&

Inside the Macintosh®
Communications Toolbox

O APPLE COMPUTER, INC.

Copyright © 1991 by Apple
Computer, Inc.

All rights reserved. No part of this
publication may be reproduced,
stored in a retrieval system, or
transmitted, in any form or by

any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer,
Inc. Printed in the United States
of America.

© Apple Computer, Inc., 1991
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408)996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
HyperCard, LaserWriter, Macintosh,
MacTerminal, and MultiFinder are
registered trademarks of Apple
Computer, Inc.

Apple Desktop Bus, QuickDraw,
and SuperDrive are trademarks of
Apple Computer, Inc.

Adobe Illustrator and PostScript
are registered trademarks of
Adobe Systems, Inc.

DEC, VAX, VT52, VT100, VT101,
VT102, V1220, VT300, and VT320
are trademarks of Digital
Equipment Corp.

ITC Garamond and ITC Zapf
Dingbats are registered
trademarks of International
Typeface Corp.

ii Contents

Linotronic is a registered
trademark of Linotype Co.

MacPaint is a registered trademark
of Claris Corp.

Microsoft is a registered
trademark of Microsoft Corp.

Teletype is a registered trademark of AT&T
Teletype Corp.

Varityper is a registered trademark of Varityper,
Inc.

ISBN 0-201-57775-5
1234567 89-MU-9594939291

Publications staff for Inside the
Macintosh Communications
Toolbox

Writer: Rob Berkowitz

Editors: Scott Smith, Becky Reece
Art Director: Tamara Whiteside

Production Editors:
Charlotte Clark, Ron Morton

Designer: Lisa Mirski

Manufacturing Supervisor:
Robin Kerns

Contents

Figures and Tables / ix
Foreword / xi
Preface / xiii

About the Macintosh Communications Toolbox / 1

Communications Toolbox contents / 3
Understanding routines and tools / 4
System requirements and installation / 5

Programming with the Macintosh Communications Toolbox / 7

Menu events / 10
Handling menu choices / 10
Initiating a connection /11
Terminating the connection / 11
Starting to send a file / 12
Starting to receive a file / 13
Configuring a connection / 14
Configuring a terminal emulation / 14
Configuring a file transfer / 15
Making a new session document / 16
Closing the session document / 19
Other events / 20
Activate events / 20
Resume events / 20
Update events / 21
Keyboard events / 22
Mouse events / 23
Main program loop / 24

iv Contents

Connection Manager / 27

About the Connection Manager / 29

Connection channels: data, attention, and control / 30
The connection record /31

Connection record data structure /31
Connection Manager routines / 35
Preparing to open a connection / 36
Custom configuration of a connection tool / 43
Interfacing with a scripting language / 47
Opening, using, and closing the connection / 48
Reading and writing data / 56
Handling events / 61
Localizing configuration strings / 63
Miscellaneous routines / 64
Completion routines / 66
Quick reference / 67

Terminal Manager / 75

About the Terminal Manager / 77
The terminal emulation window / 78
The terminal emulation region / 79
The cache region / 79
The terminal record / 80
Terminal record data structure / 80
Terminal Manager routines / 87
Preparing for a terminal emulation / 88
Custom configuration of a terminal tool / 94
Interfacing with a scripting language / 98
Using terminal emulation routines / 99
Searching the terminal emulation buffer / 102
Manipulating selections / 104
Handling events / 105
Localizing configuration strings / 108
Miscellaneous routines / 109
Routines that must be in your application / 114
Sample routine for sending data / 115
Sample showing how to break a connection / 115
Sample showing how to cache lines / 116
Sample terminal-environment routine / 118
Quick reference / 119

File Transfer Manager / 127

About the File Transfer Manager / 129
The file transfer record / 130
File transfer record data structure / 131
File Transfer Manager routines / 137
Preparing for a file transfer / 138
Custom configuration of a file transfer tool / 144
Interfacing with a scripting language / 148
Transferring files / 149
Handling events / 151
Localizing configuration strings / 153
Miscellaneous routines / 154
Routines your application provides / 156
Sample send routine / 157
Sample receive routine / 158
Sample connection-environment routine / 160
Quick reference / 161

Communications Resource Manager / 167

About the Communications Resource Manager / 169
Device management / 170
Resource management / 170
The communications resource record / 171
Communications resource record data structure / 171
Communications Resource Manager routines / 173
Resource management routines / 177
Resource-mapping routines / 180
Registering a device / 182
Data structures / 182
Searching for serial port devices / 184
Quick reference / 185

Macintosh Communications Toolbox Utilities / 189

Communications Toolbox utilities / 191
Manipulating dialog item lists (DITLs) / 198
Special ways to append items / 200
Showing AppleTalk entities: NULookup and NuPLookup /202
Hook and filter procedures / 206
Quick reference / 211

Contents

\'

10

11

Appendix A

vi

Contents

Fundamentals of Writing Your Own Tools / 215

About writing a tool / 217
The six resources / 217
The bundle resource / 218
The validation code resource / 219
The setup definition code resource / 221
The scripting language interface code resource 226
The localization code resource / 229
Quick reference / 231

Writing Connection Tools / 233

Your connection tool’s main code resource / 235
Quick reference / 251

Writing Terminal Tools / 255

Your terminal tool’s main code resource / 257
Quick reference / 273

Writing File Transfer Tools / 277

Your file transfer tool’s main code resource / 279
Quick reference / 283

Guidelines for Communications Tools / 285

Design goals / 286
Keeping your tool self-contained / 286
Keeping your tool task-specific / 286
User interface considerations / 287
Modeless tool operation / 288
The standard tool-settings dialog box / 288
Windows and status dialog boxes / 289
Error alerts / 290
Menus / 290
Handling errors / 290
Using the right words / 291
Compatibility requirements / 291
Keyboard considerations / 291

Appendix B

Appendix C

Communications Tools Scripting Interfaces / 293

Six rules for configuration strings / 294

ADSP Tool scripting interface / 295

Apple Modem Tool scripting interface / 299

LAT Tool scripting interface / 301

Serial Tool and Serial NB Tool scripting interface / 302
Text Tool scripting interface / 303

TTY Tool scripting interface / 304

VT102 Tool scripting interface / 305

VT320 Tool scripting interface / 309

XMODEM Tool scripting interface / 313

Useful Code Samples / 315

Using FTExec and TM dl e effectively / 316
Determining events for Communications Toolbox managers / 319
The custom tool-settings dialog box / 323
Choose. p /323
Choose. r /330
Determining whether the managers are installed / 332
Using the scripting interface / 333

Glossary / 337

Index / 339

Contents

vii

viii Contents

CHAPTER 1

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Figures and Tables

About the Macintosh Communications Toolbox

Figure 1-1 Where the Macintosh Communications Toolbox fits in / 3
Figure 1-2 How Macintosh Communications Toolbox managers interact
with applications and tools / 5

Connection Manager
Figure 3-1 Data flow into and out of the Connection Manager / 29
Figure 3-2 A sample tool-settings dialog box / 41

Terminal Manager
Figure 4-1 Data flow into and out of the Terminal Manager / 77
Figure 4-2 A terminal emulation window / 78
Figure 4-3 Bounds of vi ewRect andt er nRect /84
Figure 4-4 The text selection mode sel Text Nor mal /86
Figure 4-5 The text selection mode sel Text Boxed /86
Figure 4-6 A sample tool-settings dialog box / 92
Figure 4-7 Additional space in the terminal emulation region / 113
Table 4-1 TmAddsear ch search-area delimiters / 102

File Transfer Manager
Figure 5-1 Data flow into and out of the File Transfer Manager / 129
Figure 5-2 A sample tool-settings dialog box / 142

Communications Resource Manager

Figure 6-1

Data flow into and out of the Communications Resource
Manager / 169

Macintosh Communications Toolbox Utilities

Figure 7-1
Figure 7-2

Figure 7-3
Figure 74
Figure 7-5
Figure 7-6

Pop-up menu in its inactive and active states / 193

Pop-up menu control when system justification is
teJust Ri ght /196

Initial dialog box and to-be-appended items / 198

Dialog box after appended items are superimposed / 199

Dialog box after items are appended to the right / 199

Dialog box after items are appended to the bottom / 199

Figure 7-7 Dialog box after items are appended relative to
item 2 /200

Figure 7-8 Network look-up dialog box / 202

Table 7-1 TMAddSearch search-area delimiters / 205

CHAPTER 8 Fundamentals of Writing Your Own Tool

Table 8-1 Connection Manager messages and parameters / 232

CHAPTER9 Writing Connection Tools

Table 9-1 Connection Manager messages and parameters / 253

CHAPTER 10 Writing Terminal Tools

Table 10-1 Terminal Manager messages and parameters / 275

CHAPTER 11 Writing File Transfer Tools

Table 11-1 File Transfer Manager messages and parameters / 284

APPENDIX A Guidelines for Communications Tools

Figure A-1 A sample tool-settings dialog box for a connection tool / 288
Figure A-2 Example file transfer tool status dialog box / 289

x Figures and Tables

Foreword

One thing I like most about being at Apple is the gifted people who make
innovation the norm. Also, it’s a rush to feel the energy people radiate when they
believe that what they do can make a difference in the world. The creators of the
Macintosh Communications Toolbox embody these ideas, which are manifest in a
product that lives up to the Apple standard.

Since you are reading the foreword to an operating system reference book,
you probably have more interest in the product than simply finding parameter and
field descriptions. So I'll take this opportunity to tell you why the
Communications Toolbox was, is, and will continue to be a good idea.

Initially conceived as a better way to engineer MacTerminal 2.0—it enabled
MacTerminal to support new protocols without having to be revised—the
Communications Toolbox has evolved into an integral component of our system
software. By helping programmers incorporate communications features into their
applications, the Communications Toolbox provides a gateway to the ever-
expanding world of information.

Bill Stevens planted the seed that first sprouted in MacTerminal 2.0. Byron
Han and Tom Dowdy developed the extensibility concept with the notion of
communications tools. These are the guys who thought the Communications
Toolbox was a good idea.

Now, a lot more people agree that the Communications Toolbox is a good
idea. The system software folks think enough of the Communications Toolbox to
make it a part of system software version 7.0. As evidenced by the dozens of
currently shipping products that use the Communications Toolbox, a large and
growing number of developers also agree. Not only are traditional
communications applications (MacTerminal, for instance) supporting the
Communications Toolbox, but typically desktop-bound applications are as well.

As the Communications Toolbox takes root in the inventive minds of
Macintosh developers, expect to see new tools and enhancements based on
developer feedback. This is how we intend to ensure the Communications
Toolbox will continue to be a good idea. For instance, we've already announced
support for ISDN and we’re working on other interesting ideas.

Thanks and congratulations are appropriate here. Byron Han is, in many
ways, the person most responsible for the currently shipping Communications
Toolbox. Not only did Byron write abundant and fine code, he truly believed the
Communications Toolbox was, and is, a good idea. In the

xii Foreword

finest Apple tradition, he lobbied, cajoled, and ultimately convinced the right
Apple people. Other key members of the engineering team include Mary Chan,
who developed most of the Terminal Manager and tools; Jerry Godes, who worked
on all the tools in the Basic Connectivity Set; Alex Kazim, who crafted major
enhancements to the human interface of the managers and tools; and Carol Lee,
who produced the File Transfer Manager. While others contributed their time and
talents, these are the engineers who were with the project from the beginning
through the release of version 1.0. Paul Rekieta was the engineering manager,
handily piloting some stormy seas.

There is a lot more to a product like the Communications Toolbox than
design and coding, so I'd like to thank more stars for their commitment. Veronica
Dullaghan was the product manager who weathered the project from conception
to initial product ship. Rob Neville was the Quality group leader who balanced
high quality standards with the weighty issue of schedules. His team included Tom
Atwood, Glen Austin, Jeanne DeVoto, and Craig Hotchkiss. Mark Baumwell and
James Beninghaus were the DTS mainstays who supported developers. Steve
Richard and Dan Fitch provided project leadership. Rob Berkowitz provided
written illumination in a first-rate document that’s a key to the success of the
software.

Thanks again to these talented people, and to the other contributors I've
not mentioned, for an accomplishment of which they can be proud. To our
developers, I sincerely hope you find the Communications Toolbox a useful
addition to the Macintosh Operating System.

Buzz Dean
Director, Communications Products Development

Cupertino, California
May 1991

Preface

Inside the Macintosh Communications Toolbox provides definitive
information for application software developers, communications tools
developers, and hardware developers who want to use services provided
by the Macintosh® Communications Toolbox. For application software
developers, this document describes and shows how to use the four
Communications Toolbox managers and utilities that make it easier to
write communications software for the Apple® Macintosh computer.
For communications tools developers, this document shows how to
develop communications tools that can be used by the Communications
Toolbox managers. And for hardware developers, this document shows
what protocols to follow to register hardware—like internal modems or
serial cards—with the Communications Toolbox Communications

Resource Manager.

About this document

Chapter 1 contains an overview of the Communications Toolbox.
Chapter 2 presents a sample application that uses the Communications
Toolbox. The next five chapters discuss the Communications Toolbox
managers and utilities, describing the routines and data structures that
an application uses. Each of these chapters contains a table that lists the
routines in that chapter in the order in which they are described.
Chapters 3-11 conclude with “Quick References” that summarize the
contents of the chapter. Chapters 8-11 show how to create a tool to add
to the Communications Toolbox. While tool developers will be
interested in reading these chapters, application developers may have
little need to read them. Appendix A contains guidelines that
communications tool developers should read to ensure that the tools
they create are fully compatible with the Communications Toolbox.
Appendix B describes the scripting interface for communications tools.
Appendix C provides sample code solutions to common programming
problems.

Xiv

Inside the Macintosh Communications Toolbox is written for experienced
programmers. Readers should know how to program the Macintosh
and have some familiarity with communications or networking
applications. To use each manager requires specific programming
knowledge; suggestions on where to find more information are
included at the beginning of each chapter. In addition, the next section
lists resources for reference information about the technical concepts
used in this document.

For more information

Refer to the following books in the Apple Technical Library and Apple
Communications Library, published by Addison-Wesley, for additional
information about the subjects covered in this manual:

= Designing Cards and Drivers for the Macintosh Family

* Human Interface Guidelines: The Apple Desktop Interface
= Inside Macintosh (Volumes I-V, X-Ref)

= Programmer’s Introduction to the Macintosh Family

= Technical Introduction to the Macintosh Family

= AppleTalk Network System Overview

= [Inside AppleTalk

You may also refer to the following documents from APDA® (Apple
Programmers and Developers Association):

= Software Development for International Markets. A Technical Reference
* Macintosh Technical Notes

APDA offers worldwide access to a broad range of programming
products, resources, and information for anyone developing on Apple
platforms. You'll find the most current versions of Apple and third-
party development tools, debuggers, compilers, languages, and technical
references for all Apple platforms. To establish an APDA account, obtain
additional ordering information, or find out about site licensing and
developer training programs, please contact.

APDA

Apple Computer, Inc.

20525 Mariani Avenue, M/S 33-G
Cupertino, CA 95014-6299
1-800-282-2732 (United States)
1-800-637-0029 (Canada)
1-408-562-3910 (International)
Fax 1-0408-562-3971

Telex: 171-576

AppleLink® address: APDA

Inside the Macintosh Communications Toolbox

If you provide commercial products and services, please call 1-408-974-4897
for information on the developer support programs available from Apple.

If you plan to develop Apple-compatible hardware or software products for
sale through retail channels, you can get valuable support from Apple
Developer Programs. Write to:

Apple Developer Programs
Apple Computer, Inc.

20525 Mariani Avenue, M/S 51-W
Cupertino, CA 95014-6299

Conventions used in this document

The following notations are used in this document to draw attention to
particular items of information:

® Note: a note that may be interesting or useful

® Assembly note: a note of interest to assembly-language
programmers only

D Important a note that is particularly important

A Warning a point that you need to be cautious about

Words that appear in the glossary are presented in bold typeface when first
introduced in the text.

Names of routines (procedures or functions), constants, and code
fragments appear in a special typeface, as in the following example:

PROCEDURE Get Down(andBoogi e : ONEMORETI ME) ;

Preface xv

xvi Inside the Macintosh Communications Toolbox

Chapter 1 About the Macintosh
Communications Toolbox

THIS CHAPTE R gives you an overview of the Macintosh ® Communications Toolbox. It tells you about the
managers and utilities that are part of the Communications Toolbox, and then discusses a fundamental concept, the
difference between routines and tools. The last part of the chapter provides system hardware and software

requirements, and shows how to install Communications Toolbox tools.

2 Inside the Macintosh Communications Toolbox

Communications Toolbox contents

The Communications Toolbox consists of four managers and a set of utilities. These managers and utilities are an
extension to the Macintosh Toolbox and provide basic networking and communications services. Just as the
Macintosh Toolbox makes it easier for you to develop stand-alone Macintosh applications, the Communications Toolbox
helps you add networking and communications functions to applications.

Each of the managers in the Communications Toolbox handles a different aspect of networking and
communications: connection management, terminal emulation management, file transfer management, and
communications resource management. The managers provide routines that your application can call to indirectly
interact with the operating system. Figure 1-1 shows how the Communications Toolbox fits between your application
and the operating system.

= Figure 1-1 Where the Macintosh Communications Toolbox fits in

Application

H]| | -
Il B

Terminal File Tranifer Connection
Marager Marager Manager

Dperating system

]

Maciniosh hardware

Chapter 1: About the Macintosh Communications Toolbox 3

Although the managers in the Communications Toolbox handle distinctly different aspects of networking and
communications, your application might need to call routines from more than one of the managers to implement a
feature. For instance, in order to perform terminal emulation, in writing your program you might make use of
Connection Manager routines to maintain the data connection, and Terminal Manager routines to handle the
specifics of the terminal emulation.

However, your application does not have to use Communications Toolbox routines to perform all of its
networking and communications tasks; for example, your application can maintain the data connection itself and use
only the Terminal Manager to perform a terminal emulation. Keep in mind, though, that using Communications
Toolbox routines ensures greater compatibility for your application with new tools as they become available.

Understanding routines and tools

There are two interfaces (besides the user interface) to consider when programming with the Communications Toolbox:
the interface between the application and the Communications Toolbox, and the one between the Communications
Toolbox and the Macintosh Operating System.

The interface between an application and the Communications Toolbox is defined by the routines in each of the
managers. By calling routines, an application can request basic networking and communications services. If you are
writing applications (not tools), this is the interface with which you need to be most concerned; it is discussed in
Chapters 3-7.

The interface between the Communications Toolbox and the Macintosh Operating System is controlled by tools.
Tools are units of code that implement the networking and communications services that your application requests.
When an application calls a Communications Toolbox routine, it does so without concern for the underlying protocols.
It is the job of the tool to implement basic networking and communications services according to a specific protocol. If
you are writing tools (not applications), this is the interface with which you need to be most concerned; it is discussed in
Chapters 8-11. Tools writers need to read at least two of these chapters: Chapter 8, which discusses concepts common
to all types of tools, and one of the other chapters that deal with a specific type of tool.

Figure 1-2 shows the interaction between an application and one of the Communications Toolbox managers, in this
case the Connection Manager. Notice that the application interacts with the Connection Manager, which in turn interacts
with the connection tool The connection tool, in turn, communicates with a driver and passes back to the application
(through the manager) any relevant information. (Chapter 3 contains a complete discussion of the Connection
Manager.)

4 Inside the Macintosh Communications Toolbox

Figure 1-2 How Macintosh Communications Toolbox managers interact with applications and tools

Thatw penuimaed -
¥ apphicition T ferminal
> —
. |Tﬂ fibe transfer
Dt 1t e 10 s ppilication '
T Commpules | e I
k- - 4 I:II
' 7|
-

System requirements and installation

The Communications Toolbox can be run on all Macintosh computers that have at least 1 megabyte (MB) of random-
access memory (RAM), Macintosh Plus (128K) read-only memory (ROM) or later, and system software 6.0.4 or a later

version. Minimum disk-space requirements are two floppy disk drives, a single Apple ® SuperDrive~ disk drive, or a

hard disk (which is recommended).

To install the Communications Toolbox, use the Installer script on the Communications 1 disk. If your machine will
not start up using Communications 1, use a Network Products Installer disk. These disks are available from APDA®

(Apple Programmers and Developers Association).

You can install communications tools by dragging the icon for each tool into the folder named Communications

Folder, which is inside the System Folder. Your application can access tools immediately after you have installed them

(you don’t have to restart).

Chapter 1: About the Macintosh Communications Toolbox

5

6 Inside the Macintosh Communications Toolbox

Chapter 2 Programming with the Macintosh
Communications Toolbox

e

TJE
.

THIS CHAPTER provides an example of how applications can use the Communications Toolbox to implement
communications services. The example focuses on use of the Communications Toolbox, rather than on Macintosh programming in

general.

Thus, the sample code is not a complete program. It contains the parts of a program that handle communications functions; the
rest of the program has been replaced with comments. This sample shows you where in an application to put the hooks to which

you can attach Communications Toolbox routines.

The sample application, if it were a real, working program, would allow you to perform functions that span the three major
Communications Toolbox managers: the Connection Manager, the Terminal Manager, and the File Transfer Manager.

Specifically, the sample source code shows you how to

= open and close a connection

= send and receive files

= configure connections, terminal emulations, and file transfers
= clear the screen

= reset the terminal

8 Inside the Macintosh Communications Toolbox

The sample code is split into three sections to make it easier to understand. The first section shows how your application can deal
with events that result from menu selections; the sample application contains routines that handle basic communications services,
like opening a connection and sending a file. The second section shows how your application can deal with events like scrolling and
mouse clicks. The last section shows the sample application’s main code loop. You might find it helpful to read some of the
chapters that discuss the managers before reading through the code.

Assume the following globals
VAR
gTerm . TermHandl e; { tool records }
gFT : FTHandl e;
gConn . ConnHandl e;
gBuf f er . Ptr; { My data buffer }
gCache . Handl e; { 1-line cache }
done . BOOLEAN; { Main Event Loop Flag }
gStartFT : BOOLEAN; { Flag to start a transfer }
gWASFT . BOOLEAN; { Flag set during a transfer }

Chapter 2: Programming with the Macintosh Communications Toolbox 9

Menu events
Handling menu choices

PROCEDURE DoCommand(nResult : LONG NT);

VAR
theltem : I NTEGER, { menu info }
t heMenu : I NTEGER,

BEG N
theltem:= Lowrd(nResult); { whichitem}
theMenu : = H Wrd(nResult); { which nenu }

{ First see if the nenu belonged to a tool }
{ If the tool handles it, then | eave }

I F gTerm <> NIL THEN

| F TMvenu(gTerm theMenu, theltem) THEN BEG N

HliteMenu(O0);

Exi t (DoCommrand) ; { Terminal tool handled it }
END,

I F gConn <> NIL THEN

| F CMvenu(gConn, theMenu, theltem) THEN BEG N

HliteMenu(0);

Exi t (DoCommad) ; { Connection tool handled it }
END,

IF gFT <> NIL THEN

| F FTMenu(gFT, theMenu, theltem) THEN BEGQ N

HliteMenu(0);

Exi t (DoCommand) ; { File transfer tool handled it }
END,

{ Must be an application nmenu }

(*
Application menu handli ng goes here

*)

HiliteMenu(O);
END; { DoCommand }

10 Inside the Macintosh Communications Toolbox

Initiating a connection

PROCEDURE Dol ni ti at e;

VAR
theErr: CMErr; { Problem Flag }
sizes : CMBufferSizes; { Conn tool channel sizes }
status: CMstatFl ags; { Conn tool states }

BEGI N

I F gConn<> NIL THEN BEG N

{ Get the state of the connection }
theErr := CMstatus(gConn, sizes, status);

{ If it's not already open or opening, then open it }
{ I'n this case, open it synchronous, no tineout }

I F BAND (status, cnfStatusOpen + cnfStatusOpening) = 0
THEN

theErr := CMOpen (gConn, FALSE, NL, -1);

IF theErr <> noErr THEN
{ The tool will put up its own error alert }

END; { Good handle }
END; { Dolnitiate }

Terminating the connection

PROCEDURE DoKi | | ;

VAR
theErr: CMErr; { Error codes }
sizes : BufferSizes; { Tool channel sizes }
status: CMstat Fl ags; { State of the connection }
BEGI N

IF gConn<> NIL THEN BEG N

{ Get the connection status }
theErr := CMstatus(gConn, sizes, status);

{ Close it only if it's open or opening }
{ I'n this case: synchronous, no timeout }

Chapter 2: Programming with the Macintosh Communications Toolbox 11

| F BAND(status, cnStatusOpen + cnfStatusQOpening) <> 0 THEN
theErr := CMCl ose(gConn, FALSE, NIL, 0, TRUE);

IF theErr <> noErr THEN
; { The tool will put up its own error alert }

END; { Good Connection }
END, { DoKill }

Starting to send a file
PROCEDURE DoSend;

VAR

t heReply: SFReply; (File Info }
wher e . Point; { upper-left corner of File dialog }
numlypes: | NTECER; { File Types to display }
typelLi st: SFTypeli st;
anyeErr : FTErr; { Error handler }
BEGI N
IF gFT <> NIL THEN BEG N { Good handl e }

Set location of the SFGetFile dialog }
et Pt (where, 100, 100);

only display text files, else display all types }

Check to see if Text Only flag is set

F BAND(gFT~*. attributes, ftTextOnly) <> 0 THEN BEG N
typeList[0] := 'TEXT:

nunilfypes := 1,

{

S

{ If the FT tool can only send text files, then }
{

{

I

END
ELSE
numlypes := -1;

SFGet Fil e(where, 'File to Send', NIL,
nunlypes, typelList, NL, theReply);

Did the user hit OK or Cancel }
| F theReply.good THEN BEG N

{ Transfer the file TO the renote

12 Inside the Macintosh Communications Toolbox

anyErr := FTStart(gFT,ftTransmitting,theReply);

IF (anyErr <> noErr) THEN
; { Handl e any errors here }

END;, { Good file }
END, { Good FTHandl e }
END; { DoSend }

Starting to receive a file

PROCEDURE DoRecei ve;

VAR
t heReply : SFRepl vy; { File Info }
anyErr : OSErr ; { Errors on Start }
BEGI N

IF gFT <> NIL THEN BEG N

{ Let the FT tool use its own default file info }
t heReply. vRef Num := O0;

theReply. fName : = ;

{ Renove the search tenporarily in case it }
{ comes across during the transfer }

*

Use CMRenmpveSearch() to get rid of the file
transfer auto-receive string search

*)

{ Start receiving the file }
{ The rest gets transferred in the Idle |oop }

anyErr .= FTStart (gFT, ft Receiving, theReply);

IF (anyErr <> noErr) THEN
; { Handle error conditions }

END; { Good Handle }
END; { DoReceive }

Chapter 2: Programming with the Macintosh Communications Toolbox 13

Configuring a connection

PROCEDURE DoConnecti onConfi g;

of the choose dial og

VAR
result : | NTEGER; { Choose went OK? }
wher e : Point; { upper-left corner
}
tempStr : Str255;
BEGH N
{ Set the dialog box as close as possible to upper-left corner of
screen }
{ because the dialog box will grow down and/or

Set Pt (where, 10, 40);
| F gConn <> NIL THEN BEG N

{ Put up the standard tool chooser }
result := CMChoose(gConn, where, NIL);

*

Handl e the result here.

to the right }

If the tool has changed, need to re-add the file

transfer auto-receive search to the new
*)
END, { Good handle }
END; { DoConnectionConfig }

Configuring a terminal emulation
PROCEDURE DoTer m nal Confi g;

VAR
result : | NTECER, { Choose went OK? }
wher e . Point; { Upper-left corner of

BEGH N

connection tool.

t he choose dialog }

{ Set the dialog box as close as possible to top-left corner of

screen }
{ because the dialog box will grow down and/or

Set Pt (where, 10, 40);
IF gTerm <> NIL THEN BEGQ N

14 Inside the Macintosh Communications Toolbox

to the right }

{ Put up the standard tool chooser }
result := TMChoose(gTerm where, NIL);

*

- Handle the result here
*)
END, { Good handle }
END;, { DoTermn nal Config }

Configuring a file transfer

PROCEDURE DoFi | eTransfer Confi g;

VAR
result . | NTEGER,; { User chose all right }
wher e . Point; { upper-left corner of the dialog }
tempString: str255; { Search for FT sequence }

BEGH N
{ Set the dialog box as close as possible to top-left corner of scree
{ because the dialog box will grow down and/or to the right }

Set Pt (where, 10, 40);
IF gFT <> NIL THEN BEG N

{ Put up the standard box }
result := FTChoose(gFT, where, N L);

*

If the result = OKMajor or OKM nor, we nmay need to:
renove the old file transfer auto-receive search (if any)
add the new file transfer tool's auto-receive string (if any)

*)
END; { Good Handle }

END; { DoFileTransferConfig }

Chapter 2: Programming with the Macintosh Communications Toolbox 15

Making a new session document

PROCEDURE MakeNew,

VAR
err . OSErr; { Errors from Environ call }
t heW ndow : W ndowPtr; { Home for the terninal }
t heRect : Rect { TernRect for term nal }
Si zes : BufferSizes; { Connection tool buffers }
termEnvi ronnment : TernEnvironRec;
term D,
ftlD,
connl D . | NTEGER; { proc IDs for the tools }
t ool Name . Str255; { who are they? }
tenmpStr . Str255; { AutoReceive string for FT]
BEGH N
{ Need a hone }
t heW ndow : = Get NewW ndow(128, NI L, PO NTER(-1));
IF (theWndow = NIL) THEN BEG N
, { Handle Error }
Exit (MakeNew);
END;

Set Port (theW ndow) ;

{ Set up the ternRect/viewRect for Term tool }

theRect := theW ndow". port Rect;

{ I'f we have scroll bars, we'll need to inset theRect }
{to account for their widths }

gTerm : = N L;

gConn := NIL;

gFT := NL;

gBuffer := NIL;

gCache := NIL;

gStart FT := FALSE;

gWasFT : = FALSE;

16 Inside the Macintosh Communications Toolbox

{ New termnal tool }

*

Get the terninal tool's proc ID by calling either
CRMGet | ndTool Name() and/or TMGet Procl D()

*)

{ New Term nal tool }

gTerm := TMNew(t heRect, theRect, tnSaveBeforeCl ear, term D,
t heW ndow, @endProc, @CacheProc, @BreakProc,
NI L, @ernGetConnEnvirons, 0, 0);

IF (gTerm = nil) THEN BEG N

{ Handle error }

Exit (MakeNew) ;

END;

R R EEEEE }

{ New connection tool }

{ o }

{ Set the desired sizes }

sizes[cnDataln] := 1024; { | only want data in this exanple }
sizes[cnmDataQut] := 1024;

sizes[fcnCntlIn] := O; { lgnore these channels }
sizes[cnCntl Qut] := O;

sizes[cmAttnln] :=0;
sizes(cmAattnQut] : O;

*

Get the connection tool's proc ID by calling either
CRMCGet | ndTool Name () and/or CMGetProclD ()

*)
{Only want the data channel }
gConn := CMNew(connl D, cmData, sizes, 0, 0);

I F (gConn = nil) THEN BEG N
{ Handle error }

Exi t (MakeNew) ;

END;

Chapter 2: Programming with the Macintosh Communications Toolbox 17

*

Cet the file transfer tool's proc ID by calling either
CRMGet | ndTool Name () and/or FTGetProclD ()

*)

{ ReadProc and WiteProc are nil to let }
{ the tool handle the file input and output }

gFT := FTNew(ftID, 0, @TsendProc, @TreceiveProc, N L, NL,
@ TGet ConnEnvi rons, t heW ndow, 0, 0);

IF (gFT = nil) THEN BEG N
{ Handle error }
Exi t (MakeNew) ;

END;

*

If the file transfer tool's auto-receive string isn't enpty
then add it with CMAddSearch(gFT,theString, fl ags, @\ut oRecCal | Back)
*)

gBuffer := NewPtr(1024); { the data buffer }
IF (gBuffer = NIL) THEN
; { Handle Errors }

END; { MakeNew }

{ Call Back Proc if a FT auto-receive string is found }
PROCEDURE Aut oRecCal | back(gConn: ConnHandl e; data: Ptr; refNum
LONGI NT) ;

BEGI N

{ W can't call FTStart () or CMRenoveSearch () here as }
{ this proc might be called from Interrupt level }

gStartFT := TRUE; { Set the flag to call FTStart in
Idle }

END; { AutoRecCall Back }

18 Inside the Macintosh Communications Toolbox

Closing the session document
PROCEDURE DoCl ose(t heW ndow. W ndowPtr);

BEGI N

| F theWndow <> NIL THEN BEG N
IF gTerm <> NI L THEN
TMDi spose(gTern; { Get rid of the tools }

| F gConn <> NIL THEN
CMDi spose(gConn) ; Tool s shoul d di spose of }

their own w ndows }

Lt Tt

|F gFT <> NIL THEN
FTDi spose(gFT);

IF gBuffer <> NIL THEN { Get rid of my data space
Di sposPtr (gBuffer);

Di sposeW ndow(t heW ndow) ; { Get rid of the w ndow }
END, { Good W ndow }

END;, { Dod ose }

Chapter 2: Programming with the Macintosh Communications Toolbox 19

Other events

Activate events

PROCEDURE DoActivate(theEvent : EventRecord);

VAR

t heW ndow . W ndowPtr;

processed . BOOLEAN; { Activate or Deactivate }
BEGI N

t heW ndow := W ndowPtr (theEvent. nessage);

Set Port (t heW ndow) ; { Focus on the target }

{ I's this an activate or a deactivate }
processed := BAND(theEvent.nodifiers, activeFlag) <> O0;

*

(Deactivate application stuff here

*)

{ Tools need to adjust their menus, text selection, etc. }
IF gTerm <> NIL THEN

TMActi vate(gTerm processed); { Send nmessage to the tool
}
IF gConn <> NIL THEN
CMActi vat e(gConn, processed); { Send nessage to the tool
}

|F gFT <> NIL THEN
FTActivat e(gFT, processed); { Send nessage to the tool }
END; { DoActivate }

Resume events

PROCEDURE DoResune(t heEvent : Event Record);
CONST
resumeFlag = 1;
VAR
t heW ndow : W ndowPtr;
i sResume . BOOLEAN; { Resumne/ Suspend Event }
savedPor t . Gafbtr;
BEGH N
Get Port (savedPort); { Current Focus }

20 Inside the Macintosh Communications Toolbox

t heW ndow : = Front Wndow;, { Get the target }
Tools way work in background }

|F theWndow <> NIL THEN BEG N
Set Port (t heW ndow) ;

i sResune : = BAND(theEvent. nmessage, resuneFlag) <> O;

IF gTerm <> NIL THEN
TMResunme(gTerm i sResune);

| F gConn <> NIL THEN
CVMResune(gConn, isResune);

|F gFT <> NIL THEN
FTResume(gFT, isResune);

Set Port (savedPort);

END, { if good w ndow }
END, { DoResune }

Update events

PROCEDURE DoUpdat e(t heEvent: Event Record);

VAR
t heW ndow : W ndowPtr; { The target to update }
savedPort . Gafbtr; { Tenporarily saved }
savedClip . RgnHandl e; { Cipping for the termnal]
BEGI N
t heW ndow : = W ndowPtr (theEvent. nessage);
| F theWndow <> NIL THEN BEG N
savedClip := NewRgn; { Allocating for QD }
Get Port (savedPort); { Change the focus }
Set Port (theW ndow) ;
GetClip(savedClip); { Save the old area }
Cli pRect (t heW ndow". port Rect); { Just the w ndow }

Begi nUpdat e(t heW ndow) ;
{ Clear the old data }

Chapter 2: Programming with the Macintosh Communications Toolbox 21

Er aseRect (t heW ndow®. port Rect) ;

*

Update application stuff here
*

{ Terminal tool wll redraw }
IF gTerm <> NIL THEN
TMUpdate(gTerm theW ndow*. vi sRgn) ;
EndUpdat e(t heW ndow) ;

SetClip(savedClip); { Put it all back }
Di sposeRgn(savedClip); { Cean up }

Set Port (savedPort);
END; { Good W ndow }

END; { DoUpdate }

Keyboard events

PROCEDURE DoKey(theEvent : EventRecord);

VAR
t heKey . CHAR; { The character hit }
processed : BOOLEAN,; { Did the application handle it }
result . LONGI NT; { value MenuKey() returns }
BEGH N
{ Get the character
t heKey := CHAR(BAND(theEvent.nessage, charCodeMask));
processed := FALSE; { Haven't intercepted it }

Was it a command equival ent }
| F BAND(t heEvent. nodifiers, cndKey) <> 0 THEN BEG N

result := MenuKey(theKey); { Get the key equivalent }
{ Vvalid nmenu key? }

|F theMenu <> 0 THEN BEG N

processed := TRUE; { Application wll
redirect }
DoCommand(result); { Calls the above routine
END; (Good Menu Equival ent }

END, { Cnd-key down? }

22 Inside the Macintosh Communications Toolbox

{ If it wasn't a valid nenu comand then pass the event to the termn

IF (gTerm <> NIL) AND NOT processed THEN
TMKey(gTerm theEvent);
END; { DoKey }

Mouse events

PROCEDURE DoClick(theEvent : EventRecord);
VAR

t heW ndow : W ndowPtr; { The target }
BEGI N
{ Where was the click }
thePart := FindWndow(theEvent.where, theW ndow),;

CASE thePart OF
i nMenuBar: BEG N
Get the menu info }

result := MenuSel ect (theEvent: where);
DoCommand(result); { call above routine }
END;

i NnGr ow: BEGI N
{ Resize the Wndow, scroll bars, etc. }

{ Tell the termnal }
TMResi ze(gTerm t heW ndow®. port Rect) ;
END;

i nCont ent :
IF gTerm <> NIL THEN BEGQ N

*
Call TMscroll () if the click was in a scroll bar

*)

TMCl i ck(gTerm theEvent); { For mouse selection }

END;{ valid termrec }

ot herwi se
; Perform standard event action

END; { case }
END; { DoClick }

Chapter 2: Programming with the Macintosh Communications Toolbox 23

Main program loop
PROCEDURE WMai nLoop;

VAR
t heEvent . Event Record; { World Happenstances }
t heW ndow : W ndowPtr; { The desired target }

BEGH N
VWHI LE NOT done DO BEG N

Dol dl e; { Call our idle proc once thru }
| F Wit Next Event (everyEvent, t heEvent, 0, NL) THEN BEG N
{ get the target w ndow }

CASE t heEvent.what OF
aut oKey, keyDown:

t heW ndow : = Front Wndow,
mouseDown:

| F Fi ndW ndow(t heEvent . wher e, t heW ndow) =0 THEN
ot herwi se

t heW ndow := W ndowPtr (theEvent. message);

END;, { case }

{ Al windows created by a tool are supposed to }
{ have their RefCons = LONG NT(theTool Handl e) }

*

Call the tool event proc if the window is a tool
wi ndow. i.e. TMEvent ()

*)

|F (theWndow <> NIL) THEN BEG N
Set Port (t heW ndow) ;

CASE theEvent.what OF { App W ndow }

aut oKey, keyDown:
{ May set done to true }
DoKey(t heEvent);
mouseDown:
May set done to true }
DoCl i ck(theEvent);
updat eEvt :
DoUpdat e(t heEvent);

24 Inside the Macintosh Communications Toolbox

app4Evt:
DoResume(t heEvent);

activat eEvt:
DoActi vat e(t heEvent) ;

END;, { case }
END, { Good W ndow }
END; { WaitNextEvent }
END; { while not done }

END; { DoMai nLoop }

Chapter 2: Programming with the Macintosh Communications Toolbox 25

26 Inside the Macintosh Communications Toolbox

Chapter 3 Connection Manager

Vigin __Penw p

LN Edit

THIS CHAPTE R describes the Connection Manager, the Communications Toolbox manager that allows
applications to establish and maintain connections. This chapter describes some of the fundamental concepts
about the Connection Manager. Then it describes the connection record which is the most important data
structure to the Connection Manager. Next, this chapter presents a detailed functional description of each
routine provided by the Connection Manager. At the end of the chapter, you'll find a “Quick Reference” to

routines, data structures, and routine selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh, which will
implement communications services for users. Be careful not to confuse the services your application provides

with the services that tools provide.
To use the Connection Manager, you need to be familiar with
= the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

= the Device Manager (described in Inside Macintosh, Volumes 11, IV, V)

28 Inside the Macintosh Communications Toolbox

About the Connection Manager

By using Connection Manager routines, your application can implement basic connection services without
having to take into account underlying connection protocols. Connection tools, which are discussed in
Chapter 9, are responsible for implementing connection services according to specific protocols.

The Connection Manager provides a generic connection—a channel that carries data between your
application and another computer process. The other process can be running on the same computer as your
application or on any other computer.

Here’s what happens inside the Connection Manager. An application makes a request of the Connection
Manager when it needs a connection service, such as opening a connection. The Connection Manager then
sends this request to one of the tools that it manages. The tool provides the service according to the specifics
of the connection protocol that is implemented for the data connection. Once the tool has finished, it passes
back to the application (through the manager) any relevant parameters and return codes.

The data is sent along the connection in a byte stream (a reliable byte stream, if the connection protocol
supports error correction), rather than on a transaction-by-transaction basis. Although the Connection
Manager does not provide flow control, error correction, error detection, and data encapsulation, a tool or
application can provide these services.

Figure 3-1 shows the data flow into and out of the Connection Manager.

= Figure 3-1 Data flow into and out of the connection Manager

Commundcations
Toolbox
Dt renaresd ——
o applcaticn | T erminal
Conmecian — >f,—"’~_h o] b = o
- o el
Mafuager 7 T file ransfer
Craka 1oy send o =
.||.;|'I-j1llli.'ﬂ.l|£|
rEmiate compater Ir = | T '
E- -(,:-:m.r\:_'-l_['l-lu- L
]

Chapter 3: Connection Manager 29

The most important data structure maintained by the Connection Manager is the connection record, which
stores all the specifics about a connection. For example, the connection record might show that a connection
takes place over a direct serial port connection transmitting at 9,600 bits per second (bps).

One important aspect of the connection record is that it allows for protocol-independent routines.
Protocol-independent routines allow applications to use Connection Manager services without regard for the
underlying communications protocols. In other words, when an application wants to read data from a remote
entity, it tells the Connection Manager to read, and the connection tool figures out exactly how to implement a
read operation on a given connection.

Another important feature of the connection record is that it lets you use multiple instances of the same
tool. The same tool can be used by different processes at the same time, as in a MultiFinder® operating system
environment, or by different threads in a given application.

The connection record is described in greater detail later in this chapter.

Besides providing basic connection routines, the Connection Manager includes routines that make it easy
for your application to configure a connection tool, either by presenting the user with a dialog box or by
interfacing directly with a scripting language. The Connection Manager also contains routines that make it
easier for you to localize your applications in other languages.

You can use the Connection Manager with other Communications Toolbox managers to create a
communications application with file transfer and terminal emulation capabilities. Or, you can use the
Connection Manager with some other data transfer or terminal emulation service. You can also write your own
connection tool for the Connection Manager to use. (This procedure is discussed in Chapters 8 and 9.)
Regardless of which method you choose, your application should be able to handle different connection tools
so that users can change tools and still be able to use your program.

Connection channels: data, attention, and control

When data is sent along a connection, there is a certain amount of overhead that sometimes accompanies it.
This “extra” information could be a warning that the connection is about to go down or that the sending entity
should slow its rate of transmitting data. Some connection protocols are designed in such a way that this sort
of information can be sent simultaneously with the data stream on a channel. The Connection Manager
supports up to three channels on each connection—data, attention, and control—that can be thought of as
three separate lines of communication between each entity. The data channel, however, is for all protocols the
primary channel for transmitting information between entities. The other two channels are used by only some
connection protocols.

When you design your application, keep in mind that some protocols support all three channels,
whereas others support only one (the data channel). Your application should be able to handle different
connection tools in a way that allows users to change tools and still be able to use your program.

30 Inside the Macintosh Communications Toolbox

The connection record

The connection record contains information that describes a connection, as well as pointers to Connection
Manager internal data structures. The Connection Manager uses this information to “translate” the protocol-
independent routines used by an application into a service implemented according to a specified protocol.
Most of the fields in the connection record are filled in when an application calls CMNew, described later in
this chapter.

Because the connection record describes how communications take place on a given
connection, an application can communicate on more than one connection at the same time. All the
application has to do is create a new connection record every time it initiates a new connection.

D Important Your application, in order to be compatible with future releases of the Connection
Manager, should not directly manipulate the fields of the connection record (with the
exception of confi g and ol dConf i g).The Connection Manager provides routines that
applications and tools can use to change connection record fields. These routines are
discussed later in this chapter. D

Connection record data structure

TYPE

ConnHandl e = AConnPtr;

ConnPtr = AConnRecor d;

ConnRecord = RECORD
procl D : | NTEGER;
flags : CMRecFl ags;
err Code : CMErT ;
r ef Con : LONGI NT;
user Dat a : LONGI NT
def Proc : ProcPtr;
config : Ptr;
ol dConfi g : Ptr;
reservedO : LONGI NT;
reservedl : LONGI NT;
reserved? : LONG NT;
cnPrivate : Ptr;
buf f er Array : CMBuUf f ers;
buf Si zes : CMBuUf f er Si zes;

Chapter 3: Connection Manager 31

muField LONG NT;
asyncCount : CMBuUf f er Si zes;
END;

procl D
procl D is the connection tool ID. This value is dynamically assigned by the Connection Manager when your
application calls CMGet Pr ocl D.

fl ags
f1 ags is a bit field that indicates certain specifics about a connection when the connection record is first
created. The bit masks for f | ags are as follows:

TYPE
CMRecFl ags = LONGI NT;
CONST
cnmDat a = $00000001;
cnmCnt | = $00000002;
CmAt t n = $00000004;
cmDat aCl ean = $00000100;
CnCnt | Cl ean = $00000200;
cmAt t nCl ean = $00000400;
cmNoMenus = $00010000:;
cmQui et = $00020000;

Your application can turn on the cmNoMenus or cmQui et bits when it calls CMNew (discussed later in this
chapter). The connection tool will set the rest of these bits.

If the tool sets the cmDat a, cmCnt |, or cmAt t n bit, your application can use a data, control, or
attention channel. If the tool sets the cnDat aCl ean, cnCntl Cl ean, or cmAtt nCl ean bit, your
application can use a reliable (error-free, in order delivery) data, control, or attention channel.

The connection tool will not display any custom menus if your application sets the c mMNoMenus bit. The
connection tool will not display any status dialog boxes or error alerts if your application sets the cmQui et
bit. If your application turns the cmQui et bit on, it is responsible for displaying status dialog boxes and
error alerts that the tool would have displayed. Applications typically use these two bits to hide the connection
tool from the user.

err Code
err Code contains the last error encountered by the Connection Manager. Valid error codes are as follows:

32 Inside the Macintosh Communications Toolbox

TYPE

CMEr r OSErr ;

CONST
cmGeneri cError
cmNoErr
cmRej ect ed
cnfail ed
cmli meQut
cmNot Open
cmNot Cl osed
cmNoRequest Pendi ng
cmNot Support ed
cmNoTool s
cmUser Cancel

OCONO I ~AWNRFRLO!

ref Con
r ef Con is a four-byte field that your application can use.

user Dat a
user Dat a is a four-byte field that your application can use.

def Proc
def Proc is a procedure pointer to the main code resource of the connection tool that will implement the
connection protocol. The connection tool’s main code resource is of type ' cdef ' .

config
conf i g is a pointer to a data block that is private to the connection tool. It can contain information such as
data transfer rate or parity for direct asynchronous connections, phone numbers for modem connections, or an
address for an AppleTalk ® network connection; the contents vary from tool to tool.

Your application can store the contents of conf i g to save the state of a connection in a document.
The structure, size, and contents of the configuration record are set by the tool. Your application can
determine the size of the configuration record by calling Get Pt r Si ze, overwrite its contents using
Bl ockMove, and validate the contents with CMval i dat e.

Your application can use CMGet Conf i g and CMSet Conf i g to manipulate fields in this record.
For details, see “Interfacing with a Scripting Language,” later in this chapter. Your application can save the
state of the connection record by saving the string returned from CMGet Conf i g. Also, your application can
restore the configuration of the connection record by passing a saved string to CMSet Conf i g.

You can find more information about conf i g from a connection tool perspective in Chapter 8.

ol dConfi g

ol dConfi g is a pointer to a data block that is private to the connection tool and contains the most recently
saved version of conf i g. Your application is responsible for setting ol dConf i g when the user saves a
session document.

Chapter 3: Connection Manager 33

reservedO, reservedl,andr eserved2
reservedO, reservedl, andreserved2 are fields that are reserved for the Connection Manager.
Your application must not use these fields.

cnPrivate
cmPri vat e is a pointer to a data block that is private to the connection tool. Your application must not use
this field.

buf f er Array

buf f er Array is a set of pointers to buffers for the data, control, and attention channels. These are the
buffers that are used to read data to or write data from the entity. These buffers are allocated by the
connection tool and are the exclusive property of the connection tool; your application should not use these

buffers. The data type for buf f er Array is CMBuf f er s and is defined under the description of
buf Si zes.

buf Si zes
buf Si zes contains the actual sizes of the buffers and it, too, should not be manipulated directly by an
application. The data type for buf Si zes is CMBuf f er Si zes, and is defined as follows:

TYPE

CMBuUT Fi el ds=(
cnmDat al n,
cmDat aQut
cmCntlIn
cmCnt | Qut
CmAttnln
cmAt t nQut
cmRsrvin { Reserved for Apple }
cmRsrvQut) ; { Reserved for Apple }

CMBuUf f er s
CMBuUf f er Si zes

ARRAY[CMBuf Fi el ds] OF Ptr;
ARRAY(CMBuUf Fi el ds] OF LONG NT;

muField
m uFi el d is a pointer to a private data structure that the Connection Manager uses when searching the data
stream.

asyncCount
asyncCount is used by completion routines to determine how many bytes were actually transmitted or
received on a particular channel. Completion routines are discussed in more detail later in this chapter.

34 Inside the Macintosh Communications Toolbox

Connection Manager routines

The following sections describe the routines that tools and applications can use to access Connection Manager
services. These routines are protocol independent; your application does not need to be familiar with the
specifics of a particular communications protocol in order to use the connection. Your application can call
three Connection Manager routines from interrupt level: CMRead, CMf i t e, and CMSt at us. The other
routines cannot be called from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.

InitCM / 36 CMCKill [52

CMGet Procl D / 37 CVReset [/ 53

CwWNew / 38 CvBreak / 53

CVDef aul t /40 CMGet ConnEnvirons / 54
CWal idate / 40 CVMRead / 56

CMChoose / 41 CMNite / 58

CMSet upPreFlight / 43 CMAddSearch / 59
CMSet upSetup / 44 CMRenoveSearch / 60
CMSet upFilter / 44 CMCl ear Search / 60
CMSet upltem / 45 CMActivate / 61
CMSet upCl eanup / 45 CMResunme / 61

CMSet upPost Flight / 46 CMvenu / 61

CMGet Config / 47 CMEvent [/ 02

C\Vset Config / 47 CM nt| ToEnglish / 63
CMOpen / 48 CMENngl i shTolntl / 63
CMCl ose / 49 CMGet Tool Nanme / 64

CMAbort / 49
CMDi spose / 50
CMdle / 50
CM.isten / 50
Cvstatus / 51
CMAccept [/ 52

CMSet Ref Con / 64
CMZet Ref con / 64
CMSet UserData / 65
CMGet User Dat a /65
CMGet Version / 65
CMGet CWersion / 65

Chapter 3: Connection Manager

35

Preparing to open a connection

Before your application can open a connection, it must initialize the Connection Manager (by calling

I ni t CM), find out the pr ocl D of the tool it requires (by calling CMGet Pr oc| D), create a connection
record (by calling CMNew), and then configure the connection tool (by restoring conf i g from a saved
document; or by calling CMChoose, the connection tool custom configuration routines, or CMSet Conf i g).

| ni t CM
Initializing the Connection Manager

| ni t CMinitializes the Connection Manager. Your application should call this routine
only once, after calling the standard Macintosh Toolbox initialization routines.

A Warning Your application must initialize the Communications Resource Manager (by
calling | ni t CRM) and then the Communications Toolbox Utilities (by calling
Ini t CTBUt i | i ti es), whether or not it uses any of their calls, before it initializes the
Connection Manager. A

Function InitCM : CMErr;

Description | ni t CMreturns an operating system error code if appropriate. Your application must
check for the presence of the Communications Toolbox before calling this function.
Sample code under “Determining Whether the Managers are Installed” in Appendix C shows

you how your application can make this check.

Result Codes cmGeneri cError, cmNoErr, cmNoTool s.

36 Inside the Macintosh Communications Toolbox

CMzt Procl D

Getting current pr ocl D information

Your application should call CMGet Pr oc| D just before creating a new connection
record, to find out the pr ocl D of a tool.

Function CMGet Procl D (nanme: Str255): | NTECGER

Description name specifies a connection tool. If a connection tool is available with the specified

nane, its pr ocl Dis returned. If name references a nonexistent connection tool,
CMGet Pr ocl D returns -1.

Chapter 3: Connection Manager 37

CMN\New

Creating a connection record

Before your application can open a connection, it must create a connection record so the
Connection Manager knows what type of connection to establish. CMNew creates a new
connection record; fills in the fields that it can, based upon the parameters that were
passed to it; and returns a handle to the new record in ConnHandl e. CMNew
automatically makes two calls to CVDef aul t (which is described later in this chapter) to
fill in conf i g and ol dConf i g. The Connection Manager then loads the connection
tool main code resource, moves it high in the current heap, and locks it. If an error occurs
that prevents a new connection record from being created (for example, running out of
memory), CMNew passes back NI L in ConnHandl e.

Function CMNew(procl D : INTEGER, flags : CMRecFl ags; desiredSizes
CMBufferSizes; refCon : LONG NT; userData : LONG NT) :
ConnHandl e;

Description procl Dis dynamically assigned by the Connection Manager to tools at run time.
Applications should not store pr ocl D values in settings files. Instead, they should store
tool names, which can be converted to pr ocl D values with the CMGet Pr oc| D routine.
Your application should use the ID that CMGet Pr oc| D returns for pr ocl D.

f 1 ags is a bit field with the following masks:

CONST

cmDat a = $00000001;
cnCnt | = $00000002;
CmMAttn = $00000004;
cmDat aCl ean = $00000100:;
cnCnt | Cl ean = $00000200;
cmAt t nCl ean = $00000400;
cmNoMenus = $00010000;
cmQui et = $00020000;

f 1 ags represents a request from your application for a level of connection service. If
your application sets cnmNoMenus, the connection tool will not display any custom
menus. If your application sets cmQui et , the connection tool will not display any
windows. Applications typically use these bits to hide the connection tool from the user.

The connection tool sets the other bits, and returns in the f | ags field of the
connection record the level of connection service that it grants your application. The
fl ags field is discussed in “Connection Record Data Structure,” earlier in this chapter.

Apple Computer, Inc. has reserved the bits of f | ags not shown in this manual. Do
not use them, or your code may not work in the future.

38 Inside the Macintosh Communications Toolbox

desi redSi zes specifies buffer sizes that your application requests for its read, write,
control read, control write, attention read, and attention write channels. Your application
can specify the sizes that it wants when it calls CMNew, but the connection tool might not
provide the requested sizes. To have the tool set the size of these buffers, your application
should put zeros in the array. These buffers become the exclusive property of the
connection tool and should not be manipulated by the application in any way. The actual
buffer sizes are kept in the buf Si zes field of the connection record.

r ef Con and user Dat a are fields that your application can use.

Chapter 3: Connection Manager 39

CMVDef aul t
Initializing the configuration record

CMDef aul t fills the specified configuration record with the default configuration
specified by the connection tool. CMNew calls this procedure automatically when it fills in
the confi g and ol dConf i g fields in a new connection record.

Procedure CvDef ault (VAR theConfig: Ptr; proclD: |NTEGER; allocate:
BOOLEAN) ;

Description Ifal | ocat e is TRUE, the tool allocates space for the conf i g in the current heap zone.

Cwal i dat e

Validating the configuration record

CWal i dat e performs an internal consistency check on the configuration and private
data records of the connection record. CMNew and CMSet Conf i g call this routine after
they have created a new connection record, to make sure that the record contains values
identical to those specified by the connection tool.

Function CWal i dat e(hConn: ConnHandl e) : BOOLEAN,

Description If the validation fails, the Connection Manager returns TRUE and the tool fills the
configuration record with default values by calling CMDef aul t .
Your application can call this routine after restoring a configuration, to verify that the
connection record contains the correct information, in a manner similar to that shown next.

Bl ockMove(saveConfi g, hConn*®. config, Get PtrSi ze(hConn””. con
fig));
| F Cwal i date(hConn) THEN BEG N

{ validate failed }

END

ELSE BEGA N
{ validate succeeded }
END

40 Inside the Macintosh Communications Toolbox

CMChoose

Configuring a connection tool

This area is filled
in by the
connection tool.

Function

Description

An application can configure a connection tool in one of three ways. The easiest and most
straightforward way is by calling the CMChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 3-2.

= Figure 3-2 A sample tool-settings dialog box

foeee—————— —
Cenneclion Seitings
Mathod: [Modem] [Comcel |

Fhiutiens Bt irgs | Port saitinge .

ﬂ}h’:ﬂrw e afler :2___: rireglil ! BrdlRale
e e | B

i L
E“"‘“l;“__l""” [Sop br; | '|'|
it ey Em :) _"_"M"' IEI
pont: [Tasg) Cusrrard Port

The second way an application can configure a connection tool is by presenting the user
with a custom tool-settings dialog box. This method is much more difficult, and involves
calling six routines. The routines are described in the next section, “Custom Configuration
of a Connection Tool,” and “The Custom Tool-Settings Dialog Box” in Appendix C provides
example code.

The third way your application can configure a connection tool is by using the
scripting language interface, described in “Interfacing With a Scripting Language,” later in
this chapter. This method allows your application to bypass user interface elements.

CMChoose(VAR hConn: ConnHandl e; where: Point; idleProc:
ProcPtr): | NTECGER;

wher e is the point, specified in global coordinates, where the upper-left comer of the
dialog box should appear. It is recommended that your application place the dialog box as
close as possible to the upper-left corner of the screen, because the size of the dialog box
varies from tool to tool.

Chapter 3: Connection Manager 41

42

i dl eProc is a procedure with no parameters that the Connection Manager will
automatically call every time CMChoose calls the setup dialog box filter procedure. Pass
NI L if your application has no i dl ePr oc.

CMChoose returns one of the following values:

CONST

chooseDi sast er
chooseFai |l ed
chooseAbort ed
chooseOKM nor
chooseOKMaj or
chooseCancel

I n
WNPF,O ' !
RN

chooseDi sast er means that the CMChoose operation failed, destroyed the
connection record, and returned NI L in the connection handle.

chooseFai | ed means that the CMChoose operation failed and the connection
record was not changed.

chooseAbort ed means that the user started to change the connection while it
was still open but did not commit the changes. When users try to change connection tools
while the connection is still open, the Connection Manager prompts them with a dialog box
that asks if they want to make the change. If the user clicks No in this dialog box, the
CMChoose routine returns chooseAbor t ed.

chooseOKM nor means that the user clicked OK in the dialog box but did not
change the connection tool being used.

chooseOKMaj or means that the user selected OK in the dialog box and also
changed the connection tool being used. The Connection Manager then destroys the old
connection handle by calling CMDi spose. The connection is closed down, all pending
Leég and write operations are terminated, and a new connection handle is returned in
nn.

chooseCancel means that the user clicked Cancel in the dialog box.

Inside the Macintosh Communications Toolbox

Custom configuration of a connection tool

Your application creates a custom tool-settings dialog box and presents it to the user by using the six
Connection Manager routines: CMSet upPr ef | i ght , CMSet upSet up, CMSet upFi | ter,

CMSet upl t em CMSet upCl eanup, and CMSet upPost f | i ght . Using these routines is more
involved than calling CMChoose, but they provide your application with much more flexibility. Refer to the
code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an application calls these

routines.

To build a list of available connection tools, use the routine CRMGet | ndTool Nanme, which is
described in Chapter 0.

C\VBet upPr ef | i ght

Setting up the custom tool-settings dialog box

Function

Description

CMSet upPr ef | i ght returns a handle to a dialog item list that your application
appends to the custom tool-settings dialog box. The handle comes from the connection
tool. (The calling application uses AppendDI TL, discussed in Chapter 7.) This handle is
not a resource handle. Your application is responsible for disposing of the handle when
done with it.

The connection tool can use CMSet upPr ef | i ght to allocate a block of private
storage, and to store the pointer to that block in magi cCooki e. The magi cCooki e
value should be passed to the other routines that are used to set up the custom tool-
settings dialog box.

CMSet upPreflight(proclD: | NTEGER, VAR nmagi cCooki e:
LONG NT): Handl e;

procl Dis the ID for the connection tool that is being configured. Your application
should get this value by using the CMGet Pr oc| D routine, discussed earlier in this
chapter.

® Note. The r ef con of the custom tool-settings dialog box should point to a data structure

(shown next) in which the first two bytes are the tool pr oc| D and the next four bytes are
magi cCooki e User | t emroutines, for example, may require pr ocl D to obtain tool
resources.

TYPE
chooseDLOGdat a = RECORD
procl D : | NTEGER
magi cCooki e : LONGI NT
END;

Chapter 3: Connection Manager 43

C\Vbet upSet up

Setting up custom tool-settings dialog box items

CMSet upSet up tells the connection tool to set up controls (such as radio buttons or
check boxes) in the dialog item list returned by CMSet upPr ef | i ght .

Procedure CMSet upSet up(procl D: | NTEGER;, theConfig: Ptr; count:
| NTEGER,;
theDi al og: Di alogPtr; VAR magi cCooki e: LONG NT);

Description procl Dis the ID for the connection tool that is being configured. Your application
should use the same value for pr ocl D as it passed to CMSet upPr ef | i ght .

t heConfi g is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box in which configuration is taking place.

magi cCooki e is a pointer to private storage for the connection tool.

C\VBet upFi | ter

Filtering custom tool-settings dialog box events

Your application calls CMSet upFi | t er as a filter procedure before it calls the standard
modal dialog box filter procedure for the custom tool-settings dialog box. This routine
allows connection tools to filter events in the custom tool-settings dialog box.

Function CMSet upFilter(procl D: | NTEGER;, theConfig: Ptr;
count: | NTEGER; theDi al og: DialogPtr; VAR theEvent:
Event Record; VAR theltem |NTEGER;, VAR nmgi cCooki e:
LONG NT): BOOLEAN;

Description procl Dis the ID for the connection tool that is being configured. Your application
should use the same value for pr ocl D as it passed to CMSet upPr ef | i ght .

t heConf i g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t heEvent is the event record for which filtering is to take place.

t hel t emcan return the item clicked in the dialog box.

magi cCooki e is a pointer to private storage for the connection tool.

If the event passed in was handled, CMSet upFi | t er returns TRUE. FALSE
indicates that your application should perform standard dialog box filtering.

44 Inside the Macintosh Communications Toolbox

CVbet upl t em

Processing custom tool-settings dialog box events

Procedure

Description

CMSet upl t emprocesses events for controls in the custom tool-settings dialog box.

Cvsetupltem procl D: I NTEGER, theConfig: Ptr; count:
| NTEGER; theDi alog: DialogPtr; VAR theltem |NTEGER, VAR
magi cCooki e: LONGI NT) ;

procl Dis the ID for the connection tool being configured. Your application should use
the same value for pr ocl D as it passed to CMSet upPr ef I i ght .

t heConfi g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t hel t emis the item clicked in the dialog box. This value can be modified and sent
back.

magi cCooki e is a pointer to private storage for the connection tool.

C\vBet upd eanup

Performing clean-up operations

Procedure

Description

CMSet upCl eanup disposes of any storage allocated in CMSet upPr ef | i ght and
performs other clean-up operations. If your application needs to shorten a dialog box, it
should do so after calling this routine.

CMset upCl eanup(procl D: | NTEGER;, theConfig: Ptr; count:
| NTEGER; theDi al og: DialogPtr; VAR magi cCookie: LONG NT);

procl Dis the ID for the connection tool that is being configured. Your application
should use the same value for pr ocl D as it passed to CMSet upPr ef | i ght .

t heConf i g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

magi cCooki e is a pointer to private storage for the connection tool.

Chapter 3: Connection Manager 45

CMVBet upPost f | i ght

Closing the tool file
CMSet upPost f 1 i ght closes the tool file if it is not being used by any sessions.
Procedure CMSet upPost flight (procl D: | NTEGER) ;

Description procl D is the ID for the connection tool that is being configured. Your application
should use the same value for pr ocl D as it passed to CMSet upPr ef | i ght .

46 Inside the Macintosh Communications Toolbox

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to configure a
connection tool. CMGet Conf i g and CMSet Conf i g provide the services that your application needs to
interface with a scripting language.

CMzet Confi g

Getting the configuration string

CMGet Conf i g gets a configuration string from the connection tool.

Function CMGet Confi g(hConn: ConnHandle): Ptr;

Description CMGet Conf i g returns a null-terminated, C-style string from the connection tool
containing tokens that fully describe the configuration of the connection record. For an
example, see the description of the next routine. If an error occurs, CMGet Confi g
returns NI L.
It is the responsibility of your application to dispose of Pt r .

C\Vset Confi g

Setting the configuration with a string

Function

Description

Sample

CMSet Conf i g passes a configuration string to the connection tool.
CMset Confi g(hConn: ConnHandl e; thePtr: Ptr): | NTEGER,

CMSet Conf i g passes a null-terminated, C-style string (see the example string later in this
section) to the connection tool for parsing. The string is pointed to by t hePt r and must
contain tokens that describe the configuration of the connection record. The string can be
any length.

CMsSet Conf i g ignores items it does not recognize or find relevant; such an
occurrence causes the connection tool to stop parsing the string and to return the character
position where the error occurred. If the connection tool successfully parses the string, it
returns cNOEr r . If the connection tool does not successfully parse the string, it returns
one of the following values: a number less than -1 to indicate an OSEr r, -1 to indicate an
unknown error, or a positive number to indicate the character position where parsing was
stopped.

Individual connection tools are responsible for the parsing operation.

A null-terminated, C-style configuration string

Baud 9600 dataBits 8 Parity None StopBits 1 Port "Mdem
Port" Handshake None Hol dConnection Fal se Rem ndDi sconnect
Fal se\ 0

Chapter 3: Connection Manager 47

Opening, using, and closing the connection

Once your application has performed the required tasks described in the previous sections, it can open and use
a connection.

CMDXpen

Opening a connection

CMOpen attempts to open a connection, based on information contained in a connection
record.

Function CMOpen(hConn: ConnHandl e; async: BOOLEAN, conpletor:
ProcPtr; tinmeout: LONG NT): CMerr;

Description hConn points to the connection record for the new connection.

async specifies whether the opening request is asynchronous. If your application makes
an asynchronous request, CMOpen returns cmNOEr r immediately.

conpl et or specifies the completion routine to be called upon completion of an
asynchronous open request. Completion routines are discussed in greater detail later in
this chapter, in the section “Completion Routines.”

t i meout specifies a time period, in ticks, within which CMOpen must be completed
before the connection tool returns a cmli meQut error. For no timeout, use -l. For a
single attempt to open the connection, use 0. Some connection tools ignore this parameter.

If no error occurs during the open attempt, CMOpen returns cmNoEr r. CMOpen
returns a negative number if an operating system error occurred, or a positive number if a
Connection Manager error occurred.

Result Codes cnGeneri ceérror, cmNoErr, cnRejected, cnFailed, cnlinmeout,
cmNot Cl osed, cmNot Supported, cnlJserCancel .

48 Inside the Macintosh Communications Toolbox

CMJ ose

Closing a connection

Function

Description

Result Codes

CMADbor t

CMCI ose closes a connection that is already open or in the process of opening.

CMCl ose(hConn: ConnHandl e; async: BOOLEAN; conpletor:
ProcPtr; timeout: LONG NT; now. BOOLEAN): CMErr;

async specifies whether or not the close request is asynchronous. If your application
requests an asynchronous close, CMCl ose returns noEr r immediately.

conpl et or specifies the completion routine to be called upon completion of an
asynchronous close request. Completion routines are discussed in greater detail later in
this chapter, in the section “Completion Routines.”

ti meout specifies a time period, in ticks, within which the close operation must be
completed before the connection tool returns a cmTi meQut error. For no timeout, use -1.
For a single attempt to close the connection, use 0. Some connection tools ignore this
parameter.

When nowis TRUE, the connection tool closes the connection immediately. When now is
FALSE, the connection tool waits until all pending input and output have finished before
closing the connection.

cnGeneri ceérror, cmNoErr, cnRejected, cnFailed, cnlinmeout,
cmNot Open, cnNot Supported, cmUser Cancel .

Aborting a connection

Function
Description

Result Codes

CMAbor t tells the Connection Manager to stop trying to complete a pending asynchronous
open request. Any open completion routines are executed. Your application can also call
this routine to stop an outstanding CMLi st en.

CMAbort (hConn: ConnHandle): CMErr;

hConn specifies the connection this routine affects.

cnGeneri cError, cmNoErr, cnRejected, cnFailed, cnNotOpen,
cmNoRequest Pendi ng, cnmNot Support ed.

Chapter 3: Connection Manager 49

CMDi spose

Disposing of a connection record

CMDi spose disposes of the connection record and all associated data structures. It is up
to the connection tool to decide whether or not to wait for all pending read and write
operations to complete before closing and disposing of the connection.

Procedure CMDi spose(hConn: ConnHandl e) ;

Description hConn specifies the connection record disposed of by this routine.

CMdl e

Idle procedure
Your application should call CM dI e at least once every time it goes through its main
event loop, so that the connection tool can perform idle-loop tasks.

Procedure CM dl e(hConn: ConnHandl e);

Description hConn specifies the connection for which idle-loop tasks are to be performed.

CMLi st en

Listening for incoming connection requests

Function

Description

Result Codes

CMLi st en “listens” for a connection request from another entity. Your application, after
it calls CMLi st en, should call CMSt at us (which is described later in this section) to
see if a connection request has been received (by checking the

cnSt at usl ncom ngCal | Present bit).

CMLi st en(hConn: ConnHandl e; async: BOOLEAN; conpletor:
ProcPtr; timeout: LONGINT): CMErr;

async specifies whether or not the opening request is asynchronous. If your application
makes an asynchronous request, CMLi st en returns cmNoEr r immediately. If your
application makes a synchronous request, CMLi St en stays in a “listen loop” until it
receives the connection request.

conpl et or specifies the completion routine that the Connection Manager calls after it is
done listening for the connection request. Completion routines are called only after
asynchronous calls to CMLi st en. “Completion Routines,” later in this chapter, discusses
completion routines in more detail.

t i meout specifies a time period, in ticks, within which a connection request must be
received before the connection tool returns a cnili meout error. For no timeout, use
-1. For a single listen, use 0. Some connection tools ignore this parameter.

cnmGeneri ceError, cmNoErr, cnRejected, cnFail ed, cnilinmeout,
cmNot Cl osed, cmNot Supported, cnlJser Cancel .

50 Inside the Macintosh Communications Toolbox

C\VSt at us

Getting connection status information

Function

Description

Result Codes

CMSt at us returns a variety of useful status information about a connection. Your
application can call this routine at interrupt level.

CMst at us (hConn: ConnHandl e; VAR sizes: CMBufferSizes; VAR
flags: CMstatFlags): CMErr;

Si zes is a variable of type CMBuf f er Si zes that contains the number of characters to
be read or written on the data, control, and attention channels. The indexes of the array
are as follows:

cmDat aln, cnDataOut, cnCntlln, cnCntl Qut, cmAttnln,
cmAttnQut, cnRsrvin, cnRsrvCQut.

f 1 ags is a bit field with the following masks:

CONST
tool is opening connection }
cnSt at usOpeni ng =$00000001;
{ connection is open }
cnSt at usOpen =$00000002;
tool is closing connections}
cnSt at usCl osi ng =$00000004;
{ data present on data channel }
cnSt at usDat aAvai | =$00000008;
data present on cntl channel }
cmSt at usCnt | Avai | =$00000010;
{ data present on attn channel }
cnSt at usAtt nAvai | =$00000020;
{ data read pending }
cnSt at usDRPend =$00000040;
data write pending }
cmSt at usDWPend =$00000080;
{ cntl read pending }
cnSt at usCRPend =$00000100;
cntl wite pending }
cnSt at usCWPend =$00000200;
{ attn read pending }
cmSt at usARPend =$00000400;
{ attn wite pending }
cmSt at usAWPend =$00000800;

{ tool is breaking the
connection }

cnSt at usBr eakPendi ng =$00001000;
{ tool is listening for data }
cmSt at usLi st enPend =$00002000;
{ call waiting for tool to
handl e }
cnSt at usl ncom ngCal | Present = $00004000;
TYPE
CMst at FI ags = LONG NT;

cnCeneri cError, cmNoErr, cmNot Supported.

Chapter 3: Connection Manager 51

CVAccept

Accepting or rejecting a connection request

Function

Description

Result Codes

CM K ||

CMAccept accepts or rejeds an incoming connection request.
CMAccept (hConn: ConnHandl e; accept: BOOLEAN): CMErr;

Typically, an application will perform some actions after a CMLi st en, the results of which
determine whether to accept the request. CMAccept cannot be called from interrupt level.

cmGenericError, cmNoErr, cnRejected, cnFail ed,
cmNoRequest Pendi ng, cmNot Support ed.

Stopping an asynchronous input/output request

Function

Description

Result Codes

CM OKi | | terminates any pending input/output (I/O) requests on the specified channel.
CM CKill (hConn: ConnHandl e; which: |NTEGER): CMErr;

whi ch indicates the channel, and can take one of the following values:
cnmDat al n, cnDataCQut, cnCntlln, cnCntl Qut, cmAttnln,
CmAt t nQut .

cnGeneri ceérror, cmNoErr, cnRejected, cnFail ed, cmNotOpen,
cmNot Support ed.

52 Inside the Macintosh Communications Toolbox

CVReset

Resetting the connection
CMReset causes the connection to be reset. The exact state to which the connection is
reset depends upon the connection protocol being implemented. The connection tool

clears all local read and write buffers.

Procedure CMReset (hConn: ConnHandl e);

CMVBr eak

Sending breaks

CMBr eak effects a break operation upon the connection. The exact effect of this
operation depends upon the tool in use.

Procedure CwvBr eak(hConn: ConnHandl e; duration; LONG NT; async:
BOOLEAN; conpletor: ProcPtr);

Description dur at i on specifies in ticks the length of the break.
conpl et or specifies the completion routine to be called upon completion of the break.

Completion routines are called only after asynchronous calls to CMBr eak. “Completion
Routines,” later in this chapter, discusses completion routines in more detail.

Chapter 3: Connection Manager 53

CMZet ConnEnvi r ons

Getting the connection environment

Function

Description

CMGet ConnEnvi r ons provides a means for obtaining connection environment
information.

CMGet ConnEnvirons (hConn : ConnHandl e; VAR theEnvirons
ConnEnvironRec) : CMErr;

CMGet ConnEnvi r ons returns the connection environment record in
t heEnvi r ons for the connection specified by ConnHandl e. The connection tool
is responsible for filling in each field of ConnEnvi r onRec with either a value (if it
has a valid value to supply) or 0.

The structure for version 0 of the connection environment record is as follows:

TYPE
ConnEnvi ronRecPtr AConnEnvi ronRec;
ConnEnvi r onRec RECORD;
ver si on : | NTEGER;
{version of this data

structures}

baudRat e : LONGI NT;
{data transfer rate}
dataBits : | NTEGER;
{nunber of significant bits per
byt e}
channel s : CMChannel ;
{supported channel s}
swkl owCont r ol . BOOLEAN;
{if software flow control is in
use}
hwFl owCont r ol . BOOLEAN;
{if hardware flow control is in
use}
flags X CMFI ags;
END;
The ver si on field takes on the following value:
CONST
cur ConnEnvRecVer s = 0;

The f | ags field of the ConnEnvi r onRec is a bit field with the following value:
TYPE

CMFI ags = | NTEGER;
CONST
cnFl agsEOM = $0001;

Other bits of f | ags are reserved by Apple Computer, Inc.

54 Inside the Macintosh Communications Toolbox

channel s is a bit field with the following values:

TYPE
CMChannel = | NTEGER;
CONST
cmDat a = $00000001;
cnCnt | = $00000002;
CmAttn = $00000004;
cmDat aCl ean = $00000100;
cnCnt | Cl ean = $00000200;
cmAt t nCl ean = $00000400;

Other bits of channel s are reserved by Apple Computer, Inc.

Result Codes cnGenericError, cnNoErr, cmNotSupported, envVersTooBig

Chapter 3: Connection Manager 55

Reading and writing data

The Connection Manager provides routines that read from and write data to a buffer. Your application can
also use the Connection Manager routine that reads data, CMRead, to search the incoming data stream for a
specified pattern of bytes. Data stream searching is discussed later in this chapter in the section
“CMAddSear ch Adding a Data Stream Search.”

CVRead
Reading data

CMRead reads data into a block of memory. Your application cannot queue multiple read
requests for the same channel on the same connection. However, your application can have
both a pending read and a pending write on the same channel at the same time. Your
application can call this routine at interrupt level.

® Note: Your application should not check for an open channel prior to reading data. The
connection tool might be interpreting data locally and, therefore, not need an open
connection.

Function CMRead(hConn: ConnHandl e; theBuffer: Ptr; VAR toRead:
LONG NT; theChannel: CMChannel; async: BOOLEAN; conpletor:
ProcPtr; timeout: LONG NT; VAR flags: CMFl ags): CMErr;

Description t heBuf f er specifies the buffer to which the connection tool should read data.

t oRead specifies the number of bytes to be read. If your application calls this routine
synchronously, the connection tool returns the actual number of bytes it read in t oRead.
Your application can call CMSt at us to see if an asynchronous read is pending. If your
application calls this routine asynchronously, the asyncCount field of the connection
record contains the actual number of bytes read when the connection tool calls the
completion routine.

t heChannel specifies the channel on which reading takes place. Acceptable values are as

follows:

CONST
cnDat a = $00000001;
cniCnt | = $00000002;
CMAttn = $00000004;

async specifies whether or not the request is asynchronous. If an asynchronous request is
made, cmNOETr r is returned immediately.

56 Inside the Macintosh Communications Toolbox

Result Codes

conpl et or specifies the completion routine to be called upon completion of an
asynchronous read request. Completion routines are discussed in greater detail later in
this chapter in the section “Completion Routines.”

t i meout specifies a time period, in ticks, within which the connection tool must complete
the read operation. If it does not finish within the specified time, a timeout error occurs.
For no timeout, use -1. If your application specifies 0, the connection tool reads as many

bytes, up to t oRead bytes, as it can in one read attempt. Some connection tools ignore
this parameter.

f 1 ags indicates whether your application received an end-of-message indicator. If your
application calls this routine asynchronously, the connection tool returns the end of
message indicator in the r eser vedO field of the connection record when the completion
routine is called.

CONST
cnFl ags EOM = $0001;

cnmGeneri ceérror, cmNoErr, cnRejected, cnFail ed, cnilinmeout,
cmNot Open, cmNoRequest Pendi ng, cmNot Support ed.

Chapter 3: Connection Manager 57

CMWNite

Writing data

Function

Description

CMW i t e writes data from a block of memory. Your application cannot queue multiple

write requests for the same channel on the same connection. However, your application

can have both a pending read and a pending write on the same channel at the same time.
Your application can call this routine at interrupt level.

Note. Your application should not check for an open channel prior to writing data. The
connection tool might be interpreting data locally and, therefore, not need an open
connection.

CMNite(hConn: ConnHandl e; theBuffer: Ptr; VAR toWite:
LONG NT; theChannel: CMChannel; async: BOOLEAN; conpletor:
ProcPtr; tinmeout: LONG NT; flags: CMIlags): CMerr;

t heBuf f er specifies the buffer from which the connection gets the data to write.

t oW i t e specifies the number of bytes to be written. If your application calls this routine
synchronously, the connection tool returns the actual number of bytes it wrote in
toWite. Your application can call CMSt at us to see if an asynchronous write is
pending. If your application calls this routine asynchronously, the asyncCount field of
the connection record contains the actual number of bytes written when the completion
routine is called.

t heChannel specifies the channel on which writing takes place. Acceptable values are as
follows:

CONST
cmDat a = $00000001;
cmCnt | = $00000002;
CmAtt n = $00000004;

async specifies whether or not the request is asynchronous. If your application makes an
asynchronous request, CMf i t e returns cmNOEr r immediately.

conpl et or specifies the completion routine to be called upon completion of an
asynchronous write request. Completion routines are discussed in greater detail later in
this chapter in the section “Completion Routines.”

t i meout specifies a time period, in ticks, within which the connection tool must complete
the write operation. If it does not finish within the specified period, a timeout error
occurs. For no timeout, use -1. If your application specifies 0, the connection tool writes
as many bytes, up to t oW i t e bytes, as it can in one write attempt. Some connection
tools ignore this parameter.

58 Inside the Macintosh Communications Toolbox

Result Codes

CMAddSear ch

f | ags indicates whether the connection tool should send an end-of-message indicator.
An end-of-message indicator needs to be supported by the particular communications
protocol being used; if an end-of-message indicator is not supported by the connection
protocol, your application should ignore this field.

CONST
cnFl agsEOM = $0001;

cnGeneri ceérror, cmNoErr, cnRejected, cnFailed, cnlinmeout,
cnmNot open, cnmNoRequest Pendi ng, cniNot Support ed.

Adding a data stream search

Function

Description

When an application is reading data with CMRead, you can have the data stream searched
for one or more patterns of bytes. To perform the search, your application must pass
information to the Connection Manager, such as the connection on which the data stream
is coming in and the sequence of bytes for which to look. CMAddSear ch tells the
Connection Manager to perform the search, passing it search-specific information as well.
Each time your application calls CMAddSear ch, the Connection Manager searches for an
additional sequence of bytes.

CMAddSear ch(hConn: ConnHandl e; theString: Str255; flags:
CMSear chFl ags; call Back: ProcPtr): LONG NT;

The value CMAddSear ch returns is a search reference number that is used by the
CMRenpveSear ch routine (described later in this section). If CMAddSear ch returns
-1 the connection tool did not successfully add the search. Your application uses the search
reference number to distinguish among different searches that may be occurring
simultaneously on the same connection.

f1 ags is a field that describes the search to be performed. The appropriate values are as
follows:

TYPE

CMSear chFl ags = | NTEGER;
CONST

cmSear chSevenBi t = $0001;

If cmSear chSevenBi t is on, the Connection Manager matches only the low 7 bits of a
character; otherwise, it matches all 8 bits. The other bits of f | ags are reserved by Apple
Computer, Inc.

cal | Back is a pointer to a routine the Connection Manager will call during CMRead in
the event that the connection tool finds a match. The calling conventions for the call-back
procedure are given in the next section.

Chapter 3: Connection Manager 59

M/Sear chCal | Back
What to do when there’s a match

The Connection Manager will pass control to a search call-back procedure in the event that
the connection tool finds a match in the incoming data stream. This routine may be called
at interrupt level.

Procedure MySear chCal | Back(hConn: ConnHandl e; matchPtr: Ptr; refNum
LONGI NT) ;
Description mat chPt r points to the last matched character in the read buffer.

My Sear chCal | Back uses the search reference number CMAddSear ch returns.

® Note: The Connection Manager calls My Sear chCal | Back when a read is completed, and
therefore might be called at interrupt level. If your application makes asynchronous calls,
My Sear chCal | Back has the same restrictions as the standard Device Manager
completion routines.

CMRenoveSear ch
Stopping a data stream search

CMRenmpveSear ch removes the search with the specified reference number for the
specified connection record. This routine cannot be called at interrupt level (making it
impossible for My Sear chCal | Back to call this routine).
Procedure CMRenmpoveSear ch(hConn: ConnHandl e; ref Num LONGI NT);
Description r ef numis the search reference number returned by CMAddSear ch.

CMO ear Sear ch
Clearing all data stream searches

CMCl ear Sear ch removes all searches associated with the specified connection record.
Procedure CMCl ear Sear ch(hConn: ConnHandl e) ;

Description CMCI ear Sear ch cannot be called from interrupt level.

60 Inside the Macintosh Communications Toolbox

Handling events

The Connection Manager event-processing routines provide useful extensions to the Macintosh Toolbox Event
Manager. This section explains the four routines the Connection Manager provides. See “Other Events” in
Chapter 2 for sample code showing how an application can determine if an event needs to be handled by one

of these routines.

CMActi vat e

Activate events

Procedure

Description

CVResune

CMAct i vat e processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the connection.

CMAct i vat e(hConn: ConnHandl e; activate: BOOLEAN);

Ifacti vat e is TRUE, the connection tool processes the activate event. Otherwise, it
processes a deactivate event.

Resume events

Procedure

Description

Cwvwenu

CMResume processes a resume or suspend event for a window associated with the
connection.

CMResume(hConn: ConnHandl e; resume: BOOLEAN);

If r esume is TRUE, the connection tool processes a resume event. Otherwise, it processes
a suspend event.

Menu events

Function

Description

Your application must call CMVenu when the user chooses an item from a menu that is
installed by the connection tool.

CMMVenu(hConn: ConnHandl e; menul D: | NTEGER; item | NTEGER):
BOOLEAN,;

CMVENU returns FALSE if the connection tool did not handle the menu event. CMVENuU
returns TRUE if the connection tool did handle the menu event.

Chapter 3: Connection Manager 61

C\VEvent
Other events

When your application receives an event, it should check whether the r ef con of the
window is a tool’s ConnHandl e. Such an event occurs, for example, when the user
clicks a button in a dialog box displayed by the connection tool. If it does belong to a

connection tool’s window, your application can call CMEvent .

Procedure CMEvent (hConn: ConnHandl e; theEvent: EventRecord);

Description A window (or dialog box) created by a connection tool has a connection record handle stored
in the r ef con field for W ndowRecor d.

62 Inside the Macintosh Communications Toolbox

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

CM nt | ToEngl i sh

Translating into English

Function

Description

CM nt | ToEngl i sh converts a configuration string, which is pointed to by i nput Ptr
to an American English configuration string pointed to by out put Ptr .

CM nt | ToEngl i sh(hConn: ConnHandl e; inputPtr: Ptr; VAR
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

The function returns an operating system error code if any internal errors occur.

The connection tool allocates space for out put Pt r . Your application is responsible for
disposing of the pointer with Di sposPt r when done with it.

| anguage specifies the language from which the string is to be converted. Valid values
for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, this routine returns cmNOEr r , but
out putPtr isNI L.

CMENngl i shTol nt |

Translating from English

Function

Description

CMENngl i shTol nt 1 converts an American English configuration string, which is pointed
to by i nput Pt r, to a configuration string pointed to by out put Pt r.

CMENngl i shTol ntl (hconn: ConnHandl e; inputPtr: Ptr; VAR
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

The function returns an operating system error code if any internal errors occur.

The connection tool allocates space for out put Pt r ; your application is
responsible for disposing of the pointer with Di sposPt r when done with it.

| anguage specifies the language to which the string is to be converted. Valid
values for this field are shown in the description of the Script Manager in Inside Macintosh,
Volume V. If the language specified is not supported, cmNoEr r is still returned, but
out put Ptr is NI L.

Chapter 3: Connection Manager 63

Miscellaneous routines

The routines described in this section perform a variety of tasks.

CMZet Tool Nane

Getting the name of a tool

Procedure

Description

C\VSet Ref Con

CMCet Tool Name returns in name the name of the tool specified by pr oc| D.
CMGet Tool Name(procl D: | NTEGER; VAR nanme: Str255);

If pr ocl D references a mnnection tool that does not exist, the Connection Manager sets
name to an empty string.

Setting the connection record’s reference constant

Procedure

CMzet Ref Con

CMSet Ref Con sets the connection record’s r ef Con field to the specified value. It is
very important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

CMSet Ref Con(hConn: ConnHandl e; refCon : LONG NT);

Getting the connection record’s reference constant

Function

CMGet Ref Con returns the connection record’s reference constant.

CMGet Ref Con(hConn: ConnHandl e): LONG NT;

64 Inside the Macintosh Communications Toolbox

C\Vet User Dat a

Setting the user Dat a field

CMSet User Dat a sets the connection record’s user Dat a field to the specified value.
It is very important that your application use this routine to change the value of the
user Dat a field, instead of changing it directly.

Procedure CMSet User Dat a(hConn: ConnHandl e; userData: LONG NT);

CMzet User Dat a

Getting the userData field

CMGet User Dat a returns the connection record’s user Dat a field.

Function CMCet User Dat a(hConn: ConnHandl e): LONGI NT;

CMzet Ver si on

Getting ' ver s' resource information
CMGet Ver si on returns a handle to a relocatable block, which contains the information
in the connection tool’s 'ver s' resource with ID=1. Your application is responsible for
disposing of the handle when done with it.

® Note: The handle returned is not a resource handle.

Function CMCGet Ver si on(hConn: ConnHandl e) : Handl e;

CM=zet CWer si on

Getting the Connection Manager version number

CMGet CMVer si on returns the version number of the Connection Manager.

Function CMCGet CMWer si on: | NTEGER;
Description The version number of the Connection Manager described in this document is:
CONST
cur CMVer si on = 1;

Chapter 3: Connection Manager 65

Completion routines

This section describes the syntax and conventions that apply to completion routines in your application.

M/Conpl eti on
Writing a completion routine

Completion routines have the same restrictions as do standard Device Manager completion
routines. For example, your routines should not allocate memory. See the Device Manager
chapters in Inside Macintosh for more information.

Procedure MyConpl eti on(hConn: ConnHandl e) ;

Description When the Connection Manager calls My Conpl et i on, the er r Code field of the
connection record contains the appropriate error code. The asyncCount field of the
connection record contains the actual number of bytes read or written. Because the
er r Code field of the connection record is used by all of the Connection Manager
routines, it contains the error code for the asynchronous operation only during execution
of MyConpl et i on.

66 Inside the Macintosh Communications Toolbox

Quick reference

This section provides a reference to Connection Manager routines and data structures. At the end of this
section is a listing of routine selectors for programming in assembly language.

Routines

Connection Manager routines See page
CMAbort (hConn: ConnHandl e): CMErr; 49
CMAccept (hConn: ConnHandl e; accept: BOOLEAN): CMErr; 52
CMAct i vat e(hConn: ConnHandl e; activate: BOOLEAN); 61
CMAddSear ch(hConn: ConnHandl e; theString: Str255; 59
flags: CMSearchFl ags; call Back: ProcPtr): LONG NT;

CMBr eak(hConn: ConnHandl e; duration: LONG NT; async: 53
BOOLEAN; conpletor: ProcPtr);

CMChoose(VAR hConn: ConnHandl e; where: Point; 41
idleProc: ProcPtr): | NTEGER;

CMCI ear Sear ch(hConn: ConnHandl e) ; 60
CMCl ose(hConn: ConnHandl e; async: BOOLEAN; conpl etor: 49
ProcPtr; timeout: LONG NT; now. BOOLEAN): CMErr;

CMVDef aul t (VAR theConfig: Ptr; proclD: |NTEGER, 40
al | ocate: BOOLEAN);

CMDi spose(hConn: ConnHandl e); 50

CMENgl i shTol ntl (hConn: ConnHandle; inputPtr: Ptr; VAR 03
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

CMEvent (hConn: ConnHandl e; theEvent: EventRecord); 62
CMGet CWer si on: | NTEGER; 05
CMGet Confi g(hConn: ConnHandle): Ptr; 47
CMGet ConnEnvi rons(hConn : ConnHandl e; VAR 54
theEnvirons : ConnEnvironRec) : CMerr;

CMGet Tool Name(procl D: | NTEGER, VAR name: Str255); 04
CMGet Procl D(name: Str255): | NTEGER, 37
CMGet Ref Con(hConn: ConnHandl e): LONG NT; 04
CMGet User Dat a(hConn: ConnHandl e): LONGI NT; 05
CMGet Ver si on(hConn: ConnHandl e): Handl e; 05
CM dl e(hConn: ConnHandl e); 50

CM nt| ToEngl i sh(hConn: ConnHandle; inputPtr: Ptr; VAR 03
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

Chapter 3: Connection Manager 67

Connection Manager routines See page

CM CKi I I (hConn: ConnHandl e; which: |INTEGER): CMErr; 52
CMLi st en(hConn: ConnHandl e; async: BOOLEAN; 50
conpletor: ProcPtr; timout: LONG NT): CMErr;

CMMenu(hConn: ConnHandl e; nmenulD: |INTEGER;, item 61
| NTEGER) : BOOLEAN,

CWMNew(procl D : INTEGER, flags : CMRecFl ags; 38

desiredSizes : CMBufferSizes; refCon : LONGE NT;
userData : LONG NT) : ConnHandl e;

CMOpen(hConn: ConnHandl e; async: BOOLEAN;, conpletor: 48
ProcPtr; timeout: LONG NT): OCMErr;
CMRead(hConn: ConnHandl e; theBuffer: Ptr; VAR toRead: 56

LONG NT; theChannel: CMChannel; async: BOOLEAN;
conpletor: ProcPtr; tinmeout: LONG NT; VAR flags:
CWVFl ags) : CMErr;

CMRempveSear ch(hConn: ConnHandl e; ref Num LONGI NT); 60
CMReset (hConn: ConnHandl e) ; 53
CMResume(hConn: ConnHandl e; resune: BOOLEAN); 61
CMset Confi g(hConn: ConnHandl e; thePtr: Ptr): |NTEGER 47
CMSet Ref Con(hConn: ConnHandl e; ref Con: LONG NT); 64
CMsSet upCl eanup(procl D: | NTEGER; theConfig: Ptr; 54

count: | NTEGER; theDialog: DialogPtr; VAR
magi cCooki e: LONG NT) ;

CMSet upFilter(procl D: | NTEGER, theConfig: Ptr; 44
count: | NTEGER; theDi alog: DialogPtr; VAR theEvent: EventRecord,;
VAR theltem |NTEGER, VAR magi cCookie: LONG NT): BOOLEAN;

CMset upl tem(procl D: | NTEGER, theConfig: Ptr; count: 45
| NTEGER;, theDialog: DialogPtr; VAR theltem | NTEGER,
VAR magi cCooki e: LONG NT);

CMSet upPost f I i ght (procl D: | NTEGER) ; 46
CMset upPreflight(proclD: | NTEGER, VAR magi cCooki e: 43
LONG NT) : Handl e;

CMsSet upSet up(procl D: | NTEGER, theConfig: Ptr; count: 44
| NTEGER; theDial og: DialogPtr; VAR magi cCooki e:

LONGI NT) ;

CMSet User Dat a(hConn: ConnHandl e; wuserData: LONGI NT); 65
CMst at us(hConn: ConnHandl e; VAR sizes: CMBufferSizes; 51
VAR flags: CMstatFlags): CMerr;

CWal i dat e(hConn: ConnHandl e): BOOLEAN, 40

68 Inside the Macintosh Communications Toolbox

Connection Manager routines See page

CMNite(hConn: ConnHandl e; theBuffer: Ptr; VAR 58
toWite: LONG NT; theChannel: CMChannel; async:

BOOLEAN; conpletor: ProcPtr; tinmeout: LONG NT; flags:

CMFl ags): CMErr;

InitCM : CMErr; 36
Routines in your application See page
MySear chCal | Back(hConn: ConnHandl e; matchPtr: Ptr; 60
ref Num LONG NT);

My Conpl eti on(hConn: ConnHandl e) ; 06

Connection Record

TYPE
ConnHandl e = AConnPtr ;
ConnPtr = AConnRecor d;
ConnRecord = RECORD
procl D : | NTEGER;
flags : CMRecFl ags;
err Code : CMErT;
r ef Con : LONGI NT;
user Dat a : LONGI NT
def Proc : ProcPtr;
config : Ptr;
ol dConfi g : Ptr;
reservedO : LONGI NT;
reservedl : LONGI NT;
reserved?2 : LONG NT;
cnPrivate : Ptr;
bufferArray CMBuUf f ers;
buf Si zes : CMBuUf f er Si zes;
m uFi el d : LONGI NT;
asyncCount : CMBUf f er Si zes;
END;

Chapter 3: Connection Manager

69

Constants and data types

TYPE
CMBuUf Fi el ds=(
cmDat al n,
cnDat aQut ,
cnCntl | n,
cnCnt | Qut ,
cCmAt t nl n,
cmAt t nCQut ,
cmRsr vl n,
cmRsrvQut) ;

CMBuUf f er s
CMBuUf f er Si zes

Connection Environment Record

ARRAY(CMBUf Fi el ds]
ARRAY[CMBuf Fi el ds]

TYPE
ConnEnvi ronRecPtr = ~ConnEnvi r onRec;
ConnEnvi r onRec = RECORD
version | NTEGER;
baudRat e LONGI NT;
dataBits | NTEGER;
channel s CMChannel ;
swkl owCont r ol BOOL EAN;
hwFl owCont r ol BOOL EAN;
flags CMFI ags;
END;
TYPE
CMFI ags = | NTEGER;
CONST
cnFl agseOM = 1;
TYPE
CMChannel = | NTEGER;

70 Inside the Macintosh Communications Toolbox

OF Ptr;
OF LONG NT;

CONST

cmDat a = $00000001;
cmCnt | = $00000002;
CmMAtt n = $00000004;
cmDat aCl ean = $00000100;
cntntl Cl ean = $00000200;
cmAtt nCl ean = $00000400;
cmNoMenus = $00010000;
cmQui et = $00020000;
Version constants
CONST
cur ConnEnvRecVers = 0;
cur CMVer si on = 1;
Connection record flags bit masks
TYPE
CMRecFl ags = LONGI NT;
CONST
cmDat a = $00000001;
cmCnt | = $00000002;
CmMAtt n = $00000004;
cmDat aCl ean = $00000100;
cnmCnt | Cl ean = $00000200;
CmAtt nCl ean = $00000400;
cmNoMenus = $00010000;
cmQui et = $00020000;
Search flags
TYPE
CMSear chFl ags = | NTEGER;
CONST

cnSear chSevenBit= 0001;

Chapter 3: Connection Manager 71

Values returned by CMChoose

CONST
chooseDi saster = - 2;
chooseFai | ed = - 1;
chooseAborted = 0;
chooseOKM nor = 1;
chooseOKMj or = 2;
chooseCancel = 3;
Connection status flags
TYPE
CMst at FI ags = LONGI NT;
CONST
cnSt at usOpeni ng = $00000001; {tool is opening connection}
cnSt at usOpen = $00000002; {connection is open}
cnSt at usCl osi ng = $00000004; {tool is closing connection}
cnSt at usDat aAvai | = $00000008; {data present on data channel}
cnSt at usCnt | Avai | = $00000010; {data present on cntl channel}
cnSt at usAt t nAvai | = $00000020; {data present on attn channel}
cnSt at usDRPend = $00000040; {data read pending}
cnSt at usDWPend = $00000080; {data write pending}
cnSt at usCRPend = $00000100; {cntl read pending}
cnSt at usCWPend = $00000200; {cntl wite pending}
cnSt at usARPend = $00000400; {attn read pending}
cnSt at usAWPend = $00000800; {attn wite pending}
cnSt at usBr eakPendi ng = $00001000; {tool is breaking the
connecti on}
cniSt at usLi st enPend = $00002000; {tool is "listening" for data}
cnSt at usl ncom ngCal | Present = $00004000; {call waiting for tool
to
handl e}
Errors
TYPE
CMET 1 = OSErr ;
CONST
cmGeneri cError = -1;
cmNoEr r = 0;
cmRej ect ed = 1;
cnFail ed = 2;
cmli meout = 3;
cmNot Open = 4;
cmNot Cl osed = 5;
cmNoRequest Pendi ng= 6;
cmNot Support ed = 7;
cmNoTool s = 8;
cmUser Cancel = 9;

72 Inside the Macintosh Communications Toolbox

Connection Manager routine selectors

® Assembly note. Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto the
stack and invokes the trap macro that has the same name as the routine, preceded by an underscore.
When expanded, these macros place the routine selector onto the stack, set AO to point to the selector,
and invoke the trap _CommTool boxDi spat ch ($A08B). Upon returning from the trap, the trap
macro pops the routine selector off the stack and places the return value into DO. It is your application’s
responsibility to clean up the stack by removing the parameters that were pushed onto the stack prior to
invoking the trap macro.

CMADbor t . EQU 271 CM OKi | | . EQU 297
CMAccept . EQU 269 CMLi st en . EQU 268
CMActi vate . EQU 275 CMVENU . EQU 277
CMAddSear ch . EQU 294 CMNew EQU 264
CMBr eak .EQU 293 CMOpen .EQU 267
CMChoose . EQU 292 CMRead . EQU 273
CMCI ear Sear ch . EQU 296 CMRenpveSearch . EQU 295
CMCl ose . EQU 270 CMReset . EQU 278
CMVDef aul t . EQU 280 CMResume . EQU 276
CMDIi spose . EQU 265 CMSet Confi g . EQU 285
CMENngl i shTolntl . EQU 287 CMSet Ref Con . EQU 258
CMEvent . EQU 298 CMSet upCl eanup . EQU 283
CMGet CWer si on . EQU 289 CMSet upFilter . EQU 290
CMGet Confi g . EQU 284 CMSet upl tem . EQU 282
CMGet ConnEnvi rons . EQU 300
CMSet upPost fli ght . EQU 299

CMGet Procl D . EQU 263 CMSet upPr ef i ght . EQU 291
CMGet Ref Con . EQU 259 CMSet upSet up . EQU 281
CMGet Tool Name . EQU 262 CMSet UserData . EQU 260
CMGet User Dat a . EQU 261 CMSt at us . EQU 272
CMGet Ver si on . EQU 288 CMWval i dat e EQU 279
CM dl e . EQU 266 CMWVite . EQU 274
CM nt| ToEnglish . EQU 286 I nit CM . EQU 257

Chapter 3: Connection Manager 73

74 Inside the Macintosh Communications Toolbox

Chapter 4 Terminal Manager

.'_|.._|I:

E:_\.i_ll_h
s
i—u—\.'.:"|
| Fr=i—

T I.—_h'_h.'_h.'_\ | i . | .t_i

| —

==
—

pr=

L L Caes .
L "y —

L 7, e, g, e, e,

|
¢
A e e e e T

T N Ny G e ey ey

=

THIS CHAPTE R describes the Terminal Manager, the Communications Toolbox manager that allows
applications to perform terminal emulation independent of a specific type of terminal. This chapter begins by
describing fundamental concepts about the Terminal Manager. It goes on to describe the terminal emulation
window and the data structure most important to the Terminal Manager, the terminal record. Next, this
chapter presents a detailed functional description of each routine provided by the Terminal Manager. It then
describes the routines that need to be in your application. At the end of the chapter, you'll find a quick

reference to routines, data structures, and routine selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh, which will
implement communications services for users. Be careful not to confuse the services your application provides

with the services that tools provide.

To use terminal tools in an application, you need to be familiar with

= the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)

» the QuickDraw application (described in Inside Macintosh, Volumes I, V)
= the Event Manager (described in Inside Macintosh, Volumes I, IV, V)

= the Scrap Manager (described in Inside Macintosh, Volume I)

= the Dialog Manager (described in Inside Macintosh, Volumes I, IV, V)

= the Connection Manager (described in Chapter 3 of this document)

76 Inside the Macintosh Communications Toolbox

About the Terminal Manager

By using Terminal Manager routines, your application can implement a terminal emulation without having to
take into account the characteristics of any one type of terminal. Terminal tools, which are discussed in
Chapter 10, are responsible for implementing the characteristics of specific terminal types.

The Terminal Manager provides a generic terminal emulation that is best described with an example.
Suppose your application needs to tell a mainframe at the other end of an existing data connection that the
user has typed the letter a. Your application detects that the user has pressed a key, and passes this event on to
the Terminal Manager by calling the TMKey routine. The Terminal Manager passes this event on to a
previously selected terminal tool. The terminal tool figures out the appropriate value to transmit for a and
sends it out on the data connection. This example, of course, is a very simple one. But it is meant to give you
a general feel for what goes on inside the Terminal Manager. The rest of this chapter goes into much more
detail.

Figure 4-1 shows the data flow into and out of the Terminal Manager.

= Figure 4-1 Data flow into and out of the Terminal Manager

O TR
Everis, incoming daa, LM o TTica. 1 kA
Rarveirokes dher enlity

| | Application

>

Liata bo ransmi

The most important data structure maintained by the Terminal Manager is the terminal record, which is where
all the specifics of a terminal emulation are stored. For example, the terminal record might show that your
application is emulating a VI320™ terminal, and that the Terminal Manager should try to cache the terminal
window before clearing it.

Chapter 4: Terminal Manager 77

One important aspect of the terminal record is that it allows you to write routines independent of
specific terminal characteristics. For instance, when an application wants to transmit a keystroke to a host
computer, it tells the Terminal Manager to transmit the keystroke, and the terminal tool figures out exactly how
to transmit the keystroke for a specific type of terminal.

Another important aspect of the terminal record is that it allows for multiple instances of the same tool.
This means that the same tool can be used by different processes at the same time, as in a MultiFinder
environment, or by different threads in a given application. The terminal record is described in greater detail
later in this chapter.

Besides providing access to basic terminal emulation services, the Terminal Manager includes routines
that make it easy for your application to configure a terminal tool, either by presenting the user with a dialog
box or by interfacing directly with a scripting language. The Terminal Manager also contains routines that
make it easier for you to localize your applications in other languages.

You can use the Terminal Manager in conjunction with other Communications Toolbox managers to
create a communications application with basic connection, terminal emulation, and file transfer capabilities.
Or, you can use the Terminal Manager with some other connection service or file transfer service instead of the
Connection Manager and File Transfer Manager. You can also write your own terminal tool for the Terminal
Manager to use (this procedure is discussed in Chapters 8 and 10). Regardless of which method you choose,
your application should be able to handle different terminal tools so that users can change tools and still be
able to use your program.

The terminal emulation window
The Terminal Manager provides terminal tools with a terminal emulation window. In addition to title bar,
scroll bars, and other standard user interface elements, the terminal emulation window has two major parts:

the terminal emulation region and the cache region. Figure 4-2 shows these parts.

» Figure 4-2 A terminal emulation window

s Terminal emulation window

I ——I

e

cache reglon

S T

terminal emulation region

78 Inside the Macintosh Communications Toolbox

The terminal emulation region

The terminal emulation region is the area of the terminal window in which the terminal tool displays data in a
manner that emulates a specific terminal. Terminal tools use a terminal emulation buffer to store the data
displayed in the terminal emulation region. Your application and the terminal tools exchange this data
through a Ter nDat aBl ock, which is an extensible data structure that handles text and graphics
information. For text terminals, the Ter nDat aBl ock describes a line of text in the terminal emulation
region. For graphics terminals, the Ter mDat aBl ock describes a picture in the terminal emulation region.
The format of Ter mDat aBl ock is as follows:

TYPE
Ter mDat aBl ockH
Ter mDat aBl ockPtr

ATer nDat aPtr ;
ATer mDat aBl ock;

Ter nDat aBl ock RECORD
flags : TMTer mlypes;
t heDat a : Handl e;
auxDat a : Handl e;
reserved LONGI NT;

END;

f | ags describes the data in the Ter nDat aBl ock. Valid values are: TMText Ter m nal and
TMGr aphi csTer m nal .

t heDat a is a handle to data, which is text characters for text terminals and a QuickDraw picture
for graphics terminals. Your application can get the size of t heDat a by calling
CGet Handl eSi ze(t heDat a) .

auxDat a and reserved are reserved by Apple Computer, Inc. Do not use them or your application may not
work in the future.

The cache region
The cache region is an optional area in the window, which your application can use to display data that scrolls

off the top of the terminal emulation region. Because terminal tools do not maintain this area of the terminal
emulation window, your application must provide all the necessary code if you want a cache region.

Chapter 4: Terminal Manager 79

The terminal record

The terminal record contains information that describes a terminal emulation, as well as pointers to Terminal
Manager internal data structures. The Terminal Manager uses this information to “translate” the protocol-
independent routines used by an application or tool into a service implemented according to a specified
terminal emulation. Most of the fields in the terminal record are filled in when an application calls TMNew,
described later in this chapter.

Because the context for a given terminal emulation is maintained in a terminal record, an application
can maintain more than one terminal emulation at the same time. All the application has to do is create a new
terminal record every time it initiates a terminal emulation.

D Important Your application, in order to be compatible with future releases of the Terminal Manager,

should not directly manipulate the fields of the terminal record (with the exception of
confi g and ol dConfi g). The Terminal Manager provides routines that applications
and tools can use to change terminal record fields. These routines are discussed later in
this chapter. D

Terminal record data structure

TYPE
Ter mHandl e = ATer mPoi nt er;
Ter mPoi nt er = ATer mRecor d;
Ter mRecor d = RECORD
procl D | NTECGER,;
flags TMFI ags;
err Code TNETrr;
r ef Con LONG NT;
user Dat a LONG NT;
def Proc ProcPtr;
config Ptr;
ol dConfi g Ptr;
environsProc : ProchPtr;
reservedl LONG NT;
reserved?2 LONGI NT;
80 Inside the Macintosh Communications Toolbox

tmPrivate : Ptr;

sendPr oc : ProcPtr;
br eakProc : ProcPtr;
cacheProc : ProcPtr;
clikLoop : ProcPtr;
owner : W ndowPtr ;
t er mMRect : Rect ;
vi ewRect : Rect ;
vi sRect : Rect ;
| astldle : LONG NT;
selection : TMSel ecti on;
sel Type : TMSel Types;
m uFi el d : LONGI NT;
END;
procl D

procl Dis the terminal tool ID. This value is dynamically assigned by the Terminal Manager when your
application calls TMGet Pr ocl D.

fl ags
f1 ags is a bit field with the following masks:

CONST
tm nvi si bl e = $00000001;
t mSaveBef or eCl ear = $00000002;
t MNoMenus = $00000004;
t mMAut oScr ol | = $00000008;
TYPE
TMFI ags = LONG NT;

If your application sets t ml nvi si bl e, the Terminal Manager maintains a terminal emulation but
does not display it. Your application can use the terminal emulation and cache region to create some other
presentation service, instead of a terminal emulation.

If your application sets t mSaveBef or eCl ear, the terminal tool will try to cache the entire terminal
emulation region in response to any clear-screen operation. Clear-screen operations are generated from a
user’s request, a clear-screen character sequence, or a terminal-reset character sequence.

If your application sets t MNoMenus, the terminal tool will not put up any custom menus.

If your application sets t mAut oScr ol |, the terminal tool will automatically scroll the terminal
emulation window (if necessary) while the user is highlighting a selection.

Chapter 4: Terminal Manager 81

err Code
The Terminal Manager does not use er r Code; it is included in this version (version 1.0) of the terminal
record for reasons of historical preservation. Your application must not use this field.

r ef Con
ref Con isa LONG NT that your application can use.

user Dat a
user Dat a isa LONG NT that your application can use.

def Proc
def Pr oc is a pointer to the main code resource of the terminal tool that will implement the specifics of the
terminal emulation. The terminal tool’s main code resource is of type ' t def "

config
conf i g is a pointer to a data block that is private to the terminal tool.

Your application can store the contents of conf i g to save the state of a terminal in a document. The
structure, size, and contents of the configuration record are set by the tool. Your application can determine
the size of the configuration record by calling Get Pt r Si ze, overwrite its contents using Bl ockMove, and
validate the contents with TMval i dat e.

Your application can use TMGet Conf i g and TMSet Conf i g to manipulate fields in this record.
For details, read “Interfacing with a Scripting Language,” later in this chapter. Your application can save the
state of the terminal record by saving the string TMGet Conf i g returns, Also, your application can restore
the configuration of the terminal record by passing a saved string to TMSet Conf i g.

You can find a description of conf i g from a terminal tool perspective in Chapter 8.

ol dConfi g

ol dConfi g is a pointer to a data block that is private to the terminal tool and contains the most recently
saved version of conf i g. Your application is responsible for setting ol dConf i g when the user saves a
session document.

envi ronsProc

envi ronsProc is a pointer to a routine in your application that the terminal tool can call to obtain a
record describing the connection environment. A more detailed description of envi r onsPr oc appears later
in this chapter in “Routines That Must Be in Your Application.”

reservedl and reserved?2

reservedl and r eser ved2 are reserved for the Terminal Manager. Your application must not use these
fields.

82 Inside the Macintosh Communications Toolbox

tnPrivate
t mPri vat e is a pointer to a data block that is private to the terminal tool. Your application must not use
this field.

sendPr oc

sendPr oc is a pointer to a routine your application calls when it needs to send data to another application.
A more detailed description of SendPr oc appears later in this chapter in “Routines That Must Be in Your
Application.”

br eakPr oc

br eakPr oc is a pointer to a routine in your application that performs a break operation. The effect the
break has depends on the terminal emulation being used. A more detailed description of br eakPr oc
appears later in this chapter in “Routines That Must Be in Your Application.”

cacheProc

cachePr oc is a pointer to a routine in your application that saves lines that scroll off the top of the
terminal emulation region. The terminal tool also uses this routine to save the terminal screen before a clear-
screen operation (if the t nSaveBef or eCl ear bit is set in the f | ags field of the terminal record). A
more detailed description of cachePr oc appears later in this chapter in “Routines That Must Be in Your
Application.”

cli kLoop

cl i kLoop is a pointer to a routine in your application that handles mouse clicks. The terminal tool calls the
click loop repeatedly when the user is clicking or dragging an object. A more detailed description of this
routine appears later in this chapter in “Routines That Must Be in Your Application.”

owner
owner is a pointer to the window in which your application displays the terminal emulation.

t er nRect

ter mRect is the port Rect of the current window, minus the scroll bars. This port Rect represents the
boundaries of the terminal emulation region. Figure 4-3 shows how t er mRect relates to the terminal
emulation window.

® Note: Your application can display the terminal emulation region in an area that is smaller than

t er mRect , but it must not display the combination of the cache region and terminal emulation region in
an area larger than t er mRect .

Chapter 4: Terminal Manager 83

vi ewRect

vi ewRect is a rectangle, measured in pixels, that represents the screen of an actual terminal. For some
terminal types (for instance, Teletype or VI102™) vi ewRect has 24 lines and 80 columns. The dimensions
of vi ewRect remain constant except when elements such as a tab ruler or status bar appear in the terminal
emulation window, or when the size of the display font changes. The relationship of t er mRect to
vi ewRect determines how much of vi ewRect is visible in the terminal emulation window.

Figure 4-3 shows how vi ewRect relates to the terminal emulation window.

» Figure 4-3 bounds of vi ewRect andt er nRect

[F N rerminn) emulation window R 5|

cacha region

Bounds of

— ternRect

terminal emulation region

Bounds of _
viewrect | o
Vi sRect

vi sRect is a rectangle that represents the currently visible rows and columns in the terminal emulation
region (for text terminals). Numbering of rows and columns begins with the number 1.

vi sRect . t op is the top visible line, and vi sRect . | ef t is the leftmost visible column in the
terminal emulation region. vi SRect . bot t omis the bottom visible line, and vi sRect . ri ght is the

rightmost visible column in the terminal region. These values are used by the application to determine scroll-
bar values.

84 Inside the Macintosh Communications Toolbox

lastldle
| ast | dl e is the last time, in ticks, that the idle procedure was called for the specified terminal record.

sel ection

sel ecti on is a data structure that describes the extent of the current selection in the terminal emulation
window. Since sel ect i on can describe either a rectangle or a region, it describes the selection in one of
two kinds of data structures: a Rect or a RgnHandl e. The format of the TMSel ect i on data structure is
as follows:

TYPE
TMSel ecti on = RECORD

CASE | NTEGER OF

1: (
sel Rect : : Rect ;
)

2: (
sel RgnHandl e : RgnHandl e;
filler : LONGI NT;
}s

END;

sel Rect is of type Rect and describes the rectangle that has been selected. On a text terminal, it
contains the row/column pairs, with counting beginning at 1. On a graphics terminal, it contains pixel
coordinates, with (1,1) being the t opLef t corner of the terminal region.

On a graphics terminal, if the selection is a MacPaint® program-style lasso, sel ect i on isa
sel RgnHandl e that represents the selection region.

sel Type
sel Type is a field that further describes a selection; it indicates the highlighting mode that is used to show
the selection. Valid values are as follows:

CONST
sel Text Nor mal = $0001;
sel Text Boxed = $0002;
sel Graphi csMar quee= $0004;
sel Graphi csLasso = $0008;
TYPE
TMSel Types = | NTEGER;

Figure 4-4 and Figure 4-5 show that even though two selections may have the same coordinates, different
values for sel Type yield different highlighting results. Figure 4-4 shows the text selection mode
sel Text Nor mal . Figure4-5 shows a text selection in sel Text Boxed mode.

Chapter 4: Terminal Manager 85

Figure 4-4 The text selection mode
sel Text Nor mal

|58 Terminal emulation window FENE|

Alex

] L e R R] o

= Figure 4-5 The text selection mode
sel Text Boxed

D Terminal emulation window SE1§

Alex Byron Carol
Char enn Jeanne

Jerp Hike Paul Rob EF
Robbi co i

0
o) I R R R R R R

sel Graphi csMar quee is a standard rectangular MacPaint-style marquee. sel Gr aphi csLasso

is a standard MacPaint-style lasso. Your application uses these types of highlighting with graphics
terminals.

m uFi el d

m uFi el d isa LONGI NT that terminal tools use. Your application does not need to be concerned
with this field.

86

Inside the Macintosh Communications Toolbox

Terminal Manager routines

This section describes the routines that tools and applications can use to access Terminal Manager
services. Your application cannot call these routines from interrupt level.
Below is a listing of the routines described in this section in the order in which they are

presented.

I nitTM/88

TMGet Procl D /88
TMNew/ 89

TMDef aul t /91

TMWal i date /91
TMChoose /92

TMSet upPref | i ght /94
TMSet upSet up /95
TMSet upFilter /95
TMSet upl tem /96
TMSet upCl eanup /96
TMSet upPost flight /97
TMGet Config /98
TMSet Config /98
TMSt ream /99

TMPai nt /99

TM dl e /99

TMGet Li ne /100
TMScrol | /100

TMCl ear /100
TMReset /101

TMResi ze /101

TMVDi spose /101
TMAddSear ch /102
TMRenoveSearch /103

TMCI ear Search /103
TMSet Sel ecti on /104
TMGet Sel ect /104
TMActivate /105
TMResune /105

TMVenu /105

TMCl i ck /106

TMKey / 106

TMUpdat e / 106

TMEvent /107

TM nt| ToEngl i sh /108
TMENngl i shTol ntl /108
TMGet Tool Narre /109
TMSet Ref Con /109
TMGet Ref Con /109
TMSet User Data /110
TMGet User Dat a /110
TMGet Ver si on /110
TMGet TMVer si on /110
TMGet Cur sor /111
TMDoTer nKey /111
TMCount Ter nKeys /112
TMGet | ndTer nKey /112
TMGet Ter meEnvi rons /112

Chapter 4: Terminal Manager

87

Preparing for a terminal emulation

Before your application can start a terminal emulation, it must initialize the Terminal Manager (by calling
I ni t TM), find out the pr oc| D of the tool it requires (by calling TMGet Pr oc| D), create a terminal
record (by calling TMNew), and then configure the terminal tool (by restoring conf i g from a saved
document; or by calling TMChoose, the terminal tool custom configuration routines, or

TMSet Confi Q).

| ni t TM

Initializing the Terminal Manager

Function

Description

Result Codes

TMZet Procl D

| ni t TMinitializes the Terminal Manager. Your application should call this routine
after it calls the standard Macintosh Toolbox initialization routines.

Warning Your application must initialize the Communications Resource Manager (by
calling | ni t CRM) and then the Communications Toolbox Utilities (by calling
InitCTBUtI |iti es), whether or not it uses any of their calls, before it initializes
the Terminal Manager. A

InitTM TMerr;

| ni t TMreturns an operating system error code if appropriate.

Your application must check for the presence of the Communications Toolbox before
calling this function. Sample code under “Determining Whether the Managers are
Installed” in Appendix C shows you how your application can make this check.

tmGenericError, tnmNoErr, tmNoTools

Getting current pr ocl D information

Function

Description

Your application should call TMGet Pr ocl D just before creating a new terminal
record, to find out the pr ocl D of a tool.

TMGet Procl D(name: Str255): | NTECGER,
name specifies a terminal tool. If a terminal tool is available with the specified name,

its pr ocl Dis returned. If name references a nonexistent terminal tool,
TMGet Pr ocl D returns -1.

88 Inside the Macintosh Communications Toolbox

TIMNew

Creating a terminal record

Function

Description

Once the Terminal Manager has been initialized, your application needs to call TMNew
to create a terminal record to describe the terminal emulation that is to take place.
TMNew creates a new terminal record, fills in the fields it can, based on the parameters
that were passed to it, and returns a handle to the new record in Ter nHandl e.
TMNew automatically makes two calls to TMDef aul t (which is described later in this
chapter) to fill in conf i g and ol dConfi g. The Terminal Manager then loads the
terminal tool’s main definition procedure, moves it high in the current heap, and locks
it. If an error occurs that prevents a new terminal record from being created (for
example, running out of memory), TMNew passes back NI L in Ter mHandl e.

Your application must set the current port to the terminal window before it calls
TMNew.

TWNew(ternRect: Rect; viewRect: Rect; flags: TMFl ags; proclD:
| NTEGER; owner: W ndowPtr; sendProc: ProcPtr; cacheProc:
ProcPtr; breakProc: ProcPtr; clikLoop: ProcPtr; environsProc:
ProcPtr; refCon: LONG NT; userData: LONG NT): TernHandl e;

t er mRect is a rectangle in local coordinates that represents the boundaries of the
terminal emulation region. Your application initially sets this value by passing it as a
parameter to TMNew.

vi ewRect is a subset of t er mRect , which the terminal tool can actually write into.
Your application initially sets this value by passing it as a parameter to TMNew, but the
terminal tool may resize it.

f 1 ags is a bit field with the following masks:
CONST

tm nvisible = $00000001;
t mBaveBef or ed ear = $00000002;
t mMNoMenus = $00000004;
t mAut oScr ol | = $00000008;

f 1 ags represents a request from your application for a level of service.

Apple Computer, Inc. has reserved the bits of f | ags that are not shown in this
document. Do not use them, or your code may not work in the future.

If your application sets t ml nvi si bl e, the Terminal Manager maintains a terminal
emulation but does not display it. Your application can use the terminal emulation
and cache regions to create some other presentation service instead of a terminal
emulation.

If your application sets t mSaveBef or eCl ear, the terminal tool attempts to cache
the entire terminal emulation region in response to any clear-screen operation. Clear-
screen operations are generated from either a user’s request, a clear-screen character
sequence, or a terminal-reset character sequence.

If your application sets t mNoMenus, the terminal tool does not display any custom
menus.

Chapter 4: Terminal Manager 89

90

If your application sets t mAut oScr ol | | the terminal tool automatically scrolls the
terminal emulation window (if necessary) while the user highlights a selection.

pr ocl D values are dynamically assigned by the Terminal Manager to tools at run
time. Applications should not store pr ocl D values in “settings” files. Instead, they
should store tool names, which can be converted to pr ocl D values with

TMGet Pr ocl D. Use the ID that TMGet Pr ocl D returns for pr ocl D.

owner is a pointer to the window in which your application is displaying the
terminal emulation. If t m nvi si bl e is FALSE, owner should be a Gr af Por t
that the terminal tool has control over.

sendPr oc is a pointer to a routine the terminal tool calls when it needs to send
data on a connection. A more detailed description of sendPr oc appears later in
this chapter, in the section “Routines That Must Be in Your Application.”

cachePr oc is a pointer to a routine in your application that saves lines that scroll
off the top of the terminal emulation region. This routine also saves the terminal
screen before a clear-screen operation (if t mSaveBef or eCl ear is set). If your
application does not have a cachePr oc, specify NI L in this field. A more detailed
description of cachePr oc appears later in this chapter in the section “Routines
That Must Be in Your Application.”

br eakPr oc is a pointer to a routine in your application that performs some sort of
break operation. The effect the break has depends upon the terminal emulation tool
that your application is using. A more detailed description of br eak Pr oc appears
later in this chapter in the section “Routines That Must Be in Your Application.”

cl i kLoop is a pointer to a routine in your application that is called when the
mouse button is held down. The terminal tool calls the click loop repeatedly when
users are clicking and dragging the mouse. A more detailed description of

cl i kLoop appears later in this chapter, in the section “Routines That Must Be in
Your Application.” Specify NI L in this field if your application has no cl i kLoop
procedure.

envi ronsProc is a pointer to a routine that the terminal tool calls when it
requires information about the connection. See “Connection Manager Routines” in
Chapter 3 for information about the CMGet ConnEnvi r ons routine.

user Dat a and r ef Con are fields your application can use.

Inside the Macintosh Communications Toolbox

TMDef aul t

Initializing the terminal record

Procedure

Description

TMWal i dat e

TMDef aul t fills the configuration record pointed to by t heConf i g with the
default configuration, which is specified by the terminal tool with the given pr ocl D.
TMNew calls this procedure automatically when it fills in the conf i g and

ol dConf i g fields in a new terminal record.

TMDef aul t (VAR theConfig: Ptr; proclD: |NTEGER,
al | ocate: BOOLEAN);

Ifal | ocat e is TRUE, the tool allocates space for t heConf i g in the current
heap zone.

Validating the terminal record

Function

Description

.config));

TMWVal i dat e performs an internal consistency check on the configuration and
private data records of the terminal record. TMNew and TMSet Confi g call this
routine after they have created a new terminal record, to make sure that the record
contains values identical to those specified by the terminal tool.

TMWal i date(hTerm TernmHandl e): BOOLEAN;

If the validation fails, the Terminal Manager returns TRUE and the terminal tool fills
the configuration record with default values by calling TMDef aul t .

Your application can call this routine after restoring a configuration, to verify that the
terminal record contains the correct information, in a manner similar to that shown
next.

Bl ockMove(saveConfig, hTerm”~. config, GetPtrSize(hTer m~

I F Twalidate(hTerm) THEN BEG N
(validate failed)

END

ELSE BEG N
(val idate succeeded)
END

Chapter 4: Terminal Manager 91

TMChoose
Configuring a terminal tool

An application can conf i gure a terminal tool in one of three ways. The easiest and
most straightforward way is by calling the TMChoose routine. This routine presents
the user with a dialog box similar to the one shown in Figure 4-6.

= Figure 4-6 A sample tool-settings dialog box

Terminal Settings

Terming] Made: | AMSI/VT 100 | Tt Corsor

o R i 1- ™"
PE— () ol ine | S
Em? [l teestEsto (%) UnderTine

[o Stwius Bur
| [soew Tab Rstnr

Answeriack Hessage [|

This area is filled in I
by the terminal tool

The second way an application can configure a terminal tool is by presenting the user
with a custom tool-settings dialog box. This method is much more difficult and
involves calling six routines. The routines are described in the next section, “Custom
Configuration of a Terminal Tool,” and “The Custom Tool-Settings Dialog Box” in
Appendix C provides example code

The third way your application can configure a terminal tool is by using the
scripting language interface, described in “Interfacing with a Scripting Language,”
later in this chapter. This method allows your application to bypass user interface

elements.

Function TMChoose(VAR hTerm TernHandl e; where: Point;
idleProc: ProcPtr): | NTEGER;

Description wher e is the point specified in global coordinates, where the upper-left corner of

the dialog box should appear. It is recommended that your application place the
dialog box as close to the upper-left corner of the screen as possible because the size
of the dialog box varies from tool to tool.

i dl eProc is a procedure with no parameters that the Terminal Manager will
automatically call every time TMChoose loops through the setup dialog box filter
procedure. Pass NI L if your application has no i dl ePr oc.

92 Inside the Macintosh Communications Toolbox

TMChoose returns one of the following values:

CONST
chooseDi sast er
chooseFai |l ed
chooseOKM nor
chooseOKMaj or
chooseCancel

WNEFRPEFEPN

chooseDi sast er means that the TMChoose operation failed, destroyed the
terminal record, and returned NI L in the terminal handle.

chooseFai | ed means that the TMChoose operation failed and the terminal
record was not changed.

chooseOKM nor means that the user clicked OK in the dialog box, but did not
change the terminal tool being used.

chooseOKMaj or means that the user clicked OK in the dialog box and also
changed the terminal tool being used. The Terminal Manager then destroys the old

terminal handle by calling TMDi spose, and returns a new terminal handle in
hTerm

chooseCancel means that the user clicked Cancel in the dialog box.

Chapter 4: Terminal Manager 93

Custom configuration of a terminal tool

Your application creates a custom tool-settings dialog box and presents it to the user by using six
Terminal Manager routines: TMSet upPr ef | i ght , TMSet upSet up, TMSet upFi |l ter,
TMSet upl t em TMSet upCl eanup, and TMSet upPost f | i ght . Using these routines is a bit
more involved than calling TMChoose, but they provide your application with much more flexibility.
Refer to the code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an
application calls these routines.

To build a list of available terminal tools, use the routine CRMGet | ndTool Name, described in

Chapter 6.

TNVBet upPref | i ght

Setting up the custom tool-settings dialog box

Function

Description

TMSet upPr ef | i ght returns a handle to a dialog item list that your application
appends to the tool-settings dialog box. The handle comes from the terminal tool.
(The calling application uses AppendDI TL, which is discussed in Chapter 7.) This
handle is not a resource handle. Your application is responsible for disposing of the
handle when done with it.

The terminal tool can use TMSet upPr ef | i ght to allocate a block of private
storage, and to store the pointer to that blocking magi c Cooki e.

magi cCooki e should be passed to the other routines that are used to set up the
custom tool-settings dialog box.

TMSet upPreflight(proclD: | NTEGER, VAR magi cCooki e:
LONG NT): Handl e;

procl Dis the ID for the terminal tool that is being configured. Your application
should get this value by using the TMGet Pr oc| D routine, which is discussed
earlier in this chapter.

Note: The r ef con of the custom tool-settings dialog box should point to a data
structure (an example of which is shown next) in which the first two bytes are the tool
procl D and the next four bytes are magi cCooki e. User | t emroutines, for
example, may require pr ocl D to obtain tool resources.

TYPE
chooseDLOGdat a = RECORD
procl D : I NTEGER
magi cCooki e : LONGI NT
END;

94 Inside the Macintosh Communications Toolbox

TMSet upSet up

Setting up the custom tool-settings dialog box items

TMSet upSet up tells the terminal tool to set up controls (like radio buttons or
check boxes) in the dialog item list returned by TMSet upPr ef | i ght .

Procedure TMSet upSet up(procl D: | NTEGER, theConfig: Ptr; count:
| NTEGER; theDial og: DialogPtr; VAR magi cCooki e:
LONGI NT) ;
Description procl Dis the ID for the terminal tool being configured. Your application should

use the same value for pr ocl D as it passed to TMSet upPr ef | i ght .
t heConfi g is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box in which configuration is taking place.

magi cCooki e is a pointer to private storage for the terminal tool.

TNVBet upFi | ter

Filtering custom tool-settings dialog box events

Your application calls TMSet upFi | t er as a filter procedure before it calls the
standard modal dialog box filter procedure for the custom tool-settings dialog box.
This routine allows terminal tools to filter events in the custom tool-settings dialog
box.

Function TMSet upFil ter(procl D: | NTEGER; theConfig: Ptr;
count: | NTEGER; theDi al og: DialogPtr; VAR theEvent:
Event Record; VAR theltem |NTEGER, VAR nmgi cCooki e:
LONG NT): BOOLEAN,;

Description procl Dis the ID for the terminal tool that is being configured. Your application
should use the same value for pr ocl Das it passed to TMSetupPr ef | i ght.

t heConf i g is the pointer to the configuration record for the tool being
configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t heEvent is the event record for which filtering is to take place.

t hel t emcan return the item clicked in the dialog box.

magi cCooki e is a pointer to private storage for the terminal tool.

If the event passed in was handled, TMSet upFi | t er returns TRUE. Otherwise,
FALSE indicates that your application should perform standard dialog box filtering.

Chapter 4: Terminal Manager 95

TMSetupltem

Processing custom tool-settings dialog box events
TMSet upl t emprocesses events for controls in the custom tool-settings dialog box.

Procedure TMSet upl tem(procl D: | NTEGER; theConfig: Ptr; count:
| NTEGER;, theDial og: DialogPtr; VAR theltem | NTEGER,
VAR magi cCooki e: LONG NT) ;

Description procl Dis the ID for the terminal tool being configured. Your application should
use the same value for pr ocl D as it passed to TMSet upPr ef | i ght .
t heConf i g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t hel t emis the item clicked in the dialog box. This value can be modified and sent
back.

magi cCooki e is a pointer to private storage for the terminal tool.

TNVBet upd eanup

Performing clean-up operations

TMSet upCl eanup disposes of any storage allocated in TMSet upPr ef | i ght
and performs other clean-up operations. If your application needs to shorten a
dialog box, it should do so after calling this routine.

Procedure TMSet upCl eanup(procl D: | NTEGER; theConfig: Ptr; count:
| NTEGER; theDial og: DialogPtr; VAR magi cCooki e:
LONGI NT) :

Description procl Dis the ID for the terminal tool that is being configured. Your application

should use the same value for pr ocl D as it passed to TMSet upPr ef | i ght .
t heConfi g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

magi cCooki e is a pointer to private storage for the terminal tool.

96 Inside the Macintosh Communications Toolbox

TNVBet upPost f | i ght

Closing the tool file
TMSetupPost f | i ght closes the tool file if it is not being used by any session.
Procedure TMSetupPost fli ght (procl D:1 NTEGER) ;

Description procl Dis the ID for the terminal tool that is being configured. Your application
should use the same value for pr ocl D as it passed to TMSet upPr ef | i ght .

Chapter 4: Terminal Manager 97

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to
configure a terminal tool. TMGet Conf i g and TMSet Conf i g provide the services that your
application needs to interface with a scripting language.

TMzt Confi g

Getting the configuration string

Function

Description

TNVBet Confi g

TMGet Conf i g gets a configuration string from the terminal tool.
TMGet Config(hTerm TermHandl e): Ptr;

TMGet Conf i g returns a null-terminated, C-style string from the terminal tool
containing tokens that fully describe the configuration of the terminal record. For an
example, see the description of the next routine. If an error occurs, TMGet Conf i g
returns NI L.

It is the responsibility of your application to dispose of Pt r .

Setting the configuration with a string

Function

Description

Sample

TMSet Conf i g passes a configuration string to the terminal tool.
TMSet Confi g(hTerm TermHandl e; thePtr: Ptr): | NTEGER;

TMSet Conf i g passes a null-terminated, C-style string (see the example string later
in this section) to the terminal tool for parsing. The string is pointed to by t hePt r
and must contain tokens that describe the conf i guration of the terminal record.
The string can be any length.

TMSet Conf i g ignores items it does not recognize or find relevant; such an
occurrence causes the terminal tool to stop parsing the string and to return the
character position where the error occurred. if the terminal tool successfully parses
the string, it returns t mNOEr r . If the terminal tool does not successfully parse the
string, it returns one of the following values: a number less than -1 to indicate an
OSEr r, -1 to indicate an unknown error, or a positive number to indicate the
character position where parsing was stopped.

Individual terminal tools are responsible for the parsing operation.

A null-terminated, C-style configuration string

Font Size 9 Wdth 80 Qursor Underline Online True Local Echo Fal se
Aut oRepeat True Repeat Controls Fal se AutoWap Fal se NewlLi ne Fal se
Smoot hScrol | Fal se Transparent Fal se SnapBSDel et e Fal se\ 0

98 Inside the Macintosh Communications Toolbox

Using terminal emulation routines

Once your application has performed the required tasks described in the previous sections, it can use the
routines described next to perform terminal emulations.

TNVBt r eam

Putting data into the terminal

Your application should use TMSt r eamto give the terminal tool data to write into
the terminal emulation buffer.

Function TMStream(hTerm TernHandl e; theBuffer: Ptr; thelLength:
LONGI NT; flags: CMl ags): LONG NT;

Description TMSt r eamreturns the number of bytes that it processed.

t heBuf f er is the data that is either to be placed in the terminal emulation buffer
or processed by the terminal tool. Typically the data t heBuf f er points to has
been provided by the connection tool your application is using.

CMFI ags is described under the description of CMRead in Chapter 3.
TMPai nt

Drawing part of the terminal emulation region

TMPai nt draws the dataint heTer mDat a into the rectangle t heRect ,
which is in local window coordinates.

Procedure TMPai nt (hTerm TernHandl e; theTernDat a: Ter nDat aBl ock;
t heRect: Rect);

Description t heTer nDat a. t heDat a must be a handle to a block on the heap.

T™ dl e

Providing necessary idle time
Your application should call TM dI e at least once every time it goes through its
main event loop, so that the terminal tool can perform idle-loop tasks (like blinking
the cursor or searching the terminal emulation buffer).

Procedure TM dl e(hTerm Ter nHandl e) ;

Description hTer mspecifies the terminal for which idle-loop tasks are to be performed.

Chapter 4: Terminal Manager 99

TMZet Li ne

Getting lines from the terming emulation buffer
TMGet Li ne returns a line from the terminal emulation buffer.

Procedure TMZet Li ne(hTerm TernmHandl e; |ineNo: |NTEGER, VAR
t heTer nDat a: Ter nDat aBl ock) ;

Description I i neNo specifies the line number of a line of data in the terminal emulation buffer.
(Line numbering in the buffer begins with 1.)

Your application must allocate t heTer nDat a. t heDat a with a length of 0. For
example, t heTer nDat a. theData: =NewHandl e (0). The terminal
tool copies the text into t heTer mDat a. t heDat a, and increases the size of the

handle if necessary. Your application is responsible for disposing of
t heTer mDat a. t heDat a.

TMScr ol |

Scrolling the terminal emulation region

TMScr ol | causes the terminal emulation region to scroll horizontally, vertically, or

both.
Procedure TMsScrol | (hTerm TernmHandl e; dH, dV: [|NTEGER);
Description dHand dV specify the number of pixels to scroll horizontally and vertically. If your

application specifies positive values for dH and dV, the terminal emulation region
scrolls down and to the right. If your application specifies negative values, the
terminal emulation region scrolls up and to the left.

TMJ ear

Clearing the terminal emulation region

TMCI ear causes the terminal to clear the display screen and to place the cursor in
the home position. Nothing is transmitted to the remote computer.

Procedure TMCl ear (hTerm Ter mHandl e) ;

Description If the t mSaveBef or eCl ear flagis on in the terminal record, the terminal tool
caches the data that is deared from the terminal emulation region.

100 Inside the Macintosh Communications Toolbox

TMReset

Resetting the terminal

Procedure

Description

TMResi ze

When your application calls TMReset , the terminal tool puts the specified terminal
into a state that appears as if the terminal had just been turned on. in actuality, the
screen representation structure and internal state tables (if the tool has any) are reset
to the values specified by the terminal tool, and the conf i guration record for the
terminal is reset to its last saved state.

TMReset (hTerm Ter mHandl e) ;

If the tnSaveBeforeCl ear flagis on in the terminal record, the terminal
tool caches the data that is cleared from the terminal emulation region prior to
resetting the terminal.

Resizing the terminal region

TMResi ze resizes the terminal emulation region to the coordinates specified in
newTer mRect .

Procedure TMResi ze(hTerm TermHandl e; newTermRect: Rect);

Description newTer mRect specifies bounds of the new t er mRect . The terminal tool
automatically resizes the value of viewRect.

TMDI spose

Disposing of a terminal record

Procedure

TMDi spose disposes of the terminal record and all associated data structures and
controls.

TMDi spose(hTerm Ter nHandl e) ;

Important Your application must call TMDi spose before disposing of the terminal

emulation window with Di sposeW ndow. Since Di sposeW ndow clears all
controls in the control list, a subsequent call to TMDi spose may cause problems. D

Chapter 4: Terminal Manager 101

Searching the terminal emulation buffer

A terminal tool can search the terminal emulation buffer any time your application requires it to, but
typically a tool will perform a search during your application’s idle procedure. To tell a tool to search
for as specified string, your application calls the TMAddSear ch routine. To tell the terminal tool to
stop performing a search, your application calls TMRenoveSear ch. To tell the terminal tool to stop
all searches, your application calls TMC| ear Sear ch.

TMAddSear ch

Adding a data stream search

TMAddSear ch tells the terminal tool to search for a specified string.

Function TMAddSear ch(hTerm TernHandl e; theString: str255; where: Rect;
searchType: TMSearchTypes; callBack: ProcPt r): | NTEGER;

Description If the search was successfully added, this function returns the reference number
assigned to the search. if the search was not successfully added, TMAddSear ch
returns -1. The tool searches for t heSt ri ng in the area specified by wher e and
within the selection specified by sear chType.

wher e is a rectangle that contains two row/column pairs, with row and column
numbers starting at 1.

By specifying a -1 as a value in the row/column pairs, your application can limit the
search to one row, one column, or the intersection of one row and one column.
Table 4-1 shows how your application can use -1 as a search-area delimiter.

= Table 4-1 TMAddSear ch search-area delimiters

Area to search Row/column pair to use
rectangle bounded by #, m, o,p (n, m) (0.p)

row #, any column (n, -1) (-1,-1)

any row, column m (-1, m) (-1;-])

rows n through o (inclusive), any column (n, -1) (o, -1)

column m through p (inclusive), any row (-1, m) (-1, p)

anywhere (any row, any column) (-1,-1) (-1,-1)

102 Inside the Macintosh Communications Toolbox

Your application should pass in sear chType the sum of three values that
describes the search: sear chNoDi acri t (to ignore diacritical marks),
sear chNoCase (to ignore case), and one of the constants that describes the
selection.

Valid values are as follows:

TYPE
TMSear chTypes = | NTECGER;
CONST
{ search nodifiers }
sear chNoDi acrit = $0100;
sear chNoCase = $0200;

{ constants that describe the selection }

sel Text Nor mal = $0001;
sel Text Boxed = $0002;
sel Gr aphi csMar quee = $0004;
sel GraphicsLasso = $0008;

cal | Back is a procedure that the tool automatically calls when it finds a match.
cal | Back must be supplied by your application, and is described later in this
chapter in the section “Routines That Must Be in Your Application.”

TMRenoveSear ch

Stopping a data stream search

Procedure

Description

TMRenoveSear ch stops the search specified by r ef Num
TMRenoveSear ch(hTerm TermHandl e; ref Num | NTECGER);

This routine cannot be called at interrupt level, but @an be called by My Cal | Back.
(MyCallBack is discussed later in this chapter under “Routines That Must Be in Your
Application.”)

TMJ ear Sear ch

Clearing A data stream searches

Procedure

Description

TMCI ear Sear ch stops all searches assodated with the specified terminal record.
TMCl ear Sear ch(hTerm Ter ntHandl e) ;

hTer mspecifies the terminal record. TMCl ear Sear ch cannot be called from
interrupt level

Chapter 4: Terminal Manager 103

Manipulating selections

The Terminal Manager provides two routines that make it easier for your application to manipulate
selections in the terminal emulation window. TMSet Sel ect i on highlights a selection, and
TMGet Sel ect retrieves the data in the selection.

TMBet Sel ecti on
Setting and highlighting selections

TMSet Sel ect i on makes theSel ect i on the current selection.

Procedure TMSet Sel ecti on(hTerm TernHandl e; theSel ecti on:
TMSel ection; sel Type: TMsel Types);

Description sel Type determines the type of highlighting for the selection. Valid values are:
TYPE
TMSel Types = | NTEGER;
CONST
sel Text Nor mal = $0001;
sel Text Boxed = $0002;
sel Gr aphi csMar quee = $0004;
sel Graphi csLasso = $0008;

TMCet Sel ect
Getting data from a selection

TMGet Sel ect returns either the number of bytes in the selection, or an
appropriate operating system error code.

Function TMcet Sel ect (hTerm TermHandl e; theData: Handle; VAR
t heType: ResType): LONG NT;

Description If nothing is seleded, TMGet Sel ect retums 0. Otherwise, it retumns the size of the
seleaed data.

t heDat a must be a handle to a block of size0. TMGet Sel ect will resize this
block as necessary.

t heType specifies the type of data this routine returns. If t heType is TEXT,

t heDat a is a handle to textual data. theType and t heDat a may be passed
directly to the Scrap Manager.

104 Inside the Macintosh Communications Toolbox

Handling events

The Terminal Manager event-processing routines provide useful extensions to the Macintosh Toolbox
Event Manager. This section explains the seven routines that the Terminal Manager provides. See
“Other Events” in Chapter 2 for sample code showing how an application can determine if an event
needs to be handled by one of these routines.

TMAct i vat e

Activate events

Procedure

Description

TMResune

TMAct i vat e processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the terminal tool.

TMActi vate(hTerm TernHandl e; activate: BOOLEAN);

If activateis TRUE, the terminal tool processes an activate event. Otherwise, it
processes a deactivate event.

Resume events

Procedure

Description

TMvEnu

TMResume processes a resume or suspend event for a terminal window. Resume
and suspend events are processed only if a tool has a custom menu to install or
remove from the menu bar.

TMResunme(hTerm TernHandl e; resune: BOOLEAN);

If resume is TRUE, then the terminal processes a resume event. Otherwise, it
processes a suspend event.

Menu events

Function

Description

Your application must call TMVenu when the user chooses an item from a menu that
is installed by the terminal tool.

TMvenu(hTerm TernmHandl e; nenul D: | NTEGER;, item
| NTEGER) : BOOLEAN;

TMMenu retumns FALSE if the terminal tool did not handle the menu event
TMMVenu retums TRUE if the terminal tool did handle the menu event

Chapter 4: Terminal Manager 105

TMJ i ck

Mouse events

Procedure

TMKey

TMCl i ck processes a mouseDown event in the terminal emulation region. The
routine pointed to by mycl i kLoop, discussed later in this chapter in the section
“Routines That Must Be in Your Application,” is called repeatedly by TMCl i ck.

TMClick(hTerm TernHandl e; theEvent: EventRecord);

Keyboard events

Procedure

Description

TMJpdat e

TMKey processes a key Down or aut oKey event. The terminal tool translates the
keystroke into a sequence of bytes. The terminal tool then calls your application’s
sendProc routine (discussed later in this chapter under “Routines That Must Be in
Your Application.”) to transmit this sequence of bytes.

TMKey(hTerm TernmHandl e; theEvent: EventRecord);
Your application can create its own event record for specific keyboard events by filling

in the event record with the character code and -1 for the key code in the message
field.

Update events

Procedure

Description

Your application will typically call TMUpdat e between Begi nUpdat e and
EndUpdat e.

TMJpdat e(hTerm TermHandl e; vi sRgnh: RgnhHandl e);

vi sRgn specifies the region to be updated.

106 Inside the Macintosh Communications Toolbox

TMEVent

Other events

Procedure

Description

When your application receives an event, it should check whether the r ef con of the
window is a tool’s hTer m Such an event occurs, for example, when the user clicks
a button in a dialog box displayed by the terminal tool. If it does belong to a
terminal tool’s window, your application can call TMEvent .

TMEvent (hTerm TernmHandl e; theEvent: EventRecord);

A window (or dialog box) created by a terminal tool has a terminal record handle
stored in t he ref Con field for wi ndowRecor d.

Chapter 4: Terminal Manager 107

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

TM nt | ToEngl i sh

Translating into English

Function

Description

TM nt | ToEngl i sh converts a configuration string, which is pointed to by

i nput Pt r, to an American English configuration string pointed to by
out put Ptr.

TM nt| ToEngl i sh(hTerm TernHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

The function returns an operating system error code if any internal errors occur.
The terminal tool allocates space for out put Pt r . Your application should

dispose of this pointer when done with it.

| anguage specifies the language from which the string is to be converted. Valid

values for this field are shown in the description of the Script Manager in Inside

Macintosh, Volume V. If the language specified is not supported, this routine returns

t MNoEr r, but out put Ptr is NI L.

TMENgl i shTol nt |

Translating from English

Function

Description

TMENngl i shTol nt| converts an American English configuration string, which is
pointed to by i nput Pt r, to a configuration string pointed to by out put Pt r .

TMENngl i shTolntl (hTerm TernHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; |anguage: |NTECGER): OSErr;

The function returns an operating system error code if any internal errors occur.
The terminal tool allocates space for out put Pt r. Your application is

responsible for disposing of the pointer with Di sposPt r when done with it.

| anguage specifies the language to which the string is to be converted. Valid

values for this field are shown in the description of the Script Manager in Inside

Macintosh, Volume V. if the language specified is not supported, t MNoEr r is still

returned, but out put Pt r is NI L.

108 Inside the Macintosh Communications Toolbox

Miscellaneous routines

The routines described in this section perform a variety of tasks.

TMZet Tool Name

Getting the name of a tool

Procedure

Description

TNVSet Ref Con

TMGet Tool Nane returns in nane the name of the tool specified by pr oc | D.
TMGet Tool Name(procl D: | NTEGER; VAR nane: Str255);

If procl D references a terminal tool that does not exist, the Terminal Manager sets
name to an empty string.

Setting the terminal tool’s reference constant

Procedure

TMzet Ref Con

TMSet Ref Con sets the terminal record’s r ef Con to the specified value. It is very
important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

TMSet Ref Con(hTerm TernHandl e; refCon: LONGI NT);

Getting the terminal tool’s reference constant

Function

TMGet Ref Con returns the terminal record’s reference constant.

TMGet Ref Con(hTerm TermHandl e): LONG NT;

Chapter 4: Terminal Manager 109

Thbet User Dat a

Setting the userData field
TMSet User Dat a sets the terminal record’s user Data field to the value specified
by user Dat a. It is very important that your application use this routine to change

the value of the user Dat a field, instead of changing it directly.

Procedure TMSet User Dat a(hTerm TernmHandl e; userData: LONG NT);

TMzet User Dat a

Getting the userData field
TMGet User Dat a returns the terminal record’s user Dat a field.

Function TMCet User Dat a(hTerm TernHandl e€): LONG NT;

TMzet Ver si on

Getting 'vers' resource information
TMGet Ver si on returns a handle to a relocatable block that contains the
information that is in the terminal tool’s ' ver s' resource with ID=1. Your
application is responsible for disposing of the handle when done with it.

® Note: The handle returned is not a resource handle.

Function TMCGet Ver si on(hTerm TernHandl e): Handl e;

TMZet TM/er si on

Getting the Terminal Manager version number

TMGet TMWVer si on returns the version number of the Terminal Manager.

Function TMGet TMVer si on: | NTECGER;
Description The version number of the Terminal Manager described in this document is:
CONST
curTMWersion = 1;

110 Inside the Macintosh Communications Toolbox

TMzet Cur sor
Getting the current cursor position

TMGet Cur sor returns the current position of the cursor. Numbering of rows and
columns begins with 1.

Function TMGet Cur sor (hTerm TermHandl e; cursType:
TMCur sor Types) : Poi nt;
Description Valid values for cur sType are as follows:
CONST
cur sor Text = 1;
cursorGraphics = 2;
TYPE
TMCur sor Types = | NTEGER,

For cur sor Text , the position returned is in row/column format, and for
cursor Graphi cs the position is in pixel coordinates.

TMDoTer nKey
Emulating a special terminal key

TMDoTer nKey emulates a special terminal key specified by t heKey.

Function TMDoTer nKey(hTerm TernmHandl e; theKey: Str255):

BOOLEAN,

Description If the terminal tool does not understand the key specified by t heKey, this routine
returns FALSE. Otherwise, if the key specified is processed, this routine retums
TRUE.

For information about the terminal keys supported by a terminal tool, refer to that
tool’s documentation.

This example shows how an application can use TMDoTer mKey to emulate the
user’s pressing a PF1 key:

| F TMDoTer nKey(hTerm ' PF1') THEN
BEGI N
END;

Chapter 4: Terminal Manager 111

TMCount Ter nKeys

Counting special terminal keys

Function

Description

TMCount Ter mKeys returns the number of special terminal keys that the terminal
tool supports.

TMCount Ter nKeys(hTerm) : | NTEGER,

TMCount Ter nKeys returns 0 if the terminal tool supports no special terminal keys.

TMzt | ndTer nKey

Getting a terminal key

Procedure

Description

TMGet | ndTer nmKey returns the name of a specified key.
TMzZet | ndTer nkey(hTer m Ter nHand e; id: | NTEGER VARt heKey: Str255);

TMGet | ndTer mKey returns in t heKey the terminal key specified byi d. Ifi d
specifies a keythat does not exist, this routine returns an empty string.

TMZet Ter nEnvi r ons

Getting general terminal tool information

Function

Description

TMGet Ter mEnvi r ons returns t heEnvi r ons, which reflects the internal
conditions of the terminal tool. The caller of this routine must fill in the ver si on
field of t heEnvi r ons before calling TMGet Ter mEnvi r ons.

TMGet Ter mEnvi rons(hTerm TernHandl e; VAR theEnvirons:
TermeEnvi ronRec): TMErr;

This routine returns t mMNOEr r, envVer sTooBi g, or an operating system error
code. The fields in t heEnvi r ons are as follows:

TYPE

Ter mEnvi ronPtr ATer mEnvi r onRec;

Ter mEnvi r onRec RECORD
version : | NTEGER;
termlype : TMTer nlypes;
t ext Rows : | NTEGER;

t ext Col s : | NTEGER;
cell Size : Poi nt ;
graphi cSi ze : Rect ;

sl op : Poi nt ;
auxSpace : Rect ;

END;

112 Inside the Macintosh Communications Toolbox

ver si on is the version number of the requested terminal environment record
which is cur Ter mEnvRecVer s in this release of the Terminal Manager. The
caller of the routine must fill in this field before calling TMGet Ter nEnvi r ons.

t er mlype is the type of terminal. t er ml'ype can contain one or both of the
following values:

CONST

t mrext Ter m nal = $0001;
t mGr aphi csTerm nal = $0002;
cur Ter mEnvRecVers = 0;

TYPE

TMTer mlypes = | NTEGER,;

t ext Rows is the number of rows in the terminal emulation region. The first row is
row number 1.

t ext Col s is the number of columns in the terminal emulation region. The first
column is column number 1.

cel | Si ze is the height and width of each cell.

gr aphi cSi ze is the size of the default rectangle of the graphics terminal tool
measured in pixels.

sl op is the border of the terminal emulation region.

auxSpace is a rectangle that specifies any additional space that is required at the
top, bottom, right, or left of the terminal emulation region, as shown in Figure 4-7

» Figure 4-7 Additional space in the terminal emulation region

slop.v auxdpacs . Lop
!
T rJ r_ auxipacs, right
Alax Becky Bycon Carol Ceslg
Gless Sesn Jercy Jopos Macy
Faul Roln Robibie Tos Yeronloa

| slop.h

=

auxSpace. botren

auxSpace, lefe

Result Codes t mGeneri cError, tnmNoErr, tnNotSupported, envVersTooBig.

Chapter 4: Terminal Manager 113

Routines that must be in your application

Terminal tools do not provide all the code necessary to perform terminal emulations; your application
must also provide some code (or at least pointers to code provided by other managers). This section
describes the routines that must be in your application, which give the terminal tool important

information about

= how to send data on the connection

= what to do with lines that scroll out of the terminal emulation region

= what to do when a specified string is found in the terminal emulation buffer

= what to do when the user wants to effect a break on the terminal

= what to do when the user is dragging the mouse in the terminal emulation region

= what the connection environment is like

My SendPr oc

Sending data out along the connection

Function

Description

When a tool needs to send data to another entity, it looks to your application to
provide My SendPr oc. MySendPr oc may Simply be the routine that the
Connection Manager uses to send data (as is the case in the next example), or it can
be a routine that you have written.

MySendProc (thePtr: Ptr; theSize: LONG NT; refCon:
LONG NT; flags: CMl ags): LONG NT;

t hePt r is a pointer to the data to be sent.

t heSi ze is the number of characters to be sent.

r ef Con is the reference constant field for sending terminal’s terminal.

My SendPr oc returns the actual number of characters sent.

f | ags indicates whether the connection tool should send an end-of-message
indicator. An end-of-message indicator needs to be supported by the particular

communications protocol being used; if an end-of-message indicator is not supported
by the connection protocol, your application should ignore this field.

114 Inside the Macintosh Communications Toolbox

Sample routine for sending data

FUNCTI ON MySendProc(thePtr: Ptr;theSize: LONG NT;
refcon: LONG NT;flags: |NTEGER): LONG NT;

VAR

theErr : CMErr; { Any errors }
BEGI N

MySendProc = O; { Assune the worst }

IF gConn <> NIL THEN BEG N

{ DO NOT check to see if the connection is first open before sending }
{ as the tool nmight be handling the data locally }

{ Send the data }
theErr =

CMNite(gConn,thePtr,theSize, cnbDat a, FALSE, NI L, O, fl ags);

IF (theErr = noErr) THEN
MySendProc := theSize { If ok, we sent all }
ELSE
{ Handle errors }
END; { Good Connection }

END; { MySendProc }

M/Br eakPr oc

Sending a break
Your application needs to contain information about how to send a break on a
connection. Although it can contain the code that performs the break operation, your
application can also point to a connection tool routine that performs the break. This
section gives an example.

Procedure MyBreakProc(duration: LONG NT; refCon: LONG NT);

Description dur at i on specifies, in ticks, how long the break should last.

r ef Con is the reference constant field of the terminal record.
Sample showing bhow to break a connection

PROCEDURE MyBr eakProc(duration: LONG NT; refcon : LONG NT);
BEG N
{ Here we choose to issue a synchronous break }
I F gConn <> NIL THEN
CMBr eak(gConn, duration, FALSE, N L);
END;, { MyBreakProc }

Chapter 4: Terminal Manager 115

MyCachePr oc
Caching lines from the terminal region

Your application can cache lines that scroll off the top of the terminal emulation
region and, if desired, display them in the terminal emulation window. If you want
your application to display these lines, you have to provide the necessary code. If
you do not want your application to display these lines, then your application should
specify NI L for MyCachePr oc when it calls TMNew.

Function MyCacheProc(ref Con: LONG NT;
t heTer mDat a: Ter mDat aBl ock) : LONGI NT,;
Description My CachePr oc must return t mNOEr r if no error occurred during processing.

Otherwise, it should return an appropriate error code.
r ef con is the reference constant for the terminal record.

t heTer nDat a is a data structure of type Ter nDat aBl ock:

TYPE
Ter mDat aBl ockH
Ter mDat aBl ockPtr

ATer mDat aPtr ;
ATer nDat aBl ock;

Ter nDat aBl ock RECORD
flags : TMTer mlypes;
t heDat a : Handl e;
auxDat a : Handl e;
reserved : LONGI NT;

END;

t heTer mtheData is a handle to a block on the heap. Your application can
calculate the size of this block with Get Handl eSi ze. Your application must copy
any data it needs because t heTer mDat a belongs to the terminal tool and may not
exist after My CachePr oc has finished. Your application can use HandToHand
to copy the data.

Sample showing how to cache lines

FUNCTI ON MyCacheProc (refcon : LONG NT; theTernData TernDat aBl ock) :LONG NT;
VAR
si zeCached : LONG NT;

BEG N
{ Check for data integrity }
|F (theTernData.theData = NIL) THEN BEG N
MyCacheProc := -1;
EXI T(MyCachePr oc) ;
END; (Bad Data }

{ Cache either graphics or text }
HLock(t heTer nDat a. t heDat a) ;

{ Get rid of the old cached data }
| F (gCache <> NIL) THEN

116 Inside the Macintosh Communications Toolbox

END;

Di sposHandl e(gCache);

{ make a copy of new text

gCache := theTernData.theDat a;

| F (HandToHand(gCache) <> noErr) THEN BEG N
gCache := NIL; (* Handle errors)
si zeCached := -1,

END

ELSE
si zeCached := GetHandl eSi ze(gCache);

HUnl ock(t heTer nDat a. t heDat a) ;

IF (theTernmData.flags = tnGraphicsTerninal) THEN BEG N
{ theTernData.theData is a handle to a Q@ Picture }
*

Could save it as PICT
*

END { cache graphics }
ELSE | F (theTernData.flags = tnilextTerm nal) THEN BEGQ N
{ theTernData.theData is a handle to text }

*

Could wite it out to the data fork
*

END;, { cache text }
MyCacheProc := sizeCached;
{ MyCacheProc }

MyCal | Back

Responding to a matched search parameter

Your application can selectively filter data in the terminal emulation buffer by making
use of a search call-back procedure. Since a tool will automatically call

My Cal | Back when it finds a match to the search string, your application can
respond in any way that you want it to.

Procedure MyCal | Back(hTerm TernHandl e; ref Num | NTEGER,

foundRect: Rect);

Description r ef Numis the reference number associated with a particular search. Reference

numbers are assigned by the Terminal Manager when a search is added to a terminal
record with the TMAddSear ch routine.

f oundRect describes in row/column format where the match was found, with row and column

numbers starting at 1.

Chapter 4: Terminal Manager 117

M/d i kLoop

Responding to mouse clicks
This routine is called when the user is dragging the mouse in the terminal emulation
window. [Initially, your application should process a mouse-down event by calling
TMCl i ck, which in turn calls this routine.

Function MyCl i kLoop(refCon: LONG NT): BOOLEAN;

Description This routine returns TRUE when the mouse is clicked within the cache region.
Otherwise, it returns FALSE.

M/Envi r onsPr oc

Getting connection environment information

To get information about the connection environment, the terminal tool calls a
routine in your application, My Envi r onsPr oc.

Functi on MyEnvi ronsProc(ref Con: LONG NT; VAR theEnvirons:
ConnEnvi ronRec): CMErr;

Description r ef Con is the reference constant for the terminal tool.

t he Environs is a data structure containing the connection-environment record.
Your application can either construct t heEnvi r ons or use the Connection
Manager routine CMGet ConnEnvi r ons. For more information about

t heEnvi rons, see “CMGet ConnEnvi r ons” in Chapter 3.

The example that follows shows how MyEnvi r onsPr oc can point to a Connection
Manager routine to retrieve information about the connection environment.

Sample terminal-environment routine

FUNCTI ON MyEnvi ronsProc(ref Con: LONG NT; VAR t heEnvirons:
ConnEnvironRec): OSErr;

BEG N
MyEnvi ronsProc: = envNot Present; { pessimsm}
t heEnvirons. version := curConnEnvRecVers; { fill in version
field }
IF (gConn <> NIL) THEN { Tool sets the version
)

MyEnvi ronsProc: = CMGet ConnEnvi rons(gConn, t heEnvirons);
END;, { MEnvironsProc)

118 Inside the Macintosh Communications Toolbox

Quick reference

This section provides a reference to Terminal Manager routines and data structures. At the end of this section is a
listing of routine selectors for programming in assembly language.

Routines

Terminal Manager routines See page
InitTM TMErr; 88
TMActivate(hTerm TernHandl e; activate: BOOLEAN); 105
TMAddSear ch(hTerm TernHandl e; theString: Str255; 102

where: Rect; searchType: TMSearchTypes; call Back:
ProcPtr): | NTECGER;

TMChoose(VAR hTerm TernmHandl e; where: Point; 92
idleProc: ProcPtr): |NTEGER;

TMCl ear (hTerm TernmHandl e) ; 100
TMCl ear Search(hTerm Ter mHandl e) ; 103
TMCli ck(hTerm TernHandl e; theEvent: EventRecord); 106
TMCount Ter nKeys(hTerm): | NTEGER; 112
ThVDef aul t (VAR theConfig: Ptr; proclD: | NTEGER; 91
al l ocate: BOOLEAN);

TMDi spose(hTerm Ter nHandl e) ; 101
TVDoTer nKey(hTerm TernmHandl e; theKey: Str255): 111
BOOLEAN,;

TMENgl i shTol ntl (hTerm TernmHandl e; inputPtr: Ptr; VAR 108
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

TMEvent (hTerm TernHandl e; theEvent: EventRecord); 107
TMCet Config (hTerm TernHandle): Ptr; 98
TMCet Cur sor (hTerm Ter mHandl e; cursType: 111
TMCur sor Types) : Point;

TMGet | ndTer nKey(hTerm TermHandl e; id: | NTEGER;, VAR 112
t heKey: Str255);

TMGet Li ne(hTerm TernmHandl e; |ineNo: | NTEGER, VAR 100
t heTer nDat a: Ter nDat aBl ock) ;

TMCet Procl D(nane: Str255): | NTEGER; 88
TMGet Ref Con(hTerm Ter mHandl e) : LONG NT; 109
TMGet Sel ect (hTerm TernHandl e; theData: Handle; VAR 104

t heType: ResType): LONG NT;

Chapter 4: Terminal Manager 119

Terminal Manager routines See page
TMGet TermEnvirons (hTerm TernHandl e; VAR theEnvirons: 112
Ter mEnvi ronRec): TMErr;

TMGet Tool Nanme(procl D: | NTEGER;, VAR nane: Str255); 109
TMGet TMWVer si on: | NTEGER; 110
TMGet UserData (hTerm TernHandl e): LONG NT; 110
TMCet Version (hTerm TernHandl e): Handl e; 110
TMdle (hTerm TernHandl e); 99
TM ntl ToEnglish (hTerm TernmHandle; inputPtr: Ptr; VAR 108
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

TMKey (hTerm TernmHandl e; theEvent: EventRecord); 106
TMVenu (hTerm TernHandl e; nmenul D: | NTEGER;, item 105
| NTEGER) : BOOLEAN,;

TMNew(termRect: Rect; viewRect: Rect; flags: TMI ags; 89
procl D: | NTEGER;, owner: WndowPtr; sendProc: ProcPtr;
cacheProc: ProcPtr; breakProc: ProcPtr; clikLoop:

ProcPtr; environsProc: ProcPtr; refCon: LONG NT;

userData: LONG NT): TernHandl e;

TMPai nt (hTerm TernHandl e; theTernDat a: Ter nDat aBl ock; 99
t heRect: Rect);

TMRenoveSearch (hTerm TernmHandl e; refNum | NTEGER); 103
TVReset (hTerm TernHandl e); 101
TMResi ze (hTerm TernmHandl e; newTernRect: Rect); 101
TMResurme (hTerm Ter nHandl e; resune: BOOLEAN); 105
TMScroll (hTerm TernHandl e; dH, dV: | NTEGER); 100
TMSet Config (hTerm TernmHandl e; thePtr: Ptr): | NTEGER 98
TMSet Ref Con(hTerm TernHandl e; ref Con: LONG NT); 109
TMSet Sel ection (hTerm TernHandl e; theSel ection: 104
TMSel ection; sel Type: TMsel Types);

TMSet upCl eanup(procl D: | NTEGER; theConfig: Ptr; 96
count: | NTEGER; theDialog: DialogPtr; VAR

magi cCooki e: LONG NT) ;

TMSet upFilter(proclD: |INTEGER;, theConfig: Ptr; count: 95

| NTEGER; theDial og: DialogPtr; VAR theEvent:

Event Record; VAR theltem |NTEGER;, VAR nmgi cCooki e:

LONGI NT) : BOOLEAN;

TMSet upl tem(procl D: | NTEGER; theConfig: Ptr; count: 96

| NTEGER; thebDialog: DialogPtr; VAR theltem | NTEGER,
VAR nmagi cCooki e: LONG NT);

120 Inside the Macintosh Communications Toolbox

Terminal Manager routines See page
TMSet upPost flight (proclD: | NTEGER); 97
TMSet upPreflight(proclD: |NTEGER, VAR magi cCooki e: 94
LONG NT): Handl e;

TMSet upSet up(procl D: | NTEGER; theConfig: Ptr; count: 95
| NTEGER; theDial og: DialogPtr; VAR magi cCooki e:

LONGI NT) ;

TMSet User Dat a(hTerm TernmHandl e; userData: LONG NT); 110
TMSt ream(hTerm TernHandl e; theBuffer: Ptr; 99
t heLength: LONG NT; flags: CMl ags): LONG NT;

TMJpdat e(hTerm TernmHandl e; vi sRgn: RgnHandl e); 106
TMWval i date(hTerm TermHandl e): BOOLEAN,; 91
Routines in your application See page
MySendProc (thePt r : Pt r ; theSize: LONGINT; refCon: 114
LONGINT; f | ags: CMFI ags): LONGINT;

MyBreakProc(duration: LONGINT; refCon: LONGINT); 115
MyCacheProc(refCon: LONGINT; 116
theTermData:TermDataBlock): LONGINT;

MyCallBack(hTerm: TermHandle; refNum: | NTEGER,; 117
foundRect: Rect);

MyClikLoop(refCon: LONGINT): BOOLEAN; 118
MyEnvironsProc(refCon: LONGINT; VAR theEnvirons: 118

ConnEnvironRec): CMErr;

Terminal record
TYPE
TermHandl e = Ter mPoi nt er;
Ter mPoi nter = ATer mRecor d;
TermRecord = RECORD
procl D, = | NTEGER
flags : TMFI ags;
err Code : TMEr 1 ;
ref Con : LONGI NT;
user Dat a: LONGI NT;
def Proc : ProcPtr;
config Ptr;
ol dConfi g D Ptr;

Chapter 4: Terminal Manager 121

environsProc: ProcPtr;
reservedl LONG NT;
reserved? LONG NT;
tmPrivate Ptr;
sendPr oc ProcPtr;
breakPr oc ProcPtr;
cacheProc ProcPtr;
clikLoop ProcPtr;
owner W ndowPtr ;
t er mMRect Rect ;
vi ewRect . Rect ;
vi sRect Rect ;
| astldle LONGI NT;
sel ection TMSel ecti on;
sel Type TMSel Types;
m uFi el d LONGH NT;
END;
Constants and data types
TYPE
TMSel ecti on = RECORD
CASE | NTEGER OF
1:
sel Rect Rect ;
)
2 (
sel RgnHandl e: RgnHandl e;
filler : LONGI NT;
)
END;
TYPE
Ter nDat aBl ockH = ATer mDat aPtr;
Ter mDat aBl ockPtr = ATer mDat aBl ock;
Ter nDat aBl ock = RECORD
flags TMTer mlypes;
t heDat a Handl e;
auxDat a Handl e;
reserved LONGH NT;
END;
122 Inside the Macintosh Communications Toolbox

TYPE

Ter nEnvi ronPtr ATer mEnvi r onRec;

Ter nEnvi r onRec RECORD
version : | NTEGER;
termlype : TMTer mlypes;
t ext Rows : | NTEGER
t ext Col s : | NTEGER;
cell Size : Poi nt ;
graphi cSi ze ; Rect ;
sl op : Poi nt ;
auxSpace : Rect ;

END;

TYPE
TNEr r = OSErr ;
CONST

t mGeneri cError = -1;

t MNOEr r = 0;

t mNot Support ed = 7;

t mMNoTool s = 8:

CONST
cur Ter mnEnvRecVer s = 0;
cur TMVer si on = 1;

—

{ bit nmasks for flags field term nal record }

o}
tm nvi si ble = $00000001;
t mSaveBef or eCl ear = $00000002;
t mMNoMenus = $00000004;
t mAut oScr ol | = $00000008;
{ selection types }
sel Text Nor mal = $0001;
sel Text Boxed = $0002;
sel Graphi csMarquee = $0004;
sel Graphi csLasso = $0008;
{ search nodifiers)
searchNoDi acrit = $0100;
sear chNoCase = $0200;

Chapter 4: Terminal Manager 123

TYPE
TMSear chTypes = | NTEGER;

{ termnal types in TernEnvironRec data structure }
CONST
$0001;

$0002;

TmlText Ter m nal
TmGr aphi csTer m nal

{ TMChoose return val ues }
chooseDi sast er
chooseFai | ed
hooseOKM nor
chooseOKMaj or
chooseCance

Terminal Manager routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, Set AO to
point to the selector, and invoke the trap _Cormmilool boxDi spat ch ($A08B) Upon
returning from the trap, the trap macro pops the routine selector off the stack and places the return
value into DO. It is your application’s responsibility to clean up the stack by removing the
parameters that were pushed onto the stack prior to invoking the trap macro.

InitTM . EQU 769 TMENngl i shTol ntl . EQU 798
TMAct i vat e . EQU 775 TMEvent . EQU 813
TMAddSear ch . EQU 807 TMGet Confi g . EQU 795
TMChoose . EQU 812 TMGet Cur sor . EQU 810
TMCl ear . EQU 781 TMGet | ndTer mnkey . EQU 816
TMCI ear Sear ch . EQU 809 TMGet Li ne . EQU 784
TMCl i ck . EQU 777 TMGet Procl D . EQU 799
TMCount Ter mKeys . EQU 815 TMGet Ref Con . EQU 802
TMDef aul t . EQU 789 TMGet Sel ect . EQU 783
TMDi spose SE?U 771 TMGet Ter mEnvi r ons . EQU
TMDoTer nKey . EQU 814 TMGet TVer si on . EQU 806

124 Inside the Macintosh Communications Toolbox

MGet Tool Name
TMGet User Dat a
TMGet Ver si on
TM dl e

TM nt | ToEngl i sh
TMKey

TMMeNnu

TMNew

TMPai nt
TMRenpveSear ch
TMReset

TMResi ze
TMResume

TMScr ol |

. EQU
. EQU
. EQU
. EQU
. EQU
. EQU
. EQU
. EQU
. EQU

. EQU
. EQU
. EQU
. EQU

800
804
805
787
797
772
779
770
774
808
780
782
776
786

TMSet Confi g
TMSet Ref Con
TMSet Sel ecti on
TMSet upCl eanup
TMSet upFil ter
TMSet upltem

. EQU
. EQU
. EQU

. EQU

TMSet upPost fl i ght
TMSet upPreflight .
. EQU
. EQU
. EQU
. EQU
. EQU

TMSet upSet up
TMSet User Dat a
TMSt ream
TMUPdat e

TMWal i dat e

Chapter 4: Terminal Manager

EQU

EQU

796
801
785
794
792
793
.EQU 817
790
791
803
778
773
788

125

126 Inside the Macintosh Communications Toolbox

Chapter 5 File Transfer Manager

Chapter 5: File Transfer Manager 1

THIS CHAPTE R describes the File Transfer Manager, the Communications Toolbox manager that
allows applications to implement file transfer services without having to take into account underlying file
transfer protocols. This chapter describes fundamental concepts about the File Transfer Manager. Then
it describes the file transfer record, which is the most important record of the File Transfer Manager.
Next, this chapter presents a detailed description of each routine provided by the File Transfer Manager.
At the end of the chapter, you'll find a “Quick Reference” to routines, data structures, and routine

selectors for programming in assembly language.

In this chapter, the term your application refers to the application you are writing for the Macintosh,
which will implement communications services for users. Be careful not to confuse the services your

application provides with the services that tools provide.

To use the File Transfer Manager, you need to be familiar with

B the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)
B the File Manager (described in Inside Macintosh, Volumes II, IV, V)

B the Standard File Package (described in Inside Macintosh, Volumes I, IV)

B the Connection Manager (described in Chapter 3 of this document)

128 Inside the Macintosh Communications Toolbox

About the File Transfer Manager

By using File Transfer Manager routines, your application can send files to or receive files from another
entity without having to take into account underlying file transfer protocols. File transfer tools, which
are discussed in Chapter 11, are responsible for implementing file transfer services according to specific
protocols.

The File Transfer Manager provides generic file transfer services for a transfer between your
application and another computer process. The other process can be running on the same computer as
your application, or on any other type of computer.

Here’s what happens inside the File Transfer Manager. An application makes a request of the File
Transfer Manager when it needs it to send a file or perform some other file transfer function. The File
Transfer Manager then sends this request to one of the tools that it manages. The tool provides the
service according to the specifics of its file transfer protocol. Once the tool has finished, it passes back to
the application any relevant parameters and return codes.

Figure 5-1 shows the data flow into and out of the File Transfer Manager.

B Figure 5-1 Data flow into and out of the File Transfer Manager

Sendreceive [rata connection 1o ""j?_j 1
| thiss file other entity =

File Transfer [
Manager

The most important data structure maintained by the File Transfer Manager is the file transfer record,
which contains all the specifics about a file transfer. For example, the file transfer record might show
that the File Transfer Manager should use the XMODEM tool to perform file transfers, and that the tool
should not display any custom menus while transferring files.

Chapter 5: File Transfer Manager 129

One important aspect of the file transfer record is that it allows you to use protocol-independent
routines. Protocol-independent routines allow applications to use File Transfer Manager services
without regard for the underlying file transfer protocols. In other words, when an application wants to
transfer a file from a remote entity, it tells the File Transfer Manager to get the file, and the File Transfer
Manager figures out exactly how to implement the transfer for a specific protocol.

Another important feature of the file transfer record is that it lets you use multiple instances of the
same tool. The same tool can be used by different processes at the same time, as in a MultiFinder
environment, or by different threads in a given application.

The file transfer record is described in greater detail later in this chapter.

Besides providing basic file transfer routines, the File Transfer Manager includes routines that help
your application configure a file transfer tool, either by presenting the user with a dialog box or by
interfacing directly with a scripting language. The File Transfer Manager also contains routines that can
help you localize your applications in other languages.

You can write applications that use the File Transfer Manager with other Communications Toolbox
managers to create a communications application with basic connection, terminal emulation, and file
transfer capabilities. Or, you can use the File Transfer Manager with some other connection service and
terminal emulation service. You can also write your own file transfer tool for the File Transfer Manager
to use. (This procedure is discussed in Chapters 8 and 11.) Regardless of which you choose, your
application needs to be able to handle different file transfer tools so that users can change tools and still
be able to use your program.

The file transfer record

The file transfer record contains information needed by your application and the file transfer tool to
send files, such as whether to send data or receive data, and where to find the routines that perform the
actual sending and receiving of files. The file transfer record also contains pointers to File Transfer
Manager internal data structures. Most of the fields in the file transfer record are filled in when an
application calls FTNew, described later in this chapter.

Because the context for a given file transfer is maintained in a file transfer record, an application can
perform several file transfers simultaneously (using one or more file transfer tools), by creating a
separate file transfer record for each transfer. For details, see “FTNew Creating a File Transfer Record,”
later in this chapter.

+ Important Your application, in order to be compatible with future releases of the File Transfer
Manager, should not directly manipulate the fields of the file transfer record (with
the exception of confi g and ol dConf i g). The File Transfer Manager provides
routines that applications and tools can use to change the fields in the file transfer
record. These routines are discussed later in this chapter. +

130 Inside the Macintosh Communications Toolbox

File transfer record data structure

TYPE

END;

FTHandl e
FTPt r
FTRecord

procl D

flags
err Code

ref Con
user Dat a

def Proc

config
ol dConfi g

envi ronsProc
reservedl
reserved?

ftPrivate

sendPr oc
recvProc
writeProc
readPr oc

owner

direction
t heReply

writePtr
readPtr

t heBuf
buf Si ze
aut oRec
attri butes

AETPtr ;
"FTRecor d;
PACKED RECORD

| NTEGER,

FTFI ags;
FTErr;

LONGI NT;
LONG| NT,;

ProcPtr;

Ptr;
Ptr;

ProchPtr;
LONG NT;
LONGH NT;

Ptr;

ProcPtr;
ProcPtr;
ProcPtr;
ProcPtr;

W ndowPt r ;

FTDi recti on;
SFRepl y;

LONGI NT;
LONGH NT;
Achar ;

LONG NT;

St r 255;
FTAttri butes;

Chapter 5: File Transfer Manager

131

procl D

procl Dis the file transfer tool ID. This value is dynamically assigned by the File Transfer Manager
when your application calls FTGet Pr ocl D.

fl ags

f 1 ags is a bit field that your application can use to determine when a file transfer has finished, and if
the file transfer was successful. Valid values are as follows:

CONST
ftl sFTMode = $00000001;
ft NoMenus = $00000002;
ftQuiet = $00000004;
ft Succ = $00000080;
TYPE
FTFI ags = LONG NT;

f t 1 sSFTMode indicates whether a file transfer is in progress. A tool turns this bit on just prior to
performing the actual file transfer, and turns it off when the file transfer stops.

The file transfer tool will not display any custom menus if your application sets the f t NoMenus
bit. The file transfer tool will not display any status dialog boxes or error alerts if your application sets
the f t Qui et bit. If your application turns f t Qui et on, it is responsible for displaying status dialog
boxes and error alerts that the tool would have displayed. Applications typically use these two bits to
hide the file transfer tool from the user.

f t Succ is a bit set by the file transfer tool when a file transfer is completed successfully.

Your application can first check to see if f t | SFTMode toggles from on to off to find out when the
file transfer has been completed. Then, it can check f t Succ to see if the file transfer was completed
successfully.

The other bits of f | ags are reserved by Apple Computer, Inc.

err Code

er r Code contains the last error reported to the File Transfer Manager. If er r Code is negative, an
operating system error occurred. If er r Code is positive, a File Transfer Manager error occurred. Valid
values are as follows:

CONST
ft Generi cError
ft NoErr
ft Rej ected
ftFailed
ftTi meQut
ft TooManyRetry
ft Not EnoughDspace
ft Renpot eCancel
ft WongFor mat
ft NoTool s
ft User Cancel
ft Not Supported

POoO~NOOUIRARWNEFLO!

O == s

132 Inside the Macintosh Communications Toolbox

TYPE
FTErr = OSErr;

r ef Con

r ef Con is a four-byte field that your application can use.

user Dat a

user Dat a is a four-byte field that your application can use.

def Proc

def Pr oc is a pointer to the file transfer tool’s main definition procedure, which is contained in a code
resource of type ' f def '

config

confi g is a pointer to a data block that is private to the file transfer tool. It can contain information
like retry and timeout values, but the contents vary from tool to tool.

Your application can store the contents of conf i g to save the state of a file transfer in a document.
The structure, size, and contents of the configuration record are set by the tool. Your application can
determine the size of the configuration record by calling Get Pt r Si ze, overwrite its contents using
Bl ockMove, and validate the contents with FTVal i dat e.

Your application can use FTGet Conf i g and FTSet Confi g to manipulate fields in this
record. For details, read “Interfacing with a Scripting Language,” later in this chapter. Your application
can save the state of the file transfer record by saving the string FTGet Conf i g returns. Also, your
application can restore the configuration of the file transfer record by passing a saved string to
FTSet Confi g. You can find a description of conf i g from a file transfer tool perspective in
Chapter 8.

ol dConfi g

ol dConf i g is a pointer to a data block that is private to the file transfer tool and contains the most
recently saved version of conf i g. Your application is responsible for setting ol dConf i g when the
user saves a session document.

envi ronsProc

envi ronsProc is a pointer to a routine in your application that the file transfer tool calls to obtain a
record describing the connection environment. For more information about envi r onsPr oc, see
“MyEnvi r onsPr oc Getting Connection Environment Information,” later in this chapter.

reservedl andr eserved?2

reservedl andr eser ved2 are fields reserved for the File Transfer Manager. Your application
must not use this field.

ftPrivate

ft Privat e is a pointer to a data block that is private to the file transfer tool. Your application must
not use this field.

Chapter 5: File Transfer Manager 133

sendPr oc

sendProc is a pointer to a routine that your application uses to send data. This routine is discussed
under “My SendPr oc Sending Data,” later in this chapter.

recvProc

recvProc isa pointer to a routine that your application uses to request data. This routine is
discussed under “MyRecVvPr oc Receiving Data,” later in this chapter.

witeProc

wr i t ePr oc is a pointer to a routine in your application that writes data to a file. If this field is NI L,
the file transfer tool performs standard file operations (that is, writing to a disk). The file transfer tool
checks this field to see if your application has a wr i t ePr oc routine. If it does, the tool lets
wr i t ePr oc handle writing data.

This routine can be used to perform postprocessing upon a file being received, and is discussed
under “MyW i t ePr oc Writing Data,” later in this chapter.

r eadPr oc

readPr oc is a pointer to a routine in your application that reads data from a file. If this field is NI L,
the file transfer tool performs standard file operations (that is, reading data from a disk). The file
transfer tool checks this field to see if your application has a r eadPr oc routine. If it does, the tool
lets r eadPr oc handle reading data.

This routine can be used to perform preprocessing upon a file being sent, and is discussed under
“MyReadPr oc Reading Data,” later in this chapter.

owner

owner is a pointer to a window (or grafPort) relative to which the file transfer status dialog box is
positioned. if this field is NI L, the file transfer tool will not display a file transfer status dialog box.
direction

di recti on is a field that indicates whether a file is being sent to or received from another entity.
Your application passes this field as a parameter to FTSt art (described later in this chapter).Valid
values in this field are as follows:

CONST
ft Recei vi ng = 0;
ftTransmitting = 1;
ft Ful | Dupl ex = 2;
TYPE
FTDi rection = | NTEGER;

134 Inside the Macintosh Communications Toolbox

t heRepl y

t heRepl y is an SFRepl y data structure. The SFRepl y data structure should contain the
reference number of the working directory of the default volume for files being sent or received. If a file
is being sent, the data structure should also contain the name of the file to be sent. If a file is being
received and your application has information about the filename (for example, from a scripting
language), the data structure should contain the filename to be used. Otherwise, pass an empty string
fort heReply. fil enane.

witePtr, readPtr, theBuf, and bufSize
witePtr, readPtr, theBuf,andbufSize are properties of a particular file transfer tool.

aut oRec

aut oRec is a string that represents the start sequence a remote entity sends, causing the Macintosh to
enter a file-reception mode. If this string is of length 0, remote-entity-initiated file transfers are not
supported by the file transfer tool. It is the application’s responsibility to make use of this field by
searching the data stream for this sequence of characters. The Connection Manager, described in
Chapter 3, provides routines that your application can use to search an incoming data stream for a
specified sequence of characters.

attri butes

attri butes is a field that describes the file transfer protocol supported by the file transfer tool. The
bits in at t r i but es areas follows:

CONST
ft SameCircuit = $0001;
ft SendDi sable = $0002;
ft Recei veDi sabl e = $0004;
ft TextOnly = $0008;
TYPE
FTAttri butes = | NTEGER

ft SameCi r cui t indicates whether the file transfer tool creates its own data connection or
expects the application to provide the connection. If this bit is set, the file transfer tool uses the data
connection provided by the application. This bit is set by the file transfer tool.
ft SendDi sabl e indicates that the file transfer tool does not allow users to send files. Some
tools that support sending files turn this bit on when they are in a mode that does not allow users to
initiate sending files. When this bit is on, your application should dim any menu items that allow users
to send files.
ft Recei veDi sabl e indicates that the file transfer tool does not allow users to receive files.
Some tools that support receiving files turn this bit on when they are in a mode that does not allow users
to initiate receiving files. When this bit is on, your application should dim any menu items that allow
users to receive files.
ft Text Onl y indicates that the file transfer tool sends and receives only text files (files of type
TEXT); the tool does not handle resource forks. The file transfer tool sets this bit.
The other bits of this field are reserved by Apple Computer, Inc.

Chapter 5: File Transfer Manager 135

136 Inside the Macintosh Communications Toolbox

File Transfer Manager routines

The following sections describe the routines that tools and applications can use to access File Transfer
Manager services. Your application cannot call these routines from interrupt level.
Below is a listing of the routines described in this section in the order in which they are presented.

InitFT / 138 FTAbort / 150

FTGet Procl D / 139 FTDi spose / 150

FTNew / 139 FTActivate / 151
FTDefault / 141 FTResune / 151

FTVal i date / 141 FTMenu / 152

FTChoose / 142 FTEvent / 152

FTSet upPreFlight / 144 FTIntl ToEnglish / 153
FTSet upSetup / 145 FTEngl i shTolntl / 153
FTSet upFilter [/ 145 FTGet Tool Name / 154
FTSetupltem / 146 FTSet Ref Con / 154
FTSet upCl eanup / 146 FTGet Ref Con / 154
FTSet upPost Fl i ght / 147 FTSet UserData / 155
FTGet Config / 148 FTGet UserData / 155
FTSet Config / 148 FTGet Version / 155
FTStart / 149 FTGet FTVersion / 155

FTExec / 150

Chapter 5: File Transfer Manager 137

Preparing for a file Transfer

Before your application can start a file transfer, it must initialize the File Transfer Manager (by calling

i ni t FT), find out the procl D of the tool it requires (by calling FTGet Pr ocl D), create a file
transfer record (by calling FTNew), and then configure the file transfer tool (by restoring conf i g from
a saved document; or by calling FTChoose, the file transfer tool custom tool-settings routines, or
FTSet Confi g).

| nit FT
Initializing the File Transfer Manager

| ni t FT initializes the File Transfer Manager. Your application must call this routine
after calling the standard Macintosh Toolbox initialization routines.

A Warning Your application must initialize the Communications Resource Manager (by
calling | ni t CRM) and then the Communications Toolbox Utilities (by calling
I ni t CTBUt I | i ti es), regardless of whether it uses any of their calls, before it
initializes the File Transfer Manager. A

Function InitFT: FTErr;

Description | ni t FT returns an operating system error code if appropriate. Your application
must check for the presence of the Communications Toolbox before calling this
function. Sample code under “Determining Whether the Managers are installed” in

Appendix C shows you how your application can make this check.

Result Codes ft GenericError, ftNoErr, ftNoTools

138 Inside the Macintosh Communications Toolbox

FTCGet Procl D

Getting current pr ocl D information

Function

Description

FTNew

Your application should call FTGet Pr ocl D just before creating a new file transfer
record, to find out the pr ocl D of a tool.

FTGet Procl D (name: Str255): | NTEGER;
name specifies a file transfer tool. if a file transfer tool is available with the specified

name, its pr ocl Dis returned. If name refers to a nonexistent file transfer tool,
FTGet Pr ocl D returns-1.

Creating a file transfer record

Function

Description

Before your application can transfer files, it must create a file transfer record.
FTNew creates a new file transfer record, fills in the fields that it can, based upon
the parameters that were passed to it, and returns a handle to the new record in
FTHandl e. FTNew automatically makes two calls to FTDef aul t (described
later in this chapter)to fill in conf i g and ol dConf i g. The File Transfer
Manager then loads the file transfer tool’s main definition procedure, moves it high
in the current heap, and locks it. if an error occurs that prevents a new file transfer
record from being created (for example, running out of memory), FTNew passes
back NI L in FTHandI e.

FTNew(procl D: | NTEGER; flags: FTFlags; sendProc:
ProcPtr; recvProc: ProcPtr; readProc: ProcPtr;
writeProc: ProcPtr; environsProc: ProcPtr; owner:
W ndowPtr; refCon: LONG NT; userData: LONG NT):
FTHandl e;

pr ocl D specifies the file transfer tool the File Transfer Manager will use to transfer
data.

f | ags is a bit field with the following masks:

CONST
ftl sFTMode = $0001;
ft NoMenus = $0002;
ftQuiet = $0004;
ftSucc = $0080;
TYPE
FTFI ags = LONGI NT;

f 1 ags represents a request from your application for a level of service. Your
application can set only two of these bits, f t NoMenus and f t Qui et . if your
application sets f t NoMenus, the file transfer tool will not display any custom
menus. If your application sets f t Qui et , the file transfer tool will not display any
windows. Applications typically use these bits to hide the file transfer tool from the
user.

Chapter 5: File Transfer Manager 139

Apple Computer, Inc. has reserved the bits of f | ags that are not shown in this document. Do not
use them, or your code may not work in the future.

f t Succ is a bit that is set by the file transfer tool when a file transfer is completed successfully.
Your application should not set this bit.

Your application can check to see if f t | SFTMbde toggles from on to off to find out when the file
transfer has been completed. Then it can check f t Succ to see if the file transfer was completed
successfully.

sendPr oc is a pointer to a routine that the application uses to send data.
recvProc is a pointer to a routine that the application uses to request data.

r eadPr oc is a pointer to a routine in your application that reads data from a file. The file transfer
tool checks this field to see if your application has a r eadPr oc routine. If it does, the tool lets
r eadPr oc handle reading data. If NI L, the file transfer tool performs standard file operations (that
is, reading data from a disk).

This function can be used to perform preprocessing upon a file being sent, and is discussed later in
this chapter, in “Routines Your Application Provides.”

wr i t ePr oc is a pointer to a routine in your application that writes data to a file. The file transfer tool
checks this field to see if your application has a wr i t ePr oc routine. If it does, the tool lets the
wr i t ePr oc handle writing data. If NI L, the file transfer tool performs standard file operations (that
is, writing to a disk).

This function can be used to perform post-processing upon a file being received, and is discussed
later in this chapter, in “Routines Your Application Provides.”

envi ronsProc is a pointer to a routine that the file transfer tool can call when it wants to get
information about the connection. See Chapter 3 for more information about the

CMGet ConnEnvi r ons routine.

owner is a pointer to a window, relative to which the file transfer status dialog box is positioned. If this
field is NI L, the File Transfer Manager will not display a file transfer status dialog box.

r ef Con and user Dat a are fields that your application can use.

140 Inside the Macintosh Communications Toolbox

FTDef aul t

Initializing the file transfer record

FTDef aul t fills the specified configuration record with the default configuration
specified by the file transfer tool. FTNew calls this procedure automatically when it
fills in the confi g and ol dConfi g fields in a new file transfer record.

Procedure FTDefault (VAR theConfig: Ptr; proclD: |NTECGER;
al | ocate: BOOLEAN);

Description Ifal | ocat e is TRUE, the tool allocates space for t heConf i g in the current
heap zone.

FTVal i date

Validating the file transfer record

FTVal i dat e performs an internal consistency check on the configuration and
private data records of the file transfer record. FTNewand FTSet Confi g call
this routine after they have created a new file transfer record, to make sure that the
the record contains values identical to those specified by the file transfer tool.

Function FTval i date(hFT: FTHandl e): BOOLEAN;

Description If the validation falls, the File Transfer Manager returns TRUE and the file transfer
tool fills the configuration record with default values by calling FTDef aul t .
Your application can call this routine after restoring a configuration, to verify that
the file transfer record contains the correct information, in a manner similar to that
shown next.

Bl ockMove(saveConfi g, hFTA*. confi g, Get Ptr Si ze(hFT**. conf

ig9));
| F FTval i date(hFT) THEN BEG N
{ validate failed }

END

ELSE BEG N
{ validate succeeded }
END

Chapter 5: File Transfer Manager 141

FTChoose

Configuring a file transfer tool

This area
is filled in
by the file
transfer
tool.

Function

Description

142

An application can configure a file transfer tool in one of three ways. The easiest and most
straightforward way is by calling the FTChoose routine. This routine presents the user
with a dialog box similar to the one shown in Figure 5-2.

B Figure 5-2 A sample tool-settings dialog box

File Transfer Settings

Pru-lnml:

|
Phathed: Trarater Dptioas:
Trardlers dilia M, ool Fozitvid File D v
Tiesw el e Lo iy odimpirtir s,

Files i Be opesed by the
weptoalion " TeedaTenk ©

@ Tirring Oztiana Crovhr B Iﬂ?—'
Thoweut: B sveersits) (Semer)

g e thmalx]) D':.n- I Thifdalet bie? by Fisvedlie o g loF .

The second way an application can configure a file transfer tool is by presenting the
user with a custom tool-settings dialog box. This method is much more difficult and
involves calling six routines. The routines are described in the next section, “Custom
Configuration of a File Transfer Tool,” and “The Custom Tool-Settings Dialog Box” in
Appendix C provides example code.

The third way your application can configure a file transfer tool is by using the scripting

language interface, described under “Interfacing with a Scripting Language,” later in this
chapter. This method allows your application to bypass user interface elements.

FTChoose(VAR hFt :FTHandl e; where: Point; idleProc:
ProcPtr): | NTECGER,

wher e is the point, specified in global coordinates, where theupper-left corner of the
dialog box should appear. It is recommended that your application place the dialog box as

close as possible to the upper-left corner of the screen, because the size of the dialog box
varies from tool to tool.

i dl eProc is a procedure with no parameters that the File Transfer Manager will
automatically call every time FTChoose loops through the setup dialog filter procedure.
Pass NI L if your application has no i dl ePr oc.

Inside the Macintosh Communications Toolbox

FTChoose returns one of the following values:

CONST
chooseDi sast er
chooseFail ed
chooseOKM nor
chooseOKMaj or
chooseCancel

’
’

wNhREDd

chooseDi sast er means that the FTChoose operation failed, destroyed the file transfer
record, and returned NI L in the file transfer handle.

chooseFai | ed means that the FTChoose operation failed and the file transfer record was not
changed.

chooseOKM nor means that the user clicked OK in the dialog box, but did not change the file
transfer tool being used.

chooseOKMaj or means that the user clicked OK in the dialog box and also changed the file
transfer tool being used. The old file transfer handle is destroyed by the File Transfer Manager, by
calling FTDi spose. The file transfer is closed down, all pending read and write operations are
terminated, and a new file transfer handle is returned in hFT.

chooseCancel means that the user clicked Cancel in the dialog box.

Chapter 5: File Transfer Manager 143

Custom configuration of a file transfer tool

Your application creates a custom tool-settings dialog box and presents it to the user by using six File
Transfer Manager routines: FTSet upPrefli ght, FTSetupSetup, FTSetupltem
FTSetupFilter, FTSetupCl eanup,and FTSet upPostfl i ght. Using these routines is
more involved than calling FTChoose, but they provide your application with much more flexibility.
Refer to the code sample in “The Custom Tool-Settings Dialog Box” in Appendix C to see how an
application calls these routines.

To build a list of file transfer tools, use the routine CRMGet | ndTool Name, which is described in
Chapter 6.

FTSet upPrefl i ght
Setting up the tool-settings dialog box

FTSet upPref | i ght returns a handle to a dialog item list that your application
appends to the tool-settings dialog box. The handle comes from the file transfer
tool. (The calling application uses AppendDI TL, discussed in Chapter 7.) This
handle is not a resource handle. Your application is responsible for disposing of the
handle when done with it.

The file transfer tool can use FTSet upPr ef | i ght to allocate a block of
private storage, and to store the pointer to that block in magi cCooki e.
magi cCooki e should be passed to the other routines that are used to set up the
tool-settings dialog box.

Function FTSet upPreflight (proclD: | NTEGER;, VAR nmmagi cCooki e:
LONGI NT): Handl e;

Description procl Dis the ID for the file transfer tool that is being configured. Your application
should get this value by using the FTGet Pr oc| D routine, discussed earlier in this
chapter.

@ Note: The r ef con of the custom tool-settings dialog box should point to a data
structure (an example of which is shown next) in which the first two bytes are the tool
procl D and the next four bytes are magi cCooki e. User | t emroutines, for
example, may require pr ocl D to obtain tool resources.

TYPE
chooseDLOGdat a=RECORD

procl D: | NTEGER

magi cCooki e: LONGI NT
END,;

144 Inside the Macintosh Communications Toolbox

FTSet upSet up

Setting up tool-settings dialog box items

Procedure

Description

FTSet upSet up tells the file transfer tool to set up controls (such as radio buttons or
checkboxes) in the dialog item list returned by FTSet upPr ef | i ght .

FTSet upSet up(procl D: | NTEGER;, theConfig: Ptr; count:
| NTEGER; theDi al og: DialogPtr; VAR magi cCookie: LONG NT);

procl Dis the ID for the file transfer tool being configured. Your application should
use the same value for pr ocl D as it passed to FTSet upPr ef | i ght .
t heConfi g is a pointer to a configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box in which configuration is taking place.
magi cCooki e is a pointer to private storage for the file transfer tool.

FTSet upFil t er

Filtering tool-settings dialog box events

Function

Description

Your application calls FTSet upFi | t er as a filter procedure before it calls the
standard modal dialog box filter procedure for the tool-settings dialog box. This
routine allows file transfer tools to filter events in the tool-settings dialog box.

FTSetupFilter(proclD: | NTEGER; theConfig: Ptr; count:
| NTEGER; theDial og: DialogPtr; VAR theEvent:

Event Record; VAR theltem |NTEGER; VAR nagi cCooki e:
LONG NT): BOOLEAN;

procl D is the ID for the file transfer tool that is being configured. Your application
should use the same value for pr ocl D as it passed to FTSetupPref | i ght .
theConf i g is the pointer to the configuration record for the tool being conf i gured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t heEvent is the event record for which filtering is to take place.

t hel t emcan return the item clicked in the dialog box.

magi cCooki e is a pointer to private storage for the file transfer tool.

If the event passed in was handled, FTSet upFi | t er returns TRUE. FALSE
indicates that your application should perform standard dialog box filtering.

Chapter 5: File Transfer Manager 145

FTSet upltem

Processing tool-settings dialog box events

Procedure

Description

FTSet upl t emprocesses events for controls in the custom tool-settings dialog box.

FTSetupltem(procl D: | NTEGER; theConfig: Ptr; count:
| NTEGER;, theDialog: DialogPtr; VAR theltem |NTEGER, VAR
magi cCooki e: LONG NT) ;

procl Dis the ID for the file transfer tool being configured. Your application should
use the same value for pr ocl D as it passed to FTSet upPr ef | i ght .
t heConfi g is a pointer to the configuration record for the tool being configured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.

t hel t emis the item clicked in the dialog box. This value can be modified and sent
back.

magi cCooki e is a pointer to private storage for the file transfer tool.

FTSet upd eanup

Performing clean-up operations

Procedure

Description

FTSet upCl eanup disposes of any storage allocated in FTSet upPr ef | i ght and
performs other clean-up operations.

FTSet upCl eanup(procl D: |INTEGER;, theConfig: Ptr; count:
| NTEGER; theDi al og: DialogPtr; VAR magi cCooki e: LONG NT);

procl Dis the ID for the file transfer tool that is being configured. Your application
should use the same value for pr ocl D as it passed to FTSet upPr ef | i ght .

t heConf i g is the pointer to the configuration record for the tool being
confi gured.

count is the number of the first item in the dialog item list appended to the dialog
box.

t heDi al og is the dialog box performing the configuration.
magi cCooki e is a pointer to private storage for the file transfer tool.

146 Inside the Macintosh Communications Toolbox

FTSet upPost f | i ght

Closing the tool file
FTSet upPost f | i ght closes the tool file if it is not being used by any session.
Procedure FTSet upPost fl i ght (procl D: | NTEGER) ;

Description pr ocl Dis the ID for the file transfer tool that is being configured. Your application
should use the same value for pr ocl D as it passed to FTSet upPrefli ght.

Chapter 5: File Transfer Manager 147

Interfacing with a scripting language

Your application does not have to rely on users making selections from dialog boxes in order to
configure a file transfer tool. FTGet Confi g and FTGet Confi g provide the services that your
application needs to interface with a scripting language.

FTGet Confi g

Getting the configuration string

Function

Description

FTGet Confi g gets a configuration string from the file transfer tool.

FTGet Confi g(hFT: FTHandle): Ptr;

FTGet Confi g returns a null-terminated, C-style string from the file transfer tool
containing tokens that fully describe the conf i guration of the file transfer record. For
an example, see the description of the next routine. If an error occurs, FTGet Confi g
returns NI L.

It is the responsibility of your application to dispose of Pt r .

FTSet Confi g

Setting the configuration with a string

Function

Description

Sample

FTSet Conf i g passes a configuration string to the file transfer tool.
FTSet Confi g(hFT: FTHandl e; thePtr: Ptr): |NTEGER,

FTSet Confi g passes a null-terminated, C-style string (see the example string later in
this section)to the file transfer tool for parsing. The string is pointed to by t hePt r and
must contain tokens that describe the configuration of the file transfer record. The string
can be any length.

FTSet Conf i g ignores items it does not recognize or find relevant; such an
occurrence causes the file transfer tool to stop parsing the string and to return the
character position where the error occurred. if the file transfer tool successfully parses the
string, it returns f t NoEr r . if the file transfer tool does not successfully parse the string,
it returns one of the following values: a number less than -1 to indicate an OSErr, -1 to
indicate an unknown error, or a positive number to indicate the character position where
parsing was stopped.

Individual file transfer tools are responsible for the parsing operation.

A null-terminated, C-style configuration string

InterCharDelay O InterLineDelay 0 WrdWap Fal se Ending CR 0

148 Inside the Macintosh Communications Toolbox

Transferring files

When your application has performed the necessary steps described in the previous sections, it is ready
to start transferring files. Your application must perform two steps: first, it must call FTSt ar t to open
the file and initialize tool-private variables; second, it must call FTExec to process data every time it
goes through its main event loop.

FTSt art

Starting a file transfer

Function

Description

Result Codes

FTSt art opens the file that is going to be involved in the file transfer, and initializes
tool-private variables.

The value in the owner field in the file transfer record controls the appearance
of a status dialog box.

The code that performs the actual sending, receiving, reading, and writing of data
is the responsibility of your application. Your application specifies these routines
when it creates the file transfer record. For a description of the parameters that will be
passed to these routines, see “Routines Your Application Provides,” later in this
chapter.

FTStart (hFT: FTHandle; direction: FTD rection; filelnfo: SFReply): FTErr;

di rect i on describes the direction of the file transfer and can be either
ftReceiving,ftTransm tting,orftFull Dupl ex.

Once the file transfer has started, your application needs to call FTExec every
time it goes through its main event loop. Calling FTExec gives the tool time to send
and receive a packet of data, among other things.

t GenericError, ftNoErr, ftRejected, ftFailed,
t Ti meout, ftTooManyRetry, ftNotEnoughDspace,

t Renot eCancel, ftWongFormat, ftUserCancel,
t

f
f
f
ft Not Support ed.

Chapter 5: File Transfer Manager 149

FTExec:

Processing file transfer data

FTExec is the soul of the file transfer process because it allows the file transfer tool to
implement the file transfer protocol. FTExec handles the disk input and output,
either through your application or by performing local disk input and output, if
specified by your application. Every time your application calls FTExec, a little piece
of data is processed until there is no more data.

When sending files, the file transfer tool reads data from your application with a
r eadPr oc, and sends it to the connection with a sendPr oc. When receiving files,
the file transfer tool gets data from your application with a r ecvPr oc, and checks if
the data arrived correctly. The file transfer tool then writes the data with a
writeProc.

The r eadPr oc, sendProc, recvProc,andwiteProc routines are
discussed in “Routines Your Application Provides” later in this chapter.

At the end of the file transfer, the file transfer tool is responsible for closing the
file, releasing any memory allocated, and resetting the f t | SFTMbde bit in the file
transfer record.

Procedure FTExec(hFT: FTHandl e);
FTAbor t
Stopping a file transfer

FTAbor t aborts a file transfer in progress. The file transfer tool sends the
appropriate canceling characters to the remote computer, and stops the file transfer.

Function FTAbort (hFT: FTHandl e): FTErr;

Result Codes ftGeneric, ftNoErr, ftRejected, ftFailed,
ft Not Support ed.

FTD spose

Disposing of a file transfer record

FTDi spose disposes of the file transfer record and all associated data structures.
The file transfer tool stops any file transfer in progress (as specified by the file transfer
record).

Procedure FTDi spose(hFT: FTHandl e);

150

Inside the Macintosh Communications Toolbox

Handling events

The File Transfer Manager event-processing routines provide useful extensions to the Macintosh Toolbox
Event Manager. This section explains the three procedures that the Communications Toolbox provides:
FTActi vate, FTResune, and FTEvent . See “Other Events” in Chapter 2 for sample code
showing how an application can determine if an event needs to be handled by one of these routines.

FTActi vate
Activate events

FTActi vat e processes an activate or deactivate event (for instance, installing or
removing a custom tool menu) for a window associated with the file transfer.

Procedure FTActivate(hFT: FTHandl e; activate: BOOLEAN);

Description Ifacti vat e is TRUE, the file transfer tool processes an activate event. Otherwise, it
processes a deactivate event.

FTResune

Resume events
FTResume is called when your application receives a suspend or a resume event.
The file transfer tool may decide to change timeout values or other parameters,
depending on whether the application is running in the foreground.

Procedure FTResume(hFT: FTHandl e; resunme: BOOLEAN);

Description If r esume is TRUE, the file transfer tool processes a resume event. Otherwise, it
processes a suspend event.

Chapter 5: File Transfer Manager 151

FTMenu

Menu events

Function
BOOL EAN;

Description

FTEvent

Your application must call FTMenu when the user chooses an item from a menu
installed by the file transfer tool.

FTMenu (hFT: FTHandl e; nmenulD: |INTEGER, item | NTEGER):

FTMenu returns FAL SE if the file transfer tool did not handle the menu event.
FTMenu returns TRUE if the file transfer tool did handle the menu event.

Other events

Procedure

Description

When your application receives an event, it should check if the r ef con of the window
is a tool’s hFT. Such an event occurs, for example, when the user clicks a button in a
dialog box displayed by the file transfer tool. If it does belong to a file transfer tool’s
window, your application can call FTEvent .

FTEvent (hFT: FTHandl e; theEvent: EventRecord);

A window (or dialog box) created by a file transfer tool has a file transfer record handle
stored in the r ef Con field for wi ndowRecor d.

152 Inside the Macintosh Communications Toolbox

Localizing configuration strings

The Communications Toolbox provides two routines that make it easier to localize configuration strings.

FTI nt| ToEngl i sh

Translating into English

Function

Description

FTI nt1 ToEngl i sh converts a configuration string, which is pointed to by
i nput Ptr, to an American English configuration string pointed to by out put Ptr .

FTIntl ToEnglish (hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; |anguage: |NTEGER): OSErr;

This function returns an operating system error code if any internal errors occur.

The file transfer tool allocates space for out put Pt r . Your application is
responsible for disposing of the pointer with Di sposPt r when done with it.

| anguage specifies the language from which the string is to be converted. Valid
values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. If the language specified is not supported, this routine returns
noEr r, but out put Ptr is NI L.

FTEngl i shTol nt |

Translating from English

Function

Description

FTEngl i shTol nt| converts an American English configuration string, which is
pointed to by i nput Pt r, to a configuration string pointed to by out put Pt r .

FTEngl i shTol ntl (hFT: FTHandle; inputPtr: Ptr; VAR
outputPtr: Ptr; language: |NTEGER): OSErr;

This function returns an operating system error code if any internal errors occur.
The file transfer tool allocates space for out put Pt r ; your application is
responsible for disposing of the pointer with Di sposPt r when done with it.
| anguage specifies the language to which the string is to be converted. Valid
values for this field are shown in the description of the Script Manager in Inside
Macintosh, Volume V. if the language specified is not supported, noEr r is still
returned, but out put Pt r is NI L.

Chapter 5: File Transfer Manager 153

Miscellaneous routines

The routines described in this section perform a variety of tasks.

FTGet Tool Nane

Getting the name of a tool

Procedure

Description

FTSet Ref Con

FTGet Tool Name retumns in name the name of the tool specified by pr oc| D.
FTGet Tool Name(procl D: | NTEGER, VAR nane: Str255);

If pr ocl D references a file transfer tool that does not exist, the File Transfer Manager
sets name to an empty string.

Setting the file transfer record’s reference constant

Procedure

FTCet Ref Con

FTSet Ref Con sets the file transfer record r ef Con to the given value. It is very
important that your application use this routine to change the value of the reference
constant, instead of changing it directly.

FTSet Ref Con(hFT: FTHandl e; refCon: LONG NT);

Getting the file transfer record reference constant

Function

FTGet Ref Con returns the file transfer record reference constant.

FTGet Ref Con (hFT: FTHandl e) : LONG NT;

154 Inside the Macintosh Communications Toolbox

FTSet User Dat a
Setting the user Dat a field

FTSet User Dat a sets the file transfer record’s user Dat a field to the given value.
It is very important that your application use this routine to change the value of the
user Dat a field, instead of changing it directly.

Procedure FTSet User Dat a(hFT: FTHandl e; userData: LONG NT);

FTGet User Dat a
Getting the user Dat a field

FTGet User Dat a returns the file transfer record’s user Dat a field.

Function FTGet User Dat a(hFT: FTHandl e) : LONG NT;

FTGet Ver si on

Getting 'ver s' resource information
FTGet Ver si on returns a handle to a relocatable block that contains the information
in the file transfer tool’s 'ver s' resource with ID=1. Your application is responsible for
disposing of the handle when done with it.

@ Note: The handle returned is not a resource handle.

Function FTCGet Ver si on(hFT: FTHandl e): Handl e;

FTGet FTVer si on

Getting the File Transfer Manager version number

FTGet FTVer si on rectums the version number of the File Transfer Manager.
Function FTGet FTVersi on: | NTEGER;
Description The version number of the File Transfer Manager described in this document is:

CONST
curFTVersion =1;

Chapter 5: File Transfer Manager 155

Routines your application provides

Your application is responsible for providing routines it will use to send, receive, read, and write data
during a file transfer. Your application might also need to include a routine that can provide
information to the file transfer tool about the connection environment. When your application creates a
new file transfer record, it specifies pointers to these routines.

Sending and receiving files are both two-step processes. When sending a file, the file transfer tool
calls MyReadPr oc to read the data into a buffer, and then My SendPr oc to send the processed data.
When receiving a file, the file transfer tool calls MyRecvPr oc to get the data, and then
MyW i t ePr oc to write the processed data to the appropriate medium.

Your application must include the send and receive routines described in this section. The other
routines are optional.

MyReadPr oc

Reading data
My ReadPr oc is a routine in your application that the file transfer tool calls to read
data from a file. After MyReadPr oc reads the data, the file transfer tool typically sends
the data by calling the MySendPr oc routine, which is described next. My ReadPr oc
is also responsible for opening and closing the file from which the outgoing data is read.

Function MyReadProc(VAR count : LONG NT; bufPtr : Ptr; refCon
LONGI NT; fileMsg : |INTEGER) : OSErr:
Description ~ MyReadPr oc must return an error code when appropriate.
count s a bit field with the following bit masks defined:
CONST
ft OpenDat aFor k = $00000001;
ft OpenRsrcFork = $00000002;
r ef Con is the reference constant of the file transfer record.

fileMsg specifies which service the file transfer tool requires MyReadPr oc to
provide.

CONST
ft ReadOpenFil e = 0
ft ReadDat aFor k = 1
ft ReadRsr cFor k = 2;
ft ReadAbor t = 3
ft ReadConpl et e = 4

ft ReadQpenFi | e

f t ReadOpenFi | e indicates that the file transfer tool requires My ReadPr oc to
open a file. The bits set in count specify whether MyReadPr oc should open the
resource fork, data fork, or both. buf Pt r points to a parameter block that specifies the
file MyReadPr oc should open. The parameter block the file transfer tool passes to
My ReadPr oc is the same as that returned from calling PBGet FI nf o.

156 Inside the Macintosh Communications Toolbox

f t ReadDat aFor k and f t ReadRsr cFor k

These messages indicate that the file transfer tool requires My ReadPr oc to read data
from an open file, which it had previously opened in response to

ft ReadOpenFi | e. count specifies the number of bytes MyReadPr oc should
read. When finished reading, My ReadPr oc puts the actual number of bytes read into
count. buf Pt r points to the buffer into which My ReadPr oc should read data.

f t ReadAbor t and ftReadComplete

These messages indicate that MyReadPr oc should close the file it had opened in
response to f t ReadOpenkFi | e.

MySendPr oc

Sending data
My SendPr oc is a routine in your application that the file transfer tool calls to send
data that is in a buffer.

Function MySendProc (thePtr: Ptr; theSize: LONG NT; refCon:

LONG NT; channel: CMChannel; flags: CMI ags):LONG NT;

Description My SendPr oc must return the actual number of bytes it sent.
t hePtr is a pointer to a block of data in memory that is to be sent.
t heSi ze is the length of that block.
r ef Con is the reference constant of the file transfer record.

channel specifies the channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMDat a, CMCntl, or
CMVAt t n.

f 1 ags is described in Chapter 3 under the description of CMAf i t e.

Sample send routine

FUNCTI ON MySendProc (thePtr: Ptr;theSize: LONG NT;refcon: LONG NT;
channel : CMChannel ;flags: |NTEGER) : LONG NT;

VAR
theErr : CMErr; { Errors on a wite }
BEGI N
MySendProc: = 0; { Assunme the worst}
IF gConn <> NIL THEN BEG N { Send the data }
theErr =
CMNite(gConn,thePtr,theSize, channel, FALSE, NI L,
0, flags);

IF (theErr = noErr) THEN
MySendProc:= theSize{ if ok, we sent all }
ELSE
; { Handle errors }
END; { Good Connection}

END; { MySendProc }

Chapter 5: File Transfer Manager 157

M/RecvPr oc

Receiving data

MyRecvProc is a routine in your application that the file transfer tool uses to receive
data into a buffer from the connection.

Function MyRecvProc (thePtr: Ptr; theSize: LONG NT; refCon: LONG NT;
channel : CMChannel; VAR flags: CM- ags): LONG NT;

Description My RecvPr oc must return the actual number of bytes it received.
t hePt r is a pointer to a block of data in memory where the incoming data is to be placed.
t heSi ze is the length of that data.
ref con is the reference constant of the file transfer record.

channel specifies the data channel that the file transfer tool can use. Your application
should specify one of the following values for channel: CMDat a, CMCnt |, or CMAt t n.

f1 ags is described in Chapter 3 under the description of CMRead.

Sample receive routine

FUNCTI ON MyRecvProc (thePtr: Ptr;theSize: LONG NT;refcon: LONG NT;
channel : CMChannel ; VAR flags: |NTEGER): LONG NT;
VAR

theErr : CMErr; { Any errors }

BEGI N
MyRecvProc := O0; { Assune the worst }

IF gConn <> NIL THEN BEG N
{ Read all the data }

theEBrr :=
CMRead(gConn, t hePtr,t heSi ze, channel , FALSE, NI L, O, f| ags) ;
I F (theErr <> noErr) THEN
MyRecvProc := theSize { if ok, we got all }
ELSE

; { Handle errors }
END; { Good Connecti on

END; { MyRecvProc }

158 Inside the Macintosh Communications Toolbox

M/Wi t eProc

Writing data

Function

Description

MyW i t ePr oc is a routine in your application that the file transfer tool calls to write
data to a file. MyW i t ePr oc is also responsible for opening and closing the file to
which the outgoing data is written.

MyWiteProc(VAR count: LONG NT; bufPtr: Ptr; refCon:
LONGI NT; fileMsg: |NTEGER): OSErr;

MyW it eProc must return an error code when appropriate.

count is a bit field with the following bit masks defined:

CONST
ft OpenDat aFor k = 1;
ft OpenRsr cFor k = 2;

r ef Con is the reference constant of the file transfer record.

fil eMsg specifies which service the file transfer tool requires MyW i t ePr oc to
provide.

CONST
ftWiteOpenFile = 0
ftWiteDat aFork = 1
ftWiteRsrcFork = 2
ftWiteAbort = 3;
ftWiteConmplete = 4
ftWiteFilelnfo = 5

ftWiteQpenFile

ft Wi teOpenFil e indicates that the file transfer tool requires MyW i t ePr oc to
open a file. The bits set in count specify whether MyW i t ePr oc should open the
resource fork, data fork, or both. buf Pt r points to a parameter block that specifies
the file MyW i t ePr oc should open. The parameter block the file transfer tool passes
to MyW i t ePr oc is the same as that returned from calling PBGet FI nf o.

Note that MyW i t ePr oc creates the file specified by the parameter block. If the file
transfer protocol in use does not specify the filename for the incoming file,

MyW i t ePr oc must generate one. Your application must handle filename conflicts
and AppleShare® file server permission problems if they arise.

ftWiteDataFork and ftWiteRsrcFork

These messages indicate that the file transfer tool requires MyW i t ePr oc to open a
file. count specifies the number of bytes to write. When finished writing data,
MyW i t ePr oc should set count to the actual number of bytes written. buf Pt r
points to the buffer into which MyW i t ePr oc should write data.

Chapter 5: File Transfer Manager 159

ftWiteAbort

ft WiteAbort indicates that MyW i t ePr oc should close the open file and delete
it.

ftWiteConplete
ft WiteConpl et e indicates that MyW i t ePr oc should close the open file.

ftWiteFilelnfo

ft WiteFilelnfo indicates that the file transfer tool requires MyW i t ePr oc to
change file information. buf Pt r points to a parameter block that MyW i t ePr oc
can pass to the File Manager routine PBSet FI nf o.

M/Envi r onsPr oc
Getting the connection environment

Sometimes the file transfer tool needs to know about the type of connection on which to
transfer files. For example, some file transfer protocols require an 8-bit data channel. To
get this information, the file transfer tool calls a routine in your application,

MyEnvi r onsProc.

Function MyEnvi ronsProc(ref Con: LONG NT; VAR theEnvirons:
ConnEnvironRec): CMErr;

Description r ef Con is the reference constant of the file transfer record.

t heEnvi r ons is a data structure containing the connection-environment record.
Your application can either construct t heEnvi r ons or use the Connection Manager
routine CMGet ConnEnvi r ons. For more information about t heEnvi r ons, See
“CMGet ConnEnvi r ons Getting the Connection Environment” in Chapter 3.

The example that follows shows how MyEnvi r onsPr oc can point to a
Connection Manager routine to retrieve information about the connection environment.

Result Codes cnGeneri cError, cnmNoErr, cnNot Supported, envVersTooBig.

Sample connection-environment routine

FUNCTI ON MyEnvironsProc(ref Con: LONG NT; VAR theEnvirons:
ConnEnvi ronRec): OSErr;
BEGH N
MyEnvi ronsProc: = envNot Present; { pessimsm}

{ Get the connection info }
IF gConn <> NIL THEN { Tool sets the version }
MyEnvi ronsProc: = CMGet ConnEnvi rons(gConn, t heEnvirons);

END, { MEnvironsProc }

160 Inside the Macintosh Communications Toolbox

Quick reference

This section provides a reference to File Transfer Manager routines and data structures. At the end of
this section is a listing of routine selectors for programming in assembly language.

Routines

File Transfer Manager routines See page
FTAbort (hFT: FTHandle): FTErr; 150
FTActi vate(hFT: FTHandl e; activate: BOOLEAN); 151
FTChoose(VAR hFT: FTHandl e; where: Point; idleProc: 142
ProcPtr): | NTECGER;

FTDef aul t (VAR theConfig: Ptr; proclD: | NTECER 141
all ocate: BOOLEAN);

FTDi spose(hFT: FTHandl e) ; 150
FTEngl i shTolntl (hFT: FTHandle; inputPtr: Ptr; VAR 153
outputPtr: Ptr; |anguage: |NTECGER): OSErr;

FTEvent (hFT: FTHandl e; theEvent: EventRecord); 152
FTExec(hFT: FTHandl e); 150
FTGet Confi g(hFT: FTHandle): Ptr; 148
FTGet FTVer si on: | NTEGER; 155
FTGet Tool Nane(procl D: | NTEGER;, VAR nane: Str255); 154
FTGet Procl D(nane: Str255): | NTEGER 139
FTGet Ref Con(hFT: FTHandl e): LONG NT; 154
FTGet User Dat a(hFT: FTHandl e) : LONG NT; 155
FTGet Versi on(hFT: FTHandl e): Handl e; 155
FTIntl ToEngli sh(hFT: FTHandle; inputPtr: Ptr; VAR 153

outputPtr: Ptr; |anguage: |NTECGER): OSErr;

FTMenu(hFT: FTHandl e; nenul D: | NTEGER;, item 152
| NTEGER) : BOOLEAN,;

FTNew(procl D: | NTEGER;, flags: FTFlags; sendProc: 139
ProcPtr; recvProc: ProcPtr; readProc: ProcPtr;

witeProc: ProcPtr; environsProc: ProcPtr; owner:

W ndowPtr; refCon: LONG NT; userData: LONG NT):

FTHandl e;

FTResume(hFT: FTHandl e; resunme: BOOLEAN); 151
FTSet Confi g(hFT: FTHandl e; thePtr: Ptr): |NTEGER 148
FTSet Ref Con(hFT: FTHandl e; ref Con: LONG NT); 154

Chapter 5: File Transfer Manager 161

File Transfer Manager routines See page
FTSet upCl eanup(procl D: | NTEGER;, theConfig: Ptr; 146
count: | NTEGER; theDialog: DialogPtr; VAR

magi cCooki e: LONG NT) ;

FTSetupFilter(procl D: | NTEGER;, theConfig: Ptr; count: 145
| NTEGER; theDi alog: DialogPtr; VAR theEvent:

Event Record; VAR theltem |NTEGER; VAR nagi cCooki e:

LONG NT): BOOLEAN,;

FTSetupltem(procl D: | NTEGER; theConfig: Ptr; count: 146
| NTEGER;, theDialog: DialogPtr; VAR theltem | NTECER,;

VAR magi cCooki e: LONG NT);

FTSet upPostflight (procl D: | NTEGER); 147
FTSet upPreflight(proclD: | NTEGER;, VAR magi cCooki e: 144
LONG NT) : Handl e;

FTSet upSet up(procl D: | NTEGER;, theConfig: Ptr; count: 145
| NTEGER; theDial og: DialogPtr; VAR magi cCooki e:

LONGI NT);

FTSet User Dat a(hFT: FTHandl e; userData: LONG NT); 155
FTStart (hFT: FTHandl e; direction: FTDirection; 149
filelnfo: SFReply): FTErr;

FTVval i date(hFT: FTHandl e): BOOLEAN; 141
InitFT: FTErr; 138
Routines in your application See page
MyEnvi ronsProc(ref Con: LONG NT; VAR theEnvirons: 160
ConnEnvi ronRec): CMErr;

MyReadProc(VAR count : LONG NT; bufPtr : Ptr; refCon 156
LONGI NT; fileMsg : |INTEGER) : OSErr;

MyRecvProc(thePtr: Ptr; theSize: LONG NT; refCon: 158
LONG NT; channel: CMChannel; VAR fl ags:

CMF| ags) : LONGI NT;

MySendProc(thePtr: Ptr; theSize: LONG NT; refCon: 157
LONGI NT; channel: CMChannel; flags: CM-l ags): LONG NT;
MyWiteProc(VAR count: LONG NT; bufPtr: Ptr; refCon: 159

LONGI NT; fileMsg: |NTEGER): OSErr;

162 Inside the Macintosh Communications Toolbox

File transfer record

FTHandl e
FTPt r
FTRecord

procl D

flags
err Code

r ef Con
user Dat a

def Proc

config
ol dConfi g

envi ronsProc
reservedl|
reserved?2

ftPrivate

sendPr oc
recvProc
writeProc
readPr oc

owner

di rection
t heReply

writePtr
readPtr

t heBuf

buf Si ze
aut oRec
attri butes

END;

FTPtr;
AFTRecor d;
PACKED RECORD

| NTEGER;

FTFI ags;
FTErr;

LONGI NT;
LONGI NT;

ProcPtr;

Ptr;
Ptr;

ProcPtr;
LONGI NT;
LONGI NT;

Ptr;

ProcPtr;
ProcPtr;
ProchPtr;
ProcPtr;

W ndowPt r ;

FTDi recti on;
SFRepl y;

LONGH NT;
LONG NT;
Achar;

LONG NT;

St r 255;
FTAttri butes;

Chapter 5: File Transfer Manager

163

Constants and data types

CONST
cur FTVer si on = 1;
TYPE
FTDi recti on = | NTEGER;
CONST
ft Recei vi ng = 0;
ftTransm tting = 1;
ft Ful | Dupl ex = 2;

{ file transfer attributes }

TYPE
FTAttri butes = | NTEGER
CONST
ft SameCircuit = $0001;
ft SendDi sabl e = $0002;
ft Recei veDi sabl e = $0004;
ftTextOnly = $0008;
{ file transfer flags }
TYPE
FTFI ags = LONG| NT;
CONST
ftl sFTMode = $0001;
ft NoMenus = $0002;
ftQuiet = $0004;
ftSucc = $0080;
{ Choose return values }
CONST
chooseDi sast er = -2
chooseFai | ed = -1;
chooseOKM nor = 1;
chooseOKMaj or = 2;
chooseCancel = 3;

164 Inside the Macintosh Communications Toolbox

Errors

TYPE
FTErr = OSErr ;

CONST

g

neri cError
OErr

ej ect ed
ailed

i meOut
ooManyRetry
ot EnoughDspace
enot eCancel
ongFor mat
Tool s

er Cancel

t Supported

0Z
=

—h —h —h —h —h —h —h —h —h —h —h —h
~ ~ ~ ~ ~ ~ ~ ~ ~ ~+ ~
Zzd4dm

POOO~NOUITRARWNRERLO!

zZCczZzs
SIRINRARNNES

o wmwoOo

File Transfer Manager routine selectors

B Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap, To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set AOto point
to the selector, and invoke the trap CommiTool boxDi spat ch ($A08B) .

Upon returning from the trap, the trap macro pops the routine selector off the stack and places the
return value into DO. It is your application’s responsibility to clean up the stack by removing the
parameters that were pushed onto the stack prior to invoking the trap macro.

FTAbor t . EQU 525 FTGet Procl D . EQU 519
FTActivate . EQU 544 FTGet Ref Con . EQU 515
FTChoose . EQU 540 FTGet Tool Name . EQU 518
FTDef aul t . EQU 528 FTGet User Dat a . EQU 517
FTDi spose . EQU 521 FTGet Ver si on . EQU 538
FTEngl i shTol ntl . EQU 537 FTI ntl ToEngli sh . EQU 536
FTEvent . EQU 541 FTMenu . EQU 543
FTExec . EQU 522 FTNew . EQU 520
FTGet Confi g . EQU 534 FTResune . EQU 526
FTGet FTVer si on . EQU 539 FTSet Confi g . EQU 535

Chapter 5: File Transfer Manager 165

FTSet Ref Con
FTSet upCl eanup
FTSet upFilter
FTSet upltem
FTSet upPostfl i ght
FTSet upPrefli ght

166 Inside the Macintosh Communications Toolbox

. EQU
. EQU
. EQU
. EQU
.EQU

514
533
531
532
542
529

FTSet upSet up
FTSet User Dat a
FTSt art
FTVval i date
InitFT

. EQU
. EQU
. EQU
. EQU
. EQU

530
516
523
527
513

Chapter 6 Communications Resource Manager

THIS CHAPTE R describes the Communications Resource Manager, the Communications Toolbox
manager that makes it easier for your code to manage communications resources and devices. This
chapter describes the data structures and routines your code can use to implement device management.
Next, it presents the routines your code can use to perform resource management. At the end of the
chapter, you'll find a “Quick Reference” to routines, data structures, and routine selectors for

programming in assembly language.

In this chapter, the term your code refers to the application, tool, or driver you are writing for the

Macintosh, which will implement communications services for users.

To use the Communications Resource Manager, you need to be familiar with

the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)
= the Device Manager (described in Inside Macintosh, Volumes I, IV, V)

= the Memory Manager (described in Inside Macintosh, Volumes I, IV, V)

= the Operating System Utilities (described in Inside Macintosh, Volume II)

= the MultiFinder programming environment (described in Programmer’s Guide to MultiFinder)

168 Inside the Macintosh Communications Toolbox

About the Communications Resource Manager

Your code uses the services provided by the Communications Resource Manager for two purposes: to
manage devices (such as internal modems and serial cards) and to manage resources. Device management
is essential when your code needs to know about new cards that have been installed in a Macintosh.
Resource management is required when your code is sharing resources with other applications (as it does
when a Macintosh runs under MultiFinder). The resource management services provided by the
Communications Resource Manager are an extension to the services provided by the Resource Manager in
the Macintosh Toolbox.

The way your code uses the Communications Resource Manager is very similar to the way it uses
other Communications Toolbox managers. Your code calls a Communications Resource Manager routine,
which, upon completion, returns to your code any relevant parameters and return codes. Figure 6-1 shows
the data flow into and out of the Communications Resource Manager.

» Figure 6-1 Data flow into and out of the Communications Resource Manager

T\
Toolbox
1

Sanus, other information.
| Applications
Tools
Diriwers
Register/Release
Resources/Devices

Operating system

[n memory

Chapter 6: Communications Resource Manager 169

Device management

The way Macintosh applications interact with special interface cards varies from card to card, making the
task of programming the Macintosh to use these cards quite complex. The Communications Toolbox
solves this problem by providing applications with standardized routines and data structures that they can
use to keep track of communications devices users have installed.

The data structure that is most important in supporting communications device management is the
communications resource record, which is stored as an operating system queue. The communications
resource record comprises fields containing information such as the type of device the record represents,
and whether the device is available for use. The communications resource record is described later in this
chapter.

The Communications Resource Manager and your code keep track of communications devices by
placing a communications resource record into the queue for each communications device. Initially, when
your code calls | ni t CRM (discussed later in this chapter), this queue contains two records, one for each
of the serial drivers. Your code can then add and delete communications resource records.

By making use of Communications Toolbox routines, your code can register new devices, allocate
devices, and look for specific kinds of devices. And device drivers, if properly coded, can resolve conflicts
when two or more applications need to use a communications resource at the same time. This situation
often arises in a MultiFinder environment.

Resource management

When your code shares resources with other applications, problems can arise if one of the applications
accidentally disposes of a resource needed by another application. The Communications Toolbox
provides routines that your code can use to share resources without confronting this kind of problem.
These routines keep track of how many times a resource is simultaneously in use in an internal
Communications Resource Manager data structure for every communications resource. Every time code
requests a resource, the Communications Resource Manager increases the “use count” for that resource by
1. Every time code releases a communications resource, the Communications Resource Manager decreases
the value by 1. This enables the Communications Resource Manager to keep track of which resources are
being used; when a resource’s use count reaches 0, it is released.

170 Inside the Macintosh Communications Toolbox

The communications resource record

The most important data structure to the Communications Resource Manager is the
communications resource record. It contains information like the name and type of each device connected
to the Macintosh, and whether a device is in use.

At startup time, the Communications Resource Manager builds a queue of communications resource
records. If the Communications Resource Manager is installed, the queue will consist of a minimum of two
devices of type cr nSer i al Devi ce.

When your code installs a new record into the queue, it must fill in the following fields in the
communications resource record: cr mDevi ceType,crmAttri but es, cr nSt at us, and
cr mRef Con. The Communications Resource Manager fills in the other fields.

Communications resource record data structure

TYPE
CRMRecPt r = NCRMRec;
CRMRec = RECORD
gLi nk : QEl enPt r;
gType : | NTEGER,
cr niVer si on : | NTEGER;
crmPrivate : LONGI NT;
crmReserved | NTEGER;
crnmDevi ceType : LONGI NT;
crmDevi cel D : LONGI NT;
crmAttri butes : LONGI NT;
cr nSt at us : LONGI NT;
cr mRef Con : LONGI NT;
END;
gLi nk

gLi nk points to the next CRMRec in the Communications Resource Manager’s queue of
communications resource records.

qType
gType is a constant that your code must fill with the constant cr niType.

crmver si on
cr nVer si on is the version number of the CRMRec data structure. At this time there is only one
version, so the Communications Resource Manager fills this with the constant cr mRecVer si on.

Chapter 6: Communications Resource Manager 171

crnPrivate and crnReserved
crnPrivat e and cr mReser ved are private to the Communications Resource Manager; your code
must not use them.

crnDevi ceType
crmDevi ceType is the type of device. For example, a serial port has a cr mDevi ceType of
crnSeri al Devi ce.

crnbevi cel D

cr nDevi cel Dis an identifier that your code can use to distinguish between multiple devices of the
same device type. The Communications Resource Manager fills in this field when your code calls the
CRM nst al | routine.

crmAttributes

cr mAt t ri but es specifies the attributes of a specific device type. This field can hold either a pointer
to the data or the actual data that describes the device. A sample cr mAt t ri but es data structure
appears later in this chapter in the section “Registering a Device.”

crntt at us
cr mSt at us specifies the status of a device. Your code can use this field for device arbitration purposes.

cr nRef Con
cr mRef Con is not used in this release of the Communications Resource Manager.

172 Inside the Macintosh Communications Toolbox

Communications Resource Manager routines

The following sections describe the routines that applications use to access Communications Resource
Manager services. Your application cannot call these routines from interrupt level.

Below is a listing of the routines described in this section in the order in which they are presented.
You can use the list as a reference tool to find the description of a routine. Or, you can use the index at
the end of this document, which lists these routines alphabetically.

InitCRM / 174 CRMGet 11 ndResource [/ 177
CRMnstall [/ 174 CRMGet NanedResource / 178
CRMsearch / 175 CRMGet 1NanedResource / 178
CRMRenpve / 175 CRMGet | ndex [/ 178

CRMGet CRWer sion / 176 CRVMRel easeResource / 178
CRMGet Header / 176 CRMZet | ndTool Nane / 179
CRMGet Resource / 177 CRMReal ToLocal ID / 180
CRMGet 1Resource [/ 177 CRM_ocal ToReal ID / 181

CRMGet | ndResource [/ 177

Chapter 6: Communications Resource Manager 173

| ni t CRM

Initializing the Communications Resource Manager

| ni t CRMinitializes the Communications Resource Manager.

A Warning Your code must call this routine after calling the standard Macintosh Toolbox

initialization routines and before calling any of the other Communications Toolbox
manager initialization routines. A

Function I ni t CRM CRMES T ;

Description | ni t CRM returns an operating system error code if appropriate.

Your code must check for the presence of the Communications Toolbox before calling

this function. Sample code under “Determining Whether the Managers Are Installed” in
Appendix C shows you how your application can make this check.

Result Codes crmGeneri cError, crmNoErr.

CRM nst al |

Installing devices
CRM nst al | installs a device into the Communications Resource Manager’s queue.
Devices in the Communications Resource Manager queue typically have their CRMRec
records allocated in the system heap. If your code installs a CRVMRec at startup time, be
sure that your code increases the size of the system heap appropriately.

For more information on how to register a device with the Communications Resource

Manager, read “Registering a Device,” later in this chapter.

Procedure CRM nstall (crnReqPtr: QElenmPtr);

Description CRM nst al | installs the communications resource record cr mReqPt r into the
Communications Resource Manager queue.

A Warning A CRMRec allocated in the application heap needs to be removed before the

174

application heap is reinitialized; otherwise, the Communications Resource Manager queue
may be damaged. A

Inside the Macintosh Communications Toolbox

CRVBear ch
Searching for devices

Your code can use CRMSear ch to order the Communications Resource Manager queue,
or to add new elements to the end of the queue.

Function CRMsearch (crnReqPtr: CQElemPtr): CQElemPtr;

Description crnReqPtr specifies communications resource record search criteria.

CRMSear ch searches for a device in the Communications Resource Manager queue
that has two characteristics: the same devi ceType, and a devi cel D greater than the
devi cel Din the record specified by cr mReqPt r. CRMSear ch returns a pointer
to the first record that it finds that meets these two conditions. Or, if no records meet the
search criteria, it returns NI L.

When searching for the first element in the queue, your code must pass 0 in
devi cel D.

CRVRenove
Removing devices

CRMRenpve removes a device from the Communications Resource Manager queue.
Function CRMRenpve (crnmReqPtr: QElenmPtr): OSErr;

Description cr mReqPt r specifies the device to be removed.

Chapter 6: Communications Resource Manager 175

CRMZet CRWer si on

Getting the version number

CRMGet CRWer si on returns the version number of the Communications Resource
Manager.

Function CRMGet CRWer si on: | NTEGER;
Description ~ The Communications Resource Manager version described in this document is:

CONST
cur CRWer si on = 1;

CRMGet Header

Getting to the head of the queue

CRMCGet Header returns a pointer to the head of the Communications Resource
Manager queue.

Function CRMGet Header: QHdrPtr;

176 Inside the Macintosh Communications Toolbox

Resource management routines

The nine routines described in this section make it easier for your code to manage communications
resources. Your code should use these routines so that the Communications Resource Manager can keep
track of how many times a resource is simultaneously in use.

The names of these routines are similar to the names of Resource Manager routines available in the
Macintosh Toolbox. Communications Resource Manager routines also operate very much like Resource
Manager routines; in fact, most of them make use of their counterparts in the Macintosh Toolbox.

CRMzet Resour ce and CRM=et 1Resour ce
Loading resources

CRMGet Resource and CRMGet 1Resour ce call the Resource Manager routines
Get Resource and Get 1Resour ce, respectively, and return a handle to the
specified communications resource. The Communications Resource Manager then adds
the handle to the list of resources that it is managing, and increases by one the use count,
which indicates how many pieces of code are using a resource.

Function CRMGet Resour ce(theType: ResType; thelD: | NTEGER): Handl e;
Function CRMGet 1Resour ce(t heType: ResType; thelD: |NTEGER):
Handl e;

CRMZet | ndResour ce and CRMZet 11 ndResour ce
Loading indexed resources

CRMGet | ndResource and CRMGet 11 ndResour ce call the Resource Manager
routines Get | ndResour ce and Get 11 ndResour ce, respectively, and return a
handle to the specified communications resource. The Communications Resource
Manager then adds the handle to the list of resources that it is managing, and increases by
one the use count, which indicates how many pieces of code are using a resource.

Function CRMGet | ndResour ce(t heType: ResType; index: |NTEGER): Handl e;

Function CRMGet 11 ndResour ce(t heType: ResType; index: |NTEGER): Handl e;

Chapter 6: Communications Resource Manager 177

CRMZet NanedResour ce and CRMGet 1NanmedResour ce

Loading named resources

CRMGet NanedResource and CRMGet 1NanedResource call

Get NamedResource and Get 1NanmedResour ce, respectively, and return a
handle to the specified communications resource. The Communications Resource
Manager then adds the handle to the list of resources that it is managing, and increases by
one the use count, which indicates how many pieces of code are using a resource.

Function CRMGet NanedResour ce(t heType: ResType; nane: Str255):
Handl e;

Function CRMGet 1NanmedResour ce(t heType: ResType; nane: Str255):
Handl e;

CRMzet | ndex

Getting a usage index for a resource

Function

CRMCet | ndex returns a use count which indicates how many pieces of code are
simultaneously using a resource with the specified handle. CRMGet | ndex returns 0 if
it does not find t heHandl e in the list of resources the Communications Resource
Manager is managing.

CRMGet | ndex(t heHandl e: Handl e): LONG NT;

CRMRel easeResour ce

Releasing resources

Procedure

A

CRMRel easeResour ce decreases by 1 the value that indicates how many pieces of
code have requested a resource. If the use count reaches 0, the resource specified by

t heHandl e is released with a call to the Resource Manager routine

Rel easeResour ce.

CRMRel easeResour ce(t heHandl e: Handl e);
Warning Your code must release communications resources by calling

CRMRel easeResour ce. If your code tries to release the resources using the
Resource Manager routine Rel easeResour ce, the results are unpredictable. A

178 Inside the Macintosh Communications Toolbox

CRMzet | ndTool Nane

Getting the name of a tool

Function

Description

CRMGet | ndTool Nanme returns the name of a tool in t ool Nane.

CRMGet | ndTool Name(bundl eType : OSType; index : |NTEGER;
VAR tool Name : Str255) : CSErr;

The appropriate values for bundl eType are as follows:

CONST
Cl assCM = "cbnd';
Cl assFT = "fbnd';
Cl assTM = "tbnd';

i ndex specifies which occurrence of a particular type of tool to return. For example, if
i ndex is 2, the Communications Resource Manager returns the name of the second tool
of a particular type in t ool Name. If the Communications Resource Manager cannot find
a tool that matches the specified parameters, an empty string is returned in t ool Nane.

Chapter 6: Communications Resource Manager 179

Resource-mapping routines

All resources used by a tool can be referenced by a local ID, which can be mapped (using the tool bundle
resource) into the appropriate physical ID. The Communications Toolbox contains two routines that will
help you keep things straight: To map from physical ID to local ID, use CRMReal ToLocal | D; to map
from local ID to physical ID, use CRM_Local ToReal | D.

CRMReal ToLocal I D

Mapping to Local ID

Function

Description

CRMReal ToLocal | D maps a physical resource ID to a local resource ID.

CRVMReal ToLocal | D(bundl eType: ResType; toollD: | NTEGER
t heKi nd: ResType; reallD: |INTEGER): | NTEGER;

This routine returns the (physical/llocal) resource ID if an appropriate entry exists in the
tool bundle resource. If no entry is found, -1 is returned.

bundl eType specifies the type of tool for which the mapping is to take place:
Cl assCM (for connection tools), Cl assTM (for terminal tools), or Cl assFT (for file
transfer tools).

Here is the format for a connection tool bundle resource (in Rez format). The same
resource type declaration holds for terminal tools and file transfer tools.

type 'cbnd' ([* or tbnd, or fbnd */
i nteger = $$Count Of (TypeArray) - 1;
array TypeArray {
literal 1ongint; [* Type */
integer = $3CountOf (I DArray) - 1;
wide array |DArray {
integer; [* Local ID */
integer; [/* Actual ID */

};

180 Inside the Macintosh Communications Toolbox

CRMLocal ToReal I D

Mapping to Real ID

Function

Description

CRMLocal ToReal | D maps a local resource ID to a physical resource.

CRMLocal ToReal | D(bundl eType: ResType; toollD: | NTEGER;
theKi nd: ResType; locall D |NTEGER): | NTEGER;

This routine returns the (physical/local) resource ID if an appropriate entry exists in the
tool bundle resource. If no entry is found, -1 is returned.

bundl eType specifies the type of tool for which the mapping is to take place:
Cl assCM (for connection tools), Cl assTM (for terminal tools), or Cl assFT (for file

transfer tools).

t ool | D specifies the bundle resource for the tool.

Chapter 6: Communications Resource Manager 181

Registering a device

This section gives some basic information about writing drivers that emulate the behavior of the
built-in serial drivers.

Private storage Your code can reference all private data storage off the dCt | St or age field of
the DCt | Ent ry for the drivers involved.

Low memory Do not use any.

Driver naming Use unique driver names and be prepared to deal with driver name collisions.
For example, don’t use .. Cl n/ . CQut .

driver csCode calls Support all of the csCode calls supported by the standard serial drivers. If you
need additional csCode calls, contact Developer Technical Support to reserve
them. csCode calls below 256 are reserved for Apple Computer, Inc.

Data structures

Each device in the Communications Resource Manager’s queue has a CRMRec associated with it. For the
crnDevi ceType field, Apple Computer, Inc. has defined the following value for serial port devices:

CONST
crnSeri al Devi ce = 1;

® Note: Values for cr nDevi ceType less than 128 are reserved for Apple Computer, Inc. Your code
must not use them.

When adding a CRMRec to the Communications Resource Manager queue with the CRM nst al |
routine, pass 0 for the cr nDevi cel D field. The device identifier will be assigned by the
Communications Resource Manager.

The cr mAt t ri but es field in the CRMRec points to a serial port device-specific data structure.
The cr nSt at us field of the CRMRec is not used for devices of type cr mSer i al Devi ce in this
version of the Communications Resource Manager.

182 Inside the Macintosh Communications Toolbox

TYPE

CRMSeri al Ptr ACRMSer i al Recor d;

CRMSer i al Record RECORD
version : | NTEGER;
i nput Dri ver Nane : Stri ngHandl e;
out put Dri ver Nanme : Stri ngHandl e;
name : Stri ngHandl e;
devi cel con : Handl e;
rat edSpeed : LONG NT;
max Speed : LONGI NT;
reserved : LONGI NT;
END;
ver si on
ver si on is the version number of the CRMSer i al Recor d data structure. For the version of
CRMSer i al Recor d described in this document, ver sion = cur CRMSer RecVer , which
equals 0.

i nput Dri ver Nane

i nput Dri ver Nanme is a pointer to a Pascal-style string, which is the name of the input driver for the
given serial port. This driver should behave like the standard input serial port drivers (. Al n and

. Bl n), and support the same csCode calls as do the standard drivers.

out put Dri ver Nane

out put Dri ver Nane is a pointer to a Pascal-style string, which is the name of the output driver for the
given serial port. This driver should behave like the standard output serial port drivers (. Aout and

. Bout), and support the same csCode calls as do the standard drivers.

namne
name is a string handle, which is the name associated with a given port.

devi cel con
devi cel con is a handle to a relocatable block that contains an icon and a mask associated with the
given port. Pass NI L if no icon is available.

r at edSpeed
r at edSpeed is the maximum recommended speed in bits per second.

maxSpeed
maxSpeed is the maximum speed in bits per second of which the hardware is capable.

Chapter 6: Communications Resource Manager 183

Searching for serial port devices

The following routine will search the Communications Resource Manager linked list for devices of a

specified type.

PROCEDURE Fi ndSeri al Ports;
VAR

t heCRM CRVMRecPt r;
t heCRMRec : CRMRec;
t heErr : RVETr 1 ;
t heSeri al CRMSeri al Ptr;
old : | NTEGER,;
BEGI N
theErr := 0; { error status }
old := 0; { index nunber of ports }
VWHI LE (theErr = noErr) DO
BEGH N
W TH t heCRMRec DO
BEGI N
crnDevi ceType := crnBerial Devi ce;
{ search for port with index nunber greater than “old” }
crmbDevicel D := ol d; { to be filled in later
END;
t heCRM = @ heCRMRec;
t heCRM = CRMRecPtr (CRMsear ch(QEl enPtr (theCRM));
IF theCRM <> NIL THEN { got one! }
BEGH N
theSerial := CRMSerial Ptr(theCRM\.crmAttributes);
old := theCRM. crnbDevicel D;
WTH theSerial”™ DO
BEGH N
END;
END
ELSE
BEGH N
theBrr := 1;
END;

END, { while }
END;

184 Inside the Macintosh Communications Toolbox

}

Quick reference

This section provides a reference to Communications Resource Manager routines and data structures. At
the end of this section is a listing of routine selectors for programming in assembly language.

Routines

Communications Resource Manager routines See page
CRMGet 11 ndResource(t heType: ResType; i ndex: 177
| NTEGER) : Handl e;

CRMGet 1NanedResour ce(t heType: ResType; nane: 178
Str255): Handl e;

CRMGet 1Resour ce(t heType: ResType; thelD: 177
| NTEGER) : Handl e;

CRMGet CRWer si on: | NTEGER; 176
CRMGet Header: QHdrPtr; 176
CRMGet | ndex(t heHandl e: Handl e): LONG NT; 178
CRMGet | ndResour ce(t heType: ResType; index: 177
| NTEGER) : Handl e;

CRMGet | ndTool Name(bundl eType : OSType; index : 179
| NTEGER; VAR tool Nane : Str255) : OSErr;

CRMGet NamedResour ce(t heType: ResType; nane: 178
Str255): Handl e;

CRMGet Resour ce(theType: ResType; thelD: 177
| NTEGER) : Handl e;

CRM nstall (crmReqPtr: QEl enmPtr); 174
CRVRel easeResour ce(theHandl e: Handl e); 178
CRVMRenove(crnmRegPtr: CQElenmPtr): OSErr; 175
CRMsearch(crmReqgPtr: CQElenmPtr): QElenPtr; 175
CRMLocal ToReal | D(bundl eType: ResType; toollD: 181
| NTEGER; theKind: ResType; locallD: |NTEGER):

| NTEGER,;

CRMReal ToLocal | D(bundl eType: ResType; toollD: 180
| NTEGER; theKind: ResType; reallD: |NTEGER):

| NTEGER,;

I nit CRM CRMErT ; 174

Chapter 6: Communications Resource Manager 185

Constants and data types

TYPE
CRMEr r = OSErr ;
CONST
crmGeneri cError = -1;
cr mMNoErr = 0;
CONST
cur CRWer si on = 1;
{ Commruni cations Resource Manager |inked list type
crmlype = 9;
{ Version of CRMRec data structure }
crmRecVersion = 1;
{ local/real resource |ID mapping }
Cl assCM = "cbnd';
Cl assTM = "tbnd';
Cl assFT = "fbnd';
TYPE
CRMRecPt r = "CRMRec;
CRMRec = RECORD
gLi nk . QElenPtr;
gType : | NTEGER,;
cr niVer si on | NTEGER;
crmPrivate : LONGI NT;
crmReserved : | NTEGER;
crnDevi ceType: LONGI NT;
crmDevicel D : LONG NT;
crmAttri butes: LONG NT;
cr nSt at us : LONGI NT;
cr mRef Con : LONGI NT;

END;

186 Inside the Macintosh Communications Toolbox

TYPE
CRMSeri al Ptr

CRMSer i al Record

version

i nput Dri ver Name :
out put Dri ver Name:

name
devi cel con

rat edSpeed
max Speed

reserved
END:;

ACRMSer i al Recor d;
RECORD
| NTEGER;

St ri ngHandl e;
St ri ngHandl e;
St ri ngHandl e;
Handl e;

LONGI NT;
LONGI NT;

LONGI NT;

Communications Resource Manager routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set AO to point
to the selector, and invoke the trap _Commilool boxDi spat ch ($A08B). Upon returning
from the trap, the trap macro pops the routine selector off the stack and places the return value into
DO. It is your application’s responsibility to clean up the stack by removing the parameters that were
pushed onto the stack prior to invoking the trap macro.

CRMGet 11 ndResour ce

CRMGet 1NamedResour ce .

CRMGet 1Resour ce
CRMGet CRMWVer si on
CRMCGet Header

CRMCGet | ndex

CRMGet | ndResour ce
CRMCGet | ndTool Name
CRMGet NamedResour ce

EQU

. EQU
. EQU
. EQU
. EQU
. EQU
. EQU
. EQU

.EQU 1290

1292
1288
1286
1282
1294
1289
1297
1291

CRMGet Resour ce

CRM nst al |

CRMLocal ToReal | D
CRMReal ToLocal I D

CRMRel easeResource

CRMRenpve
CRMSear ch
I ni t CRM

.EQU
. EQU
. EQU
.EQU
.EQU
. EQU
. EQU
. EQU

1287
1283
1295
1296
1293
1284
1285
1281

Chapter 6: Communications Resource Manager

187

188 Inside the Macintosh Communications Toolbox

Chapter 7 Macintosh Communications Toolbox Utilities

THIS CHAPTE R describes the Communications Toolbox utilities, a set of routines that makes it
easier for your application to manipulate dialog item lists, control pop-up menus, and search a network
for AppleTalk entities. This chapter also details two routines your application can use to initialize the

utilities and obtain the version number of the utilities.

At the end of the chapter you'll find a “Quick Reference” to these routines, data structures, and routine

selectors for programming in assembly language.

To use the dialog item list manipulation routines, you need to be familiar with
| the Dialog Manager (described in Inside Macintosh, Volumes IV, V)

| the Control Manager (described in Inside Macintosh, Volumes I, IV, V)
[the Resource Manager (described in Inside Macintosh, Volumes I, IV, V)
To use the network look-up utilities, you need to be familiar with

| AppleTalk (described in Inside Macintosh, Volumes II, V)

190 Inside the Macintosh Communications Toolbox

Communications Toolbox utilities

This section explains the routines and data structures that make up the Communications Toolbox utilities.
Your application cannot call these routines from interrupt level.
Below is a listing of the routines described in this section in the order in which they are presented.

InitCTBUtilities /192 Count DI TL /201
CTBGet CTBVer si on /192 Short enDI TL /201
' CDEF' /193 NuLookup /203
AppendDI TL /198 NuPLookup /204

Chapter 7: Macintosh Communications Toolbox Utilities 191

InitCTBUilities

Initializing the Communications Toolbox utilities
InitCTBUti|ities initializes the Communications Toolbox utilities.

A Warning Your application must call this routine after calling the standard Macintosh
Toolbox initialization routines and the Communications Resource Manager initialization
routine (I ni t CRM); your application can then call other Communications Toolbox
manager initialization routines. All code that uses any Communications Toolbox routines
must call this routine once and only once. A

Function InitCTBUtilities: CTBUErr;

Description | ni t CTBUti | iti es returns an operating system error code if appropriate. Your
application must check for the presence of the Communications Toolbox before calling
this function. Sample code under “Determining Whether the Managers Are Installed” in

Appendix C shows you how your application can make this check.

Result Codes ct buGeneri cError, ctbuNoErr.

CTBGet CTBVer si on

Getting the Communications Toolbox version number

CTBGet CTBVer si on returns the version number of the Communications Toolbox
utilities.

Function CTBGet CTBVer si on: | NTEGER;

Description ~ The Communications Toolbox version described in this document is:

CONST
cur CTBUVer si on = 1;

192 Inside the Macintosh Communications Toolbox

" CDEF'

Pop-up menu control definition procedure

Description

The Communications Toolbox includes a control definition procedure (' CDEF') that
extends the function of PopUpMenuSel ect , which is a part of the Menu Manager in
the Macintosh Toolbox. This ' CDEF' , with resource ID=063, is available on Macintosh
computers running with the Communications Toolbox installed.

The description that follows shows only the parameters your application must pass to
NewCont r ol or Get NewCont r ol that differ from those defined in Inside Macintosh.

Your application creates a pop-up menu the same way that it would create any other
Macintosh control. Figure 7-1 shows a pop-up menu control in its inactive and active

states.

M Figure 7-1 Pop-up menu in its inactive and active states

Inactive siate

Active glage

Parpup Ktk

Fop-up box

taud Rale:

val ue specifies the manner in which the title of the pop-up menu is to be justified and
drawn. val ue is a bit field with the following masks:

CONST
popupTi
popupTi
popupTi

popupTi
popupTi
popupTi
popupTi
popupTi
popupTi
popupTi
popupTi

t
t
t

| e
| e
| e

Left Just
Cent er Just
Ri ght Just

Ext end
NoStyl e

$0000;
$0001;
$00FF;

$0100;
$0200;
$0400;
$0800;
$1000;
$2000;
$4000;
$8000;

Chapter 7: Macintosh Communications Toolbox Utilities 193

194

To have the pop-up menu draw the title of the control with more than one of the
characteristics listed above, pass in val ue the sum of all desired characteristics.

Once a pop-up menu has been created, the pop-up menu ' CDEF' sets val ue to
its minimum valid value. Your application can then use the value of the control to
determine the currently selected item.

m n represents the nenul D of the menu in the pop-up control when the control is
being created. After the control has been created, the pop-up menu ' CDEF' sets the
minimum value of the control to 1.

Important The popup ' CDEF' first looks in the menu list using _Get MHandl e. If

it can’t find the menu, it creates it using _CGet Menu. D

max contains the width of the pop-up title area when the control is being created. After
the control has been created, the pop-up menu ' CDEF' sets the maximum value of the
control to the number of items in the pop-up menu.

procl D should be an integer equal to popupMenuCDEFpr oc plus the
appropriate variation code. popupMenuCDEFpr oc is a constant set by Apple
Computer, Inc. and is equal to 1008 (63 times 16). Variation codes are discussed later in
“About Variation Codes.”

If the pop-up menu is created using the popupUseAddResMenu variation code, the
pop-up menu ' CDEF' creates the control and then calls AddResMenu to add items
to the menu associated with the pop-up menu control. The value in r ef Con is typecast
to the type ResType, which is used by the routine AddResMenu.

For example, if ref Con is LONG NT(' FONT'), the pop-up menu control
appends a list of the fonts installed in the system to the menu associated with the pop-up
menu control.

After the control has been created, your application can use the control’s ref Con
field for whatever purpose it requires.

About variation codes

Your application can specify variation codes when it passes a value in procl D.
Variation codes alter the characteristics of the pop-up menu control. To specify the
appropriate variation code, your application sums the values that correspond to the
desired pop-up menu characteristics with the basic pop-up menu constant
popupMenuCDEFpr oc. Valid values are shown next.

Inside the Macintosh Communications Toolbox

Variation code constant

Description

popupFi xedW dt h

popupUseCQD

popupUseAddResMenu

popupUseWront

This constant specifies constant control width. If your application
specifies this value, the pop-up menu ' CDEF' will not resize
the control horizontally to fit long menu items. The width of the
pop-up box where the currently selected item is drawn equals the
width of the control, minus the width of the pop-up title your
application specifies when it creates the control. If the contents of
the pop-up box do not fit into the space provided, the contents is
truncated to fit and ellipses (...) are appended to its end. If this
variation code is not specified, the contents of the pop-up box are
guaranteed to fit, because the pop-up menu ' CDEF' resizes
the control horizontally.

This constant specifies the use of Color QuickDraw. If your
application specifies this value, the pop-up menu ' CDEF' uses
the colors stored in the menu color table (' nttb') for the
color of the pop-up box when Color QuickDraw is available. If
Color QuickDraw is unavailable, this variation code is ignored.

If the grafPort that owns the control is an old-style (classic
QuickDraw) grafPort, the pop-up menu control attempts to create
a cGrafPort to draw the pop-up menu control in the correct colors
and then dispose of it when finished drawing. By using a
cGrafPort, the control avoids the distortion that occurs when
converting Color QuickDraw colors to classic QuickDraw colors.

If your application specifies this value, the pop-up menu
" CDEF' treats the ref Con field asa ResType, and
performs an AddResMenu with this resource type on the
menu. If the control is being created with the NewCont r ol
routine, the pop-up menu ' CDEF' receives ref Con from
your application. If the control is being created with
Get NewCont r ol , the pop-up menu ' CDEF' receives
ref Con from the control template (resource type ' CNTL").

If your application specifies this value, the pop-up menu

" CDEF' draws the pop-up menu control using the font and size
of the grafPort that owns the control. The pop-up menu, when
active, also uses the font and size specified by the grafPort, instead
of using the standard system font.

Chapter 7: Macintosh Communications Toolbox Utilities 195

196

The values that correspond to the variation code constants are as follows:

CONST
popupFi xedW dt h = $0001;
popupUseCQD = $0002;
popupUseAddResMenu = $0004;
popupUseWFont = $0008;

After the pop-up control has been created

After NewCont r ol creates the pop-up menu, m n contains 1, max contains the
number of items in the menu that is associated with the control, and r ef Con becomes
available for the application to use.

In the process of creating the new control, NewCont r ol may modify
boundsRect to reflect the actual width of the pop-up menu box.

Your application can get the currently selected menu item by calling Get Ct | Val ue.

Other pop-up menu control characteristics

There are three pop-up menu control characteristics that you need to be familiar with:
how the utility changes the width of the control, how the control changes with regard to
system justification, and how your application can access the menu handle.

Whenever the pop-up control is redrawn, the utility calls Cal cMenuSi ze. This
routine recalculates the size of the menu associated with the control, to allow for the
addition of new items in the menu. The pop-up menu ' CDEF' also updates the width
of the pop-up menu control to the sum of the width of the pop-up title, the width of the
longest item in the menu (the menuW dt h field of the menu information record), and
some aesthetic white space. As previously described, your application can override this
characteristic by using the variation code popupFi xedW dt h.

When the system justification is t eJust Ri ght, the pop-up control looks like the
pop-up menu control shown in Figure 7-2.

M Figure 7-2 Pop-up menu control when system justification is t eJust Ri ght

1200

2400
9600
19200
57600

Inside the Macintosh Communications Toolbox

Note that the positions of the pop-up box and the pop-up title are reversed from
the standard positions shown in Figure 7-1.

Your application obtains the menu handle and the menu ID for the menu associated
with the pop-up control by dereferencing the contr| Dat a field of the control record.
The contrl Data field is a handle to a block of private information. The first four
bytes of this block are the menu handle; the next two bytes are the menu ID for the menu
associated with the control. The format of the popupPri vat eDat a structure is as
follows:

TYPE
popupPri vat eDat a = RECORD
mHandl e : MenuHandl e;
m D : | NTEGER,;
nmPrivate : ARRAY[0..0] OF SignedByte;

END;

Chapter 7: Macintosh Communications Toolbox Utilities ~ 197

Manipulating dialog item fists (DITLs)
As a logical extension to the Dialog Manager routines in the Macintosh Toolbox, the Communications

Toolbox provides three procedures to append, shorten, and count the number of items in dialog item
lists. You can use these routines regardless of whether your program provides communications services.

AppendDl TL

Appending to a dialog item list
AppendDI TL lets your application append dialog items to an existing dialog box.

Procedure AppendDI TL(t heDi al og: Di al ogPtr; theDl TL: Handl e; nethod:
DI TLMet hod) ;

Description t heDi al og is a pointer to the dialog box in which you want to append an item list.
t heDl TL is a handle to the item list that you want to append.
met hod specifies the manner in which you want the items in the new item list to be

appended: overlay, right, or bottom. Here are the acceptable values for net hod,
followed by examples of the results of each method:

TYPE
DI TLMet hod = | NTEGER
CONST
overl ayDl TL = 0;
appendDl TLRi ght = 1;
appendDl TLBott om = 2;

Figure 7-3 shows the initial dialog box, containing items 1 and 2, and the items to be
appended, namely item 3 and 4.

B Figure 7-3 Initial dialog box and to-be-appended items

1]

Truicial ihony ook To-be-appended fiems

If your application uses over | ayDl TL, AppendDl TL superimposes the items in
the to-be-appended dialog item list onto the dialog item list associated with
t heDi al og, as shown in Figure 7-4.

198 Inside the Macintosh Communications Toolbox

B Figure 7-4 Dialog box after appended items are superimposed

0, EI];

If your application uses appendDI TLRi ght, AppendDI TL offsets the items in
the to-be-appended dialog item list by the upper-right coordinate of
t heDi al og”. port Rect, as shown in Figure 7-5. Then AppendDI TL appends
the list to the end of the dialog item list associated with t heDi al og. AppendDI TL
automatically expands the dialog box as needed.

B Figure 7-5 Dialog box after items are appended to the right

(0,0

If your application uses appendDl TLBott om AppendDl TL offsets the items
in the to-be-appended dialog item list by the lower-left coordinate of
t heDi al og”. port Rect , as shown in Figure 7-6. Then, AppendDI TL appends
the list to the end of the dialog item list associated with t heDi al og, and expands the
dialog box as needed.

B Figure 7-6 Dialog box after items are appended to the bottom

a, m

Chapter 7: Macintosh Communications Toolbox Utilities ~ 199

200

If you know your application will need to restore a window to the size it was before an
AppendDlI TL routine, your application should save that size before it calls
AppendDI TL. ShortenDl TL, the procedure that shortens dialog item lists, will not
automatically resize the dialog box. (Short enDI TL is described later in this chapter.)
Because AppendDI TL modifies the contents of t heDI TL, your application must
get rid of the dialog item list after calling AppendDI TL. Here is a typical calling
sequence:

theDI TL := GetResource('DITL', thelD);
AppendDI TL(t heDi al og, theDI TL, appendDl TLBottom ;
Rel easeResource(t heDl TL) ;

Special ways to append items

Your application can append a new dialog item list relative to the location of specific
items in the dialog box, rather than appending new dialog items relative to the
coordinates of Di al og”™. port Rect. To append a dialog item list in this way, your
application uses a negative number in the net hod parameter. This number
corresponds to the item that is the point of reference. For instance, if met hod is -2,
then the items in the to-be-appended dialog item list have their item boxes offset by the
upper-left corner of the item box for item 2 in t heDi al og. Figure 7-7 shows how item
3 and item 4 were appended relative to the position of item 2. Item 3, because it was
appended relative to the t opLeft of item 2, appears on top of item 2.

B Figure 7-7 Dialog box after items are appended relative to item 2

(0, 0y

Inside the Macintosh Communications Toolbox

Count DI TL

Counting the number of items in a list

Function

Count DI TL returns the number of items in the dialog item list associated with

t heDi al og.

Count DI TL(t heDi al og: Di al ogPtr): | NTEGER;

ShortenD TL

Shortening a dialog item list

Procedure

Description

Short enDl TL removes items from the end of the given dialog item list, but does not
automatically resize the dialog box. If you know that your application will need to resize
the dialog box, save the size before calling AppendDI TL and use the Window Manager
routine Si zeW ndow.

ShortenDI TL(t heDi al og: Di al ogPtr; nunberltems: |NTECGER);

t heDi al og specifies the dialog box to be shortened.

nunber | t ens specifies the number of items to be removed.

Chapter 7: Macintosh Communications Toolbox Utilities 201

Showing AppleTalk entities: NuLookup and NuPLookup

The network look-up utilities, NuLookup and NuPLookup, allow your application to present the user
with a standard dialog box containing AppleTalk entities. By providing either NuLookup or
NuPLookup with the proper parameters, your application can include in the dialog box one or more
types of AppleTalk entities. Both NuLookup and NuPLookup perform much the same task, but
NuPLookup gives you a bit more flexibility.

The results of NuLookup and NuPLookup are displayed in a dialog box similar to the one in
Figure 7-8, which shows the results of a search for LaserWriter® printers in the zone “Blackcap Basin.”

M Figure 7-8 Network look-up dialog box

AppleTalk Zones: Looking for Laserilriter

Al'S BUS Ambition Loke

i | |Leke Berkowitz
Clowd's Rasl i Stein Paak
Evolution Valley
Goddard Canyon
HalT Dome
Hetch Hetchy
LeCante Divide
M. whitney

Yosemite Vallay 3

NuLookup and NuPLookup also provide your application with the option of using filter
routines or hook procedures to customize the dialog box or to filter information that would otherwise be
included in it. These routines are described later in this chapter, in “Hook and Filter Procedures.”

In the network look-up dialog box, pressing the Return key has the same effect as pressing the OK
button. Holding down the Command key and pressing the Period key has the same effect as clicking
Cancel. The Up Arrow key and the Down Arrow key change the selected name to either the cell above or
the cell below. Holding down the Command key while pressing the Up Arrow key or the Down Arrow key
moves the selected zone up or down one cell.

202 Inside the Macintosh Communications Toolbox

NuLookup

Network lookup

Function

Description

NuLookup returns to your application the object/type/zone tuple and AppleTalk
node/network/zone numbers tuple for the item that the user selected.

When your application first calls NuLookup, this routine builds a zone list (if possible).
Then NuLookup makes a synchronous Name Binding Protocol (NBP) lookup for the
specified objects. Next, NuLookup builds the preliminary object list and presents the
dialog box to the user. At all times while the dialog box is displayed, NuLookup
continues an asynchronous NBP lookup with long retry and timeout. It ages objects in the
name list so that if an object misses several consecutive asynchronous NBP lookups, it is
removed from the list. Items that appear in subsequent NBP lookups are added to the list
if they were not already in the look-up list.

Both the zone and name lists are alphabetized by using the international utilities.

NuLookup(where: Point; pronmpt: STR255; numlypes: | NTEGER;
typeList: NLType; naneFilter: ProcPtr; zoneFilter:
ProcPtr; hookProc: ProcPtr; VAR theReply: LookupReply):

| NTEGER,;

wher e indicates in global coordinates where NuLookup should place the upper-left
corner of the look-up dialog box.

pronpt is a string displayed at the top of the look-up dialog box. In Figure 7-8, the
string “Looking for LaserWriter” was passed to NuLookup.

nuniTypes is the number of object types that will be included in the lookup. If
nunlfypes is—1, NuLookup searches for all object types.

t ypelLi st is a structure of type NLType, which is an array of AppleTalk object types,
along with a handle to an icon. If no icon is required, pass NI L for hl con.

TYPE
NLTypeEntry = RECORD
hl con = Handl e;
typeStr = Str32;
END;
NLType = Array[0..3]of NLTypeEntry;

® Assembly note: Using assembly language, you can specify more than four object types by

passing a pointer to an array with the required number of items.

Chapter 7: Macintosh Communications Toolbox Utilities 203

NuPLookup

nameFi | t er isa pointer to a procedure that filters object/type/zone tuples from the
network look-up dialog box. zoneFilter isa pointer to a procedure that filters
zones from the network look-up dialog box. hookPr oc is a pointer to a hook
procedure that modifies the behavior of items in the dialog box or calls a background
procedure. These three procedures are described later in this chapter, in “Hook and
Filter Procedures.” If you do not need these routines in your application, specify NI L.

t heRepl y is the look-up reply record that contains the object/type/zone tuple for the
object, if any, that was selected by the user. The record also contains the AppleTalk
address consisting of node/network/zone numbers.

TYPE
LookupReply = RECORD
theEntity : Enti t yName;
t heAddr : Addr Bl ock;
END;

Warning When your application initially passes the t heRepl y data structure into the
NuLookup procedure, t heReply.theEntity should contain the default zone
and name. If the specified object is not in the list of accepted objects in t ypeli st the
specified object is ignored, and only the default zone is set. If an appropriate match is
found in the initial lookup, the specified zone and the specified name of the given object
are selected when the dialog box comes up. A

NuLookup returns one of three values:

CONST
nl Ok = 0;
nl Cancel = 1;
nl Ej ect = 2;

nl Ok is returned if the user clicks the OK button in the dialog box. nl Cancel
is returned if the user clicks the Cancel button. nl Ej ect is returned if the dialog box
stops because of the hook procedure.

A more versatile network lookup

Function

NuPLookup performs much the same task as NuLookup, except that it gives
programmers even greater control over customization of the network look-up dialog box.
Additional parameters that can be specified are user Dat a, di al ogl D, and
filterProc.

NuPLookup(where: Point; pronpt: STR255; nunmlypes:

| NTEGER; typeList: NLType; nameFilter: ProcPtr;
zoneFilter: ProcPtr; hookProc: ProcPtr; userData:
LONG NT; dial oglD: |INTEGER;, filterProc: ProcPtr; VAR
t heRepl y: LookupRepl y): | NTEGER;

204 Inside the Macintosh Communications Toolbox

user Dat a is a field that the user can specify. It may be referenced from the hook
procedure or the filter procedure with the ref Con field of the dialog box record.
ref Con is a handle to the user Dat a value.

The following code fragment demonstrates how to access the user Dat a field:

TYPE

LongH = ALongPtr;

LongPtr = NLONGI NT;
BEGI N

myUser Dat a: = LongH (CGetWRef Con (theDi al og))"";
END;

di al ogl D is the resource ID for a dialog box (and for the corresponding dialog item
list) that is to replace the standard look-up dialog box. All of the items in the replacement
dialog item list must correspond to items in the standard dialog item list, although they
can be moved around. Table 7-1 lists standard items and their placement.

M Table 7-1 TMAddSear ch search-area delimiters

Item number Type Rectangle (top, left, bottom, right)
1 OK button {172, 240, 192, 310}
2 Cancel button {172, 320, 192, 390}
3 Default highlight (user 1 tem) {168,236, 196, 314}
4 Title (st ati cText) {5, 15, 21, 210}

5 Item list (user|tem) {25, 15, 189, 210}

6 Zone list title (st at i cText) {5, 240, 21, 391}

7 Zone list (user | tem {25, 240, 147, 391}
8 Line (userltem {25, 225, 193, 226}
9 Version (user|tem {197, 360, 207, 400 }
10-13 Reserved

filterProc isamodal dialog box filter procedure that NuPLookup calls after
the standard NuLookup modal dialog box filter procedure. The format of the filter
procedure is the same as that of a standard modal dialog box filter procedure. See
Chapter 13 of Inside Macintosh, Volume I for more information about modal dialog filter
procedures.

Chapter 7: Macintosh Communications Toolbox Utilities 205

Hook and filter procedures

You can customize the operation of the network look-up dialog box for specific
applications by using the filter procedures and the hook procedure. Filter procedures are
used to filter zones from inclusion in the zone list, or to filter objects from the object list.
The hook procedure is used to modify the behavior of items in the dialog box, and can
also be used to call a background procedure.

M/NaneFi | t er

Name filters

Function

Description

Before each item name is included in the network look-up dialog list, the item is passed to
the name filter procedure for processing. Specify NI L if there is no filter procedure.

MyNanmeFi |l ter(theEntity: EntityName): | NTEGER,

This filter procedure is passed the network entity in t heEnti ty, and returns an
integer with one of the following values:

CONST
nanmel ncl ude
nameDi sabl e
nameRej ect

1;
2;
3;

nanel ncl ude results in the inclusion of t heEntity in the name list of the
network look-up dialog box. nameDi sabl e results in the inclusion of t heEntity
but disables it; the item in the list is visible but dimmed, and cannot be selected.
naneRej ect causes t heEntity not to appear in the list.

206 Inside the Macintosh Communications Toolbox

M/ZoneFi | t er

Zone filters

Function

Description

Before each zone item is included in the network look-up dialog list, the item is passed to
the zone filter procedure for processing. Specify NI L if there is no filter procedure.

MyZoneFi |l ter (theZone: STR32): | NTEGER,

NuLookup and NuPLookup pass the name of an AppleTalk zone in t heZone to
the zone filter procedure, which returns an integer with one of the following values:

CONST
zonel ncl ude
zoneDi sabl e
zoneRej ect

1;
2;
3;

zonel ncl ude results in the inclusion of t heZone in the zone list in the
network look-up dialog box. =~ zoneDi sabl e results in the inclusion of t heZone
but disables it; the item in the zone list is visible but dimmed, and cannot be selected.
zoneRej ect causes t heZone not to appear in the zone list.

Chapter 7: Macintosh Communications Toolbox Utilities 207

M/HookPr oc

The hook procedure

Function

208

NuLookup and NuPLookup call MyHookProc immediately after
Modal Di al og and before the standard hook procedure. Modal Di al og returns a

number that corresponds to the item clicked in the dialog box.

NuLookup and

NuPLookup employ a modal dialog box filter procedure that returns the item number
for any physical items clicked in the dialog box, as well as the item numbers of any fake

item clicked.

My HookPr oc(item

| NTEGER;

t heDi al og:

Di al ogPtr): | NTEGER;

Appropriate fake and real dialog box items are as follows:

CONST

{ real itenms in the dialog box

hook OK
hookCancel
hookQut !l i ne
hookTitl e
hookl t enLi st
hookZoneTitl e
hookZonelLi st
hookLi ne
hookVer si on
hookReservedl
hookReser ved2
hookReser ved3
hookReser ved4

temlist }

OCO~NOOUITRARWNE—

{ fake itens in dialog box itemlist }

hookNul |

hookl t emRefresh
hookZoneRefresh
hookEj ect
hookPr ef | i ght
hookPost fli ght
hookKeyBase

100;
101;
102;
103;
104;
105;
1000:;

The first 13 items correspond to physical items in the dialog box item list. The other
items are fake items that correspond to certain actions that may need to be performed.
hookNul | is a fake event that corresponds to a null event. The standard modal

dialog box filter procedure returns hookNul |

in itenHit for null events.

hookl t enRef r esh causes the item list in the look-up dialog box to be discarded

and regenerated.

hookZoneRef r esh causes the zone list in the look-up dialog box to be discarded
and regenerated. This value also causes a hookl t emRef resh event to be

generated.

hookEj ect causes all outstanding NBP lookups to be terminated and nLEj ect

to be returned by NuLookup.

Inside the Macintosh Communications Toolbox

hookPr ef | i ght is processed after the zone and object lists are formed, but
before the dialog box is displayed.

hookPost f | i ght is processed before the dialog box is disposed of.

Any item greater than hookKeyBase is actually the ASCII value of the key that is
pressed, offset by hookKeyBase. For example, an i tenHi t of 1032 decimal
would correspond to a keyDown event generating a space (ASCII 32 decimal).

Chapter 7: Macintosh Communications Toolbox Utilities 209

210 Inside the Macintosh Communications Toolbox

Quick reference

This section provides a reference to Communications Toolbox utilities. At the end of this section is a
listing of routine selectors for programming in assembly language.

Routines

Communications Toolbox utilities See page
AppendDI TL(t heDi al og: Di al ogPtr; theDl TL: 198
Handl e; nethod: DI TLMet hod);

Count DI TL(t heDi al og: Di al ogPtr): | NTEGER; 201
CTBGet CTBVer si on: | NTEGER 192
InitCTBUtilities: CTBUErr; 192
NuLookup(where: Point; pronpt: STR255; 203

nunlfypes: | NTEGER; typeList: NLType;
naneFilter: ProcPtr; zoneFilter: ProcPtr;
hookProc: ProcPtr; VAR theReply:
LookupRepl y) : | NTEGER;

NuPLookup(where: Point; pronpt: STR255; 204
nunlypes: | NTEGER; typeList: NLType;

nameFilter: ProcPtr; zoneFilter: ProcPtr;

hookProc: ProcPtr; userData: LONG NT;

dialoglD: INTEGER;, filterProc: ProcPtr; VAR

t heReply: LookupReply): | NTEGER;

ShortenDl TL(t heDi al og: Di al ogPtr; nunmberltens: 201

| NTEGER) ;

Routines in your application See page
MyNameFilter(theEntity: EntityName): | NTECER 206
MyZoneFi |l ter (theZone: STR32): | NTECER; 207
MyHookProc(item |INTEGER; theDi al og: 208

Di al ogPtr): | NTEGER;

Chapter 7: Macintosh Communications Toolbox Utilities 211

Constants and data types

TYPE
NLType = ARRAY[0. .3] OF RECORD
hl con : Handl e;
typeStr : Str32;
END
LookupReply = RECORD
theEntity : EntityName;
t heAddr : Addr Bl ock;
END;
TYPE
CTBUEr r = OSErr ;
CONST
ct buGeneri cError = -1;
ct buNoErr = 0;
CONST
cur CTBUVer si on = 1;
popupMenuCDEFpr oc = 1008;
popupFi xedW dt h = $0001;
popupUseCQD = $0002;
popupUseAddResMenu = $0004;
popupUseWFont = $0008;
{menu title highlighting}
popupTitl eBold = $00000100;
popupTitleltalic = $00000200;
popupTitl eUnderline = $00000400;
popupTitleQutline = $00000800;
popupTi t| eShadow = $00001000;
popupTitl eCondense = $00002000;
popupTitl eExt end = $00004000;
popupTitl eNoStyl e = $00008000;
popuplLeft Just = $00000000;
popupCent er Just = $00000001;
popupRi ght Just = $000000FF;

212 Inside the Macintosh Communications Toolbox

nl Ok
nl Cancel
nl Ej ect

I
NFR O

{ values that name filterProc returns }

{ values that zone filterProc r

{ dia

{ fake itens

nanelnclude =
naneDlsabIe
nameRej ect

I
WNF

zonelnclude =
zoneD|§abIe
zoneRej ect

e
1
2
3

turns }

log box itenms for hook procedure }
hook OK = 1;
hookCancel = 2;
hookQut | i ne = 3;
hookTitl e = 4:
hookl t enLi st = 5;
hookZoneTitl e = 6;
hookZonelLi st = 7:
hookLi ne = 8:;
hookVer si on = 9;
hookReser vedl = 10;
hookReser ved2 = 11;
hookReser ved3 = 12;
hookReser ved4 = 13;

in dialog box itemlist }

hookNul | = 100;
hookl t emRefresh = 101;
hookZoneRefresh = 102;
hookEj ect = 103;
hookPr ef | i ght = 104;
hookPost fli ght = 105;
hookKeyBase = 1000:;

TYPE
DI TLMet hod = | NTEGER

CONST

{ DITL manipul ation constants }
overl ayDl TL = 0;
appendDl TLRi ght = 1;
appendDl TLBott om = 2;

Chapter 7: Macintosh Communications Toolbox Utilities

213

Pop-up menu control

Parameter Before NewCont r ol

mn ID of menu to use

max width of pop-up title
val ue pop-up title characteristics
r ef Con

After NewCont r ol
1
number of menu items

currently selected item

resource type to append to menu available to application

using AddResMenu using pop-
up UseAddResMenu variation

code

Utility routine selectors

® Assembly note: Your application can access Communications Toolbox routines through a Macintosh
Operating System trap. To call a routine, your application pushes the appropriate parameters onto
the stack and invokes the trap macro that has the same name as the routine, preceded by an
underscore. When expanded, these macros place the routine selector onto the stack, set AO to point
to the selector, and invoke the trap _Conmilool boxDi spat ch ($A08B). Upon returning
from the trap, the trap macro pops the routine selector off the stack and places the return value into

DO. It is your application’s responsibility to

clean up the stack by removing the parameters that were

pushed onto the stack prior to invoking the trap macro.

AppendDI TL . EQU 1026
Count DI TL . EQU 1027
CTBGet CTBVer si on . EQU
InitCTBUtilities . EQU

214 Inside the Macintosh Communications Toolbox

NuLookup .EQU 1030

NuPLookup .EQU 1031

1029 ShortenDI TL . EQU 1028
1025

Chapter 8 Fundamentals of Writing Your Own Tools

l‘ Lile m'.“ﬂ' SEnin

THIS CHAPTER provides general information about writing a connection tool, terminal emulation
tool, or file transfer tool. You can find information specific to each kind of tool in Chapter 9, “Writing
Connection Tools,” Chapter 10, “Writing Terminal Tools,” and Chapter 11, “Writing File Transfer Tools.”
Before writing a tool, you should read this chapter and the chapter about the type of tool you want to

create.

This chapter discusses general concepts relevant to writing a tool. Then, it describes the six resources that
are an essential part of any communications tool to be used with the Communications Toolbox. After that,
the chapter provides example code to give you a better idea of what you need to do to write a tool. A
“Quick Reference” at the end of the chapter shows you what you should name your six resources. It also
lists the messages the File Transfer Manager sends to your tool, and the parameters that the File Transfer

Manager passes with each message.

To write your own communications tool, you need to be familiar with the manager with which your tool
will interface. See Chapter 3, “Connection Manager”; Chapter 4, “Terminal Manager”; or Chapter 5, “File
Transfer Manager.” You should also know about the Apple Computer, Inc. guidelines for communications

tools, which are discussed in Appendix A.

You should also be familiar with the following topics:

B the Dialog Manager (described in Inside Macintosh, Volumes I, IV, V)
B the Script Manager (described in Inside Macintosh, Volume V)

B Creating stand-alone code (described in Macintosh Technical Note 110)

216 Inside the Macintosh Communications Toolbox

About writing a tool

The Communications Toolbox managers interact with an application in the same way that the Macintosh
Toolbox managers do: the application calls a routine, which the appropriate manager handles by sending
a message to a tool. For example, when an application requires a service, such as creating a new
connection record, it calls the CMNew routine. The Connection Manager passes this request on by
issuing a message, cnl ni t Msg, to the main code resource of the appropriate tool.

Most of the messages sent by one Communications Toolbox manager are similar to the messages sent
by the other Communications Toolbox managers. This is because all of the managers have to handle
similar tasks, such as tool selection, record validation, and string localization. For example, the
initialization request messages are almost identical. The Connection Manager sends a cml ni t Msg, the
Terminal Manager sends a t ml ni t Msg, and the File Transfer Manager sends an ft | nit Msg.

Because the majority of messages in one manager are similar to their counterparts in the others, this
chapter shows you how to handle only Connection Manager messages. Even if you are not writing a
connection tool, you can learn the basic concepts from the sample code that shows how a connection tool
handles messages from the Connection Manager, and apply these concepts to writing a different kind of
tool.

Descriptions of the routines associated with the various messages are given in Chapters 3, 4, and 5.

The six resources

You need to create six resources to make your own connection tool. All of these resources are described
in this chapter, except the main code resource, which is described in detail in Chapter 9. (Resource
descriptions for a terminal tool are provided in Chapter 10, and resource descriptions for a file transfer
tool are provided in Chapter 11.)

There is one tool-related resource, which is optional:

"cbnd' The bundle resource contains the name of the tool and information about what resources
belong to the tool. For terminal emulation tools, this resource is of type ' t bnd" ; for
file transfer tools, this resource is of type ' f bnd' .

You also need to write five code resources, which must be part of your tool:

"cdef’ The main code resource performs the basic communications functions, such as CMNew,
CMRead, and CMW i t e. This resource is discussed in detail in Chapter 9. For
terminal emulation tools, this resource is of type 't def' and is discussed in Chapter
10; for file transfer tools, this resource is of type ' fdef' and is discussed in Chapter
11.

"cval' The validation resource validates connection records with CMWVal i dat e, and also fills
in configuration record default values with CMVDef aul t . For terminal emulation tools,
this resource is of type ' tval ' ; for file transfer tools, this resource is of type
"fval .

Chapter 8: Fundamentals of Writing Your Own Tools 217

‘cset’ The setup resource supports the custom tool-settings dialog box, which allows users to
configure connection tools. For terminal emulation tools, this resource is of type
"tset'; for file transfer tools, this resource is of type ' fset'.

‘cscr' The scripting language interface resource handles the interface between a scripting
language and the tool. For terminal emulation tools, this resource is of type 't scr' ;
for file transfer tools, this resource is of type ' fscr'.

"cloc’ The localization resource handles localization of configuration strings. For terminal
emulation tools, this resource is of type 't 1 oc'; for file transfer tools, this resource is
of type ' floc'.

The bundle resource

The tool bundle contains the master list of resources that are associated with your connection tool.
Besides the six standard resources, the tool bundle can contain references to any additional resources that
your tool requires, such as dialog boxes or menus. Although your tool will work without a bundle
resource, including one is a good programming practice. The bundle resource allows you to change
resource IDs when conflicts arise without having to recompile your code.

Your connection tool can refer to resources with local IDs that the Communications Resource Manager
can map to actual resource IDs (your tool should use the Communications Resource Manager routines
CRMLocal ToReal | D and CRMReal ToLocal | D). The connection bundle resource, shown here,
provides a data structure to accommodate this mapping.

type 'cbnd' { [* or tbnd or fbnd */
integer = $$Count Of (TypeArray) - 1;
array TypeArray {
literal 1ongint; [* Type */
i nteger = $$Count O (I DArray) - 1;
wide array |DArray {
i nt eger; /* Local ID */
i nt eger; /* Actual ID */
H
3

218 Inside the Macintosh Communications Toolbox

The validation code resource

The validation code resource parses two possible messages from the manager—in the case of the
Connection Manager, these are cnVal i dat eMsg and cnDef aul t Msg. An application or tool
will request one of these services when it requires your tool to check the values in the connection record.
For terminal tools, this record is called the terminal record; for file transfer tools, this record is called the
file transfer record. An application or tool will request one of these services when it requires your tool to
reset the connection record to its default values. Your connection tool should contain the default values
for the connection record.

The validation code resource, an example of which is below, should be a resource of type ' cval
for connection tools (' t val ' for terminal tools and ' fval ' for file transfer tools). It should be
able to accept the messages shown in this example:

FUNCTI ON cval (hConn: ConnHandl e; msg: |NTECGER, pl, p2, p3:
LONG NT): LONGI NT;
VAR

pConfi g: ConfigPtr;

BEGI N

CASE nmsg OF
cnval i dateMsg: { hConn is valid here }
BEGI N
cval := DoVali date(hConn);
END;
cnDef aul t MsQ: { hConn is not valid here }
BEGH N { pl is a pointer to the configPtr }
{ p2 is allocate or not }
{ p3 is the proclD of the tool }
IF p2 = 1 THEN
pConfig := ConfigPtr(NewPtr (SIZEOF(ConfigRecord)));
Confi gHandl e(pl)~ := pConfig;
{ real progranmers check errors here }
END
ELSE
BEGI N
pConfig := ConfigHandl e(pl)”;
END;
DoDef aul t (pConfi g);
END;
END; { case }
END;

The messages accepted by the validation code resource and their associated values are as follows:

CONST

{ validation code resource nessages }
cmval i dateMsg = 0;
cnmDef aul t Msg = 1,

Chapter 8: Fundamentals of Writing Your Own Tools 219

For each of the messages defined here, p1, p2,and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. if your tool receives a message other than those
shown, it should return cnNot Supported, tnNot Supported,or ftNot Supported.

cnVal i dat eMsg
Your tool will receive cnVal i dat eMsg when the application requires your tool to validate the fields
in the connection record. Your tool should compare the values in this record with the values specified in
your tool.
The example code on the following page shows how your tool can respond to cmval i dat eMsg.
After executing the code necessary to respond to cnVal i dat eMsg, your code should pass back 0
if there were no errors, or 1 if the configuration record had to be rebuilt by your tool. pl, p2,and p3
should be ignored.

{ perform validate here }
FUNCTI ON DoVal i dat e(hConn: ConnHandl e): LONGI NT;

VAR
pPrivate: PrivatePtr;
pConfi g: Confi gPtr;
BEGI N
DoVal i date := O0; { optimsm reigns }
pConfig := ConfigPtr(hConn®".config);
pPrivate := PrivatePtr(hConn™®". private);
I F pConfig”. foobar = 0 THEN
Dovalidate := 0 { okey dokey }
ELSE
Doval i date := 1; { uh-oh }
END;
cnbDef aul t Msg

Your tool will receive cnDef aul t Msg when the application requires your tool to fill in the fields of a
connection record. Default values should be specified in your tool. The example code shows how your
tool can handle crDef aul t Msg.

After executing the code necessary to respond to cnDef aul t Msg, pl should pass back a
pointer to the configuration record pointer. If p2 contained 1 when CMVDef aul t was called, your
tool should allocate the configuration record and return the pointer in pl. If p2 was 0, then your tool
should simply use the configuration pointer obtained by dereferencing p1.

PROCEDURE DoDefault(theConfig : ConfigPtr);

BEG N
W TH t heConfig® DO
BEGI N
{ default is 9600 8 N 1 no handshaking }

220 Inside the Macintosh Communications Toolbox

baudr at e = 9600;
dat abits = dat a8;
stopbits = st oplO0;
paritybits: = noParity;
W TH t heConfi g”. shaker DO
BEGI N
fXOn : = 0;
fCTS : = 0;
xOn = CHAR($11);
xOff = CHAR($13);
errs = 0;
evts : = 0;
flnX ;= 0;
f DTR : = 0;
END;
portName := GetFirstSerial;
flags := 0O;
END;

END;

The setup definition code resource

Applications can present users with a custom dialog box containing tool-specific items that allows them to
configure their own connections or select a connection tool. The Connection Manager routines

CMSet upPreflight, CMSetupSetup, CMSetupltem CMsetupFilter,and

CMSet upCl eanup make this possible.

The connection tool setup code resource should be a function called ' cset' (‘'tset' for terminal
tools and ' fset' for file transfer tools), and should be able to handle the following parameters:

{ main entry point for cset resource }
FUNCTI ON cset (pSetup: CMsetupPtr; msg: | NTEGER,
pl, p2, p3: LONG NT): LONG NT;
TYPE
Local Handl e = ~“Local Ptr;
Local Ptr = “Local Record;
Local Record = RECORD { private tool setup context }
f oobar: LONG NT;
END;

IntPtr = | NTEGER;
Event Ptr = ~Event Record;

Chapter 8: Fundamentals of Writing Your Own Tools 221

BEGH N
CASE nsg OF
cnSpreflight Msg:
BEGH N
t heCooki e := CookiePtr(NewPtr (Sl ZEOF(Cooki eRecord)));
Cooki eHandl e(p3)”™ := theCookie; { send back theCookie

cset := Preflight(pSetup, theCookie);
END,;
cnSset upMsg:
BEGH N
t heCooki e := Cooki eHandl e(p3)*; { get the nmgic
cooki e }
Set up(pSet up) ; { do the setup }
END,;

cnSi temvsg:
BEGH N
t heCooki e := CookieHandl e(p3)”; { get the nmgic cookie }
Item pSetup, theCookie, IntPtr(pl)); { process the
itens hit }
END,;

cnSfilterMsg:
BEGH N
t heCooki e := Cooki eHandl e(p3)*; { get the magic
cookie }
cset := Filter(pSetup, theCookie, EventPtr(pl),
IntPtr(p2));
EN

cmsScl eanl’JpMsg:

BEGI N

t heCooki e := Cooki eHandl e(p3)*; { get the magic
cooki e }

Di sposPtr (Ptr(theCookie)); { and get rid of it }

ND;

END; { case }
END;

Valid values for nsg are as follows:

CONST
cmSpreflight Msg = 0;
cnSset upMsg = 1;
cnSi t envsg = 2;
cnSfilterMsg = 3;
cnmScl eanupMsg = 4;

For each of the messages just shown, pl, p2,and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. If your tool receives a message other than those
shown, it should return crNot Support ed, tmNot Supported, or ftNot Supported. When
your tool handles these routines, it will use a CMSet upSt ruct data structure.

222 Inside the Macintosh Communications Toolbox

TYPE

CMSet upPtr = ANCMSet upStruct ;
CMSet upStruct = RECORD
t heDi al og : Di al ogPtr;
count : | NTEGER; {dialog item nunmber of first
appended itent
t heConfig : Ptr;
procl D : | NTEGER
END;

cnipreflight Msg
Your setup-definition code resource should perform a function similar to that shown in the
example code when it receives cnSpr ef | i ght Msg from the Connection Manager.

When passed to your connection tool, p3 will be a pointer to a LONG NT that gets passed to the
other routines during setup definition. p3 should serve as magi cCooki e if the setup definition

procedure requires some private context.
After executing the code necessary to respond to cnSpr ef | i ght Msg, your connection tool

should return a handle to a dialog item list. This handle should then be disposed of by the caller of this

function.

FUNCTI ON Preflight(psetup: CMsetupPtr; theCookie: LocalPtr):
LONGI NT;
CONST

locallD = 1; { we want DITL local ID 1 }

VAR
hDlI TL: Handl e;
t hel D: | NTEGER;
ol dRF: | NTEGER:

BEGH N
t heCooki e™. f oobar := 0; { setup theCookie }
thelD := CRM.ocal ToReal | D(Cl assCM pSetup”.proclD, 'DITL",
| ocal | D) ;
IF thelD = -1 THEN
Preflight := 0 { no DITL found }
ELSE
BEGI N
ol dRF := CurResFil e;
UseResFi | e(pSet up”. procl D) ; { proclD is the tool
refnum }
hDI TL := GetlResource('DITL', thelD);
UseResFi | e(ol dRF) ;
IF hDITL <> NIL THEN
Det achResource(hDI TL) ; { got it so detach it }
Preflight := LONG NT(hDITL);
END;
END;

Chapter 8: Fundamentals of Writing Your Own Tools

223

cnSset upMsg
Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cnSset upMsg from the Connection Manager.

When passed to your connection tool, p3 will be a pointer to magi cCooki e, which is a LONG NT.

PROCEDURE Set up(pSetup: CMsetupPtr);
CONST

myFirstlitem = 1;

mySecondl tem = 2;

VAR
first: | NTEGER, { first item appended (O-
based) }
pConfi g: Confi gPtr;
BEGI N
W TH pSetup” DO
BEGH N
first .= count - 1, { count is 1-based }
pConfig := ConfigPtr(theConfig); { get the config ptr
}
GetDItemt heDi al og, first+nyFirstlitem itenkKind,
i temHandl e, itenRect);
Set Ct | Val ue(Cont rol Handl e(i t enHandl e), pConfi g”.foobar);
CGetDItem(t heDi al og, first+nySecondltem itenKind,
i temHandl e, itenRect);
Set Ct | Val ue(Control Handl e(i t erHandl e), 1-
pConfi g”. f oobar);
END;, (with)
END;
cnBi t emveg

Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cnSi t emVsg from the Connection Manager.

When passed to your connection tool, pl points to an item that was selected from the dialog box
item list, and p3 contains a pointer to magi cCooki e. Your tool can change the selected item by
modifying the item number to which p1l points.

224 Inside the Macintosh Communications Toolbox

PROCEDURE |ten(pSetup: CMsSetupPtr; pltem |IntPtr);
CONST

myFirstltem = 1;
mySecondl t em = 2;
VAR
first : | NTEGER; {first item appended (O-
based) }
pConfi g : Confi gPtr;
val ue : | NTEGER;
BEG N
W TH pSetup”™ DO
BEGI N
first := count - 1; { count is 1-based }
pConfig := ConfigPtr(theConfig); { get the config ptr
}
CASE pltem -first OF
nmyFirstltem
BEGI N
GetDIitem(t heDi al og, first+nyFirstltemitenKind,
itemHandl e, i temRect);
value := GetCtl Val ue(Control Handl e(itenHandl e))
value := 1 - value;
pConfig”.foobar := value; { stick into config record
}
Set Ct | Val ue(Control Handl e(i tenHandl e), value); {
update control }
END;
mySecondl t em
BEGI N
SysBeep(5);
Fl ashMenuBar (0) ;
END;
END;, { case }
END, { with }
END;
cnifilterMg

Your setup-definition code resource should perform a function similar to that shown in the example code
when it receives cnSfilter Msg from the Connection Manager.

When passed to your connection tool, pl will contain a pointer to a event record, p2 will contain
a pointer to an item clicked in the dialog box list, and p3 will contain a pointer to
magi cCooki e.

If the event that was passed to this function was handled, your connection tool should return 1,
otherwise, it should return 0.

Chapter 8: Fundamentals of Writing Your Own Tools 225

FUNCTION Filter(pSetup: CMsetupPtr; theCookie: Local Ptr;
pEvent: EventPtr;pltem IntPtr): LONG NT;

BEGH N
Filter := 0; { not hungry }
| F pEvent”~. what = keyDown THEN (eat all keyDowns }
BEGI N
SysBeep(5);
Filter := 1, { processed }
END;

END;

cniScl eanupMsg
Your setup-definition code resource should perform a function similar to the one shown in the
example code when it receives cmScl eanupMsg from the Connection Manager.

When passed to your connection tool, p3 will contain a pointer to magi cCooki e.

PROCEDURE nyCl eanup(p3: LONG NT);

BEGH N
Di sposPtr(Ptr(p3)); { dispose of magi cCookie }
p3 := 0;

END,;

The scripting language interface code resource

Your connection tool’s scripting language interface code resource is responsible for handling the interface
between your tool and a scripting language. Also, it must provide complete configuration information for
saving and opening documents.

Your scripting interface code resource must handle two messages: cmvget Msg and
cmMvset Msg. It should be a resource of type ' cscr' (' tscr' for terminal tools and ' fscr'
for file transfer tools) and be able to handle the parameters that are shown in this example:

FUNCTI ON cscr (hConn: ConnHandl e; msg: |NTECGER, pl, p2, p3:

LONG NT) :
LONGI NT;
VAR
pConfi g: Confi gPtr;
BEGI N
cscr := 0;{ for now }
CASE nmsg OF
cmvget MsQ:
cscr := LONG NT(Get Config(hConn));
cmvset MsQ:
cscr := SetConfig(hConn, Ptr(pl));

END; { case }
END;

226 Inside the Macintosh Communications Toolbox

Valid values for ns g are as follows:

CONST

cmvget Msg
cmvset Msg

0;
1;

For each of the messages defined here, pl , p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow. If your tool receives a message other than those
shown, it should return cniNot Support ed, tnmNot Supported,or ftNotSupported.

cmvget Msg
Your tool will receive cnmivget Msg from the Connection Manager when the application requires a
string that describes the connection record. The sample code shows how your application can handle
cmvget Msg.

After executing the code necessary to respond to cmiVget Msg, your connection tool should return
NI L if there was a problem constructing the configuration string. Otherwise, it should return a pointer to
a null-terminated string that contains American English tokens representing the configuration record
pointed to by confi g in the connection record.

FUNCTI ON Get Confi g(hConn: ConnHandle): Ptr;

VAR

thePtr: Ptr;

pConfi g: Confi gPtr;

theString,

string2: STR255;
BEGH N

pConfig := ConfigPtr(hConn®". config); { get the config
record }

theString := 'FOOBAR '; { attribute nanme is FOOBAR

NumroSt ri ng(pConfi gn. foobar, string2); { get the attribute
val ue }

theString := CONCAT(string, string2); { make the config
string }

thePtr := NewPtr(SI ZEOF(LENGTH(t heString)+l));

IF thePtr <> NIL THEN

BEGH N
Bl ockMove(Pt r (LONG NT(@ heString) +1),
thePtr, LENGTH(theString)); { copy it }

Pt r (LONGI NT(t hePtr)+LENGTH(t heString))® := 0; { O
termnate it }
END;
CGetConfig := thePtr; { bye bye }

END;

Chapter 8: Fundamentals of Writing Your Own Tools 227

cmvset Msg
Your tool will receive cmvset Msg from the Connection Manager when the application requires your
tool to set the fields of the connection record to values that are specified in a string. The Connection
Manager will pass a pointer to this string as a parameter to this call. The sample code shows how your
tool can handle cmvset Msg.

When passed to your connection tool’s scripting interface code resource, p1 will be a pointer to an
American English null-terminated string that contains tokens representing a configuration record.

Your tool should return one of the following values: a number less than -1 to indicate an
OSEr r, -1 to indicate a generic error, 0 if there was no problem with the string, or a positive number to
indicate the character position where parsing was stopped.

The Connection Manager automatically calls CMWval i dat e after your tool has responded to
cmivset Msg.

FUNCTI ON Set Confi g(hConn: ConnHandl e; theSource: Ptr): |NTEGER
VAR

pConfig . ConfigPtr; { tool specific config record }
paranStr,
val ueStr : Str255; { paraneter and value strings }
out Of Tokens : BOOLEAN, { end of the line? }
returnvVal : |INTEGER;, { what to return }
BEGH N
{ Init some stuff }
pConfig := ConfigPtr(hConn®". config);
returnVal := noErr;

IF (theSource® = CHR(0)) THEN
out Of Tokens : = TRUE
ELSE

out Of Tokens FALSE;

WHI LE NOT out Of Tokens DO BEG N
(* Build the first token and put it into parantStr *)

|F (paranStr = 'FOOBAR) THEN BEG N
(* Build the next token and put it into valueStr *)
pConfi g”.foobar := valueStr;
END
ELSE BEG N
(* returnVal = location of the parantr *)
LEAVE;
END,;

(* index to next token *)
END; { while }

Set Config := returnVal;
END;

228 Inside the Macintosh Communications Toolbox

The localization code resource

Your connection tool’s localization code resource is responsible for providing the services necessary to
localize your tool. It must handle two messages, cnlL2Engli sh and cnli2intl.

Your localization code resource should be a resource of type ' cl oc' . It should be able to
handle the parameters shown in the example code.

FUNCTI ON cl oc(hConn: ConnHandle; msg: |NTEGER, pl, p2, p3: LONG NT)
: LONG NT;

Valid values for nsg are as follows:

CONST
cnmL2Engl i sh =
cmL2l nt | = 1;

0;
For each of the messages defined here, pl, p2, and p3 take on different meanings. These meanings
are discussed in the message descriptions that follow.

cnmL2Engl i shand cni2intl

Your tool will receive cnmL2Engl i sh from the Connection Manager when the application requires
your tool to localize a string to English. When the parameters pl, p2, and p3 are passed to your tool,
pl will contain a pointer to a localized null-terminated string that contains tokens representing a
configuration record; p2 will contain a pointer that points to a second pointer. Your tool will have to
allocate space for this pointer (by calling NewPt r), which contains the American English null-terminated
configuration string. p3 will contain a language identifier, which is defined in the discussion of the
Script Manager in Inside Macintosh, Volume V.

Your tool will receive cnli2l ntl from the Connection Manager when the application requires your
tool to localize a string to a language other than English. When the parameters pl, p2, and p3 are
passed to your tool, p1l will contain a pointer to an American English null-terminated string that
contains tokens representing a configuration record; p2 will contain a pointer to a second pointer.
Your tool will have to allocate space for this pointer, which contains the localized configuration string.
p3 will contain a language identifier, which is defined in the Script Manager in Inside Macintosh, Volume
V. The next code example shows how your tool can handle both cnmL2Engl i sh and cnli2intl .
After executing the code necessary to respond to crmL2Engl i sh or cml2l ntl, your routine
should return NI L if there was a Memory Manager error or if the language requested is not available. It
should also return any appropriate error code in the status field of the connection record.

{ main entry point for cloc resource }
FUNCTI ON cl oc(hConn: ConnHandl e; msg: |NTECGER, pl, p2, p3:
LONGI NT) : LONG NT,;
TYPE
PtrPtr = ~Ptr;

VAR

outPtr: Ptr;
procl D: | NTEGER,

Chapter 8: Fundamentals of Writing Your Own Tools 229

begin

outPtr := PtrPtr(p2)*; { get output pointer }
case nsg of
cnmL2Engl i sh:
cloc := Translate(Ptr(pl),outPtr, p3,verUsS);
cmL2l ntl:
cloc := Translate(Ptr(pl),outPtr,verUs, p3);
end; {case}
PtrPtr(p2)® := outPtr; { return output pointer }

end; { nytscrDEF }

{ Translates an input config string from one |anguage to another }
{ returns 0 if no problem non zero if there is a problem}

{ This routine needs to allocate outputStr. }

{ if language is not supported, return O but leave outputStr N L }

function Translate(inputStr: Ptr; var outputStr: Ptr;
fromLanguage, t oLanguage: longint): |ongint;

BEGH N

end; { Translate }

confi g: the configuration record

An application using your tool may save and restore the contents of a configuration record to set the state
of the connection at any time. The configuration record, therefore, should be self-contained and should
not contain any pointers or handles to other data structures. Your tool allocates this record in response
to cnDef aul t Msg. The Connection Manager, not the tool, deallocates the configuration record when
the application calls CMDi spose.

230 Inside the Macintosh Communications Toolbox

Quick reference
This section contains reference information for the data structures, definition procedures, and resource

types that you need to write a terminal tool. A table at the end of this section lists messages the
Connection Manager sends to connection tools, and what is passed in the parameters with each message.

Data structures

TYPE
CMSet upPt r = ANCMSet upSt ruct;
CMSet upSt ruct = RECORD
t heDi al og : Di al ogPtr;
count : | NTEGER;
t heConfig : Ptr;
procl D : | NTEGER
END;
Definition procedures

FUNCTI ONcdef (hConn: ConnHandl e; nsg: | NTEGER;, pl, p2, p3: LONG NT)
: LONG NT;

FUNCTI ONcval (hConn: ConnHandl e; nmsg: | NTEGER;, pl, p2, p3: LONG NT)
: LONG NT;

FUNCTI ONcset (pSet up: CMsetupPtr; nmsg: |NTEGER;, pl, p2, p3: LONG NT)
: LONG NT;

FUNCTI ONcscr (hConn: ConnHandl e; nmsg: | NTEGER;, pl, p2, p3: LONG NT)
: LONG NT;

FUNCTI ONcl oc(hConn: ConnHandl e; nsg: |NTEGER;, pl, p2, p3: LONG NT)
: LONG NT;

Resource types

type 'cbnd' {
i nteger = $$Count Of (TypeArray) - 1;
array TypeArray {
literal 1ongint; [* Type */
integer = $$Count O (I DArray) - 1;
wide array |DArray {
i nt eger; /* Local ID */
integer; [/* Actual ID */
H
Hi

Chapter 8: Fundamentals of Writing Your Own Tools 231

H Table 8-1 Connection Manager messages and parameters

Constant Parameter 1 Parameter 2 Parameter 3
pl p2 p3

Validation code resource messages
cnival i dat eMsg* 0 - - -
cnbDef aul t Msg 1 VAR cmConfi gRec: Ptr al | ocat e: Bool ean procl D: short
Setup code resource messages
cnSprefl i ght Msg* 0 - - VAR magi cCooki e: LONGI NT
cnSset upMsg 1 - - VAR magi cCooki e: LONGI NT
cnSi t emvsg 2 VAR itemitentel ected - VAR magi cCooki e: LONGI NT
cnsSfilter Msg* 3 myEvent : Event Recor d VAR itemitenHit VAR magi cCooki e: LONG NT
cnScl eanupMsg 4 - - VAR nmagi cCooki e: LONGI NT
Scripting code resource messages
cmvbet Msg* 0 - - -
cmvset Msg* 1 configPtr:Ptr - -
Localization code resource messages
cnmL2Engl i sh* 0 inputPtr:Ptr VAR outputPtr:Ptr fromLanguage: i nt eger
cm2lntl* 1 i nput Ptr:Ptr VAR out putPtr: Ptr t oLanguage: i nt eger

*Indicates the routine is a function that returns a LONG NT

Chapter 9 Writing Connection Tools

THIS CHAPTER tells you how to write the main code resource for a connection tool. There are at
least five other code resources that you need to include as part of your tool; they are described in Chapter

8. You should read that chapter, as well as Chapter 3, before reading this chapter.

This chapter describes all the messages, parameters, and data structures that the Connection Manager
passes to your tool’s main code resource. Also in this chapter is sample code (with pseudocode mixed in)
that will help you understand what your tool should do when it receives any of the messages. A “Quick
Reference” at the end of the chapter shows you what you should name your six connection tool resources.
It also lists the messages the Connection Manager sends to your tool, and the parameters that the

Connection Manager passes with each message.

234 Inside the Macintosh Communications Toolbox

Your connection tool’s main code resource

The purpose of the main code resource is to parse messages from the Connection Manager and then to
branch to a routine that can handle each message. The main code resource should be a resource of type
" cdef' and should be able to accept the parameters shown here.

FUNCTI ON cdef (hConn: ConnHandl e; msg: |NTEGER, pl, p2, p3:
LONG NT) : LONG NT;

The messages accepted by the main code resource, and their associated values, are as follows:

CONST
cmnitMg = 0;
cnDi sposeMsg = 1;
cmSuspendMsg = 2;
cmResunmeMsg = 3;
cmvenuMsg = 4,
cmEvent Msg = 5:
cmActivateMsg = 6;
cnmDeacti vat eMsg = 7:
cm dl eMsg = 50;
cmReset Msg = 51;
cmAbort Msg = 52,
cmReadMsg = 100;
cmifiteMsg = 101;
cnSt at usMsg = 102;
cnLi st enMsg = 103;
cmAccept Msg = 104;
cnCl oseMsg = 105;
cmOpenMsg = 106;
cmBr eakMsg = 107;
cm OKi | | Msg = 108;
cnmEnvi ronsMsg = 109;

For each of the messages defined here, the three parameters ' cdef' returns, namely pl, p2, and
p3, take on different meanings. These parameters are described in the message descriptions that follow.
Your tool can return an appropriate operating system error code, or criNot Support ed if it does not
understand the message it received.

cnReset Msg

The Connection Manager will send cnmReset Msg to your tool when the application requires your tool
to reset the connection. The specific state to which your tool should reset the connection depends upon
the connection protocol.

Chapter 9: Writing Connection Tools 235

cmvenuMsg

The Connection Manager will send crmMVenuMsg to your tool when a menu event has occurred in
the application. When passed to your tool, pl will contain the menu ID, and p2 will contain the
menu item.

The sample code shows you a basic template into which you can code your tool’s response to
cmvenuMsg. When done, your tool should pass back 0 if the menu event was not handled, and 1 if it
was.

FUNCTI ON nyMenu(hConn : ConnHandle; m D : |INTEGER, mtem | NTEGER)
: LONG NT; BEG N
myMenu : = O0;
{ if mne then
begi n
nyMenu := 1;
Process the nenu command.
end;
}
END;
cnli st enMsg

An application will call the CMLi st en routine when it requires your tool to wait for an incoming
connection request. When passed to your tool, pl will contain the address of
CMConpl et or Record, and p2 will contain the timeout value in ticks.

Your tool uses a CMConpl et or Record structure when it receives a message to process
asynchronously. This record contains a pointer to a completion routine your tool calls upon completion
of the specified operation.

If the operation is to be performed asynchronously, the async field of the
CMConpl et or Record is TRUE and the pointer to the completion routine is in the
conpl eti onRout i ne field. If the operation is to be performed synchronously, the async field
of the CMConpl et or Record is FALSE. Your tool should ignore the conpl eti onRouti ne
field in this case.

The CMConpl et or Recor d is created in a local stack frame by the Connection Manager;
therefore, your tool should copy the contents of the CMConpl et or Record data structure if any
information in it will be needed later.

TYPE

CMConpl etor Pt r ACMConpl et or Recor d;

CMConpl et or Record RECORD
async : BOOLEAN;
compl eti onRout i ne : ProcPtr;

END;

The sample code shows you a basic template into which you can code your tool’s response to
crLi st enMsg. When done, your tool should pass back an appropriate error code.

236 Inside the Macintosh Communications Toolbox

FUNCTI ON nyLi sten(hConn : ConnHandl e; conpletor : CMConpletorPtr;
timeout : LONGI NT) : CMErr;

{ If connection is already open, return error condition }
{ Establish physical |ayer driver }

{ If conpletor”™. async then }
beai

Do async listen call.
Set listen pending flag.
Issue VBL task to termnate listen in specified timeout.

end
el se
Do sync listen call and return error when tinmeout.
END,;
cm dl eMsg

Your tool will receive cm dl eMsg when the application has idle time, such as when it needs your tool
to check the status of an asynchronous routine. An application cannot call CM dl e from interrupt level.

cnEvent Msg
The Connection Manager will pass cnEvent Msg to your tool when an event occurred in a window
associated with the connection tool. The sample code shows a template into which you can code your
tool’s response to cnEvent Msg.

When passed to your tool, pl will be a pointer to the event record. The reference constant field of
the window record will contain the connection handle.

PROCEDURE mnyEvent (hConn : ConnHandl e; theEvent : EventRecord);
CONST

Cancel Button = 2;
VAR
t heDi al og : Di al ogPtr;
theltem : | NTEGER;
BEG N

{ Check if it is a dialog-related event }
if IsDialogEvent(theEvent) then
begi n
{ get the item hit }
i f DialogSelect(theEvent,theDi alog,theltem then
begin
if theltem = Cancel Button then
{ Cancel the connection }
end;
end
el se
{ Handl e the keyDown, updateEvt, museDown and any ot her
event here }
END;

Chapter 9: Writing Connection Tools 237

cmAbort Msg

The Connection Manager will pass cmAbor t Msg to your tool when the application has requested that a
pending open or listen be aborted. The sample code shows a template into which you can code your
tool’s response to cmAbor t Msg.

PROCEDURE myAbort (hConn : ConnHandl e);

BEGI N
{ If no listen or open pending, return error condition. }
{ Terminate listen or open process. }
{ Close the physical layer driver. }

END;

cmAccept Msg
The Connection Manager will pass cmAccept Msg to your tool when the application has called the
cmAccept routine. When passed to your tool, pl will contain 1 if your tool should accept the open
request, or 0 if it should reject it.

Once your tool receives this message, it should clear the cnSt at usl ncom ngCal | Present
bit the next time it receives a cnSt at usMsg.

The sample code shows a template into which you can code your tool’s response to cmAccept Msg.
When finished, your tool should return an appropriate error code.

FUNCTI ON nyAccept (hConn : ConnHandl e; accept : |INTEGER) : CMErr;
BEGH N
{ If the connection is already open, return error condition. }
if accept <> cmAccept K then
begin
{ Term nate the |ogical connection |listen process. }
{ Close the physical layer driver. }
end
el se
{ set the open status bit }
END;

cmAct i vat eMsg and cnDeacti vat eMsg

The Connection Manager will pass cmActi vat eMsg or cnDeacti vat eMsg to your tool when
the application requires your tool to perform an action, such as installing or removing a menu from the
menu bar in response to an activate or deactivate message.

cnBuspendMsg and cnResuneMsg

The Connection Manager will pass cnmSuspendMsg or cnmResunmeMsg to your tool when the
application requires your tool to perform an action, such as installing or removing a menu from the menu
bar in response to a suspend or resume message.

238 Inside the Macintosh Communications Toolbox

cmnit Msg

The Connection Manager will pass cm ni t Msg to your tool after the following sequence of events
occurs. When a tool or application calls CMNew, the Connection Manager allocates space for the
connection record. It then fills in some of the fields, based upon information that was passed in the
parameters to the call. The Connection Manager fills in the confi g and ol dConfi g fields by calling
CMDef aul t . Then, the Connection Manager passes cm ni t Msg to your tool. After your tool has
finished responding to cm ni t Msg, the Connection Manager calls CMval i dat e.

If your tool allocates space for internal buffers in the buf fer Array field of the connection
record, applications and the Connection Manager must not manipulate the space. Also, your tool is
responsible for freeing the space (in response to cnDi sposeMsg). Connection tools are not required
to use the bufferArray field.

The sample code shows how your tool can respond to cml ni t Msg. After executing the code
necessary to respond to cm ni t Msg, your code should pass back an appropriate OsErr or
CMErT .

FUNCTI ON nylnit(hConn: ConnHandle): CMErr;

VAR
state: SignedByte;
BEGI N
nylnit := noErr; { optimsm}
state := HGet State(Handl e(hConn)); { save handle state }
HLock(Handl e(hConn)) ; { lock it down }
W TH hConn””* DO
BEGI N
flags := BOR(flags, cnData); { yes we do data }
IF BAND(flags, cmAttn) <> 0O THEN { turn off attention }
flags := BXOR(flags, cmAttn);
IF BAND(flags, cnCntl) <> 0 THEN { turn off control }
flags := BXOR(flags, cnCntl);
err Code := noFErr; { optimsmreigns }
{ need to check Menkrr here }
buf ferArray[cnDataln] := NewPtr(bufSizes[cnDataln]);
buf fer Array[cnDat aOut] := NewPtr (bufSizes[cnDataCut]);
private := PrivatePtr(NewPtr (Sl ZEOF(PrivateData)));
W TH private® DO
BEGH N
{ fill in private data structure here }
END;
END,;
HSet St at e(Handl e(hConn), state);
END;

Chapter 9: Writing Connection Tools 239

cnDi sposeMsg
A tool or application will call CVDi spose when it must dispose of a connection record and its
associated data structures.

The Connection Manager passes cnDi sposeMsg to your tool before disposing of the confi g
and ol dConfi g fields of the connection record. Next, the Connection Manager disposes of the
connection record.

To handle cnDi sposeMsg, your tool should dispose of any buffers allocated in response to
cml ni t Msg and any private data storage (referenced off of cnPri vat e in the connection record).
Your tool must not attempt to dispose of either confi g or ol dConfi g in the connection record,
or of the connection record itself. Doing so will cause a system crash.

The sample code shows how your tool can respond to cnDi sposeMsg.

FUNCTI ON nyDi spose(hConn: ConnHandl e): CMErr;
VAR
pPrivate: PrivatePtr; { tool privates }

BEGI N
nyDi spose := noErr;

{ if the connection is open then call CMClose on it }

Di sposPtr(Ptr(hConn**.private));

Di sposPtr(Ptr(hConn*”. bufferArray[cnDataln]));

Di sposPtr(Ptr(hConn™~. bufferArray[cnmbataCut]));
END;

cmReadMsg and cnmNit eMsg
A tool or application will cal CMRead when it requires your tool to read data from a remote entity.
Likewise, a tool or application will call CMW i t e when it requires your tool to write data to a remote
entity. The Connection Manager will handle these calls by passing cmReadMsg orcmWiteMsg to
the appropriate connection tool.

If a channel is requested that is not supported by your tool (for example, if a read is requested on the
attention channel when the attention channel is not supported), your tool should return
cmNot Support ed.

After executing the code necessary to respond to cnmReadMsg or cmW it eMsg, your tool
should pass back an appropriate OSErr or CMErr.

When cnmReadMsg or cmWiteMsg is passed to your tool, pl points to the
cnmDat aBuf f er record, p2 points to the CMConpl et or Recor d record, and p3 contains the
timeout value. The timeout value specifies a time period, in ticks, within which the read operation must
be completed. If your tool does not complete the operation within the specified time, it should pass back
a timeout error. An application passes -1 when it wants no timeout. If the application specifies 0, your
connection tool should read as many bytes, up to t oRead bytes, as it can in one read attempt.

Depending on the connection protocol your tool is supporting, your tool might ignore the timeout
parameter.

240 Inside the Macintosh Communications Toolbox

The C\Dat aBuf f er record

A Dat aBuf f er record contains information about where the read or write buffer is located, how
many bytes are supposed to be read or written, the channel that is to be used, and an end-of-message flag.
Your tool should be able to accommodate the data structure defined here:

TYPE

CMDat aBuf fer Ptr NCMDat aBuf f er;

CMDat aBuf f er RECORD
thePtr : Ptr;
count : LONGI NT;
channel : CMChannel ;
flags : CMFI ags;

END;

These are the valid values for channel :

CONST
cnDat a = $00000001;
cnCnt | = $00000002;
CmAt t n = $00000004;

The CMConpl et or Record record

Your tool uses a CMConpl et or Recor d structure when it receives a message to process
asynchronously. This record contains a pointer to a completion routine your tool calls upon completion
of the specified operation.

If the operation is to be performed asynchronously, the async field of the
CMConpl et or Record is TRUE and the pointer to the completion routine is in the
conpl etionRouti ne field.

If the operation is to be performed synchronously, the async field of the
CMConpl et or Record is FALSE. Your tool should ignore the conpl eti onRout i ne field in
this case.

The CMConpl et or Record is created in a local stack frame by the Connection Manager;
therefore, your tool should copy the contents of the CMConpl et or Record data structure if any
information in it will be needed later.

TYPE
CMCompl et or Ptr = NCMConpl et or Recor d;
CMConpl et or Record = RECORD
async : BOOLEAN;
conpl eti onRoutin : ProcPtr;
END,;
cnmReadMsg

If your tool receives cmReadMsg with ti nmeout 0, it should return immediately, even if it cannot
read all the requested bytes. For example, if your tool receives a read request with ti neout 0 for 512
bytes, and only 63 are available, your tool should read 63 bytes, put 63 in the count field of the

CMDat aBuf f er, and return noErr.

Chapter 9: Writing Connection Tools 241

FUNCTI ON nyRead(hConn : ConnHandle; dp : CMDataBufferPtr
completor : CMConpletorPtr;tinmeout : LONG NT)

CNVETr Tt ;
VAR
pPrivate : privateptr;
err : OSErr ;
BEGI N
dph.flags := 0; { set flags to zero, this tool does not support
it }
pPrivate := privateptr(hConn®". cnPrivate);

{ is connection open ? }
if (BAND(pPrivate”.status, cnStatusOpen) = 0) then
begin
myRead := cmNot Open
EXI T(myRead) ;
end;

if (dp”.channel <> cnData) then {trying to do sonething we
cannot support }
begi n
dp”.count := O0;
myRead := cmNot Support ed;
EXI T(myRead) ;
end;

{ if async read then install VBL task to check tineout
el se check the available data to read in driver buffer }

{ do the read }
err := PBRead(ParnBl kPtr(@Private”. nyRBI k.t hePar anBl k),
conpl etor”.async);

{ handle err condition }
if err <> noErr then

begin
dp'.count := O0;
hConn™". errCode := err;
myRead := err;

EXI T(myRead) ;
end;

{ set the bytes read }
if (pPrivate”. nyRBI k.t heParanBl k. i oAct Count = 0) &
((conpletor <> nil) & conpletor”.async) then

begin

dp”.count := O0;

hConn”*”~, asyncCount[cnDataln] := O0;
end
el se

242 Inside the Macintosh Communications Toolbox

begin
dp”.count := pPrivate”. myRBI k. theParanBl k. i oAct Count ;
hConn””. asyncCount [cnmDataln] : =
pPrivat e®. myRBI k. t hePar anBl k. i oAct Count ;

end;

myRead := noErr;
END;
cmNiteMsg

If your tool receives a cmW it eMsg with ti neout 0, it should return immediately, even if it cannot
write all the requested bytes. For example, if your tool receives a write request with t i meout 0 for 512
bytes, and only 63 can be written immediately, your tool should write 63 bytes, put 63 in the count

field of the CNMDat aBuf f er, and return noErr .

FUNCTI ON nyWite(hConn : ConnHandle; dp : CiMDataBufferPtr;
completor : CMConpletorPtr;tinmout : LONG NT)

CNVETr Tt ;
VAR
pPrivate : privateptr;
err : OSErr ;
BEGI N
pPrivate := privateptr(hConn?*.cnPrivate);

{ is connection open ?)
if (BAND(pPrivate”. status, cnfStatusOpen) = 0) then
begin
myWite := cmNot Open;
EXIT(myWite);
end;

if (dp”.channel <> cnData) then
{ trying to do sonething we cannot support }
begin
dp”.count := O0;
myWite := cniNot Support ed;
EXIT(myWite);
end;

{ install VBL task to check tineout if async wite }

err .= PBWite(ParnBl kPtr(@Private”. myWBl k.t heParanBl k),
conpl etor”. async);

(handle error condition)

if err <> noErr then

begin
dp”.count := O0;
hConn™". errCode := err;
mnyWite := err;

EXIT(myWite);
end;

Chapter 9: Writing Connection Tools 243

{ set the bytes wite }
{ ** Be sure to have the ShortCircuit conpiler variable turned
on * %
if (pPrivate”. myWBl k.t heParanBl k. i oAct Count = 0)
AND ((conpletor <> nil) AND conpletor”.async) then

begin
dp”. count := O0;
hConn”"~. asyncCount [cmDat aOut] := O0;
end
el se
begin
dp”.count := pPrivate”. nyWBl k. t heParanBIl k. i o0Act Count ;

hConn””. asyncCount [cmDat aCut] : =
pPrivate”. myWBl k. t hePar anBl k. i oAct Count ;

end;

myWite := noErr;
END;
cntt at usMsg

The Connection Manager will send cnSt at usMsg to your tool when an application requires your
tool to send it information about a connection.

The sample code shows how your tool can respond to cnSt at usMsg. After executing the code
necessary to respond to cnfSt at usMsg, your code should pass back both an appropriate OsErr or
CNMEr r. Also, pl should contain a pointer to CMBuf f er Si zes, and p2 should contain a pointer
to a variable that returns the connection status flags.

Connection status flags are a bit field, with each bit corresponding to a particular status attribute. You
can find a description of the status attributes in “CMSt at us Getting Connection Status Information” in
Chapter 3.

FUNCTI ON nyStatus(hConn : ConnHandl e; Var size : CMBufferSizes;
Var theflag : LONG NT) : CMErr;

VAR
pPrivate : privateptr;
count : LONGI NT;
err : OSErr ;
BEGI N
pPrivate := privateptr(hConn®*.cnPrivate);
theflag := 0;

if (BAND(pPri’vate".status, cnStatusOpen) = 0) then { is
connection open?}

size[cnmDataln] := 0
el se
begin
err .= SerCetBuf(pPrivate”. outrefnum count);
{ Check output driver buffer }
si ze[cnDat aQut] := count;
err := SerGetBuf(pPrivate®.inrefnum count);
{ Check input driver buffer }
size[cnDataln] := count;
if (count > 0) then
theflag := BOR(theflag, cnttatusDataAvail);

244 Inside the Macintosh Communications Toolbox

{ Set data availabe bit }
theflag := BOR(theflag, ~cnttatusOpen);
{ the connection is established }

end;
{ set the other flags }

i f BAND(pPrivate”. status, cntStatusDRPend) = cntStat usDRPend
then theflag BOR(t hefl ag, cnfSt at usDRPend) ;

i f BAND(pPrivate”. status, cnStatusDWend) = cnftat usDWPend
then thefl ag BOR(t hefl ag, cnftatusDWPend) ;

i f BAND(pPrivate”.status, cntStatusBreakPending) =

cnSt at usBr eakPendi ng
then theflag := BOR(theflag, cnttatusBreakPending);

i f BAND(pPrivate”. status, cnfttatusListenPend) =

cnSt at usLi st enPend
then thefl ag

myStatus := noErr;

BOR(t hefl ag, cnttatusLi stenPend);

END;

cnOpenMsg
Your tool’s main code resource will receive cmOpenMsg from the Connection Manager when an
application or tool requires your tool to open a connection. When passed to your tool, pl contains a
pointer to CMConpl et or Recor d, and p2 contains the timeout value in ticks.

The sample code shows a template into which you can code your tool’s response to
cmOpenMsg. The Connection Manager, after the connection tool passes control back to it, disposes of
CMConpl et or Recor d. Therefore, your tool should copy CMConpl et or Record if it will need
any information the record contains.

After executing the code necessary to respond to cnOpenMsg, your code should pass back an
appropriate OSErr or CMErr.

FUNCTI ON nyOpen(hConn : ConnHandl e; conpletor : CMConpletorPtr;
timeout : LONGINT) : CMNErr;

VAR
pPrivate : privateptr;
config : configptr;
errl,err2 : OSErr ;
t heSeri al : CRMSeri al Ptr;
savedSt ate: Si gnedByt e;
BEGI N
pPrivate := privateptr(hConn™*. cnPrivate);
config := configptr(hConn®**. config);

{ get the CRM device info }
theSerial := GetSerialPtr(config”.portNane);

{ check if drivers are already open
if drivers are open, warn the application }

{ first open output driver, then input driver }

Chapter 9: Writing Connection Tools 245

myOpen : = noErr;

savedState := HGet State(Handl e(theSerial~. outputDriverNane));
HLock(Handl e(t heSeri al ~. out put Dri ver Nane)) ;

errl := OpenDriver(theSerial”~.outputDriverName"",

pPrivate”. outrefnum;

HSet St at e(Handl e(t heSeri al . out put Dri ver Nanme) , savedSt at e) ;

if (errl = 0) then { output opened
successfully }
begin

savedState :=

HCet St at e(Handl e(t heSeri al . i nput Dri ver Nane)) ;

HLock(Handl e(t heSeri al . i nput Dri ver Nane)) ;

err2 := OpenDriver(theSerial”.inputDriverName®",
pPrivate”.inrefnum;

HSet St at e(Handl e(t heSeri al ~. i nput Dri ver Nanme) , savedSt at e) ;

if (err2 = 0) then { input opened
successfully }
pPrivate”. status := cnttatusOpen
el se { input failed }
begin
myOpen : = err2,
err2 := CloseDriver(pPrivate®. outrefnum; { so close
out put }
end;

end
el se nmyQpen := errl;

{ call conpletor routine here if async is open }

END;

cnC oseMsg
Your tool’s main code resource will receive cnCl oseMsg from the Connection Manager when an
application or tool requires your tool to close a connection.

The sample code shows how your tool can respond to cnCl oseMsg. When passed to your tool,
pl contains a pointer to CMConpl et or Recor d, and p2 contains the timeout value in ticks. The
Connection Manager, after the connection tool passes control back to it, disposes of
CMConpl et or Recor d. Therefore, your tool should copy CMConpl et or Recor d if it will need
any information the record contains.

After executing the code necessary to respond to a cmCl oseMsg, your code should pass back an
appropriate OsErr or CMErr.

FUNCTI ON nyCl ose(hConn : ConnHandl e; conpletor : CMConpletorPtr;
now : LONG NT) : CMerr;

VAR
pPrivate : privateptr;
err : OSErr ;
BEGI N
pPrivate := privateptr(hConn™". cnPrivate);

{ is connection open ? }
if (BAND(pPrivate”.status, cnStatusOpen) = 0) then

246 Inside the Macintosh Communications Toolbox

END;

begin
myCl ose := cmNot Open;
EXI T(nmyCl ose) ;

end;

{ if break pending, kill break VBL }

{ if now, Kkill pending reads and wites
else wait for pending reads and wites to clear }

(close input and output drivers }

err := CloseDriver(pPrivate®.inrefnum;
if err <> noErr then nyC ose := err;
err := CloseDriver(pPrivate”. outrefnum;
if err <> noErr then nyClose := err;

{ call conpletor routine here if async is closed }

cnBr eakMsg
Your tool’s main code resource will receive cnBr eakMsg when an application or tool requires your
tool to effect a break operation upon a connection.

When passed to your tool, pl contains duration in ticks, and p2 contains a pointer to
CMConpl et or Recor d.

The

sample code shows how your tool can respond to cnBr eakMsg. The Connection Manager,

after the connection tool passes control back to it, disposes of CMConpl et or Recor d. Therefore,
your tool should copy CMConpl et or Recor d if it will need any information the record contains.

FUNCTI ON nyBreak(hConn: ConnHandl e; duration: LONG NT;

conpl etor: CMConpl etorPtr): CMErT;

VAR
pPrivate PrivatePtr;
pConfi g : Confi gPtr;
err : OSErr ;
foo : LONGI NT;
BEGH N
my Br eak = noErr { optimsm}
pPrivate = PrivatePtr(hConn™". private);
pConfig = ConfigPtr(hConn™™. config);
if (BAND(pPrivate”.status, cnfStatusOpen) = 0) THEN { not
open }
BEGI N
myBreak = cnmNot Open;

Exi t (nmyBreak) ;
END;

Chapter 9: Writing Connection Tools ~ 247

I F (pPrivate”. breakPendi ng) THEN { break pending }
BEGH N

myBreak :=cmNoErr;

Exi t (nmyBreak) ;
END;

I F conpl etor”. async THEN
BEGI N
{ do it asynchronously }
{ start the break }
{ start a timer (VBL or such) when it finishes it wll
turn off the break and then call the conpletion
routine
if necessary }
END
ELSE
BEGH N
{ start the break }
Del ay(duration, foo);
{ end the break }
END;
END;

cm OKi || Msg
Your tool’s main code resource will receive cml OKi | | Msg when a tool or application requires your
tool to terminate a pending asynchronous input or output request. When passed to your tool, p1
contains the channel that cml OKi | | Msg should affect.

The sample code shows how your tool can respond to cm OKi | | Msg.

FUNCTION nyl CKi Il | (hConn : ConnHandl e; channel : |INTEGER) : CMErr;
VAR

pPrivate : privateptr;

| ocal Bl k HPar anmBl ockRec;

Err : OSErr ;
BEGI N

pPrivate := privateptr(hConn®". cnPrivate);

if (channel <> |INTEGER(cnDataln)) AND (channel <>
| NTEGER(cnDat aCut)) then

begin
myl OKi Il := cmiNot Support ed;
{ can't cancel sonmething | don't support }
EXIT(myl OKill);

end;

| ocal Bl k.ioConpletion := nil;

if (channel = | NTEGER(cnDataln)) then { cancel read }

| ocal Bl k. i oRef Num : =

pPrivate”. nyRBI k. t hePar anBl k. i oRef Num

el se { cancel wite }
| ocal Bl k. i oRef Num : =

pPrivate”. nyWBIl k. t hePar anBl k. i oRef Num

248 Inside the Macintosh Communications Toolbox

Err := PBKilllQ(ParnBl kPtr (@ ocal Bl k), fal se);
if (BErr <> noErr) then hConn™"*.errCode := Err;

myloKill = Err;
END;

cnEnvi ronsMsg

The Connection Manager will send crEnvi r onsMsg to your tool when an application requires your
tool to send it information about the connection environment. The ConnEnvi r onRec, which
contains this information, is shown here.

TYPE
ConnEnvi ronRecPtr = ~AConnEnvi ronRec;
ConnEnvi ronRec = PACKED RECORD
version = | NTEGER;
baudRat e = LONG NT;
dataBits = | NTEGER;
channel s = CMChannel ;
swFl owCont r ol = BOOLEAN;
hwFl owCont r ol = BOOLEAN;
flags = CMFI ags;
END;
TYPE
CMFl ags = | NTEGER;
CONST
cnFl agsEOM= $0001;
CONST
cnDat a = $00000001;
cnCnt | = $00000002;
CmAt t n = $00000004;
cmDat aCl ean = $00000100;
cntnt | Cl ean = $00000200;
cmAt t nCl ean = $00000400;
cmNoMenus = $00010000;
cmQui et = $00020000;
TYPE
CMChannel = | NTEGER;

This sample code shows how your tool can respond to cmEnvi r onsMsg.

FUNCTI ON nyEnvi rons(hConn: ConnHandl e; VAR theEnvirons:
ConnEnvironRec): CMEerr;
VAR

pConfi g: Confi gPtr;

Chapter 9: Writing Connection Tools 249

BEGI N

pConfig := ConfigPtr(hConn™*".config); { get the config
handl e }
myEnvirons := noErr; { optimsm }
| F theEnvirons.version < curConnEnvRecVers THEN
nyEnvirons := envBadVers { bad environnent version
}
ELSE
BEGH N
I F theEnvirons.version > 1 THEN { too advanaced for
me }
nmyEnvirons := envVersTooBi g; { but give it a whirl
}
W TH t heEnvirons DO
BEGH N
dataBits := pConfig”".dataBits;
baudrate := pConfig”. baudrate;
swrFl owControl := ((pConfig”.shaker.flnX) AND
(pConfig”. shaker.fXOn));
hwFl owControl := ((pConfig”.shaker.fDTR) OR
(pConfig”. shaker.fCTS));
flags := 0; { no special flags
supported }
channel s := cnDat a; { data channel only }
END;
END;
END;
Completion routines

When your connection tool calls My Conpl et i on, the err Code field of the connection record
contains the appropriate error code. Because the er r Code field of the connection record is used by all
of the Connection Manager routines, the connection tool must first save the current value of the
err Code field, and then set it to the appropriate code for the completion, call the completion routine,
then restore the previously saved value. If your tool has multiple outstanding asynchronous operations,
your tool should disable interrupts while the completion routine is executing.

When your tool calls the completion routine in response to the completion of an asynchronous read
or write, the asyncCount field of the connection record contains the actual number of bytes read or
written.

250 Inside the Macintosh Communications Toolbox

Quick reference

This section contains reference information for the data structures, resource names, and resource types
that you need to write a connection tool. A table at the end of this section lists all the messages the
Connection Manager sends to your tool, and what is passed in the parameters with each message.

Data structures
CMVDat aBuf f er

TYPE
CMDat aBuf fer Ptr

NCMDat aBuf f er;

CMDat aBuf f er RECORD
t hePtr Ptr;
count LONGI NT;
channel CMChannel ;
flags CMFI ags;
END;
CMConpl et or Recor d
TYPE
CMConpl etor Pt r = ANCMConpl et or Recor d;
CMConpl et or Record = RECORD
async : BOOL EAN;
compl eti onRouti ne : ProcPtr;

END;
CVbet upSt r uct

CMSet upPtr = ACMSet upStruct;
CMSet upStruct = RECORD
t heDi al og Di al ogPtr;
count | NTEGER;
t heConfig Ptr;
procl D | NTEGER
END;

Chapter 9: Writing Connection Tools

251

Resource names

FUNCTI ONcdef (hConn: ConnHandl e; nsg: | NTEGER, pl,

LONG NT;
FUNCTI ONcval (hConn: ConnHandl e; nsg: | NTEGER pl,
. LONG NT;
FUNCTI ONcset (pSet up: CMsetupPtr; msg: |NTEGER, pl,
: LONG NT;
FUNCTI ONcscr (hConn: ConnHandl e; nsg: | NTEGER, pl,
. LONG NT;
FUNCTI ONcl oc(hConn: ConnHandl e; nsg: | NTEGER, pl,
: LONG NT;
Resource types
type 'cbnd' {

252

integer = $$Count Of (TypeArray) - 1;
array TypeArray {
literal longint; [* Type */
integer = $3CountOf (I DArray) - 1;
wide array |DArray {
i nteger; /* Local ID */
i nt eger; /* Actual ID */
H
b

Inside the Macintosh Communications Toolbox

p2,

p2,

p2,

p2,

p2,

p3:

p3:

p3:

p3:

p3:

LONG! NT)

LONG NT)

LONG! NT)

LONG NT)

LONG! NT)

H Table 9-1

Connection Manager messages and parameters

Constant Parameter 1 Parameter 2 Parameter 3
pl p2 p3
Maintain code resource messagess
cm ni t Msg* 0 - - -
cnDi sposeMsg 1 - - -
cnSuspendMsg 2 - - -
cnmResunmeMsg 3 - - -
cmvenuMsg* 4 menul D: | nt eger menul tem | nt eger -
cmEvent Msg 5 nyEvent : Event Recor d - -
cmActi vat eMsg 6 - - -
cmbDeact i vat eMsg 7 - - -
cm dl eMsg 50 - - -
cnReset Msg 51 - - -
cmAbor t Msg* 52 - - -
cmReadMsg* 100 buf f er : CVDat aBuf f er Pt r ti meout: Longl nt Conpl et or: Conpl et or Ptr
cmiNfiteMsg* 101 buf f er : CMDat aBuf f er Pt r timeout: Longl nt Conpl et or: Conpl etor Ptr
cnSt at usMsg* 102 VAR size: CMBuff er Si zes VAR fl ags: CMsSt at Fl ags -
crLi st enMsg* 103 Conpl et or: CMConpl et or Pt r ti meout: Longl nt -
cmAccept Msg* 104 accept : Bool ean - -
cnCl oseMsg* 105 Conpl et or : CMConpl et or Pt r timeout: Longl nt -
cmOpenMsg* 106 Conpl et or: CMConpl et or Pt r ti meout: Longl nt -
cnBr eakMsg 107 duration: Longl nt Conpl et or : CMConpl et or Pt r -
cm OKi | | Msg* 108 whi ch: | NTEGER - -
cmEnvi r onsMsg* 109 VAR - -
t heEnvi rons: ConnEnvi r onRec
Validation code resource messages
cnval i dat eMsg* 0 - - -
cnDef aul t Msg 1 VAR cnConfi gRec: Ptr al | ocate: Bool ean procl D: short

* Indicates the routine is a function that returns a LONGI NT.

B Table 9-1 Connection Manager messages and parameters (continued)

Constant Parameter 1

Parameter 2

Parameter 3

pl p2 p3
Setup Code resource messages
cnSpref | i ght Msg* 0 - - VAR magi cCooki e: LONGI NT
cnSset upMsg 1 - - VAR magi cCooki e: LONGI NT
cnSi t emvsg 2 VAR itemitentSel ected i} VAR nmagi cCooki e: LONGI NT
cnSfil ter Msg* 3 nyEvent : Event Recor d VAR itemitentit VAR magi cCooki e: LONG NT
cnScl eanupMsg 4 - - VAR nmagi cCooki e: LONGI NT
Scripting code resource messages
cmvbet Msg* 0 - - -
cmvset Msg* 1 configPtr:Ptr - -
Localization code resource messages
cmL2Engl i sh* 0 i nputPtr:Ptr VAR outputPtr:Ptr f ronmLanguage: i nt eger
cmL2l ntl* 1 inputPtr:Ptr VAR outputPtr:Ptr toLanguage: i nt eger

* Indicates the routine is a function that returns a LONGI NT.

Chapter 10 Writing Terminal Tools

1
|
- _-'_
o . P P s P . P O .. s
f'\f'\i"\.i_\. " i_!.i_ii_h
'h.'"hi_!.i_h.'_\i_h
T e T "_'“_”_“_' IHL_.*—'H

Chapter 10: Writing Terminal Tools 255

THIS CHAPTER tells you how to write the main code resource for a terminal tool. You will
need to include six code resources in your tool; they are described in Chapter 8. You should read

that chapter, as well as Chapter 4, before reading this chapter.

This chapter describes all the messages, parameters, and data structures that the Terminal Manager
passes to your tool’s main code resource. Also in this chapter is sample code (with pseudocode
mixed in) that will help you understand what your tool should do when it receives any of the
messages. A “Quick Reference” at the end of the chapter shows you what you should name your six
terminal tool resources. It also lists the messages the Terminal Manager sends to your tool, and the

parameters that the Terminal Manager passes with each message.

Your terminal tool’s main code resource

The purpose of the main code resource is to parse messages from the Terminal Manager and then to
branch to a routine that can handle each message. The main code resource should be a resource of
type 't def', and should be able to accept the parameters shown here.

FUNCTI ON tdef (hTerm TernHandle; nmsg: |NTECGER, pl, p2, p3:
LONG NT) : LONG NT;

The accepted messages are as follows:

CONST
mnitMg

t

t mDi sposeMsg

t mMSuspendMsg

t MResunmeMsg

t mMMenuMsg

t mEvent Msg

t Mcti vat eMsg

t mDeacti vat eMsg
tm dl eMsg

t MReset Msg

t mKeyMsg

t mSt r eamVsg

t mMResi zeMsg

t mUpdat eMsg

tmCli ckMsg

t mGet Selecti onMsg
t mSet Sel ecti onMsg
tmScrol | Msg

t mCl ear Msg

t mGet Li neMsg

t mPai nt Msg

t mCur sor Msg

t mGet Envi ronsMsg
t mDoTer nKey Msg

t mMCount Ter nKeysMsg
t mGet I ndTer mKeyMsg

~NoOoh~hWwWNEFO

g1 ol
= O

RPRRPRRRPRRRPRRPRPRRRRERRER
PRRPRRPRPOOO0OO0O0OO0O0O0O0OO
AWNRPOOONOUTRWNREO

115;

Your tool can return an appropriate operating system error code, or t mNot Support ed if it
does not understand the message it received.

tm nitMg

The Terminal Manager will pass t m ni t Msg to your tool after the following sequence of events
occurs. When a tool or application calls TMNew, the Terminal Manager allocates space for the
terminal record. It then fills in some of the fields, based upon information that was passed in the
parameters to the call. The Terminal Manager fills in the confi g and ol dConfi g fields by
calling TMDef aul t. Then the Terminal Manager passes t m ni t Msg to your tool. After your
tool has finished responding to t m ni t Msg, the Terminal Manager calls TWal i dat e.

Chapter 10: Writing Terminal Tools 257

The following sample code shows how your tool can respond to t ml ni t Msg. After
executing the code necessary to respond to t ml ni t Msg, your code should pass back an
appropriate OsErr or TVEr r:

FUNCTI ON Termrool I nit(hTerm: TernHandle) : Longlnt;
VAR

privatebPtr : TERM NALPri vatePtr;

theState : Si gnedByt €;
BEG N

theState : = HGet State(Handl e(hTerm);
HLock(Handl e(hTerm)
W TH hTer m** DO

Begi n
{ initialize TermloolInit to return no error }
Termlool Init := TMNoErr ;

{ allocate space in the current heap for our private ternminal tool record }
privatePtr := TERM NALPrivatePtr(NewPtrd ear(SIZEOF (
TERM NALPri vat eRecord)));

IF privatePtr = NIL THEN
BEGA N

{we have problemwith allocating nmenory; return the error code and exit}
err Code := MenError;

TermTool I nit := errCode;

Exit(Termloollnit };

END
ELSE
BEA N
{ allocate term nal tool buffer space }
privatePtr”. tnprivateternbuffer := NewPtrCd ear(MAXROW* MAXCCL);
IF (privatePtr~. tnprivateternmbuffer) = NIL THEN
BEG N
{ we have problemallocating the buffer space }
errCode : = Menkrror;
Ternifool I nit := errCode;
{ dispose the private ternm nal tool record }
Di sposPtr(Ptr(privatePtr));
Exit(Termloollnit);
END;
(get the terminal nmenu handle and nenu I D and
assign it into our private tool record)
END;
{ assign our termnal tool private record pointer to the termnal
record }
tnPrivate := Ptr(PrivatePtr };

END;

HSet St at e(Handl e(hTerm), theState);
END;

t nDi sposeMsg
A tool or application will call TMDi spose when it must dispose of a terminal record and its
associated data structures.

The Terminal Manager passes t nmDi sposeMsg to your tool before disposing of the
config and ol dConfi g fields of the terminal record. Next, the Terminal Manager disposes of
the terminal record.

To handle t nDi sposeMsg, your tool should dispose of any buffers allocated in response to
tm ni t Msg and any private data storage (referenced off of t mPri vat e in the terminal
record). Your tool must not attempt to dispose of either confi g or ol dConfi g in the
terminal record, or of the terminal record itself. Doing so will cause a system crash.

The sample code shows a template into which you can code your tool’s response to
t mDi sposeMsg.

PROCEDURE Ter mTool Di spose(hTerm TernmHandl e);

VAR
privatePtr : TERM NALPri vat ePtr;
theState Si gnedByt e;

BEGH N
theState := HGetState(Handle(hTerm);

HLock(Handle(hTerm));

Wth hTerm*® Do

Begi n

privatePtr := TERM NALPrivatePtr(tnPrivate);

{ dispose the term nal buffer space }
Di sposPtr(privatePtr~. tnprivateternbuffer);

{ dispose the termnal menu if there's any }
{ and it's not used by other tools }

Di sposPtr(Ptr(privatebPtr));

END,;

HSet St at e(Handl e(hTerm, theState);
END;
t ntKeyMsg

Your tool will receive t mKeyMsg in response to a key-down, key-up, or autokey event in the
application. The sample code shows how your tool can respond to these messages.

When passed to your tool, pl1 will point to the event record associated with the event. if the
keyCode field of the event record contains -1, only char Code contains information.

PROCEDURE Ter nifool Key(hTer m Ter nHandl e; nyEvent: Event Record);
VAR

t heChar : CHAR;

t heKeyCode CHAR;

t heModifier : | NTECER;
theState : Si gnedByt €;

Chapter 10: Writing Terminal Tools 259

BEG N
t heChar := CHAR(BAND(nyEvent. nmessage, char CodeMask));
t heKeyCode : = CHAR(BAND(myEvent. nmessage, keyCodeMask));
t heMbdi fier := nyEvent.nodifiers ;

theState :=HGet State(Handl e(hTerm);

HLock(Handl e(hTerm);

Wth hTern* Do

Begi n
{ do special keyboard napping if the keycode isn't -1}
{ if keycode is -1, that is, fake keyDown event }

{ transmt data if the ternminal is online}

{echo data to the screen if online is off or localecho is true}

END;

HSet St at e(Handl e(hTerm, theState);
END;
t Nt r eaniVbg

The Terminal Manager will pass t St r eamVsg to your tool when the application has requested
the TMSt r eamroutine. When passed to your tool, pl will point to the buffer of incoming data,
p2 will contain the length of the buffer in bytes; and p3 will contain f| ags, which the
application passed to TMSt r eam The sample code shows a template into which you can code
your tool’s response to t nSt r eamVsg.

After executing the code necessary to respond to a t St r eanVs g, your tool should return
the number of characters it processed.

FUNCTI ON Ter mTool Stream(hTerm TernHandl e; theBuffer: Ptr;
theBuf ferSi ze: LONG NT ; flag: CMFl ags): LONG NT;

VAR

t heSt ate : Si gnedByt e;

thePtr : Ptr;

[: | NTECER;

privatebPtr : TERM NALPrivatePtr ;
BEG N

theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTernt” Do
Begi n
{ do special handling if flag is equal to EOM}

privatePtr := TERM NALPrivatePtr(tnPrivate);
Wth privatePtr” Do
BEG N
t hePtr := tnprivateternbuffer;
t hePtr = Ptr(Od(thePtr) +
tnprivatecurrentrow * tnprivatecurrentcol);
FOR i := 1 TO theBufferSize DO

BEG N
{ process data in theBuffer, such as noving the
cursor position, etc. }

{if data in theBuffer isn't a special escape sequence}
{assign data into our private termnal tool buffer }

thePtr := Ptr(LONG NT(theBuffer) + i);

{ advance tnprivatecurrentcol }

tnprivatecurrentcol := tnprivatecurrentcol + 1;
END;

{ return the nunber of chars we have processed }
TernTool Stream : = LONGA NT(t heBufferSize);
END;
END;
HSet St at e(Handl e(hTerm), theState);
END;

t mAct i vat eMsg and t mMResunmeMsg

Your tool will receive t mActi vat eMsg when the application requires your tool to process an

activate event (such as inserting menus into the menu bar, modifying a selection, or making the
cursor blink) for a window that belongs to the Terminal Manager. The sample code shows a
template into which you can code your tool’s response to t mAct i vat eMsg.

Your tool receives t mResuneMsg from the Terminal Manager when the application returns

to the foreground in MultiFinder. Your tool can call the same routine in response to receiving
tmResumeMsg as it calls in response to receiving t mAct i vat eMsg.

PROCEDURE Ter nifool Acti vat e(hTer m Ter nHandl e) ;
VAR
privatePtr TERM NALPri vatePtr;
t heSt at e : Si gnedByt e;
BEG N
theState := HGet State(Handl e(hTernj);
HLock(Handl e(hTerm));
Wth hTer m”* Do
Begi n
privatePtr := TERM NALPrivatePtr(tnPrivate);

{ turn on the selection if there's any }
| F NOT EnptyRect(sel ection.sel Rect) THEN
HiliteSel ection(hTernj;

{ put up ny tool's nenu if tmNoMenus isn't true }
IF (BAND(flags, tmNoMenus) = 0) THEN

Chapter 10: Writing Terminal Tools 261

BEG N
I nsert Menu(privatePtr”. tnprivateMenuHandle, 0);
Dr awMenuBar ;
END;
END;
HSet St at e(Handl e(hTerm), theState);
END;

t nDeact i vat eMsg and t nSuspendMsg
Your tool will receive t nDeact i vat eMsg when the application requires your tool to process a
deactivate event (such as removing a menu from the menu bar, modifying a selection, or making a
cursor stop blinking) for a window that belongs to the Terminal Manager. The sample code shows
how your tool can respond to t nDeacti vat eMsg.

Your tool receives t nSuspendMsg when the application goes to the background in
MultiFinder. Your tool can call the same routine in response to receiving t mSuspendMsg as it
calls in response to receiving t mDeacti vat eMsg.

PROCEDURE Ter mTool Deactivate(hTerm TernHandl e);

VAR
theState : Si gnedByt e;
privatePtr : TERM NALPri vat ePtr;
BEGI N
theState := HGetState(Handle(hTerm);
HLock(Handl e(hTerm);
Wth hTern” Do
Begi n
privatePtr := TERM NALPrivatePtr(tnPrivate);
{ turn on the selection if there's any }
IF NOT EmptyRect(selection.selRect) THEN
DeHi | iteSel ection(hTerm;
{ get rid of ny tool's nenu if tnNoMenus isn't true }
|F (BAND(flags, tmNoMenus) = 0) THEN
BEGH N
Del eteMenu(privatePtr”. tnprivateMenulD);
Dr awMenuBar ;
END;
END,;
HSet St at e(Handl e(hTerm, theState);
END;
t nResi zeMsg

Your tool will receive t mResi zeMsg from the Terminal Manager when the application requires
your tool to resize the t er mRect. When passed to your tool, pl points to the rectangle that
describes the new t ermRect. The code sample shows how your application can handle

t mMResi zeMsg.

PROCEDURE Ter nifool Resi ze(hTerm Ter nHandl e; newt ernRect: Rect);
VAR
theState : Si gnedByt €;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTern* Do
Begi n
ternmRect := newternRect ;
{ cal cul ate new vi ewRect and visRect with the newternRect }
{ redraw any newl y exposed areas }

End;

HSet St at e(Handl e(hTerm), theState);
END;
tm dl eMsg

Your tool will receive t m dl eMsg from the Terminal Manager when the application requires
your tool to make the cursor blink. The sample code shows a template into which you can code your
tool’s response to tm dl eMsg.

PROCEDURE Ter nifool 1 dl e(hTerm Ter nHandl e);
VAR
theState : Si gnedByt €;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTernm* Do
Begi n
{ blink the cursor }
I nvert Cursor(hTerm);
{ finish drawing any |latent drawi ng that has yet to occur }
Dr awTer nCont ent (hTerm);
{search the termnal screen area for any searches that are going on.}
IF mMmuField <> 0 Then
SearchTern{ hTerm);
End;
HSet St at e(Handl e(hTerm, theState);

END;

t nUpdat eMsg

Your tool will receive t mJpdat eMsg from the Terminal Manager when the application requires
your tool to update the terminal emulation window. When passed to your tool, pl will be a
handle to the region that needs to be updated. The sample code shows a template into which you
can code your tool’s response to t mUpdat eMsg.

Chapter 10: Writing Terminal Tools 263

PROCEDURE Ter nifool Updat e(hTerm Ter nHandl e ; vi sRgn: RgnHandl e) ;
VAR
theState : Si gnedByt €;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTern* Do
Begi n
{redraw the termnal area. The area to be drawn is specified by}
{ the region handl e passed in. }

End;

HSet St at e(Handl e(hTerm), theState);
END;
tnC i ckMsg

Your tool will receive t mCl i ckMsg from the Terminal Manager when the application requires
your tool to handle a mouse-down event in the terminal emulation window; it should respond by
calling the application’s click-loop procedure. Your tool should support placing and dragging the
cursor. When passed to your tool, pl will contain a pointer to the event record.

The sample code shows a template into which you can code your tool’s response to
t mCl i ckMsg.

PROCEDURE Ter nifool C i ck(hTerm Ter nHandl e ; nyEvent: Eventrecord);
VAR
theState : Si gnedByt €;
clicklnCachArea : Bool ean;
BEG N
theState := HGetState(Handl e(hTern));
HLock(Handl e(hTerm) ;
clicklnCachArea : = FALSE ;
Wth hTernm* Do
Begi n
{ call the clickloop if there's any }
if clikLoop <> NIL THEN
BEG N
clicklnCachArea : = CallclikLoop(refCon, clikLoop);

END;
i f NOT clicklnCachArea THEN
BEG N
{ nmouse click is in the terminal area, track nouse }
END;

End;
HSet St at e(Handl e(hTerm), theState);
END;

t mMvenuMsg
Your tool will receive t mVenuMsg from the Terminal Manager when the user has chosen an item
from a menu that belongs to your terminal tool. When passed to your tool, pl will contain the
menu ID, and p2 will contain the menu item. The sample code shows a template into which you
can code your tool’s response to t mvenuMsg.

After your tool has handled t mMVenuMsg, it should return 0 if it did not handle the menu
event, and 1 if it did.

FUNCTI ON Ter nTool Menu(hTerm TernHandl e ; nenul D, menultem | NTEGER): LONG NT; VAR

theState : Si gnedByt €;
privatePtr : TERM NALPrivatePtr;
BEG N
theState : =HGet State(Handl e(hTern));
H.ock(Handl e(hTern));
Wth hTernf~ Do
BEG N
privatePtr := TERMNALPrivatePtr(tnPrivate);
Wth privatePtr® Do
BEG N
{ does the menul D belong to the termnal ? }
I F menul D = tnprivat eMenul D THEN
BEG N
{ yes, it's one of ours, handle it based on the nenultem}
{ unhilite the menu title }
HliteMenu(tnprivateMenulD);
{ if the nenu belongs to the termnal tool, return 1}
Ter mlool Menu : = 1;
END
ELSE
{ if the menu doesn't belong to the terninal tool, return O}
Ter nTool Menu := 0 ;
END,
END,
HSet St at e(Handl e(hTern), theState);
END,

t et Sel ecti onMsg

Your tool needs to be able to handle t mGet Sel ecti onMsg to support cut and copy
operations in the terminal emulation window. The sample code shows a template into which you
can code your tool’s response to t mGet Sel ecti onMsg.

After responding to t mGet Sel ecti onMsg, your tool should resize the data block (the passed-
in handle) by calling Set Handl eSi ze(pl, newsSi ze), and a pointer to the scrap type
(ResType) in p3. Your tool should also return an error code, if appropriate; 0 if there was no
selection; or the size of the selected data.

Chapter 10: Writing Terminal Tools 265

FUNCTI ON Ter mTool Get Sel ection (hTerm Ter nHandl e ; Dat aHandl e: Handl e;
VAR sel ResType: ResType) : LONG NT;

VAR
theState : Si gnedByt €;
dat asi ze : LONG NT;
BEG N
theState := HGet State(Handl e(hTern)) ;
HLock(Handl e(hTerm) ;
Wth hTern* Do
BEG N
| F NOT EnptyRect(sel ection.sel Rect) THEN
BEG N
{ there's a selection }
{ calculate the size of the selection }
dat asi ze : = Get Sel ectionSize(hTerm;
{ grow Dat aHandl e according to the size }
Set Handl eSi ze(Dat aHandl e, dat asi ze };
{ copy the data into DataHandl e }
sel ResType : = 'TEXT';
Ter nTool Get Sel ecti on : = datasi ze
END
ELSE
(there's no selection }
Ter mTool Get Sel ection := 0 ;
END;
HSet St at e(Handl e(hTerm, theState);
END;

t nBet Sel ecti onMsg

An application will call TMSet Sel ecti on when it requires your tool to highlight an area of the
terminal emulation window. When passed to your tool, pl1 will point to the field that needs to be
highlighted, and p2 will describe the type of selection. The example code shows a template into
which you can code your tool’s response to t nSet Sel ecti onMsg.

PROCEDURE Ter nifool Set Sel ection (hTerm TernHandl e ; nySel ecti on: TMSel ecti on;
nysel Type: LONG NT) ;
VAR
theState : Si gnedByt e;
BEG N
theState := HCGet State(Handl e(hTerm);
HLock(Handl e(hTerm);
Wth hTerm”* Do
BEG N
| F NOT EnptyRect(sel ection.sel Rect) THEN
{ dehilite old selection if there's any }
DeHiliteSel ection(hTerny;
{ assign new selection record to the term nal record }
sel ection := nySel ection ;
sel Type : = nysel Type;

HiliteSel ection(hTerm);

END;

HSet St at e(Handl e(hTerm), theState);
END;
t nScr ol | Msg

An application will call t nScr ol | when it requires your tool to scroll the terminal emulation
region either horizontally or vertically. (The application is responsible for scrolling the cache area, if
it supports one.) When passed to your tool, pl will contain the amount of horizontal scrolling,
and p2 will contain the amount of vertical scrolling. The example code shows a template into
which you can code your tool’s response to t mScr ol | Msg.

PROCEDURE Ter nifool Scrol | (hTerm Ter nHandl e; deltaH, deltaV: LONG NT);
VAR
t heSt ate : Si gnedByt e;
updat er gn : RgnHandl e;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm));
Wth hTer m”* Do
BEG N
updat ergn : = NewRgn;
Scrol | Rect (vi ewRect, deltaH, deltaV, updatergn);
{ update the newy scrolled in area }
Di sposeRgn(updatergn);

END;

HSet St at e(Handl e(hTerm, theState);
END;
t "Reset Msg

Your tool will receive t mReset Msg when the application requires your tool to reset the terminal
emulation window. This reset operation should purge all local screen buffers, be a local operation,
and call the cache procedure if t mSaveBef or eCl ear is set in the terminal record.

The code sample shows a template into which you can code your tool’s response to
t MReset Msg.

PROCEDURE Ter nifool Reset (hTerm Ter nHandl e) ;
VAR
theState : Si gnedByt €;
error : Bool ean;
BEG N
theState := HCGet State(Handl e(hTerm);
HLock(Handl e(hTerm);
Wth hTer m”* Do
BEG N
{ clear the screen }
Ter nifool Cl ear(hTerm);
{ copy the saved configuration into the current configuration record }
Bl ockMove(ol dConfig, config, sizeof(Tool ConfigRecord));
{ call the validate routine to update my tool's private record}

Chapter 10: Writing Terminal Tools 267

error := TMWalidate(hTernj;

END;

HSet St at e(Handl e(hTerm, theState);
END;
t " ear Msg

Your tool will receive t nCl ear Msg when the application needs your tool to clear the terminal
emulation window. This clear operation should purge all local screen buffers, be a local operation,
and call the cache procedure if t mSaveBef or eCl ear is set in the terminal record.

The code sample shows a template into which you can code your tool’s response to
t mCl ear Msg.

PROCEDURE Ter nifool Cl ear (hTerm Ter nHandl e) ;

VAR
t heSt ate : Si gnedByt e;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTer m”* Do
BEG N
{ erase the screen }
EraseRect (vi ewRect);
{ clear up the termnal buffer }
END;
HSet St at e(Handl e(hTerm, theState);
END;
t nCGet Li neMsg

An application will call TMGet | i ne when it requires your tool to send it a Ter nDat aBl ock,
which contains the data, character attributes, and line attributes. For example, the application might
require the data in Ter nDat aBl ock to update its cache area for a specified line. When passed
to your tool, p1 contains the line number, and p2 points to the Ter nDat aBl ock, which your
tool should fill in.

The sample code shows a template into which you can code your tool’s response to
t mGet Li neMsg. Your tool should fill the Ter nDat aBl ock with new information and
resize the t heTer nDat a. t heDat a handle for the requested line.

PROCEDURE Ter nifool Get Li ne(hTerm TernHandl e ; |ineNo: LONG NT ;
VAR nyTer nBl ock: Ter nDat aBl ock) ;
VAR
theState : Si gnedByt €;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTern* Do
BEG N
nmyTer nBl ock. fl ags : = tmlext Term nal ; { this is atext terninal }
nmyTer nBl ock. auxData : = N L; { no style information }

{ grow the datahandle size to fit a line of data }
Set Handl eSi ze(nyTer nBl ock. t heData, MAXCOL);
{ copy the terminal content into myTernBl ock.theData }
END;
HSet St at e(Handl e(hTerm), theState);
END;

t nPai nt Msg
An application will call TMPai nt when it requires your tool to display the contents of a
Ter mDat aBl ock. When passed to your tool, pl1 will point to the Ter nDat aBl ock, and
p2 will point to the rectangle into which your tool is to display the line.

Ift heTer nDat a. t heDat a is a handle to plain text (not styled), your tool can calculate the
number of characters to paint by calling Get Handl eSi ze. If your tool requires the data in
t heTer nDat a after it passes control back to the calling application, it must make a copy of this
data, since the application may change or destroy Ter nmDat aBl ock.

The sample code shows a template into which you can code your tool’s response to
t mPai nt Msg.

PROCEDURE Ter nifool Pai nt (hTerm Ter nHandl e; theTer nDat a: Ter nDat aBl ock;
drawRect : Rect);

VAR
theState : Si gnedByt €;
BEG N
theState := HGet State(Handl e(hTern));
HLock(Handl e(hTerm);
Wth hTernm* Do
BEG N
{ given the term nal data block, redraw those contents }
{ within the boundaries of the given rectangle }
END;
HSet St at e(Handl e(hTerm), theState);
END;
t mCur sor Msg

An application will call TMCur sor when it requires your tool to pass it the current location of
the cursor. When passed to your tool, p1l will specify the type of cursor.

The sample code shows a template into which you can code your tool’s response to
t mCur sor Msg. Your tool should return the current cursor position.

FUNCTI ON Ter nTool Qur sor (hTer m Ter nHandl e; cur sor Type: TMour sor Types): LONG NT;
VAR

t heSt ate : Si gnedByt e;

privatebPtr : TERM NALPri vatePtr;
BEG N

theState := HGet State(Handl e(hTern));

HLock(Handl e(hTerm);

Wth hTern” Do

BEG N

privatePtr := TERM NALPrivatePtr(tnPrivate);

Chapter 10: Writing Terminal Tools 269

END;

{ return row and col
I F cursorType =
Ter mlrool Cur sor

if cursorType is text cursor }

cursor Text THEN
;= LONG NT(privatePtr”. tnprivatecursor)

{ else return pixels if cursorType is graphic cursor }

END;
HSet St at e(Handl e(hTerm,

t mGet Envi r onsMsg
Your tool will receive t mGet Envi ronsMsg when the application has called the

TMGet Ter mEnvi rons routine. When passed to your tool,

theState);

Ter mEnvi ronRec. Your tool should fill in this record.
The sample code shows a template into which you can code your tool’s response to
t mGet Envi ronsMsg.

FUNCTI ON Ter mTool Get Environs (hTerm Ter nHandl e ;
VAR nyTer nEnvRec: Ter nEnvi r onRec) : LONG NT;

VAR

BEG N

END;

t heState
privatePtr

theState : =
HLock(Handl e(hTerm) ;
Wth hTer m?,
BEG N
privatePtr
{ return error

Si gnedByt e;
TERM NALPri vatePtr;

HGet St at e(Handl e(hTerm);

my Ter mEnvRec Do

same as the current version }
| F version > curTermEnvRecVers THEN

Ter mfool Get Environs : =

ELSE | F version < curTer nEnvRecVers THEN

Ter niTool Get Environs : =

ELSE BEA N
termlype : = tnlext Term nal ;
t ext Rows : = MAXROW
text Col s : = MAXCOL;

cell Size. h
cell Size.v
slop.h :
slop.v :

{ return no er

Ter niTool Get Environs : =

END;
END;
HSet St at e(Handl e(hTerm,

0, O
0, 0, O,
ror }

0;

theState);

envBadVer s

{

0, 0);
0);

pl will point to the

:= TERM NALPrivatePtr(tnPrivate);
if the given version nunber

isn't the

envVer sTooBi g

it's a text term nal

:= privatePtr”. tnprivatecellsize.h;

:= privatePtr”. tnprivatecellsize.v;
THESLOP;
THESLOP;
Set Rect (gr aphi cSi ze,
Set Rect (auxSpace,

}

t nEvent Msg

The Terminal Manager will pass t mEvent Msg to your tool when an event occurs in a
window associated with the terminal tool. The sample code shows a template into which you can
code your tool’s response to t mEvent Msg. When passed to your tool, p1 will be a pointer to
the event record.

PROCEDURE Ter nifool Event (hTerm Ter nHandl e ; nyEvent Recor d: Event Record) ;
VAR
t heSt at e : Si gnedByt e;
BEG N
theState := HGet State(Handl e(hTern)) ;
HLock(Handl e(hTerm)
Wth hTerm*~ Do
BEG N
{ an event has been received for a wi ndow or dialog box that
was }
{ created by the term nal tool, process it accordingly. }
CASE nmyEvent Record. what OF
nouseDown:

keyDow;’l, aut oKey:
updat eiEvt :

activat eEvt -
END,
END;
HSet St at e(Handl e(hTerm, theState);
END;

t mDoTer nKeyMsg

Your tool will receive t mDoTer mKeyMsg when the application has called the TMDoTer nKey
routine. When passed to your tool, p1l will point to a string that corresponds to the key that was
pressed. For example, if the user pressed the PF1 key, the string will be “PF1.” If there is no key
that corresponds to the string, your tool should do nothing.

The sample code shows a template into which you can code your tool’s response to
t mMDoTer mKeyMsg.

PROCEDURE Ter nifool DoTer nKey(hTerm TernmHandl e ; theStr: StringPtr);
VAR
theState : Si gnedByt €;
BEG N
theState := HCGet State(Handl e(hTerm) ;
HLock(Handl e(hTerm)
Wth hTerm”* Do
BEG N
{ performthe action determ ned by the special
term nal key passed in, e.g HOVE, PF1 etc.,
and ignore theStr if it's not recogni zed by the ternmi nal tool }

END;
HSet St at e(Handl e(hTerm, theState);
END;

Chapter 10: Writing Terminal Tools 271

t mCount Ter nKeysMsg
Your tool will receive t mCount Ter mKeysMsg when the application requires your tool to pass
it the number of special terminal key names that it supports.

The sample code shows how your tool can respond to t mCount Ter nKeysMsg.

FUNCTI ON Ter mTool Count Ter nKey(hTerm Ter mHandl e) : LONG NT;
VAR

t heSt ate : Si gnedByt e;
BEG N

theState := HGet State(Handl e(hTern)) ;

HLock(Handl e(hTerm) ;

Wth hTer m”* Do

BEG N

{ return the nunmber of special termnal keys
supported by the term nal tool }

END;

HSet St at e(Handl e(hTerm, theState);
END;

t nGet | ndTer nKeyMsg
The Terminal Manager will pass t mGet | ndTer nKeyMsg to your tool when the application
requires your tool to pass it the name of a special terminal key (for example, PF1, PA1, or DUP).
When passed to your tool, pl contains the index (number) of the key.

The code sample shows a template into which you can code your tool’s response to
t mGet | ndTer mKeyMsg. When your tool is done, it should pass back a pointer to a Str255
return value that describes the key, or a pointer to an empty string if the index is invalid.

PROCEDURE Ter nmTool Get | ndTer nKey(hTer m Ter nHandl e; i ndex: | NTEGER VAR theStr: STR255) ;
VAR
t heSt at e : Si gnedByt e;
BEG N
theState := HGet State(Handl e(hTerm) ;
HLock(Handl e(hTerm)) ;
Wth hTerm”* Do
BEG N
{ return the term nal key supported by the ternminal tool in
theStr }
{ or return enpty string if index is out of range }
END;
HSet St at e(Handl e(hTerm, theState);
END;

Quick reference

This section contains reference information for the data structures, resource names, and resource types that you need to
write a terminal tool. A table at the end of this section lists all the messages the Terminal Manager sends to your tool,

and what is passed in the parameters with each message.

Data structures

TMSet upSt ruct

TYPE
TMSet upPtr
TMSet upStruct
t heDi al og
count
t heConfi g
procl D
END;

TMSear chBI ock

TYPE

TMSear chBl ockPt r

TMSear chBIl ock
theString
wher e
searchType
cal | Back
ref num
next

END;

ATMSet upSt ruct
RECORD

Di al ogPtr;

| NTEGER;

Ptr;

| NTEGER,;

= ATMSear chBIl ock;
RECORD

St ri ngHandl e;

Rect ;

TMSear chTypes;
ProcPtr;

| NTEGER;
TMSear chBIl ockPtr;

Chapter 10: Writing Terminal Tools 273

Resource names

FUNCTI ON tdef (hTerm Terntandl e; nsg: | NTEGER pl, p2, p3:

FUNCTI ON tval (hTerm Terntandl e; nsg: | NTEGER pl, p2, p3:

FUNCTI ON tset (pSetup: SetupPtr; nsg: |NTEGER pl, p2, p3:

LONG NT)

LONG NT)

LONG NT;

LCNG NT;

LONG NT): LONGI NT;

FUNCTI ON tscr(hTerm TerntHandl e; nsg: | NTEGER pl, p2, p3: LONANT) :
FUNCTI ON tloc(hTerm TerntHandl e; nsg: |NTEGER pl, p2, p3: LONANT) :
Resource Types
type 'tbnd' {
integer = $$Count Of (TypeArray) - 1;
array TypeArray {
literal 1ongint; [* Type */
integer = $3CountOf (I DArray) - 1;
wide array |DArray {
i nt eger; /* Local 1D */
i nt eger; /* Actual ID */

s
s
s

type 'tver' as 'vers';

LONG NT;

LCNG NT;

H Table 10-1 Terminal Manager messages and parameters

Constant Parameter 1 Parameter 2 Parameter 3
pl p2 p3
Validation code resource messages
i * 0 - - -

:%2:: ;Sﬂ ﬁ,slvzg 1 VAR ternmConfigRec:Ptr allocate: Bool ean procl D: short
Setup code resource messages
{gggf“ ilvght Msg* 0 - - VAR rmagi cCooki e: LONGI NT
Ees te;‘nﬁ’/s 9 1 - - VAR magi cCooki e: LONGI NT
tefilt I%’/B . 2 VAR itemitentSel ected - VAR magi cCooki e: LONGI NT
t S : ﬁr I\/g 3 myEvent : Event Recor d VAR itemitenHit VAR magi cCooki e: LONGI NT

cl eanuphvsg 4 - - VAR magi cCooki e: LONGI NT

Scripting code resource messages

t mMvget Msg* 0 -

t mvset Msg* 1 configPtr:Ptr
Localization code resource messages

t ML2Engl i sh* 0 i nput Ptr:Ptr
tmL2lnt | * 1 i nput Ptr: Ptr

VAR outputPtr: Ptr
VAR outputPtr: Ptr

fromLanguage: i nt eger
t oLanguage: i nt eger

* Indicates the routine is a function that returns a LONG NT.

m Table 10-1 Terminal Manager messages and parameters (continued)

.Constant

Parameter 1
pl

Parameter 2
p2

Parameter 3
P3

Main code resource messages

tm nitMsg*

t nDi sposeMsg

t nBuspendMsg

t mMResuneMsg

t mvenuMsg*

t tEvent Msg

t mAct i vat eMsg

t nDeact i vat eMsg
tm dl eMsg

t mReset Msg

t mKeyMsg

t St r eanmVsg*

t nResi zeMsg

t npdat eMsg

tnCl i ckMsg

t net Sel ecti onMsg*
t nBet Sel ecti onMsg
t nScrol | Msg

t nCl ear Msg

t nGet Li neMsg

t nPai nt Msg

t mCur sor Msg*

t nGet Envi r onsMsg*
t mDoTer nKeyMsg*

t mCount Ter nKeysMsg*

t nGet | ndTer nKeyMsg

menul D: | nt eger
myEvent : Event Record

nmyEvent : Event Recor d
bufferPtr:Ptr

newTer nRect : Rect

vi sRgn: RgnHandl e

myEvent : Event Record

dat aHandl e: Handl e

t heSel ecti on: TMSel ecti on
del taH: | nt eger

| i neNo: I nt eger

my Ter mBl ock: Ter nDat aBl ock
cursor Types: TMCur sor Types
VAR Ter nmEnv: Ter mEnvi r onRec
ternKey: Str 225

i ndex: | nt eger

menul t em | nt eger

buf f er Si ze: Longl nt

VAR sel Types: TMSel Types
del taV: I nt eger

VAR nyTer nBl ock: Ter nDat aBl ock
pai nt Rect : Rect

VAR t ernKey: Str 255

* Indicates the routine is a function that returns a LONG NT.

Chapter 11 Writing File Transfer Tools

"H;. - eemneillD
[T
e

THIS CHAPTERtells you how to write the main code resource for a file transfer tool. You will need to include five other code
resources as part of your tool; they are described in Chapter 8. You should also read that chapter, as well as Chapter 5, before

reading this chapter.

This chapter describes all the messages, parameters, and data structures that the File Transfer Manager passes to your tool’s main
code resource. Also in this chapter is sample code (with pseudocode mixed in) that will help you understand what your tool
should do when it receives any of the messages. A quick reference at the end of the chapter shows you what you should name
your six file transfer tool resources. It also lists the messages the File Transfer Manager sends to your tool, and the parameters that

the File Transfer Manager passes with each message.

278 Inside the Macintosh Communications Toolbox

Your file transfer tool’s main code resource

The purpose of the main code resource is to parse messages from the File Transfer Manager and then to branch to a routine that
can handle each message. The main code resource should be a resource of type ' f def ' and should be able to accept the
parameters shown here.

FUNCTI ON fdef (hTerm TernHandl e; msg: |NTEGER, pl, p2, p3: LONG NT):
LONGI NT;

The accepted messages are as follows:

CONST

ftinitMg = 0;
ft Di sposeMsg = 1;
ft SuspendMsg = 2;
ft ResuneMsg = 3;
ft MenuMsg = 4;
ft Event Msg = 5;
ftActivateMsg = 6;
ft DeactivateMsg = 7;
ft Abort Msg = 52;
ftStart Msg = 100;
ft ExecMsg = 102;

For each of the messages defined above, the three parameters that ' f def ' returns, namely p1, p2, and p3, take on
different meanings. These meanings are described in the message descriptions that follow.Your tool can retum an appropriate
operating system error code, or f t Not Suppor t ed if it does not understand the message it received.

ftinitMag

The File Transfer Manager will pass f t | ni t Msg to your tool after the following sequence of
events occurs. When a tool or application calls FTNew; the File Transfer Manager allocates space for the file transfer record. It
then fills in some of the fields, based upon information that was passed in the parameters to the call. The File Transfer Manager
fills in the conf i g and ol dConf i g fields by calling FTDef aul t . Then the File Transfer Manager passes
ft 1 ni t msg to your tool. After your tool has finished responding to f t | ni t Msg, the File Transfer Manager calls
FTval i dat e.

After executing the code necessary to respond to f t | ni t Msg, your code should pass back an appropriate OSEr r or
FTEr r . Here’s an example:

FUNCTI ON nylnit (hFT: FTHandl e): CMErr;
VAR
state : Si gnedByt €;
BEG N
nylnit := noErr; {Optimsn}
state : = HCGet St at e(Handl e(hFT)); {save handl e state}
H ock (Handl e(hFT));{ {lock it down}

W TH HFTA* DO

Chapter 11: Writing File Transfer Tools 279

BEG N

err Code D= nokErr; {optim smreigns}
private D= PrivatePtr(NewPtr (Sl ZEOF(PrivateData)));

W TH private® DO

BEAN{ fill in private data structure here }

END;

END;

HSet St at e(Handl e(hFT), state);
END;

ft Di sposeMsg

A tool or application will call FTDi spose when it must dispose of a file transfer record and its associated data structures.
The File Transfer Manager passes f t Di SposeMs(g to your tool before disposing of the conf i g and
ol dConf i g fields of the file transfer record. Next, the File Transfer Manager disposes of the file transfer record.
To handle f t Di sposeMsg, your tool should dispose of any buffers allocated in response to f t | ni t Msg and any
private data storage (referenced off of f t Pr i vat e in the file transfer record). Your tool must not attempt to dispose of
either conf i g orol dConfi g in the file transfer record, or of the file transfer record itself. Doing so will cause a system
crash.
The sample code shows a template into which you can code your tool’s response to f t Di sposeMsg.

PROCEDURE nyDi spose(hFT: FTHandl e) ;

VAR
err. FTErr;
BEG N
{ abort FT in progress }
{ do cleanup }
Di sposPtr(Ptr(hFTA™, private)):
END;
ftStart Msg

Your tool will receive f t St art Msg from the File Transfer Manager when the application requires your tool to start a file
transfer. The sample code shows a template into which you can code your tool’s response to f t St ar t Msg.
Your tool should pass back the appropriate error message if unable to start the file transfer.

FUNCTI ON FTSt artup(hFT: FTHandl e): FTErr;
BEG N
FTStart := noErr; {optimsn}

W TH hFTA" DO
BEG N
errCode : = O;
flags := BOR(flags, ftlsFThode); {file transfer in progress}

280 Inside the Macintosh Communications Toolbox

{initialize the vari abl e}
{open file}

{prepare your 1/0O buffer}
{draw t he status dial og}

END;

END;

ft ExecMsg

An application calls FTEXec to provide time for a file transfer in progress. Your tool should strive to be “MultiFinder-friendly”
by minimizing the time it spends handling this message. When the file transfer is completed, your tool should close all files and
dispose of any status dialog boxes.

PROCEDURE FTExec{ hFT: FTHandl e};
BEG N
{ called when file transfer is in progress so do your stuff here... }

END;

ft Abort Msg

Your tool will receive f t Abort Msg from the File Transfer Manager when the application requires your tool to abort a file
transfer. The sample code provides a template into which you can code your tool’s response to f t Abor t Msg.
If your tool is unable to abort successfully, it should pass back an appropriate error code.

FUNCTI ON FTAbort (hFT: FTHandle): FTErr;
BEGH N
{ abort the fi
{ close the fi
{ dispose of th

e transfer in progress here }
e)

e status dialog }

END;

ft ActivateMsg and ft ResuneMsg

Your tool will receive f t Act i vat eMsg orft ResunmeMsg when the application requires your tool to process an
activate event (such as inserting menus into the menu bar). The sample code shows a template into which you can code your
tool’s response to f t Act i vat eMsg orf t ResunmeMsg.

PROCEDURE nyActivate {FT: FTHandl e};
BEGI N

END;
{
pl, p2, p3 are ignored

This routine may perform actions such as inserting a nenu into
the nmenu bar.

Chapter 11: Writing File Transfer Tools 281

PROCEDURE nyResune(hFT: FTHandl e);
BEGI N

END;
{
pl, p2, p3 are ignored

This routine nmay perform the sanme actions as nyActivate

ftDeactivateMsgandft SuspendMsg

Your tool will receive f t Deact i vat eMsg or f t SuspendMsg when the application requires your tool to process a
deactivate event (such as removing a menu from the menu bar) for a window that belongs to the File Transfer Manager.

ft MenuMsg

The File Transfer Manager will send f t MenuMs g to your tool when a menu event has occurred in the application. When
passed to your tool, p1 will contain the menu ID, and p2 will contain the menu item.

The sample code shows a template into which you can code your tool’s response to f t MenuMsg. When done, your
tool should pass back 0 if the menu event was not handled, and 1 if it was.

FUNCTI ON nyMenu(hFT: FTHandle; mD: INTEGER, mitem | NTEGER):
LONGI NT;

BEGI N
myMenu : = 0; {pessim snt
{ if mne then
myMenu := 1, {handl e the nenu event}
}
END,;
ft Event Msg

Your tool will receive f t Event Msg from the File Transfer Manager when an event has occurred in the application. When
passed to your tool, p1 will point to the event record, in which the reference constant field contains the file transfer handle.

282 Inside the Macintosh Communications Toolbox

Quick reference

This section contains reference information for the resource names and resource types that you need to write a file transfer tool. A
table at the end of this section lists all the messages the File Transfer Manager sends to your tool, and what is passed in the
parameters with each message.

Resource names

FUNCTI ON fdef (hTerm TernHandl e; nmsg: | NTEGER, pl, p2, p3: LONG NT) : LONG NT;
FUNCTI ON fval (hTerm TernHandl e; nmsg: | NTEGER, pl, p2, p3: LONG NT) : LONG NT;
FUNCTI ON fset (pSetup: FTSetupPtr; nsg: |NTEGER;, pl, p2, p3: LONG NT) : LONG NT;
FUNCTI ON fscr(hTerm TernHandl e; msg: | NTEGER, pl, p2, p3: LONG NT) : LONG NT;
FUNCTI ON floc(hTerm TernHandl e; nmsg: | NTEGER, pl, p2, p3: LONG NT) : LONG NT;

Resource types

type "fbnd" {
i nteger = $$Count O (TypeArray) - 1;
array TypeArray {

literal longint; /[* Type*/
i nteger = $$Count O (1 DArray) - 1;
wi de array | DArray {
i nteger; /* Local 1D */
i nteger; /* Actual ID */
1

Chapter 11: Writing File Transfer Tools 283

Table 11-1 File Transfer

Manager nessages and paraneters

Constant

Parameter 1

pl

Parameter 2
p2

Mai n code resources nessages

ftlnitMg*

ft D sposeMsg
ft SupendMsg
ft ResuneMsg
ft MenuMsg*

ft Event Msg
ftActivateMsg
ft Deacti vat eMsg
ft Abort Msg*
ftStart Msg*
ft ExecMsg

Val i dati on code resources
nessages

ftVval i dat eMsg*

ft Def aul t Msg

Set up code resources nmessages
ftSpreflight Msg*

Ft Sset upMsg

ftSiteMsg

ftsSfilterMsg*

ft Scl eanupMsg

Scripting code resource nessages

ft Mget Msg*
ft Mset Msg*

Local i zati on code resource
nessages

ft L2Engl i sh*
ftL2lntl*

~NoO O~ WNEFO

= 01
onN
o

102

] AWNEFLO = O

]

menul D: | nt eger
myEvent : Event Record

VAR ft ConfigRec: Ptr

VAR item it enSel ect ed

myEvent : Event Record

configPtr:Ptr

i nputPtr:Ptr
inputPtr:Ptr

menul D: | nt eger

al | ocat e: Bool ean

VAR itemitenH t

VAR out putPtr:Ptr
VAR out putPtr: Ptr

-

P

> Indicates the routine is a function that

returns a LONG NT.

Appendix A Guidelines for Communications Tools

THIS APPENDIX contains software design and human interface guidelines for
communications tools. The guidelines presented in this appendix, while not hard-and-fast rules, will
help ensure that your tool works with future releases of the Communications Toolbox, with other

tools, and with applications that use the Communications Toolbox.

This appendix discusses the design goals your tool should implement. Then it discusses human
interface considerations. Finally, the appendix describes hardware and software compatibility

requirements.

To fully understand this appendix, you should first read Chapter 8, “Fundamentals of Writing Your
Own Tool,” and at least one of the following chapters: Chapter 9, “Writing Connection Tools;”

Chapter 10, “Writing Terminal Tools;” or Chapter 11, “Writing File Transfer Tools.”

Design goals
When you design your tool keep these goals in mind. Your tool should be

B Self-contained: It should contain all the resources it needs in its bundle resource, and not need to make use of other
tools or applications.

B Task-specific: It should be a connection tool, a terminal tool, or a file transfer tool. It should respond to all the
messages that the manager sends to it, but not to any messages that a Communications Toolbox manager intends
a different tool to respond to. For instance, a terminal tool should not respond to Connection Manager messages
and should not implement or maintain a data connection.

Keeping your tool self-contained

For users, installing a communications tool should be as simple as dragging the icon for that tool into the folder named
Communications Folder. To achieve this level of simplicity, your tool must be self-contained; all the resources it needs
for proper operation must be in the resource bundle.

There are, however, two exceptions to this principle. The first is when your tool uses a hardware interface that
requires a driver to be loaded at INIT time, an unavoidable circumstance. The second exception is when your tool
provides access to special data files (for example, a file of network addresses) that are kept on the user’s system. Such
data files provide your tool with a convenient way to store and distribute configuration information. In such a case, your
tool should save all user settings in the session document; your tool must not require external files to reestablish a
previously configured connection. Whenever your tool does require an external file to operate properly, it should check
for the existence of that file and notify the user if the file is not present.

To prevent resource ID conflicts, your tool should use resource IDs that are out of the range of system resource IDs
used by Apple Computer, Inc. Even when taking this precaution, font IDs may conflict. The only sure way to avoid this
is to register your font ID with Developer Technical Support. This problem arises because your tool’s resource map gets
linked into the resource chain, while your tool’s code is executing, just below the system file’s resource map.

Keeping your tool task-specific

The Communications Toolbox supports three kinds of communications tools: connection, terminal, and file transfer.
Your tool should be one of these types and must not implement any services that another type of tool is intended to
provide. For instance, if you are writing a terminal tool, it must not provide any connection services. Observing this
principle helps ensure that tools will not interact with each other in unintended ways. Each type of tool is meant to
provide specific services:

286 Inside the Macintosh Communications Toolbox

B Connection tools control the data path and its specifications. They can also alter the data path or strip high bits, as
needed.

B Terminal tools control user input and output, including input from the mouse or keyboard, and output to the
terminal emulation window.

B File transfer tools control sending and receiving disk files, or other encapsulated data entities. Only file transfer
tools should manipulate disk files or the file system.

Tools written for the Communications Toolbox are meant to be used in a way that enables users to change one part of a
communications configuration and still have the application work for them. For instance, a user running a VI100™
terminal emulation over a modem connection should be able to run the emulation over an X.25 connection and not
notice any changes.

However, if a terminal or file transfer tool requires a specific type of connection (because of the protocol or standard
being implemented) that is not in place, your tool should send an error to the application. A tool must never cause a
system-level error when a user tries to use it in the “wrong” configuration. Rather, it should detect the presence or
absence of a tool and send appropriate return codes to the application.

When writing a tool to implement an existing communications standard, you might find that the functions
included in the standard require more than one type of tool for implementation. In cases like this, try to keep your tool
task-specific by making use of the Macintosh interface. For example, if a connection protocol requires that your tool
have status information constantly available, your tool can display this information in a separate window. You can also
implement the standard by writing two task-specific tools that must be used together.

User interface considerations

This section describes the user interface considerations you should keep in mind when designing your tool. These
considerations include:

B modeless tool operation

W the standard tool-settings dialog box
B windows and status dialog boxes

W error alerts

W menus

B handling errors

W using the right words

Appendix A: Guidelines for Communications Tools 287

Modeless tool operation

Your tool should be modeless because the Communications Toolbox (and most applications that use it) allows for
multiple simultaneous communications sessions; your session may not be the only one running (and your tool may be
in use in more than one session at a time). Also keep in mind that even if the user is running a single session, he or she
may be running that session under MultiFinder.

Although specific applications can present other user interfaces, the user will usually configure a tool from within an
application by using the standard tool-settings dialog box, open or close the connection with menu items, and send or
receive files with menu items. This dialog box and the menus are the basic aspects of the user interface.

The user will usually create a new document, configure it by using the standard tool-settings dialog box, and save it.
Your tool should save all user settings in the session file, typically in a separate resource for each of the communications
tool types (connection, terminal, and file transfer). The design of the Communications Toolbox assumes that the
application will save settings in session documents so that a user can use a preconfigured document to open a
connection. A user who uses several setting combinations is expected to prepare and use a separate document for each
combination.

Users should not need to perform more configuration tasks when they open a connection or transfer a file; the only
dialog boxes that should appear at this time are status dialog boxes. Therefore, your tool should fill in appropriate
default settings when it is first selected in the standard tool-settings dialog box.

The standard tool-settings dialog box

Since users can use different tools inside the same application, the standard tool-settings dialog box for each tool ought
to be visually compatible with those of other tools. This compatibility allows users to apply what they learn about
configuring one type of tool to configuring a second type of tool. Figure A-1 shows a sample tool-settings dialog box
for a connection tool.

B Figure A-1 A sample tool-settings dialog box for a connection tool

Cannection Seilings

Hethod: | Apple Hodem Toal |
Flzdem Sslimgy . | Port Ssttings
() Anwwer Phare After| 3 | Rings i
2 Partty =]
(®} Crind Phons Momter |4|=-|:11r.md | - IE
o I L ety —
510 0
- l"“"'"""“"“'" Currend Fort

=B B

Fhsbern) [dppe [ala Fosdem 2400 |

288 Inside the Macintosh Communications Toolbox

Many communications tools require more parameters set by the user than can be displayed attractively in a modal
dialog box the size of the Macintosh Plus screen. Consider having your tool use 9-point Geneva for tool controls, instead
of 12-point Chicago.

If your tool is complex and requires more controls than can fit in 2 modal dialog box even when using 9-point
Geneva, it can divide these controls among two or more dialog boxes. The controls should be grouped according to
function. Your tool should place the controls a user is most likely to select in the first dialog box displayed when the
standard tool-settings dialog box comes up; it should place “power user” controls in subsequent dialog boxes.

Since the standard tool-settings dialog box is modal, your tool should not use additional modal dialog boxes that
pop up on top of the standard tool-settings dialog box. If your tool requires a cascading dialog box, it should use dialog
boxes like SFGet Fi | e, which controls settings that do not usually need to be changed. Your tool should never
display more than two layers of modal dialog boxes on the screen at the same time,

Windows and status dialog boxes

The terminal window is the only window that any of the communications tools displays during normal operation. But a
connection or file transfer tool might need to pass information to the user. Since these tools should not place text in the
terminal window, such a tool should display its own window or modeless dialog box.

Display of status dialog boxes is the most common method tools use to request input or display output. When a
tool performs an operation that will take a long time-for example, transferring a file or establishing a complex
connection-~the tool should post a status dialog box. This status dialog box should have the following characteristics:

W It should be modeless.

B It should contain a Cancel button to allow the user to stop the operation. Use of the Command-period key
combination for cancellation is problematic because multiple sessions may be running; users could inadvertently cancel
dialog boxes other than the one they intend to cancel by pressing the Command-period key combination several times.

Figure A-2 shows an example of a file transfer tool status dialog box.

B Figure A-2 Example file transfer tool status dialog box

File Transfer Status

Sending tewnt file *tenttest®.

(3ot L 2]
D10 20 30 40 S50 60 70 80 90 100%

Appendix A: Guidelines for Communications Tools 289

A tool might also put up its own window for user input and output during a session. For example, a connection tool
might provide a command window that allows users to type in commands directly to control the connection. Your tool
should either display this kind of window when the application initially selects your tool, or install a custom menu item
that toggles in a manner similar to Hide Clipboard/Show Clipboard. Keep in mind that all command functions should
be available through standard Macintosh controls, such as menu items and configuration dialog box settings. If your
tool displays a command-line mode for compatibility with an existing standard, the command-line mode should
supplement the standard Macintosh interface rather than replacing it.

Error alerts

Your tool is responsible for informing users of significant error conditions if the crmQui et or f t Qui et bit is not
set in the connection record or file transfer record. For instance, a connection tool should provide the user with status
information when opening or closing a connection, and a file transfer tool should report the success or failure of a file
transfer. However, a tool should not report less critical information, for example, showing a message when reading or
writing data.

Menus

Your tool can place a menu of its own in the menu bar of the application. However, it should avoid displaying such
menus, because the menu bar has limited available space, and application designers tend to assume that they can use the
entire menu bar. Also, since up to three tools can be active at once, up to three tool menus might be displayed in
addition to the menus owned by the application. If you do choose to implement a menu for your tool, choose a menu
name that is as short as possible to avoid overflowing the menu bar.

Tool-specific menus are placed to the right of application menus. This means that if the menu items of your tool
have Command-key equivalents, they will override any conflicting Command-key equivalents for application menus. If
two tool menus are displayed at the same time, the rightmost menu will override the other in a similar fashion. Also,
your application should not have any Command-key equivalents for non-ADB (Apple Desktop BUS™) keyboards;
conflicts can arise out of the need to use the Control key as a Command key.

Handling errors

Your tool should allow users to set up any communications configuration, even ones that are unusable. This allows a
system administrator to configure and save a session document for another person, who uses a different configuration
from that on the system administrator’s machine. In such cases, your tool should return an error only if the user
attempts to open a connection, start terminal emulation, or initiate a file transfer using a setup that won’t work.

290 Inside the Macintosh Communications Toolbox

Using the right words

Macintosh developers normally use terms that are intuitive and easy to learn, even for naive users. However, this practice
sometimes conflicts with the need to use established industry-standard terms, which may be difficult for the novice to
understand. Since communications software developers often implement pre-existing industry standards, this problem
is especially common for developers of communications tools.

Where standard terms for a function already exist and are widely accepted in the industry, you can use the standard
terms. This convention is meant to ensure both that your tool properly implements the standard, and that experienced
communications users who are familiar with the standard terms are not confused. However, you should attempt to
make these terms as easily understandable as possible for inexperienced users. You can do this in several ways. Alternate
standard terms are sometimes available. For example, the term Show Controls and its less intuitive counterpart
Transparent Mode are used by Digital Equipment Corporation for the same VT102 terminal setting. You might also be
able to embed the standard term in a longer description, or use small graphics in the tool-settings dialog box to make
meanings clearer.

Compatibility requirements

The Communications Toolbox can run on all Macintosh computers that have:
W at least 1 MB of RAM

B Macintosh Plus (128K) ROM, or later versions

B system software version 6.0.4, or a later version

In order to be compatible with future releases of system software, it is important that your tool be 32-bit clean. Your
tool may have additional requirements or restrictions.

Keyboard considerations

Terminal tools should support all Macintosh keyboards, including the original Macintosh keyboards with and without
the detachable keypad. If arrow keys, function keys, the Control key, or other keys are required by your tool but are not
on all keyboards, your tool should provide an alternative means of accessing them. Your tool could provide a keypad
menu, or allow the user to use the Command key as a Control key.

Appendix A: Guidelines for Communications Tools 291

292 Inside the Macintosh Communications Toolbox

Appendix B Communications Tools Scripting Interfaces

THE MACINT O S H Communications Toolbox provides a scripting interface that allows
applications to configure tools) sending and receiving configuration strings. Configuration strings
comprises keyword/value token pairs and enable applications to control all the fields in a tool’s

configuration record,. including the elements in the tool’s settings dialog box.

This appendix defines and describes the keywords and values supported by each of the tools in the
Basic Connectivity Set. You should read relevant sections earlier in this book to understand how this

information fits into the model already presented.

In the tables that follow, valid tokens appear in Courier typeface. Value tokens printed in ifalics are
variables. Unless otherwise noted, value tokens can be set by applications (by calling

C\VBet Conf i g), by users (through the user interface), or by tools.

Six rules for configuration strings
Be sure your application follows these rules when using the scripting interface with communications tools.

1. Your application can set as few as none and as many as all of the fields in a configuration record with each call to
xxSet config.

2. If a string contains more than one keyword/value token pair, separate each pair with a blank space.

3. The first item in a keyword/value token pair must be a keyword and the second must be the value your application
assigns to the keyword.

4. Do not be concerned with case sensitivity; communications tools should check for case.
5. If either a keyword token or value token contains a space, enclose the token in double quotes (“”).

6. Precede double quote and backslash characters that are part of the token with a backslash. (Double quotes that
enclose a space need not be preceded with a backslash.)

294 Inside the Macintosh Communications Toolbox

ADSP Tool scripting interface
Keyword token names for the ADSP Tool are compatible with those used by the TCP Tool and the TGA Tool.

The variables used in NBP names should abide by the character restrictions of NBP. In particular, do not use the equals,

«“,”

“="_approximately equals, “” colon, “:”, at-sign, “@", and asterisk, “*”, charasters. The ADSP tool does not enforce

these restrictions to allow compatibility with future versions of NBP.

NBP names, AppleTalk addresses, and socket numbers must be quoted. To avoid potential problems, have your

application put quotes around all tokens.

Keyword Value

token token* Description Example

Local Address string NBP form of local address. It is the concatenation ~ “M ke’ s
of Local ADSPNane and Maci nt osh:
Local ADSPTYPE in Ter mi nal
“nane: type@one” format. If your
application passes Local Addr ess into Ser ver @t evens
CWMBet Conf i g, the tool ignores both the Creek 1”
keyword token and its value. Only the ADSP Tool
can set this value.

Local ADSPNane string Name to use, when combined with “M ke’ s
Local ADSTy pe, for registering local Maci nt osh”
connection end’s NBP name. The default value is
taken from the Chooser name. If there is no
Chooser name, “Local User ” is the default.

Only applications and users can set this value.

Local ADSPType string NBP type to use with Local ADSPNane to
register local connection end’s NBP name. The
default value is “ADSP”. Only applications and
users can set this value.

Local Socket string NBP type to use with Local ADSPNane to Ter ni nal
register local connection end’s NBP name. The Server"

default value is “ADSP”. Only the ADSP Tool can
set this value.

(continued) =

*Valid tokens appear in Cour i er typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 295

ADSP Tool scripting interface (continued)

Keyword Value
token token* Description Example

Qur Socket Nunber number When non-zero, socket number to be used for a "AT"
connection. If Regi st er Nane is zero and
the application may call CMLi st en,
Qur Socket Nunber must be non-zero.
The socket is in hexadecimal format and must be
quoted. The defaultis O. Only applications can set
this value

Regi st er Nane number I 0, no name is registered. "2

If 1, and Local ADSPNane and

Local ADSPTy pe are valid, then NBP name
is registered whenever the application call

CMLi st en. If the name exists already, an error
is returned from CMLi St en. The defaultis 1.

If 2, it is not an error to issue a CMLi St en
using the same name. In this case, the second
CMLi st en uses the same AppleTalk socket as
the first one. Only applications can set this value.

Renot eAddr Bl ock number AppleTalk address (in hexadecimal format "a7f96cfc”
WWWWNNSS, where WWWW is the network
number, NN is the node ID, and SS is the socket
number) of remote connection end. If this field is
non-zero, remote name, type, and zone variables
are ignored, and NBP is not used to determine the
remote end’s AppleTalk address when the
application calls CMOpen. The address must be
quoted. The defaultis O. Only applications can set
this value.

Renpt eAddr ess string NBP form of remote connection end’s name. "Mega vax:
Renot eAddr ess is the concatenation of Ter mi nal
Renmot e ADSPNane, Ser ver @/ax| and"
Renot e ADSPTy pe, and
Renpt e ADSPZone in the form
"name:type@zone". If your application passes
renot eOaddr ess into
CMBSet Conf i g, the tool ignores both the
keyword token and its value. Only the ADSP Tool (continued) w»
can set this value.

296 Inside the Macintosh Communications Toolbox

ADSP Tool scripting interface (continued)

Keyword
token

Value
token*

Description

Example

Renot e ADSPNane

Renpt e ADSPType

Remnot eADSPZone

Renot eSocket

RoundTri pTi ne

string

string

string

string

number

When opening a connection, name part of the full
NBP name used to determine remote end’s
AppleTalk address. If this string is empty,
Renot eAddr Bl ock must be non-zero,
otherwise CMOpen fails immediately. The
defaultis Renot e User . Only application
and users can set this value.

When opening a connection, type part of full NBP
name used to determine remote end’s AppleTalk
address. If this string is empty, then

Renot eAddr Bl ock must be non-zero,
otherwise CMOpen fails immediately. The
default is ADSP. Only applications and users can
set this value.

When opening a connection, type part of full NBP
name used to determine remote end’s AppleTalk
address. If this string is empty, then

Renot eAddr Bl ock must be non-zero,
otherwise CMOpen fails immediately. The
defaultis"". Only applications and users can set
this value.

Concatenation of Renot e ADSPNane and
Renot e ADSPType in the form
"name:type". If Renot eSocket appears in
a script, the tool generates an error. Only the ADSP
Tool can set this value.

Estimate of time (in seconds) for a packet to go
from local machine and back.
RoundTr i pTi e is used to set retry

intervals for NBP and ADSP. The current version of

ADSP uses 30 seconds as the probe timer, so don’t

set this variable to a larger value. Future versions of

ADSP will not have this restriction, so no error-
checking is performed. The defaultis 1. Only
applications can set this value.

"Mega vax"

"Ter m nal
Server"

"Vax| and"

"Mega
vax: Ter m nal
Server"

"1”

(continued) =

*Valid tokens appear in Cour i er typeface. Value tokens printed in ifalics are variables.

Appendix C: Communications Tools Scripting Interfaces 297

ADSP Tool scripting interface (continued)

Keyword Value -
token token* Description Example
UseChooser Nane number If 1, Chooser name is used as name registered on network " 1"

when a listen operation is made, regardless of any setting
made by Local Name. If set, CMGet Conf i g also
reports the Chooser name. The default is O, and is
automatically reset to O if the user modifies the local name
when the human interface is displayed. Only applications
can set this value.

*Valid tokens appear in Cour i er typeface. Value tokens printed in ##alics are variables.

298 Inside the Macintosh Communications Toolbox

Apple Modem Tool scripting interface

Keyword token Value token* Description Example

Baud number Baud rate of modem. The default is " 2400"
2400

DataBits 5| 6| 7|8 Number of data bits to use. The default " 5"
is 8.

D al TONE| PULSE| M XED Dialing method. The defaultist one. "Tone"

Handshake none| XON| XOFF Type of handshaking on connection. The " None"
default is none

Hol dConnecti on TRUE| FALSE When true, tool does not drop DTR while " Tr ue"

Mbdenilype "A Modem Type"
Parity None| Even| Gdd
PhoneNunber "the phone number"
Por t "Modem

Port"|"Printer
Port"| ot her
Rem ndDi sconne TRUE| FALSE
ct

Retry TRUE| FALSE

closing connection. The default is
fal se.
Type of modem to which computer is

connected. The default is Hayes-
Conpati bl e Mdem

Type of parity on connection. The default
isnone.

Phone number to dial. The tool passes
commas, parentheses, and dashes to the
modem. Commas typically generate
pauses. Parentheses and dashes are
typically ignored. The defaultis"".
Current port for sending and receiving
data. The defaultis Modem Por t .

When true and HoldConnection is true,
tool reminds user it is holding DTR high.
The defaultis f al se.

Specifies whether tool should retry
number when remote modem does not
pickup. The default is 3.

"Appl e Data Modem
2400"

"None"

"4154576388"

"Modem Port "

"True"

"True"

(continues) =

* Valid tokens appear in Cour i er typeface. Value tokens printed in italics are variables.

Appendix C: Communications Tools Scripting Interfaces 299

Apple Modem Tool scripting interface (continued)

Keyword token Value token* Description Example

Retrylnterval number Number of seconds between retries. The " 1"
defaultis 10.

RetryTi mes number Number of times to retry. The defaultis " 3"
3.

StopBits 1]1.5]2 Number of stop bits on connection. The " 1"
default is 1.

TypeO Cal | Ori gi nat e| Answer Specifies whether originating or "Origi nate"
answering a call. The default is
ori gi nate.

Wi t Ri ngs number Number of rings to wait before A

answering incoming call. The default is
2.

* Valid tokens appear in Cour i er typeface. Value tokens printed in #talics are variables.

300 Inside the Macintosh Communications Toolbox

LAT Tool scripting interface

Keyword Value
token token*

Desciption

Example

Host Addr ess string

Host Nane string

Local Port string

Por t Name string

Sel ect Host number

Ser vi ceName string

Ethernet address of LAThost. This token is 12 charactess long
andin hexformat. If less than 12 characters are supplied, the
chamcters are right-justified and leading zeros are placed in the
string. Ifthis field 5 used, Host Nane must contain 2 rame(
is not acceptable). Thedefaultvalueis x' 000000000000" .
This keyword token is used onlywhen SelectHost is 1. Only
applications canset ths value

m

Nameof host offering LAT service. The maximum length is 16
chamcters. The defaultis "".Host Narre is used only when
Sel ect Host is 1. Only applications canset ths value.
Nameof local pott for IAT Driver. The maximum length of this

string is 16 charcters. This keyword tokencannotbe setto "".
Thedefaultis Por t 0. Only applications canset ths value.

Nameof poit on host offering IAT sewvice. The maximum
length is 16 chamcters. The defaultis "".Por t Name is used
onlywhen Sel ect Host is 1. Only applications canset ths
value.

Spedfies which method of hostselection is desired. The default
is 0, which means usethe best hostavaibble; 1 means spedfy a
host. Onlyapplications can set this value.

Nameof teminalserviceoffered by LAT host. The maximum
length is 16 chamcters. The defaultis "". Only applications and
usess can set ths value

" AA0004000504"

" MAYTAG'

"Port 0"

" MAYTAG'

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.

Appendix C: Communications Tools Scripting Interfaces 301

Serial Tool and Serial NB Tool scripting interface

Keyword Token Value token* Description Example
Baud number Baud rateof modem. Thedefault is 9600. " 2400"
DataBits 5| 6|7|8 Number of databits. Thedefault is 8. "5"
Handshake None| Spedfies typeof handshaking on connection. " None"
XON/ XOFF| Thedefault is none.
DTRECTS|
DTRONI y|
CTSOnl y
Hol dConnecti on TRUE FALSE Whent r ue, tool does not drop DTR whie " Tr ue"
closing connection. Thedefault if f al se.
Parity None| Cdd]| Type of party on conrection. The default is " None"
Even none.
Por t " Modem Port" | Current port for sending and receiving data " Modem
"Printer Thedefault is Modem Por t. Port"
Port"| other
Rem ndDi sconnect TRUE FALSE When t r ue and Hol dConnecti on is " True"

t r ue, tool reminds user it is holding DTR
high. Thedefault is f al se.

StopBits 1]1.5]2 Number of stop bits on connection. The " 1"
defaultis 1.

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.

302 Inside the Macintosh Communications Toolbox

Text Tool scripting interface

Keyword token Value token* Description Example
CharPer Li ne number Spedfies number of charcters per line The default is
80.
" go"
Del ayPer Char number Spedfies delay in 1/00 seconds between chamcters
sent. Thedefault is 0.
wqn
Del ayPer Li ne number Spedfies delay in 1/60 seconds between lines sent. The
default is 0.
wqn
Endi ng CR| LF| CR&LF Spedfies control charmcters for the end of a line of
outgoing text. Thedefault is CR
" CR&LF"
Wor dw ap TRUF FALSE Spedfies whether tool wraps data which would
otherwise extend past right margin, to a new line The
defaultis f al se.
" Tr ue"

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.

Appendix C: Communications Tools Scripting Interfaces 303

TTY Tool scripting interface

Keyword token Value token* Desaiption Example

Aut oRepeat TRUE FALSE Spedfies whether Tab, Return, Backspace, Enter, " Tr ue"
Escape, and noncontrol keys repeat when held down.
Thedefaultis t r ue.

Aut oW ap TRUF FALSE Spedfies whether text automaticaly wraps to next line " Tr ue"
whenit readies theright margin. Thedefault is f al se.

Cur sor Bl ock| Underl i ne Spedifies either a blodk cursor or undetline cursor. The " Bl ock"
defaultis under | i ne.

FontSi ze 9| 12 Sizeof display font. Thedefault is 9. "o

Local Echo TRUE FALSE Spedfies whether tool echoes keystrokes to loca " Tr ue"
computer. Thedefault is f al se.

NewLi ne TRUH FALSE Whentrue spedfies that thetoolsends both a finefeed " Tr ue"
and carriage return when user presses the Return key.
Whenfalse, spedfies that the tool sends only a cartiage
return. Thedefault is f al se.

Online TRUE FALSE Spedfies whether keystrokes are sent to remote " True"
computer. Thedefaultis t r ue.

Repeat Control s TRUH FALSE Spedfies whether tool repeats control chamcters when " Tr ue"
thecontrol keyis helddown Thedefault is f al se.

Scroal | JUMP SMOOTH Spedfies method forscrolling thescreen. The default is " Snoot h"
j unp.

ShowContr ol s TRUE FALSE When true, tool displays control chamcters instead of " Tr ue"
exeauting them. Thedefault is f al se.

SwapBackspaceDel et e TRUH FALSE When true, tool swaps functionalty of Backspace and " Tr ue"
Delete keys. Thedefault is f al se.

W dth 80| 132 Number of display columns. Thedefault is 80. " 80"

*Valid tokens appearin Couri er typeface. Value tokens printed in talics arevariables.

304 Inside the Macintosh Communications Toolbox

VT102 Tool scripting interface

Keyword token

Value token*

Desciption

Example

Act i veChar Set

Answer Back

Aut oRepeat

Aut oW ap

Cur sor

Cur sor Key

FontSi ze

Q0

Gl

@ a

string

TRUH FALSE

TRUH FALSE

bl ock| underl i ne

ANSI | Appl i cation

9| 12

USASCI | | G aphi c|
I nternational ©

USASCI | | Gr aphi c|
I nternati onal

Spedfies actie chamcter set. The default
is Q0.

Spedfies string returned to remote
computer when answerback chamcter

is detected in incoming data stream.
Thedefault is "".

Spedfies ~ whether ~ Tab, Return,
Backspace, Enter, Escape, and
nonoontrol keys repeat when held
down. Thedefaultis t r ue.

Spedfies whether text automaticaly
wraps to next line when it reaches the
right margin. Thedefault is f al se.

Spedfies either a block cursor or
undedine cursor. The default is
under | i ne.

Spedfies chamcters tramsmitted when
Cursor (arow) keys are pressed. The
default is ANSI .

Sizeof display font. Thedefault is 9.

Spedfies GO chamcter set. The default is
USACI | .

Spedfies G1 charmcter set. The default is
USASCI | .

"VT102"

"True"

"True"

"Bl ock"

" ANS "

n 12"
"USASCI | "

"I nternational"
(continued) [=]

*Valid tokens appearin Couri er typeface Valuetokens printed in italics arevaribles.
"NRCSet must be set to a value other than "USASCI | " before G0, Gl, @2,

"I nt er nati onal ".

Appendix C: Communications Tools Scripting Interfaces

or

G3 can be set to

305

VT102 Tool scripting interface (continued)

Keyword token

Value token*

Desciption

Example

(€74

&3

| nsert Char

| nver seVi deo

Keyboar dLocked

Keyd i ck

Keypad

Local Echo

NewLi ne

USASCI | | Gr aphi c|
I nt ernati onal ¢

USASCI | | Gr aphi c|
| nt er nati onal ¢

TRUE FALSE

TRUH FALSE

TRUE FALSE

TRUE FALSE

Nurreri c|
Appli cation

TRUH FALSE

TRUH FALSE

Spedfies G2 chamcter set. The
default is USASCI | .

Spedfies G3 chamcter set. The
default is USASCI | .

Spedfies whether characters are
inserted between or written over
existing text. The defalt is
fal se.

When true spedfies data is
displayed on the Macintosh as
whitt text on a blak
background. The default is
fal se.

Spedfies whether keyboard is
locked. Thedefaultis f al se.

Spedfies whether an audble
clicking sound is made when a
key is pressed. The default is
fal se.

Spedfies whether keys on the
keypad generate numeric
chamcters or control chamcters.
Thedefault is nurrer i c.

Spedfies whether tool echoes
keystrokes to loca computer.
Thedefault is f al se.

When true spedfies that tool
sends both a line feed and
cariage retun when user
presses the Return key. When
false, spedfies thatthetool sends
onlya cariiage return. The default
isfal se.

"l nternational "

"l nternational "

"Tr ue"

"Tr ue"

"Tr ue"

"Tr ue"

"Nuneric

"Tr ue"

"Tr ue"

306 Inside the Macintosh Communications Toolbox

Keyword token Value tokens Desaiption Example

NRCSet string Spedfies ~ Natonal ~ Rephcement " Fi nni sh"
Chamcter Set”. The defalt is
USASCI | .
Online TRUF FALSE Spedfies whether keystrokes are sent " Tr ue"
to remote computer. The default is
true.
Origi nAt Margi n TRUE FALSE Spedfies whether cursor can move " Tr ue"

outside of scroling region. Also
determines whether screen addressing
is based on the complete screen or is
relative to the scrolling margin. The
defaultis f al se.

Repeat Control s TRUE FALSE Spedfies whether control keys repeat " Tr ue"
when held down The default is
fal se.

Scral Junp| Srmoot h Spedfies method for scrolling the " Snooth"
screen. Thedefault is Junp.

ShowCont r ol s TRUF FALSE When true tool displays control " Tr ue"

chancters instead of exeauting them.
Thedefault is f al se.

Showst at usBar TRUH FALSE Spedfies whether tool shows status " Tr ue"
bar_Thedefault is f al se.
ShowrabRul er TRUH FALSE Spedfies whether toolshows tab ruler. " Tr ue”

Thedefault is f al se.

SwapBackspaceDel et e TRUF FALSE Whentrue tool swaps functionalty of " Tr ue"
Backspace and Delee keys. The
defailtis f al se.

(continued) [=1

*Vald tokens appearin Couri er typeface. Value tokens printed in italics arevariables.
NRCSet must be set to a value other than "USASCI | " before G0, Gl, &2, or G3 can be set to
"I nt er nati onal ".

Appendix C: Communications Tools Scripting Interfaces 307

VT102 Tool scripting interface (continued)

Keyword token Value token* Description Example

Ter mi nal Mode ANSI/ VT102| VT52 Spedfies terminal to emuhte: VI100™ or "VT52"
VT52™. Thedefault is ANSI / VT102.

W dth 80| 132 Number of display columns. Thedefault is 80. " 80"

*Vald tokens appearin Couri er typeface. Value tokens printed in ifalics arevariables.
"NRCSet mustbe set to avalue other than "USASCI | " before @0, Gl, G2, or G3canbesetto
"I nt er nati onal ".

308 Inside the Macintosh Communications Toolbox

VT320 Tool scripting interface

Keyword token Value token* Descaiption Example

Answer Back string Spedfies string returned to remote computer " V1320"
when answerback chamcter is detected in
incoming datastream. Thedefault is "".

Aut oRepeat TRUF FALSE Spedfies whether Tab, Return, Backspace, " Tr ue"
Enter, Escape, and noncontrol keys repeat
whenhelddown. Thedefault is t r ue.

Aut oW ap TRUH FALSE Spedfies whether text automaticaly wraps to " Tr ue”
next fine when it reaches the right margin.
Thedefaultis f al se.

Cur sor bl ock| underl i ne Spedfies either a blod cursor or undeline " Bl ock"
cursor. Thedefault is under | i ne.

Cur sor Key ANSI | Appl i cation Spedfies characters transmittedwhen Cursor " ANS "
(arow) keys are pressed. The default is
ANS] .

FontSi ze 9] 12 Sizeof display font. Thedefault is 9. "12"

Q0 USASCI | | Spedfies G0 chamcter set. The default is " USASCI | "

Graphi cs| USASCI | .
| SOLat i n|
DECSuppl enent al |
UserPref erred|
Sof t Char acter Set |
I nternational *
Gl USASCI | | Spedfies Gl chamcter set. The default is "1 nternati onal "
Graphi cs| USACI |
| SOLat i n|

DECSuppl enent al |
UserPref erred|
Sof t Char acter Set |
| nt er nati onal

(continued) [=]

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.
"NRCSet mustbe setto a value other than"USASCI 1" before G0, Gl, G2,or G3 canbesetto"l nt er nat i onal ".

Appendix C: Communications Tools Scripting Interfaces

309

VI320 Tool scripting Interface (continued)

Keyword token Value token* Description Example
€74 USACI | | Graphi cs| Spedfies G2 chamcter set. The "I nternati onal "
| SOLat i n| default is User Pr ef er red.
DECSuppl ement al |
UserPreferred|
Sof t Char acter Set |
I nternational
&3 USACI | | Graphi cs| Spedfies G3 chamcter set. The "I nternati onal "
| SOLat i n| default is User Pr ef er red.
DECSuppl emnent al |
UserPreferred|
Sof t Char acter Set |
I nt ernati onal #
G DA KRB Spedfies GL chamcter set. The " Q0"
default is Q0.
&R Gl @| &3 Spedfies GR Chancter Set. The " G2"
default is G2.
I nsert Char TRUH FALSE Spedfies whether chamcters are " Tr ue”
inserted between or written over
existing text. The defalt is
fal se.
| nver seVi deo TRUE FALSE When true spedfies data is " True"
displayed on the Macintosh as
whitt text on a blak
background. The default is
f al se.
Keyboar dLocked TRUE FALSE Spedfies whether keyboard is " Tr ue"
locked. Thedefault is f al se.
Keyd i ck TRUH FALSE Spedfies whether an audble " True"
clicking sound is made when a
key is pressed. The default is
f al se.
Keypad Nureri c| Application Spedfies whether keys on the " Nuneric"

keypad generate numeric
chancters or control chamcters.
Thedefault is nuneri c.

310

Inside the Macintosh Communications Toolbox

Keyword token

Value token*

Description

Example

Local Echo

NewLi ne

NRCSet

Online

Ori gi nAt Margi n

Pr ef er r edSet

Repeat Control s

Scrol |

ShowControl s

TRUH FALSE

TRUE FALSE

string

TRUH FALSE

TRUE FALSE

DecSuppl enent |
| SOLat i n

TRUE FALSE

Junp| Snoot h

TRUH FALSE

Spedfies whether tool echoes keystrokes to
local computer. Thedefaultis f al se.

Whentrue, spedfies thattool sends both a line
feedand cariage return when the user presses
the Return key. When false, spedfies that the
toolsends onlya cariage return. The default is
fal se.

Spedfies National Rephcement Chamcter set.
Thedefault is USASCI | .

Spedfies whether keystrokes are sent to
remote computer. Thedefault is t r ue.

Spedfies whether thecursor can move outside
of scrolling region. Also deteemines whether
screen addessing is based on the complete
screen or is relative to thescrolling margin. The
defaultis f al se.

Spedfies DECSuppl emental set or
| SOLATI N Set.
DECSuppl enent al _ is thedefault.

Spedfies whether control keys repeat when
helddown. Thedefault is f al se.

Spedfies method for scrolling screen. The
default is Junmp.

Whent r ue, tool displays control chamcters
instead of exeauting them. The default is
fal se.

"Tr ue"

"True"

"French"

"True"

"True"

"I SALATI N

"True"

" Snoot h"

"True"

(continued) (=]

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.
NRCSet mustbe set to a value other than"USASCI | " before G0, Gl, G2,or G3 canbe setto

"I'nt er nati onal ".

Appendix C: Communications Tools Scripting Interfaces

311

VT320 Tool scripting interface (continued)

Keyword token Value token* Desaiption Example
Showst at usBar TRUH FALSE Spedfies whether tool shows statis bar. The " True"
defaultis f al se.
ShowTlabRul er TRUE FALSE Spedfies whether tool shows tab ruler. The default " Tr ue"
isfal se.
St atusLi ne i nvisi bl e Spedfies whether the status bar is visble. When " Vi si bl e"
vi sibl e| hostwr i t eabl e, the host can change settings
hostwri teabl e on the status bar. hostwr i t eabl e implies the
status baris visble. Thedefault is i nvi si bl e.
SwapBackspaceDel et e TRUH FALSE When true, tool swaps fun@onalty of Backspace Tr ue"
andDelete keys. Thedefaultis t r ue.
Termnal | D VT320I D] VT100I D Spedfies terminal ID. Thedefault is VT3201 D. "VT320"
VT101I D| VT102I D|
V12201 D
Ter ni nal Mode VT300- 7| VT300- 8| Spedfies terminal to emuhte. The default is "VT100"
ANS| / VT100| VT52 VT300- 7.
UserFeat uresLocked TRUH FALSE Spedfies whether host can change user settings. " Tr ue"
Thedefault is f al se.
UserKeysLocked TRUE FALSE Spedfies whether userdefined keys can be changed " Tr ue"
by hostsystem. Thedefault is f al se.
W dth 80] 132 Number of display columns. Thedefault is 80. " 80"

*Valid tokens appearin Couri er typeface. Value tokens printed in italics arevariables.
"NRCSet must be set to a value other than "USASCI | " before G0, Gl, G2, or G3 can be set to

"I'nt er nati onal ".

312 Inside the Macintosh Communications Toolbox

XMODEM Tool scripting interface

Keyword token Value token* Desaiption Example
Cr eat or string Spedfies fourbyte creator fied for " MPS "
receved text fils. Only vald for
St rai ght XMDEM and
XMOCEMText methods. The default
is t t xt, which indicates the receved
fileis a TeachText document.
MacB nar yAut oRecei v TRUH FALSE Enables MacBinary files to be recaved " Tr ue"
e automaticaly. Thedefault is f al se.
Met hod MacB nary| Spedfies type of file handing for " MacBi nary"
MacTer mi nal | XMODEM file transfers. The default is
Strai ght XMDEM NMacB nary.
XMODEMText
Option St andar d| CRC| Spedfies type of blok handling. The " St andar d"
1Kbl ocks| Gl eanLi nk defailtis st andar d.
Retry number Spedfies number of times to retty " 20"
sending block. Thedefault is 10.
Ti meQut number Spedfies time, in seconds, in which " 5"
thenext packet must be recaved. The
default is 10.
UseRenot eNamre TRUE FALSE For MacBinary and MacTerminal® " Tr ue"

methods, spedfies whether incoming
file should be named using host-
supplied file name The default is
true

*Vald tokens appearin Couri er typeface. Value tokens printed in italics arevariables.

Appendix C: Communications Tools Scripting Interfaces

313

314 Inside the Macintosh Communications Toolbox

Appendix C Useful Code Samples

THIS APPENDIX shows yousolutions to common programming problems:

m impkmenting effective idleloops

m detemining events that needto be handed by oneof the Communications Toobox managers
m customizing thetoolsettings diabg box

m determining whether the Communications Toobox managers areinstalled

m using thescripting interface

Using FrExec and ™Ide effectively

Thefolbwing codesample shows whenyourapplicationneeds to call FTExec and TMIdle during a filetransfer.
PROCEDURE Dol dl e;

VAR

BEG N

t heWndow : W ndowPt r; { The target to idle}
doFT : BOQLEAN; { route data to FT Tool }
doT™M : BOQLEAN; { route data to Term Tool
savedPor t GafPtr; { for later reset }
Get Port (savedPort) ; { Save for later }
t heWndow : = Front Wndow { Gme the first one }
{ Gveidletine for the wi ndow }
WHI LE (theW ndow <> NI L) DO BEGN
(-k
Make sure the w ndow bel ongs to the application
*)
Set Port (t heW ndow) ; { Focus on it }
I F gConn <> NI L THEN { Gvetineto the connection }
CM dl e(gConn);
doFT : = FALSE; { Send data to FT tool }
doTM: = TRUE { Send datato termnal tool }

IF gFT <> NIL THEN BEG N

{ Ist

here a file transfer in progress ?? }

| E BAND(gFTAA.flags, ftlsFTMbde) <> 0 THEN BEG N

END

ELSE BEG N
| F g\

END;

doFT : = TRUE

gWasfFT : = TRUE

{ If the FT tool uses ny connection then }
{ don't route data to the termnal tool }

| F BAND(gFT . attributes, ftSanmeGrcuit) <> 0 THEN
doTM: = FALSE;

{ I'n progress }

sFT THEN BEG N
{ FT no longer in progress }
gWasFT : = FALSE;

{ if it failed, alert }
| F BAND(gFTA"~.flags, FTSucc) = 0 THEN
; { Handl e error }

*

Re-add the file transfer auto-receive string
that was renoved at FTStart()

*)

{ Aut oReceive string was recei ved? }

| F gSt

artFT THEN
DoRecei ve;

316 Inside the Macintosh Communications Toolbox

}

END, { No FT in progress }

| F doFT THEN { Gvetineto FT tool }
FTExec(gFT);

END, { Good FT Hand e }

IF gTerm <> NI L THEN BEG N
{ Send data to termnal }
| F doTM THEN BEG N
TMdl e(gTerm;{ So it can blink its cursor,
etc }

Ter nRecvPr oc; { Send Data to the termnal }
END, { Send data to terninal }

END; { Cood Terminal }

{ Try the next w ndow }
t heWndow : = W ndowPt r (W ndowPeek(t heW ndow)*. next W ndow) ;

END; { while each wi ndow }

Set Port (savedPort) ; { Back to the way it was }
END;, { Dold e }
PROCEDURE Ter nRecvPr oc;

VAR
thebr . CMVErr, { Any errors }
st atus : Cw\stat Fl ags; { For the conn tool }
si zes . BufferSizes;
fl ags ;| NTEGER;
BEG N

I F (gConn <> NIL) AND (gTerm <> NI L) THEN BEG N

{ Get the state of the connection }
thebr := Cvbtatus(g@nn, sizes, status);

IF (theErr = noErr) THEN BEG N

{ Route the data if we have any }
| F (BAND(st atus, cnftatusDataAvail) <> 0) AND
(sizes[cnDataln] <> 0) THEN BEG N

{ Don't overflow ny buffer }
| F sizes[cnDatal n] > kBufferSize THEN
si zes(cnDatal n] : = kBufferSize;

{ Tell the tool to get the data }
theBr := OVWRead(gComn, gBuffer, sizes[cnDataln],
cnbData, FALSE, N L,O, flags);

{ Send data to the termnal }
IF (theErr = noErr) THEN
si zes[cnDatal n] := TMstrean{gTer m gBuf fer,
si zes[cnDatal n], fl ags) ;
END; { sizes <> 0}

END, { Good Status}

Appendix C: Useful Code Samples 317

IF (theErr <> noErr) THEN
Al ertUser('Couldn't send data to termnal', FALSE);

END, { Good term& conn }

END;, { TernRecvProc }

318 Inside the Macintosh Communications Toolbox

Determining events for Communications Toolbox managers

The folbwing routines show how an application can determine if an event needs to be handed by one of the
Communications Toobox Manager event-processing routines.

FUNCTI ON | SFTW ndow(t heW ndow. W ndowPt r): BOOLEAN,
VAR

pW ndow. W ndowPt r ;

t enpFT: FTHandl e;

hFT: FTHandl e;
BEG N

| SFTW ndow : = FALSE;

| F W ndowPeek(t heW ndow) ~. wi ndowKi nd <> di al ogKi nd THEN
Exit (I sFTWndow) ;

tenpFT := FTHandl e(Get WRef Gon(t heWWndow));
pW ndow := Front Wndow

WH LE pW ndow <> NI L DO
BEG N
hFT : = Get hFT(pW ndow) ;
| F hFT <> NIL THEN
BEG N
| F LONG@ NT(hFT) = LONG NT(tenpFT) THEN
BEG N
| SFTW ndow : = TRUE
Exi t(1 sFTWndow) ;

END;
END;
pW ndow : = W ndowPt r (W ndowPeek(pW ndow) ~. next Wndow) ;
END;
END;
FUNCTI ON | sFTEvent (theEvent: Event Record): FTHandl e;
VAR
theWndow : W ndowPtr;
hFT . FTHandl e;
BEG N
| sFTEvent = N L;
theWndow := NL;

CASE t heEvent . what OF

aut oKey, keyDown: { no Command- key equival ents on a Macintosh Plus }
BEG N
t heWndow : = Front W ndow
END;

nouseDown:
BEG N
| F Fi ndW ndow(t heEvent . where, theWndow)=0 THEN
END;

updat eEvt :
BEG N
t heWndow := W ndowPtr (theEvent. nessage);
END;

activat eBEvt:
BEG N

Appendix C: Useful Code Samples 319

t heWndow : = W ndowPt r (theEvent . nessage) ;

END;

END; {case}

| F theWndow <> NI L THEN

BEG N

| F | sFTW ndowm(t heW ndow) THEN
BEG N
hFT : = FTHandl e(Get WRef Gon(t heWndow));
| sFTEvent : = hFT;
END

ELSE
BEG N

hFT : = Get hFT(t heWndow);
| F hFT <> NIL THEN
BEG N
| F BANO(hFTA™ . f 1 ags, FTIsFTMode) <> 0 THEN
| F BANO hFTA™, attri but es,
FTSareCircuit) <> 0 THEN
| F theEvent.what I N
[autoKey, keyDown] THEN
| sFTEvent : = hFT;
END;
END;
END;
END;

{$S Event Seq)
FUNCTI ON | sConnEvent(t heEvent: Event Record): ConnHandl e;
VAR

t heWndow : W ndowPtr;

hConn : ConnHandl e;
BEG N

| sConnEvent = N L;

t heWndow = N L;

CASE t heEvent . what OF
aut oKey, keyDown: {no Command- key equival ents on a Macintosh Pl us }
BEG N
t heWndow : = Front W ndow

END;

nmouseDown:
BEG N
| F Fi ndW ndow(t heEvent . where, theWndow)=0 THEN
END;

updat eEvt :
BEG N
t heWndow
END;

activat ebvt:
BEG N
t heWndow
END;

END; (case)

| F theWndow <> NI L THEN

BEG N

| F 1 sConnW ndow(t heWndow) THEN
BEG N

W ndowPt r (theEvent . nessage) ;

W ndowPt r (theEvent . nessage) ;

320 Inside the Macintosh Communications Toolbox

hConn : = ConnHandl e(Get WRef Con(t heW ndow)) ;
| sConnEvent : = hConn;
END;
END;
END;
{$S Event Seq)
FUNCTI ON | sTer mEvent (t heEvent: Event Record): TernHandl e;
VAR

t heWndow : W ndowPtr;

hTerm : TernHandl e;
BEG N

| sTernEvent := N L;

theWndow := NL;

CASE t heBvent . what OF

aut oKey, keyDown: { no Command- key equival ents on a Macintosh Plus }

BEG N
t heWndow : = Front W ndow
END;
mouseDown:
BEG N
| F Fi ndW ndow(t heEvent . where, theWndow)=0 THEN
END;
updat eEvt :
BEG N
t heWndow
END;

activat eEvt:
BEG N
t heWndow
END;

END; {case}

| F theWndow <> NI L THEN
BEG N
| F | sTer MW ndow(t heWndow) THEN
BEG N
hTerm : = Ter nHandl e(Get WRef Con(t heW ndow)) ;
| sTermEvent := hTerm

W ndowPt r (theEvent . nessage) ;

W ndowPt r (theEvent . nessage) ;

END;
END;

END;

PROCEDURE Mai nLoop;

VAR
t heBvent . Event Record;
t heWndow : W ndowPtr;
t heW ndowPeek . W ndowPeek;
t heGntr ol . Control Handl e;
savedPort . Gafbtr;
t hekey . CHAR
processed : BOOLEAN,
result . LONQ NT;
hFT . FTHandl e;

Appendix C: Useful Code Samples

321

BEG N
VWH LE NOT done DO

BEG N
Systenirask;
Dol dl €; { application idl e loop procedure }
| F Wai t Next Event (ever yEvent, t heEvent, 0, N L) THEN
BEG N
hFT : = | sFTEvent (theEvent);

IF hFT <> NIL THEN
FTEvent (hFT, theBEvent)
ELSE
BEG N
CASE t heEvent . what OF
aut oKey, keyDown:
DoKey(t heEvent) ;
nmouseDown:
Dod i ck(t heEvent);
updat eEvt :
DoUpdat e(t heEvent) ;

app4Evt :
DoResume(t heEvent) ;
activat ebEvt:
DoAct i vat e(t heEvent) ;
END; { case }
END;
END; { gne }
END, { if done }
END;

322 Inside the Macintosh Communications Toolbox

The custom tool-settings dialog box

Thesample codethat follbows shows how your application can use Connection Manager routines to present the user with a
custom toolsettings diabg box.

Choose.p

This performs thestandard diabg boxforconfiguration and selection of a Connectiontool

CONST
Choosel t entX = 1; { Location of Dialog Box Itens }
Choosel t emCancel = 2;
Choosel t enfPopup = 5;
ChooseResour ceBase = 256;
TYPE
di al ogl nf oP = Adi al ogl nfo; { storage private to the
configuration dialog box }
di aloglnfo = RECORD
t enpPr ocl D | NTEGER; {MJUST be the 1st itemin record }
magi cCooki e LONG NT; { MUST be the 2nd itemin
the record }
tenpConfig Ptr; {configuration record being used
these are needed by the filter
procedure }
count | NTEGER,
END;
FUNCTI ON ChooseEnt ry(VAR t heHandl e: ConnHandl e; where: Point): | NTEGER,

{ theHandl e is the current connection hand e.
where is the upper-left corner of the selection dialog box? }

VAR

Max Ext ent
ad ds ze

SavedPor t
TheW ndow
TheD al og
| nf oP

t enpTool
ol dNare

t heGntr ol
hMenu
theltem

i tenkKi nd

i tenHandl e

i t enRect
thePtr

confi gSi ze .:

ol dval
newval

hDI TL

Rect;
Poi nt ;

G afPtr;

W ndowPt r;
Di alogPtr;
di al ogl nf oP,

St r 255;
St r 255;

Contr ol Handl e;
MenuHandl e;

| NTEGER;

| NTEGER;

Handl e;

Rect;

Ptr;
LONG NT;

| NTEGER,;
I NTEGER,;

Handl e;

Lot Yt Vet W e W e W e P W e W e Y e Lt

Lt B e Yot Ml e Voo

max si ze of dialog box in global coordinates }
ol d size of dialog box before resizing }

saved port }

for invalidating after
t he choose di alog box }
pointer to dialog data }

currently sel ected tool
initially selected tool

Pop-up Control }
handl e to pop-up nmenu control's menu }
for manipul ating dialog box itens }

Di sposDi al og }

nane }
nane }

ptr to tenporary configuration record }
Si ze of the configuration record }

ol d pop-up menu val ue }
current pop-up nenu val ue }

handle to DITL to append }

Appendix C: Useful Code Samples 323

Label

thebr . OSErr; { for building list of tools }

1; { deanup }

BEG N

324

ChooseEntry : = ChooseFai | ed; { pessinmstic }
I ni tCursor; { reset to arrow}
Get Port (savedPort) ;

thebDalog := nil;

infoP := nil;

t heD al og : = Get NewDi al og(chooseResourceBase, NIL, PO NIER(-1));

IF theDialog = NIL THEN { unsuccessful }
Coto 1; { Go deanup }

Set Port (t heDi al og) ;
i nfoP : = dialogl nfoP(NewPtr (SI ZEG-(di al ogl nfo))); { internal data space }
IF infoP = NIL THEN { no nmenory }

Coto 1; { Go deanup }
Set WRef Con(t heDi al og, LONG NT(i nfoP)); {'set the refcon to infoP}
W TH i nf oP* DO
BEG N

count := Count Dl TL(theDi al og);

tenpProcl D : = t heHandl e*”. procl D
CMGet Tool Nare(t enpProcl Db tenpTool);
ol dName : = tenpTool ;

thePr := theHandl e*. config;

#itens in DITL }

get the tool proclD }
get the toolnane }
save the toolnanme }

{
{
{
{

{ get the configuration

field }
configSize : = GetRrSize(thePtr); { get size of

configuration record }
| F Men&ror <> noErr THEN {
Coto 1; {
tempConfig : = Newktr(confi gSi ze); {
| F tenpConfig = NIL THEN {
CGoto 1; {
{

Bl ockMove(thePtr, tenmpConfig, configSize);
{ set up pop-up nenu }

menory problem}
Go deanup }

copy it if possible...}
didn't get it }

Go d eanup }

copy it }

theQntrol := Get NewControl (chooseResour ceBase, theD al og);
| F thentrol = NIL THEN
Goto 1; { Go deanup }

hMenu : = Get MHandl e(chooseResour ceBase) ;
I F hMenu = NI L THEN

Coto 1; { Go deanup }
{ Enter all of the connection tools into the pop-up nenu }
theltem := 1;
thegr := noErr;
WHI LE t heEr = noErr DO { while no problens }
BEG N
theBr := CRMZtIndTool Nane(C assCM theltem tenpTool);
IF theEr = noErr THEN { no probl ens ociffer }
BEG N
| F tenpTool <> '' THEN { got one! }

Inside the Macintosh Communications Toolbox

BEG N
{ Oig. tool? Case INsensitive? D acrit
sensitive? }
| F Equal String(tenmpTool, ol d\Nane, FALSE, TRUE)

THEN ol dVal : = theltem

AppendMenu(hMenu, ' X);
{ thisis to prevent problens with special
nmenu characters, like /)
Set It em(hMenu, theltem tenpTool);
{ get the next one pl ease }

theltem:= theltem + 1;
END;
END;
END; {whil e}
theltem:= theltem - 1; { One too many above }
| F oldval = 0 THEN { Qurrent tool not in nenu }

BEG N
{ The user has noved the file out of the comunications directory.
We can show the nane, but this menu itemneeds to be disabled }
theltem:= theltem + 1; { Update these counts }
ol dval := 1;
| nsMenul t enfhMenu, ' X', 0);
Set It em(hMenu, ol dval , ol dNan®e) ;
Di sabl el t enfhMenu, ol dval); { disable it }
END;

Set @ | Max(theControl, theltem; { max of ctl = numtools }

{ fix rectangle size in case of control resize }

GetO ten(theDi al og, Chooseltenfopup, itenKind, itenHandl e, itenRect);
itenRect := theQntrol M. contrl Rect;

Set O ten(theDi al og, ChooseltenfPopup, itenkind, itenHandl e, itenRect);

ol dS ze : = theD al og". port Rect . bot Ri ght ; { old size of dialog box }

newal := ol dval;
Set @I Val ue(t heControl, ol dval); { set up pop-up val ue }

{ get DITL to append }
hDI TL : = CMset upPrefli ght (tenpProcl D, magi cCooki €);

{
Set the dialog box's text info based on
the tool's finf resource
}
AppendDl TL(t heDi al og, hDI TL, appendD TLBottom); { append it }
IF hDITL <> NIL THEN { done with the DITL }

Di sposHandl e(hDI TL) ;
{ set up theitens }
CWVBet upSet up(t enpProcl D, tenpConfig, count+1, theD al og, magi cCooki e);

MoveW ndow(t heDi al og, where. h, where.v, TRUE; { move di alog box }
ShowN ndow(t hebDi al og) ;

{ Get dialog box size}
maxExt ent : = W ndowPeek(t heDi al og) ~. st r ucRgn**. r gnBBox;

Appendix C: Useful Code Samples 325

theltem: = 0;
WHI LE (theltem <> ChooseltentX) AND (theltem <> Choosel tenCancel) DO
BEG N
Modal Di al og(@hooseFilter, theltem); { nodal dialog box }
| F theltem = Choosel t emPopup THEN { did pop-up get hit?}
BEG N
{ what is newvalue? }
newval := GetQl Val ue(theControl);
| F newwal <> oldval THEN
{ it has changed! }
BEG N
{ cleanup the setup }
CWVbBet upd eanup(tenmpProcl D, tenpConfig, count+1,
t heD al og, magicCooki e);
Short enDl TL(t heDi al og,
Count DI TL(theDi alog) - count);
{ done with tool }
CWVBet upPostfl i ght(tenpProcl D);
{ reset size}
Si zeW ndow(t hebDi al og, ol dS ze. h,
ol dS ze.v, TRUB;

{ get newtool nane }

Get It em(hMenu, newMal , tenpTool);

{ get proclD }

tenpProcl D : = CMGet Procl O t enpTool) ;

hDI TL : = CMset upPrefli ght (t enpProcl D,

nmagi cCooki €) ;
{ newD TL }
{
Set the dialog box's text info based on
the tool's finf resource
}

{ append it }

AppendDl TL(t heDi al og, hDI TL, appendDl TLBottom;
IF hDITL <> NIL THEN

{ get ridof it }

Di sposHandl e(hDI TL) ;

{ get rid of old config }
Di sposPtr (tenmpConfi g);
tenpConfig := N L; { pessimstic}
{ and get a new one }
CWMVDef aul t (tenpConfi g, tenmpProclD, TRUB ;
if tenpConfig = NIL then
BEGA N { Cean up fromerror}
Short enDl TL(t heDi al og,
Count DI TL(theDi alog) - count);
CMBet upPostflight(tenmpProcl D);
{ Qut of nenory }
chooseEntry : = chooseFai | ed;
CGoto 1; { Finish clean up }
END;

CWVBet upSet up(t enpProcl D, tenpConfig, count+1,
{ set up the itens }
t heD al og, magicCooki e);

ol dval := newval; { Nowthe old tool }

326 Inside the Macintosh Communications Toolbox

Uni onRect (naxExt ent ,
W ndowPeek(t heDi al og) ~. st rucRgn*”. r gnBBox,

maxExt ent) ; {grow max size }
END;
END, { item= count }
| F theltem > count THEN { tool's itemhit }

CWvbet upl tenft empProcl D, tenpConfig, count+1, theD al og,
t heltem nagicCookie);

END; { while theltem NOT OK or Cancel }
H deW ndow(t heDi al og) ; { hide the dialog box }
newval := GetQl Val ue(theControl); { check name change }

Get It em(hMenu, newhal , tenpTool); { get the new nane }

tenpProcl D : = CMGet Procl O t enpTool) ;

{ Cean out the old tool }

QvBet upd eanup(tenpProclD, tenpConfig, count+l, theD al og, nagi cCookie);
Short enDl TL(t heDi al og, Count DI TL(theDi alog) - count);

CMBet upPostflight(tenpProcl D);

| F theltem = Choosel t enOK THEN
BEG N { has the nane of tool changed? }
| F NOT Equal String(ol dNane, tenpTool, FALSE, TRUE THEN
BEG N
ChooseEntry : = ChooseOKMaj or ;
tenpProcl D : = CMGet Procl O t enpTool) ;

| F NOT DoNewConn(GnnHandl e(t heHandl e), tenpProcl D,
t enpConfig) THEN
ChooseEntry : = ChooseAborted;

| F theHtandl e = NI L THEN { disaster! }
ChooseEntry : = ChooseDi sast er

ELSE

BEG N
configSize := GetPtrSize(tenpConfig);

Bl ockMove(tenpConfi g,

t heHandl er”. config, configSi ze);
{ validate for kicks }
| F CWwal i dat e(t heHandl e) THEN

END;
END
ELSE
BEG N { sane tool, so validate }
ChooseEntry : = ChooseOKM nor ;
configSize : = GCetPRrSi ze(tenmpConfig);
Bl ockMove(tenpConfi g, theHandl e®”. config, configSize);
| F CWwal i dat e(t heHandl e) THEN
END;
END
ELSE { user hit CANCEL }

ChooseEntry : = ChooseCancel ;

{Nowwe need to go through the window |list and update all areas that were ever covered up by
the configuration dialog box which has grow, and potentially shrunk, too. W have kept
track of the largest size of the dialog box. Ve will now convert it to loca coordi nates
and i nval rect everybody in the w ndow list.}

t heWndow : = Front W ndow

VWHI LE t heWndow <> NI L DO

BEG N

Appendix C: Useful Code Samples 327

Set Port (t heW ndow) ;

itenRect := naxExtent;

{ get max extent in |loca coordi nates }
A obal ToLocal (itenRect. topLeft);

G obal ToLocal (itenRect. bot Ri ght);

I nval Rect (itenRect);

t heWndow := W ndowPt r (W ndowPeek(t heW ndow) . next W ndow) ;
END;

END, { with}
1:{ dean everything up }
IF theO alog <> nil THEN Di sposDi al og(t helO al og) ;
IF infoP <> nil THEN
BEG N
I F infoP*. tempConfig <> nil THEN Di sposPtr (infoP*.tenpConfig);
Di sposPtr(Ptr(infoP));
END;
Set Port (savedPort); { back to original port }
END;

{ change fromone connection type to another }
FUNCTI ON DoNewConn(VAR hConn: ConnHandl e; t enpPr ocl D: | NTEGER,;
tempConfig:Ptr): BOOLEAN,

VAR
savedDesi redSi zes : Buf fer Si zes;
savedRef Con : LONG NT;
savedUser Dat a : LONG NT;
savedFl ags : LONG NT;
savedReser ved0 : LONG NT;
savedReser vedl : LONG NT;
savedReser ved2 : LONG NT;
st atus : LONG NT;
si zes : Buf fer Si zes;
thebr : CMErr;
BEG N
thebr := Cvbtatus(hQnn, sizes, status); { get conn status }
IF theBr = noErr THEN { &K}

| F BAnd(st at us, CMstat usOpen+CMstat usOpeni ng) <> 0 THEN

{The connection is open. Confirmwhether the user really wants to close the
connection, setting result to FALSE if user aborts}

W TH hConn™** DO { save all desired paraneters }
BEG N

savedFl ags : = fl ags;

savedDesi redSi zes : = Buf S zes;

savedRef Con : = ref con;

savedUser Dat a : = userDat a;

savedReser ved0 : = reservedO;
savedReservedl : = reservedl;
savedReserved2 : = reserved2;
END;
CMVDi spose(hConn) ; { get rid of old conn}

hConn : = CWNew(tenpProcl D, savedFl ags, savedDesiredSi zes, savedRef Con,
savedUser Dat a) ;
| F hConn <> NIL THEN
W TH hConn** DO BEG N { Restore other fields }

328 Inside the Macintosh Communications Toolbox

END;

reservedO :
reservedl :
reserved?2 :

savedReser vedO;
savedReser vedl;
savedReser ved2;

END;
DoNewConn : = TRUE

{ Choose dialog box filter procedure }
FUNCTI ON ChooseFilter(theb alog : DialogPtr; VAR theEvent: Event Record;

VAR

BEG N

VAR theltem | NTEGER) : BOOLEAN,
theGntrol : Contr ol Handl e;
where : Poi nt ;
result : BOOLEAN;
t hekey : CHAR
savedPort : G afPtr;
t heWndow W ndowPt r ; { for event processing }
pDi al ogl nfo : Di al ogl nf oP, { dialog box private data }
theltem: = 0; { nothing initially }
result := FALSE { for now..}

pDi al ogl nfo : = Di al ogl nf oP(Get WRef Con(theDi al og));{ get the dl og data }
W TH pDi al ogl nf o® DO
BEG N
resut := QvBetupFilter(tenpProcl D, tenpConfig, count+l, theD alog,
t heBvent, theltem magi cCooki e);

ChooseFilter :=result; { TRUE or FALSE }
| F result THEN { it WAS processed }
Exi t(ChooseFil ter); { so exit }
END;
CASE t heEvent . what OF { process the event }
updat eEvt :
BEG N
Get Port (savedPort); { get the port }

t heWndow : = W ndowPt r (theEvent . nessage) ;

{ get the update owner }
Set Port (t heW ndow) ;
Begi nUpdat e(t heWndow) ;

Er aseRect (theW ndow". port Rect) ; { erase }
| F theWndow = theD al og THEN { process if ours }
UpdtDi al og(t heDi al og, theWndow*.vi sRgn);
EndUdat e(theW ndow) ; { otherwise eat it }
Set Port (savedPort) ;
result := TRUE { Ve regenerate updates when
we have fi nished choosi ng}
END;
nmouseDown:
BEG N
where : = theBEvent.where; { where was the nouse-down }
d obal ToLocal (where); { convert to |local coordinates }

| F Fi ndControl (where, theb al og, theGntrol) <> 0 THEN
(dick in control ?}
BEG N

Appendix C: Useful Code Samples 329

| F TrackControl (theGntrol,
where, PO NTER(-1)) <> 0 THEN
{ track it }
BEG N
result := TRUE { we got the event }
theltem : = FindDlten{theDi al og, where) + 1;
{ soitemhit }

END
ELSE BEG N { tracked out of it }
result := TRUE
theltem:= 0; { sonoitemhit }
END;
END;
END;
keyDown: { keyDown }
BEG N
{ Standard return/enter/cmd '.' processing }
END;
ot her wi se
BEG N
END;
END; { case }
ChooseFilter :=result;
END;
Choose. r

#defi ne ChooseResour ceBase 256

resource ' DLAG (ChooseResourceBase, "setup dialog") {
{0, 0, 70, 450}, dBoxProc, invisible, noGAwy, 0x0, ChooseResour ceBase,
"Setup Di alog Box"

1

resource ' CNTL' (ChooseResourceBase, "Tools control ") {
{30, 5, 50, 300},

popupRi ght Just, /* right just */
vi sibl e,
90, /[* wdth of title */
ChooseResour ceBase, /*menu associ at ed */
popupMenuCCEFpr oc, /* no options CDEF 63 = 16 * 63 + variation code */
, /* reference nmenu 11000, pop-up title width 50 */
"“Method: " [* Title */

b
resource 'DITL' (ChooseResourceBase, "Basic configuration DI TL") {
{ /* array DI TLarray: 5 el enents */
{32, 370, 52, 440),
Button {
enabl ed, "' [* [1] */
1

{5, 370, 25, 440}, I*[2] */
Button {
enabl ed, "Cancel"

b
{28, 366, 56, 444}, /* [3] outline of OK button */
Userltem {
enabl ed
},

{5, 5, 21, 200}, [* [4] title */

Stati cText {
di sabl ed, "Connection Confi guration”
}l

330 Inside the Macintosh Communications Toolbox

(30, 5, 50, 300}, [* [5] select tool popup nenu user item*/
Userltem {

enabl ed

}

1

resource ' MENJ (ChooseResourceBase, "Popup Menu') {
ChooseResour ceBase, textMenuProc, all Enabl ed, enabl ed, "Choose Menu',
{ /* Itens are added to this nenu at execution tine */

}

Appendix C: Useful Code Samples 331

Determining whether the managers are installed

This sample code shows how your application can determine whether the Communications
Toolbox managers are installed.

FUNCTI ON I nstal | ed : BOOLEAN,
CONST
ConmiTool boxTrap = $8B;
Uni npl enent edTr apNunber = $9F;

BEG N
Installed : = TRUE;
| F NGet Tr apAddr ess(Uni npl enent edTr apNunber, OSTrap) =
NGet Tr apAddr ess(Conmilool boxTrap, OSTrap) THEN
BEG N
Installed : = FALSE;
END;
END;

332 Inside the Macintosh Communications Toolbox

Using the scripting interface

This sample code shows how your application can save the settings of a communications tool by using the
Communications Toolbox scripting interface. After initialization, the code shown first checks if a preferences folder,
which contains tool settings written in preference files, already exists. If so, the application uses the settings in this file.
Otherwise, the code generates a new preferences file.

/*

** Constants and Vari abl es

*/

#def i ne kCr eat or Type " ACTB'

#defi ne kPr ef Type ' PCTB'

#def i ne kPref erenceFi |l eNamre "\ pM/Preferences”

OSEr r OosErr = nokrr;

SysEnvRec t heWor | d;

Cl nf oPBPt r i nf oPB = NewpPtrd ear (si zeof (*i nfoPB));
V\DPBPt r wdPB = NewpPtrd ear (si zeof (*wdPB)) ;
HPar nBl kPt r di r PB = NewPtrd ear (sizeof (*dirPB));
short pr ef VRef Num

| ong prefDirl D

Str63 pref Fi | eNane = kPreferenceFi | eNaneg;

short pr ef Ref Num

ConnHandl e pr ef Conn;

ConnHandl e docConn;

CMVBuUf f er Si zes si zes ={0 0 0 O O O, O, 0};
Poi nt wher e ={ 75, 75 };

Str63 t ool Nane;

short procl D

Handl e h;

Ptr p;

/*

** |nitialization

*/

InitGaf ((Ptr) &qd.thePort);

InitFonts();

I ni t Wndows();

I nit Menus();

TEInit();

InitDi al ogs(nil);

InitCursor();

oskErr = InitCTBUilities();

osErr = InitCRV);

osErr = InitCM);

/* find the systemfolder's volune reference nunber and directory ID */
osErr = SysEnvirons(curSysEnvVers, &t heWrld);
(*wdPB) . i oVRef Num = t heWbr | d. sysVRef Num
if (noErr == (osErr = PBGet WD nfo(wdPB, false))) {
/* create the preferences folder */
(*dirPB).fil eParamioVRef Num = (*wdPB).i oWWDVRef Num

Appendix C: Useful Code Samples 333

(*dirPB).fileParamioDi rlD
(*dirPB).fil eParam i oNanePtr

OSErr

i f (dupFNErr

if (noErr

(*wdPB) . i oVDDi r | D;
"\ pPreferences"”;

PBDi r Cr eat e(di r PB,
oSErr)
nokErr;
osErr) {

/* does the preference file exist? */

pr ef VRef Num = (*dirPB).fil eParam i oVRef Num
prefDirlD (*dirPB).fileParamioDirl D,

fal se);

OosErr

(*infoPB). hFil elnfo.ioFDi rlndex = 0;
(*infoPB). hFil el nfo.ioVRef Num = pref VRef Num
(*infoPB).hFilelnfo.ioDirID = prefDirlD
(*infoPB). hFil el nfo.ioNamePtr = prefFil eNane;

OSErr PBGet Cat | nf o(i nf oPB,
if (fnfErr osErr) {
/* no, so create a new preference file */
if (noErr (osErr HCr eat e(pref VRef Num prefDirl D,
prefFil eNane, kCreatorType, kPrefType))) {

fal se);

HCr eat eResFi | e(pref VRef Num prefDirl D, prefFileNane);

if (noErr (osErr ResError())) {
/* open the preference file */

pref Ref Num = HOpenResFi | e(pref VRef Num prefDirlD,
prefFil eNane, fsRdW Pernj;
pref Ref Num) {
osErr ResError();
} else {
/* create a default connection */
osErr = CRMzet | ndTool Nanme(cl assCM 1,

if (-1 ==

334

Inside the Macintosh Communications Toolbox

t ool Nan®) ;
if (noErr == osErr) {
pref Conn =
CWNew(CMzet Pr ocl D(t ool Nane) ,
cnData, sizes, 0, 0);

/* allow the user to select a
prefered tool and configuration */
osErr = CMChoose(&pr ef Conn,
where, nil);

/* wite the prefered tool
the preference file */
HLock((Handl e) pref Conn);
CMGzet Tool Namre((**pr ef Conn) . procl D,

name to

t ool Nan®e) ;
HUnl ock((Handl e) pref Conn);
h = NewHandl e(l + tool Name[0]);
HLock(h);

Bl ockMove(t ool Name, *h,
Get Handl eSi ze(h));
HUnl ock(h) ;
AddResource(h, 'pTXT,
Rel easeResource(h);

0, ")

/* wite the prefered configuration
to the preference file */

p = CMzt Confi g(pref Conn);

h = NewHandl e(CGetPtrSi ze(p));
HLock(h);

Bl ockMove(p, *h, GetHandl eSize(h));
HUnl ock(h);

AddResource(h, 'cTXT', 0, "");

Rel easeResour ce(h);

Di sposPtr(p);/* dispose of the
connection */

CMDi spose(pref Conn) ;

/* close the file so that it can be
used

in a shared environnent */

Cl oseResFi | e(pref Ref Num ;

}
}
}
}
}

}

/*

** New Docunent

*/

/* focus on the preference file */
pref Ref Num = HOpenResFi | e(pref VRef Num prefDirl D, prefFil eNane, fsRIWPern;
if (-1 1= prefRefNum {
/* get the prefered tool name */
h = CGetl Resource(' pTXT', 0);
HLock(h);
procl D=CMzet Procl D(*h) ;
HUnl ock(h);
Rel easeResour ce(h);
if (-1 !'=proclD) {
/* create a new connection */
docConn = CMNew(procl D, cnData, sizes, 0, 0);
/* set the prefered configuration */
h = Get1Resource(' cTXT', 0);
HLock(h);
osErr = CMbset Confi g(docConn, *h);
HUnl ock(h) ;
Rel easeResource(h);
} else {
/* the Prefered tool could not be found so ...*/
osErr = CRMzet | ndTool Nanme(cl assCM 1, tool Nane);
docConn = CMNew(CMzet Procl D(t ool Nane), cnData, sizes, 0, 0);
osErr = CMChoose(&docConn, where, nil);

}
Cl oseResFi | e(pref Ref Num ;

Appendix C: Useful Code Samples 335

336 Inside the Macintosh Communications Toolbox

Glossary

background procedure A procedure that runs while the
user is using another application.

cache region The area in the terminal emulation window in
which information is displayed that has scrolled out of the
terminal emulation region.

channel A logical line of communication that exists on a
connection.

Communications Resource Manager The
Communications Toolbox manager that makes it easier for
your application to register and keep track of
communications resources.

communications resource record A

Communications Resource Manager data structure that
contains information such as the type of device the record
represents, and whether the device is available for use.

Communications Toolbox utilities A Communications
Toolbox manager that contains useful routines, most of
which are not specific to programming networking or
communications applications.

completion routine Any application-defined code to be
executed when an asynchronous call to a routine is
completed.

connection A logical line of communication between two
entities.

Connection Manager The Communications Toolbox
manager that makes it easier for you to implement and
maintain data connections.

connection record A Connection Manager data structure
containing information that describes one instance of a
connection tool.

connection tool A self-contained collection of resources
that implements a specific connection protocol.

control definition procedure A procedure called by the
Control Manager when it needs to implement the functions
of a specific type of control.

entity A task or process running on a computer. Two
entities can coexist on the same computer if the computer is
multitasking, such as when applications are running in a
MultiFinder environment.

File Transfer Manager The Communications Toolbox
manager that makes it easier for you to implement file
transfers.

file transfer record A File Transfer Manager data structure
that contains all the specifics about a file transfer. For
example, the file transfer record might show that the File
Transfer Manager should use the XMODEM tool to perform
file transfers, and that the tool should not display any
custom menus while transferring files.

file transfer tool A self-contained collection of resources
that implements a specific file transfer protocol.

filter procedure A routine that ModalDialog, NuLookup,
and NuPLookup call to filter or modify events that occur in a
dialog box.

Macintosh Toolbox The software in the Macintosh ROM

that helps you implement the standard Macintosh user
interface in your application.

337

Name Binding Protocol (NBP) The AppleTalk transport-
level protocol that translates a character string name into the
internet address of the corresponding socket client. NBP
enables AppleTalk protocols to understand user-defined
zones and device names by providing and maintaining
translation tables that map these names to corresponding
socket addresses.

routine A function or procedure.

terminal emulation The process of making a computer
emulate the characteristics of a terminal.

terminal emulation buffer The area in memory that
contains the data displayed in the terminal emulation region.

terminal emulation region The area in the terminal
emulation window in which your application writes the
output of its terminal emulation. This region is the same size
(number of rows and columns, or pixels) as the screen of the
terminal your application is emulating.

338

Inside the Macintosh Communications Toolbox

terminal emulation window The window in which your
application displays a terminal emulation region and cache
region.

terminal environment record A Terminal Manager data
structure that reflects the internal conditions of a terminal
tool.

Terminal Manager The Communications Toolbox
Manager that makes it easier for you to implement terminal
emulation.

terminal record A Terminal Manager data structure that
contains the specifics of a terminal emulation. For example,
the terminal record might show that your application is
emulating a VT320 terminal, and that the Terminal Manager
should try to cache the terminal window before clearing it.

terminal tool A self-contained collection of resources that
implements the characteristics of a specific terminal.

zone An arbitrary subset of the networks within an internet.

Index

A

Activate events
in Connection Manager 61
in File Transfer Manager 151
procedure to 20
in Terminal Manager 105
ADSP Tool scripting interface
295-298
APDA xiv
AppendDl TL routine
description of 198-200
sample used in code 200, 325, 326
Apple Communications Library xiv
Apple Developer Programs xv
Apple Modem Tool scripting
interface 299-300
Apple SuperDrive 5
AppleTalk 190, 202-205
Apple Technical Library xiv
application-provided routines
for Connection Manager 69
for File Transfer Manager 156-160
for Terminal Manager 114-118
Assembly language
calling Connection Manager 73
calling Communications Resource
Manager 187
calling File Transfer Manager
165-166
calling Terminal Manager 124-125
calling Utilities 214
aut oRec String 135
Aut oRecCal | back procedure
sample used in code 18

B

br eakPr oc procedure

in terminal record 83
bundle resource 217-218
byte stream 29

C

cachePr oc routine

in terminal record 83
cache region 78 (fig.), 79
caching lines 116-117
" cdef' Code resource 217
channel 29-30
Choose. p sample code 323-330
Choose. r sample code 330-331
clean-up operations

Connection Manager 45
File Transfer Manager 146

Terminal Manager 96
"¢l oc' code resource 218
CMRbor t routine 49
cmAbor t Msg message 238
OMVAccept routine 52
cmAccept Msg message 238
QOVAct i vat e routine

description of 61

sample used in code 20
cmAct i vat eMsg message 238
OVAddSear ch routine

description of 59

sample used in code 18
OMBr eak routine

description of 53

sample used in code 115
cnBr eakMsg message 247-248
OMChoose routine

description of 41-42

sample used in code 14
CMO ear Sear ch routine 60
OMJ ose routine

description of 49

sample used in code 12
cnC oseMsg message 246-247
OMConpl et or Recor d record 241
CMDat aBuf f er record 241
cnDeact i vat eMsg message 238
OVDef aul t routine

description of 40

sample used in code 326

CMVDef aul t Msg message 217,220-221
OMVD spose routine

description of 50

sample used in code 19, 328
cnDi sposeMsg message 240
OMEngl i shTol nt | routine 63
cnEnvi r onsMsg message 249-250
OMEvent routine 62
cnEvent Msg message 237
CMGet QWer si on routine 65
CMzet Conf i g routine 47
OMZet ConnEnvi r ons routine

description of 54-55

sample used in code 118, 160
CMzet | ndTool Narre routine

sample used in code 17
OMzet Pr ocl Droutine

description of 37

sample used in code 17, 326
OMzet Ref Con routine 64
OMZet Tool Nane routine

description of 64

sample used in code 324
OMGet User Data routine 65
OMGet Ver si on routine 65
CM dI e routine

description of 50

sample used in code 316
cn dl eMsg message 237
cm ni t Msg message 217,239
cm nt | ToEngl i sh routine 63
CM i | | routine 52
cm OKi | | Msg message 248-249
cnlL2Engl i sh Message 229-230
cnL2i nt| code resource 229-230
CMLi st en routine 50
cnli st enMsg message 236-237
CMMenu routine

description of 61

sample used in code 10
cmvenuMsg message 236
cnvget Msg message 227
cmvset Msg message 226,228

Index 339

OWN\ewroutine

description of 38-39

sample used in code 17, 328
CMDpen routine

description of 48

sample used in code 11
cmpenMsg message 245-246
CMRead routine

description of 56-57

sample used in code 158, 317
cnReadMsg message 240, 241-242
cnRenoveSear ch routine

description of 60

sample used in code 13, 18
CMReset routine 53
cnReset Msg message 235
cnResune routine

description of 61

sample used in code 21
cnResuneMsg message 238
cncl eanupMsg message 226
CMBet Conf i g routine 47
O\vBet Ref Con routine 64
COVBet upd eanup routine

description of 45

sample used in code 326, 327
CMBet upFi | t er routine

description of 44

sample used in code 329
CVBet upl t emroutine

description of 45

sample used in code 327
COMBet upPost f | i ght routine

description of 46

sample used in code 326, 327
CVBet upPref 1 i ght routine

description of 43

sample used in code 325, 326
COMBet upSet up routine

description of 44

sample used in code 325, 326
O\vBet User Dat a routine 65
cnsfi | t er Msg message 225-226
cnSi t emMsg message 224-225
cnBpr ef | i ght Msg message 223
cnBset upMsg message 224
QVBt at us routine

description of 51

sample used in code 11, 317, 328
cnBt at usMsg message 244-245
cnBuspendMsg message 238

QOWal i dat e routine
description of 40
sample used in code 40, 327
cnVal i dat eMsg message 219-220
OWVi t e routine
description of 58-59
sample used in code 115, 157
cnWi t eMsg Message 240,
243-244
code resources 217-218
code samples
events for Communications
Toolbox managers,
determining 319-322
idle loops, implementing
effective 316-318
Macintosh Communications
Toolbox managers, checking
for installation 322
tool-settings dialog box,
customizing 323-331
Communications Folder 5
Communications Resource
Manager. See also
communications resource
record; specific routines
data flow of 169 (fig.), 170
devices 174-175, 182-184
function of 169-170
head of queue of 176
ID 180-181
initializing 179
resources 177-179
routines
application of 3, 169-170
list of 173
quick reference to 185-187
resource mapping 180-181
selectors 187
version number 176
communications resource
record 170-172
Communications Toolbox. See
Macintosh Communications
Toolbox
compatibility guidelines for
communications tools 285
completion routines 34
for Connection Manager routines
66
_CommTool boxDi spat ch trap
macro 73, 124, 165, 187, 214

340 Inside the Macintosh Communications Toolbox

configuration
of connection 14
of connection tool 41-42
custom 43-46
of file transfer 15
of file transfer tool 142-143
custom 144-147
of terminal emulation 14-15
of terminal tool 92-93
custom 94-97
configuration record
in writing own tool 230
configuration string
in Connection manager 47, 63
in File Transfer Manager 148, 153
localizing 63
in Terminal Manager 98, 108
connection
aborting 49
break procedure 115
breaks, sending 53
closing 49
configuring 14
initiating 11
opening 36-42, 48
resetting 53
sending data along 114-115
status information 51
terminating 11-12
using 48-55
connection environment 54-55
Connection Manager. See also
connection record; specific
routines
calling from assembler 73
channels 29-30
clean-up operations 45
closing connection 49
closing tool file 46
configuration record
initializing 40
sample used in code 40
validating 40
configuration string in 47, 63
connection record for 69
custom configuration of
connection tool 43-46
data flow of 29 (fig.), 30
data streams 59-60
and File Transfer Manager 128
function of 29-30
handling events 61-62

initializing 36
interfacing with scripting
language 47
opening connection 36-42, 48
reading data 56-57
routines
application of 3-4, 29
completion 66
list of 35
miscellaneous 64-65
quick reference to 67-72
selectors 73
and terminal tools 76
using connection 48-55
version number 65
writing data 58-59
connection record
for Connection Manager 69
creating 38-39
data structure 31-34
disposing of 50
features of 30
function of 31
reference constant of 64
saving the state of 333
connection requests 50, 52
connection tool
completion routines 250
configuration of 41-42
and Connection Manager 4
custom configuration of 43-46
main code resource for
function of 235
messages accepted by 235-250
quick reference to 251-254
name of 64
writing own
bundle resource for 217-218
configuration record 230
function of 217
initialization request
message 217
localization code resource
229-230
quick reference to 231-232
scripting language interface
code resource 226-228
setup definition code
resource 221-226
validation code resource
219-221

constants and data types
for Communications Resource
Manager 186-187
for Connection Manager 70-72
for File Transfer Manager 164-165
for Terminal Manager 122-124
for utilities 212-213
control definition procedure
193-197
Control Manager 190
conventions, in manual xv
Count DI TL routine
description of 201
sample used in code 326, 327
CRMt 11 ndResour ce
routine 177
CRMZ:t 1NarredResour ce
routine 178
CRM=Zt 1Resour ce routine 177
CRMGet CRWer si on routine 176
CRMZet Header routine 176
CRMzet | ndex routine 178
CRMzt | ndResour ce
routine 177
CRMGet | ndTool Narre routine
description of 179
sample used in code 17, 18
CRMz:t NamedResour ce
routine 178
CRM=t Resour ce routine 177
CRM nst al | routine 174
CRMLocal ToReal I D routi ne
description of 181
sample used in code 223
CRVReal ToLocal | Droutine 180
CRVRel easeResour ce
routine 178
CRVRenove routine 175
CR\VBear ch routine
description of 175
sample used in code 184
CRVBer i al Recor d data
structure 182
" cscr' code resource 218
' cset' code resource 218
CTBGet CTBVer si on routine 192
cursor position 111
custom tool-settings dialog box
in Connection Manager 4345
in Terminal Manager 94-96
" cval ' code resource 217

D
Dat aBuf f er record 241
data flow
in Communications Resource
Manager 169 (fig.), 170
in Connection Manager 29 (fig.),
30
in File Transfer Manager 129 (fig.),
130
in Terminal Manager 77 (fig.), 78
data stream search
in Connection Manager 59-60
in Terminal Manager 102-103
data structures
communications resource
record 171-172
connection record 31-34
file transfer record 130
terminal record 80-86
device management 170
Device Manager 28, 168
devices
installing 174
registering 182
removing 175
searching for 175
and serial port, searching for 184
dialog item lists (DITLs)
appending 198-200
counting 201
shortening 201
Dialog Manager 76, 190, 216
Digital Equipment Corporation 291
DITLs. See Dialog item lists
DoAct i vat e procedure 20
Dod i ck procedure 23
DoCommand procedure 10
DoConnect i onConfi g
procedure 14
DoFi | eTransf erConfi g
procedure 15
Dol ni ti at e procedure 11
DoKey procedure 22-23
DoKi | | procedure 11-12
DoRecei ve procedure 13
DoResune procedure 20-21
Dosend procedure 12-13
DoTer ni nal Confi g
procedure 14-15
DoUpdat e procedure 21-22

Index 341

E
emulating a terminal
see Terminal Manager 75
see Writing Terminal Tools 255
English, translating to and from
in Connection Manager 63
in File Transfer Manager 153
in Terminal Manager 108
entity 30
envi r onsPr oc routine
in file transfer record 133
in terminal record 82
Event handling
sample used in code 10
Event Manager 76

F

file
receiving, starting 13
sending, starting 12-13
file transfer
configuring 15
preparing 138-143
processing data 150
starting 149-150
stopping 150
File Transfer Manager. See also File
transfer record; specific
routines
calling from Assembler 165
clean-up operations 146
configuration string in 148, 153
custom configuration of file
transfer tool 144-147
data flow in 129 (fig.), 130
function of 129-130
handling events 151-152
initializing 138
interfacing with scripting
language 148
preparing file transfers 138-143
routines
application of 3, 129-130
list of 137
miscellaneous 154-155
provided by application
156-160
quick reference to 161-166
selectors 165-166
transferring files 149-150
version number 155

file transfer record
creating 139-140
data structure of 131-136
disposing 150
features of 130
function of 130
initializing 141
saving the state of 333
validating 141
file transfer tool
configuring 142-143
custom configuration of 144-147
function of 129
main code resource for
function of 279
messages accepted by 279-282
quick reference to 283-284
name of 154
writing own
bundle resource for 217-218
configuration record 230
function of 217
initialization request
message 217
localization code resource
229-230
quick reference to 231-232
scripting language interface
code resource 226-228
setup definition code
resource 221-226
validation code resource
219-221
filter procedure
in configuring connection tool 42
definition of 206
name 206
zone 207
Fi ndSeri al Ports
procedure 184
FTAbort routine 150
f t Abor t Msg message 281
FTAct i vat e routine
description of 151
sample used in code 20
ft Acti vat eMsg message 281-282
FTChoose routine
description of 142-143
sample used in code 15
f t Deact i vat eMsg message 282
FTDef aul t routine 141

342 Inside the Macintosh Communications Toolbox

FTD spose routine

description of 150

sample used in code 19
f t Di sposeMsg message 280
FTEngl i shTol nt | routine 153
FTEvent routine 152
f t Event Msg message 282
FTExec routine

description of 150

sample used in code 317-318

using 31
f t ExecMsg message 281
FTGet Confi g routine 148
FTGet FTVer si on routine 155
FTGet Pr ocl Droutine

description of 139

sample used in code 18
FTGet Ref Con routine 154
FTGet Tool Nare routine 154
FTGet User Dat a routine 155
FTGet Ver si on routine 155
ft1nit Msg message 217,279-280
FTI nt | ToEngl i sh routine 153
FTMenu routine

description of 152

sample used in code 10
f t MenuMs g message 282
FTNewroutine

description of 139-140

sample used in code 18
f t QpenDat aFor k 156
ft QpenRsr cFor k 156
ftPrivate 133
ft ReadAbort 156, 157
f t ReadConpl et e 156, 157
f t ReadDat aFor k 156, 157
f t ReadCpenFi | e 156
f t ReadRsr cFor k 156, 157
FTResune routine

description of 151

sample used in code 21
f t ResuneMsg message 281-282
FTSet Conf i g routine 148
FTSet Ref Con routine 154
FTSet upd eanup routine 146
FTSet upFi | t er routine 145
FTSet upl t emroutine 146
FTSet upPost f | i ght

routine 147

FTSet upPref | i ght routine 144
FTSet upSet Up routine 145

FTSet User Dat a routine 155
FTStart routine

description of 149

sample used in code 13, 18
ft St art Msg message 280-281
ft SuspendMsg message 282
FTVal i dat e routine

description of 141

sample used in code 141
ftWiteAbort 159,160
ftWiteConpl et e 159,160
ft Wi t eDat aFor k 159
ftWiteFil el nfo 159,160
ft WiteQpenFile 159
ft WiteRsrcFork 159

G
globals 9

H

hard disk 5

hardware 5

hook procedure 206-209

LJ
ID
mapping to Local ID 180
mapping to Real ID 181
I ni t OMroutine 36
I ni t CRMroutine 174
Init CTBWi liti es routine 192
I ni t FT routine 138
I ni t TMroutine 88
installation of tools 5
installation, checking for
Communications Toolbox
managers sample code 332
installing devices 174
interfacing
between Macintosh
Communications Toolbox
applications and tools 4,
5 (fig.)
scripting language code
resource 226-228
user interface considerations
287-291

with scripting language 47, 98, 148

| sConnEvent function 320-321

| sFTEvent function 319-320
| sSFTW ndow function 319-320
| sTer mEvent function 321-322

K

Keyboard events
procedures for 22-23
in Terminal Manager 106

L
LAT Tool scripting interface 301
localization code resource 229-230

M
Macintosh Communications
Toolbox. See also specific
managers
contents of 3-4
function of 8
globals used in 9
installation of 5
interface between application and
tools 4, 5 (fig.)
managers in 3-4
reference manual for xiv
requirements for 5
sample application of 8-25
sections of 9
Macintosh computers 5, 291

Macintosh Operating System trap 73,

124,165,187,214
Main program loop in sample
code 24-25, 321-322
MakeNew procedure in sample
code 16-18
Memory Manager 168
menu choices, handling 10
Menu events
closing session document 19
configuring connection 14
configuring file transfer 15
configuring terminal
emulation 14-15
in Connection Manager 61
in File Transfer Manager 152
handling menu choices 10
initiating connection 11
making new session
document 16-18
receiving file 13

sending file 12-13
in Terminal Manager 105
terminating connection 11-13
modeless tools 288
Modem Tool scripting interface See
Apple Modem Tool scripting
interface
Mouse events
clikLoop 118
procedure for 23
in Terminal Manager 106
MultiFinder 5, 168
M/Br eakPr oc routine 115
My CachePr oc routine 116-117
MyCal | Back routine 117
Myd i kLoop routine 118
MyConpl et i on routine 66
M/Envi r onsProc routine
118,160
MyHookPr oc routine 208-209
M/NaneFi | t er routine 206
MyReadPr oc routine 156-157
M/RecvPr oc routine 158
MySear chCal | Back routine 60
MySendPr oc routine 114,157
M/W i t ePr oc routine 159-160
MyZoneFi | t er routine 207

N

name filters 206

network look-up utilities 202 (fig.),
203-205

NewCont r ol routine 193

NuLookup routine 202-204

NuPLookup routine 202,204-205

0
Operating System Utilities 168

P

pop-up menu control definition
procedure 193-197

PopUpMenuSel ect function 193

popupUseAddResMenu variation
code constant 195

popupUseCQDvariation code
constant 195

popupUseW ont variation code
constant 195

Index 343

programming problems

custom tool-settings dialog
box 323-331

events needed to be handled by
Macintosh Communications
Toolbox managers 319-322

idle loops 316-318

installation of Macintosh
Communications Toolbox
managers, checking for 332

Q
QuickDraw 76

R
regions in terminal window
terminal emulation region 84
scroll-back region 84
removing devices 175
Resource management 170
Resource Manager
and Communications Resource
Manager 168
and Connection Manager 28
and File Transfer Manager 128
and Terminal Manager 76
and utilities 190
resource-mapping routines 180
resources
getting usage index for 178
loading 177-178
loading indexed 177
loading named 178
releasing 178
Resume events
in Connection Manager 61
in File Transfer Manager 151
procedure for 20-21
in Terminal Manager 105
routines. See also specific names of
Communications Resource
Manager
application of 3, 169-170
description of 177-179
list of 173
quick reference to 185-187
resource mapping 180-181
selectors 187
Connection Manager
application of 3-4, 29

completion 66
list of 35
miscellaneous 64-65
quick reference to 67-72
selectors 73
File Transfer Manager
application of 3, 129-130
list of 137
miscellaneous 154-155
provided by application
156-160
quick reference to 161-165
selectors 165-166
Terminal Manager
application of 3-4, 77-78
list of 87
miscellaneous 109-113
provided by application
114-118
quick reference to 119-124
selectors 124-125
terminal emulation 99-101
and tools 4
utilities
list of 191
quick reference to 211-214
selectors 214
routine selectors
Communications Resource
Manager 187
Connection Manager 73
File Transfer Manager 165-166
Terminal Manager 124-125
utilities 214

S
Sample code
Application shell
Handling events that belong to
Communications Toolbox
Managers
| sConnEvent 320
| sFTEvent 319
| sSFTW ndow319,320
| sTer nEvent 321
DoAct i vat e 20
Dod i ck 23
DoConmand 10
DoConnect i onConf i g 14
DoFi | eTr ansf er Confi g 15
Dolnitiatell

344 Inside the Macintosh Communications Toolbox

DoKey 22
DoKi Il 11
DoRecei ve 13
DoResune 20
DoSend 12
DoTer mi nal Confi g 14
DoUpdat e 21
Tool-settings dialog box,
customizing
Choose. p 323-330
Choose. r 330-331
Using the scripting interface 293,
294
Scrap Manager 76
scripting interface
for communications tools 293
scripting language, interfacing with
code resource 226-228
in Connection Manager 47
in File Transfer Manager 148
in Terminal Manager 98
sample code 333
Script Manager 216
Scroll-back cache 78 (fig.), 79
search call-back procedure 103, 117
searching for devices 175
searching
with CMAddSear ch 35
with TMAddSear ch 87
sendPr oc routine
in file transfer record 134
in terminal record 83
Serial Tool scripting interface 302
Serial NB Tool scripting interface 302
session document
closing 19
making new 16-18
setup definition code resource
221-226
Short enDi TL routine
description of 201
sample used in code 326, 327
Show Controls 291
Standard File Package 128
Superdrive 5
status dialog boxes 289 (fig.), 290
System Folder 5

T
Ter nDat aBl ock data structure 79

terminal emulation
configuring 14-15
preparing 88-93
routines 99-101
window 78 (fig.), 79
terminal emulation buffer 79,
102-103
terminal emulation region 78 (fig.),
79, 99-101,116
terminal emulation tool
writing own
bundle resource for 217-218
configuration record 230
function of 217
initialization request
message 217
localization code resource
229-230
quick reference to 231-232
scripting language interface
code resource 226-228
setup definition code
resource 221-226
validation code resource
219-221
terminal keys 111-112
Terminal Manager. See also
Terminal emulation;
Terminal record; specific
routines
calling from Assembler 124
clean-up operations 96
closing tool file 97
configuration string in 98, 108
custom configuration of terminal
tool 94-97
data flow in 77 (fig.), 78
data stream search in 102-103
function of 77-78
handling events 105-107
initializing 88
interfacing with scripting
language 98
manipulating selections 104
preparing for terminal
emulation 88-93
routines
application of 3-4, 77-78
list of 87
miscellaneous 109-113
provided by application
114-118

quick reference to 119-124
selectors 124-125
terminal emulation 99-101
searching terminal emulation
buffer 102-103
terminal emulation routines
99-101
terminal record for 121-122
version number 110
terminal record
creating 89-90
data structure 80-86
disposing of 101
features of 78
fields in 80
function of 77, 80
initializing 81
resetting 101
resizing 101
saving the state of 333
validating 91
terminal tool
configuring 92-93
custom configuration of 94-97
information 112-113
keyboards for 291
list of 76
main code resource for
function of 257
messages accepted by 257-272
quick reference to 273-276
name of 109
reference constant 109
search of terminal emulation
buffer 102
ternRect 83
Text Tool scripting interface 303
TMAct i vat e routine
description of 105
sample used in code 20
t mAct i vat eMsg message 261-262
TMAddSear ch routine 102-103
TMthoose routine 92-93
TMO ear routine 100
t nd ear Msg message 268
TMO ear Sear ch routine 103
TMJ i ck routine 106
sample used in code 23
t nCLi ckMsg message 264
TMCount Ter nKeys routine 112
t mCount Ter nKeysMsg
message 272

t mCur sor Msg message 269-270
t nDeact i vat eMsg message 262
TMDef aul t routine 91
TMDi spose routine
description of 101
sample used in code 19
t nDi sposeMsg message 259
TMDoTer nKey routine
description of 111
sample used in code 111
t nDoTer nKeyMsg message 271
TMEngl i shTol nt | routine 108
TMEvent routine
description of 107
sample used in code 24
t nEvent Msg message 271
TMzet Conf i g routine 98
TMZet Qur sor routine 111
t mGet Envi r onsMsg message 270
TMZet | ndTer nKey routine 112
t mGet | ndTer nkeyMsg
message 272
TMzt Li ne routine 100
t nGet Li neMsg message 268-269
TMzet Pr ocl Droutine
description of 88
sample used in code 17
TMzet Ref Con routine 109
TMzet Sel ect routine 104
t mGet Sel ecti onMsg
message 265-2606
TMZet Ter mEnvi r ons
routine 112-113
TMzet TMVer si on routine 110
TMzet Tool Nane routine 109
TMZet User Dat a routine 110
TMZet Ver si on routine 110
TMdl e routine
description of 99
sample used in code 317-318
using 316
t m dl eMsg message 263
t m ni t Msg message 217,257-258
TM nt | ToEngl i sh routine 108
TMKey routine
description of 106
sample used in code 23
and Terminal Manager 77
t mkey Msg message 259-260
TMVenu routine
description of 105
sample used in code 10

Index 345

t mvenuMsg message 265
TMNewroutine

description of 89-90

sample used in code 17
TMPai nt routine 99
t mPai nt Msg message 269
tnPrivate 83
TMRenoveSear ch routine 103
TMReset routine 101
t nReset Msg message 267-268
TMResi ze routine

description of 101

sample used in code 23
t nResi zeMsg message 262-263
TMResune routine

description of 105

sample used in code 21
t nResumeMsg message 261-262
TMBcrol | routine

description of 100

sample used in code 23
t mScr ol | Msg message 267
TMBet Conf i g routine 98
TMBet Ref Con routine 109
TMBet Sel ect i on routine 104
t nBet Sel ecti onMsg

message 266-267

TMBet upd eanup routine 96
TMSet upFi | t er routine 95
TwvBet upl t emroutine 96
TMBet upPost f | i ght routine 97
TMBet upPr ef | i ght routine 94
TMBet upSet up routine 95
TMSet User Dat a routine 110
TMBL r eamroutine

description of 99

sample used in code 317
t NSt r eanmvsg message 260-261
t nBuspendMsg message 262
TMJpdat e routine 106
t nlpdat eMsg message 263-264
TMWal i dat e routine

description of 91

sample used in code 91
tool file, closing

in Connection Manager 46

in File Transfer Manager 147

in Terminal Manager 97
tools. See also Macintosh

Communications Toolbox;

specific tools

compatibility requirements 291

design goals of 286-287
function of 4
modeless operation 288
name of 179
and routines 4
self-contained 286
task-specific 286-287
user interface considerations
error alerts 290
handling errors 290
menus 290
modeless tool operation
287-288
right words 291
standard tool-settings dialog
box 288 (fig.)-289
windows and status dialog
boxes 289-290 (fig.)
tool-settings dialog box
customizing 323-331
in File Transfer Manager 144-147
standard 288 (fig.), 289
transferring files
preparing for 138-141
processing data 150
starting 149
stopping 150
Transparent Mode 291
TTY Tool scripting interface 304

U
Update events
procedures for 21-22
in Terminal Manager 106
Updat e procedure
sample used in code 21-22
utilities
and AppleTalk 202-205
DITLs 198-201
initializing 192
pop-up menu control definition
procedure 193-197
routines
list of 191
quick reference to 211-214
selectors 214
version number 192

A%
validation code resource 219-221

346 Inside the Macintosh Communications Toolbox

variation codes 194
version number
Communications Resource
Manager 176
Connection Manager 65
File Transfer Manager 155
Terminal Manager 110
utilities 192
vi ewRect 84
vi sRect 84
VT102 terminal setting 291
VT102 Tool scripting interface
305-308
VT320 Tool scripting interface
309-312

W, X, Y, Z
XMODEM Tool 129
XMODEM Tool scripting

interface 313
zone filters 207

	Contents
	Figures and Tables
	Foreword
	Preface
	Chapter 1 About the Macintosh Communications Toolbox
	Chapter 2 Programming with the Macintosh Communications Toolbox
	Chapter 3 Connection Manager
	Chapter 4 Terminal Manager
	Chapter 5 File Transfer Manager
	Chapter 6 Communications Resource Manager
	Chapter 7 Macintosh Communications Toolbox Utilities
	Chapter 8 Fundamentals of Writing Your Own Tools
	Chapter 9 Writing Connection Tools
	Chapter 10 Writing Terminal Tools
	Chapter 11 Writing File Transfer Tools
	Appendix A Guidelines for Communications Tools
	Appendix B Communications Tools Scripting Interfaces
	Appendix C Useful Code Samples
	Glossary
	Index

