPtr: Ptr; VAR 153
outputPtr: Ptr; language: INTEGER): OSErr;

FTMenu(hFT: FTHandle; menuID: INTEGER; item: 152
INTEGER): BOOLEAN;

FTNew(procID: INTEGER; flags: FTFlags; sendProc: 139

ProcPtr; recvProc: ProcPtr; readProc: ProcPtr;

writeProc: ProcPtr; environsProc: ProcPtr; owner:

WindowPtr; refCon: LONGINT; userData: LONGINT):

FTHandle;

FTResume(hFT: FTHandle; resume: BOOLEAN); 151

FTSetConfig(hFT: FTHandle; thePtr: Ptr): INTEGER; 148

FTSetRefCon(hFT: FTHandle; refCon: LONGINT); 154

162 Inside the Macintosh Communications Toolbox

File Transfer Manager routines See page

FTSetupCleanup(procID: INTEGER; theConfig: Ptr; 146
count: INTEGER; theDialog: DialogPtr; VAR
magicCookie: LONGINT);

FTSetupFilter(procID: INTEGER; theConfig: Ptr; count: 145
INTEGER; theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR theItem: INTEGER; VAR magicCookie:
LONGINT): BOOLEAN;

FTSetupItem(procID: INTEGER; theConfig: Ptr; count: 146
INTEGER; theDialog: DialogPtr; VAR theItem: INTEGER;
VAR magicCookie: LONGINT);

FTSetupPostflight(procID: INTEGER); 147

FTSetupPreflight(procID: INTEGER; VAR magicCookie: 144
LONGINT): Handle;

FTSetupSetup(procID: INTEGER; theConfig: Ptr; count: 145
INTEGER; theDialog: DialogPtr; VAR magicCookie:
LONGINT);

FTSetUserData(hFT: FTHandle; userData: LONGINT); 155

FTStart(hFT: FTHandle; direction: FTDirection; 149
fileInfo: SFReply): FTErr;

FTValidate(hFT: FTHandle): BOOLEAN; 141

InitFT: FTErr; 138

Routines in your application See page

MyEnvironsProc(refCon: LONGINT; VAR theEnvirons: 160
ConnEnvironRec): CMErr;

MyReadProc(VAR count : LONGINT; bufPtr : Ptr; refCon 156
LONGINT; fileMsg : INTEGER) : OSErr;

MyRecvProc(thePtr: Ptr; theSize: LONGINT; refCon: 158
LONGINT; channel: CMChannel; VAR flags:
CMFlags):LONGINT;

MySendProc(thePtr: Ptr; theSize: LONGINT; refCon: 157
LONGINT; channel: CMChannel; flags: CMFlags):LONGINT;

MyWriteProc(VAR count: LONGINT; bufPtr: Ptr; refCon: 159
LONGINT; fileMsg: INTEGER): OSErr;

Chapter 5: File Transfer Manager 163

File transfer record

TYPE
FTHandle = ^FTPtr;
FTPtr = ^FTRecord;
FTRecord = PACKED RECORD

procID : INTEGER;

flags : FTFlags;
errCode : FTErr;

refCon : LONGINT;
userData : LONGINT;

defProc : ProcPtr;

config : Ptr;
oldConfig : Ptr;

environsProc : ProcPtr;
reservedl : LONGINT;
reserved2 : LONGINT;

ftPrivate : Ptr;

sendProc : ProcPtr;
recvProc : ProcPtr;
writeProc : ProcPtr;
readProc : ProcPtr;

owner : WindowPtr;

direction : FTDirection;
theReply : SFReply;

writePtr : LONGINT;
readPtr : LONGINT;
theBuf : ^char;
bufSize : LONGINT;
autoRec : Str255;
attributes : FTAttributes;

END;

164 Inside the Macintosh Communications Toolbox

Constants and data types

CONST
curFTVersion = 1;

TYPE
FTDirection = INTEGER;

CONST
ftReceiving = 0;
ftTransmitting = 1;
ftFullDuplex = 2;

{ file transfer attributes }
TYPE

FTAttributes = INTEGER
CONST

ftSameCircuit = $0001;
ftSendDisable = $0002;
ftReceiveDisable = $0004;
ftTextOnly = $0008;

{ file transfer flags }
TYPE

FTFlags = LONGINT;

CONST
ftIsFTMode = $0001;
ftNoMenus = $0002;
ftQuiet = $0004;
ftSucc = $0080;

{ Choose return values }
CONST

chooseDisaster = -2;
chooseFailed = -1;
chooseOKMinor = 1;
chooseOKMajor = 2;
chooseCancel = 3;

Chapter 5: File Transfer Manager 165

Errors

TYPE
FTErr = OSErr;

CONST
ftGenericError = -1;
ftNoErr = 0;
ftRejected = 1;
ftFailed = 2;
ftTimeOut = 3;
ftTooManyRetry = 4;
ftNotEnoughDspace = 5;
ftRemoteCancel = 6;
ftWrongFormat = 7;
ftNoTools = 8;
ftUserCancel = 9;
ftNotSupported = 10;

File Transfer Manager routine selectors

n Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap, To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set AO to point
to the selector, and invoke the trap _ CommToolboxDispatch ($A08B).
Upon returning from the trap, the trap macro pops the routine selector off the stack and places the
return value into D0. It is your application’s responsibility to clean up the stack by removing the
parameters that were pushed onto the stack prior to invoking the trap macro.

FTAbort .EQU 525 FTGetProcID .EQU 519

FTActivate .EQU 544 FTGetRefCon .EQU 515

FTChoose .EQU 540 FTGetToolName .EQU 518

FTDefault .EQU 528 FTGetUserData .EQU 517

FTDispose .EQU 521 FTGetVersion .EQU 538

FTEnglishToIntl .EQU 537 FTIntlToEnglish .EQU 536

FTEvent .EQU 541 FTMenu .EQU 543

FTExec .EQU 522 FTNew .EQU 520

FTGetConfig .EQU 534 FTResume .EQU 526

FTGetFTVersion .EQU 539 FTSetConfig .EQU 535

166 Inside the Macintosh Communications Toolbox

FTSetRefCon .EQU 514 FTSetupSetup .EQU 530

FTSetupCleanup .EQU 533 FTSetUserData .EQU 516

FTSetupFilter .EQU 531 FTStart .EQU 523

FTSetupItem .EQU 532 FTValidate .EQU 527

FTSetupPostflight .EQU 542 InitFT .EQU 513

FTSetupPreflight .EQU 529

Chapter 6 Communications Resource Manager

168 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R describes the Communications Resource Manager, the Communications Toolbox

manager that makes it easier for your code to manage communications resources and devices. This

chapter describes the data structures and routines your code can use to implement device management.

Next, it presents the routines your code can use to perform resource management. At the end of the

chapter, you’ll find a “Quick Reference” to routines, data structures, and routine selectors for

programming in assembly language.

In this chapter, the term your code refers to the application, tool, or driver you are writing for the

Macintosh, which will implement communications services for users.

To use the Communications Resource Manager, you need to be familiar with

� the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Device Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Memory Manager (described in Inside Macintosh, Volumes I, IV, V)

� the Operating System Utilities (described in Inside Macintosh, Volume II)

� the MultiFinder programming environment (described in Programmer’s Guide to MultiFinder)

Chapter 6: Communications Resource Manager 169

About the Communications Resource Manager

Your code uses the services provided by the Communications Resource Manager for two purposes: to
manage devices (such as internal modems and serial cards) and to manage resources. Device management
is essential when your code needs to know about new cards that have been installed in a Macintosh.
Resource management is required when your code is sharing resources with other applications (as it does
when a Macintosh runs under MultiFinder). The resource management services provided by the
Communications Resource Manager are an extension to the services provided by the Resource Manager in
the Macintosh Toolbox.

The way your code uses the Communications Resource Manager is very similar to the way it uses
other Communications Toolbox managers. Your code calls a Communications Resource Manager routine,
which, upon completion, returns to your code any relevant parameters and return codes. Figure 6-1 shows
the data flow into and out of the Communications Resource Manager.

� Figure 6-1 Data flow into and out of the Communications Resource Manager

170 Inside the Macintosh Communications Toolbox

Device management

The way Macintosh applications interact with special interface cards varies from card to card, making the
task of programming the Macintosh to use these cards quite complex. The Communications Toolbox
solves this problem by providing applications with standardized routines and data structures that they can
use to keep track of communications devices users have installed.

The data structure that is most important in supporting communications device management is the
communications resource record, which is stored as an operating system queue. The communications
resource record comprises fields containing information such as the type of device the record represents,
and whether the device is available for use. The communications resource record is described later in this
chapter.

The Communications Resource Manager and your code keep track of communications devices by
placing a communications resource record into the queue for each communications device. Initially, when
your code calls InitCRM (discussed later in this chapter), this queue contains two records, one for each
of the serial drivers. Your code can then add and delete communications resource records.

By making use of Communications Toolbox routines, your code can register new devices, allocate
devices, and look for specific kinds of devices. And device drivers, if properly coded, can resolve conflicts
when two or more applications need to use a communications resource at the same time. This situation
often arises in a MultiFinder environment.

Resource management

When your code shares resources with other applications, problems can arise if one of the applications
accidentally disposes of a resource needed by another application. The Communications Toolbox
provides routines that your code can use to share resources without confronting this kind of problem.
These routines keep track of how many times a resource is simultaneously in use in an internal
Communications Resource Manager data structure for every communications resource. Every time code
requests a resource, the Communications Resource Manager increases the “use count” for that resource by
1. Every time code releases a communications resource, the Communications Resource Manager decreases
the value by 1. This enables the Communications Resource Manager to keep track of which resources are
being used; when a resource’s use count reaches 0, it is released.

Chapter 6: Communications Resource Manager 171

The communications resource record

The most important data structure to the Communications Resource Manager is the
communications resource record. It contains information like the name and type of each device connected
to the Macintosh, and whether a device is in use.

At startup time, the Communications Resource Manager builds a queue of communications resource
records. If the Communications Resource Manager is installed, the queue will consist of a minimum of two
devices of type crmSerialDevice.

When your code installs a new record into the queue, it must fill in the following fields in the
communications resource record: crmDeviceType, crmAttributes, crmStatus, and
crmRefCon. The Communications Resource Manager fills in the other fields.

Communications resource record data structure

TYPE
CRMRecPtr = ^CRMRec;
CRMRec = RECORD

qLink : QElemPtr;
qType : INTEGER;
crmVersion : INTEGER;

crmPrivate : LONGINT;
crmReserved : INTEGER;

crmDeviceType : LONGINT;
crmDeviceID : LONGINT;
crmAttributes : LONGINT;
crmStatus : LONGINT;

crmRefCon : LONGINT;
END;

qLink
qLink points to the next CRMRec in the Communications Resource Manager’s queue of
communications resource records.

qType
qType is a constant that your code must fill with the constant crmType.

crmVersion
crmVersion is the version number of the CRMRec data structure. At this time there is only one
version, so the Communications Resource Manager fills this with the constant crmRecVersion.

172 Inside the Macintosh Communications Toolbox

crmPrivate and crmReserved
crmPrivate and crmReserved are private to the Communications Resource Manager; your code
must not use them.

crmDeviceType
crmDeviceType is the type of device. For example, a serial port has a crmDeviceType of
crmSerialDevice.

crmDeviceID
crmDeviceID is an identifier that your code can use to distinguish between multiple devices of the
same device type. The Communications Resource Manager fills in this field when your code calls the
CRMInstall routine.

crmAttributes
crmAttributes specifies the attributes of a specific device type. This field can hold either a pointer
to the data or the actual data that describes the device. A sample crmAttributes data structure
appears later in this chapter in the section “Registering a Device.”

crmStatus
crmStatus specifies the status of a device. Your code can use this field for device arbitration purposes.

crmRefCon
crmRefCon is not used in this release of the Communications Resource Manager.

Chapter 6: Communications Resource Manager 173

Communications Resource Manager routines

The following sections describe the routines that applications use to access Communications Resource
Manager services. Your application cannot call these routines from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.
You can use the list as a reference tool to find the description of a routine. Or, you can use the index at
the end of this document, which lists these routines alphabetically.

InitCRM / 174 CRMGet1IndResource / 177
CRMInstall / 174 CRMGetNamedResource / 178
CRMSearch / 175 CRMGet1NamedResource / 178
CRMRemove / 175 CRMGetIndex / 178
CRMGetCRMVersion / 176 CRMReleaseResource / 178
CRMGetHeader / 176 CRMGetIndToolName / 179
CRMGetResource / 177 CRMRealToLocalID / 180
CRMGet1Resource / 177 CRMLocalToRealID / 181
CRMGetIndResource / 177

174 Inside the Macintosh Communications Toolbox

InitCRM

Initializing the Communications Resource Manager

InitCRM initializes the Communications Resource Manager.

ssss Warning Your code must call this routine after calling the standard Macintosh Toolbox
initialization routines and before calling any of the other Communications Toolbox
manager initialization routines. ssss

Function InitCRM:CRMErr;

Description InitCRM returns an operating system error code if appropriate.
Your code must check for the presence of the Communications Toolbox before calling

this function. Sample code under “Determining Whether the Managers Are Installed” in
Appendix C shows you how your application can make this check.

Result Codes crmGenericError, crmNoErr.

CRMInstall

Installing devices

CRMInstall installs a device into the Communications Resource Manager’s queue.
Devices in the Communications Resource Manager queue typically have their CRMRec
records allocated in the system heap. If your code installs a CRMRec at startup time, be
sure that your code increases the size of the system heap appropriately.

For more information on how to register a device with the Communications Resource
Manager, read “Registering a Device,” later in this chapter.

Procedure CRMInstall(crmReqPtr: QElemPtr);

Description CRMInstall installs the communications resource record crmReqPtr into the
Communications Resource Manager queue.

ssss Warning A CRMRec allocated in the application heap needs to be removed before the
application heap is reinitialized; otherwise, the Communications Resource Manager queue
may be damaged. ssss

Chapter 6: Communications Resource Manager 175

CRMSearch

Searching for devices

Your code can use CRMSearch to order the Communications Resource Manager queue,
or to add new elements to the end of the queue.

Function CRMSearch (crmReqPtr: QElemPtr): QElemPtr;

Description crmReqPtr specifies communications resource record search criteria.
CRMSearch searches for a device in the Communications Resource Manager queue

that has two characteristics: the same deviceType, and a deviceID greater than the
deviceID in the record specified by crmReqPtr. CRMSearch returns a pointer
to the first record that it finds that meets these two conditions. Or, if no records meet the
search criteria, it returns NIL.

When searching for the first element in the queue, your code must pass 0 in
deviceID.

CRMRemove

Removing devices

CRMRemove removes a device from the Communications Resource Manager queue.

Function CRMRemove (crmReqPtr: QElemPtr): OSErr;

Description crmReqPtr specifies the device to be removed.

176 Inside the Macintosh Communications Toolbox

CRMGetCRMVersion

Getting the version number

CRMGetCRMVersion returns the version number of the Communications Resource
Manager.

Function CRMGetCRMVersion:INTEGER;

Description The Communications Resource Manager version described in this document is:

CONST
curCRMVersion = 1;

CRMGetHeader

Getting to the head of the queue

CRMGetHeader returns a pointer to the head of the Communications Resource
Manager queue.

Function CRMGetHeader: QHdrPtr;

Chapter 6: Communications Resource Manager 177

Resource management routines

The nine routines described in this section make it easier for your code to manage communications
resources. Your code should use these routines so that the Communications Resource Manager can keep
track of how many times a resource is simultaneously in use.

The names of these routines are similar to the names of Resource Manager routines available in the
Macintosh Toolbox. Communications Resource Manager routines also operate very much like Resource
Manager routines; in fact, most of them make use of their counterparts in the Macintosh Toolbox.

CRMGetResource and CRMGet1Resource
Loading resources

CRMGetResource and CRMGet1Resource call the Resource Manager routines
GetResource and Get1Resource, respectively, and return a handle to the
specified communications resource. The Communications Resource Manager then adds
the handle to the list of resources that it is managing, and increases by one the use count,
which indicates how many pieces of code are using a resource.

Function CRMGetResource(theType: ResType; theID: INTEGER): Handle;

Function CRMGet1Resource(theType: ResType; theID: INTEGER):
Handle;

CRMGetIndResource and CRMGet1IndResource
Loading indexed resources

CRMGetIndResource and CRMGet1IndResource call the Resource Manager
routines GetIndResource and Get1IndResource, respectively, and return a
handle to the specified communications resource. The Communications Resource
Manager then adds the handle to the list of resources that it is managing, and increases by
one the use count, which indicates how many pieces of code are using a resource.

Function CRMGetIndResource(theType: ResType; index: INTEGER): Handle;

Function CRMGet1IndResource(theType: ResType; index: INTEGER): Handle;

178 Inside the Macintosh Communications Toolbox

CRMGetNamedResource and CRMGet1NamedResource
Loading named resources

CRMGetNamedResource and CRMGet1NamedResource call
GetNamedResource and Get1NamedResource, respectively, and return a
handle to the specified communications resource. The Communications Resource
Manager then adds the handle to the list of resources that it is managing, and increases by
one the use count, which indicates how many pieces of code are using a resource.

Function CRMGetNamedResource(theType: ResType; name: Str255):
Handle;

Function CRMGet1NamedResource(theType: ResType; name: Str255):
Handle;

CRMGetIndex

Getting a usage index for a resource

CRMGetIndex returns a use count which indicates how many pieces of code are
simultaneously using a resource with the specified handle. CRMGetIndex returns 0 if
it does not find theHandle in the list of resources the Communications Resource
Manager is managing.

Function CRMGetIndex(theHandle: Handle): LONGINT;

CRMReleaseResource

Releasing resources

CRMReleaseResource decreases by 1 the value that indicates how many pieces of
code have requested a resource. If the use count reaches 0, the resource specified by
theHandle is released with a call to the Resource Manager routine
ReleaseResource.

Procedure CRMReleaseResource(theHandle: Handle);

ssss Warning Your code must release communications resources by calling
CRMReleaseResource. If your code tries to release the resources using the
Resource Manager routine ReleaseResource, the results are unpredictable. ssss

Chapter 6: Communications Resource Manager 179

CRMGetIndToolName

Getting the name of a tool

CRMGetIndToolName returns the name of a tool in toolName.

Function CRMGetIndToolName(bundleType : OSType; index : INTEGER;
VAR toolName : Str255) : OSErr;

Description The appropriate values for bundleType are as follows:

CONST
ClassCM = 'cbnd';
ClassFT = 'fbnd';
ClassTM = 'tbnd';

index specifies which occurrence of a particular type of tool to return. For example, if
index is 2, the Communications Resource Manager returns the name of the second tool
of a particular type in toolName. If the Communications Resource Manager cannot find
a tool that matches the specified parameters, an empty string is returned in toolName.

180 Inside the Macintosh Communications Toolbox

Resource-mapping routines

All resources used by a tool can be referenced by a local ID, which can be mapped (using the tool bundle
resource) into the appropriate physical ID. The Communications Toolbox contains two routines that will
help you keep things straight: To map from physical ID to local ID, use CRMRealToLocalID; to map
from local ID to physical ID, use CRMLocalToRealID.

CRMRealToLocalID

Mapping to Local ID

CRMRealToLocalID maps a physical resource ID to a local resource ID.

Function CRMRealToLocalID(bundleType: ResType; toolID: INTEGER;
theKind: ResType; realID: INTEGER): INTEGER;

Description This routine returns the (physical/local) resource ID if an appropriate entry exists in the
tool bundle resource. If no entry is found, -1 is returned.

bundleType specifies the type of tool for which the mapping is to take place:
ClassCM (for connection tools), ClassTM (for terminal tools), or ClassFT (for file
transfer tools).

Here is the format for a connection tool bundle resource (in Rez format). The same
resource type declaration holds for terminal tools and file transfer tools.

type 'cbnd' (/* or tbnd, or fbnd */
integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

Chapter 6: Communications Resource Manager 181

CRMLocalToRealID

Mapping to Real ID

CRMLocalToRealID maps a local resource ID to a physical resource.

Function CRMLocalToRealID(bundleType: ResType; toolID: INTEGER;
theKind: ResType; localID: INTEGER): INTEGER;

Description This routine returns the (physical/local) resource ID if an appropriate entry exists in the
tool bundle resource. If no entry is found, -1 is returned.

bundleType specifies the type of tool for which the mapping is to take place:
ClassCM (for connection tools), ClassTM (for terminal tools), or ClassFT (for file
transfer tools).

toolID specifies the bundle resource for the tool.

182 Inside the Macintosh Communications Toolbox

Registering a device

This section gives some basic information about writing drivers that emulate the behavior of the
built-in serial drivers.

Private storage Your code can reference all private data storage off the dCtlStorage field of
the DCtlEntry for the drivers involved.

Low memory Do not use any.

Driver naming Use unique driver names and be prepared to deal with driver name collisions.
For example, don’t use ..CIn/.COut.

driver csCode calls Support all of the csCode calls supported by the standard serial drivers. If you
need additional csCode calls, contact Developer Technical Support to reserve
them. csCode calls below 256 are reserved for Apple Computer, Inc.

Data structures

Each device in the Communications Resource Manager’s queue has a CRMRec associated with it. For the
crmDeviceType field, Apple Computer, Inc. has defined the following value for serial port devices:

CONST
crmSerialDevice = 1;

® Note: Values for crmDeviceType less than l28 are reserved for Apple Computer, Inc. Your code
must not use them.

When adding a CRMRec to the Communications Resource Manager queue with the CRMInstall
routine, pass 0 for the crmDeviceID field. The device identifier will be assigned by the
Communications Resource Manager.

The crmAttributes field in the CRMRec points to a serial port device-specific data structure.
The crmStatus field of the CRMRec is not used for devices of type crmSerialDevice in this
version of the Communications Resource Manager.

Chapter 6: Communications Resource Manager 183

TYPE

CRMSerialPtr = ^CRMSerialRecord;
CRMSerialRecord = RECORD

version : INTEGER;

inputDriverName : StringHandle;
outputDriverName : StringHandle;
name : StringHandle;
deviceIcon : Handle;

ratedSpeed : LONGINT;
maxSpeed : LONGINT;

reserved : LONGINT;
END;

version
version is the version number of the CRMSerialRecord data structure. For the version of
CRMSerialRecord described in this document, version = curCRMSerRecVer, which
equals 0.

inputDriverName
inputDriverName is a pointer to a Pascal-style string, which is the name of the input driver for the
given serial port. This driver should behave like the standard input serial port drivers (.AIn and
.BIn), and support the same csCode calls as do the standard drivers.

outputDriverName
outputDriverName is a pointer to a Pascal-style string, which is the name of the output driver for the
given serial port. This driver should behave like the standard output serial port drivers (.Aout and
.Bout), and support the same csCode calls as do the standard drivers.

name
name is a string handle, which is the name associated with a given port.

deviceIcon
deviceIcon is a handle to a relocatable block that contains an icon and a mask associated with the
given port. Pass NIL if no icon is available.

ratedSpeed
ratedSpeed is the maximum recommended speed in bits per second.

maxSpeed
maxSpeed is the maximum speed in bits per second of which the hardware is capable.

184 Inside the Macintosh Communications Toolbox

Searching for serial port devices

The following routine will search the Communications Resource Manager linked list for devices of a
specified type.

PROCEDURE FindSerialPorts;
VAR

theCRM : CRMRecPtr;
theCRMRec : CRMRec;
theErr : RMErr;
theSerial : CRMSerialPtr;

old : INTEGER;

BEGIN
theErr := 0; { error status }
old := 0; { index number of ports }
WHILE (theErr = noErr) DO
BEGIN

WITH theCRMRec DO
BEGIN

crmDeviceType := crmSerialDevice;
{ search for port with index number greater than “old” }
crmDeviceID := old; { to be filled in later }

END;
theCRM := @theCRMRec;
theCRM := CRMRecPtr(CRMSearch(QElemPtr(theCRM)));

IF theCRM <> NIL THEN { got one! }
BEGIN

theSerial := CRMSerialPtr(theCRM^.crmAttributes);
old := theCRM^.crmDeviceID;

WITH theSerial^ DO
BEGIN
END;

END
ELSE
BEGIN

theErr := 1;
END;

END; { while }
END;

Chapter 6: Communications Resource Manager 185

Quick reference

This section provides a reference to Communications Resource Manager routines and data structures. At
the end of this section is a listing of routine selectors for programming in assembly language.

Routines

Communications Resource Manager routines See page

CRMGet1IndResource(theType: ResType; index:
INTEGER): Handle;

177

CRMGet1NamedResource(theType: ResType; name:
Str255): Handle;

178

CRMGet1Resource(theType: ResType; theID:
INTEGER): Handle;

177

CRMGetCRMVersion: INTEGER; 176
CRMGetHeader: QHdrPtr; 176
CRMGetIndex(theHandle: Handle): LONGINT; 178
CRMGetIndResource(theType: ResType; index:
INTEGER): Handle;

177

CRMGetIndToolName(bundleType : OSType; index :
INTEGER; VAR toolName : Str255) : OSErr;

179

CRMGetNamedResource(theType: ResType; name:
Str255): Handle;

178

CRMGetResource(theType: ResType; theID:
INTEGER): Handle;

177

CRMInstall(crmReqPtr: QElemPtr); 174
CRMReleaseResource(theHandle: Handle); 178
CRMRemove(crmReqPtr: QElemPtr): OSErr; 175
CRMSearch(crmReqPtr: QElemPtr): QElemPtr; 175
CRMLocalToRealID(bundleType: ResType; toolID:
INTEGER; theKind: ResType; localID: INTEGER):
INTEGER;

181

CRMRealToLocalID(bundleType: ResType; toolID:
INTEGER; theKind: ResType; realID: INTEGER):
INTEGER;

180

InitCRM:CRMErr; 174

186 Inside the Macintosh Communications Toolbox

Constants and data types

TYPE
CRMErr = OSErr;

CONST
crmGenericError = -1;
crmNoErr = 0;

CONST

curCRMVersion = 1;

{ Communications Resource Manager linked list type }
crmType = 9;

{ Version of CRMRec data structure }
crmRecVersion = 1;

{ local/real resource ID mapping }
ClassCM = 'cbnd';
ClassTM = 'tbnd';
ClassFT = 'fbnd';

TYPE
CRMRecPtr = ^CRMRec;
CRMRec = RECORD

qLink : QElemPtr;
qType : INTEGER;
crmVersion : INTEGER;

crmPrivate : LONGINT;
crmReserved : INTEGER;

crmDeviceType: LONGINT;
crmDeviceID : LONGINT;
crmAttributes: LONGINT;
crmStatus : LONGINT;

crmRefCon : LONGINT;
END;

Chapter 6: Communications Resource Manager 187

TYPE

CRMSerialPtr = ^CRMSerialRecord;
CRMSerialRecord = RECORD

version : INTEGER;

inputDriverName : StringHandle;
outputDriverName: StringHandle;
name : StringHandle;
deviceIcon : Handle;

ratedSpeed : LONGINT;
maxSpeed : LONGINT;

reserved : LONGINT;
END;

Communications Resource Manager routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set A0 to point
to the selector, and invoke the trap _CommToolboxDispatch ($A08B). Upon returning
from the trap, the trap macro pops the routine selector off the stack and places the return value into
D0. It is your application’s responsibility to clean up the stack by removing the parameters that were
pushed onto the stack prior to invoking the trap macro.

CRMGet1IndResource .EQU 1290 CRMGetResource .EQU 1287

CRMGet1NamedResource .EQU 1292 CRMInstall .EQU 1283

CRMGet1Resource .EQU 1288 CRMLocalToRealID .EQU 1295

CRMGetCRMVersion .EQU 1286 CRMRealToLocalID .EQU 1296

CRMGetHeader .EQU 1282 CRMReleaseResource .EQU 1293

CRMGetIndex .EQU 1294 CRMRemove .EQU 1284

CRMGetIndResource .EQU 1289 CRMSearch .EQU 1285

CRMGetIndToolName .EQU 1297 InitCRM .EQU 1281

CRMGetNamedResource .EQU 1291

188 Inside the Macintosh Communications Toolbox

Chapter 7 Macintosh Communications Toolbox Utilities

Inside the Macintosh Communications Toolbox190

T H I S C H A P T E R describes the Communications Toolbox utilities, a set of routines that makes it

easier for your application to manipulate dialog item lists, control pop-up menus, and search a network

for AppleTalk entities. This chapter also details two routines your application can use to initialize the

utilities and obtain the version number of the utilities.

At the end of the chapter you’ll find a “Quick Reference” to these routines, data structures, and routine

selectors for programming in assembly language.

To use the dialog item list manipulation routines, you need to be familiar with

n the Dialog Manager (described in Inside Macintosh, Volumes IV, V)

n the Control Manager (described in Inside Macintosh, Volumes I, IV, V)

n the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

To use the network look-up utilities, you need to be familiar with

n AppleTalk (described in Inside Macintosh, Volumes II, V)

Chapter 7: Macintosh Communications Toolbox Utilities 191

Communications Toolbox utilities

This section explains the routines and data structures that make up the Communications Toolbox utilities.
Your application cannot call these routines from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.

InitCTBUtilities / 192 CountDITL / 201
CTBGetCTBVersion / 192 ShortenDITL / 201
'CDEF' / 193 NuLookup / 203
AppendDITL / 198 NuPLookup / 204

Inside the Macintosh Communications Toolbox192

InitCTBUtilities

Initializing the Communications Toolbox utilities

InitCTBUtilities initializes the Communications Toolbox utilities.

ssss Warning Your application must call this routine after calling the standard Macintosh
Toolbox initialization routines and the Communications Resource Manager initialization
routine (InitCRM); your application can then call other Communications Toolbox
manager initialization routines. All code that uses any Communications Toolbox routines
must call this routine once and only once. ssss

Function InitCTBUtilities: CTBUErr;

Description InitCTBUtilities returns an operating system error code if appropriate. Your
application must check for the presence of the Communications Toolbox before calling
this function. Sample code under “Determining Whether the Managers Are Installed” in
Appendix C shows you how your application can make this check.

Result Codes ctbuGenericError, ctbuNoErr.

CTBGetCTBVersion

Getting the Communications Toolbox version number

CTBGetCTBVersion returns the version number of the Communications Toolbox
utilities.

Function CTBGetCTBVersion: INTEGER;

Description The Communications Toolbox version described in this document is:

CONST
curCTBUVersion = 1;

Chapter 7: Macintosh Communications Toolbox Utilities 193

'CDEF'

Pop-up menu control definition procedure

The Communications Toolbox includes a control definition procedure ('CDEF') that
extends the function of PopUpMenuSelect, which is a part of the Menu Manager in
the Macintosh Toolbox. This 'CDEF', with resource ID=63, is available on Macintosh
computers running with the Communications Toolbox installed.

The description that follows shows only the parameters your application must pass to
NewControl or GetNewControl that differ from those defined in Inside Macintosh.

Your application creates a pop-up menu the same way that it would create any other
Macintosh control. Figure 7-1 shows a pop-up menu control in its inactive and active
states.

n Figure 7-1 Pop-up menu in its inactive and active states

Description value specifies the manner in which the title of the pop-up menu is to be justified and
drawn. value is a bit field with the following masks:

CONST
popupTitleLeftJust = $0000;
popupTitleCenterJust = $0001;
popupTitleRightJust = $00FF;

popupTitleBold = $0100;
popupTitleItalic = $0200;
popupTitleUnderline = $0400;
popupTitleOutline = $0800;
popupTitleShadow = $1000;
popupTitleCondense = $2000;
popupTitleExtend = $4000;
popupTitleNoStyle = $8000;

Inside the Macintosh Communications Toolbox194

To have the pop-up menu draw the title of the control with more than one of the
characteristics listed above, pass in value the sum of all desired characteristics.

Once a pop-up menu has been created, the pop-up menu 'CDEF' sets value to
its minimum valid value. Your application can then use the value of the control to
determine the currently selected item.

min represents the menuID of the menu in the pop-up control when the control is
being created. After the control has been created, the pop-up menu 'CDEF' sets the
minimum value of the control to 1.

D Important The popup 'CDEF' first looks in the menu list using _GetMHandle. If

it can’t find the menu, it creates it using _GetMenu. D

max contains the width of the pop-up title area when the control is being created. After
the control has been created, the pop-up menu 'CDEF' sets the maximum value of the
control to the number of items in the pop-up menu.

procID should be an integer equal to popupMenuCDEFproc plus the
appropriate variation code. popupMenuCDEFproc is a constant set by Apple
Computer, Inc. and is equal to 1008 (63 times 16). Variation codes are discussed later in
“About Variation Codes.”

If the pop-up menu is created using the popupUseAddResMenu variation code, the
pop-up menu 'CDEF' creates the control and then calls AddResMenu to add items
to the menu associated with the pop-up menu control. The value in refCon is typecast
to the type ResType, which is used by the routine AddResMenu.

For example, if refCon is LONGINT('FONT'), the pop-up menu control
appends a list of the fonts installed in the system to the menu associated with the pop-up
menu control.

After the control has been created, your application can use the control’s refCon
field for whatever purpose it requires.

About variation codes

Your application can specify variation codes when it passes a value in procID.
Variation codes alter the characteristics of the pop-up menu control. To specify the
appropriate variation code, your application sums the values that correspond to the
desired pop-up menu characteristics with the basic pop-up menu constant
popupMenuCDEFproc. Valid values are shown next.

Chapter 7: Macintosh Communications Toolbox Utilities 195

Variation code constant Description

popupFixedWidth This constant specifies constant control width. If your application
specifies this value, the pop-up menu 'CDEF' will not resize
the control horizontally to fit long menu items. The width of the
pop-up box where the currently selected item is drawn equals the
width of the control, minus the width of the pop-up title your
application specifies when it creates the control. If the contents of
the pop-up box do not fit into the space provided, the contents is
truncated to fit and ellipses (...) are appended to its end. If this
variation code is not specified, the contents of the pop-up box are
guaranteed to fit, because the pop-up menu 'CDEF' resizes
the control horizontally.

popupUseCQD This constant specifies the use of Color QuickDraw. If your
application specifies this value, the pop-up menu 'CDEF' uses
the colors stored in the menu color table ('mctb') for the
color of the pop-up box when Color QuickDraw is available. If
Color QuickDraw is unavailable, this variation code is ignored.

If the grafPort that owns the control is an old-style (classic
QuickDraw) grafPort, the pop-up menu control attempts to create
a cGrafPort to draw the pop-up menu control in the correct colors
and then dispose of it when finished drawing. By using a
cGrafPort, the control avoids the distortion that occurs when
converting Color QuickDraw colors to classic QuickDraw colors.

popupUseAddResMenu If your application specifies this value, the pop-up menu
'CDEF' treats the refCon field as a ResType, and
performs an AddResMenu with this resource type on the
menu. If the control is being created with the NewControl
routine, the pop-up menu 'CDEF' receives refCon from
your application. If the control is being created with
GetNewControl, the pop-up menu 'CDEF' receives
refCon from the control template (resource type 'CNTL').

popupUseWFont If your application specifies this value, the pop-up menu
'CDEF' draws the pop-up menu control using the font and size
of the grafPort that owns the control. The pop-up menu, when
active, also uses the font and size specified by the grafPort, instead
of using the standard system font.

Inside the Macintosh Communications Toolbox196

The values that correspond to the variation code constants are as follows:

CONST
popupFixedWidth = $0001;
popupUseCQD = $0002;
popupUseAddResMenu = $0004;
popupUseWFont = $0008;

After the pop-up control has been created

After NewControl creates the pop-up menu, min contains 1, max contains the
number of items in the menu that is associated with the control, and refCon becomes
available for the application to use.

In the process of creating the new control, NewControl may modify
boundsRect to reflect the actual width of the pop-up menu box.

Your application can get the currently selected menu item by calling GetCtlValue.

Other pop-up menu control characteristics

There are three pop-up menu control characteristics that you need to be familiar with:
how the utility changes the width of the control, how the control changes with regard to
system justification, and how your application can access the menu handle.

Whenever the pop-up control is redrawn, the utility calls CalcMenuSize. This
routine recalculates the size of the menu associated with the control, to allow for the
addition of new items in the menu. The pop-up menu 'CDEF' also updates the width
of the pop-up menu control to the sum of the width of the pop-up title, the width of the
longest item in the menu (the menuWidth field of the menu information record), and
some aesthetic white space. As previously described, your application can override this
characteristic by using the variation code popupFixedWidth.

When the system justification is teJustRight, the pop-up control looks like the
pop-up menu control shown in Figure 7-2.

n Figure 7-2 Pop-up menu control when system justification is teJustRight

Chapter 7: Macintosh Communications Toolbox Utilities 197

Note that the positions of the pop-up box and the pop-up title are reversed from
the standard positions shown in Figure 7-1.

Your application obtains the menu handle and the menu ID for the menu associated
with the pop-up control by dereferencing the contrlData field of the control record.
The contrlData field is a handle to a block of private information. The first four
bytes of this block are the menu handle; the next two bytes are the menu ID for the menu
associated with the control. The format of the popupPrivateData structure is as
follows:

TYPE
popupPrivateData = RECORD

mHandle : MenuHandle;
mID : INTEGER;
mPrivate : ARRAY[0..0] OF SignedByte;

END;

Inside the Macintosh Communications Toolbox198

Manipulating dialog item fists (DITLs)

As a logical extension to the Dialog Manager routines in the Macintosh Toolbox, the Communications
Toolbox provides three procedures to append, shorten, and count the number of items in dialog item
lists. You can use these routines regardless of whether your program provides communications services.

AppendDITL

Appending to a dialog item list

AppendDITL lets your application append dialog items to an existing dialog box.

Procedure AppendDITL(theDialog: DialogPtr; theDITL: Handle; method:
DITLMethod);

Description theDialog is a pointer to the dialog box in which you want to append an item list.

theDITL is a handle to the item list that you want to append.

method specifies the manner in which you want the items in the new item list to be
appended: overlay, right, or bottom. Here are the acceptable values for method,
followed by examples of the results of each method:

TYPE
DITLMethod = INTEGER

CONST
overlayDITL = 0;
appendDITLRight = 1;
appendDITLBottom = 2;

Figure 7-3 shows the initial dialog box, containing items 1 and 2, and the items to be
appended, namely item 3 and 4.

n Figure 7-3 Initial dialog box and to-be-appended items

If your application uses overlayDITL, AppendDITL superimposes the items in
the to-be-appended dialog item list onto the dialog item list associated with
theDialog, as shown in Figure 7-4.

Chapter 7: Macintosh Communications Toolbox Utilities 199

n Figure 7-4 Dialog box after appended items are superimposed

If your application uses appendDITLRight, AppendDITL offsets the items in
the to-be-appended dialog item list by the upper-right coordinate of
theDialog^.portRect, as shown in Figure 7-5. Then AppendDITL appends
the list to the end of the dialog item list associated with theDialog. AppendDITL
automatically expands the dialog box as needed.

n Figure 7-5 Dialog box after items are appended to the right

If your application uses appendDITLBottom, AppendDITL offsets the items
in the to-be-appended dialog item list by the lower-left coordinate of
theDialog^.portRect, as shown in Figure 7-6. Then, AppendDITL appends
the list to the end of the dialog item list associated with theDialog, and expands the
dialog box as needed.

n Figure 7-6 Dialog box after items are appended to the bottom

Inside the Macintosh Communications Toolbox200

If you know your application will need to restore a window to the size it was before an
AppendDITL routine, your application should save that size before it calls
AppendDITL. ShortenDITL, the procedure that shortens dialog item lists, will not
automatically resize the dialog box. (ShortenDITL is described later in this chapter.)

Because AppendDITL modifies the contents of theDITL, your application must
get rid of the dialog item list after calling AppendDITL. Here is a typical calling
sequence:

theDITL := GetResource('DITL', theID);
AppendDITL(theDialog, theDITL, appendDITLBottom);
ReleaseResource(theDITL);

Special ways to append items

Your application can append a new dialog item list relative to the location of specific
items in the dialog box, rather than appending new dialog items relative to the
coordinates of Dialog^.portRect. To append a dialog item list in this way, your
application uses a negative number in the method parameter. This number
corresponds to the item that is the point of reference. For instance, if method is –2,
then the items in the to-be-appended dialog item list have their item boxes offset by the
upper-left corner of the item box for item 2 in theDialog. Figure 7-7 shows how item
3 and item 4 were appended relative to the position of item 2. Item 3, because it was
appended relative to the topLeft of item 2, appears on top of item 2.

n Figure 7-7 Dialog box after items are appended relative to item 2

Chapter 7: Macintosh Communications Toolbox Utilities 201

CountDITL

Counting the number of items in a list

CountDITL returns the number of items in the dialog item list associated with
theDialog.

Function CountDITL(theDialog:DialogPtr): INTEGER;

ShortenDITL

Shortening a dialog item list

ShortenDITL removes items from the end of the given dialog item list, but does not
automatically resize the dialog box. If you know that your application will need to resize
the dialog box, save the size before calling AppendDITL and use the Window Manager
routine SizeWindow.

Procedure ShortenDITL(theDialog: DialogPtr; numberItems: INTEGER);

Description theDialog specifies the dialog box to be shortened.

numberItems specifies the number of items to be removed.

Inside the Macintosh Communications Toolbox202

Showing AppleTalk entities: NuLookup and NuPLookup

The network look-up utilities, NuLookup and NuPLookup, allow your application to present the user
with a standard dialog box containing AppleTalk entities. By providing either NuLookup or
NuPLookup with the proper parameters, your application can include in the dialog box one or more
types of AppleTalk entities. Both NuLookup and NuPLookup perform much the same task, but
NuPLookup gives you a bit more flexibility.

The results of NuLookup and NuPLookup are displayed in a dialog box similar to the one in
Figure 7-8, which shows the results of a search for LaserWriter® printers in the zone “Blackcap Basin.”

n Figure 7-8 Network look-up dialog box

NuLookup and NuPLookup also provide your application with the option of using filter
routines or hook procedures to customize the dialog box or to filter information that would otherwise be
included in it. These routines are described later in this chapter, in “Hook and Filter Procedures.”

In the network look-up dialog box, pressing the Return key has the same effect as pressing the OK
button. Holding down the Command key and pressing the Period key has the same effect as clicking
Cancel. The Up Arrow key and the Down Arrow key change the selected name to either the cell above or
the cell below. Holding down the Command key while pressing the Up Arrow key or the Down Arrow key
moves the selected zone up or down one cell.

Chapter 7: Macintosh Communications Toolbox Utilities 203

NuLookup

Network lookup

NuLookup returns to your application the object/type/zone tuple and AppleTalk
node/network/zone numbers tuple for the item that the user selected.

When your application first calls NuLookup, this routine builds a zone list (if possible).
Then NuLookup makes a synchronous Name Binding Protocol (NBP) lookup for the
specified objects. Next, NuLookup builds the preliminary object list and presents the
dialog box to the user. At all times while the dialog box is displayed, NuLookup
continues an asynchronous NBP lookup with long retry and timeout. It ages objects in the
name list so that if an object misses several consecutive asynchronous NBP lookups, it is
removed from the list. Items that appear in subsequent NBP lookups are added to the list
if they were not already in the look-up list.

Both the zone and name lists are alphabetized by using the international utilities.

Function NuLookup(where: Point; prompt: STR255; numTypes: INTEGER;
typeList: NLType; nameFilter: ProcPtr; zoneFilter:
ProcPtr; hookProc: ProcPtr; VAR theReply: LookupReply):
INTEGER;

Description where indicates in global coordinates where NuLookup should place the upper-left
corner of the look-up dialog box.

prompt is a string displayed at the top of the look-up dialog box. In Figure 7-8, the
string “Looking for LaserWriter” was passed to NuLookup.

numTypes is the number of object types that will be included in the lookup. If
numTypes is –1, NuLookup searches for all object types.

typeList is a structure of type NLType, which is an array of AppleTalk object types,
along with a handle to an icon. If no icon is required, pass NIL for hIcon.

TYPE
NLTypeEntry = RECORD

hIcon = Handle;
typeStr = Str32;

END;

NLType = Array[0..3]of NLTypeEntry;

® Assembly note: Using assembly language, you can specify more than four object types by
passing a pointer to an array with the required number of items.

Inside the Macintosh Communications Toolbox204

nameFilter is a pointer to a procedure that filters object/type/zone tuples from the
network look-up dialog box. zoneFilter is a pointer to a procedure that filters
zones from the network look-up dialog box. hookProc is a pointer to a hook
procedure that modifies the behavior of items in the dialog box or calls a background
procedure. These three procedures are described later in this chapter, in “Hook and
Filter Procedures.” If you do not need these routines in your application, specify NIL.

theReply is the look-up reply record that contains the object/type/zone tuple for the
object, if any, that was selected by the user. The record also contains the AppleTalk
address consisting of node/network/zone numbers.
TYPE

LookupReply = RECORD
theEntity : EntityName;
theAddr : AddrBlock;

END;

s Warning When your application initially passes the theReply data structure into the
NuLookup procedure, theReply.theEntity should contain the default zone
and name. If the specified object is not in the list of accepted objects in typeList, the
specified object is ignored, and only the default zone is set. If an appropriate match is
found in the initial lookup, the specified zone and the specified name of the given object
are selected when the dialog box comes up. ssss

NuLookup returns one of three values:
CONST

nlOk = 0;
nlCancel = 1;
nlEject = 2;

nlOk is returned if the user clicks the OK button in the dialog box. nlCancel
is returned if the user clicks the Cancel button. nlEject is returned if the dialog box
stops because of the hook procedure.

NuPLookup

A more versatile network lookup

NuPLookup performs much the same task as NuLookup, except that it gives
programmers even greater control over customization of the network look-up dialog box.
Additional parameters that can be specified are userData, dialogID, and
filterProc.

Function NuPLookup(where: Point; prompt: STR255; numTypes:
INTEGER; typeList: NLType; nameFilter: ProcPtr;
zoneFilter: ProcPtr; hookProc: ProcPtr; userData:
LONGINT; dialogID: INTEGER; filterProc: ProcPtr; VAR
theReply:LookupReply): INTEGER;

Chapter 7: Macintosh Communications Toolbox Utilities 205

userData is a field that the user can specify. It may be referenced from the hook
procedure or the filter procedure with the refCon field of the dialog box record.
refCon is a handle to the userData value.

The following code fragment demonstrates how to access the userData field:

TYPE
LongH = ^LongPtr;
LongPtr = ^LONGINT;

BEGIN
myUserData := LongH (GetWRefCon (theDialog))^^;

END;

dialogID is the resource ID for a dialog box (and for the corresponding dialog item
list) that is to replace the standard look-up dialog box. All of the items in the replacement
dialog item list must correspond to items in the standard dialog item list, although they
can be moved around. Table 7-1 lists standard items and their placement.

n Table 7-1 TMAddSearch search-area delimiters

Item number Type Rectangle (top, left, bottom, right)

1 OK button {172, 240, 192, 310}
2 Cancel button {172, 320, 192, 390}
3 Default highlight (userItem) {168, 236, 196, 314}
4 Title (staticText) {5, 15, 21, 210}
5 Item list (userItem) {25, 15, 189, 210}
6 Zone list title (staticText) {5, 240, 21, 391}
7 Zone list (userItem) {25, 240, 147, 391}
8 Line (userItem) {25, 225, 193, 226}
9 Version (userItem) {197, 360, 207, 400}
10-13 Reserved

filterProc is a modal dialog box filter procedure that NuPLookup calls after
the standard NuLookup modal dialog box filter procedure. The format of the filter
procedure is the same as that of a standard modal dialog box filter procedure. See
Chapter 13 of Inside Macintosh, Volume I for more information about modal dialog filter
procedures.

Inside the Macintosh Communications Toolbox206

Hook and filter procedures

You can customize the operation of the network look-up dialog box for specific
applications by using the filter procedures and the hook procedure. Filter procedures are
used to filter zones from inclusion in the zone list, or to filter objects from the object list.
The hook procedure is used to modify the behavior of items in the dialog box, and can
also be used to call a background procedure.

MyNameFilter

Name filters

Before each item name is included in the network look-up dialog list, the item is passed to
the name filter procedure for processing. Specify NIL if there is no filter procedure.

Function MyNameFilter(theEntity: EntityName): INTEGER;

Description This filter procedure is passed the network entity in theEntity, and returns an
integer with one of the following values:

CONST
nameInclude = 1;
nameDisable = 2;
nameReject = 3;

nameInclude results in the inclusion of theEntity in the name list of the
network look-up dialog box. nameDisable results in the inclusion of theEntity
but disables it; the item in the list is visible but dimmed, and cannot be selected.
nameReject causes theEntity not to appear in the list.

Chapter 7: Macintosh Communications Toolbox Utilities 207

MyZoneFilter

Zone filters

Before each zone item is included in the network look-up dialog list, the item is passed to
the zone filter procedure for processing. Specify NIL if there is no filter procedure.

Function MyZoneFilter(theZone: STR32): INTEGER;

Description NuLookup and NuPLookup pass the name of an AppleTalk zone in theZone to
the zone filter procedure, which returns an integer with one of the following values:

CONST
zoneInclude = 1;
zoneDisable = 2;
zoneReject = 3;

zoneInclude results in the inclusion of theZone in the zone list in the
network look-up dialog box. zoneDisable results in the inclusion of theZone
but disables it; the item in the zone list is visible but dimmed, and cannot be selected.
zoneReject causes theZone not to appear in the zone list.

Inside the Macintosh Communications Toolbox208

MyHookProc

The hook procedure

NuLookup and NuPLookup call MyHookProc immediately after
ModalDialog and before the standard hook procedure. ModalDialog returns a
number that corresponds to the item clicked in the dialog box. NuLookup and
NuPLookup employ a modal dialog box filter procedure that returns the item number
for any physical items clicked in the dialog box, as well as the item numbers of any fake
item clicked.

Function MyHookProc(item: INTEGER; theDialog: DialogPtr): INTEGER;

Appropriate fake and real dialog box items are as follows:

CONST
{ real items in the dialog box item list }

hookOK = 1;
hookCancel = 2;
hookOutline = 3;
hookTitle = 4;
hookItemList = 5;
hookZoneTitle = 6;
hookZoneList = 7;
hookLine = 8;
hookVersion = 9;
hookReserved1 = 10;
hookReserved2 = 11;
hookReserved3 = 12;
hookReserved4 = 13;

{ fake items in dialog box item list }
hookNull = 100;
hookItemRefresh = 101;
hookZoneRefresh = 102;
hookEject = 103;
hookPreflight = 104;
hookPostflight = 105;
hookKeyBase = 1000;

The first 13 items correspond to physical items in the dialog box item list. The other
items are fake items that correspond to certain actions that may need to be performed.

hookNull is a fake event that corresponds to a null event. The standard modal
dialog box filter procedure returns hookNull in itemHit for null events.

hookItemRefresh causes the item list in the look-up dialog box to be discarded
and regenerated.

hookZoneRefresh causes the zone list in the look-up dialog box to be discarded
and regenerated. This value also causes a hookItemRefresh event to be
generated.

hookEject causes all outstanding NBP lookups to be terminated and nLEject
to be returned by NuLookup.

Chapter 7: Macintosh Communications Toolbox Utilities 209

hookPreflight is processed after the zone and object lists are formed, but
before the dialog box is displayed.

hookPostflight is processed before the dialog box is disposed of.
Any item greater than hookKeyBase is actually the ASCII value of the key that is

pressed, offset by hookKeyBase. For example, an itemHit of 1032 decimal
would correspond to a keyDown event generating a space (ASCII 32 decimal).

Inside the Macintosh Communications Toolbox210

Chapter 7: Macintosh Communications Toolbox Utilities 211

Quick reference

This section provides a reference to Communications Toolbox utilities. At the end of this section is a
listing of routine selectors for programming in assembly language.

Routines

Communications Toolbox utilities See page

AppendDITL(theDialog: DialogPtr; theDITL:
Handle; method: DITLMethod);

198

CountDITL(theDialog: DialogPtr): INTEGER; 201
CTBGetCTBVersion: INTEGER 192
InitCTBUtilities: CTBUErr; 192
NuLookup(where: Point; prompt: STR255;
numTypes: INTEGER; typeList: NLType;
nameFilter: ProcPtr; zoneFilter: ProcPtr;
hookProc: ProcPtr; VAR theReply:
LookupReply):INTEGER;

203

NuPLookup(where: Point; prompt: STR255;
numTypes: INTEGER; typeList: NLType;
nameFilter: ProcPtr; zoneFilter: ProcPtr;
hookProc: ProcPtr; userData: LONGINT;
dialogID: INTEGER; filterProc: ProcPtr; VAR
theReply: LookupReply): INTEGER;

204

ShortenDITL(theDialog: DialogPtr; numberItems:
INTEGER);

201

Routines in your application See page

MyNameFilter(theEntity: EntityName): INTEGER; 206
MyZoneFilter(theZone: STR32): INTEGER; 207
MyHookProc(item: INTEGER; theDialog:
DialogPtr): INTEGER;

208

Inside the Macintosh Communications Toolbox212

Constants and data types

TYPE
NLType = ARRAY[0..3] OF RECORD

hIcon : Handle;
typeStr : Str32;

END

LookupReply = RECORD
theEntity : EntityName;
theAddr : AddrBlock;

END;

TYPE
CTBUErr = OSErr;

CONST
ctbuGenericError = -1;
ctbuNoErr = 0;

CONST

curCTBUVersion = 1;

popupMenuCDEFproc = 1008;

popupFixedWidth = $0001;
popupUseCQD = $0002;
popupUseAddResMenu = $0004;
popupUseWFont = $0008;

{menu title highlighting}
popupTitleBold = $00000100;
popupTitleItalic = $00000200;
popupTitleUnderline = $00000400;
popupTitleOutline = $00000800;
popupTitleShadow = $00001000;
popupTitleCondense = $00002000;
popupTitleExtend = $00004000;
popupTitleNoStyle = $00008000;
popupLeftJust = $00000000;
popupCenterJust = $00000001;
popupRightJust = $000000FF;

Chapter 7: Macintosh Communications Toolbox Utilities 213

 nlOk = 0;
nlCancel = 1;
nlEject = 2;

{ values that name filterProc returns }
nameInclude = 1;
nameDisable = 2;
nameReject = 3;

{ values that zone filterProc returns }
zoneInclude = 1;
zoneDisable = 2;
zoneReject = 3;

{ dialog box items for hook procedure }
hookOK = 1;
hookCancel = 2;
hookOutline = 3;
hookTitle = 4;
hookItemList = 5;
hookZoneTitle = 6;
hookZoneList = 7;
hookLine = 8;
hookVersion = 9;
hookReserved1 = 10;
hookReserved2 = 11;
hookReserved3 = 12;
hookReserved4 = 13;

{ fake items in dialog box item list }
hookNull = 100;
hookItemRefresh = 101;
hookZoneRefresh = 102;

hookEject = 103;

hookPreflight = 104;
hookPostflight = 105;

hookKeyBase = 1000;

TYPE
DITLMethod = INTEGER

CONST
{ DITL manipulation constants }

overlayDITL = 0;
appendDITLRight = 1;
appendDITLBottom = 2;

Inside the Macintosh Communications Toolbox214

Pop-up menu control

Parameter Before NewControl After NewControl

min ID of menu to use 1
max width of pop-up title number of menu items
value pop-up title characteristics currently selected item
refCon resource type to append to menu

using AddResMenu using pop-
up UseAddResMenu variation
code

available to application

Utility routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set A0 to point
to the selector, and invoke the trap _CommToolboxDispatch ($A08B). Upon returning
from the trap, the trap macro pops the routine selector off the stack and places the return value into
D0. It is your application’s responsibility to clean up the stack by removing the parameters that were
pushed onto the stack prior to invoking the trap macro.

AppendDITL .EQU 1026 NuLookup .EQU 1030

CountDITL .EQU 1027 NuPLookup .EQU 1031

CTBGetCTBVersion .EQU 1029 ShortenDITL .EQU 1028

InitCTBUtilities .EQU 1025

Chapter 8 Fundamentals of Writing Your Own Tools

Inside the Macintosh Communications Toolbox216

T H I S C H A P T E R provides general information about writing a connection tool, terminal emulation

tool, or file transfer tool. You can find information specific to each kind of tool in Chapter 9, “Writing

Connection Tools,” Chapter 10, “Writing Terminal Tools,” and Chapter 11, “Writing File Transfer Tools.”

Before writing a tool, you should read this chapter and the chapter about the type of tool you want to

create.

This chapter discusses general concepts relevant to writing a tool. Then, it describes the six resources that

are an essential part of any communications tool to be used with the Communications Toolbox. After that,

the chapter provides example code to give you a better idea of what you need to do to write a tool. A

“Quick Reference” at the end of the chapter shows you what you should name your six resources. It also

lists the messages the File Transfer Manager sends to your tool, and the parameters that the File Transfer

Manager passes with each message.

To write your own communications tool, you need to be familiar with the manager with which your tool

will interface. See Chapter 3, “Connection Manager”; Chapter 4, “Terminal Manager”; or Chapter 5, “File

Transfer Manager.” You should also know about the Apple Computer, Inc. guidelines for communications

tools, which are discussed in Appendix A.

You should also be familiar with the following topics:

n the Dialog Manager (described in Inside Macintosh, Volumes I, IV, V)

n the Script Manager (described in Inside Macintosh, Volume V)

n Creating stand-alone code (described in Macintosh Technical Note 110)

Chapter 8: Fundamentals of Writing Your Own Tools 217

About writing a tool

The Communications Toolbox managers interact with an application in the same way that the Macintosh
Toolbox managers do: the application calls a routine, which the appropriate manager handles by sending
a message to a tool. For example, when an application requires a service, such as creating a new
connection record, it calls the CMNew routine. The Connection Manager passes this request on by
issuing a message, cmInitMsg, to the main code resource of the appropriate tool.

Most of the messages sent by one Communications Toolbox manager are similar to the messages sent
by the other Communications Toolbox managers. This is because all of the managers have to handle
similar tasks, such as tool selection, record validation, and string localization. For example, the
initialization request messages are almost identical. The Connection Manager sends a cmInitMsg, the
Terminal Manager sends a tmInitMsg, and the File Transfer Manager sends an ftInitMsg.

Because the majority of messages in one manager are similar to their counterparts in the others, this
chapter shows you how to handle only Connection Manager messages. Even if you are not writing a
connection tool, you can learn the basic concepts from the sample code that shows how a connection tool
handles messages from the Connection Manager, and apply these concepts to writing a different kind of
tool.

Descriptions of the routines associated with the various messages are given in Chapters 3, 4, and 5.

The six resources

You need to create six resources to make your own connection tool. All of these resources are described
in this chapter, except the main code resource, which is described in detail in Chapter 9. (Resource
descriptions for a terminal tool are provided in Chapter 10, and resource descriptions for a file transfer
tool are provided in Chapter 11.)

There is one tool-related resource, which is optional:

'cbnd' The bundle resource contains the name of the tool and information about what resources
belong to the tool. For terminal emulation tools, this resource is of type 'tbnd'; for
file transfer tools, this resource is of type 'fbnd'.

You also need to write five code resources, which must be part of your tool:

'cdef' The main code resource performs the basic communications functions, such as CMNew,
CMRead, and CMWrite. This resource is discussed in detail in Chapter 9. For
terminal emulation tools, this resource is of type 'tdef' and is discussed in Chapter
10; for file transfer tools, this resource is of type 'fdef' and is discussed in Chapter
11.

'cval' The validation resource validates connection records with CMValidate, and also fills
in configuration record default values with CMDefault. For terminal emulation tools,
this resource is of type 'tval'; for file transfer tools, this resource is of type
'fval'.

Inside the Macintosh Communications Toolbox218

'cset' The setup resource supports the custom tool-settings dialog box, which allows users to
configure connection tools. For terminal emulation tools, this resource is of type
'tset'; for file transfer tools, this resource is of type 'fset'.

'cscr' The scripting language interface resource handles the interface between a scripting
language and the tool. For terminal emulation tools, this resource is of type 'tscr';
for file transfer tools, this resource is of type 'fscr'.

'cloc' The localization resource handles localization of configuration strings. For terminal
emulation tools, this resource is of type 'tloc'; for file transfer tools, this resource is
of type 'floc'.

The bundle resource

The tool bundle contains the master list of resources that are associated with your connection tool.
Besides the six standard resources, the tool bundle can contain references to any additional resources that
your tool requires, such as dialog boxes or menus. Although your tool will work without a bundle
resource, including one is a good programming practice. The bundle resource allows you to change
resource IDs when conflicts arise without having to recompile your code.

Your connection tool can refer to resources with local IDs that the Communications Resource Manager
can map to actual resource IDs (your tool should use the Communications Resource Manager routines
CRMLocalToRealID and CRMRealToLocalID). The connection bundle resource, shown here,
provides a data structure to accommodate this mapping.

type 'cbnd' { /* or tbnd or fbnd */
integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

Chapter 8: Fundamentals of Writing Your Own Tools 219

The validation code resource

The validation code resource parses two possible messages from the manager—in the case of the
Connection Manager, these are cmValidateMsg and cmDefaultMsg. An application or tool
will request one of these services when it requires your tool to check the values in the connection record.
For terminal tools, this record is called the terminal record; for file transfer tools, this record is called the
file transfer record. An application or tool will request one of these services when it requires your tool to
reset the connection record to its default values. Your connection tool should contain the default values
for the connection record.

The validation code resource, an example of which is below, should be a resource of type 'cval'
for connection tools ('tval' for terminal tools and 'fval' for file transfer tools). It should be
able to accept the messages shown in this example:

FUNCTION cval(hConn: ConnHandle; msg: INTEGER; p1, p2, p3:
LONGINT): LONGINT;
VAR

pConfig: ConfigPtr;

BEGIN

CASE msg OF
cmValidateMsg: { hConn is valid here }

BEGIN
cval := DoValidate(hConn);
END;

cmDefaultMsg: { hConn is not valid here }
BEGIN { p1 is a pointer to the configPtr }

{ p2 is allocate or not }
{ p3 is the procID of the tool }

IF p2 = 1 THEN
BEGIN
pConfig := ConfigPtr(NewPtr(SIZEOF(ConfigRecord)));
ConfigHandle(pl)^ := pConfig;
{ real programmers check errors here }
END

ELSE
BEGIN
pConfig := ConfigHandle(p1)^;
END;

DoDefault(pConfig);
END;

END; { case }
END;

The messages accepted by the validation code resource and their associated values are as follows:

CONST
{ validation code resource messages }

cmValidateMsg = 0;
cmDefaultMsg = 1;

Inside the Macintosh Communications Toolbox220

For each of the messages defined here, p1, p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. if your tool receives a message other than those
shown, it should return cmNotSupported, tmNotSupported, or ftNotSupported.

cmValidateMsg
Your tool will receive cmValidateMsg when the application requires your tool to validate the fields
in the connection record. Your tool should compare the values in this record with the values specified in
your tool.

The example code on the following page shows how your tool can respond to cmValidateMsg.
After executing the code necessary to respond to cmValidateMsg, your code should pass back 0

if there were no errors, or 1 if the configuration record had to be rebuilt by your tool. p1, p2, and p3
should be ignored.

{ perform validate here }
FUNCTION DoValidate(hConn: ConnHandle): LONGINT;
VAR

pPrivate: PrivatePtr;
pConfig: ConfigPtr;

BEGIN
DoValidate := 0; { optimism reigns }
pConfig := ConfigPtr(hConn^^.config);
pPrivate := PrivatePtr(hConn^^.private);

IF pConfig^.foobar = 0 THEN
DoValidate := 0 { okey dokey }

ELSE
DoValidate := 1; { uh-oh }

END;

cmDefaultMsg
Your tool will receive cmDefaultMsg when the application requires your tool to fill in the fields of a
connection record. Default values should be specified in your tool. The example code shows how your
tool can handle cmDefaultMsg.

After executing the code necessary to respond to cmDefaultMsg, p1 should pass back a
pointer to the configuration record pointer. If p2 contained 1 when CMDefault was called, your
tool should allocate the configuration record and return the pointer in p1. If p2 was 0, then your tool
should simply use the configuration pointer obtained by dereferencing p1.

PROCEDURE DoDefault(theConfig : ConfigPtr);

BEGIN
WITH theConfig^ DO

BEGIN
{ default is 9600 8 N 1 no handshaking }

Chapter 8: Fundamentals of Writing Your Own Tools 221

baudrate := 9600;
databits := data8;
stopbits := stop10;
paritybits := noParity;

WITH theConfig^.shaker DO
BEGIN

fXOn := 0;
fCTS := 0;
xOn := CHAR($11);
xOff := CHAR($13);
errs := 0;
evts := 0;
fInX := 0;
fDTR := 0;

END;

portName := GetFirstSerial;

flags := 0;
END;

END;

The setup definition code resource

Applications can present users with a custom dialog box containing tool-specific items that allows them to
configure their own connections or select a connection tool. The Connection Manager routines
CMSetupPreflight, CMSetupSetup, CMSetupItem, CMSetupFilter, and
CMSetupCleanup make this possible.

The connection tool setup code resource should be a function called 'cset' ('tset' for terminal
tools and 'fset' for file transfer tools), and should be able to handle the following parameters:

{ main entry point for cset resource }
FUNCTION cset(pSetup: CMSetupPtr; msg: INTEGER;

p1, p2, p3: LONGINT): LONGINT;
TYPE

LocalHandle = ^LocalPtr;
LocalPtr = ^LocalRecord;
LocalRecord = RECORD { private tool setup context }
 foobar: LONGINT;
END;

IntPtr = ^INTEGER;
EventPtr = ^EventRecord;

Inside the Macintosh Communications Toolbox222

BEGIN
CASE msg OF
cmSpreflightMsg:

BEGIN
theCookie := CookiePtr(NewPtr(SIZEOF(CookieRecord)));
CookieHandle(p3)^ := theCookie; { send back theCookie

}
cset := Preflight(pSetup, theCookie);
END;

cmSsetupMsg:
BEGIN
theCookie := CookieHandle(p3)^; { get the magic

cookie }
Setup(pSetup); { do the setup }
END;

cmSitemMsg:
BEGIN
theCookie := CookieHandle(p3)^; { get the magic cookie }
Item(pSetup, theCookie, IntPtr(p1)); { process the

items hit }
END;

cmSfilterMsg:
BEGIN
theCookie := CookieHandle(p3)^; { get the magic

cookie }
cset := Filter(pSetup, theCookie, EventPtr(p1),

IntPtr(p2));
END;

cmScleanupMsg:
BEGIN
theCookie := CookieHandle(p3)^; { get the magic

cookie }
DisposPtr(Ptr(theCookie)); { and get rid of it }
END;

END; { case }
END;

Valid values for msg are as follows:

CONST
cmSpreflightMsg = 0;
cmSsetupMsg = 1;
cmSitemMsg = 2;
cmSfilterMsg = 3;
cmScleanupMsg = 4;

For each of the messages just shown, p1, p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. If your tool receives a message other than those
shown, it should return cmNotSupported, tmNotSupported,or ftNotSupported. When
your tool handles these routines, it will use a CMSetupStruct data structure.

Chapter 8: Fundamentals of Writing Your Own Tools 223

TYPE
CMSetupPtr = ^CMSetupStruct;
CMSetupStruct = RECORD

theDialog : DialogPtr;
count : INTEGER; {dialog item number of first

appended item}
theConfig : Ptr;
procID : INTEGER

END;

cmSpreflightMsg
Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives cmSpreflightMsg from the Connection Manager.

When passed to your connection tool, p3 will be a pointer to a LONGINT that gets passed to the
other routines during setup definition. p3 should serve as magicCookie if the setup definition
procedure requires some private context.

After executing the code necessary to respond to cmSpreflightMsg, your connection tool
should return a handle to a dialog item list. This handle should then be disposed of by the caller of this
function.

FUNCTION Preflight(psetup: CMSetupPtr; theCookie: LocalPtr):
LONGINT;
CONST

localID = 1; { we want DITL local ID 1 }

VAR
hDITL: Handle;
theID: INTEGER;
oldRF: INTEGER:

BEGIN
theCookie^.foobar := 0; { setup theCookie }

theID := CRMLocalToRealID(ClassCM, pSetup^.procID, 'DITL',
localID);

IF theID = -1 THEN
Preflight := 0 { no DITL found }

ELSE
BEGIN

oldRF := CurResFile;
UseResFile(pSetup^.procID); { procID is the tool

refnum }
hDITL := Get1Resource('DITL', theID);
UseResFile(oldRF);

IF hDITL <> NIL THEN
DetachResource(hDITL); { got it so detach it }

Preflight := LONGINT(hDITL);

END;
END;

Inside the Macintosh Communications Toolbox224

cmSsetupMsg
Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cmSsetupMsg from the Connection Manager.

When passed to your connection tool, p3 will be a pointer to magicCookie, which is a LONGINT.

PROCEDURE Setup(pSetup: CMSetupPtr);
CONST

myFirstItem = 1;
mySecondItem = 2;

VAR
first: INTEGER; { first item appended (0-

based) }
pConfig:ConfigPtr;

BEGIN
WITH pSetup^ DO
BEGIN

first := count - 1; { count is 1-based }
pConfig := ConfigPtr(theConfig); { get the config ptr

}

GetDItem(theDialog, first+myFirstItem, itemKind,
itemHandle, itemRect);

SetCtlValue(ControlHandle(itemHandle), pConfig^.foobar);

GetDItem(theDialog, first+mySecondItem, itemKind,
itemHandle, itemRect);

SetCtlValue(ControlHandle(itemHandle), 1-
pConfig^.foobar);

END; (with)
END;

cmSitemMsg
Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cmSitemMsg from the Connection Manager.

When passed to your connection tool, p1 points to an item that was selected from the dialog box
item list, and p3 contains a pointer to magicCookie. Your tool can change the selected item by
modifying the item number to which p1 points.

Chapter 8: Fundamentals of Writing Your Own Tools 225

PROCEDURE Item(pSetup: CMSetupPtr; pItem: IntPtr);
CONST

myFirstItem = 1;
mySecondItem = 2;

VAR
first : INTEGER; {first item appended (0-

based) }
pConfig : ConfigPtr;
value : INTEGER;

BEGIN
WITH pSetup^ DO
BEGIN

first := count - 1; { count is 1-based }
pConfig := ConfigPtr(theConfig); { get the config ptr

}

CASE pItem^ -first OF
myFirstItem:

BEGIN
GetDItem(theDialog,first+myFirstItem,itemKind,

itemHandle,itemRect);
value := GetCtlValue(ControlHandle(itemHandle))
value := 1 - value;
pConfig^.foobar := value; { stick into config record

}
SetCtlValue(ControlHandle(itemHandle), value); {

update control }
END;

mySecondItem:
BEGIN
SysBeep(5);
FlashMenuBar(0);
END;

END; { case }
END; { with }

END;

cmSfilterMsg
Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cmSfilterMsg from the Connection Manager.

When passed to your connection tool, p1 will contain a pointer to a event record, p2 will contain
a pointer to an item clicked in the dialog box list, and p3 will contain a pointer to
magicCookie.

If the event that was passed to this function was handled, your connection tool should return 1;
otherwise, it should return 0.

Inside the Macintosh Communications Toolbox226

FUNCTION Filter(pSetup: CMSetupPtr; theCookie: LocalPtr;
pEvent: EventPtr;pItem: IntPtr): LONGINT;

BEGIN
Filter := 0; { not hungry }

IF pEvent^.what = keyDown THEN (eat all keyDowns }
BEGIN

SysBeep(5);
Filter := 1; { processed }

END;
END;

cmScleanupMsg
Your setup-definition code resource should perform a function similar to the one shown in the
example code when it receives cmScleanupMsg from the Connection Manager.

When passed to your connection tool, p3 will contain a pointer to magicCookie.

PROCEDURE myCleanup(p3: LONGINT);
BEGIN

DisposPtr(Ptr(p3)); { dispose of magicCookie }
p3 := 0;

END;

The scripting language interface code resource

Your connection tool’s scripting language interface code resource is responsible for handling the interface
between your tool and a scripting language. Also, it must provide complete configuration information for
saving and opening documents.

Your scripting interface code resource must handle two messages: cmMgetMsg and
cmMsetMsg. It should be a resource of type 'cscr' ('tscr' for terminal tools and 'fscr'
for file transfer tools) and be able to handle the parameters that are shown in this example:

FUNCTION cscr(hConn: ConnHandle; msg: INTEGER; p1, p2, p3:
LONGINT):
LONGINT;
VAR

pConfig: ConfigPtr;

BEGIN
cscr := 0; { for now }

CASE msg OF
cmMgetMsg:

cscr := LONGINT(GetConfig(hConn));
cmMsetMsg:

cscr := SetConfig(hConn, Ptr(p1));
END; { case }

END;

Chapter 8: Fundamentals of Writing Your Own Tools 227

Valid values for msg are as follows:

CONST
cmMgetMsg = 0;
cmMsetMsg = 1;

For each of the messages defined here, pl, p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. If your tool receives a message other than those
shown, it should return cmNotSupported, tmNotSupported, or ftNotSupported.

cmMgetMsg
Your tool will receive cmMgetMsg from the Connection Manager when the application requires a
string that describes the connection record. The sample code shows how your application can handle
cmMgetMsg.

After executing the code necessary to respond to cmMgetMsg, your connection tool should return
NIL if there was a problem constructing the configuration string. Otherwise, it should return a pointer to
a null-terminated string that contains American English tokens representing the configuration record
pointed to by config in the connection record.

FUNCTION GetConfig(hConn: ConnHandle): Ptr;
VAR

thePtr: Ptr;
pConfig: ConfigPtr;
theString,
string2: STR255;

BEGIN
pConfig := ConfigPtr(hConn^^.config); { get the config

record }
theString := 'FOOBAR '; { attribute name is FOOBAR

}
NumToString(pConfig^.foobar, string2); { get the attribute

value }
theString := CONCAT(string, string2); { make the config

string }
thePtr := NewPtr(SIZEOF(LENGTH(theString)+l));

IF thePtr <> NIL THEN
BEGIN

BlockMove(Ptr(LONGINT(@theString)+l),
thePtr, LENGTH(theString)); { copy it }
Ptr(LONGINT(thePtr)+LENGTH(theString))^ := 0; { 0

terminate it }
END;

GetConfig := thePtr; { bye bye }
END;

Inside the Macintosh Communications Toolbox228

cmMsetMsg
Your tool will receive cmMsetMsg from the Connection Manager when the application requires your
tool to set the fields of the connection record to values that are specified in a string. The Connection
Manager will pass a pointer to this string as a parameter to this call. The sample code shows how your
tool can handle cmMsetMsg.

When passed to your connection tool’s scripting interface code resource, p1 will be a pointer to an
American English null-terminated string that contains tokens representing a configuration record.

Your tool should return one of the following values: a number less than -1 to indicate an
OSErr, -1 to indicate a generic error, 0 if there was no problem with the string, or a positive number to
indicate the character position where parsing was stopped.

The Connection Manager automatically calls CMValidate after your tool has responded to
cmMsetMsg.

FUNCTION SetConfig(hConn: ConnHandle; theSource: Ptr): INTEGER;

VAR
pConfig : ConfigPtr; { tool specific config record }
paramStr,
valueStr : Str255; { parameter and value strings }
outOfTokens : BOOLEAN; { end of the line? }
returnVal : INTEGER; { what to return }

BEGIN
{ Init some stuff }
pConfig := ConfigPtr(hConn^^.config);
returnVal := noErr;

IF (theSource^ = CHR(0)) THEN
outOfTokens := TRUE

ELSE
outOfTokens := FALSE;

WHILE NOT outOfTokens DO BEGIN
(* Build the first token and put it into paramStr *)

IF (paramStr = 'FOOBAR') THEN BEGIN
(* Build the next token and put it into valueStr *)

pConfig^.foobar := valueStr;

END
ELSE BEGIN

(* returnVal = location of the paramStr *)
LEAVE;

END;

(* index to next token *)

END; { while }

SetConfig := returnVal;
END;

Chapter 8: Fundamentals of Writing Your Own Tools 229

The localization code resource

Your connection tool’s localization code resource is responsible for providing the services necessary to
localize your tool. It must handle two messages, cmL2English and cmL2Intl.

Your localization code resource should be a resource of type 'cloc'. It should be able to
handle the parameters shown in the example code.

FUNCTION cloc(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

Valid values for msg are as follows:

CONST
cmL2English = 0;
cmL2Intl = 1;

For each of the messages defined here, p1, p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow.

cmL2English and cmL2Intl
Your tool will receive cmL2English from the Connection Manager when the application requires
your tool to localize a string to English. When the parameters p1, p2, and p3 are passed to your tool,
p1 will contain a pointer to a localized null-terminated string that contains tokens representing a
configuration record; p2 will contain a pointer that points to a second pointer. Your tool will have to
allocate space for this pointer (by calling NewPtr), which contains the American English null-terminated
configuration string. p3 will contain a language identifier, which is defined in the discussion of the
Script Manager in Inside Macintosh, Volume V.

Your tool will receive cmL2Intl from the Connection Manager when the application requires your
tool to localize a string to a language other than English. When the parameters p1, p2, and p3 are
passed to your tool, p1 will contain a pointer to an American English null-terminated string that
contains tokens representing a configuration record; p2 will contain a pointer to a second pointer.
Your tool will have to allocate space for this pointer, which contains the localized configuration string.
p3 will contain a language identifier, which is defined in the Script Manager in Inside Macintosh, Volume
V. The next code example shows how your tool can handle both cmL2English and cmL2Intl.

After executing the code necessary to respond to cmL2English or cmL2Intl, your routine
should return NIL if there was a Memory Manager error or if the language requested is not available. It
should also return any appropriate error code in the status field of the connection record.

{ main entry point for cloc resource }
FUNCTION cloc(hConn: ConnHandle; msg: INTEGER; p1, p2, p3:
LONGINT): LONGINT;
TYPE

PtrPtr = ^Ptr;

VAR
outPtr: Ptr;
procID: INTEGER;

Inside the Macintosh Communications Toolbox230

begin
outPtr := PtrPtr(p2)^; { get output pointer }
case msg of

cmL2English:
cloc := Translate(Ptr(p1),outPtr,p3,verUS);

cmL2Intl:
cloc := Translate(Ptr(p1),outPtr,verUS,p3);

end; {case}
PtrPtr(p2)^ := outPtr; { return output pointer }

end; { mytscrDEF }

{ Translates an input config string from one language to another }
{ returns 0 if no problem, non zero if there is a problem }
{ This routine needs to allocate outputStr. }
{ if language is not supported, return 0 but leave outputStr NIL }

function Translate(inputStr: Ptr; var outputStr: Ptr;
fromLanguage,toLanguage: longint): longint;

BEGIN
end; { Translate }

config: the configuration record

An application using your tool may save and restore the contents of a configuration record to set the state
of the connection at any time. The configuration record, therefore, should be self-contained and should
not contain any pointers or handles to other data structures. Your tool allocates this record in response
to cmDefaultMsg. The Connection Manager, not the tool, deallocates the configuration record when
the application calls CMDispose.

Chapter 8: Fundamentals of Writing Your Own Tools 231

Quick reference

This section contains reference information for the data structures, definition procedures, and resource
types that you need to write a terminal tool. A table at the end of this section lists messages the
Connection Manager sends to connection tools, and what is passed in the parameters with each message.

Data structures

TYPE
CMSetupPtr = ^CMSetupStruct;
CMSetupStruct = RECORD

theDialog : DialogPtr;
count : INTEGER;
theConfig : Ptr;
procID : INTEGER

END;

Definition procedures

FUNCTION cdef(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cval(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cset(pSetup:CMSetupPtr; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cscr(hConn: ConnHandle; msg: INTEGER; pl, p2, p3: LONGINT)
: LONGINT;

FUNCTION cloc(hConn: ConnHandle; msg: INTEGER; pl, p2, p3: LONGINT)
: LONGINT;

Resource types

type 'cbnd' {
integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

n Table 8-1 Connection Manager messages and parameters

Constant Parameter 1

p1

Parameter 2

p2

Parameter 3

p3

Validation code resource messages

cmValidateMsg* 0 - - -
cmDefaultMsg 1 VAR cmConfigRec:Ptr allocate:Boolean procID:short

Setup code resource messages

cmSpreflightMsg* 0 - - VAR magicCookie:LONGINT
cmSsetupMsg 1 - - VAR magicCookie:LONGINT
cmSitemMsg 2 VAR item:itemSelected - VAR magicCookie:LONGINT
cmSfilterMsg* 3 myEvent:EventRecord VAR item:itemHit VAR magicCookie:LONGINT
cmScleanupMsg 4 - - VAR magicCookie:LONGINT

Scripting code resource messages

cmMgetMsg* 0 - - -
cmMsetMsg* 1 configPtr:Ptr - -

Localization code resource messages

cmL2English* 0 inputPtr:Ptr VAR outputPtr:Ptr fromLanguage:integer
cmL2Intl* 1 inputPtr:Ptr VAR outputPtr:Ptr toLanguage:integer

*Indicates the routine is a function that returns a LONGINT

Chapter 9 Writing Connection Tools

234 Inside the Macintosh Communications Toolbox

T H I S C H A P T E R tells you how to write the main code resource for a connection tool. There are at

least five other code resources that you need to include as part of your tool; they are described in Chapter

8. You should read that chapter, as well as Chapter 3, before reading this chapter.

This chapter describes all the messages, parameters, and data structures that the Connection Manager

passes to your tool’s main code resource. Also in this chapter is sample code (with pseudocode mixed in)

that will help you understand what your tool should do when it receives any of the messages. A “Quick

Reference” at the end of the chapter shows you what you should name your six connection tool resources.

It also lists the messages the Connection Manager sends to your tool, and the parameters that the

Connection Manager passes with each message.

Chapter 9: Writing Connection Tools 235

Your connection tool’s main code resource

The purpose of the main code resource is to parse messages from the Connection Manager and then to
branch to a routine that can handle each message. The main code resource should be a resource of type
'cdef' and should be able to accept the parameters shown here.

FUNCTION cdef(hConn: ConnHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

The messages accepted by the main code resource, and their associated values, are as follows:

CONST
cmInitMsg = 0;
cmDisposeMsg = 1;
cmSuspendMsg = 2;
cmResumeMsg = 3;
cmMenuMsg = 4;
cmEventMsg = 5;
cmActivateMsg = 6;
cmDeactivateMsg = 7;
cmIdleMsg = 50;
cmResetMsg = 51;
cmAbortMsg = 52;
cmReadMsg = 100;
cmWriteMsg = 101;
cmStatusMsg = 102;
cmListenMsg = 103;
cmAcceptMsg = 104;
cmCloseMsg = 105;
cmOpenMsg = 106;
cmBreakMsg = 107;
cmIOKillMsg = 108;
cmEnvironsMsg = 109;

For each of the messages defined here, the three parameters 'cdef' returns, namely pl, p2, and
p3, take on different meanings. These parameters are described in the message descriptions that follow.
Your tool can return an appropriate operating system error code, or cmNotSupported if it does not
understand the message it received.

cmResetMsg
The Connection Manager will send cmResetMsg to your tool when the application requires your tool
to reset the connection. The specific state to which your tool should reset the connection depends upon
the connection protocol.

236 Inside the Macintosh Communications Toolbox

cmMenuMsg
The Connection Manager will send cmMenuMsg to your tool when a menu event has occurred in

the application. When passed to your tool, p1 will contain the menu ID, and p2 will contain the
menu item.

The sample code shows you a basic template into which you can code your tool’s response to
cmMenuMsg. When done, your tool should pass back 0 if the menu event was not handled, and 1 if it
was.

FUNCTION myMenu(hConn : ConnHandle; mID : INTEGER; mItem: INTEGER)
: LONGINT; BEGIN

myMenu := 0;
{ if mine then

begin
myMenu := 1;
Process the menu command.

end;
}

END;

cmListenMsg
An application will call the CMListen routine when it requires your tool to wait for an incoming
connection request. When passed to your tool, p1 will contain the address of
CMCompletorRecord, and p2 will contain the timeout value in ticks.

Your tool uses a CMCompletorRecord structure when it receives a message to process
asynchronously. This record contains a pointer to a completion routine your tool calls upon completion
of the specified operation.

If the operation is to be performed asynchronously, the async field of the
CMCompletorRecord is TRUE and the pointer to the completion routine is in the
completionRoutine field. If the operation is to be performed synchronously, the async field
of the CMCompletorRecord is FALSE. Your tool should ignore the completionRoutine
field in this case.

The CMCompletorRecord is created in a local stack frame by the Connection Manager;
therefore, your tool should copy the contents of the CMCompletorRecord data structure if any
information in it will be needed later.

TYPE
CMCompletorPtr = ^CMCompletorRecord;
CMCompletorRecord = RECORD

async : BOOLEAN;
completionRoutine : ProcPtr;

END;

The sample code shows you a basic template into which you can code your tool’s response to
cmListenMsg. When done, your tool should pass back an appropriate error code.

Chapter 9: Writing Connection Tools 237

FUNCTION myListen(hConn : ConnHandle; completor : CMCompletorPtr;
timeout : LONGINT) : CMErr;

BEGIN
{ If connection is already open, return error condition }
{ Establish physical layer driver }
{ If completor^.async then }
begin

Do async listen call.
Set listen pending flag.
Issue VBL task to terminate listen in specified timeout.

end
else

Do sync listen call and return error when timeout.
}

END;

cmIdleMsg
Your tool will receive cmIdleMsg when the application has idle time, such as when it needs your tool
to check the status of an asynchronous routine. An application cannot call CMIdle from interrupt level.

cmEventMsg
The Connection Manager will pass cmEventMsg to your tool when an event occurred in a window
associated with the connection tool. The sample code shows a template into which you can code your
tool’s response to cmEventMsg.

When passed to your tool, p1 will be a pointer to the event record. The reference constant field of
the window record will contain the connection handle.

PROCEDURE myEvent(hConn : ConnHandle; theEvent : EventRecord);
CONST

CancelButton = 2;
VAR

theDialog : DialogPtr;
theItem : INTEGER;

BEGIN
{ Check if it is a dialog-related event }
if IsDialogEvent(theEvent) then
begin

{ get the item hit }
if DialogSelect(theEvent,theDialog,theItem) then
begin

if theItem = CancelButton then
{ Cancel the connection }

end;
end
else

{ Handle the keyDown, updateEvt, mouseDown and any other
event here }
END;

238 Inside the Macintosh Communications Toolbox

cmAbortMsg
The Connection Manager will pass cmAbortMsg to your tool when the application has requested that a
pending open or listen be aborted. The sample code shows a template into which you can code your
tool’s response to cmAbortMsg.

PROCEDURE myAbort(hConn : ConnHandle);
BEGIN

{ If no listen or open pending, return error condition. }
{ Terminate listen or open process. }
{ Close the physical layer driver. }

END;

cmAcceptMsg
The Connection Manager will pass cmAcceptMsg to your tool when the application has called the
cmAccept routine. When passed to your tool, p1 will contain 1 if your tool should accept the open
request, or 0 if it should reject it.

Once your tool receives this message, it should clear the cmStatusIncomingCallPresent
bit the next time it receives a cmStatusMsg.

The sample code shows a template into which you can code your tool’s response to cmAcceptMsg.
When finished, your tool should return an appropriate error code.

FUNCTION myAccept(hConn : ConnHandle; accept : INTEGER) : CMErr;
BEGIN

{ If the connection is already open, return error condition. }
if accept <> cmAcceptOK then
begin

{ Terminate the logical connection listen process. }
{ Close the physical layer driver. }

end
else

{ set the open status bit }
END;

cmActivateMsg and cmDeactivateMsg
The Connection Manager will pass cmActivateMsg or cmDeactivateMsg to your tool when
the application requires your tool to perform an action, such as installing or removing a menu from the
menu bar in response to an activate or deactivate message.

cmSuspendMsg and cmResumeMsg
The Connection Manager will pass cmSuspendMsg or cmResumeMsg to your tool when the
application requires your tool to perform an action, such as installing or removing a menu from the menu
bar in response to a suspend or resume message.

Chapter 9: Writing Connection Tools 239

cmInitMsg
The Connection Manager will pass cmInitMsg to your tool after the following sequence of events
occurs. When a tool or application calls CMNew, the Connection Manager allocates space for the
connection record. It then fills in some of the fields, based upon information that was passed in the
parameters to the call. The Connection Manager fills in the config and oldConfig fields by calling
CMDefault. Then, the Connection Manager passes cmInitMsg to your tool. After your tool has
finished responding to cmInitMsg, the Connection Manager calls CMValidate.

If your tool allocates space for internal buffers in the bufferArray field of the connection
record, applications and the Connection Manager must not manipulate the space. Also, your tool is
responsible for freeing the space (in response to cmDisposeMsg). Connection tools are not required
to use the bufferArray field.

The sample code shows how your tool can respond to cmInitMsg. After executing the code
necessary to respond to cmInitMsg, your code should pass back an appropriate OsErr or
CMErr.

FUNCTION myInit(hConn: ConnHandle): CMErr;
VAR

state: SignedByte;

BEGIN
myInit := noErr; { optimism }
state := HGetState(Handle(hConn)); { save handle state }
HLock(Handle(hConn)); { lock it down }

WITH hConn^^ DO
BEGIN

flags := BOR(flags, cmData); { yes we do data }
IF BAND(flags, cmAttn) <> 0 THEN { turn off attention }

flags := BXOR(flags, cmAttn);
IF BAND(flags, cmCntl) <> 0 THEN { turn off control }

flags := BXOR(flags, cmCntl);

errCode := noErr; { optimism reigns }

{ need to check MemErr here }
bufferArray[cmDataIn] := NewPtr(bufSizes[cmDataIn]);
bufferArray[cmDataOut] := NewPtr(bufSizes[cmDataOut]);

private := PrivatePtr(NewPtr(SIZEOF(PrivateData)));
WITH private^ DO
BEGIN
{ fill in private data structure here }
END;

END;

HSetState(Handle(hConn), state);
END;

240 Inside the Macintosh Communications Toolbox

cmDisposeMsg
A tool or application will call CMDispose when it must dispose of a connection record and its
associated data structures.

The Connection Manager passes cmDisposeMsg to your tool before disposing of the config
and oldConfig fields of the connection record. Next, the Connection Manager disposes of the
connection record.

To handle cmDisposeMsg, your tool should dispose of any buffers allocated in response to
cmInitMsg and any private data storage (referenced off of cmPrivate in the connection record).
Your tool must not attempt to dispose of either config or oldConfig in the connection record,
or of the connection record itself. Doing so will cause a system crash.

The sample code shows how your tool can respond to cmDisposeMsg.

FUNCTION myDispose(hConn: ConnHandle): CMErr;
VAR

pPrivate: PrivatePtr; { tool privates }

BEGIN
myDispose := noErr;

{ if the connection is open then call CMClose on it }

DisposPtr(Ptr(hConn^^.private));
DisposPtr(Ptr(hConn^^.bufferArray[cmDataIn]));
DisposPtr(Ptr(hConn^^.bufferArray[cmDataOut]));

END;

cmReadMsg and cmWriteMsg
A tool or application will call CMRead when it requires your tool to read data from a remote entity.
Likewise, a tool or application will call CMWrite when it requires your tool to write data to a remote
entity. The Connection Manager will handle these calls by passing cmReadMsg or cmWriteMsg to
the appropriate connection tool.

If a channel is requested that is not supported by your tool (for example, if a read is requested on the
attention channel when the attention channel is not supported), your tool should return
cmNotSupported.

After executing the code necessary to respond to cmReadMsg or cmWriteMsg, your tool
should pass back an appropriate OSErr or CMErr.

When cmReadMsg or cmWriteMsg is passed to your tool, p1 points to the
cmDataBuffer record, p2 points to the CMCompletorRecord record, and p3 contains the
timeout value. The timeout value specifies a time period, in ticks, within which the read operation must
be completed. If your tool does not complete the operation within the specified time, it should pass back
a timeout error. An application passes -1 when it wants no timeout. If the application specifies 0, your
connection tool should read as many bytes, up to toRead bytes, as it can in one read attempt.

Depending on the connection protocol your tool is supporting, your tool might ignore the timeout
parameter.

Chapter 9: Writing Connection Tools 241

The CMDataBuffer record

A DataBuffer record contains information about where the read or write buffer is located, how
many bytes are supposed to be read or written, the channel that is to be used, and an end-of-message flag.
Your tool should be able to accommodate the data structure defined here:

TYPE
CMDataBufferPtr = ^CMDataBuffer;
CMDataBuffer = RECORD

thePtr : Ptr;
count : LONGINT;
channel : CMChannel;
flags : CMFlags;

END;

These are the valid values for channel:

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

The CMCompletorRecord record

Your tool uses a CMCompletorRecord structure when it receives a message to process
asynchronously. This record contains a pointer to a completion routine your tool calls upon completion
of the specified operation.

If the operation is to be performed asynchronously, the async field of the
CMCompletorRecord is TRUE and the pointer to the completion routine is in the
completionRoutine field.

If the operation is to be performed synchronously, the async field of the
CMCompletorRecord is FALSE. Your tool should ignore the completionRoutine field in
this case.

The CMCompletorRecord is created in a local stack frame by the Connection Manager;
therefore, your tool should copy the contents of the CMCompletorRecord data structure if any
information in it will be needed later.

TYPE
CMCompletorPtr = ^CMCompletorRecord;
CMCompletorRecord = RECORD

async : BOOLEAN;
completionRoutine : ProcPtr;

END;

cmReadMsg

If your tool receives cmReadMsg with timeout 0, it should return immediately, even if it cannot
read all the requested bytes. For example, if your tool receives a read request with timeout 0 for 512
bytes, and only 63 are available, your tool should read 63 bytes, put 63 in the count field of the
CMDataBuffer, and return noErr.

242 Inside the Macintosh Communications Toolbox

FUNCTION myRead(hConn : ConnHandle; dp : CMDataBufferPtr;
completor : CMCompletorPtr;timeout : LONGINT) :

CMErr;
VAR

pPrivate : privateptr;
err : OSErr;

BEGIN

dp^.flags := 0; { set flags to zero, this tool does not support
it }
pPrivate := privateptr(hConn^^.cmPrivate);
{ is connection open ? }
if (BAND(pPrivate^.status, cmStatusOpen) = 0) then
begin

myRead := cmNotOpen;
EXIT(myRead);

end;

if (dp^.channel <> cmData) then {trying to do something we
cannot support }

begin
dp^.count := 0;
myRead := cmNotSupported;
EXIT(myRead);

end;

{ if async read then install VBL task to check timeout
else check the available data to read in driver buffer }

{ do the read }
err := PBRead(ParmBlkPtr(@pPrivate^.myRBlk.theParamBlk),

completor^.async);

{ handle err condition }
if err <> noErr then
begin

dp'.count := 0;
hConn^^.errCode := err;
myRead := err;
EXIT(myRead);

end;

{ set the bytes read }
if (pPrivate^.myRBlk.theParamBlk.ioActCount = 0) &

((completor <> nil) & completor^.async) then
begin

dp^.count := 0;
hConn^^.asyncCount[cmDataIn] := 0;

end
else

Chapter 9: Writing Connection Tools 243

begin
dp^.count := pPrivate^.myRBlk.theParamBlk.ioActCount;
hConn^^.asyncCount[cmDataIn] :=

pPrivate^.myRBlk.theParamBlk.ioActCount;
end;

myRead := noErr;
END;

cmWriteMsg

If your tool receives a cmWriteMsg with timeout 0, it should return immediately, even if it cannot
write all the requested bytes. For example, if your tool receives a write request with timeout 0 for 5l2
bytes, and only 63 can be written immediately, your tool should write 63 bytes, put 63 in the count
field of the CMDataBuffer, and return noErr.

FUNCTION myWrite(hConn : ConnHandle; dp : CMDataBufferPtr;
completor : CMCompletorPtr;timeout : LONGINT) :

CMErr;
VAR

pPrivate : privateptr;
err : OSErr;

BEGIN
pPrivate := privateptr(hConn^^.cmPrivate);

{ is connection open ?)
if (BAND(pPrivate^.status, cmStatusOpen) = 0) then
begin

myWrite := cmNotOpen;
EXIT(myWrite);

end;

if (dp^.channel <> cmData) then
{ trying to do something we cannot support }
begin

dp^.count := 0;
myWrite := cmNotSupported;
EXIT(myWrite);

end;

{ install VBL task to check timeout if async write }

err := PBWrite(ParmBlkPtr(@pPrivate^.myWBlk.theParamBlk),
completor^.async);
(handle error condition)
if err <> noErr then
begin

dp^.count := 0;
hConn^^.errCode := err;
myWrite := err;
EXIT(myWrite);

end;

244 Inside the Macintosh Communications Toolbox

{ set the bytes write }
{ ** Be sure to have the ShortCircuit compiler variable turned
on ** }
if (pPrivate^.myWBlk.theParamBlk.ioActCount = 0)

AND ((completor <> nil) AND completor^.async) then
begin

dp^.count := 0;
hConn^^.asyncCount[cmDataOut] := 0;

end
else
begin

dp^.count := pPrivate^.myWBlk.theParamBlk.ioActCount;
hConn^^.asyncCount[cmDataOut] :=

pPrivate^.myWBlk.theParamBlk.ioActCount;
end;

myWrite := noErr;
END;

cmStatusMsg
The Connection Manager will send cmStatusMsg to your tool when an application requires your
tool to send it information about a connection.

The sample code shows how your tool can respond to cmStatusMsg. After executing the code
necessary to respond to cmStatusMsg, your code should pass back both an appropriate OsErr or
CMErr. Also, p1 should contain a pointer to CMBufferSizes, and p2 should contain a pointer
to a variable that returns the connection status flags.

Connection status flags are a bit field, with each bit corresponding to a particular status attribute. You
can find a description of the status attributes in “CMStatus Getting Connection Status Information” in
Chapter 3.

FUNCTION myStatus(hConn : ConnHandle; Var size : CMBufferSizes;
Var theflag : LONGINT) : CMErr;

VAR
pPrivate : privateptr;
count : LONGINT;
err : OSErr;

BEGIN
pPrivate := privateptr(hConn^^.cmPrivate);
theflag := 0;
if (BAND(pPrivate^.status, cmStatusOpen) = 0) then { is
connection open?}

size[cmDataIn] := 0
else
begin

err := SerGetBuf(pPrivate^.outrefnum, count);
{ Check output driver buffer }
size[cmDataOut] := count;
err := SerGetBuf(pPrivate^.inrefnum, count);
{ Check input driver buffer }
size[cmDataIn] := count;
if (count > 0) then

theflag := BOR(theflag, cmStatusDataAvail);

Chapter 9: Writing Connection Tools 245

{ Set data availabe bit }
theflag := BOR(theflag,^cmStatusOpen);
{ the connection is established }

end;

{ set the other flags }

if BAND(pPrivate^.status, cmStatusDRPend) = cmStatusDRPend
then theflag := BOR(theflag, cmStatusDRPend);

if BAND(pPrivate^.status, cmStatusDWPend) = cmStatusDWPend
then theflag := BOR(theflag, cmStatusDWPend);

if BAND(pPrivate^.status, cmStatusBreakPending) =
cmStatusBreakPending

then theflag := BOR(theflag, cmStatusBreakPending);
if BAND(pPrivate^.status, cmStatusListenPend) =
cmStatusListenPend

then theflag := BOR(theflag, cmStatusListenPend);
myStatus := noErr;

END;

cmOpenMsg
Your tool’s main code resource will receive cmOpenMsg from the Connection Manager when an
application or tool requires your tool to open a connection. When passed to your tool, p1 contains a
pointer to CMCompletorRecord, and p2 contains the timeout value in ticks.

The sample code shows a template into which you can code your tool’s response to
cmOpenMsg. The Connection Manager, after the connection tool passes control back to it, disposes of
CMCompletorRecord. Therefore, your tool should copy CMCompletorRecord if it will need
any information the record contains.

After executing the code necessary to respond to cmOpenMsg, your code should pass back an
appropriate OSErr or CMErr.

FUNCTION myOpen(hConn : ConnHandle; completor : CMCompletorPtr;
timeout : LONGINT) : CMErr;

VAR
pPrivate : privateptr;
config : configptr;
err1,err2 : OSErr;
theSerial : CRMSerialPtr;
savedState : SignedByte;

BEGIN

pPrivate := privateptr(hConn^^.cmPrivate);
config := configptr(hConn^^.config);

{ get the CRM device info }
theSerial := GetSerialPtr(config^.portName);

{ check if drivers are already open
if drivers are open, warn the application }

{ first open output driver, then input driver }

246 Inside the Macintosh Communications Toolbox

myOpen := noErr;
savedState := HGetState(Handle(theSerial^.outputDriverName));
HLock(Handle(theSerial^.outputDriverName));
err1 := OpenDriver(theSerial^.outputDriverName^^,
pPrivate^.outrefnum);
HSetState(Handle(theSerial^.outputDriverName),savedState);
if (err1 = 0) then { output opened
successfully }
begin

savedState :=
HGetState(Handle(theSerial^.inputDriverName));
HLock(Handle(theSerial^.inputDriverName));
err2 := OpenDriver(theSerial^.inputDriverName^^,
pPrivate^.inrefnum);
HSetState(Handle(theSerial^.inputDriverName),savedState);
if (err2 = 0) then { input opened
successfully }

pPrivate^.status := cmStatusOpen
else { input failed }
begin

myOpen := err2;
err2 := CloseDriver(pPrivate^.outrefnum); { so close
output }

end;
end
else myOpen := err1;

{ call completor routine here if async is open }

END;

cmCloseMsg
Your tool’s main code resource will receive cmCloseMsg from the Connection Manager when an
application or tool requires your tool to close a connection.

The sample code shows how your tool can respond to cmCloseMsg. When passed to your tool,
p1 contains a pointer to CMCompletorRecord, and p2 contains the timeout value in ticks. The
Connection Manager, after the connection tool passes control back to it, disposes of
CMCompletorRecord. Therefore, your tool should copy CMCompletorRecord if it will need
any information the record contains.

After executing the code necessary to respond to a cmCloseMsg, your code should pass back an
appropriate OsErr or CMErr.

FUNCTION myClose(hConn : ConnHandle; completor : CMCompletorPtr;
now : LONGINT) : CMErr;

VAR
pPrivate : privateptr;
err : OSErr;

BEGIN

pPrivate := privateptr(hConn^^.cmPrivate);

{ is connection open ? }
if (BAND(pPrivate^.status, cmStatusOpen) = 0) then

Chapter 9: Writing Connection Tools 247

begin
myClose := cmNotOpen;
EXIT(myClose);

end;

{ if break pending, kill break VBL }

{ if now, kill pending reads and writes
else wait for pending reads and writes to clear }

(close input and output drivers }
err := CloseDriver(pPrivate^.inrefnum);
if err <> noErr then myClose := err;
err := CloseDriver(pPrivate^.outrefnum);
if err <> noErr then myClose := err;

{ call completor routine here if async is closed }

END;

cmBreakMsg
Your tool’s main code resource will receive cmBreakMsg when an application or tool requires your
tool to effect a break operation upon a connection.

When passed to your tool, p1 contains duration in ticks, and p2 contains a pointer to
CMCompletorRecord.

The sample code shows how your tool can respond to cmBreakMsg. The Connection Manager,
after the connection tool passes control back to it, disposes of CMCompletorRecord. Therefore,
your tool should copy CMCompletorRecord if it will need any information the record contains.

FUNCTION myBreak(hConn: ConnHandle; duration: LONGINT;
completor: CMCompletorPtr):CMErr;

VAR
pPrivate : PrivatePtr;
pConfig : ConfigPtr;
err : OSErr;
foo : LONGINT;

BEGIN
myBreak := noErr { optimism }

pPrivate := PrivatePtr(hConn^^.private);
pConfig := ConfigPtr(hConn^^.config);

if (BAND(pPrivate^.status, cmStatusOpen) = 0) THEN { not
open }

BEGIN
myBreak := cmNotOpen;
Exit(myBreak);

END;

248 Inside the Macintosh Communications Toolbox

IF (pPrivate^.breakPending) THEN { break pending }
BEGIN

myBreak := cmNoErr;
Exit(myBreak);

END;

IF completor^.async THEN
BEGIN

{ do it asynchronously }
{ start the break }
{ start a timer (VBL or such) when it finishes it will

turn off the break and then call the completion
routine

if necessary }
END
ELSE
BEGIN

{ start the break }
Delay(duration, foo);
{ end the break }

END;
END;

cmIOKillMsg
Your tool’s main code resource will receive cmIOKillMsg when a tool or application requires your
tool to terminate a pending asynchronous input or output request. When passed to your tool, p1
contains the channel that cmIOKillMsg should affect.

The sample code shows how your tool can respond to cmIOKillMsg.

FUNCTION myIOKill(hConn : ConnHandle; channel : INTEGER) : CMErr;
VAR

pPrivate : privateptr;
localBlk : HParamBlockRec;
Err : OSErr;

BEGIN

pPrivate := privateptr(hConn^^.cmPrivate);

if (channel <> INTEGER(cmDataIn)) AND (channel <>
INTEGER(cmDataOut)) then

begin
myIOKill := cmNotSupported;
{ can't cancel something I don't support }
EXIT(myIOKill);

end;

localBlk.ioCompletion := nil;
if (channel = INTEGER(cmDataIn)) then { cancel read }

localBlk.ioRefNum :=
pPrivate^.myRBlk.theParamBlk.ioRefNum
else { cancel write }

localBlk.ioRefNum :=
pPrivate^.myWBlk.theParamBlk.ioRefNum;

Chapter 9: Writing Connection Tools 249

Err := PBKillIO(ParmBlkPtr(@localBlk),false);

if (Err <> noErr) then hConn^^.errCode := Err;

myIOKill := Err;
END;

cmEnvironsMsg
The Connection Manager will send cmEnvironsMsg to your tool when an application requires your
tool to send it information about the connection environment. The ConnEnvironRec, which
contains this information, is shown here.

TYPE
ConnEnvironRecPtr = ^ConnEnvironRec;
ConnEnvironRec = PACKED RECORD

version = INTEGER;
baudRate = LONGINT;
dataBits = INTEGER;
channels = CMChannel;
swFlowControl = BOOLEAN;
hwFlowControl = BOOLEAN;
flags = CMFlags;

END;

TYPE
CMFlags = INTEGER;

CONST
cmFlagsEOM = $0001;

CONST
cmData = $00000001;
cmCntl = $00000002;
cmAttn = $00000004;

cmDataClean = $00000100;
cmCntlClean = $00000200;
cmAttnClean = $00000400;

cmNoMenus = $00010000;
cmQuiet = $00020000;

TYPE
CMChannel = INTEGER;

This sample code shows how your tool can respond to cmEnvironsMsg.

FUNCTION myEnvirons(hConn: ConnHandle; VAR theEnvirons:
ConnEnvironRec): CMErr;
VAR

pConfig: ConfigPtr;

250 Inside the Macintosh Communications Toolbox

BEGIN
pConfig := ConfigPtr(hConn^^.config); { get the config
handle }
myEnvirons := noErr; { optimism }

IF theEnvirons.version < curConnEnvRecVers THEN
myEnvirons := envBadVers { bad environment version

}
ELSE
BEGIN

IF theEnvirons.version > 1 THEN { too advanaced for
me }

myEnvirons := envVersTooBig; { but give it a whirl
}

WITH theEnvirons DO
BEGIN

dataBits := pConfig^.dataBits;
baudrate := pConfig^.baudrate;
swFlowControl := ((pConfig^.shaker.fInX) AND
(pConfig^.shaker.fXOn));
hwFlowControl := ((pConfig^.shaker.fDTR) OR
(pConfig^.shaker.fCTS));
flags := 0; { no special flags
supported }
channels := cmData; { data channel only }

END;
END;

END;

Completion routines

When your connection tool calls MyCompletion, the errCode field of the connection record
contains the appropriate error code. Because the errCode field of the connection record is used by all
of the Connection Manager routines, the connection tool must first save the current value of the
errCode field, and then set it to the appropriate code for the completion, call the completion routine,
then restore the previously saved value. If your tool has multiple outstanding asynchronous operations,
your tool should disable interrupts while the completion routine is executing.

When your tool calls the completion routine in response to the completion of an asynchronous read
or write, the asyncCount field of the connection record contains the actual number of bytes read or
written.

Chapter 9: Writing Connection Tools 251

Quick reference

This section contains reference information for the data structures, resource names, and resource types
that you need to write a connection tool. A table at the end of this section lists all the messages the
Connection Manager sends to your tool, and what is passed in the parameters with each message.

Data structures

CMDataBuffer

TYPE
CMDataBufferPtr = ^CMDataBuffer;
CMDataBuffer = RECORD

thePtr : Ptr;
count : LONGINT;
channel : CMChannel;
flags : CMFlags;

END;

CMCompletorRecord

TYPE
CMCompletorPtr = ^CMCompletorRecord;
CMCompletorRecord = RECORD

async : BOOLEAN;
completionRoutine : ProcPtr;

END;

CMSetupStruct

CMSetupPtr = ^CMSetupStruct;
CMSetupStruct = RECORD

theDialog : DialogPtr;
count : INTEGER;
theConfig : Ptr;
procID : INTEGER

END;

252 Inside the Macintosh Communications Toolbox

Resource names

FUNCTION cdef(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cval(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cset(pSetup: CMSetupPtr; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cscr(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

FUNCTION cloc(hConn: ConnHandle; msg: INTEGER; p1, p2, p3: LONGINT)
: LONGINT;

Resource types

type 'cbnd' {
integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

n Table 9-1 Connection Manager messages and parameters

Constant Parameter 1

p1

Parameter 2

p2

Parameter 3

p3

Maintain code resource messagess

cmInitMsg* 0 - - -
cmDisposeMsg 1 - - -
cmSuspendMsg 2 - - -
cmResumeMsg 3 - - -
cmMenuMsg* 4 menuID:Integer menuItem:Integer -
cmEventMsg 5 myEvent:EventRecord - -
cmActivateMsg 6 - - -
cmDeactivateMsg 7 - - -
cmIdleMsg 50 - - -
cmResetMsg 51 - - -
cmAbortMsg* 52 - - -
cmReadMsg* 100 buffer:CMDataBufferPtr timeout:LongInt Completor:CompletorPtr
cmWriteMsg* 101 buffer:CMDataBufferPtr timeout:LongInt Completor:CompletorPtr
cmStatusMsg* 102 VAR size:CMBufferSizes VAR flags:CMStatFlags -
cmListenMsg* 103 Completor:CMCompletorPtr timeout:LongInt -
cmAcceptMsg* 104 accept:Boolean - -
cmCloseMsg* 105 Completor:CMCompletorPtr timeout:LongInt -
cmOpenMsg* 106 Completor:CMCompletorPtr timeout:LongInt -
cmBreakMsg 107 duration:LongInt Completor:CMCompletorPtr -
cmIOKillMsg* 108 which:INTEGER - -
cmEnvironsMsg* 109 VAR

theEnvirons:ConnEnvironRec
- -

Validation code resource messages

cmValidateMsg* 0 - - -
cmDefaultMsg 1 VAR cmConfigRec:Ptr allocate: Boolean procID:short

* Indicates the routine is a function that returns a LONGINT.

n Table 9-1 Connection Manager messages and parameters (continued)

Constant Parameter 1

p1

Parameter 2

p2

Parameter 3

p3

Setup Code resource messages

cmSpreflightMsg* 0 - - VAR magicCookie:LONGINT
cmSsetupMsg 1 - - VAR magicCookie:LONGINT
cmSitemMsg 2 VAR item:itemSelected - VAR magicCookie:LONGINT

cmSfilterMsg* 3 myEvent:EventRecord VAR item:itemHit VAR magicCookie:LONGINT
cmScleanupMsg 4 - - VAR magicCookie:LONGINT

Scripting code resource messages

cmMgetMsg* 0 - - -
cmMsetMsg* 1 configPtr:Ptr - -

Localization code resource messages

cmL2English* 0 inputPtr:Ptr VAR outputPtr:Ptr fromLanguage:integer
cmL2Intl* 1 inputPtr:Ptr VAR outputPtr:Ptr toLanguage:integer

* Indicates the routine is a function that returns a LONGINT.

Chapter 10: Writing Terminal Tools 255

Chapter 10 Writing Terminal Tools

T H I S C H A P T E R tells you how to write the main code resource for a terminal tool. You will

need to include six code resources in your tool; they are described in Chapter 8. You should read

that chapter, as well as Chapter 4, before reading this chapter.

This chapter describes all the messages, parameters, and data structures that the Terminal Manager

passes to your tool’s main code resource. Also in this chapter is sample code (with pseudocode

mixed in) that will help you understand what your tool should do when it receives any of the

messages. A “Quick Reference” at the end of the chapter shows you what you should name your six

terminal tool resources. It also lists the messages the Terminal Manager sends to your tool, and the

parameters that the Terminal Manager passes with each message.

Chapter 10: Writing Terminal Tools 257

Your terminal tool’s main code resource

The purpose of the main code resource is to parse messages from the Terminal Manager and then to
branch to a routine that can handle each message. The main code resource should be a resource of
type 'tdef', and should be able to accept the parameters shown here.

FUNCTION tdef(hTerm: TermHandle; msg: INTEGER; pl, p2, p3:
LONGINT) : LONGINT;

The accepted messages are as follows:

CONST
tmInitMsg = 0;
tmDisposeMsg = 1;
tmSuspendMsg = 2;
tmResumeMsg = 3;
tmMenuMsg = 4;
tmEventMsg = 5;
tmActivateMsg = 6;
tmDeactivateMsg = 7;
tmIdleMsg = 50;
tmResetMsg = 51;
tmKeyMsg = 100;
tmStreamMsg = 101;
tmResizeMsg = 102;
tmUpdateMsg = 103;
tmClickMsg = 104;
tmGetSe1ectionMsg = 105;
tmSetSelectionMsg = 106;
tmScrollMsg = 107;
tmClearMsg = 108;
tmGetLineMsg = 109;
tmPaintMsg = 110;
tmCursorMsg = 111;
tmGetEnvironsMsg = 112;
tmDoTermKeyMsg = 113;
tmCountTermKeysMsg = 114;
tmGetIndTermKeyMsg = 115;

Your tool can return an appropriate operating system error code, or tmNotSupported if it
does not understand the message it received.

tmInitMsg
The Terminal Manager will pass tmInitMsg to your tool after the following sequence of events
occurs. When a tool or application calls TMNew, the Terminal Manager allocates space for the
terminal record. It then fills in some of the fields, based upon information that was passed in the
parameters to the call. The Terminal Manager fills in the config and oldConfig fields by
calling TMDefault. Then the Terminal Manager passes tmInitMsg to your tool. After your
tool has finished responding to tmInitMsg, the Terminal Manager calls TMValidate.

The following sample code shows how your tool can respond to tmInitMsg. After
executing the code necessary to respond to tmInitMsg, your code should pass back an
appropriate OsErr or TMErr:

FUNCTION TermToolInit(hTerm : TermHandle) : LongInt;
VAR

privatePtr : TERMINALPrivatePtr;
theState : SignedByte;

BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm)) ;
WITH hTerm^^ DO
Begin

{ initialize TermToolInit to return no error }
TermToolInit := TMNoErr ;

{ allocate space in the current heap for our private terminal tool record }

privatePtr := TERMINALPrivatePtr(NewPtrClear(SIZEOF (
TERMINALPrivateRecord)));

IF privatePtr = NIL THEN
BEGIN

{we have problem with allocating memory; return the error code and exit}

errCode := MemError;
TermToolInit := errCode;
Exit(TermToolInit };

END
ELSE
BEGIN

{ allocate terminal tool buffer space }
privatePtr^.tmprivatetermbuffer := NewPtrClear(MAXROW * MAXCOL);
IF (privatePtr^.tmprivatetermbuffer) = NIL THEN
BEGIN

{ we have problem allocating the buffer space }
errCode := MemError;
TermToolInit := errCode;
{ dispose the private terminal tool record }
DisposPtr(Ptr(privatePtr));
Exit(TermToolInit);

END;

 (get the terminal menu handle and menu ID and
assign it into our private tool record)

END;
{ assign our terminal tool private record pointer to the terminal
record }
tmPrivate := Ptr(PrivatePtr };

END;
HSetState(Handle(hTerm), theState);

END;

Chapter 10: Writing Terminal Tools 259

tmDisposeMsg
A tool or application will call TMDispose when it must dispose of a terminal record and its
associated data structures.

The Terminal Manager passes tmDisposeMsg to your tool before disposing of the
config and oldConfig fields of the terminal record. Next, the Terminal Manager disposes of
the terminal record.

To handle tmDisposeMsg, your tool should dispose of any buffers allocated in response to
tmInitMsg and any private data storage (referenced off of tmPrivate in the terminal
record). Your tool must not attempt to dispose of either config or oldConfig in the
terminal record, or of the terminal record itself. Doing so will cause a system crash.

The sample code shows a template into which you can code your tool’s response to
tmDisposeMsg.

PROCEDURE TermToolDispose(hTerm:TermHandle);
VAR

privatePtr : TERMINALPrivatePtr;
theState : SignedByte;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin
privatePtr := TERMINALPrivatePtr(tmPrivate);

{ dispose the terminal buffer space }
DisposPtr(privatePtr^.tmprivatetermbuffer);

{ dispose the terminal menu if there's any }
{ and it's not used by other tools }

DisposPtr(Ptr(privatePtr));
END;
HSetState(Handle(hTerm), theState);

END;

tmKeyMsg
Your tool will receive tmKeyMsg in response to a key-down, key-up, or autokey event in the
application. The sample code shows how your tool can respond to these messages.

When passed to your tool, p1 will point to the event record associated with the event. if the
keyCode field of the event record contains -l, only charCode contains information.

PROCEDURE TermToolKey(hTerm:TermHandle; myEvent: EventRecord);
VAR

theChar : CHAR;
theKeyCode : CHAR;
theModifier : INTEGER;
theState : SignedByte;

BEGIN
theChar := CHAR(BAND(myEvent.message, charCodeMask));
theKeyCode := CHAR(BAND(myEvent.message, keyCodeMask));
theModifier := myEvent.modifiers ;

theState :=HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

{ do special keyboard mapping if the keycode isn't -1 }
{ if keycode is -1, that is, fake keyDown event }

{ transmit data if the terminal is online }

{echo data to the screen if online is off or localecho is true}
END;
HSetState(Handle(hTerm), theState);

END;

tmStreamMsg

The Terminal Manager will pass tmStreamMsg to your tool when the application has requested
the TMStream routine. When passed to your tool, p1 will point to the buffer of incoming data;
p2 will contain the length of the buffer in bytes; and p3 will contain flags, which the
application passed to TMStream. The sample code shows a template into which you can code
your tool’s response to tmStreamMsg.

After executing the code necessary to respond to a tmStreamMsg, your tool should return
the number of characters it processed.

FUNCTION TermToolStream(hTerm: TermHandle; theBuffer: Ptr;
theBufferSize:LONGINT ; flag: CMFlags):LONGINT;

VAR
theState : SignedByte;
thePtr : Ptr;
i : INTEGER;
privatePtr : TERMINALPrivatePtr ;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

{ do special handling if flag is equal to EOM }

privatePtr := TERMINALPrivatePtr(tmPrivate);
With privatePtr^ Do
BEGIN

thePtr := tmprivatetermbuffer;
thePtr := Ptr(Ord(thePtr) +

tmprivatecurrentrow * tmprivatecurrentcol);
FOR i := 1 TO theBufferSize DO

Chapter 10: Writing Terminal Tools 261

BEGIN
{ process data in theBuffer, such as moving the
cursor position, etc. }

{if data in theBuffer isn't a special escape sequence}
{assign data into our private terminal tool buffer }

thePtr := Ptr(LONGINT(theBuffer) + i);
{ advance tmprivatecurrentcol }
tmprivatecurrentcol := tnprivatecurrentcol + 1;

END;

{ return the number of chars we have processed }
TermToolStream := LONGINT(theBufferSize);

END;
END;
HSetState(Handle(hTerm), theState);

END;

tmActivateMsg and tmResumeMsg
Your tool will receive tmActivateMsg when the application requires your tool to process an
activate event (such as inserting menus into the menu bar, modifying a selection, or making the
cursor blink) for a window that belongs to the Terminal Manager. The sample code shows a
template into which you can code your tool’s response to tmActivateMsg.

Your tool receives tmResumeMsg from the Terminal Manager when the application returns
to the foreground in MultiFinder. Your tool can call the same routine in response to receiving
tmResumeMsg as it calls in response to receiving tmActivateMsg.

PROCEDURE TermToolActivate(hTerm:TermHandle);
VAR

privatePtr : TERMINALPrivatePtr;
theState : SignedByte;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

privatePtr := TERMINALPrivatePtr(tmPrivate);

{ turn on the selection if there's any }
IF NOT EmptyRect(selection.selRect) THEN

HiliteSelection(hTerm);

{ put up my tool's menu if tmNoMenus isn't true }
IF (BAND(flags, tmNoMenus) = 0) THEN

BEGIN
InsertMenu(privatePtr^.tmprivateMenuHandle, 0);
DrawMenuBar;

END;
END;
HSetState(Handle(hTerm), theState);

END;

tmDeactivateMsg and tmSuspendMsg
Your tool will receive tmDeactivateMsg when the application requires your tool to process a
deactivate event (such as removing a menu from the menu bar, modifying a selection, or making a
cursor stop blinking) for a window that belongs to the Terminal Manager. The sample code shows
how your tool can respond to tmDeactivateMsg.

Your tool receives tmSuspendMsg when the application goes to the background in
MultiFinder. Your tool can call the same routine in response to receiving tmSuspendMsg as it
calls in response to receiving tmDeactivateMsg.

PROCEDURE TermToolDeactivate(hTerm:TermHandle);
VAR

theState : SignedByte;
privatePtr : TERMINALPrivatePtr;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

privatePtr := TERMINALPrivatePtr(tmPrivate);

{ turn on the selection if there's any }
IF NOT EmptyRect(selection.selRect) THEN

DeHiliteSelection(hTerm);
{ get rid of my tool's menu if tmNoMenus isn't true }
IF (BAND(flags, tmNoMenus) = 0) THEN
BEGIN

DeleteMenu(privatePtr^.tmprivateMenuID);
DrawMenuBar;

END;
END;
HSetState(Handle(hTerm), theState);

END;

tmResizeMsg
Your tool will receive tmResizeMsg from the Terminal Manager when the application requires
your tool to resize the termRect. When passed to your tool, p1 points to the rectangle that
describes the new termRect. The code sample shows how your application can handle
tmResizeMsg.

Chapter 10: Writing Terminal Tools 263

PROCEDURE TermToolResize(hTerm:TermHandle; newtermRect: Rect);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

termRect := newtermRect ;
{ calculate new viewRect and visRect with the newtermRect }
{ redraw any newly exposed areas }

End;
HSetState(Handle(hTerm), theState);

END;

tmIdleMsg
Your tool will receive tmIdleMsg from the Terminal Manager when the application requires
your tool to make the cursor blink. The sample code shows a template into which you can code your
tool’s response to tmIdleMsg.

PROCEDURE TermToolIdle(hTerm:TermHandle);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

{ blink the cursor }
InvertCursor(hTerm);
{ finish drawing any latent drawing that has yet to occur }
DrawTermContent(hTerm);
{search the terminal screen area for any searches that are going on…}

IF mluField <> 0 Then
SearchTerm(hTerm);

End;
HSetState(Handle(hTerm), theState);

END;

tmUpdateMsg
Your tool will receive tmUpdateMsg from the Terminal Manager when the application requires
your tool to update the terminal emulation window. When passed to your tool, p1 will be a
handle to the region that needs to be updated. The sample code shows a template into which you
can code your tool’s response to tmUpdateMsg.

PROCEDURE TermToolUpdate(hTerm:TermHandle ; visRgn:RgnHandle);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
Begin

{redraw the terminal area. The area to be drawn is specified by}
{ the region handle passed in. }

End;
HSetState(Handle(hTerm), theState);

END;

tmClickMsg
Your tool will receive tmClickMsg from the Terminal Manager when the application requires
your tool to handle a mouse-down event in the terminal emulation window; it should respond by
calling the application’s click-loop procedure. Your tool should support placing and dragging the
cursor. When passed to your tool, p1 will contain a pointer to the event record.

The sample code shows a template into which you can code your tool’s response to
tmClickMsg.

PROCEDURE TermToolClick(hTerm:TermHandle ; myEvent:Eventrecord);
VAR

theState : SignedByte;
clickInCachArea : Boolean;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm)) ;
clickInCachArea := FALSE ;
With hTerm^^ Do
Begin

{ call the clickloop if there's any }
if clikLoop <> NIL THEN
BEGIN

clickInCachArea := CallclikLoop(refCon, clikLoop);
END;
if NOT clickInCachArea THEN
BEGIN

{ mouse click is in the terminal area, track mouse }
END;

End;
HSetState(Handle(hTerm), theState);

END;

Chapter 10: Writing Terminal Tools 265

tmMenuMsg
Your tool will receive tmMenuMsg from the Terminal Manager when the user has chosen an item
from a menu that belongs to your terminal tool. When passed to your tool, p1 will contain the
menu ID, and p2 will contain the menu item. The sample code shows a template into which you
can code your tool’s response to tmMenuMsg.

After your tool has handled tmMenuMsg, it should return 0 if it did not handle the menu
event, and 1 if it did.

FUNCTION TermToolMenu(hTerm:TermHandle ; menuID, menuItem:INTEGER):LONGINT; VAR
theState : SignedByte;
privatePtr : TERMINALPrivatePtr;

BEGIN
theState :=HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

privatePtr := TERMINALPrivatePtr(tmPrivate);
With privatePtr^ Do
BEGIN

{ does the menuID belong to the terminal? }
IF menuID = tmprivateMenuID THEN
BEGIN

{ yes, it's one of ours, handle it based on the menuItem }

{ unhilite the menu title }
HiliteMenu(tmprivateMenuID);
{ if the menu belongs to the terminal tool, return 1 }
TermToolMenu := 1;

END
ELSE
{ if the menu doesn't belong to the terminal tool, return 0 }

TermToolMenu := 0 ;
END;

END;
HSetState(Handle(hTerm), theState);

END;

tmGetSelectionMsg
Your tool needs to be able to handle tmGetSelectionMsg to support cut and copy
operations in the terminal emulation window. The sample code shows a template into which you
can code your tool’s response to tmGetSelectionMsg.
After responding to tmGetSelectionMsg, your tool should resize the data block (the passed-
in handle) by calling SetHandleSize(p1, newSize), and a pointer to the scrap type
(ResType) in p3. Your tool should also return an error code, if appropriate; 0 if there was no
selection; or the size of the selected data.

FUNCTION TermToolGetSelection (hTerm:TermHandle ; DataHandle:Handle;
VAR selResType:ResType):LONGINT;

VAR
theState : SignedByte;
datasize : LONGINT;

BEGIN
theState := HGetState(Handle(hTerm)) ;
HLock(Handle(hTerm)) ;
With hTerm^^ Do
BEGIN

IF NOT EmptyRect(selection.selRect) THEN
BEGIN

{ there's a selection }

{ calculate the size of the selection }
datasize := GetSelectionSize(hTerm);
{ grow DataHandle according to the size }
SetHandleSize(DataHandle, datasize };
{ copy the data into DataHandle }

selResType := 'TEXT';
TermToolGetSelection := datasize

END
ELSE

(there's no selection }
TermToolGetSelection := 0 ;

END;
HSetState(Handle(hTerm), theState);

END;

tmSetSelectionMsg
An application will call TMSetSelection when it requires your tool to highlight an area of the
terminal emulation window. When passed to your tool, p1 will point to the field that needs to be
highlighted, and p2 will describe the type of selection. The example code shows a template into
which you can code your tool’s response to tmSetSelectionMsg.

PROCEDURE TermToolSetSelection (hTerm:TermHandle ; mySelection:TMSelection;
myselType:LONGINT);

VAR
theState : SignedByte;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

IF NOT EmptyRect(selection.selRect) THEN
{ dehilite old selection if there's any }
DeHiliteSelection(hTerm);

{ assign new selection record to the terminal record }
selection := mySelection ;
selType := myselType;

Chapter 10: Writing Terminal Tools 267

HiliteSelection(hTerm);
END;
HSetState(Handle(hTerm), theState);

END;

tmScrollMsg
An application will call tmScroll when it requires your tool to scroll the terminal emulation
region either horizontally or vertically. (The application is responsible for scrolling the cache area, if
it supports one.) When passed to your tool, p1 will contain the amount of horizontal scrolling,
and p2 will contain the amount of vertical scrolling. The example code shows a template into
which you can code your tool’s response to tmScrollMsg.
PROCEDURE TermToolScroll(hTerm:TermHandle; deltaH, deltaV:LONGINT);
VAR

theState : SignedByte;
updatergn : RgnHandle;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

updatergn := NewRgn;
ScrollRect(viewRect, deltaH, deltaV, updatergn);
{ update the newly scrolled in area }
DisposeRgn(updatergn);

END;
HSetState(Handle(hTerm), theState);

END;

tmResetMsg
Your tool will receive tmResetMsg when the application requires your tool to reset the terminal
emulation window. This reset operation should purge all local screen buffers, be a local operation,
and call the cache procedure if tmSaveBeforeClear is set in the terminal record.

The code sample shows a template into which you can code your tool’s response to
tmResetMsg.
PROCEDURE TermToolReset(hTerm:TermHandle);
VAR

theState : SignedByte;
error : Boolean;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

{ clear the screen }
TermToolClear(hTerm);
{ copy the saved configuration into the current configuration record }

BlockMove(oldConfig, config, sizeof(ToolConfigRecord));
{ call the validate routine to update my tool's private record}

error := TMValidate(hTerm);
END;
HSetState(Handle(hTerm), theState);

END;

tmClearMsg
Your tool will receive tmClearMsg when the application needs your tool to clear the terminal
emulation window. This clear operation should purge all local screen buffers, be a local operation,
and call the cache procedure if tmSaveBeforeClear is set in the terminal record.

The code sample shows a template into which you can code your tool’s response to
tmClearMsg.
PROCEDURE TermToolClear(hTerm:TermHandle);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

{ erase the screen }
EraseRect(viewRect);
{ clear up the terminal buffer }

END;
HSetState(Handle(hTerm), theState);

END;

tmGetLineMsg
An application will call TMGetline when it requires your tool to send it a TermDataBlock,
which contains the data, character attributes, and line attributes. For example, the application might
require the data in TermDataBlock to update its cache area for a specified line. When passed
to your tool, p1 contains the line number, and p2 points to the TermDataBlock, which your
tool should fill in.

The sample code shows a template into which you can code your tool’s response to
tmGetLineMsg. Your tool should fill the TermDataBlock with new information and
resize the theTermData.theData handle for the requested line.

PROCEDURE TermToolGetLine(hTerm:TermHandle ; lineNo:LONGINT ;
VAR myTermBlock:TermDataBlock);

VAR
theState : SignedByte;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

myTermBlock.flags := tmTextTerminal; { this is a text terminal }

myTermBlock.auxData := NIL; { no style information }

Chapter 10: Writing Terminal Tools 269

{ grow the datahandle size to fit a line of data }
SetHandleSize(myTermBlock.theData, MAXCOL);
{ copy the terminal content into myTermBlock.theData }
END;

HSetState(Handle(hTerm), theState);
END;

tmPaintMsg
An application will call TMPaint when it requires your tool to display the contents of a
TermDataBlock. When passed to your tool, p1 will point to the TermDataBlock, and
p2 will point to the rectangle into which your tool is to display the line.

If theTermData.theData is a handle to plain text (not styled), your tool can calculate the
number of characters to paint by calling GetHandleSize. If your tool requires the data in
theTermData after it passes control back to the calling application, it must make a copy of this
data, since the application may change or destroy TermDataBlock.

The sample code shows a template into which you can code your tool’s response to
tmPaintMsg.
PROCEDURE TermToolPaint(hTerm:TermHandle; theTermData:TermDataBlock;

drawRect:Rect);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

{ given the terminal data block, redraw those contents }
{ within the boundaries of the given rectangle }

END;
HSetState(Handle(hTerm), theState);

END;

tmCursorMsg
An application will call TMCursor when it requires your tool to pass it the current location of
the cursor. When passed to your tool, p1 will specify the type of cursor.

The sample code shows a template into which you can code your tool’s response to
tmCursorMsg. Your tool should return the current cursor position.
FUNCTION TermToolCursor(hTerm:TermHandle; cursorType: TMCursorTypes):LONGINT;

VAR
theState : SignedByte;
privatePtr : TERMINALPrivatePtr;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm));
With hTerm^^ Do
BEGIN

privatePtr := TERMINALPrivatePtr(tmPrivate);

{ return row and col if cursorType is text cursor }
IF cursorType = cursorText THEN

TermToolCursor := LONGINT(privatePtr^.tmprivatecursor) ;
{ else return pixels if cursorType is graphic cursor }

END;
HSetState(Handle(hTerm), theState);

END;

tmGetEnvironsMsg
Your tool will receive tmGetEnvironsMsg when the application has called the
TMGetTermEnvirons routine. When passed to your tool, p1 will point to the
TermEnvironRec. Your tool should fill in this record.

The sample code shows a template into which you can code your tool’s response to
tmGetEnvironsMsg.
FUNCTION TermToolGetEnvirons (hTerm:TermHandle ;

VAR myTermEnvRec:TermEnvironRec):LONGINT;
VAR

theState : SignedByte;
privatePtr : TERMINALPrivatePtr;

BEGIN
theState := HGetState(Handle(hTerm));
HLock(Handle(hTerm)) ;
With hTerm^^, myTermEnvRec Do
BEGIN

privatePtr := TERMINALPrivatePtr(tmPrivate);
{ return error if the given version number isn't the
 same as the current version }
IF version > curTermEnvRecVers THEN

TermToolGetEnvirons := envVersTooBig
ELSE IF version < curTermEnvRecVers THEN

TermToolGetEnvirons := envBadVers
ELSE BEGIN

termType := tmTextTerminal; { it's a text terminal }
textRows := MAXROW;
textCols := MAXCOL;
cellSize.h := privatePtr^.tmprivatecellsize.h;
cellSize.v := privatePtr^.tmprivatecellsize.v;
slop.h := THESLOP;
slop.v := THESLOP;
SetRect(graphicSize, 0, 0, 0, 0);
SetRect(auxSpace, 0, 0, 0, 0);
{ return no error }
TermToolGetEnvirons := 0;

END;
END;
HSetState(Handle(hTerm), theState);

END;

Chapter 10: Writing Terminal Tools 271

tmEventMsg
The Terminal Manager will pass tmEventMsg to your tool when an event occurs in a

window associated with the terminal tool. The sample code shows a template into which you can
code your tool’s response to tmEventMsg. When passed to your tool, p1 will be a pointer to
the event record.
PROCEDURE TermToolEvent(hTerm:TermHandle ; myEventRecord:EventRecord);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm)) ;
HLock(Handle(hTerm)) ;
With hTerm^^ Do
BEGIN

{ an event has been received for a window or dialog box that
was }
{ created by the terminal tool, process it accordingly. }
 CASE myEventRecord.what OF

mouseDown:
;

keyDown, autoKey:
;

updateEvt:
;

activateEvt:
;

END;
END;
HSetState(Handle(hTerm), theState);

END;

tmDoTermKeyMsg
Your tool will receive tmDoTermKeyMsg when the application has called the TMDoTermKey
routine. When passed to your tool, p1 will point to a string that corresponds to the key that was
pressed. For example, if the user pressed the PF1 key, the string will be “PF1.” If there is no key
that corresponds to the string, your tool should do nothing.

The sample code shows a template into which you can code your tool’s response to
tmDoTermKeyMsg.
PROCEDURE TermToolDoTermKey(hTerm:TermHandle ; theStr: StringPtr);
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm)) ;
HLock(Handle(hTerm)) ;
With hTerm^^ Do
BEGIN

{ perform the action determined by the special
terminal key passed in, e.g HOME, PF1 etc.,
and ignore theStr if it's not recognized by the terminal tool }

END;
HSetState(Handle(hTerm), theState);

END;

tmCountTermKeysMsg
Your tool will receive tmCountTermKeysMsg when the application requires your tool to pass
it the number of special terminal key names that it supports.

The sample code shows how your tool can respond to tmCountTermKeysMsg.
FUNCTION TermToolCountTermKey(hTerm:TermHandle):LONGINT;
VAR

theState : SignedByte;
BEGIN

theState := HGetState(Handle(hTerm)) ;
HLock(Handle(hTerm)) ;
With hTerm^^ Do
BEGIN

{ return the number of special terminal keys
supported by the terminal tool }

END;
HSetState(Handle(hTerm), theState);

END;

tmGetIndTermKeyMsg
The Terminal Manager will pass tmGetIndTermKeyMsg to your tool when the application
requires your tool to pass it the name of a special terminal key (for example, PF1, PA1, or DUP).
When passed to your tool, p1 contains the index (number) of the key.

The code sample shows a template into which you can code your tool’s response to
tmGetIndTermKeyMsg. When your tool is done, it should pass back a pointer to a Str255
return value that describes the key, or a pointer to an empty string if the index is invalid.

PROCEDURE TermToolGetIndTermKey(hTerm:TermHandle; index:INTEGER; VAR theStr:STR255);

VAR
theState : SignedByte;

BEGIN
theState := HGetState(Handle(hTerm)) ;
HLock(Handle(hTerm)) ;
With hTerm^^ Do
BEGIN

{ return the terminal key supported by the terminal tool in
theStr }

{ or return empty string if index is out of range }
END;
HSetState(Handle(hTerm), theState);

END;

Chapter 10: Writing Terminal Tools 273

Quick reference

This section contains reference information for the data structures, resource names, and resource types that you need to
write a terminal tool. A table at the end of this section lists all the messages the Terminal Manager sends to your tool,
and what is passed in the parameters with each message.

Data structures

TMSetupStruct

TYPE

TMSetupPtr = ^TMSetupStruct;
TMSetupStruct = RECORD

theDialog : DialogPtr;
count : INTEGER;
theConfig : Ptr;
procID : INTEGER;

END;

TMSearchBlock

TYPE
TMSearchBlockPtr = ^TMSearchBlock;
TMSearchBlock = RECORD

theString : StringHandle;
where : Rect;
searchType : TMSearchTypes;
callBack : ProcPtr;
refnum : INTEGER;
next : TMSearchBlockPtr;

END;

Resource names

FUNCTION tdef(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION tval(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION tset(pSetup: SetupPtr; msg: INTEGER; p1, p2, p3: LONGINT): LONGINT;

FUNCTION tscr(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION tloc(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

Resource Types

type 'tbnd' {

integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type */
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

type 'tver' as 'vers';

n Table 10-1 Terminal Manager messages and parameters

Constant Parameter 1
p1

Parameter 2
p2

Parameter 3
p3

Validation code resource messages

tmValidateMsg*
tmDefaultMsg

Setup code resource messages

tmSpreflightMsg*
tmSsetupMsg
tmSitemMsg
tmSfilterMsg*
tmScleanupMsg

Scripting code resource messages

tmMgetMsg*
tmMsetMsg*

Localization code resource messages

tmL2English*
tmL2Intl*

0
1

0
1
2
3
4

0
1

0
1

-
VAR termConfigRec:Ptr

-
-
VAR item:itemSelected
myEvent:EventRecord
-

-
configPtr:Ptr

inputPtr:Ptr
inputPtr:Ptr

-
allocate:Boolean

-
-
-
VAR item:itemHit
-

-
-

VAR outputPtr:Ptr
VAR outputPtr:Ptr

-
procID:short

VAR magicCookie:LONGINT
VAR magicCookie:LONGINT
VAR magicCookie:LONGINT
VAR magicCookie:LONGINT
VAR magicCookie:LONGINT

-
-

fromLanguage:integer
toLanguage:integer

* Indicates the routine is a function that returns a LONGINT.

■ Table 10-1 Terminal Manager messages and parameters (continued)
CConstant Parameter 1

p1
Parameter 2

p2
Parameter 3

p3

Main code resource messages

tmInitMsg*
tmDisposeMsg
tmSuspendMsg
tmResumeMsg
tmMenuMsg*
tmEventMsg
tmActivateMsg
tmDeactivateMsg
tmIdleMsg
tmResetMsg
tmKeyMsg
tmStreamMsg*
tmResizeMsg
tmUpdateMsg
tmClickMsg
tmGetSelectionMsg*
tmSetSelectionMsg
tmScrollMsg
tmClearMsg
tmGetLineMsg
tmPaintMsg
tmCursorMsg*
tmGetEnvironsMsg*
tmDoTermKeyMsg*
tmCountTermKeysMsg*
tmGetIndTermKeyMsg

0
1
2
3
4
5
6
7
50
51
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

-
-
-
-
menuID:Integer
myEvent:EventRecord
-
-
-
-
myEvent:EventRecord
bufferPtr:Ptr
newTermRect:Rect
visRgn:RgnHandle
myEvent:EventRecord
dataHandle:Handle
theSelection:TMSelection
deltaH:Integer
-
lineNo:Integer
myTermBlock:TermDataBlock
cursorTypes:TMCursorTypes
VAR TermEnv:TermEnvironRec
termKey:Str225
-
index:Integer

-
-
-
-
menuItem:Integer
-
-
-
-
-
-
bufferSize:LongInt
-
-
-
VAR selTypes:TMSelTypes

deltaV:Integer
-
VAR myTermBlock:TermDataBlock
paintRect:Rect
-
-
-
-
VAR termKey:Str255

-
-
-
-
-
-
-
-
-
-
-
flags:CMFlags
-
-
-
-

-
-
1
-
-
-
-
-
-

* Indicates the routine is a function that returns a LONGINT.

Chapter 11 Writing File Transfer Tools

Inside the Macintosh Communications Toolbox278

T H I S C H A P T E R tells you how to write the main code resource for a file transfer tool. You will need to include five other code

resources as part of your tool; they are described in Chapter 8. You should also read that chapter, as well as Chapter 5, before

reading this chapter.

This chapter describes all the messages, parameters, and data structures that the File Transfer Manager passes to your tool’s main

code resource. Also in this chapter is sample code (with pseudocode mixed in) that will help you understand what your tool

should do when it receives any of the messages. A quick reference at the end of the chapter shows you what you should name

your six file transfer tool resources. It also lists the messages the File Transfer Manager sends to your tool, and the parameters that

the File Transfer Manager passes with each message.

Chapter 11: Writing File Transfer Tools 279

Your file transfer tool’s main code resource

The purpose of the main code resource is to parse messages from the File Transfer Manager and then to branch to a routine that
can handle each message. The main code resource should be a resource of type 'fdef' and should be able to accept the
parameters shown here.

FUNCTION fdef(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT):
LONGINT;

The accepted messages are as follows:

CONST

ftInitMsg = 0;
ftDisposeMsg = 1;
ftSuspendMsg = 2;
ftResumeMsg = 3;
ftMenuMsg = 4;
ftEventMsg = 5;
ftActivateMsg = 6;
ftDeactivateMsg = 7;
ftAbortMsg = 52;
ftStartMsg = 100;
ftExecMsg = 102;

For each of the messages defined above, the three parameters that 'fdef' returns, namely p1, p2, and p3, take on
different meanings. These meanings are described in the message descriptions that follow.Your tool can retum an appropriate
operating system error code, or ftNotSupported if it does not understand the message it received.

ftInitMag

The File Transfer Manager will pass ftInitMsg to your tool after the following sequence of
events occurs. When a tool or application calls FTNew, the File Transfer Manager allocates space for the file transfer record. It
then fills in some of the fields, based upon information that was passed in the parameters to the call. The File Transfer Manager
fills in the config and oldConfig fields by calling FTDefault. Then the File Transfer Manager passes
ftInitmsg to your tool. After your tool has finished responding to ftInitMsg, the File Transfer Manager calls
FTValidate.

After executing the code necessary to respond to ftInitMsg, your code should pass back an appropriate OSErr or
FTErr. Here’s an example:

FUNCTION myInit(hFT: FTHandle): CMErr;
VAR

state : SignedByte;

BEGIN
myInit := noErr; {Optimism}
state := HGetState(Handle(hFT)); {save handle state}
Hlock (Handle(hFT));{ {lock it down}

WITH HFT^^ DO

Inside the Macintosh Communications Toolbox280

BEGIN

errCode := noErr; {optimism reigns}

private := PrivatePtr(NewPtr(SIZEOF(PrivateData)));
WITH private^ DO
BEGIN { fill in private data structure here }
END;

END;

HSetState(Handle(hFT), state);
END;

ftDisposeMsg

A tool or application will call FTDispose when it must dispose of a file transfer record and its associated data structures.
The File Transfer Manager passes ftDisposeMsg to your tool before disposing of the config and

oldConfig fields of the file transfer record. Next, the File Transfer Manager disposes of the file transfer record.
To handle ftDisposeMsg, your tool should dispose of any buffers allocated in response to ftInitMsg and any
private data storage (referenced off of ftPrivate in the file transfer record). Your tool must not attempt to dispose of
either config or oldConfig in the file transfer record, or of the file transfer record itself. Doing so will cause a system
crash.

The sample code shows a template into which you can code your tool’s response to ftDisposeMsg.

PROCEDURE myDispose(hFT: FTHandle);
VAR

err: FTErr;

BEGIN
{ abort FT in progress }
{ do cleanup }
DisposPtr(Ptr(hFT^^. private)):

END;

ftStartMsg

Your tool will receive ftStartMsg from the File Transfer Manager when the application requires your tool to start a file
transfer. The sample code shows a template into which you can code your tool’s response to ftStartMsg.

Your tool should pass back the appropriate error message if unable to start the file transfer.

FUNCTION FTStartup(hFT: FTHandle): FTErr;
BEGIN

FTStart := noErr; {optimism}

WITH hFT^^ DO
BEGIN

errCode := 0;
flags := BOR(flags, ftIsFTMode); {file transfer in progress}

Chapter 11: Writing File Transfer Tools 281

{initialize the variable}
{open file}
{prepare your I/O buffer}
{draw the status dialog}

END;

END;

ftExecMsg

An application calls FTExec to provide time for a file transfer in progress. Your tool should strive to be “MultiFinder-friendly”
by minimizing the time it spends handling this message. When the file transfer is completed, your tool should close all files and
dispose of any status dialog boxes.

PROCEDURE FTExec{hFT: FTHandle};
BEGIN

{ called when file transfer is in progress so do your stuff here... }

END;

ftAbortMsg

Your tool will receive ftAbortMsg from the File Transfer Manager when the application requires your tool to abort a file
transfer. The sample code provides a template into which you can code your tool’s response to ftAbortMsg.

If your tool is unable to abort successfully, it should pass back an appropriate error code.

FUNCTION FTAbort(hFT: FTHandle): FTErr;
BEGIN

{ abort the file transfer in progress here }
{ close the file)
{ dispose of the status dialog }

END;

ftActivateMsg and ftResumeMsg

Your tool will receive ftActivateMsg or ftResumeMsg when the application requires your tool to process an
activate event (such as inserting menus into the menu bar). The sample code shows a template into which you can code your
tool’s response to ftActivateMsg or ftResumeMsg.

PROCEDURE myActivate {FT: FTHandle};
BEGIN

END;
{

p1, p2, p3 are ignored

This routine may perform actions such as inserting a menu into
the menu bar.

}

Inside the Macintosh Communications Toolbox282

PROCEDURE myResume(hFT: FTHandle);
BEGIN

END;

{

p1, p2, p3 are ignored

This routine may perform the same actions as myActivate
}

ftDeactivateMsg and ftSuspendMsg

Your tool will receive ftDeactivateMsg or ftSuspendMsg when the application requires your tool to process a
deactivate event (such as removing a menu from the menu bar) for a window that belongs to the File Transfer Manager.

ftMenuMsg

The File Transfer Manager will send ftMenuMsg to your tool when a menu event has occurred in the application. When
passed to your tool, p1 will contain the menu ID, and p2 will contain the menu item.

The sample code shows a template into which you can code your tool’s response to ftMenuMsg. When done, your
tool should pass back 0 if the menu event was not handled, and 1 if it was.

FUNCTION myMenu(hFT: FTHandle; mID: INTEGER; mItem: INTEGER):
LONGINT;
BEGIN

myMenu := 0; {pessimism}
{ if mine then

myMenu := 1; {handle the menu event}

}
END;

ftEventMsg

Your tool will receive ftEventMsg from the File Transfer Manager when an event has occurred in the application. When
passed to your tool, p1 will point to the event record, in which the reference constant field contains the file transfer handle.

Chapter 11: Writing File Transfer Tools 283

Quick reference

This section contains reference information for the resource names and resource types that you need to write a file transfer tool. A
table at the end of this section lists all the messages the File Transfer Manager sends to your tool, and what is passed in the
parameters with each message.

Resource names

FUNCTION fdef(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION fval(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION fset(pSetup: FTSetupPtr; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION fscr(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

FUNCTION floc(hTerm: TermHandle; msg: INTEGER; p1, p2, p3: LONGINT) : LONGINT;

Resource types

type "fbnd" {
integer = $$CountOf(TypeArray) - 1;
array TypeArray {

literal longint; /* Type*/
integer = $$CountOf(IDArray) - 1;
wide array IDArray {

integer; /* Local ID */
integer; /* Actual ID */

};
};

};

_ Table 11-1 File Transfer Manager messages and parameters
Constant Parameter 1

p1
Parameter 2

p2
P

Main code resources messages

ftInitMsg*
ftDisposeMsg
ftSupendMsg
ftResumeMsg
ftMenuMsg*
ftEventMsg
ftActivateMsg
ftDeactivateMsg
ftAbortMsg*
ftStartMsg*
ftExecMsg

Validation code resources
messages

ftValidateMsg*
ftDefaultMsg

Setup code resources messages

ftSpreflightMsg*
FtSsetupMsg
ftSiteMsg
ftSfilterMsg*
ftScleanupMsg

Scripting code resource messages

ftMgetMsg*
ftMsetMsg*

Localization code resource
messages

ftL2English*
ftL2Intl*

0
1
2
3
4
5
6
7
52
100
102

0
1

0
1
2
3
4

0
1

0
1

-
-
-
-
menuID:Integer
myEvent:EventRecord
-
-
-
-
-

-
VAR ftConfigRec:Ptr

-
-
VAR item:itemSelected
myEvent:EventRecord
-

-
configPtr:Ptr

inputPtr:Ptr
inputPtr:Ptr

-
-
-
-
menuID:Integer
-
-
-
-
-
-

-
allocate:Boolean

-
-
-
VAR item:itemHit
-

-
-

VAR outputPtr:Ptr
VAR outputPtr:Ptr

-
-
-
-
-
-
-
-
-
-
-

-
p

V
V
V
V
V

-
-

f
t

∑ Indicates the routine is a function that returns a LONGINT.

�

Appendix A Guidelines for Communications Tools

T H I S A P P E N D I X contains software design and human interface guidelines for

communications tools. The guidelines presented in this appendix, while not hard-and-fast rules, will

help ensure that your tool works with future releases of the Communications Toolbox, with other

tools, and with applications that use the Communications Toolbox.

This appendix discusses the design goals your tool should implement. Then it discusses human

interface considerations. Finally, the appendix describes hardware and software compatibility

requirements.

To fully understand this appendix, you should first read Chapter 8, “Fundamentals of Writing Your

Own Tool,” and at least one of the following chapters: Chapter 9, “Writing Connection Tools;”

Chapter 10, “Writing Terminal Tools;” or Chapter 11, “Writing File Transfer Tools.”

286 Inside the Macintosh Communications Toolbox

Design goals

When you design your tool keep these goals in mind. Your tool should be

n Self-contained: It should contain all the resources it needs in its bundle resource, and not need to make use of other
tools or applications.

n Task-specific: It should be a connection tool, a terminal tool, or a file transfer tool. It should respond to all the
messages that the manager sends to it, but not to any messages that a Communications Toolbox manager intends
a different tool to respond to. For instance, a terminal tool should not respond to Connection Manager messages
and should not implement or maintain a data connection.

Keeping your tool self-contained

For users, installing a communications tool should be as simple as dragging the icon for that tool into the folder named
Communications Folder. To achieve this level of simplicity, your tool must be self-contained; all the resources it needs
for proper operation must be in the resource bundle.

There are, however, two exceptions to this principle. The first is when your tool uses a hardware interface that
requires a driver to be loaded at INIT time, an unavoidable circumstance. The second exception is when your tool
provides access to special data files (for example, a file of network addresses) that are kept on the user’s system. Such
data files provide your tool with a convenient way to store and distribute configuration information. In such a case, your
tool should save all user settings in the session document; your tool must not require external files to reestablish a
previously configured connection. Whenever your tool does require an external file to operate properly, it should check
for the existence of that file and notify the user if the file is not present.

To prevent resource ID conflicts, your tool should use resource IDs that are out of the range of system resource IDs
used by Apple Computer, Inc. Even when taking this precaution, font IDs may conflict. The only sure way to avoid this
is to register your font ID with Developer Technical Support. This problem arises because your tool’s resource map gets
linked into the resource chain, while your tool’s code is executing, just below the system file’s resource map.

Keeping your tool task-specific

The Communications Toolbox supports three kinds of communications tools: connection, terminal, and file transfer.
Your tool should be one of these types and must not implement any services that another type of tool is intended to
provide. For instance, if you are writing a terminal tool, it must not provide any connection services. Observing this
principle helps ensure that tools will not interact with each other in unintended ways. Each type of tool is meant to
provide specific services:

Appendix A: Guidelines for Communications Tools 287

� Connection tools control the data path and its specifications. They can also alter the data path or strip high bits, as
needed.

� Terminal tools control user input and output, including input from the mouse or keyboard, and output to the
terminal emulation window.

� File transfer tools control sending and receiving disk files, or other encapsulated data entities. Only file transfer
tools should manipulate disk files or the file system.

Tools written for the Communications Toolbox are meant to be used in a way that enables users to change one part of a
communications configuration and still have the application work for them. For instance, a user running a VT100TM

terminal emulation over a modem connection should be able to run the emulation over an X.25 connection and not
notice any changes.

However, if a terminal or file transfer tool requires a specific type of connection (because of the protocol or standard
being implemented) that is not in place, your tool should send an error to the application. A tool must never cause a
system-level error when a user tries to use it in the “wrong” configuration. Rather, it should detect the presence or
absence of a tool and send appropriate return codes to the application.

When writing a tool to implement an existing communications standard, you might find that the functions
included in the standard require more than one type of tool for implementation. In cases like this, try to keep your tool
task-specific by making use of the Macintosh interface. For example, if a connection protocol requires that your tool
have status information constantly available, your tool can display this information in a separate window. You can also
implement the standard by writing two task-specific tools that must be used together.

User interface considerations

This section describes the user interface considerations you should keep in mind when designing your tool. These
considerations include:

� modeless tool operation

� the standard tool-settings dialog box

� windows and status dialog boxes

� error alerts

� menus

� handling errors

� using the right words

288 Inside the Macintosh Communications Toolbox

Modeless tool operation

Your tool should be modeless because the Communications Toolbox (and most applications that use it) allows for
multiple simultaneous communications sessions; your session may not be the only one running (and your tool may be
in use in more than one session at a time). Also keep in mind that even if the user is running a single session, he or she
may be running that session under MultiFinder.

Although specific applications can present other user interfaces, the user will usually configure a tool from within an
application by using the standard tool-settings dialog box, open or close the connection with menu items, and send or
receive files with menu items. This dialog box and the menus are the basic aspects of the user interface.

The user will usually create a new document, configure it by using the standard tool-settings dialog box, and save it.
Your tool should save all user settings in the session file, typically in a separate resource for each of the communications
tool types (connection, terminal, and file transfer). The design of the Communications Toolbox assumes that the
application will save settings in session documents so that a user can use a preconfigured document to open a
connection. A user who uses several setting combinations is expected to prepare and use a separate document for each
combination.

Users should not need to perform more configuration tasks when they open a connection or transfer a file; the only
dialog boxes that should appear at this time are status dialog boxes. Therefore, your tool should fill in appropriate
default settings when it is first selected in the standard tool-settings dialog box.

The standard tool-settings dialog box

Since users can use different tools inside the same application, the standard tool-settings dialog box for each tool ought
to be visually compatible with those of other tools. This compatibility allows users to apply what they learn about
configuring one type of tool to configuring a second type of tool. Figure A-1 shows a sample tool-settings dialog box
for a connection tool.

� Figure A-1 A sample tool-settings dialog box for a connection tool

Appendix A: Guidelines for Communications Tools 289

Many communications tools require more parameters set by the user than can be displayed attractively in a modal
dialog box the size of the Macintosh Plus screen. Consider having your tool use 9-point Geneva for tool controls, instead
of 12-point Chicago.

If your tool is complex and requires more controls than can fit in a modal dialog box even when using 9-point
Geneva, it can divide these controls among two or more dialog boxes. The controls should be grouped according to
function. Your tool should place the controls a user is most likely to select in the first dialog box displayed when the
standard tool-settings dialog box comes up; it should place “power user” controls in subsequent dialog boxes.

Since the standard tool-settings dialog box is modal, your tool should not use additional modal dialog boxes that
pop up on top of the standard tool-settings dialog box. If your tool requires a cascading dialog box, it should use dialog
boxes like SFGetFile, which controls settings that do not usually need to be changed. Your tool should never
display more than two layers of modal dialog boxes on the screen at the same time,

Windows and status dialog boxes

The terminal window is the only window that any of the communications tools displays during normal operation. But a
connection or file transfer tool might need to pass information to the user. Since these tools should not place text in the
terminal window, such a tool should display its own window or modeless dialog box.

Display of status dialog boxes is the most common method tools use to request input or display output. When a
tool performs an operation that will take a long time-for example, transferring a file or establishing a complex
connection--the tool should post a status dialog box. This status dialog box should have the following characteristics:

� It should be modeless.

� It should contain a Cancel button to allow the user to stop the operation. Use of the Command-period key
combination for cancellation is problematic because multiple sessions may be running; users could inadvertently cancel
dialog boxes other than the one they intend to cancel by pressing the Command-period key combination several times.

Figure A-2 shows an example of a file transfer tool status dialog box.

� Figure A-2 Example file transfer tool status dialog box

290 Inside the Macintosh Communications Toolbox

A tool might also put up its own window for user input and output during a session. For example, a connection tool
might provide a command window that allows users to type in commands directly to control the connection. Your tool
should either display this kind of window when the application initially selects your tool, or install a custom menu item
that toggles in a manner similar to Hide Clipboard/Show Clipboard. Keep in mind that all command functions should
be available through standard Macintosh controls, such as menu items and configuration dialog box settings. If your
tool displays a command-line mode for compatibility with an existing standard, the command-line mode should
supplement the standard Macintosh interface rather than replacing it.

Error alerts

Your tool is responsible for informing users of significant error conditions if the cmQuiet or ftQuiet bit is not
set in the connection record or file transfer record. For instance, a connection tool should provide the user with status
information when opening or closing a connection, and a file transfer tool should report the success or failure of a file
transfer. However, a tool should not report less critical information, for example, showing a message when reading or
writing data.

Menus

Your tool can place a menu of its own in the menu bar of the application. However, it should avoid displaying such
menus, because the menu bar has limited available space, and application designers tend to assume that they can use the
entire menu bar. Also, since up to three tools can be active at once, up to three tool menus might be displayed in
addition to the menus owned by the application. If you do choose to implement a menu for your tool, choose a menu
name that is as short as possible to avoid overflowing the menu bar.

Tool-specific menus are placed to the right of application menus. This means that if the menu items of your tool
have Command-key equivalents, they will override any conflicting Command-key equivalents for application menus. If
two tool menus are displayed at the same time, the rightmost menu will override the other in a similar fashion. Also,
your application should not have any Command-key equivalents for non-ADB (Apple Desktop BUSTM) keyboards;
conflicts can arise out of the need to use the Control key as a Command key.

Handling errors

Your tool should allow users to set up any communications configuration, even ones that are unusable. This allows a
system administrator to configure and save a session document for another person, who uses a different configuration
from that on the system administrator’s machine. In such cases, your tool should return an error only if the user
attempts to open a connection, start terminal emulation, or initiate a file transfer using a setup that won’t work.

Appendix A: Guidelines for Communications Tools 291

Using the right words

Macintosh developers normally use terms that are intuitive and easy to learn, even for naïve users. However, this practice
sometimes conflicts with the need to use established industry-standard terms, which may be difficult for the novice to
understand. Since communications software developers often implement pre-existing industry standards, this problem
is especially common for developers of communications tools.

Where standard terms for a function already exist and are widely accepted in the industry, you can use the standard
terms. This convention is meant to ensure both that your tool properly implements the standard, and that experienced
communications users who are familiar with the standard terms are not confused. However, you should attempt to
make these terms as easily understandable as possible for inexperienced users. You can do this in several ways. Alternate
standard terms are sometimes available. For example, the term Show Controls and its less intuitive counterpart
Transparent Mode are used by Digital Equipment Corporation for the same VT102 terminal setting. You might also be
able to embed the standard term in a longer description, or use small graphics in the tool-settings dialog box to make
meanings clearer.

Compatibility requirements

The Communications Toolbox can run on all Macintosh computers that have:

� at least 1 MB of RAM

� Macintosh Plus (128K) ROM, or later versions

� system software version 6.0.4, or a later version

In order to be compatible with future releases of system software, it is important that your tool be 32-bit clean. Your
tool may have additional requirements or restrictions.

Keyboard considerations

Terminal tools should support all Macintosh keyboards, including the original Macintosh keyboards with and without
the detachable keypad. If arrow keys, function keys, the Control key, or other keys are required by your tool but are not
on all keyboards, your tool should provide an alternative means of accessing them. Your tool could provide a keypad
menu, or allow the user to use the Command key as a Control key.

292 Inside the Macintosh Communications Toolbox

Appendix B Communications Tools Scripting Interfaces

T H E M A C I N T O S H Communications Toolbox provides a scripting interface that allows

applications to configure tools) sending and receiving configuration strings. Configuration strings

comprises keyword/value token pairs and enable applications to control all the fields in a tool’s

configuration record,. including the elements in the tool’s settings dialog box.

This appendix defines and describes the keywords and values supported by each of the tools in the

Basic Connectivity Set. You should read relevant sections earlier in this book to understand how this

information fits into the model already presented.

In the tables that follow, valid tokens appear in Courier typeface. Value tokens printed in italics are

variables. Unless otherwise noted, value tokens can be set by applications (by calling

CMSetConfig), by users (through the user interface), or by tools.

294 Inside the Macintosh Communications Toolbox

Six rules for configuration strings

Be sure your application follows these rules when using the scripting interface with communications tools.

1. Your application can set as few as none and as many as all of the fields in a configuration record with each call to
xxSetconfig.

2. If a string contains more than one keyword/value token pair, separate each pair with a blank space.

3. The first item in a keyword/value token pair must be a keyword and the second must be the value your application
assigns to the keyword.

4. Do not be concerned with case sensitivity; communications tools should check for case.

5. If either a keyword token or value token contains a space, enclose the token in double quotes (“ ”).

6. Precede double quote and backslash characters that are part of the token with a backslash. (Double quotes that
enclose a space need not be preceded with a backslash.)

Appendix C: Communications Tools Scripting Interfaces 295

»

ADSP Tool scripting interface

Keyword token names for the ADSP Tool are compatible with those used by the TCP Tool and the TGA Tool.

The variables used in NBP names should abide by the character restrictions of NBP. In particular, do not use the equals,
“=”, approximately equals, “ª ” colon, “:”, at-sign, “@”, and asterisk, “*”, characters. The ADSP tool does not enforce
these restrictions to allow compatibility with future versions of NBP.

NBP names, AppleTalk addresses, and socket numbers must be quoted. To avoid potential problems, have your
application put quotes around all tokens.

Keyword
token

Value
token* Description Example

Local Address string NBP form of local address. It is the concatenation
of LocalADSPName and
LocalADSPTYPE in
“name:type@zone” format. If your
application passes LocalAddress into
CMSetConfig, the tool ignores both the
keyword token and its value. Only the ADSP Tool
can set this value.

“Mike’s
Macintosh:

Terminal

Server@Stevens

Creek 1”

LocalADSPName string Name to use, when combined with
LocalADSType, for registering local
connection end’s NBP name. The default value is
taken from the Chooser name. If there is no
Chooser name, “Local User” is the default.
Only applications and users can set this value.

“Mike’s
Macintosh”

LocalADSPType string NBP type to use with LocalADSPName to
register local connection end’s NBP name. The
default value is “ADSP”. Only applications and
users can set this value.

LocalSocket string NBP type to use with LocalADSPName to
register local connection end’s NBP name. The
default value is “ADSP”. Only the ADSP Tool can
set this value.

Terminal
Server"

(continued) Œ

* Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

296 Inside the Macintosh Communications Toolbox

ADSP Tool scripting interface (continued)

Keyword
token

Value
token* Description Example

OurSocketNumber number When non-zero, socket number to be used for a
connection. If RegisterName is zero and
the application may call CMListen,
OurSocketNumber must be non-zero.
The socket is in hexadecimal format and must be
quoted. The default is 0. Only applications can set
this value

"A7"

RegisterName number If 0, no name is registered.

If 1, and LocalADSPName and
LocalADSPType are valid, then NBP name
is registered whenever the application call
CMListen. If the name exists already, an error
is returned from CMListen. The default is 1.

If 2, it is not an error to issue a CMListen
using the same name. In this case, the second
CMListen uses the same AppleTalk socket as
the first one. Only applications can set this value.

"2"

RemoteAddrBlock number AppleTalk address (in hexadecimal format
WWWWNNSS, where WWWW is the network
number, NN is the node ID, and SS is the socket
number) of remote connection end. If this field is
non-zero, remote name, type, and zone variables
are ignored, and NBP is not used to determine the
remote end’s AppleTalk address when the
application calls CMOpen. The address must be
quoted. The default is 0. Only applications can set
this value.

"a7f96cfc"

RemoteAddress string NBP form of remote connection end’s name.
RemoteAddress is the concatenation of
RemoteADSPName,
RemoteADSPType, and
RemoteADSPZone in the form
"name:type@zone". If your application passes
remote0address into
CMSetConfig, the tool ignores both the
keyword token and its value. Only the ADSP Tool
can set this value.

"Mega vax:
Terminal
Server@Vaxland"

(continued) Œ

Appendix C: Communications Tools Scripting Interfaces 297

ADSP Tool scripting interface (continued)

Keyword
token

Value
token* Description Example

RemoteADSPName string When opening a connection, name part of the full
NBP name used to determine remote end’s
AppleTalk address. If this string is empty,
RemoteAddrBlock must be non-zero,
otherwise CMOpen fails immediately. The
default is Remote User. Only application
and users can set this value.

"Mega vax"

RemoteADSPType string When opening a connection, type part of full NBP
name used to determine remote end’s AppleTalk
address. If this string is empty, then
RemoteAddrBlock must be non-zero,
otherwise CMOpen fails immediately. The
default is ADSP. Only applications and users can
set this value.

"Terminal
Server"

RemoteADSPZone string When opening a connection, type part of full NBP
name used to determine remote end’s AppleTalk
address. If this string is empty, then
RemoteAddrBlock must be non-zero,
otherwise CMOpen fails immediately. The
default is " ". Only applications and users can set
this value.

"Vaxland"

RemoteSocket string Concatenation of RemoteADSPName and
RemoteADSPType in the form
"name:type". If RemoteSocket appears in
a script, the tool generates an error. Only the ADSP
Tool can set this value.

"Mega
vax:Terminal
Server"

RoundTripTime number Estimate of time (in seconds) for a packet to go
from local machine and back.
RoundTripTime is used to set retry
intervals for NBP and ADSP. The current version of
ADSP uses 30 seconds as the probe timer, so don’t
set this variable to a larger value. Future versions of
ADSP will not have this restriction, so no error-
checking is performed. The default is 1. Only
applications can set this value.

"1"

(continued) Œ

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

298 Inside the Macintosh Communications Toolbox

ADSP Tool scripting interface (continued)

Keyword
token

Value
token* Description Example

UseChooserName number If 1, Chooser name is used as name registered on network
when a listen operation is made, regardless of any setting
made by LocalName. If set, CMGetConfig also
reports the Chooser name. The default is 0, and is
automatically reset to 0 if the user modifies the local name
when the human interface is displayed. Only applications
can set this value.

"1"

* Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 299

Apple Modem Tool scripting interface

Keyword token Value token* Description Example

Baud number Baud rate of modem. The default is
2400

"2400"

DataBits 5|6|7|8 Number of data bits to use. The default
is 8.

"5"

Dial TONE|PULSE|MIXED Dialing method. The default is tone. "Tone"
Handshake none|XON|XOFF Type of handshaking on connection. The

default is none
"None"

HoldConnection TRUE|FALSE When true, tool does not drop DTR while
closing connection. The default is
false.

"True"

ModemType "A Modem Type" Type of modem to which computer is
connected. The default is Hayes-
Compatible Modem.

"Apple Data Modem
2400"

Parity None|Even|Odd Type of parity on connection. The default
is none.

"None"

PhoneNumber "the phone number" Phone number to dial. The tool passes
commas, parentheses, and dashes to the
modem. Commas typically generate
pauses. Parentheses and dashes are
typically ignored. The default is " ".

"4154576388"

Port "Modem
Port"|"Printer
Port"|other

Current port for sending and receiving
data. The default is Modem Port.

"Modem Port"

RemindDisconne
ct

TRUE|FALSE When true and HoldConnection is true,
tool reminds user it is holding DTR high.
The default is false.

"True"

Retry TRUE|FALSE Specifies whether tool should retry
number when remote modem does not
pickup. The default is 3.

"True"

(continues) Œ

* Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

300 Inside the Macintosh Communications Toolbox

Apple Modem Tool scripting interface (continued)

Keyword token Value token* Description Example

RetryInterval number Number of seconds between retries. The
default is 10.

"1"

RetryTimes number Number of times to retry. The default is
3.

"3"

StopBits 1|1.5|2 Number of stop bits on connection. The
default is 1.

"1"

TypeOfCall Originate|Answer Specifies whether originating or
answering a call. The default is
originate.

"Originate"

WaitRings number Number of rings to wait before
answering incoming call. The default is
2.

"2"

* Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 301

LAT Tool scripting interface

Keyword
token

Value
token* Description Example

HostAddress string Ethernet address of LAT host. This token is 12 characters long
and in hex format. If less than 12 characters are supplied, the
characters are right-justified and leading zeros are placed in the
string. If this field is used, HostName must contain a name(""
is not acceptable). The default value is x'000000000000'.
This keyword token is used only when SelectHost is 1. Only
applications can set this value.

"AA0004000504"

HostName string Name of host offering LAT service. The maximum length is 16
characters. The default is "". HostName is used only when
SelectHost is 1. Only applications can set this value.

"MAYTAG"

LocalPort string Name of local port for LAT Driver. The maximum length of this
string is 16 characters. This keyword token cannot be set to "".
The default is Port0. Only applications can set this value.

"Port0"

PortName string Name of port on host offering LAT service. The maximum
length is 16 characters. The default is "". PortName is used
only when SelectHost is 1. Only applications can set this
value.

""

SelectHost number Specifies which method of host selection is desired. The default
is 0, which means use the best host available; 1 means specify a
host. Only applications can set this value.

"0"

ServiceName string Name of terminal service offered by LAT host. The maximum
length is 16 characters. The default is "". Only applications and
users can set this value.

"MAYTAG"

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

302 Inside the Macintosh Communications Toolbox

Serial Tool and Serial NB Tool scripting interface

Keyword Token Value token* Description Example

Baud number Baud rate of modem. The default is 9600. "2400"

DataBits 5|6|7|8 Number of data bits. The default is 8. "5"

Handshake None|

XON/XOFF|

DTR&CTS|

DTROnly|

CTSOnly

Specifies type of handshaking on connection.
The default is none.

"None"

HoldConnection TRUE|FALSE When true, tool does not drop DTR while
closing connection. The default if false.

"True"

Parity None|Odd|

Even

Type of parity on connection. The default is
none.

"None"

Port "Modem Port"|

"Printer

Port"| other

Current port for sending and receiving data.
The default is Modem Port.

"Modem
Port"

RemindDisconnect TRUE|FALSE When true and HoldConnection is
true, tool reminds user it is holding DTR
high. The default is false.

"True"

StopBits 1|1.5|2 Number of stop bits on connection. The
default is 1.

"1"

* Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 303

Text Tool scripting interface

Keyword token Value token* Description Example

CharPerLine number Specifies number of characters per line. The default is
80.

"80"

DelayPerChar number Specifies delay in 1/60 seconds between characters
sent. The default is 0.

"1"

DelayPerLine number Specifies delay in 1/60 seconds between lines sent. The
default is 0.

"1"

Ending CR|LF|CR&LF Specifies control characters for the end of a line of
outgoing text. The default is CR.

"CR&LF"

WordWrap TRUE|FALSE Specifies whether tool wraps data, which would
otherwise extend past right margin, to a new line. The
default is false.

"True"
*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

304 Inside the Macintosh Communications Toolbox

TTY Tool scripting interface

Keyword token Value token* Description Example

AutoRepeat TRUE|FALSE Specifies whether Tab, Return, Backspace, Enter,
Escape, and noncontrol keys repeat when held down.
The default is true.

"True"

AutoWrap TRUE|FALSE Specifies whether text automatically wraps to next line
when it readies the right margin. The default is false.

"True"

Cursor Block|Underline Specifies either a block cursor or underline cursor. The
default is underline.

"Block"

FontSize 9|12 Size of display font. The default is 9. "9"

LocalEcho TRUE|FALSE Specifies whether tool echoes keystrokes to local
computer. The default is false.

"True"

NewLine TRUE|FALSE When true, specifies that the tool sends both a fine feed
and carriage return when user presses the Return key.
When false, specifies that the tool sends only a carriage
return. The default is false.

"True"

Online TRUE|FALSE Specifies whether keystrokes are sent to remote
computer. The default is true.

"True"

RepeatControls TRUE|FALSE Specifies whether tool repeats control characters when
the control key is held down. The default is false.

"True"

Scroll JUMP|SMOOTH Specifies method for scrolling the screen. The default is
jump.

"Smooth"

ShowControls TRUE|FALSE When true, tool displays control characters instead of
executing them. The default is false.

"True"

SwapBackspaceDelete TRUE|FALSE When true, tool swaps functionality of Backspace and
Delete keys. The default is false.

"True"

Width 80|132 Number of display columns. The default is 80. "80"

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 305

VT102 Tool scripting interface

Keyword token Value token* Description Example

ActiveCharSet G0|G1 Specifies active character set. The default
is G0.

"G0"

AnswerBack string Specifies string returned to remote
computer when answerback character
is detected in incoming data stream.
The default is "".

"VT102"

AutoRepeat TRUE|FALSE Specifies whether Tab, Return,
Backspace, Enter, Escape, and
noncontrol keys repeat when held
down. The default is true.

"True"

AutoWrap TRUE|FALSE Specifies whether text automatically
wraps to next line when it reaches the
right margin. The default is false.

"True"

Cursor block|underline Specifies either a block cursor or
underline cursor. The default is
underline.

"Block"

CursorKey ANSI|Application Specifies characters transmitted when
Cursor (arrow) keys are pressed. The
default is ANSI.

"ANSI"

FontSize 9|12 Size of display font. The default is 9. "12"

G0 USASCII|Graphic|
International�

Specifies G0 character set. The default is
USASCII.

"USASCII"

G1 USASCII|Graphic|
International�

Specifies G1 character set. The default is
USASCII.

"International"

(continued) �
*Valid tokens appear in Courier type face. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to
"International".

306 Inside the Macintosh Communications Toolbox

VT102 Tool scripting interface (continued)

Keyword token Value token* Description Example

G2 USASCII|Graphic|
International�

Specifies G2 character set. The
default is USASCII.

"International"

G3 USASCII|Graphic|
International�

Specifies G3 character set. The
default is USASCII.

"International"

InsertChar TRUE|FALSE Specifies whether characters are
inserted between or written over
existing text. The default is
false.

"True"

InverseVideo TRUE|FALSE When true, specifies data is
displayed on the Macintosh as
white text on a black
background. The default is
false.

"True"

KeyboardLocked TRUE|FALSE Specifies whether keyboard is
locked. The default is false.

"True"

KeyClick TRUE|FALSE Specifies whether an audible
clicking sound is made when a
key is pressed. The default is
false.

"True"

Keypad Numeric|
Application

Specifies whether keys on the
keypad generate numeric
characters or control characters.
The default is numeric.

"Numeric"

LocalEcho TRUE|FALSE Specifies whether tool echoes
keystrokes to local computer.
The default is false.

"True"

NewLine TRUE|FALSE When true, specifies that tool
sends both a line feed and
carriage return when user
presses the Return key. When
false, specifies that the tool sends
only a carriage return. The default
is false.

"True"

Appendix C: Communications Tools Scripting Interfaces 307

Keyword token Value tokens Description Example

NRCSet string Specifies National Replacement
Character Set�. The default is
USASCII.

"Finnish"

Online TRUE|FALSE Specifies whether keystrokes are sent
to remote computer. The default is
true.

"True"

OriginAtMargin TRUE|FALSE Specifies whether cursor can move
outside of scrolling region. Also
determines whether screen addressing
is based on the complete screen or is
relative to the scrolling margin. The
default is false.

"True"

RepeatControls TRUE|FALSE Specifies whether control keys repeat
when held down. The default is
false.

"True"

Scroll Jump|Smooth Specifies method for scrolling the
screen. The default is Jump.

"Smooth"

ShowControls TRUE|FALSE When true, tool displays control
characters instead of executing them.
The default is false.

"True"

ShowStatusBar TRUE|FALSE Specifies whether tool shows status
bar_ The default is false.

"True"

ShowTabRuler TRUE|FALSE Specifies whether tool shows tab ruler.
The default is false.

"True"

SwapBackspaceDelete TRUE|FALSE When true, tool swaps functionality of
Backspace and Delete keys. The
default is false.

"True"

(continued) �
*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to
"International".

308 Inside the Macintosh Communications Toolbox

VT102 Tool scripting interface (continued)

Keyword token Value token* Description Example

TerminalMode ANSI/VT102|VT52 Specifies terminal to emulate: VT100™ or
VT52™. The default is ANSI/VT102.

"VT52"

Width 80|132 Number of display columns. The default is 80. "80"

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to
"International".

Appendix C: Communications Tools Scripting Interfaces 309

VT320 Tool scripting interface

Keyword token Value token* Description Example

AnswerBack string Specifies string returned to remote computer
when answerback character is detected in
incoming data stream. The default is "".

"VT320"

AutoRepeat TRUE|FALSE Specifies whether Tab, Return, Backspace,
Enter, Escape, and noncontrol keys repeat
when held down. The default is true.

"True"

AutoWrap TRUE|FALSE Specifies whether text automatically wraps to
next fine when it reaches the right margin.
The default is false.

"True"

Cursor block|underline Specifies either a block cursor or underline
cursor. The default is underline.

"Block"

CursorKey ANSI|Application Specifies characters transmitted when Cursor
(arrow) keys are pressed. The default is
ANSI.

"ANSI"

FontSize 9|12 Size of display font. The default is 9. "12"

G0 USASCII|
Graphics|
ISOLatin|
DECSupplemental|
UserPreferred|
SoftCharacterSet|
International�

Specifies G0 character set. The default is
USASCII.

"USASCII"

G1 USASCII|
Graphics|
ISOLatin|
DECSupplemental|
UserPreferred|
SoftCharacterSet|
International�

Specifies G1 character set. The default is
USASCII

"International"

(continued) �

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to "International".

310 Inside the Macintosh Communications Toolbox

VT320 Tool scripting Interface (continued)

Keyword token Value token* Description Example

G2 USASCII| Graphics|
ISOLatin|
DECSupplemental|

UserPreferred|

SoftCharacterSet|

International�

Specifies G2 character set. The
default is UserPreferred.

"International"

G3 USASCII| Graphics|
ISOLatin|

DECSupplemental|

UserPreferred|

SoftCharacterSet|

International�

Specifies G3 character set. The
default is UserPreferred.

"International"

GL G0|G1|G2|G3 Specifies GL character set. The
default is G0.

"G0"

GR G1|G2|G3 Specifies GR Character Set. The
default is G2.

"G2"

InsertChar TRUE|FALSE Specifies whether characters are
inserted between or written over
existing text. The default is
false.

"True"

InverseVideo TRUE|FALSE When true, specifies data is
displayed on the Macintosh as
white text on a black
background. The default is
false.

"True"

KeyboardLocked TRUE|FALSE Specifies whether keyboard is
locked. The default is false.

"True"

KeyClick TRUE|FALSE Specifies whether an audible
clicking sound is made when a
key is pressed. The default is
false.

"True"

Keypad Numeric| Application Specifies whether keys on the
keypad generate numeric
characters or control characters.
The default is numeric.

"Numeric"

Appendix C: Communications Tools Scripting Interfaces 311

Keyword token Value token* Description Example

LocalEcho TRUE|FALSE Specifies whether tool echoes keystrokes to
local computer. The default is false.

"True"

NewLine TRUE|FALSE When true, specifies that tool sends both a line
feed and carriage return when the user presses
the Return key. When false, specifies that the
tool sends only a carriage return. The default is
false.

"True"

NRCSet string Specifies National Replacement Character set.
The default is USASCII.

"French"

Online TRUE|FALSE Specifies whether keystrokes are sent to
remote computer. The default is true.

"True"

OriginAtMargin TRUE|FALSE Specifies whether the cursor can move outside
of scrolling region. Also determines whether
screen addressing is based on the complete
screen or is relative to the scrolling margin. The
default is false.

"True"

PreferredSet DecSupplement|
ISOLatin

Specifies DECSupplemental set or
ISOLATIN Set.
DECSupplemental_ is the default.

"ISOLATIN"

RepeatControls TRUE|FALSE Specifies whether control keys repeat when
held down. The default is false.

"True"

Scroll Jump|Smooth Specifies method for scrolling screen. The
default is Jump.

"Smooth"

ShowControls TRUE|FALSE When true, tool displays control characters
instead of executing them. The default is
false.

"True"

(continued) �
*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to
"International".

312 Inside the Macintosh Communications Toolbox

VT320 Tool scripting interface (continued)

Keyword token Value token* Description Example

ShowStatusBar TRUE|FALSE Specifies whether tool shows status bar. The
default is false.

"True"

ShowTabRuler TRUE|FALSE Specifies whether tool shows tab ruler. The default
is false.

"True"

StatusLine invisible|
visible|
hostwriteable

Specifies whether the status bar is visible. When
hostwriteable, the host can change settings
on the status bar. hostwriteable implies the
status bar is visible. The default is invisible.

"Visible"

SwapBackspaceDelete TRUE|FALSE
When true, tool swaps functionality of Backspace
and Delete keys. The default is true.

"True"

TerminalID VT320ID|VT100ID|

VT101ID|VT102ID|

VT220ID

Specifies terminal ID. The default is VT320ID. "VT320"

TerminalMode VT300-7|VT300-8|
ANSI/VT100|VT52

Specifies terminal to emulate. The default is
VT300-7.

"VT100"

UserFeaturesLocked TRUE|FALSE Specifies whether host can change user settings.
The default is false.

"True"

UserKeysLocked TRUE|FALSE Specifies whether user-defined keys can be changed
by host system. The default is false.

"True"

Width 80|132 Number of display columns. The default is 80. "80"

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.
�NRCSet must be set to a value other than "USASCII" before G0, G1, G2, or G3 can be set to
"International".

Appendix C: Communications Tools Scripting Interfaces 313

XMODEM Tool scripting interface

Keyword token Value token* Description Example

Creator string Specifies four-byte creator field for
received text files. Only valid for
StraightXMODEM and
XMODEMText methods. The default
is ttxt, which indicates the received
file is a TeachText document.

"MPS "

MacBinaryAutoReceiv
e

TRUE|FALSE Enables MacBinary files to be received
automatically. The default is false.

"True"

Method MacBinary|
MacTerminal|
StraightXMODEM|
XMODEMText

Specifies type of file handling for
XMODEM file transfers. The default is
MacBinary.

"MacBinary"

Option Standard|CRC|
1Kblocks|CleanLink

Specifies type of block handling. The
default is standard.

"Standard"

Retry number Specifies number of times to retry
sending block. The default is 10.

"20"

TimeOut number Specifies time, in seconds, in which
the next packet must be received. The
default is 10.

"5"

UseRemoteName TRUE|FALSE For MacBinary and MacTerminal®

methods, specifies whether incoming
file should be named using host-
supplied file name. The default is
true.

"True"

*Valid tokens appear in Courier typeface. Value tokens printed in italics are variables.

314 Inside the Macintosh Communications Toolbox

Appendix C Useful Code Samples

T H I S A P P E N D I X shows you solutions to common programming problems:

■ implementing effective idle loops

■ determining events that need to be handled by one of the Communications Toolbox managers

■ customizing the tool-settings dialog box

■ determining whether the Communications Toolbox managers are installed

■ using the scripting interface

316 Inside the Macintosh Communications Toolbox

Using FTExec and TMIdle effectively

The following code sample shows when your application needs to call FTExec and TMIdle during a file transfer.

PROCEDURE DoIdle;
VAR

theWindow :WindowPtr; { The target to idle }
doFT :BOOLEAN; { route data to FT Tool }
doTM :BOOLEAN; { route data to Term Tool }
savedPort :GrafPtr; { for later reset }

BEGIN
GetPort(savedPort); { Save for later }
theWindow := FrontWindow; { Gimme the first one }

{ Give idle time for the window }
WHILE (theWindow <> NIL) DO BEGIN

(*
Make sure the window belongs to the application
*)

SetPort(theWindow); { Focus on it }

IF gConn <> NIL THEN { Give time to the connection }
CMIdle(gConn);

doFT := FALSE; { Send data to FT tool }
doTM := TRUE; { Send data to terminal tool }

IF gFT <> NIL THEN BEGIN
{ Is there a file transfer in progress ?? }
IF BAND(gFT^^.flags, ftIsFTMode) <> 0 THEN BEGIN

doFT := TRUE;
gWasFT := TRUE;

{ If the FT tool uses my connection then }
{ don't route data to the terminal tool }

IF BAND(gFT^^.attributes, ftSameCircuit) <> 0 THEN
doTM := FALSE;

END { In progress }

ELSE BEGIN
IF gWasFT THEN BEGIN

{ FT no longer in progress }
gWasFT := FALSE;

{ if it failed, alert }
IF BAND(gFT^^.flags, FTSucc) = 0 THEN

; { Handle error }

(*
Re-add the file transfer auto-receive string
that was removed at FTStart()
*)

END;
{ AutoReceive string was received? }
IF gStartFT THEN

DoReceive;

Appendix C: Useful Code Samples 317

END; { No FT in progress }

IF doFT THEN { Give time to FT tool }
FTExec(gFT);

END; { Good FT Handle }

IF gTerm <> NIL THEN BEGIN
{ Send data to terminal }
IF doTM THEN BEGIN

TMIdle(gTerm);{ So it can blink its cursor,
etc }

TermRecvProc; { Send Data to the terminal }
END; { Send data to terminal }

END; { Good Terminal }

{ Try the next window }
theWindow := WindowPtr(WindowPeek(theWindow)̂ .nextWindow);

END; { while each window }

SetPort(savedPort); { Back to the way it was }

END; { DoIdle }

PROCEDURE TermRecvProc;
VAR

theErr : CMErr; { Any errors }
status : CMStatFlags; { For the conn tool }
sizes : BufferSizes;
flags : INTEGER;

BEGIN
IF (gConn <> NIL) AND (gTerm <> NIL) THEN BEGIN

{ Get the state of the connection }
theErr := CMStatus(gConn, sizes, status);

IF (theErr = noErr) THEN BEGIN

{ Route the data if we have any }
IF (BAND(status, cmStatusDataAvail) <> 0) AND

(sizes[cmDataIn] <> 0) THEN BEGIN

{ Don't overflow my buffer }
IF sizes[cmDataIn] > kBufferSize THEN

sizes(cmDataIn] := kBufferSize;

{ Tell the tool to get the data }
theErr := CMRead(gConn, gBuffer, sizes[cmDataIn],

cmData, FALSE,NIL,0,flags);

{ Send data to the terminal }
IF (theErr = noErr) THEN

sizes[cmDataIn] := TMStream(gTerm,gBuffer,
sizes[cmDataIn],flags);

END; { sizes <> 0 }

END; { Good Status}

318 Inside the Macintosh Communications Toolbox

IF (theErr <> noErr) THEN
AlertUser('Couldn't send data to terminal',FALSE);

END; { Good term & conn }

END; { TermRecvProc }

Appendix C: Useful Code Samples 319

Determining events for Communications Toolbox managers

The following routines show how an application can determine if an event needs to be handled by one of the
Communications Toolbox Manager event-processing routines.

FUNCTION IsFTWindow(theWindow: WindowPtr): BOOLEAN;
VAR

pWindow: WindowPtr;
tempFT: FTHandle;
hFT: FTHandle;

BEGIN
IsFTWindow := FALSE;

IF WindowPeek(theWindow)^.windowKind <> dialogKind THEN
Exit(IsFTWindow);

tempFT := FTHandle(GetWRefCon(theWindow));

pWindow := FrontWindow;

WHILE pWindow <> NIL DO
BEGIN
hFT := GethFT(pWindow);
IF hFT <> NIL THEN

BEGIN
IF LONGINT(hFT) = LONGINT(tempFT) THEN

BEGIN
IsFTWindow := TRUE;
Exit(IsFTWindow);
END;

END;
pWindow := WindowPtr(WindowPeek(pWindow)^.nextWindow);
END;

END;

FUNCTION IsFTEvent(theEvent: EventRecord): FTHandle;
VAR

theWindow : WindowPtr;
hFT : FTHandle;

BEGIN
IsFTEvent := NIL;
theWindow := NIL;

CASE theEvent.what OF
autoKey, keyDown: { no Command-key equivalents on a Macintosh Plus }

BEGIN
theWindow := FrontWindow;
END;

mouseDown:
BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN

;
END;

updateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;

activateEvt:
BEGIN

320 Inside the Macintosh Communications Toolbox

theWindow := WindowPtr(theEvent.message);
END;

END; {case}

IF theWindow <> NIL THEN
BEGIN
IF IsFTWindow(theWindow) THEN

BEGIN
hFT := FTHandle(GetWRefCon(theWindow));
IsFTEvent := hFT;
END

ELSE
BEGIN
hFT := GethFT(theWindow);
IF hFT <> NIL THEN

BEGIN
IF BAND(hFT^^.flags, FTIsFTMode) <> 0 THEN

IF BAND(hFT^^.attributes,
 FTSameCircuit) <> 0 THEN

IF theEvent.what IN
 [autoKey, keyDown] THEN

IsFTEvent := hFT;
END;

END;
END;

END;

{$S EventSeg)
FUNCTION IsConnEvent(theEvent: EventRecord): ConnHandle;
VAR

theWindow : WindowPtr;
hConn : ConnHandle;

BEGIN
IsConnEvent := NIL;
theWindow := NIL;

CASE theEvent.what OF
autoKey, keyDown: {no Command-key equivalents on a Macintosh Plus }

BEGIN
theWindow := FrontWindow;

END;
mouseDown:

BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN

;
END;

updateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;

activateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;

END; (case)
IF theWindow <> NIL THEN

BEGIN
IF IsConnWindow(theWindow) THEN

BEGIN

Appendix C: Useful Code Samples 321

hConn := ConnHandle(GetWRefCon(theWindow));
IsConnEvent := hConn;
END;

END;
END;

{$S EventSeg)
FUNCTION IsTermEvent(theEvent: EventRecord): TermHandle;
VAR

theWindow : WindowPtr;
hTerm : TermHandle;

BEGIN
IsTermEvent := NIL;
theWindow := NIL;

CASE theEvent.what OF
autoKey, keyDown: { no Command-key equivalents on a Macintosh Plus }

BEGIN
theWindow := FrontWindow;
END;

mouseDown:
BEGIN
IF FindWindow(theEvent.where, theWindow)=0 THEN

;
END;

updateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;

activateEvt:
BEGIN
theWindow := WindowPtr(theEvent.message);
END;

END; {case}

IF theWindow <> NIL THEN
BEGIN
IF IsTermWindow(theWindow) THEN

BEGIN
hTerm := TermHandle(GetWRefCon(theWindow));
IsTermEvent := hTerm;
END;

END;
END;

PROCEDURE MainLoop;
VAR

theEvent : EventRecord;
theWindow : WindowPtr;
theWindowPeek : WindowPeek;
theControl : ControlHandle;
savedPort : GrafPtr;
theKey : CHAR;

processed : BOOLEAN;
result : LONGINT;
hFT : FTHandle;

322 Inside the Macintosh Communications Toolbox

BEGIN
WHILE NOT done DO

BEGIN
SystemTask;

DoIdle; { application idle loop procedure }
IF WaitNextEvent(everyEvent,theEvent, 0, NIL) THEN

BEGIN
hFT := IsFTEvent(theEvent);
IF hFT <> NIL THEN

FTEvent(hFT, theEvent)
ELSE

BEGIN
CASE theEvent.what OF

autoKey, keyDown:
DoKey(theEvent);

mouseDown:
DoClick(theEvent);

updateEvt:
DoUpdate(theEvent);

app4Evt:
DoResume(theEvent);

activateEvt:
DoActivate(theEvent);

END; { case }
END;

END; { gne }
END; { if done }

END;

Appendix C: Useful Code Samples 323

The custom tool-settings dialog box
The sample code that follows shows how your application can use Connection Manager routines to present the user with a
custom tool-settings dialog box.

Choose.p

This performs the standard dialog box for configuration and selection of a Connection tool.

CONST
ChooseItemOK = 1; { Location of Dialog Box Items }
ChooseItemCancel = 2;
ChooseItemPopup = 5;
ChooseResourceBase = 256;

TYPE
dialogInfoP = ^dialogInfo; { storage private to the

configuration dialog box }
dialogInfo = RECORD

tempProcID : INTEGER; {MUST be the 1st item in record }
magicCookie : LONGINT; { MUST be the 2nd item in

the record }

tempConfig : Ptr; {configuration record being used
these are needed by the filter
procedure }

count : INTEGER;
END;

FUNCTION ChooseEntry(VAR theHandle: ConnHandle; where: Point): INTEGER;
{ theHandle is the current connection handle.
where is the upper-left corner of the selection dialog box? }

VAR
MaxExtent : Rect; { max size of dialog box in global coordinates }
OldSize : Point; { old size of dialog box before resizing }

SavedPort : GrafPtr; { saved port }
TheWindow : WindowPtr; { for invalidating after DisposDialog }
TheDialog : DialogPtr; { the choose dialog box }
InfoP : dialogInfoP; { pointer to dialog data }

tempTool : Str255; { currently selected tool name }
oldName : Str255; { initially selected tool name }

theControl : ControlHandle; { Pop-up Control }
hMenu : MenuHandle; { handle to pop-up menu control's menu }
theItem : INTEGER; { for manipulating dialog box items }
itemKind : INTEGER;
itemHandle : Handle;
itemRect : Rect;

thePtr : Ptr; { ptr to temporary configuration record }
configSize : LONGINT; { Size of the configuration record }

oldVal : INTEGER; { old pop-up menu value }
newVal : INTEGER; { current pop-up menu value }

hDITL : Handle; { handle to DITL to append }

324 Inside the Macintosh Communications Toolbox

theErr : OSErr; { for building list of tools }
Label

1; { Cleanup }

BEGIN
ChooseEntry := ChooseFailed; { pessimistic }
InitCursor; { reset to arrow }
GetPort(savedPort);

theDialog := nil;
infoP := nil;

theDialog := GetNewDialog(chooseResourceBase, NIL, POINTER(-1));
IF theDialog = NIL THEN { unsuccessful }

Goto 1; { Go Cleanup }

SetPort(theDialog);
infoP := dialogInfoP(NewPtr(SIZEOF(dialogInfo))); { internal data space }
IF infoP = NIL THEN { no memory }

Goto 1; { Go Cleanup }
SetWRefCon(theDialog, LONGINT(infoP)); {set the refcon to infoP}
WITH infoP^ DO
BEGIN

count := CountDITL(theDialog); { #items in DITL }

tempProcID := theHandle^ .̂procID; { get the tool procID }
CMGetToolName(tempProcID, tempTool); { get the toolname }
oldName := tempTool; { save the toolname }

thePtr := theHandle^ .̂config; { get the configuration
field }

configSize := GetPtrSize(thePtr); { get size of
configuration record }

IF MemError <> noErr THEN { memory problem }
Goto 1; { Go Cleanup }

tempConfig := NewPtr(configSize); { copy it if possible… }
IF tempConfig = NIL THEN { didn't get it }

Goto 1; { Go Cleanup }

BlockMove(thePtr, tempConfig, configSize); { copy it }

{ set up pop-up menu }
theControl := GetNewControl(chooseResourceBase, theDialog);
IF theControl = NIL THEN

Goto 1; { Go Cleanup }

hMenu := GetMHandle(chooseResourceBase);
IF hMenu = NIL THEN

Goto 1; { Go Cleanup }

{ Enter all of the connection tools into the pop-up menu }
theItem := 1;
theErr := noErr;
WHILE theErr = noErr DO { while no problems }
BEGIN

theErr := CRMGetIndToolName(ClassCM, theItem, tempTool);

IF theErr = noErr THEN { no problems ociffer }
BEGIN

IF tempTool <> '' THEN { got one! }

Appendix C: Useful Code Samples 325

BEGIN
{ Orig. tool? Case INsensitive? Diacrit
sensitive? }
IF EqualString(tempTool, oldName, FALSE, TRUE)

THEN oldVal := theItem;
AppendMenu(hMenu, 'X');
{ this is to prevent problems with special
menu characters, like /)
SetItem(hMenu, theItem, tempTool);
{ get the next one please }
theItem := theItem + 1;

END;
END;

END; {while}

theItem := theItem - 1; { One too many above }

IF oldVal = 0 THEN { Current tool not in menu }
BEGIN

{ The user has moved the file out of the communications directory.
We can show the name, but this menu item needs to be disabled }
theItem := theItem + 1; { Update these counts }
oldVal := 1;
InsMenuItem(hMenu, 'X', 0);
SetItem(hMenu,oldVal,oldName);
DisableItem(hMenu, oldVal); { disable it }

END;

SetCtlMax(theControl, theItem); { max of ctl = num tools }

{ fix rectangle size in case of control resize }
GetDItem(theDialog, ChooseItemPopup, itemKind, itemHandle, itemRect);
itemRect := theControl^̂ .contrlRect;
SetDItem(theDialog, ChooseItemPopup, itemKind, itemHandle, itemRect);

oldSize := theDialoĝ .portRect.botRight; { old size of dialog box }

newVal := oldVal;
SetCtlValue(theControl, oldVal); { set up pop-up value }

{ get DITL to append }
hDITL := CMSetupPreflight(tempProcID, magicCookie);

{
Set the dialog box's text info based on
the tool's finf resource

}

AppendDITL(theDialog, hDITL, appendDITLBottom); { append it }
IF hDITL <> NIL THEN { done with the DITL }

DisposHandle(hDITL);

{ set up the items }
CMSetupSetup(tempProcID, tempConfig, count+1, theDialog, magicCookie);

MoveWindow(theDialog, where.h, where.v, TRUE); { move dialog box }
ShowWindow(theDialog);

{ Get dialog box size }
maxExtent := WindowPeek(theDialog)^.strucRgn̂ ^.rgnBBox;

326 Inside the Macintosh Communications Toolbox

theItem := 0;
WHILE (theItem <> ChooseItemOK) AND (theItem <> ChooseItemCancel) DO
BEGIN

ModalDialog(@ChooseFilter, theItem); { modal dialog box }
IF theItem = ChooseItemPopup THEN { did pop-up get hit? }
BEGIN

{ what is new value? }
newVal := GetCtlValue(theControl);
IF newVal <> oldVal THEN
{ it has changed! }
BEGIN

{ cleanup the setup }
CMSetupCleanup(tempProcID, tempConfig, count+1,

theDialog, magicCookie);
ShortenDITL(theDialog,

CountDITL(theDialog) - count);
{ done with tool }
CMSetupPostflight(tempProcID);
{ reset size }
SizeWindow(theDialog, oldSize.h,

oldSize.v, TRUE);

{ get new tool name }
GetItem(hMenu, newVal, tempTool);
{ get procID }
tempProcID := CMGetProcID(tempTool);

hDITL := CMSetupPreflight(tempProcID,
magicCookie);

{ new DITL }
{

Set the dialog box's text info based on
the tool's finf resource

}

{ append it }

AppendDITL(theDialog, hDITL, appendDITLBottom);
IF hDITL <> NIL THEN

{ get rid of it }
DisposHandle(hDITL);

{ get rid of old config }
DisposPtr(tempConfig);
tempConfig := NIL; { pessimistic }
{ and get a new one }
CMDefault(tempConfig, tempProcID, TRUE);
if tempConfig = NIL then
BEGIN { Clean up from error}

ShortenDITL(theDialog,
CountDITL(theDialog) - count);

CMSetupPostflight(tempProcID);
{ Out of memory }
chooseEntry := chooseFailed;
Goto 1; { Finish clean up }

END;

CMSetupSetup(tempProcID, tempConfig, count+1,
{ set up the items }
theDialog, magicCookie);

oldVal := newVal; { Now the old tool }

Appendix C: Useful Code Samples 327

UnionRect(maxExtent,
WindowPeek(theDialog)^.strucRgn̂ ^.rgnBBox,
maxExtent); {grow max size }

END;
END; { item = count }

IF theItem > count THEN { tool's item hit }
CMSetupItem(tempProcID, tempConfig, count+1, theDialog,

theItem, magicCookie);
END; { while theItem NOT OK or Cancel }

HideWindow(theDialog); { hide the dialog box }
newVal := GetCtlValue(theControl); { check name change }
GetItem(hMenu, newVal, tempTool); { get the new name }
tempProcID := CMGetProcID(tempTool);

{ Clean out the old tool }
CMSetupCleanup(tempProcID, tempConfig, count+1, theDialog, magicCookie);
ShortenDITL(theDialog, CountDITL(theDialog) - count);
CMSetupPostflight(tempProcID);

IF theItem = ChooseItemOK THEN
BEGIN { has the name of tool changed? }

IF NOT EqualString(oldName, tempTool, FALSE, TRUE) THEN
BEGIN

ChooseEntry := ChooseOKMajor;
tempProcID := CMGetProcID(tempTool);

IF NOT DoNewConn(ConnHandle(theHandle), tempProcID,
tempConfig) THEN

ChooseEntry := ChooseAborted;

IF theHandle = NIL THEN { disaster! }
ChooseEntry := ChooseDisaster

ELSE
BEGIN

configSize := GetPtrSize(tempConfig);
BlockMove(tempConfig,

theHandle^ .̂config, configSize);
{ validate for kicks }
IF CMValidate(theHandle) THEN
END;

END
ELSE
BEGIN { same tool, so validate }

ChooseEntry := ChooseOKMinor;
configSize := GetPtrSize(tempConfig);
BlockMove(tempConfig, theHandle^ .̂config, configSize);
IF CMValidate(theHandle) THEN

;
END;

END
ELSE { user hit CANCEL }

ChooseEntry := ChooseCancel;

{Now we need to go through the window list and update all areas that were ever covered up by
the configuration dialog box which has grown, and potentially shrunk, too. We have kept
track of the largest size of the dialog box. We will now convert it to local coordinates
and invalrect everybody in the window list.}

theWindow := FrontWindow;
WHILE theWindow <> NIL DO
BEGIN

328 Inside the Macintosh Communications Toolbox

SetPort(theWindow);
itemRect := maxExtent;
{ get max extent in local coordinates }
GlobalToLocal(itemRect.topLeft);
GlobalToLocal(itemRect.botRight);
InvalRect(itemRect);

theWindow := WindowPtr(WindowPeek(theWindow)^.nextWindow);
END;

END; { with }
1:{ Clean everything up }

IF theDialog <> nil THEN DisposDialog(theDialog);
IF infoP <> nil THEN
BEGIN

IF infoP^.tempConfig <> nil THEN DisposPtr(infoP^.tempConfig);
DisposPtr(Ptr(infoP));

END;
SetPort(savedPort); { back to original port }

END;

{ change from one connection type to another }
FUNCTION DoNewConn(VAR hConn:ConnHandle; tempProcID:INTEGER;

tempConfig:Ptr): BOOLEAN;
VAR

savedDesiredSizes : BufferSizes;
savedRefCon : LONGINT;
savedUserData : LONGINT;
savedFlags : LONGINT;
savedReserved0 : LONGINT;
savedReserved1 : LONGINT;
savedReserved2 : LONGINT;

status : LONGINT;
sizes : BufferSizes;
theErr : CMErr;

BEGIN
theErr := CMStatus(hConn, sizes, status); { get conn status }
IF theErr = noErr THEN { OK }

IF BAnd(status, CMStatusOpen+CMStatusOpening) <> 0 THEN
;

{The connection is open. Confirm whether the user really wants to close the
connection, setting result to FALSE if user aborts}

WITH hConn^^ DO { save all desired parameters }
BEGIN

savedFlags := flags;
savedDesiredSizes := BufSizes;
savedRefCon := refcon;
savedUserData := userData;
savedReserved0 := reserved0;
savedReserved1 := reserved1;
savedReserved2 := reserved2;

END;

CMDispose(hConn); { get rid of old conn }

hConn := CMNew(tempProcID, savedFlags, savedDesiredSizes, savedRefCon,
savedUserData);

IF hConn <> NIL THEN
WITH hConn^^ DO BEGIN { Restore other fields }

Appendix C: Useful Code Samples 329

reserved0 := savedReserved0;
reserved1 := savedReserved1;
reserved2 := savedReserved2;

END;
DoNewConn := TRUE;

END;

{ Choose dialog box filter procedure }
FUNCTION ChooseFilter(theDialog : DialogPtr; VAR theEvent:EventRecord;

VAR theItem:INTEGER) : BOOLEAN;
VAR

theControl : ControlHandle;
where : Point;
result : BOOLEAN;
theKey : CHAR;

savedPort : GrafPtr;
theWindow : WindowPtr; { for event processing }

pDialogInfo : DialogInfoP; { dialog box private data }

BEGIN
theItem := 0; { nothing initially }
result := FALSE; { for now… }

pDialogInfo := DialogInfoP(GetWRefCon(theDialog));{ get the dlog data }
WITH pDialogInfô DO
BEGIN

result := CMSetupFilter(tempProcID, tempConfig, count+1, theDialog,
theEvent, theItem, magicCookie);

ChooseFilter := result; { TRUE or FALSE }
IF result THEN { it WAS processed }

Exit(ChooseFilter); { so exit }
END;

CASE theEvent.what OF { process the event }
updateEvt:
BEGIN

GetPort(savedPort); { get the port }
theWindow := WindowPtr(theEvent.message);

{ get the update owner }
SetPort(theWindow);
BeginUpdate(theWindow);
EraseRect(theWindow^.portRect); { erase }

IF theWindow = theDialog THEN { process if ours }
UpdtDialog(theDialog, theWindow^.visRgn);

EndUpdate(theWindow); { otherwise eat it }
SetPort(savedPort);
result := TRUE; {We regenerate updates when

we have finished choosing}
END;
mouseDown:
BEGIN

where := theEvent.where; { where was the mouse-down }
GlobalToLocal(where); { convert to local coordinates }

IF FindControl(where, theDialog, theControl) <> 0 THEN
(Click in control?}

BEGIN

330 Inside the Macintosh Communications Toolbox

IF TrackControl(theControl,
where, POINTER(-l)) <> 0 THEN

{ track it }
BEGIN

result := TRUE; { we got the event }
theItem := FindDItem(theDialog, where) + 1;

{ so item hit }
END
ELSE BEGIN { tracked out of it }

result := TRUE;
theItem := 0; { so no item hit }

END;
END;

END;
keyDown: { keyDown }
BEGIN

{ Standard return/enter/cmd '.' processing }
END;
otherwise
BEGIN
END;

END; { case }
ChooseFilter := result;

END;

Choose.r

#define ChooseResourceBase 256

resource 'DLOG' (ChooseResourceBase, "setup dialog") {
{0, 0, 70, 450}, dBoxProc, invisible, noGoAway, 0x0, ChooseResourceBase,
"Setup Dialog Box"

};
resource 'CNTL' (ChooseResourceBase, "Tools control ") {

{30, 5, 50, 300},
popupRightJust, /* right just */
visible,
90, /* width of title */
ChooseResourceBase, /*menu associated */
popupMenuCDEFproc, /* no options CDEF 63 = 16 * 63 + variation code */
0, /* reference menu 11000, pop-up title width 50 */
"Method:" /* Title */

};
resource 'DITL' (ChooseResourceBase, "Basic configuration DITL") {

{ /* array DITLarray: 5 elements */
{32, 370, 52, 440),
Button {

enabled, "OK" /* [1] */
};
{5, 370, 25, 440}, /* [2] */
Button {

enabled, "Cancel"
};
{28, 366, 56, 444}, /* [3] outline of OK button */
UserItem {

enabled
},
{5, 5, 21, 200}, /* [4] title */
StaticText {

disabled, "Connection Configuration"
},

Appendix C: Useful Code Samples 331

(30, 5, 50, 300}, /* [5] select tool popup menu user item */
UserItem {

enabled
}

}
};
resource 'MENU' (ChooseResourceBase, "Popup Menu") {

ChooseResourceBase, textMenuProc, allEnabled, enabled, "Choose Menu",
{ /* Items are added to this menu at execution time */
}

};

332 Inside the Macintosh Communications Toolbox

Determining whether the managers are installed

This sample code shows how your application can determine whether the Communications
Toolbox managers are installed.

FUNCTION Installed : BOOLEAN;
CONST

CommToolboxTrap = $8B;
UnimplementedTrapNumber = $9F;

BEGIN
Installed := TRUE;
IF NGetTrapAddress(UnimplementedTrapNumber, OSTrap) =

NGetTrapAddress(CommToolboxTrap, OSTrap) THEN
BEGIN

Installed := FALSE;
END;

END;

Appendix C: Useful Code Samples 333

Using the scripting interface

This sample code shows how your application can save the settings of a communications tool by using the
Communications Toolbox scripting interface. After initialization, the code shown first checks if a preferences folder,
which contains tool settings written in preference files, already exists. If so, the application uses the settings in this file.
Otherwise, the code generates a new preferences file.

/*
** Constants and Variables
*/

#define kCreatorType 'ACTB'
#define kPrefType 'PCTB'
#define kPreferenceFileName "\pMyPreferences"

OSErr osErr = noErr;
SysEnvRec theWorld;
CInfoPBPtr infoPB = NewPtrClear(sizeof(*infoPB));
WDPBPtr wdPB = NewPtrClear(sizeof(*wdPB));
HParmBlkPtr dirPB = NewPtrClear(sizeof(*dirPB));

short prefVRefNum;
long prefDirID;
Str63 prefFileName = kPreferenceFileName;
short prefRefNum;
ConnHandle prefConn;

ConnHandle docConn;
CMBufferSizes sizes = { 0, 0, 0, 0, 0, 0, 0, 0 };
Point where = { 75, 75 };
Str63 toolName;
short procID;
Handle h;
Ptr p;

/*
** Initialization
*/

InitGraf((Ptr) &qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(nil);
InitCursor();

osErr = InitCTBUtilities();
osErr = InitCRM();
osErr = InitCM();

/* find the system folder's volume reference number and directory ID */
osErr = SysEnvirons(curSysEnvVers, &theWorld);
(*wdPB).ioVRefNum = theWorld.sysVRefNum;
if (noErr == (osErr = PBGetWDInfo(wdPB, false))) {

/* create the preferences folder */
(*dirPB).fileParam.ioVRefNum = (*wdPB).ioWDVRefNum;

334 Inside the Macintosh Communications Toolbox

(*dirPB).fileParam.ioDirID = (*wdPB).ioWDDirID;
(*dirPB).fileParam.ioNamePtr = "\pPreferences";
osErr = PBDirCreate(dirPB, false);
if (dupFNErr == osErr)

osErr = noErr;
if (noErr == osErr) {

/* does the preference file exist? */
prefVRefNum = (*dirPB).fileParam.ioVRefNum;
prefDirID = (*dirPB).fileParam.ioDirID;
(*infoPB).hFileInfo.ioFDirIndex = 0;
(*infoPB).hFileInfo.ioVRefNum = prefVRefNum;
(*infoPB).hFileInfo.ioDirID = prefDirID;
(*infoPB).hFileInfo.ioNamePtr = prefFileName;
osErr = PBGetCatInfo(infoPB, false);
if (fnfErr == osErr) {

/* no, so create a new preference file */
if (noErr == (osErr = HCreate(prefVRefNum, prefDirID,

prefFileName, kCreatorType, kPrefType))) {
HCreateResFile(prefVRefNum, prefDirID, prefFileName);
if (noErr == (osErr = ResError())) {

/* open the preference file */
prefRefNum = HOpenResFile(prefVRefNum, prefDirID,

prefFileName, fsRdWrPerm);
if (-l == prefRefNum) {

osErr = ResError();
} else {

/* create a default connection */
osErr = CRMGetIndToolName(classCM, 1,

toolName);
if (noErr == osErr) {

prefConn =
CMNew(CMGetProcID(toolName),
cmData, sizes, 0, 0);

/* allow the user to select a
prefered tool and configuration */
osErr = CMChoose(&prefConn,

where, nil);
/* write the prefered tool name to
the preference file */
HLock((Handle) prefConn);
CMGetToolName((**prefConn).procID,

toolName);
HUnlock((Handle) prefConn);
h = NewHandle(l + toolName[0]);
HLock(h);
BlockMove(toolName, *h,

GetHandleSize(h));
HUnlock(h);
AddResource(h, 'pTXT', 0, "");
ReleaseResource(h);

Appendix C: Useful Code Samples 335

/* write the prefered configuration
to the preference file */
p = CMGetConfig(prefConn);
h = NewHandle(GetPtrSize(p));
HLock(h);
BlockMove(p, *h, GetHandleSize(h));
HUnlock(h);
AddResource(h, 'cTXT', 0, "");
ReleaseResource(h);
DisposPtr(p);/* dispose of the
connection */
CMDispose(prefConn);
}
/* close the file so that it can be
used
in a shared environment */
CloseResFile(prefRefNum);

}
}

}
}

}
}

/*
** New Document
*/

/* focus on the preference file */
prefRefNum = HOpenResFile(prefVRefNum, prefDirID, prefFileName, fsRdWrPerm);
if (-1 != prefRefNum) {

 /* get the prefered tool name */
h = GetlResource('pTXT', 0);
HLock(h);
procID=CMGetProcID(*h);
HUnlock(h);
ReleaseResource(h);
if (-l != procID) {

/* create a new connection */
docConn = CMNew(procID, cmData, sizes, 0, 0);
/* set the prefered configuration */
h = Get1Resource('cTXT', 0);
HLock(h);
osErr = CMSetConfig(docConn, *h);
HUnlock(h);
ReleaseResource(h);

} else {
/* the Prefered tool could not be found so … */
osErr = CRMGetIndToolName(classCM, 1, toolName);
docConn = CMNew(CMGetProcID(toolName), cmData, sizes, 0, 0);
osErr = CMChoose(&docConn, where, nil);

}
CloseResFile(prefRefNum);

}

336 Inside the Macintosh Communications Toolbox

337

Glossary

background procedure A procedure that runs while the
user is using another application.

cache region The area in the terminal emulation window in
which information is displayed that has scrolled out of the
terminal emulation region.

channel A logical line of communication that exists on a
connection.

Communications Resource Manager The
Communications Toolbox manager that makes it easier for
your application to register and keep track of
communications resources.

communications resource record A
Communications Resource Manager data structure that
contains information such as the type of device the record
represents, and whether the device is available for use.

Communications Toolbox utilities A Communications
Toolbox manager that contains useful routines, most of
which are not specific to programming networking or
communications applications.

completion routine Any application-defined code to be
executed when an asynchronous call to a routine is
completed.

connection A logical line of communication between two
entities.

Connection Manager The Communications Toolbox
manager that makes it easier for you to implement and
maintain data connections.

connection record A Connection Manager data structure
containing information that describes one instance of a
connection tool.

connection tool A self-contained collection of resources
that implements a specific connection protocol.

control definition procedure A procedure called by the
Control Manager when it needs to implement the functions
of a specific type of control.

entity A task or process running on a computer. Two
entities can coexist on the same computer if the computer is
multitasking, such as when applications are running in a
MultiFinder environment.

File Transfer Manager The Communications Toolbox
manager that makes it easier for you to implement file
transfers.

file transfer record A File Transfer Manager data structure
that contains all the specifics about a file transfer. For
example, the file transfer record might show that the File
Transfer Manager should use the XMODEM tool to perform
file transfers, and that the tool should not display any
custom menus while transferring files.

file transfer tool A self-contained collection of resources
that implements a specific file transfer protocol.

filter procedure A routine that ModalDialog, NuLookup,
and NuPLookup call to filter or modify events that occur in a
dialog box.

Macintosh Toolbox The software in the Macintosh ROM
that helps you implement the standard Macintosh user
interface in your application.

338 Inside the Macintosh Communications Toolbox

Name Binding Protocol (NBP) The AppleTalk transport-
level protocol that translates a character string name into the
internet address of the corresponding socket client. NBP
enables AppleTalk protocols to understand user-defined
zones and device names by providing and maintaining
translation tables that map these names to corresponding
socket addresses.

routine A function or procedure.

terminal emulation The process of making a computer
emulate the characteristics of a terminal.

terminal emulation buffer The area in memory that
contains the data displayed in the terminal emulation region.

terminal emulation region The area in the terminal
emulation window in which your application writes the
output of its terminal emulation. This region is the same size
(number of rows and columns, or pixels) as the screen of the
terminal your application is emulating.

terminal emulation window The window in which your
application displays a terminal emulation region and cache
region.

terminal environment record A Terminal Manager data
structure that reflects the internal conditions of a terminal
tool.

Terminal Manager The Communications Toolbox
Manager that makes it easier for you to implement terminal
emulation.

terminal record A Terminal Manager data structure that
contains the specifics of a terminal emulation. For example,
the terminal record might show that your application is
emulating a VT320 terminal, and that the Terminal Manager
should try to cache the terminal window before clearing it.

terminal tool A self-contained collection of resources that
implements the characteristics of a specific terminal.

zone An arbitrary subset of the networks within an internet.

Index 339

Index

A

Activate events
in Connection Manager 61
in File Transfer Manager 151
procedure to 20
in Terminal Manager 105

ADSP Tool scripting interface
295-298

APDA xiv
AppendDITL routine

description of 198-200
sample used in code 200, 325, 326

Apple Communications Library xiv
Apple Developer Programs xv
Apple Modem Tool scripting

interface 299-300
Apple SuperDrive 5
AppleTalk 190, 202-205
Apple Technical Library xiv
application-provided routines

for Connection Manager 69
for File Transfer Manager 156-160
for Terminal Manager 114-118

Assembly language
calling Connection Manager 73
calling Communications Resource

Manager 187
calling File Transfer Manager

165-166
calling Terminal Manager 124-125
calling Utilities 214

autoRec String 135
AutoRecCallback procedure

sample used in code 18

B

breakProc procedure
in terminal record 83

bundle resource 217-218
byte stream 29

C

cacheProc routine
in terminal record 83

cache region 78 (fig.), 79
caching lines 116-117
'cdef' Code resource 217
channel 29-30
Choose.p sample code 323-330
Choose. r sample code 330-331
clean-up operations

Connection Manager 45
File Transfer Manager 146

Terminal Manager 96
'cloc' code resource 218
CMAbort routine 49
cmAbortMsg message 238
CMAccept routine 52
cmAcceptMsg message 238
CMActivate routine

description of 61
sample used in code 20

cmActivateMsg message 238
CMAddSearch routine

description of 59
sample used in code 18

CMBreak routine
description of 53
sample used in code 115

cmBreakMsg message 247-248
CMChoose routine

description of 41-42
sample used in code 14

CMClearSearch routine 60
CMClose routine

description of 49
sample used in code 12

cmCloseMsg message 246-247
CMCompletorRecord record 241
CMDataBuffer record 241
cmDeactivateMsg message 238
CMDefault routine

description of 40
sample used in code 326

CMDefaultMsg message 217,220-221
CMDispose routine

description of 50
sample used in code 19, 328

cmDisposeMsg message 240
CMEnglishToIntl routine 63
cmEnvironsMsg message 249-250
CMEvent routine 62
cmEventMsg message 237
CMGetCMVersion routine 65
CMGetConfig routine 47
CMGetConnEnvirons routine

description of 54-55
sample used in code 118, 160

CMGetIndToolName routine
sample used in code 17

CMGetProcID routine
description of 37
sample used in code 17, 326

CMGetRefCon routine 64
CMGetToolName routine

description of 64
sample used in code 324

CMGetUserData routine 65
CMGetVersion routine 65
CMIdle routine

description of 50
sample used in code 316

cmIdleMsg message 237
cmInitMsg message 217,239
cmIntlToEnglish routine 63
CMIOKill routine 52
cmIOKillMsg message 248-249
cmL2English Message 229-230
cmL2Intl code resource 229-230
CMListen routine 50
cmListenMsg message 236-237
CMMenu routine

description of 61
sample used in code 10

cmMenuMsg message 236
cmMgetMsg message 227
cmMsetMsg message 226,228

340 Inside the Macintosh Communications Toolbox

CMNew routine
description of 38-39
sample used in code 17, 328

CMOpen routine
description of 48
sample used in code 11

cmOpenMsg message 245-246
CMRead routine

description of 56-57
sample used in code 158, 317

cmReadMsg message 240, 241-242
cmRemoveSearch routine

description of 60
sample used in code 13, 18

CMReset routine 53
cmResetMsg message 235
cmResume routine

description of 61
sample used in code 21

cmResumeMsg message 238
cmScleanupMsg message 226
CMSetConfig routine 47
CMSetRefCon routine 64
CMSetupCleanup routine

description of 45
sample used in code 326, 327

CMSetupFilter routine
description of 44
sample used in code 329

CMSetupItem routine
description of 45
sample used in code 327

CMSetupPostflight routine
description of 46
sample used in code 326, 327

CMSetupPreflight routine
description of 43
sample used in code 325, 326

CMSetupSetup routine
description of 44
sample used in code 325, 326

CMSetUserData routine 65
cmSfilterMsg message 225-226
cmSitemMsg message 224-225
cmSpreflightMsg message 223
cmSsetupMsg message 224
CMStatus routine

description of 51
sample used in code 11, 317, 328

cmStatusMsg message 244-245
cmSuspendMsg message 238

CMValidate routine
description of 40
sample used in code 40, 327

cmValidateMsg message 219-220
CMWrite routine

description of 58-59
sample used in code 115, 157

cmWriteMsg Message 240,
243-244

code resources 217-218
code samples

events for Communications
Toolbox managers,
determining 319-322

idle loops, implementing
effective 316-318

Macintosh Communications
Toolbox managers, checking
for installation 322

tool-settings dialog box,
customizing 323-331

Communications Folder 5
Communications Resource

Manager. See also
communications resource
record; specific routines

data flow of 169 (fig.), 170
devices 174-175, 182-184
function of 169-170
head of queue of 176
ID 180-181
initializing 179
resources 177-179
routines

application of 3, 169-170
list of 173
quick reference to 185-187
resource mapping 180-181
selectors 187

version number 176
communications resource

record 170-172
Communications Toolbox. See

Macintosh Communications
Toolbox

compatibility guidelines for
communications tools 285

completion routines 34
for Connection Manager routines

66
_CommToolboxDispatch trap

macro 73, 124, 165, 187, 214

configuration
of connection 14
of connection tool 41-42

custom 43-46
of file transfer 15
of file transfer tool 142-143

custom 144-147
of terminal emulation 14-15
of terminal tool 92-93

custom 94-97
configuration record

in writing own tool 230
configuration string

in Connection manager 47, 63
in File Transfer Manager 148, 153
localizing 63
in Terminal Manager 98, 108

connection
aborting 49
break procedure 115
breaks, sending 53
closing 49
configuring 14
initiating 11
opening 36-42, 48
resetting 53
sending data along 114-115
status information 51
terminating 11-12
using 48-55

connection environment 54-55
Connection Manager. See also

connection record; specific
routines

calling from assembler 73
channels 29-30
clean-up operations 45
closing connection 49
closing tool file 46
configuration record

initializing 40
sample used in code 40
validating 40

configuration string in 47, 63
connection record for 69
custom configuration of

connection tool 43-46
data flow of 29 (fig.), 30
data streams 59-60
and File Transfer Manager 128
function of 29-30
handling events 61-62

Index 341

initializing 36
interfacing with scripting

language 47
opening connection 36-42, 48
reading data 56-57
routines

application of 3-4, 29
completion 66
list of 35
miscellaneous 64-65
quick reference to 67-72
selectors 73

and terminal tools 76
using connection 48-55
version number 65
writing data 58-59

connection record
for Connection Manager 69
creating 38-39
data structure 31-34
disposing of 50
features of 30
function of 31
reference constant of 64
saving the state of 333

connection requests 50, 52
connection tool

completion routines 250
configuration of 41-42
and Connection Manager 4
custom configuration of 43-46
main code resource for

function of 235
messages accepted by 235-250
quick reference to 251-254

name of 64
writing own

bundle resource for 217-218
configuration record 230
function of 217
initialization request

message 217
localization code resource

229-230
quick reference to 231-232
scripting language interface

code resource 226-228
setup definition code

resource 221-226
validation code resource

219-221

constants and data types
for Communications Resource

Manager 186-187
for Connection Manager 70-72
for File Transfer Manager 164-165
for Terminal Manager 122-124
for utilities 212-213

control definition procedure
193-197

Control Manager 190
conventions, in manual xv
CountDITL routine

description of 201
sample used in code 326, 327

CRMGet1IndResource

routine 177
CRMGet1NamedResource

routine 178
CRMGet1Resource routine 177
CRMGetCRMVersion routine 176
CRMGetHeader routine 176
CRMGetIndex routine 178
CRMGetIndResource

routine 177
CRMGetIndToolName routine

description of 179
sample used in code 17, 18

CRMGetNamedResource

routine 178
CRMGetResource routine 177
CRMInstall routine 174
CRMLocalToRealID routine

description of 181
sample used in code 223

CRMRealToLocalID routine 180
CRMReleaseResource

routine 178
CRMRemove routine 175
CRMSearch routine

description of 175
sample used in code 184

CRMSerialRecord data
structure 182

'cscr' code resource 218
'cset' code resource 218
CTBGetCTBVersion routine 192
cursor position 111
custom tool-settings dialog box

in Connection Manager 4345
in Terminal Manager 94-96

'cval' code resource 217

D
DataBuffer record 241
data flow

in Communications Resource
Manager 169 (fig.), 170

in Connection Manager 29 (fig.),
30

in File Transfer Manager 129 (fig.),
130

in Terminal Manager 77 (fig.), 78
data stream search

in Connection Manager 59-60
in Terminal Manager 102-103

data structures
communications resource

record 171-172
connection record 31-34
file transfer record 130
terminal record 80-86

device management 170
Device Manager 28, 168
devices

installing 174
registering 182
removing 175
searching for 175
and serial port, searching for 184

dialog item lists (DITLs)
appending 198-200
counting 201
shortening 201

Dialog Manager 76, 190, 216
Digital Equipment Corporation 291
DITLs. See Dialog item lists
DoActivate procedure 20
DoClick procedure 23
DoCommand procedure 10
DoConnectionConfig

procedure 14
DoFileTransferConfig

procedure 15
DoInitiate procedure 11
DoKey procedure 22-23
DoKill procedure 11-12
DoReceive procedure 13
DoResume procedure 20-21
Dosend procedure 12-13
DoTerminalConfig

procedure 14-15
DoUpdate procedure 21-22

342 Inside the Macintosh Communications Toolbox

E
emulating a terminal

see Terminal Manager 75
see Writing Terminal Tools 255

English, translating to and from
in Connection Manager 63
in File Transfer Manager 153
in Terminal Manager 108

entity 30
environsProc routine

in file transfer record 133
in terminal record 82

Event handling
sample used in code 10

Event Manager 76

F

file
receiving, starting 13
sending, starting 12-13

file transfer
configuring 15
preparing 138-143
processing data 150
starting 149-150

stopping 150
File Transfer Manager. See also File

transfer record; specific
routines

calling from Assembler 165
clean-up operations 146
configuration string in 148, 153
custom configuration of file

transfer tool 144-147
data flow in 129 (fig.), 130
function of 129-130
handling events 151-152
initializing 138
interfacing with scripting

language 148
preparing file transfers 138-143
routines

application of 3, 129-130
list of 137
miscellaneous 154-155
provided by application

156-160
quick reference to 161-166
selectors 165-166

transferring files 149-150
version number 155

file transfer record
creating 139-140
data structure of 131-136
disposing 150
features of 130
function of 130
initializing 141
saving the state of 333
validating 141

file transfer tool
configuring 142-143
custom configuration of 144-147
function of 129
main code resource for

function of 279
messages accepted by 279-282
quick reference to 283-284

name of 154
writing own

bundle resource for 217-218
configuration record 230
function of 217
initialization request

message 217
localization code resource

229-230
quick reference to 231-232
scripting language interface

code resource 226-228
setup definition code

resource 221-226
validation code resource

219-221
filter procedure

in configuring connection tool 42
definition of 206
name 206
zone 207

FindSerialPorts

procedure 184
FTAbort routine 150
ftAbortMsg message 281
FTActivate routine

description of 151
sample used in code 20

ftActivateMsg message 281-282
FTChoose routine

description of 142-143
sample used in code 15

ftDeactivateMsg message 282
FTDefault routine 141

FTDispose routine
description of 150
sample used in code 19

ftDisposeMsg message 280
FTEnglishToIntl routine 153
FTEvent routine 152
ftEventMsg message 282
FTExec routine

description of 150
sample used in code 317-318
using 31

ftExecMsg message 281
FTGetConfig routine 148
FTGetFTVersion routine 155
FTGetProcID routine

description of 139
sample used in code 18

FTGetRefCon routine 154
FTGetToolName routine 154
FTGetUserData routine 155
FTGetVersion routine 155
ftInitMsg message 217,279-280
FTIntlToEnglish routine 153
FTMenu routine

description of 152
sample used in code 10

ftMenuMsg message 282
FTNew routine

description of 139-140
sample used in code 18

ftOpenDataFork 156
ftOpenRsrcFork 156
ftPrivate 133
ftReadAbort 156, 157
ftReadComplete 156, 157
ftReadDataFork 156, 157
ftReadOpenFile 156
ftReadRsrcFork 156, 157
FTResume routine

description of 151
sample used in code 21

ftResumeMsg message 281-282
FTSetConfig routine 148
FTSetRefCon routine 154
FTSetupCleanup routine 146
FTSetupFilter routine 145
FTSetupItem routine 146
FTSetupPostflight

routine 147
FTSetupPreflight routine 144
FTSetupSetUp routine 145

Index 343

FTSetUserData routine 155
FTStart routine

description of 149
sample used in code 13, 18

ftStartMsg message 280-281
ftSuspendMsg message 282
FTValidate routine

description of 141
sample used in code 141

ftWriteAbort 159,160
ftWriteComplete 159,160
ftWriteDataFork 159
ftWriteFileInfo 159,160
ftWriteOpenFile 159
ftWriteRsrcFork 159

G
globals 9

H
hard disk 5
hardware 5
hook procedure 206-209

I, J
ID

mapping to Local ID 180
mapping to Real ID 181

InitCM routine 36
InitCRM routine 174
InitCTBUtilities routine 192
InitFT routine 138
InitTM routine 88
installation of tools 5
installation, checking for

Communications Toolbox
managers sample code 332

installing devices 174
interfacing

between Macintosh
Communications Toolbox
applications and tools 4,
5 (fig.)

scripting language code
resource 226-228

user interface considerations
287-291

with scripting language 47, 98, 148
IsConnEvent function 320-321

IsFTEvent function 319-320
IsFTWindow function 319-320
IsTermEvent function 321-322

K
Keyboard events

procedures for 22-23
in Terminal Manager 106

L
LAT Tool scripting interface 301
localization code resource 229-230

M
Macintosh Communications

Toolbox. See also specific
managers

contents of 3-4
function of 8
globals used in 9
installation of 5
interface between application and

tools 4, 5 (fig.)
managers in 3-4
reference manual for xiv
requirements for 5
sample application of 8-25
sections of 9

Macintosh computers 5, 291
Macintosh Operating System trap 73,

124,165,187,214
Main program loop in sample

code 24-25, 321-322
MakeNew procedure in sample

code 16-18
Memory Manager 168
menu choices, handling 10
Menu events

closing session document 19
configuring connection 14
configuring file transfer 15
configuring terminal

emulation 14-15
in Connection Manager 61
in File Transfer Manager 152
handling menu choices 10
initiating connection 11
making new session

document 16-18
receiving file 13

sending file 12-13
in Terminal Manager 105
terminating connection 11-13

modeless tools 288
Modem Tool scripting interface See

Apple Modem Tool scripting
interface

Mouse events
clikLoop 118
procedure for 23
in Terminal Manager 106

MultiFinder 5, 168
MyBreakProc routine 115
MyCacheProc routine 116-117
MyCallBack routine 117
MyClikLoop routine 118
MyCompletion routine 66
MyEnvironsProc routine

118,160
MyHookProc routine 208-209
MyNameFilter routine 206
MyReadProc routine 156-157
MyRecvProc routine 158
MySearchCallBack routine 60
MySendProc routine 114,157
MyWriteProc routine 159-160
MyZoneFilter routine 207

N
name filters 206
network look-up utilities 202 (fig.),

203-205
NewControl routine 193
NuLookup routine 202-204
NuPLookup routine 202,204-205

O
Operating System Utilities 168

P
pop-up menu control definition

procedure 193-197
PopUpMenuSelect function 193
popupUseAddResMenu variation

code constant 195
popupUseCQD variation code

constant 195
popupUseWfont variation code

constant 195

344 Inside the Macintosh Communications Toolbox

programming problems
custom tool-settings dialog

box 323-331
events needed to be handled by

Macintosh Communications
Toolbox managers 319-322

idle loops 316-318
installation of Macintosh

Communications Toolbox
managers, checking for 332

Q
QuickDraw 76

R
regions in terminal window

terminal emulation region 84
scroll-back region 84

removing devices 175
Resource management 170
Resource Manager

and Communications Resource
Manager 168

and Connection Manager 28
and File Transfer Manager 128
and Terminal Manager 76
and utilities 190

resource-mapping routines 180
resources

getting usage index for 178
loading 177-178
loading indexed 177
loading named 178
releasing 178

Resume events
in Connection Manager 61
in File Transfer Manager 151
procedure for 20-21
in Terminal Manager 105

routines. See also specific names of
Communications Resource

Manager
application of 3, 169-170
description of 177-179
list of 173
quick reference to 185-187
resource mapping 180-181
selectors 187

Connection Manager
application of 3-4, 29

completion 66
list of 35
miscellaneous 64-65
quick reference to 67-72
selectors 73

File Transfer Manager
application of 3, 129-130
list of 137
miscellaneous 154-155
provided by application

156-160
quick reference to 161-165
selectors 165-166

Terminal Manager
application of 3-4, 77-78
list of 87
miscellaneous 109-113
provided by application

114-118
quick reference to 119-124
selectors 124-125
terminal emulation 99-101

and tools 4
utilities

list of 191
quick reference to 211-214
selectors 214

routine selectors
Communications Resource

Manager 187
Connection Manager 73
File Transfer Manager 165-166
Terminal Manager 124-125
utilities 214

S
Sample code

Application shell
Handling events that belong to

Communications Toolbox
Managers
IsConnEvent 320
IsFTEvent 319
IsFTWindow 319,320
IsTermEvent 321

DoActivate 20
DoClick 23
DoCommand 10
DoConnectionConfig 14
DoFileTransferConfig 15
DoInitiate 11

DoKey 22
DoKill 11
DoReceive 13
DoResume 20
DoSend 12
DoTerminalConfig 14
DoUpdate 21

Tool-settings dialog box,
customizing
Choose.p 323-330
Choose. r 330-331

Using the scripting interface 293,
294

Scrap Manager 76
scripting interface

for communications tools 293
scripting language, interfacing with

code resource 226-228
in Connection Manager 47
in File Transfer Manager 148
in Terminal Manager 98
sample code 333

Script Manager 216
Scroll-back cache 78 (fig.), 79
search call-back procedure 103, 117
searching for devices 175
searching

with CMAddSearch 35
with TMAddSearch 87

sendProc routine
in file transfer record 134
in terminal record 83

Serial Tool scripting interface 302
Serial NB Tool scripting interface 302
session document

closing 19
making new 16-18

setup definition code resource
221-226

ShortenDITL routine
description of 201
sample used in code 326, 327

Show Controls 291
Standard File Package 128
Superdrive 5
status dialog boxes 289 (fig.), 290
System Folder 5

T
TermDataBlock data structure 79

Index 345

terminal emulation
configuring 14-15
preparing 88-93
routines 99-101
window 78 (fig.), 79

terminal emulation buffer 79,
102-103

terminal emulation region 78 (fig.),
79, 99-101,116

terminal emulation tool
writing own

bundle resource for 217-218
configuration record 230
function of 217
initialization request

message 217
localization code resource

229-230
quick reference to 231-232
scripting language interface

code resource 226-228
setup definition code

resource 221-226
validation code resource

219-221
terminal keys 111-112
Terminal Manager. See also

Terminal emulation;
Terminal record; specific
routines

calling from Assembler 124
clean-up operations 96
closing tool file 97
configuration string in 98, 108
custom configuration of terminal

tool 94-97
data flow in 77 (fig.), 78
data stream search in 102-103
function of 77-78
handling events 105-107
initializing 88
interfacing with scripting

language 98
manipulating selections 104
preparing for terminal

emulation 88-93
routines

application of 3-4, 77-78
list of 87
miscellaneous 109-113
provided by application

114-118

quick reference to 119-124
selectors 124-125
terminal emulation 99-101

searching terminal emulation
buffer 102-103

terminal emulation routines
99-101

terminal record for 121-122
version number 110

terminal record
creating 89-90
data structure 80-86
disposing of 101
features of 78
fields in 80
function of 77, 80
initializing 81
resetting 101
resizing 101
saving the state of 333
validating 91

terminal tool
configuring 92-93
custom configuration of 94-97
information 112-113
keyboards for 291
list of 76
main code resource for

function of 257
messages accepted by 257-272
quick reference to 273-276

name of 109
reference constant 109
search of terminal emulation

buffer 102
termRect 83
Text Tool scripting interface 303
TMActivate routine

description of 105
sample used in code 20

tmActivateMsg message 261-262
TMAddSearch routine 102-103
TMChoose routine 92-93
TMClear routine 100
tmClearMsg message 268
TMClearSearch routine 103
TMClick routine 106

sample used in code 23
tmC1ickMsg message 264
TMCountTermKeys routine 112
tmCountTermKeysMsg

message 272

tmCursorMsg message 269-270
tmDeactivateMsg message 262
TMDefault routine 91
TMDispose routine

description of 101
sample used in code 19

tmDisposeMsg message 259
TMDoTermKey routine

description of 111
sample used in code 111

tmDoTermKeyMsg message 271
TMEnglishToIntl routine 108
TMEvent routine

description of 107
sample used in code 24

tmEventMsg message 271
TMGetConfig routine 98
TMGetCursor routine 111
tmGetEnvironsMsg message 270
TMGetIndTermKey routine 112
tmGetIndTermKeyMsg

message 272
TMGetLine routine 100
tmGetLineMsg message 268-269
TMGetProcID routine

description of 88
sample used in code 17

TMGetRefCon routine 109
TMGetSelect routine 104
tmGetSelectionMsg

message 265-266
TMGetTermEnvirons

routine 112-113
TMGetTMVersion routine 110
TMGetToolName routine 109
TMGetUserData routine 110
TMGetVersion routine 110
TMIdle routine

description of 99
sample used in code 317-318
using 316

tmIdleMsg message 263
tmInitMsg message 217,257-258
TMIntlToEnglish routine 108
TMKey routine

description of 106
sample used in code 23
and Terminal Manager 77

tmKeyMsg message 259-260
TMMenu routine

description of 105
sample used in code 10

346 Inside the Macintosh Communications Toolbox

tmMenuMsg message 265
TMNew routine

description of 89-90
sample used in code 17

TMPaint routine 99
tmPaintMsg message 269
tmPrivate 83
TMRemoveSearch routine 103
TMReset routine 101
tmResetMsg message 267-268
TMResize routine

description of 101
sample used in code 23

tmResizeMsg message 262-263
TMResume routine

description of 105
sample used in code 21

tmResumeMsg message 261-262
TMScroll routine

description of 100
sample used in code 23

tmScrollMsg message 267
TMSetConfig routine 98
TMSetRefCon routine 109
TMSetSelection routine 104
tmSetSelectionMsg

message 266-267
TMSetupCleanup routine 96
TMSetupFilter routine 95
TMSetupItem routine 96
TMSetupPostflight routine 97
TMSetupPreflight routine 94
TMSetupSetup routine 95
TMSetUserData routine 110
TMStream routine

description of 99
sample used in code 317

tmStreamMsg message 260-261
tmSuspendMsg message 262
TMUpdate routine 106
tmUpdateMsg message 263-264
TMValidate routine

description of 91
sample used in code 91

tool file, closing
in Connection Manager 46
in File Transfer Manager 147
in Terminal Manager 97

tools. See also Macintosh
Communications Toolbox;
specific tools

compatibility requirements 291

design goals of 286-287
function of 4
modeless operation 288
name of 179
and routines 4
self-contained 286
task-specific 286-287
user interface considerations

error alerts 290
handling errors 290
menus 290
modeless tool operation

287-288
right words 291
standard tool-settings dialog

box 288 (fig.)-289
windows and status dialog

boxes 289-290 (fig.)
tool-settings dialog box

customizing 323-331
in File Transfer Manager 144-147
standard 288 (fig.), 289

transferring files
preparing for 138-141
processing data 150
starting 149
stopping 150

Transparent Mode 291
TTY Tool scripting interface 304

U
Update events

procedures for 21-22
in Terminal Manager 106

Update procedure
sample used in code 21-22

utilities
and AppleTalk 202-205
DITLs 198-201
initializing 192
pop-up menu control definition

procedure 193-197
routines

list of 191
quick reference to 211-214
selectors 214

version number 192

V
validation code resource 219-221

variation codes 194
version number

Communications Resource
Manager 176

Connection Manager 65
File Transfer Manager 155
Terminal Manager 110
utilities 192

viewRect 84
visRect 84
VT102 terminal setting 291
VT102 Tool scripting interface

305-308
VT320 Tool scripting interface

309-312

W, X, Y, Z
XMODEM Tool 129
XMODEM Tool scripting

interface 313
zone filters 207

	Contents
	Figures and Tables
	Foreword
	Preface
	Chapter 1 About the Macintosh Communications Toolbox
	Chapter 2 Programming with the Macintosh Communications Toolbox
	Chapter 3 Connection Manager
	Chapter 4 Terminal Manager
	Chapter 5 File Transfer Manager
	Chapter 6 Communications Resource Manager
	Chapter 7 Macintosh Communications Toolbox Utilities
	Chapter 8 Fundamentals of Writing Your Own Tools
	Chapter 9 Writing Connection Tools
	Chapter 10 Writing Terminal Tools
	Chapter 11 Writing File Transfer Tools
	Appendix A Guidelines for Communications Tools
	Appendix B Communications Tools Scripting Interfaces
	Appendix C Useful Code Samples
	Glossary
	Index

