

Preliminary

October 20, 1999
Technical Publications
© 1999 Apple Computer, Inc.

Seed Draft

Manipulating Displays Using
DrawSprocket

For DrawSprocket 1.7

10/20/99 Preliminary

 Apple Computer, Inc.

Apple Computer, Inc.
© 1996, 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction 1
IMPORTANT

This is a preliminary document. Although it has been
reviewed for technical accuracy, it is not final. Apple
Computer, Inc. is supplying this information to help you
plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to
change, and software implemented according to this
document should be tested with final operating system
software and final documentation. You can check <http://
developer.apple.com/techpubs/macos8/SiteInfo/
whatsnew.html> for information about updates to this and
other developer documents. To receive notification of
documentation updates, you can sign up for ADC's free
Online Program and receive their weekly Apple Developer
Connection News e-mail newsletter. (See <http://
developer.apple.com/membership/index.html> for more
details about the Online Program.) ▲

DrawSprocket is a subset of Apple Game Sprockets that gives your application
control over special display features. It can interact with Mac OS system
software as well as with specialized video subsystems and third-party video
cards. For example, you can use DrawSprocket to choose a display resolution
and pixel depth, perform gamma fading, and handle display buffering.

This document assumes you are familiar with programming Macintosh
computers. It does not discuss Macintosh graphics systems or drawing
functions, nor does it discuss video hardware. For more information on these
topics you can consult Inside Macintosh: Imaging with QuickDraw and Designing
PCI Cards and Drivers for Power Macintosh Computers respectively.

If you are building a game, you may also want to consult other Game Sprocket
documentation:
3
10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 1

Introduction

■ Configuring Game Input Devices with InputSprocket

■ Simplifying Networked Gaming Using NetSprocket

■ SoundSprocket documentation (forthcoming)

This document currently covers InputSprocket in the following chapters:

■ Chapter 2, “DrawSprocket Reference,” contains a complete programming
reference, documenting the functions, data types, and constants available
with DrawSprocket.

■ Appendix A, “Document Version History,” describes changes made from
previous versions of DrawSprocket documentation.

For additional information about creating games for the Macintosh, you should
check the Apple Developer games Web site:

<http://developer.apple.com/games/>
4
10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R

Contents

10/20/99 Preliminary

 Apple Computer, Inc.

Contents

Figure 2-0
Listing 2-0
Table 2-0
2 DrawSprocket Reference
DrawSprocket Functions 9
Testing for the Availability of DrawSprocket 10
Activating and Deactivating DrawSprocket 10

DSpGetVersion 10
DSpStartup 11
DSpShutdown 11

Choosing a Context 12
DSpFindBestContext 13
DSpFindBestContextOnDisplayID 14
DSpContext_GetDisplayID 14
DSpGetCurrentContext 15
DSpGetFirstContext 16
DSpGetNextContext 17
DSpContext_GetAttributes 18
DSpCanUserSelectContext 19
DSpUserSelectContext 20

Saving and Restoring a Context 21
DSpContext_Restore 22
DSpContext_GetFlattenedSize 23
DSpContext_Flatten 23

Manipulating a Context 24
DSpContext_Reserve 25
DSpContextQueue 26
DSpContextSwitch 27
DSpContext_Release 28
DSpContext_SetState 28
DSpContext_GetState 30
5

C H A P T E R

DSpSetBlankingColor 30
Drawing and Double Buffering 31

DSpContext_FadeGamma 32
DSpContext_FadeGammaOut 34
DSpContext_FadeGammaIn 35
DSpContext_GetFrontBuffer 36
DSpContext_GetBackBuffer 37
DSpContext_InvalBackBufferRect 38
DSpContext_SwapBuffers 39
DSpContext_IsBusy 40
DSpContext_SetDirtyRectGridSize 41
DSpContext_GetDirtyRectGridSize 42
DSpContext_GetDirtyRectGridUnits 43
DSpContext_SetMaxFrameRate 44
DSpContext_GetMaxFrameRate 45
DSpContext_GetMonitorFrequency 45

Blitting Functions 46
DSpBlit_Faster 46
DSpBlit_Fastest 47

Using Alternate Buffers 48
DSpAltBuffer_New 48
DSpAltBuffer_Dispose 49
DSpAltBuffer_GetCGrafPtr 50
DSpContext_SetUnderlayAltBuffer 51
DSpContext_GetUnderlayAltBuffer 52
DSpAltBuffer_InvalRect 52

Handling a Mouse 53
DSpFindContextFromPoint 53
DSpGetMouse 54
DSpContext_GlobalToLocal 55
DSpContext_LocalToGlobal 55

Manipulating Color Lookup Tables 56
DSpContext_SetCLUTEntries 56
DSpContext_GetCLUTEntries 57

Processing System Events 58
DSpProcessEvent 58

Utility Functions 59
DSpSetDebugMode 59
6 Contents

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R

DSpContext_SetVBLProc 60
Application-Defined Functions 61

MyCallbackFunction 62
MyBlitDone 62
MyEventHandler 63

Data Types 64
DSpContextReference 64
DSpAltBufferReference 64
DSpContextAttributes 65
DSpAltBufferAttributes 68
DSpBlitInfo 68
DSpCallbackProcPtr 70
DSpBlitDoneProc 71
DSpEventProcPtr 71

Constants 71
Depth Masks 72
Color Need Constants 73
Special Display Feature Constants 73
Buffer Kind Constant 74
Play State Constants 75
Alternate Buffer Options Constant 76
Blit Mode Constants 77
Every Context Constant 78

Summary of DrawSprocket 79
DrawSprocket Functions 79
Application-Defined Functions 83
Data Types 83
Constants 85
Result Codes 87
Contents 7
10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R
8 Contents

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2
DrawSprocket Reference 2

This chapter describes the DrawSprocket application programming interface
(API) introduced with InputSprocket 1.7. This chapter contains the following
sections:

■ “DrawSprocket Functions” (page 9)

■ “Application-Defined Functions” (page 61)

■ “Data Types” (page 64)

■ “Constants” (page 71)

■ “Result Codes” (page 87)

Note
This document describes version 1.7 of DrawSprocket. For
a list of functions changed or added between versions 1.0
and 1.7, see Appendix A. ◆

DrawSprocket Functions 2

This section describes DrawSprocket functions in the following categories:

■ “Testing for the Availability of DrawSprocket” (page 10)

■ “Activating and Deactivating DrawSprocket” (page 10)

■ “Choosing a Context” (page 12)

■ “Saving and Restoring a Context” (page 21)

■ “Manipulating a Context” (page 24)

■ “Drawing and Double Buffering” (page 31)

■ “Using Alternate Buffers” (page 48)

■ “Handling a Mouse” (page 53)

■ “Manipulating Color Lookup Tables” (page 56)

■ “Processing System Events” (page 58)

■ “Utility Functions” (page 59)

■ “Application-Defined Functions” (page 61)
DrawSprocket Functions 9
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
Testing for the Availability of DrawSprocket 2

To determine whether the DrawSprocket library is available, you should check
for resolved symbol addresses before calling any DrawSprocket functions. For
example, you could use code similar to the following:

// Check to see if the Code Fragment Manager has resolved
// DrawSprocket symbols
if ((Ptr) DSpStartup == (Ptr) kUnresolvedCFragSymbolAddress)

{
// Post error message here
ExitToShell();

}

Activating and Deactivating DrawSprocket 2

You use the functions in this section before using DrawSprocket and when you
are finished.

■ DSpGetVersion (page 10) determines the version of DrawSprocket installed
on the host computer.

■ DSpStartup (page 11) initializes DrawSprocket.

■ DSpShutdown (page 11) shuts down DrawSprocket.

DSpGetVersion 2

Determines the version of DrawSprocket installed on the host computer.

NumVersion DSpGetVersion (void);

function result The version number of DrawSprocket installed.

VERSION NOTES

Introduced with DrawSprocket 1.7.
10 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpStartup 2

Initializes DrawSprocket

OSStatus DSpStartup (void);

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You must call this function before attempting to call any DrawSprocket
functions (except for DSpGetVersion (page 10)).

Note that the debug version of DrawSprocket will notify you if you did not call
DSpStartup.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpShutdown 2

Shuts down DrawSprocket

OSStatus DSpShutdown (void);

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You must call this function before quitting the application.
DrawSprocket Functions 11
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Choosing a Context 2

The functions in this section allow you to determine the display characteristics
and features of a given system and help you choose the configuration that best
fits your game’s needs.

■ DSpFindBestContext (page 13) finds the context that best matches the
requirements you specify.

■ DSpFindBestContextOnDisplayID (page 14) determines the best context to use
for a given display.

■ DSpContext_GetDisplayID (page 14) obtains the ID of the display a context is
associated with.

■ DSpGetCurrentContext (page 15) obtains a reference to the current display
context for a given display.

■ DSpGetFirstContext (page 16) obtains the first context in the list of contexts
available for a specified display.

■ DSpGetNextContext (page 17) obtains the next context in a list of available
contexts for a display.

■ DSpContext_GetAttributes (page 18) obtains the attributes of a context as if it
were in the active state.

■ DSpCanUserSelectContext (page 19) determines whether there is a
meaningful choice of contexts to present to the user with the
DSpUserSelectContext function.

■ DSpUserSelectContext (page 20) presents a dialog box that allows the user to
select a display.
12 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpFindBestContext 2

Finds the context that best matches the requirements you specify.

OSStatus DSpFindBestContext (
const DSpContextAttributesPtr inDesiredAttributes,
DSpContextReference *outContext);

inDesiredAttributes
A pointer to a context attributes structure describing the desired
display characteristics of the context, such as display height and
width, preferred pixel depth, and color capability. See
DSpContextAttributes (page 65) for more information about this
structure.

outContext On return, a reference to the context that best meets or exceeds
the specified attribute requirements, or NULL if no such context
exists.

function result A result code. If no context meets the requirements you
specified, the function returns kDSpContextNotFoundErr. See
“Result Codes” (page 87) for additional return values.

DISCUSSION

Even if the call to DSpFindBestContext returns successtully, the game should
check the attributes of the chosen context by calling the function
DSpContext_GetAttributes (page 18). It is possible that the game may want to
use attributes of the context that exceed those asked for. For example, the game
may request a mode such as 320x200x8 but the best match is a 640x480x8
display; the game can adapt to a full screen mode once it is aware of the
situation.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 13
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpFindBestContextOnDisplayID 2

Determines the best context to use for a given display.

OSStatus DSpFindBestContextOnDisplayID (
DSpContextAttributesPtr inDesiredAttributes,
DSpContextReference *outContext,
DisplayIDType inDisplayID);

inDesiredAttributes
A pointer to a structure describing the desired attributes for the
context. See DSpContextAttributes (page 65) for more
information.

outContext On return, outContext points to the context that best matches the
desired attributes, or NULL if no such context exists.

inDisplayID The ID of the display to check for contexts.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You can obtain the display ID of a monitor by calling the Display Manager.

VERSION NOTES

Introduced with DrawSprocket 1.7.

DSpContext_GetDisplayID 2

Obtains the ID of the display a context is associated with.

OSStatus DSpContext_GetDisplayID (
DSpContextReference inContext,
DisplayIDType *outDisplayID);

inContext A reference to the context whose monitor display ID you want
to determine.
14 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
outDisplayID On return, the display ID for the monitor associated with the
context.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Note that 3D hardware accelerators (such as RAVE) typically must draw using a
graphics device (GDevice) rather than a graphics port. To do so, you can call
DSpContext_GetDisplayID to get the display ID of the device associated with the
context and then call the Display Manager function DMGetDeviceByDisplayID to
obtain the GDevice.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpGetCurrentContext 2

Obtains a reference to the current display context for a given display.

OSStatus DSpGetCurrentContext (
DisplayIDType inDisplayID,
DSpContextReference *outContext);

inDisplayID
The ID of the display whose context you want to obtain.

outContext On return, outContext points to the current context in the given
display.

function result A result code. See “Result Codes” (page 87).
DrawSprocket Functions 15
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.7.

DSpGetFirstContext 2

Obtains the first context in the list of contexts available for a specified display.

OSStatus DSpGetFirstContext (
DisplayIDType displayID,
DSpContextReference *outContext);

displayID The ID of the display whose context you desire. You can obtain
the display ID by calling the Display Manager.

outContext On return, a reference to the first context in the list of available
contexts for the specified display. You cannot use this context
with any function other than DSpContext_GetAttributes,
DSpContext_GetFlattendSize, DSpContext_Flatten, and
DSpContext_GetDisplayID unless you reserve it with
DSpContext_Reserve.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Using the function DSpGetFirstContext in combination with DSpGetNextContext
(page 17) allows you to iterate over the list of contexts and choose one that best
suits your needs. You may also have DrawSprocket find one for you with
DSpFindBestContext or let the user select one by calling DSpUserSelectContext.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
16 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpGetNextContext 2

Obtains the next context in a list of available contexts for a display.

OSStatus DSpGetNextContext (
DSpContextReference inCurrentContext,
DSpContextReference *outContext);

inCurrentContext
A reference to a context in the list of contexts available for a
display. This should be a reference that was just returned by
DSpGetFirstContext or DSpGetNextContext. If this parameter
contains the last context in the list, DSpGetNextContext returns an
error.

outContext On return, a reference to the next context in the list of available
contexts.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Using the function DSpGetNextContext in combination with DSpGetFirstContext
(page 16) allows you to iterate over the list of contexts and choose one that best
suits your needs. For example, you could have code such as the following:

DSpContextReference theContext;

theError = DSpGetFirstContext(theDisplayID, &theContext);
/* process the error */
while (theContext)
{

/* process the context */

/* get the next context */
theError = DSpGetNextContext(theContext, &theContext);
/* process the error */

}

DrawSprocket Functions 17
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
You may also have DrawSprocket find a display context for you by calling
DSpFindBestContext (page 13) or DSpFindBestContextOnDisplayID (page 14), or
let the user select one by calling DSpUserSelectContext (page 20).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_GetAttributes 2

Obtains the attributes of a context as if it were in the active state.

OSStatus DSpContext_GetAttributes (
DSpContextReference inContext,
DSpContextAttributesPtr outAttributes);

inContext The context whose attributes you want to get.

outAttributes
On return, a pointer to an attributes structure describing the
context. See DSpContextAttributes (page 65) for more
information about this structure.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You can use this function to confirm that the context returned from
DSpFindBestContext (page 13) has the characteristics you need. You may even
adjust your drawing plans based on the results. For example, you might have
requested a resolution mode such as 320x200x8 when calling
DSpFindBestContext, but then learned from calling DSpContext_GetAttributes
that the context is a 640x480x8 display. In such a case, you might still use the
640x480x8 display, but display a larger game image.
18 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Note that the monitor frequency may not be known until a context is actually in
the active play state, so it may return as zero.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpCanUserSelectContext 2

Determines whether there is a meaningful choice of contexts to present to the
user with the DSpUserSelectContext function.

OSStatus DSpCanUserSelectContext (
DSpContextAttributesPtr inDesiredAttributes
Boolean *outUserCanSelectContext);

DSpContextAttributesPtr
A pointer to a context attributes structure that specifies the
required attributes. See DSpContextAttributes (page 65) for
more information.

outUserCanSelectContext
On return, the value is true if there are multiple contexts that
meet the specified attribute requirements; false if there are not.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

This function DSpCanUserSelectContext allows you to check whether calling
DSpUserSelectContext is useful so as to avoid presenting the user with a
selection dialog box when there is no choice of displays.
DrawSprocket Functions 19
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpUserSelectContext 2

Presents a dialog box that allows the user to select a display.

OSStatus DSpUserSelectContext (
DSpContextAttributesPtr inDesiredAttributes,
DisplayIDType inDialogDisplayLocation,
DSpEventProcPtr inEventProc,
DSpContextReference *outContext);

inDesiredAttributes
A pointer to an attributes structure that specifies a minimum set
of required display characteristics. See DSpContextAttributes
(page 65) for more information.

inDialogDisplayLocation
The ID of the display on which to present the selection dialog
box. If this parameter is 0, DrawSprocket positions the dialog
box on the main screen.

inEventProc A pointer to an application-defined event-processing function
that allows you to handle events received by the dialog box that
DrawSprocket cannot process, such as update events, in your
game context area. See the function MyEventHandler (page 63)
for more information about implementing this function.

outContext On return, a reference to a context.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

In the selection dialog box (Figure 2-1), all graphics devices appear, although
the user can select only those contexts that meet or exceed the minimum
characteristics given in the inDesiredAttributes parameter.
20 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Figure 2-1 A context-selection dialog box

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Saving and Restoring a Context 2

The functions in this section allow you to flatten drawing contexts to be saved
(for example, to the game’s preferences file) and restore them at a later time.

■ DSpContext_Restore (page 22) restores a context that was saved previously,
most likely to preserve a user’s preferences.

■ DSpContext_GetFlattenedSize (page 23) determines how much memory is
required to store a flattened version of a context.

■ DSpContext_Flatten (page 23) converts a context into a format suitable for
saving to disk—for example, to save user preferences.
DrawSprocket Functions 21
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_Restore 2

Restores a context that was saved previously, most likely to preserve a user’s
preferences.

OSStatus DSpContext_Restore (
void *inFlatContext,
DSpContextReference *outRestoredContext);

inFlatContext
A pointer to the flattened context. Typically, the context would
have been saved out to disk and reloaded on a later execution of
the game before calling this function.

outRestoredContext
On return, a reference to the restored context, if it exists.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

If DSpContext_Restore can’t find a match, the user probably has reconfigured the
displays since the last time your game was run, and the call returns an error.
This function has a high probability of failure, so your game should not rely on
being able to restore the context. However, the game should attempt to do so as
part of the normal saving of the user preferences.

If you save a context, flatten it by calling DSpContext_Flatten (page 23) before
you first make the context’s play state active; otherwise, the saved data will not
contain the proper information with which to locate the display.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
22 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_GetFlattenedSize 2

Determines how much memory is required to store a flattened version of a
context.

OSStatus DSpContext_GetFlattenedSize (
DSpContextReference inContext,
UInt32 *outFlatContextSize);

inContext A reference to the context you intend to flatten.

outFlatContextSize
On return, the number of bytes required to store a flattened
version of the context.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

After calling the DSpContext_GetFlattenedSize function, you can then allocate a
buffer of outFlatContextSize size and pass it to DSpContext_Flatten (page 23).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_Flatten 2

Converts a context into a format suitable for saving to disk—for example, to
save user preferences.

OSStatus DSpContext_Flatten (
DSpContextReference inContext,
void *outFlatContext);
DrawSprocket Functions 23
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
inContext A reference to the context to be flattened.

outFlatContext
A pointer to the buffer to hold the flattened context. The buffer
must be large enough to hold the flattened context. You can find
out the correct size by calling DSpContext_GetFlattenedSize
(page 23). On return, the buffer holds the flattened context.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Manipulating a Context 2

The functions in this section allow you to reserve a context, set the play state for
a context, and set the color of the blanking window.

■ DSpContext_Reserve (page 25) reserves a context so that you can begin using
it in your game.

■ DSpContextQueue (page 26) queues a context you want to switch to.

■ DSpContextSwitch (page 27) switches display contexts.

■ DSpContext_Release (page 28) releases a context you are finished using.

■ DSpContext_SetState (page 28) sets the play state of a context.

■ DSpContext_GetState (page 30) finds out the current play state of a context.

■ DSpSetBlankingColor (page 30) assigns a background color to the blanking
window for all displays.
24 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_Reserve 2

Reserves a context so that you can begin using it in your game.

OSStatus DSpContext_Reserve (
DSpContextReference inContext,
const DSpContextAttributesPtr inDesiredAttributes);

inContext A reference to the context to reserve. When the context is
reserved, it is in the inactive state. There will be no visible
indication that the context has been reserved at this point. To
enable your context, call DSpContext_SetState (page 28). The
context will show up on the display once the context has been
placed in the active state.

inDesiredAttributes
A pointer to an attributes structure that specifies the
configuration you would like for the display when it is in the
active or paused state. If you would like to override the
attributes of the context, you may do so in the attributes
structure. For example, if you ask for a 320x240x16 display but
the closest match is a context that is 640x480x32, passing in your
requested attributes when you reserve the context will cause the
DSpContext_GetBackBuffer function to return a graphics pointer
that refers to a 320x240x16 drawing environment.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You should turn off features that you are not interested in when you reserve the
context. For example, if the context supports page flipping (and you know this
because you requested the actual capabilities of the context using
DSpContext_GetAttributes), you can turn off the page-flipping bit in your
desired attributes so that you will be assured of using software buffering.

You should only specify a back buffer bit depth different from the display bit
depth when you absolutely must, as it is the worst case scenario for
DrawSprocket and will result in a synchronous call to CopyBits to bring your
back buffer to the display.
DrawSprocket Functions 25
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
To release a reserved context, you must call the function DSpContext_Release
(page 28).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContextQueue 2

Queues a context you want to switch to.

OSStatus DSpContext_Queue (
DSpContextReference inParentContext,
DSpContextReference inChildContext,
DSpContextAttributesPtr inDesiredAttributes);

inParentContext
The current active context.

inChildContext
The context you want to switch to.

inDesiredAttributes
A pointer to a context attributes structure that describes the
context you want to switch to.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Typically, you use this function to queue up contexts in addition to the one
specified by the function DSpContext_Reserve (page 25). After you queue a
context, you make it active by calling the function DSpContextSwitch (page 27).
To release a queued context, you must call the function DSpContext_Release
(page 28).
26 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Calling DSpContext_Queue also determines whether the desired context switch is
actually possible. For example, among other things, DrawSprocket will check to
see that both contexts are on the same display. If the contexts are incompatible,
this call returns an error.

Note that you can also use this function to modify attributes of the context to be
switched to.

VERSION NOTES

Introduced with DrawSprocket 1.7.

DSpContextSwitch 2

Switches display contexts.

OSStatus DSpContext_Switch (
DSpContextReference inOldContext,
DSpContextReference inNewContext);

inOldContext The current display context.

inNewContext The display context to switch to.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Calling this function switches the display context immediately without any
intermediate switch to the default display mode. Note that switching contexts
will kill any piggyback VBL routines attached to the context you are switching
out.

If you did not queue the contexts you want to switch (by calling the function
DSpContextQueue (page 26)), DSpContextSwitch returns an error.

VERSION NOTES

Introduced with DrawSprocket 1.7.
DrawSprocket Functions 27
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_Release 2

Releases a context you are finished using.

OSStatus DSpContext_Release (DSpContextReference inContext);

inContext A reference to the context to be released. Releasing the context
does not necessarily remove the blanking window from the
corresponding display. All displays remain covered by the
blanking window until all contexts have been released or put in
an inactive play state.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You must release the context whether it was reserved or queued.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_SetState 2

Sets the play state of a context.

OSStatus DSpContext_SetState (
DSpContextReference inContext,
DSpContextState inState);

inContext A reference to the context whose play state you want to set.
28 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
inState A constant specifying the desired play state. Valid input values
for this parameter are kDSpContextState_Active,
kDSpContextState_Paused, and kDSpContextState_Inactive. See
“Play State Constants” (page 75) for more information.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

In summary, you can make these choices:

■ A context’s initial play state is inactive. When all contexts for a display are
set to kDSpContextState_Inactive, the display looks exactly as it does when
the user is using their Macintosh normally: the monitor resolutions are set to
the default, the menu bar is available, and so on.

■ Set the play state to kDSpContextState_Active to use the display. In this state,
the attributes of the context are used to change the display resolution,
remove the menu bar, and so on. When at least one context is active, all the
display devices in the system are covered by a blanking window. When a
context is in the active state, the display is completely owned by the game.

■ Set the play state to kDSpContextState_Paused to temporarily restore system
adornments, while maintaining the attributes used by the context. This gives
the user the opportunity to use the menus and switch to other applications.
While the context is in the paused state, it is very important to call
DSpProcessEvent to allow DrawSprocket to correctly handle events such as
suspend or resume (see DSpProcessEvent (page 58). Page flipping and double
buffering are inactive in this state, and the context will be placed back at
page 0 if page flipping was being used.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 29
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_GetState 2

Determines the current play state of a context.

OSStatus DSpContext_GetState (
DSpContextReference inContext,
DSpContextState *outState);

inContext A reference to the context whose play state you want to get.

outState On return, the play state of the context. Valid return values
are kDSpContextState_Active, kDSpContextState_Paused, and
kDSpContextState_Inactive. See “Play State Constants”
(page 75) for more information.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpSetBlankingColor 2

Assigns a background color to the blanking window for all displays.

OSStatus DSpSetBlankingColor (const RGBColor *inRGBColor);

inRGBColor A pointer to the background color to use for the blanking
window.

function result A result code. See “Result Codes” (page 87).
30 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

The blanking color replaces the desktop and system adornments, such as the
menu bar, for all display devices as long as any context is active.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Drawing and Double Buffering 2

The functions in this section allow you to draw to the display and control
various aspects of display visibility and frame speed.

■ DSpContext_FadeGamma (page 32) sets the brightness of the display to the
specified intensity.

■ DSpContext_FadeGammaOut (page 34) completely fades out a display to a color
of your choice.

■ DSpContext_FadeGammaIn (page 35) completely fades in a display to a color of
your choice.

■ DSpContext_GetFrontBuffer (page 36) obtains the front buffer for the context.

■ DSpContext_GetBackBuffer (page 37) obtains the back buffer for the context.

■ DSpContext_InvalBackBufferRect (page 38) invalidates a specific area of a
context’s back buffer, so that only a portion of the screen needs to be redrawn
when the buffers are next swapped.

■ DSpContext_SwapBuffers (page 39) draws a context’s back buffer to the
screen.

■ DSpContext_IsBusy (page 40) finds out whether a back buffer is available.

■ DSpContext_SetDirtyRectGridSize (page 41) suggests a grid size for the
context’s dirty rectangles.

■ DSpContext_GetDirtyRectGridSize (page 42) finds out the current grid size
for a context’s dirty rectangles.
DrawSprocket Functions 31
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
■ DSpContext_GetDirtyRectGridUnits (page 43) finds out the size of the base
dirty rectangle grid for a context.

■ DSpContext_SetMaxFrameRate (page 44) sets a maximum frame rate for a
specified context.

■ DSpContext_GetMaxFrameRate (page 45) obtains the maximum frame rate for a
specified context.

■ DSpContext_GetMonitorFrequency (page 45) obtains the frequency for the
display associated with a context.

DSpContext_FadeGamma 2

Sets brightness of the display to the specified intensity.

OSStatus DSpContext_FadeGamma (
DSpContextReference inContext,
SInt32 inPercentOfOriginalIntensity,
RGBColor *inZeroIntensityColor);

inContext A reference to the context whose display is to be faded. If you
pass NULL for this parameter, the fade operation applies
simultaneously to all displays.

inPercentOfOriginalIntensity
The percentage (0–100) of the display’s full intensity that you
want to achieve with this call. Values above 100 percent begin to
converge on white. If you have specified an intensity color,
values less than zero begin to converge on black.

inZeroIntensityColor
A pointer to the color that is to correspond to zero intensity
(represented by a value of 0 in the
inPercentOfOriginalIntensity parameter). If you pass NULL for
this parameter, the zero-intensity color is black.

function result A result code. See “Result Codes” (page 87).
32 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

Fading the display is an aesthetically pleasing way to transition into and out of
your game and between different sections of it. When performing a
resolution-mode switch (as when activating and deactivating your context’s
play state), it is important to fade the display to hide the flash that occurs.

DSpContext_FadeGamma performs a gamma fade, which gives better results than a
simple indexed fade.

Fading using DSpContext_FadeGamma is an incremental process. That is, over a
period of time, you make repeated, timed calls to DSpContext_FadeGamma, each
time passing it an incrementally different value for the
inPercentOfOriginalIntensity parameter, until the final desired intensity is
achieved. The intensity value you pass is usually an integer between 0 and 100.
It can be greater than 100, if you want to use fading to create a high-intensity
burst of light, or less than 100 if you have specified a zero-intensity color and
want to fade the color toward black.

The zero-intensity value that you fade out to is by default black, but it can be
any color that you specify in the inZeroIntensityColor parameter. You can
achieve special effects by fading partially toward one zero-intensity color and
then completing the fade to a different one. At the point when you actually
switch resolution modes, the zero-intensity color must be black and your
display must be completely faded if there is to be no visible flash.

To automatically accomplish a smooth fade all the way from full intensity to
zero intensity, or vice versa, in a single operation, use the
DSpContext_FadeGammaIn function (page 35) and the DSpContext_FadeGammaOut
(page 34) function.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 33
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_FadeGammaOut 2

Completely fades out a display to a color of your choice.

OSStatus DSpContext_FadeGammaOut (
DSpContextReference inContext,
RGBColor *inZeroIntensityColor);

inContext A reference to the context whose display is to be faded. The
function fades the display from 100 percent to 0 percent
intensity over a period of one second. If you pass NULL for this
parameter, the fade operation applies simultaneously to all
displays.

inZeroIntensityColor
A pointer to the color that is to correspond to zero intensity. If
you pass NULL for this parameter, the zero-intensity color is
black.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The initial gamma is that set by DrawSprocket when DSpStartup (page 11) was
called, or the last gamma value set by calling the DSpContext_FadeGamma
(page 32) function. If you had changed the system gamma to a different value,
you may see a flash at the beginning of the fade due to the change in the initial
gamma.

A key press or a mouse button click will jump the fade to its end point
immediately.

You can perform a manual fade with the DSpContext_FadeGamma function
(page 32).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
34 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_FadeGammaIn 2

Completely fades in a display to a color of your choice.

OSStatus DSpContext_FadeGammaIn (
DSpContextReference inContext,
RGBColor *inZeroIntensityColor);

inContext A reference to the context whose display is to be faded. The
function fades the display from 0 percent to 100 percent
intensity over a period of one second. If you pass NULL for this
parameter, the fade operation applies simultaneously to all
displays.

inZeroIntensityColor
The color that is to correspond to zero intensity. If you pass NULL
for this parameter, the zero-intensity color is black.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

A key press or a mouse-button click will jump the fade to its end point
immediately.

You can perform a manual fade with the DSpContext_FadeGamma function
(page 32).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 35
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_GetFrontBuffer 2

Obtains the front buffer for the context.

OSStatus DSpContext_GetFrontBuffer (
DSpContextReference inContext,
CGrafPtr *outBackBuffer);

inContext A reference to the context whose front buffer is to be returned.

outFrontBuffer
On return, a pointer to the front buffer (that is, to a CGrafPort).

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The front buffer is the screen display. Typically you use this function when you
are not using backbuffers and you want to pass a CGrafPtr so another interface
can draw to the screen (for example, by using OpenGL or QuickTime, or you
simply want to change resolutions). However, if you are drawing to the screen
yourself, you must call DSpContext_GetFrontBuffer each time through your
game’s drawing cycle to compensate for possible page flipping.

Note
Note that 3D hardware accelerators (such as RAVE)
typically must draw using a graphics device (GDevice)
rather than a graphics port. To do so, you should call
DSpContext_GetDisplayID (page 14) to get the display ID of
the device the context is on and then call the Display
Manager function DMGetDeviceByDisplayID to obtain the
GDevice. ◆

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.1.2.
36 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_GetBackBuffer 2

Obtains the back buffer for the context.

OSStatus DSpContext_GetBackBuffer (
DSpContextReference inContext,
DSpBufferKind inBufferKind,
CGrafPtr *outBackBuffer);

inContext A reference to the context whose back buffer is to be returned.

inBufferKind The kind of buffer. Currently the only supported buffer kind is
kDSpBufferKind_Normal.

outBackBuffer
On return, a pointer to the back buffer (that is, to a CGrafPort).

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The back buffer, which is where the game should draw to, is the next buffer that
will be displayed on a call to DSpContext_SwapBuffers (page 39).

The pointer to the back buffer may change after a call to
DSpContext_SwapBuffers, so you must call this function before rendering every
frame.

If you have specified an underlay for the context, the back buffer will have the
underlay image restored before this call returns.

If there are no available back buffers (they are all queued up for display), this
function will block until one is available. To avoid blocking, call
DSpContext_IsBusy (page 40) until it returns false.

Note that 3D hardware accelerators typically must draw using a graphics
device (GDevice) rather than a graphics port.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.
DrawSprocket Functions 37
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_InvalBackBufferRect 2

Invalidates a specific area of a context’s back buffer, so that only a portion of the
screen needs to be redrawn when the buffers are next swapped.

OSStatus DSpContext_InvalBackBufferRect (
DSpContextReference inContext,
const Rect *inRect);

inContext A reference to the context whose back buffer is to be invalidated.

inRect A pointer to a rectangle specifying the area (in back-buffer
coordinates) to invalidate.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

If you do not call this function between buffer swaps, the entire back buffer is
considered invalid when a swap occurs. The invalid rectangles must be set prior
to each call to DSpContext_SwapBuffers; the dirty rectangle list is emptied before
DSpContext_GetBackBuffer returns the back buffer for re-use.

You can make multiple calls to this function between swaps to accumulate
invalid rectangular areas.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
38 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_SwapBuffers 2

Draws a context’s back buffer to the screen.

OSStatus DSpContext_SwapBuffers(DSpContextReference inContext,
DSpCallbackProcPtr inBusyProc,
void *inUserRefCon);

inContext A reference to the context whose buffers are to be swapped. The
function causes the invalid parts of the back buffer of the
context specified in this parameter (or the entire back buffer, if
its invalid-rectangle list is empty) to be drawn to the screen.

inBusyProc A pointer to an application-defined function that performs any
required pre-swap tasks.

inUserRefCon A reference constant to be handed back by DrawSprocket when
it calls the callback specified by the inBusyProc parameter.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

This function returns immediately, even if the buffer swap has not yet occurred.
To determine when the next call to DSpContext_GetBackBuffer will not block,
you can repeatedly call the DSpContext_IsBusy function (page 40) until it returns
a value of false.

Before performing the buffer swap, DrawSprocket repeatedly calls an
application-supplied callback function, pointed to by the inBusyProc parameter,
to make sure that any constraints you impose are satisfied before the swap
occurs. When DrawSprocket calls the callback routine, it passes the reference
constant you passed to DspContext_SwapBuffers in the refCon parameter.

See the function MyCallbackFunction (page 62) and the data type
DSpCallbackProcPtr (page 70) for more information.

In a worst case scenario where the back buffer and the display have different bit
depths, DSpContext_SwapBuffers immediately calls CopyBits to transfer the data.
To avoid this, and to use the optimized DrawSprocket blitters, always insure
that your back buffer and display bit depths are identical.
DrawSprocket Functions 39
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_IsBusy 2

Finds out whether a back buffer is available.

OSStatus DSpContext_IsBusy (
DSpContextReference inContext,
Boolean *outBusyFlag);

inContext A reference to the context associated with the desired back
buffer.

outBusyFlag On return, contains true if no back buffer is available, false if a
back buffer is available.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

You can use this function to determine whether a call to
DSpContext_GetBackBuffer (page 37) will block.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
40 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_SetDirtyRectGridSize 2

Suggests a grid size for the context’s dirty rectangles.

OSStatus DSpContext_SetDirtyRectGridSize (
DSpContextReference inContext,
UInt32 inCellPixelWidth,
UInt32 inCellPixelHeight);

inContext A reference to a context whose dirty rectangle grid size you
want to set.

inCellPixelWidth
The width of the grid in pixels.

inCellPixelHeight
The height of the grid in pixels.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The DSpContext_SetDirtyRectGridSize function takes a reference to a context in
the inContext parameter and sets the dirty rectangle grid size for that context as
closely as possible to the dimensions passed in the inCellPixelWidth and
inCellPixelHeight parameters. The size used depends on factors such as the L1
cache size and the CPU bus width, so your suggested values may not be the
actual values used, but DrawSprocket will attempt to match your suggested
size as closely as possible.

To find out what size dirty rectangle grid DrawSprocket is actually using, call
DSpContext_GetDirtyRectGridSize (page 42). To find out the base grid size that
all dirty rectangle grids must be a multiple of, use the function
DSpContext_GetDirtyRectGridUnits (page 43).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 41
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_GetDirtyRectGridSize 2

Finds out the current grid size for a context’s dirty rectangles.

OSStatus DSpContext_GetDirtyRectGridSize (
DSpContextReference inContext,
UInt32 *outCellPixelWidth,
UInt32 *outCellPixelHeight);

inContext A reference to a context for which you want to know the current
grid cell size of the dirty rectangles.

outCellPixelWidth
On return, the width of the grid cell in pixels.

outCellPixelHeight
On return, the height of the grid cell in pixels.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The height and width values may be different from the values specified in
DSpContext_SetDirtyRectGridSize because the grid cells must be multiples of
the base grid size. For example, if you request a grid cell size of 40 by 40 pixels
on the current PowerPC machines, the actual cell size will be 64 by 64 because
the base grid size is 32 by 32 pixels. To find out the dimensions of the base grid,
you can use the DSpContext_GetDirtyRectGridUnits (page 43) function.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
42 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_GetDirtyRectGridUnits 2

Finds out the size of the base dirty rectangle grid for a context.

OSStatus DSpContext_GetDirtyRectGridUnits (
DSpContextReference inContext,
UInt32 *outCellPixelWidth,
UInt32 *outCellPixelHeight);

inContext A reference to a context for whose base dirty rectangle grid size
you want to determine.

outCellPixelWidth
On return, the width of the base grid in pixels.

outCellPixelHeight
On return, the height of the base grid in pixels.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

The grid unit size is based on a number of machine characteristics such as the
bus width and L1 cache size. For example, on current PowerPC-based
machines, the grid unit size is 32 by 32 pixels (corresponding to the 32 bytes
that make up the width of a PowerPC cache line). When you specify a grid cell
size with the DSpContext_SetDirtyRectGridSize function, DrawSprocket rounds
the requested size to a multiple of the base grid unit size. For example, if you
request a grid cell size of 40 by 40 pixels, the actual cell size will be 64 by 64.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 43
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_SetMaxFrameRate 2

Sets a maximum frame rate for a specified context.

OSStatus DSpContext_SetMaxFrameRate (
DSpContextReference inContext,
UInt32 inMaxFPS);

inContext A reference to the context whose maximum frame rate you want
to set.

inMaxFPS The maximum frame rate in frames per second.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

A call to the function DSpContext_SetMaxFrameRate does not guarantee that your
game will achieve the maximum rate, but if it attempts to exceed the rate,
DrawSprocket will slow down the buffer swapping.

The actual frame rate that is set is not necessarily the frame rate you specified,
because DrawSprocket internally converts the specified maximum frame rate
into a value that can be used to skip a number of frames for each frame that is
drawn.

For example, if the monitor refresh rate is 66.7 Hz, and you request a frame rate
of 30 fps, DrawSprocket internally skips every other frame, and your resulting
frame rate is about 33.3 Hz.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
44 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_GetMaxFrameRate 2

Obtains the maximum frame rate for a specified context.

OSStatus DSpContext_GetMaxFrameRate (
DSpContextReference inContext,
UInt32 *outMaxFPS);

inContext A reference to the context whose maximum frame rate you want
to get.

outMaxFPS On return, the maximum frame rate in frames per second for the
context specified in the inContext parameter. The frame rate
given is not necessarily the same as the maximum frame rate
passed by the most recent call to the
DSpContext_SetMaxFrameRate function. If 0 is given as the
maximum frame rate, there are no frame rate restrictions in
place.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_GetMonitorFrequency 2

Obtains the frequency for the display associated with a context.

OSStatus DSpContext_GetMonitorFrequency (
DSpContextReference inContext,
Fixed *outFrequency);

inContext A reference to a context for which you want to get the display
frequency.
DrawSprocket Functions 45
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
outFrequency On return, the display frequency. The context must have been
active for a reasonable amount of time (at least two seconds) in
order to receive a correct value, because the value given by this
parameter on return is calculated by timing the frame rate of the
active context.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Blitting Functions 2

This section describes functions you use to blit images between buffers. These
functions are generalized in the sense that you can copy images between any
two buffers that can be represented by a CGrafPort reference.

■ DSpBlit_Faster (page 46) performs the specified blitting operation (including
scaling).

■ DSpBlit_Fastest (page 47) performs the specified blitting operation (without
scaling).

DSpBlit_Faster 2

Performs the specified blitting operation (including scaling).

OSStatus DSpBlit_Faster (
DSpBlitInfoPtr inBlitInfo,
Boolean inAsyncFlag);
46 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
inBlitInfo A pointer to a structure that specifies the blitting operation you
want to perform. See DSpBlitInfo (page 68) for more
information.

inAsyncFlag If set to true, DrawSprocket attempts to perform the blitting
operation asynchronously.

function result A result code. See “Result Codes” (page 87).

DESCRIPTION

If you specify asynchronous blitting, you must specify a completion function in
the inBlitInfo structure which will be called when DrawSprocket finishes the
blitting operation.

VERSION NOTES

Introduced with DrawSprocket 1.1.

DSpBlit_Fastest 2

Performs the specified blitting operation (without scaling).

OSStatus DSpBlit_Faster (
DSpBlitInfoPtr inBlitInfo,
Boolean inAsyncFlag);

inBlitInfo A pointer to a structure that specifies the blitting operation you
want to perform. See DSpBlitInfo (page 68) for more
information.

inAsyncFlag If set to true, DrawSprocket attempts to perform the blitting
operation asynchronously.

function result A result code. See “Result Codes” (page 87).

DESCRIPTION

Unlike DSpBlit_Faster (page 46), DSpBlit_Fastest forgoes checking for special
drawing cases (such as clipping) when copying between buffers.
DrawSprocket Functions 47
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
If you specify asynchronous blitting, you must specify a completion function in
the inBlitInfo structure which will be called when DrawSprocket finishes the
blitting operation.

VERSION NOTES

Introduced with DrawSprocket 1.1.

Using Alternate Buffers 2

Use the functions in this section to create and draw into an alternate buffer and
to designate an alternate buffer to serve as an underlay.

■ DSpAltBuffer_New (page 48) creates an alternate buffer for an underlay or
overlay.

■ DSpAltBuffer_Dispose (page 49) disposes of an alternate buffer.

■ DSpAltBuffer_GetCGrafPtr (page 50) obtains the drawing area for an
alternate buffer.

■ DSpContext_SetUnderlayAltBuffer (page 51) designates an alternate buffer to
be used as the current underlay buffer for a context.

■ DSpContext_GetUnderlayAltBuffer (page 52) obtains the current underlay
associated with a context.

■ DSpAltBuffer_InvalRect (page 52) invalidates a rectangle in an alternate
buffer.

DSpAltBuffer_New 2

Creates an alternate buffer for an underlay.

OSStatus DSpAltBuffer_New (
DSpContextReference inContext,
Boolean inVRAMBuffer,
DSpAltBufferAttributes *inAttributes,
DSpAltBufferReference *outAltBuffer);
48 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
inContext A reference to the context for which you want to create an
alternate buffer.

inVRAMBuffer A value of true requests that DrawSprocket create the buffer in
VRAM if possible (it may be created in the current heap). A
value of false means to create the buffer in the current heap.

inAttributes A pointer to a structure specifying additional attributes of the
alternate buffer. See DSpAltBufferAttributes (page 68) for more
information. If you pass NULL, the alternate buffer has the same
attributes as the specified context.

outAltBuffer On return, a pointer to the alternate buffer reference.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

If you specify additional attributes in the inAttributes parameter, you cannot
use the alternate buffer as an underlay buffer.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpAltBuffer_Dispose 2

Disposes of an alternate buffer.

OSStatus DSpAltBuffer_Dispose (DSpAltBufferReference inAltBuffer);

inAltBuffer A reference to the buffer to dispose.

function result A result code. See “Result Codes” (page 87).
DrawSprocket Functions 49
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpAltBuffer_GetCGrafPtr 2

Obtains the drawing area for an alternate buffer.

OSStatus DSpAltBuffer_GetCGrafPtr (
DSpAltBufferReference inAltBuffer,
DSpBufferKind inBufferKind,
CGrafPtr *outCGrafPtr);

inAltBuffer A reference to an alternate buffer.

inBufferKind The kind of buffer. Currently the only supported buffer kind is
kDSpBufferKind_Normal.

outCGrafPtr On return, the graphics pointer associated with an alternate
buffer.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

After the DSpAltBuffer_GetCGrafPtr function returns, you can use the pointer
indicated in outCGrafPtr to draw into the alternate buffer. After drawing into
the alternate buffer, you should invalidate the rectangles that you have worked
in using the function DSpAltBuffer_InvalRect (page 52).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.
50 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_SetUnderlayAltBuffer 2

Designates an alternate buffer to be used as the current underlay buffer for a
context.

OSStatus DSpContext_SetUnderlayAltBuffer (
DSpContextReference inContext,
DSpAltBufferReference inNewUnderlay);

inContext A reference to the context that uses the underlay.

inNewUnderlay
A reference to the alternate buffer that holds the underlay.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Underlay buffers are used to “clean” a back buffer when
DSpContext_GetBackBuffer is called. When a back buffer is retrieved and there is
an underlay buffer, the invalid areas in the back buffer are restored from the
underlay buffer. This is most useful in sprite games, or in games where the
background is static (or changes infrequently).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 51
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DSpContext_GetUnderlayAltBuffer 2

Obtains the current underlay associated with a context.

OSStatus DSpContext_GetUnderlayAltBuffer (
DSpContextReference inContext,
DSpAltBufferReference *outUnderlay);

inContext A reference to the context whose underlay you want to get.

outUnderlay On return, a reference to the alternate buffer that holds the
underlay.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpAltBuffer_InvalRect 2

Invalidates a rectangle in an alternate buffer.

OSStatus DSpAltBuffer_InvalRect (
DSpAltBufferReference inAltBuffer,
const Rect *inInvalidRect);

inAltBuffer A reference to an alternate buffer.

inInvalidRect
A pointer to the rectangle to be invalidated.

function result A result code. See “Result Codes” (page 87).
52 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

For example, you must invalidate areas of an underlay you have changed so
that the changes are transferred to the back buffer on the next
DSpContext_SwapBuffers (page 39) call.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Handling a Mouse 2

Because the coordinate system of a context may not correspond exactly to the
global system coordinates, you must use the functions in this section to track
the position of the mouse.

■ DSpFindContextFromPoint (page 53) finds out which context contains a point
given in global coordinates.

■ DSpGetMouse (page 54) obtains the global coordinates of the mouse position.

■ DSpContext_GlobalToLocal (page 55) translates a point in global coordinates
into local coordinates for a context.

■ DSpContext_LocalToGlobal (page 55) translates a point from a context’s local
coordinates into global coordinates.

DSpFindContextFromPoint 2

Finds out which context contains a point given in global coordinates.

OSStatus DSpFindContextFromPoint (
Point inGlobalPoint,
DSpContextReference *outContext);
DrawSprocket Functions 53
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
inGlobalPoint
A point in global coordinates.

outContext On return, a reference to the context that contains that point.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

If the user moves the mouse, the game needs to know which context contains it
so that the global coordinates can be properly translated into local coordinates
for the context.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpGetMouse 2

Obtains the global coordinates of the mouse position.

OSStatus DSpGetMouse (Point *outGlobalPoint);

outGlobalPoint
On return, the global coordinates of the mouse position.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.
54 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpContext_GlobalToLocal 2

Translates a point in global coordinates into local coordinates for a context.

OSStatus DSpContext_GlobalToLocal (
DSpContextReference inContext,
Point *ioPoint);

inContext A reference to the context whose local coordinates you want to
translate into.

ioPoint Takes a point in global coordinates. On return, contains the
point in local coordinates.

function result A result code. See “Result Codes” (page 87).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_LocalToGlobal 2

Translates a point from a context’s local coordinates into global coordinates.

OSStatus DSpContext_LocalToGlobal (
DSpContextReference inContext,
Point *ioPoint);

inContext The context whose local coordinate system describes the point’s
coordinates.

ioPoint Takes a point’s local coordinates. On return, contains the point’s
global coordinates.

function result A result code. See “Result Codes” (page 87).
DrawSprocket Functions 55
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Manipulating Color Lookup Tables 2

The functions in this section give you convenient access to the entries of a color
lookup table.

■ DSpContext_SetCLUTEntries (page 56) assigns one or more color entries to a
color lookup table.

■ DSpContext_GetCLUTEntries (page 57) Retrieves one or more color entries
from a color lookup table.

DSpContext_SetCLUTEntries 2

Assigns one or more color entries to a color lookup table.

OSStatus DSpContext_SetCLUTEntries (
DSpContextReference inContext,
const ColorSpec *inEntries,
UInt16 inStartingEntry,
UInt16 inEntryCount);

inContext The context whose color lookup table is to be modified.

inEntries A pointer to an array of color specification records.

inStartingEntry
The (zero-based) index position in the color lookup table of the
first entry to replace.

inEntryCount The number of entries to replace.

function result A result code. See “Result Codes” (page 87).
56 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

The DSpContext_SetCLUTEntries function allows you to change a range of entries
in a color lookup table, for purposes such as color-table animation.

Because of video hardware limitations, the changes you make to a color table
with this function may not take effect until the next vertical retrace.
Nevertheless, this function attempts to execute asynchronously and return
immediately, so your program can continue execution without having to wait
for the changes to be made.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_GetCLUTEntries 2

Retrieves one or more color entries from a color lookup table.

OSStatus DSpContext_GetCLUTEntries (
DSpContextReference inContext,
ColorSpec *outEntries,
UInt16 inStartingEntry,
UInt16 inEntryCount);

inContext The context whose color lookup table is to be accessed.

outEntries On return, an array of color specification records that contain
the retrieved table entries.

inStartingEntry
The (zero-based) index position in the color lookup table of the
first entry to retrieve.

inEntryCount The number of entries to retrieve.

function result A result code. See “Result Codes” (page 87).
DrawSprocket Functions 57
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
DISCUSSION

After you get the entries you can modify them and reassign them to the color
table, for purposes such as color-table animation, with the function
DSpContext_SetCLUTEntries (page 56).

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Processing System Events 2

The function in this section passes system events through to DrawSprocket.

■ DSpProcessEvent (page 58) passes system events through to DrawSprocket so
that it can correctly handle events it must know about.

DSpProcessEvent 2

Passes system events through to DrawSprocket so that it can correctly handle
events it must know about.

OSStatus DSpProcessEvent (
EventRecord *inEvent,
Boolean *outEventWasProcessed);

inEvent A pointer to the event to be passed to DrawSprocket.

outEventWasProcessed
On return, true if DrawSprocket processed the event; false if
the event was not processed.

function result A result code. See “Result Codes” (page 87).
58 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

Whenever your game receives a suspend or resume event, it must call the
DSpProcessEvent function so that DrawSprocket can correctly set the system
state for the process switch.

When DrawSprocket is suspended, it returns the display to the resolution mode
it was in before your context’s play state first became active. When
DrawSprocket resumes, it restores the display to the resolution mode used by
your context. However, it is your responsibility to update the contents of the
display at this time.

SPECIAL CONSIDERATIONS

Do not call at interrupt time.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Utility Functions 2

This section describes two functions: one that aids your debugging efforts by
maintaining your access to the debugging screen at all times, and one that
facilitates implementation of VBL tasks.

■ DSpSetDebugMode (page 59) keeps the screen and system resources visible
during debugging.

■ DSpContext_SetVBLProc (page 60) piggybacks your own VBL task to a
particular context.

DSpSetDebugMode 2

Keeps the screen and system resources visible during debugging.

OSStatus DSpSetDebugMode (Boolean inDebugMode);
DrawSprocket Functions 59
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
inDebugMode Set this value to true if the desktop display is to remain visible,
even after fading; false otherwise.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

During development, if you drop into the debugger when the display has been
faded out, you cannot fade the display back in so that you can see the debugger
screen. Calling the DSpSetDebugMode function with the inDebugMode flag set to a
value of true causes your program to enter a mode in which the blanking
window is not drawn and every fade operation (either in or out) causes only a
partial dimming and immediate restoration of the screen intensity. Calling this
function with the inDebugMode flag set to a value of false ends the mode and
resumes normal operation.

To make use of this function, you must call it before activating your context.
Once the blanking window is in place, this function effects only gamma fades.

This function is ignored in nondebugging builds of DrawSprocket.

Note the when using debugging builds, you can also enter debug mode by
placing a folder named DSpDebugMode in your application folder.

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContext_SetVBLProc 2

Piggybacks your own VBL task to a particular context.

OSStatus DSpContext_SetVBLProc (
DSpContextReference inContext,
DSpCallbackProcPtr inProcPtr,
void *inRefCon);

inContext The context the VBL task is associated with.
60 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
inProcPtr A pointer to an application-supplied callback function. See
MyCallbackFunction (page 62) and the data type
DSpCallbackProcPtr (page 70) for more information about
implementing this function.

inRefCon A reference constant to be handed back by DrawSprocket when
it calls the inProcPtr callback.

function result A result code. See “Result Codes” (page 87).

DISCUSSION

Because DrawSprocket needs to set up VBL tasks of its own, you can piggyback
your own VBL task to a particular context easily with this function, instead of
digging down through the system to find the correct slot ID and installing your
own.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Application-Defined Functions 2

This section describes the interfaces to application-defined functions used in
conjunction with DrawSprocket functions.

■ MyCallbackFunction (page 62) performs any necessary tasks in preparation
for swapping display buffers or piggybacking VBL tasks to a context.

■ MyBlitDone (page 62) handles any tasks required after DrawSprocket finishes
blitting between buffers.

■ MyEventHandler (page 63) allows your game to handle events during the
display of the device-selection dialog box.
DrawSprocket Functions 61
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
MyCallbackFunction 2

Performs any necessary tasks in preparation for swapping display buffers or
piggybacking VBL tasks to a context.

Boolean MyCallbackFunction (
DSpContextReference inContext,
void *inRefCon);

inContext A reference to a context.

inRefCon A reference constant to be handed back to the game by the
DrawSprocket function that calls MyCallbackFunction.

function result The function should return false if your tasks or checks are
complete. If it returns true, the function is still performing
necessary tasks.

DISCUSSION

Calls to MyCallbackFunction result from calls to either DSpContext_SetVBLProc
(page 60) or DSpContext_SwapBuffers (page 39).

VERSION NOTES

Introduced with DrawSprocket 1.0.

MyBlitDone 2

Handles any tasks required after DrawSprocket finishes blitting between
buffers.

void MyBlitDone (DSpBlitInfo *info);

info A pointer to a data structure containing information about the
completed blitting operation. See DSpBlitInfo (page 68) for
more information.
62 DrawSprocket Functions

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DISCUSSION

DrawSprocket calls this application-defined function during calls to the
functions DSpBlit_Faster (page 46) or DSpBlit_Fastest (page 47).

If you are performing multiple asynchronous blitting operations, your
application-defined completion function can check the blitter information
structure passed to it to determine which operation was completed.

VERSION NOTES

Introduced with DrawSprocket 1.1

MyEventHandler 2

Handles events during calls to the function DSpUserSelectContext (page 20).

Boolean MyEventHandler (EventRecord *inEvent);

inEvent A pointer to an event record that describes the event that
occurred.

function result If your function handled the event, it should return true;
otherwise it should return false.

DISCUSSION

When calling the function DSpUserSelectContext (page 20), you must designate
this application-defined function to handle events (such as update events) that
may occur while the configuration window is active.

VERSION NOTES

Introduced with DrawSprocket 1.0.
DrawSprocket Functions 63
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
Data Types 2

This section describes the following DrawSprocket data types:

■ DSpContextReference (page 64)

■ DSpAltBufferReference (page 64)

■ DSpContextAttributes (page 65)

■ DSpAltBufferAttributes (page 68)

■ DSpBlitInfo (page 68)

■ DSpCallbackProcPtr (page 70)

■ DSpBlitDoneProc (page 71)

■ DSpEventProcPtr (page 71)

DSpContextReference 2

DrawSprocket handles drawing contexts by passing a reference of type
DSpContextReference:

typedef struct OpaqueDSpContextReference *DSpContextReference;

VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpAltBufferReference 2

DrawSprocket handles the alternate image buffer by passing a reference of type
DSpAltBufferReference:

typedef struct OpaqueDSpAltBufferReference *DSpAltBufferReference;
64 Data Types

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpContextAttributes 2

The context attributes structure describes a set of characteristics that apply to a
given context.

You use the context attributes structure to request specific characteristics when
creating a context or to retrieve the actual characteristics of a given context. The
field descriptions cover their use as both input or output values, but the
structure never contains both input and output information at the same time.
The context attributes structure is defined by the DSpContextAttributes data
type.

Note
You can use the debug version of the DrawSprocket library
to catch most context errors. ◆

struct DSpContextAttributes {
Fixed frequency;
UInt32 displayWidth;
UInt32 displayHeight;
UInt32 reserved1;
UInt32 reserved2;
UInt32 colorNeeds;
CTabHandle colorTable;
OptionBits contextOptions;
OptionBits backBufferDepthMask;
OptionBits displayDepthMask;
UInt32 backBufferBestDepth;
UInt32 displayBestDepth;
UInt32 pageCount;
char filler[3],
Boolean gameMustConfirmSwitch;
UInt32 reserved3[4];

};
Data Types 65
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
typedef struct DSpContextAttributes DSpContextAttributes;
typedef struct DSpContextAttributes *DSpContextAttributesPtr

Field descriptions

frequency Input: Ignored.
Output: The frame-refresh frequency (in Hz) specified by
the current resolution mode. (This value is 0 if the actual
frequency is not available.)

displayWidth Input: The requested display width (in pixels).
Output: The display width for the specified context.

displayHeight Input: The requested display height (in pixels).
Output: The display height for the specified context.

reserved1 Reserved. Always set this field to 0.
reserved2 Reserved. Always set this field to 0
colorNeeds Input: A value that specifies whether the display needs to

be in color. Valid constants for this field are described in
“Color Need Constants” (page 73).
Output: The color support provided by the current
resolution mode.

colorTable Input: A handle to the color table to use with the context to
which this attributes structure applies. (This field applies
only to indexed devices; direct devices do not use a color
table.)
Output: Ignored.

contextOptions Input: A set of bit flags that define requested special display
features for which either hardware or software
implementation is acceptable. Valid constants for this field
are described in “Special Display Feature Constants”
(page 73).
Output: The special display features supported in software
by the current resolution mode.

backBufferDepthMask
Input: A bit array that defines the acceptable pixel depths
for the back buffer. Valid constants for this field are
described in “Depth Masks” (page 72). This value should
match the depth of the front buffer. You must specify a back
buffer depth mask and pixel depth when reserving a back
buffer context.
66 Data Types

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Output: The bit depth DrawSprocket recommends for the
context.

displayDepthMask
Input: A bit array that defines the acceptable pixel depths
for the front buffer. Valid constants for this field are
described in “Depth Masks” (page 72).
Output: A bit array that specifies the pixel depth of the
specified context.

backBufferBestDepth
Input: The preferred pixel depth, or video mode, for the
back buffer. his value should match the depth of the front
buffer. You must specify a back buffer depth mask and
pixel depth when reserving a back buffer context.
Output: The bit depth DrawSprocket recommends for the
context.

displayBestDepth Input: The preferred pixel depth for the display.
Output: The pixel depth of the specified context.

pageCount Input: Indicates the desired number of video pages. For
example, if you desire double-buffering, you should pass 2.
For triple buffering, pass 3. If you pass 1, then
DrawSprocket only provides a front buffer and does not
allocate any memory for back buffers. You cannot pass 0 for
the page count.
Output: Gives the number of hardware video pages
available. A value of 1 indicates that hardware page
flipping is not supported.

filler Reserved. These bytes are included to preserve alignment.
gameMustConfirmSwitch

Input: Ignored.
Output: A value of true indicates that the context may have
problems being displayed on the user’s system, and the
game should confirm that the context is visible after being
set to the active state by asking the user if the display can
be seen (via a dialog box or some other mechanism).
Additionally, a warning code will be returned from
DSpContext_SetState indicating that the game should
confirm that the context is visible.

reserved3[4] Reserved. Always set this field to 0.
Data Types 67
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
VERSION NOTES

Introduced with DrawSprocket 1.0.

DSpAltBufferAttributes 2

When handling allocating an alternate drawing buffer, you can specify
additional attributes by passing a structure of type DSpAltBufferAttributes.

struct DSpAltBufferAttributes {
UInt32 width;
UInt32 height;
DSpAltBufferOption options;
UInt32 reserved[4];

};
typedef struct DSpAltBufferAttributes DSpAltBufferAttributes;

Field descriptions

width The width of the alternate buffer, in pixels.
height The height of the alternate buffer, in pixels.
options Any desired options for the alternate buffer. See “Alternate

Buffer Options Constant” (page 76).
reserved[4] Reserved. Set to 0.

VERSION NOTES

Introduced with DrawSprocket 1.1.

DSpBlitInfo 2

When blitting images between buffers, you specify the type of blitting operation
by passing a structure of type DSpBlitInfo.

struct DSpBlitInfo {
Boolean completionFlag;
char filler[3];
68 Data Types

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpBlitDoneProc completionProc;
DSpContextReference srcContext;
CGrafPtr srcBuffer;
Rect srcRect;
UInt32 srcKey;
DSpContextReference dstContext;
CGrafPtr dstBuffer;
Rect dstRect;
UInt32 dstKey;
DSpBlitMode mode;
UInt32 reserved[4];

};
typedef struct DSpBlitInfo DSpBlitInfo;
typedef DSpBlitInfo DSpBlitInfoPtr;

Field descriptions

completionFlag Set to true on output when the blitting operation has
completed.

filler[3] Reserved. These bytes are included to preserve proper
alignment.

completionProc A pointer to the function that DrawSprocket should call
when the blitting operation has completed. See MyBlitDone
(page 62) for more information about implementing this
function. Pass NULL if you don’t want to specify a
completion function.

srcContext A reference to the source context. Pass NULL if the source
buffer does not belong to a context.

srcBuffer A pointer of type CGrafPtr that specifes the buffer
containing the image data you want to blit to the
destination buffer.

srcRect The rectangle specifying the location of the image data in
the source buffer. If the source and destination rectangles
are different sizes, DrawSprocket scales the image to fit.

srcKey An integer specifying the source color key. See “Blit Mode
Constants” (page 77) for more information on using this
key.

dstContext A reference to the destination context. Pass NULL if the
destination buffer does not belong to a context.
Data Types 69
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
dstBuffer A pointer of type CGrafPtr that specifes the buffer you want
to blit the image to.

dstRect The rectangle specifying where to write the image data in
the destination buffer. If the source and destination
rectangles are different sizes, DrawSprocket scales the
image to fit.

dstKey An integer specifying the destination color key. See “Blit
Mode Constants” (page 77) for more information on using
this key.

mode The blit mode to use. See “Blit Mode Constants” (page 77)
for a list of possible values.

reserved[4] Reserved.

VERSION NOTES

Introduced with DrawSprocket 1.1

DSpCallbackProcPtr 2

When calling the function DSpContext_SetVBLProc (page 60) or
DSpContext_SwapBuffers (page 39), you must designate an application-defined
function to handle any desired operations prior to the VBL task call or buffer
swap. Such a function has the following type definition:

typedef Boolean (*DSpCallbackProcPtr)(DSpContextReference inContext,
 void *inRefCon);

See MyCallbackFunction (page 62) for more information about implementing
this function.

VERSION NOTES

Introduced with DrawSprocket 1.0.
70 Data Types

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
DSpBlitDoneProc 2

When passing the DSpBlitInfo structure in the functions DSpBlit_Faster
(page 46) and DSpBlit_Fastest (page 47), you must designate a completion
function to be called when DrawSprocket finishes blitting to the screen. Such a
function has the following type definition:

typedef void (*DSpBlitDoneProc)(DSpBlitInfo *info);

See MyBlitDone (page 62) for more information about implementing this
function.

VERSION NOTES

Introduced with DrawSprocket 1.1

DSpEventProcPtr 2

When calling the function DSpUserSelectContext (page 20), you must designate
an application-defined function to handle events. Such a function has the
following type definition:

typedef Boolean (*DSpEventProcPtr)(EventRecord *inEvent);

See MyEventHandler (page 63) for more information about implementing this
function.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Constants 2

This section describes the constants provided by DrawSprocket.
Constants 71
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
■ “Depth Masks” (page 72)

■ “Color Need Constants” (page 73)

■ “Special Display Feature Constants” (page 73)

■ “Buffer Kind Constant” (page 74)

■ “Play State Constants” (page 75)

■ “Alternate Buffer Options Constant” (page 76)

■ “Blit Mode Constants” (page 77)

■ “Every Context Constant” (page 78)

Depth Masks 2

You provide a depth mask in the backBufferDepthMask and displayDepthMask
fields of the context attributes structure to specify the pixel depths that are
acceptable to your program. You can construct the mask from the constants
defined by the following enumeration:

enum DSpDepthMask {
kDSpDepthMask_1 = 1 << 0,
kDSpDepthMask_2 = 1 << 1,
kDSpDepthMask_4 = 1 << 2,
kDSpDepthMask_8 = 1 << 3,
kDSpDepthMask_16 = 1 << 4,
kDSpDepthMask_32 = 1 << 5,
kDSpDepthMask_All = -1L

};

typedef enum DSpDepthMask DSpDepthMask;

Constant descriptions

kDSpDepthMask_1 1-bit pixel depth is acceptable.
kDSpDepthMask_2 2-bit pixel depth is acceptable.
kDSpDepthMask_4 4-bit pixel depth is acceptable.
kDSpDepthMask_8 8-bit pixel depth is acceptable.
kDSpDepthMask_16 16-bit pixel depth is acceptable.
kDSpDepthMask_32 32-bit pixel depth is acceptable.
72 Constants

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
kDSpDepthMask_All Any pixel depth is acceptable.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Color Need Constants 2

You can use the following constants in the colorNeeds field of the context
attributes structure to specify your program’s preferences or requirements for
color display:

enum DSpColorNeeds {
kDSpColorNeeds_DontCare = 0L,
kDSpColorNeeds_Request = 1L,
kDSpColorNeeds_Require = 2L

};

typedef enum DSpColorNeeds DSpColorNeeds;

Constant descriptions

kDSpColorNeeds_DontCare
Display can be either color or grayscale.

kDSpColorNeeds_Request
Color display is preferred, but not required.

kDSpColorNeeds_Require
Color display is required.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Special Display Feature Constants 2

You can use the following constants in the contextOptions field of the context
attributes structure to request special display features or to determine which
features a specified display supports.
Constants 73
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
enum DSpContextOption {
kDSpContextOption_QD3DAccel = 1 << 0,
kDSpContextOption_PageFlip = 1 << 1,
kDSpContextOption_DontSyncVBL = 1 << 2

};

typedef enum DSpContextOption DSpContextOption;

Constant descriptions

kDSpContextOption_QD3DAccel
Not implemented.

kDSpContextOption_PageFlip
Use page flipping (a hardware feature). Note that you
should never allow page flipping unless you have tested
your code extensively on a computer with page-flipping
capability.

kDSpContextOption_DontSyncVBL
Do not synchronize context updates with the vertical
retrace of the display.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Buffer Kind Constant 2

Currently, DrawSprocket supports only one kind of buffer. You pass this
constant to the DSpContext_GetBackBuffer, DSpAltBuffer_InvalRect, and
DSpAltBuffer_GetCGrafPtr functions.

enum DSpBufferKind {
kDSpBufferKind_Normal = 0

};

typedef enum DSpBufferKind DSpBufferKind;

VERSION NOTES

Introduced with DrawSprocket 1.0.
74 Constants

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Play State Constants 2

You set the play state of a context by calling the function DSpContext_SetState
(page 28) and passing it one of the following values:

enum DSpContextState {
kDSpContextState_Active = 0L,
kDSpContextState_Paused = 1L,
kDSpContextState_Inactive = 2L

};

typedef enum DSpContextState DSpContextState;

Constant Descriptions

kDSpContextState_Active
The display is completely controlled by your program. The
display is configured as specified in its context attributes
structure. All system adornments, such as the menu bar,
floating windows, and the desktop, are hidden (removed or
covered by the blanking window). In this state you cannot
make system calls to managers, such as the Window
Manager and Dialog Manger, that expect the display to be
in a normal state.

kDSpContextState_Paused
The menu bar and other system adornments are restored,
although the resolution mode is still that specified in the
context attributes structure for the display. The desktop is
still not visible; the blanking window covers it. In this state
you can make normal system calls. Page flipping and
double buffering are inactive in this state; the display page
is set to page 0 if page flipping has been enabled.
In this state it is safe for your program to call Macintosh
Toolbox and system software functions. The paused state
gives the user access to the process menu; if your game is
suspended because the user switches to another
application, you must call the DSpProcessEvent function
(page 58).

kDSpContextState_Inactive
The display is in exactly the state the user has specified
from the Monitors control panel. The blanking window is
Constants 75
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
hidden and the resolution mode specified in the context
attributes structure for this display is not in effect.
The user’s configuration is restored only if there are no
other currently active or paused contexts. As long as there
is at least one active or paused context, all displays are
covered by the blanking window, and the resolution mode
for each is that of the context, which may not be what the
user has selected in the Monitors control panel.

VERSION NOTES

Introduced with DrawSprocket 1.0.

Alternate Buffer Options Constant 2

You can specify this constant when allocating an alternate display buffer.

enum DSpAltBufferOption {
kDSpAltBufferOption_RowBytesEqualsWidth = 1 << 0
};

typedef enum DSpAltBufferOption DSpAltBufferOption;

Constant description

kDSpAltBufferOption_RowBytesEqualsWidth
Forces the row and width of the alternate buffer to have the
same number of pixels. The number of row bytes can vary
depending on the screen depth. For example, if you specify
16-bit color, then there will be twice as many row bytes as
there are pixels in the width, because it takes 2 bytes to
represent one pixel.

VERSION NOTES

Introduced with DrawSprocket 1.1.
76 Constants

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Blit Mode Constants 2

You use these constants in the structure DSpBlitInfo (page 68) to indicate the
type of blitter operation you want to perform. Note that you can use these
constants in combination with each other.

enum DSpBlitMode {
kDSpBlitMode_Plain = 0,
kDSpBlitMode_SrcKey = 1 << 0,
kDSpBlitMode_DstKey = 1 << 1,
kDSpBlitMode_Interpolation = 1 << 2
};

typedef enum DSpBlitMode DSpBlitMode;

Constant descriptions

kDSpBlitMode_Plain
Copy all pixels from the source to the destination.

kDSpBlitMode_SrcKey
Copies all image data where the source image is not the
same color as the source key. For example, say the buffer
holds a sprite image on a black background. If you specify
the source color key to be black, then DrawSprocket writes
only nonblack images (that is, the sprite) to the destination.

kDSpBlitMode_DstKey
Overwrites data in the destination image where the color is
the same as the destination key. For example, say the
destination buffer holds an image of a a city skyline against
a blue sky, and you want to draw a blimp moving behind
the buildings. If you set the destination color key to blue,
then DrawSprocket will draw the blimp only in areas that
are blue. That is, the blimp will not overwrite the nonblue
buildings, so it will appear to be behind them.

kDSpBlitMode_Interpolation
Interpolate between color values when scaling pixels.

VERSION NOTES

Introduced with DrawSprocket 1.1.
Constants 77
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
Every Context Constant 2

DrawSprocket defines the following constant that you can pass to indicate that
any context is permissible:

#define kDSpEveryContext ((DSpContextReference) NULL)

VERSION NOTES

Introduced with DrawSprocket 1.0.
78 Constants

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Summary of DrawSprocket 2

DrawSprocket Functions 2

Activating and Deactivating DrawSprocket

NumVersion DSpGetVersion (void);

OSStatus DSpStartup (void);

OSStatus DSpShutdown (void);

Choosing a Context

OSStatus DSpFindBestContext (const DSpContextAttributesPtr inDesiredAttributes,
 DSpContextReference *outContext);

OSStatus DSpFindBestContextOnDisplayID (DSpContextAttributesPtr inDesiredAttributes,
 DSpContextReference *outContext,
 DisplayIDType inDisplayID);

OSStatus DSpContext_GetDisplayID (DSpContextReference inContext,
 DisplayIDType *outDisplayID);

OSStatus DSpGetFirstContext (DisplayIDType displayID,
 DSpContextReference *outContext);

OSStatus DSpGetNextContext (DSpContextReference inCurrentContext,
 DSpContextReference *outContext);

OSStatus DSpContext_GetAttributes (DSpContextReference inContext,
 DSpContextAttributesPtr outAttributes);

OSStatus DSpCanUserSelectContext (DSpContextAttributesPtr inDesiredAttributes
 Boolean *outUserCanSelectContext);
Summary of DrawSprocket 79
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
OSStatus DSpUserSelectContext (DSpContextAttributesPtr inDesiredAttributes,
 DisplayIDType inDialogDisplayLocation,
 DSpEventProcPtr inEventProc,

 DSpContextReference *outContext);

Saving and Restoring a Context

OSStatus DSpContext_Restore (void *inFlatContext,
 DSpContextReference *outRestoredContext);

OSStatus DSpContext_GetFlattenedSize (DSpContextReference inContext,
 UInt32 *outFlatContextSize);

OSStatus DSpContext_Flatten (DSpContextReference inContext,
 void *outFlatContext);

Manipulating a Context

OSStatus DSpContext_Reserve (DSpContextReference inContext,
 const DSpContextAttributesPtr inDesiredAttributes);

OSStatus DSpContext_Queue (DSpContextReference inParentContext,
 DSpContextReference inChildContext,
 DSpContextAttributesPtr inDesiredAttributes);

OSStatus DSpContext_Switch (DSpContextReference inOldContext,
 DSpContextReference inNewContext);

OSStatus DSpContext_Release (DSpContextReference inContext);

OSStatus DSpContext_SetState (DSpContextReference inContext,
 DSpContextState inState);

OSStatus DSpContext_GetState (DSpContextReference inContext,
 DSpContextState *outState);

OSStatus DSpSetBlankingColor (const RGBColor *inRGBColor);

Drawing and Double Buffering

OSStatus DSpContext_FadeGamma (DSpContextReference inContext,
 SInt32 inPercentOfOriginalIntensity,
 RGBColor *inZeroIntensityColor);
80 Summary of DrawSprocket

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
OSStatus DSpContext_FadeGammaOut (DSpContextReference inContext,
 RGBColor *inZeroIntensityColor);

OSStatus DSpContext_FadeGammaIn (DSpContextReference inContext,
 RGBColor *inZeroIntensityColor);

OSStatus DSpContext_GetFrontBuffer (DSpContextReference inContext,
 CGrafPtr *outBackBuffer);

OSStatus DSpContext_GetBackBuffer (DSpContextReference inContext,
 DSpBufferKind inBufferKind,
 CGrafPtr *outBackBuffer);

OSStatus DSpContext_InvalBackBufferRect (DSpContextReference inContext,
 const Rect *inRect);

OSStatus DSpContext_SwapBuffers (DSpContextReference inContext,
 DSpCallbackProcPtr inBusyProc,

 void *inUserRefCon);

OSStatus DSpContext_IsBusy (DSpContextReference inContext,
 Boolean *outBusyFlag);

OSStatus DSpContext_SetDirtyRectGridSize (DSpContextReference inContext,
 UInt32 inCellPixelWidth,
 UInt32 inCellPixelHeight);

OSStatus DSpContext_GetDirtyRectGridSize (DSpContextReference inContext,
 UInt32 *outCellPixelWidth,
 UInt32 *outCellPixelHeight);

OSStatus DSpContext_GetDirtyRectGridUnits (DSpContextReference inContext,
 UInt32 *outCellPixelWidth,
 UInt32 *outCellPixelHeight);

OSStatus DSpContext_SetMaxFrameRate (DSpContextReference inContext,
 UInt32 inMaxFPS);

OSStatus DSpContext_GetMaxFrameRate (DSpContextReference inContext,
 UInt32 *outMaxFPS);

OSStatus DSpContext_GetMonitorFrequency (DSpContextReference inContext,
 Fixed *outFrequency);
Summary of DrawSprocket 81
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
Blitting Functions

OSStatus DSpBlit_Faster (DSpBlitInfoPtr inBlitInfo,
 Boolean inAsyncFlag);

OSStatus DSpBlit_Fastest (DSpBlitInfoPtr inBlitInfo,
 Boolean inAsyncFlag);

Using Alternate Buffers

OSStatus DSpAltBuffer_New (DSpContextReference inContext,
 Boolean inVRAMBuffer,
 DSpAltBufferAttributes *inAttributes,
 DSpAltBufferReference *outAltBuffer);

OSStatus DSpAltBuffer_Dispose (DSpAltBufferReference inAltBuffer);

OSStatus DSpAltBuffer_GetCGrafPtr (DSpAltBufferReference inAltBuffer,
 DSpBufferKind inBufferKind,

 CGrafPtr *outCGrafPtr);

OSStatus DSpContext_SetUnderlayAltBuffer (DSpContextReference inContext,
 DSpAltBufferReference inNewUnderlay);

OSStatus DSpContext_GetUnderlayAltBuffer (DSpContextReference inContext,
 DSpAltBufferReference *outUnderlay);

OSStatus DSpAltBuffer_InvalRect (DSpAltBufferReference inAltBuffer,
 const Rect *inInvalidRect);

Handling a Mouse

OSStatus DSpFindContextFromPoint (Point inGlobalPoint,
 DSpContextReference *outContext);

OSStatus DSpGetMouse (Point *outGlobalPoint);

OSStatus DSpContext_GlobalToLocal (DSpContextReference inContext,
 Point *ioPoint);

OSStatus DSpContext_LocalToGlobal (DSpContextReference inContext,
 Point *ioPoint);
82 Summary of DrawSprocket

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Manipulating Color Lookup Tables

OSStatus DSpContext_SetCLUTEntries (DSpContextReference inContext,
 const ColorSpec *inEntries,
 UInt16 inStartingEntry,
 UInt16 inEntryCount);

OSStatus DSpContext_GetCLUTEntries (DSpContextReference inContext,
 ColorSpec *outEntries,
 UInt16 inStartingEntry,
 UInt16 inEntryCount);

Processing System Events

OSStatus DSpProcessEvent (EventRecord *inEvent,
 Boolean *outEventWasProcessed);

Utility Functions

OSStatus DSpSetDebugMode (Boolean inDebugMode);

OSStatus DSpContext_SetVBLProc (DSpContextReference inContext,
 DSpCallbackProcPtr inProcPtr,
 void *inRefCon);

Application-Defined Functions 2

Boolean MyCallbackFunction (DSpContextReference inContext,
 void *inRefCon);

void MyBlitDone (DSpBlitInfo *info);

Boolean MyEventHandler (EventRecord* inEvent);

Data Types 2

typedef struct OpaqueDSpContextReference *DSpContextReference;
Summary of DrawSprocket 83
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
typedef struct OpaqueDSpAltBufferReference *DSpAltBufferReference;

typedef Boolean (*DSpEventProcPtr) (EventRecord *inEvent);

typedef Boolean (*DSpCallbackProcPtr) (DSpContextReference inContext,
 void *inRefCon);

typedef void (*DSpBlitDoneProc) (DSpBlitInfo *info);

Context Attributes Structure

struct DSpContextAttributes {
Fixed frequency;
UInt32 displayWidth;
UInt32 displayHeight;
UInt32 reserved1;
UInt32 reserved2;
UInt32 colorNeeds;
CTabHandle colorTable;
OptionBits contextOptions;
OptionBits backBufferDepthMask;
OptionBits displayDepthMask;
UInt32 backBufferBestDepth;
UInt32 displayBestDepth;
UInt32 pageCount;
char filler[3],
Boolean gameMustConfirmSwitch;
UInt32 reserved3[4];

}

typedef struct DSpContextAttributes DSpContextAttributes;
typedef struct DSpContextAttributes *DSpContextAttributesPtr

Alternate Drawing Buffer Attributes

struct DSpAltBufferAttributes {
UInt32 width;
UInt32 height;
DSpAltBufferOption options;
UInt32 reserved[4];

};
typedef struct DSpAltBufferAttributes DSpAltBufferAttributes;
84 Summary of DrawSprocket

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Blitting Information Structure

struct DSpBlitInfo {
Boolean completionFlag;
char filler[3];
DSpBlitDoneProc completionProc;
DSpContextReference srcContext;
CGrafPtr srcBuffer;
Rect srcRect;
UInt32 srcKey;
DSpContextReference dstContext;
CGrafPtr dstBuffer;
Rect dstRect;
UInt32 dstKey;
DSpBlitMode mode;
UInt32 reserved[4];

};
typedef struct DSpBlitInfo DSpBlitInfo;

Constants 2

Depth Masks

enum DSpDepthMask {
kDSpDepthMask_1 = 1U<<0,
kDSpDepthMask_2 = 1U<<1,
kDSpDepthMask_4 = 1U<<2,
kDSpDepthMask_8 = 1U<<3,
kDSpDepthMask_16 = 1U<<4,
kDSpDepthMask_32 = 1U<<5,
kDSpDepthMask_All = ~0U

};

typedef enum DSpDepthMask DSpDepthMask;
Summary of DrawSprocket 85
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
Color Need Constants

enum DSpColorNeeds {
kDSpColorNeeds_DontCare = 0L,
kDSpColorNeeds_Request = 1L,
kDSpColorNeeds_Require = 2L

};

typedef enum DSpColorNeeds DSpColorNeeds;

Special Display Features

enum DSpContextOption {
kDSpContextOption_QD3DAccel = 1 << 0,
kDSpContextOption_PageFlip = 1 << 1,
kDSpContextOption_DontSyncVBL = 1 << 2

};

typedef enum DSpContextOption DSpContextOption;

Buffer Kind

enum DSpBufferKind {
kDSpBufferKind_Normal = 0

};

typedef enum DSpBufferKind DSpBufferKind;

Play State

enum DSpContextState {
kDSpContextState_Active = 0L,
kDSpContextState_Paused = 1L,
kDSpContextState_Inactive = 2L

};

typedef enum DSpContextState DSpContextState;
86 Summary of DrawSprocket

10/20/99 Preliminary Apple Computer, Inc.

C H A P T E R 2

DrawSprocket Reference
Alternate Buffer Option Constant

enum DSpAltBufferOption {
kDSpAltBufferOption_RowBytesEqualsWidth = 1 << 0
};

typedef enum DSpAltBufferOption DSpAltBufferOption;

Blit Mode Constants

enum DSpBlitMode {
kDSpBlitMode_Plain = 0,
kDSpBlitMode_SrcKey = 1 << 0,
kDSpBlitMode_DstKey = 1 << 1,
kDSpBlitMode_Interpolation = 1 << 2
};

typedef enum DSpBlitMode DSpBlitMode;

Every Context Constant

#define kDSpEveryContext ((DSpContextReference) NULL)

Result Codes 2

kDSpNotInitializedErr –30440L DSpStartup has not yet been called.
kDSpSystemSWTooOldErr –30441L System software too old.
kDSpInvalidContextErr –30442L Invalid context reference.
kDSpInvalidAttributesErr –30443L Some field in an attributes structure has an

invalid value.
kDSpContextAlreadyReservedErr –30444L The context is already reserved.
kDSpContextNotReservedErr –30445L The context is not reserved.
kDSpContextNotFoundErr –30446L DrawSprocket couldn’t find the context.
kDSpFrameRateNotReadyErr –30447L Not enough time has passed for

DrawSprocket to calculate a frame rate.
kDSpConfirmSwitchWarning –30448L The gameMustConfirmSwitch flag is set.
kDSpInternalErr –30449L Corrupted DrawSprocket or other error.
kDSpStereoContextErr -30450L DrawSprocket attempted to process a stereo

context. (DrawSprocket no longer supports
GoggleSprocket.)
Summary of DrawSprocket 87
10/20/99 Preliminary Apple Computer, Inc.

 C H A P T E R 2

DrawSprocket Reference
88 Summary of DrawSprocket

10/20/99 Preliminary Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Document Version History A

This document has had the following releases:

Table A-1 DrawSprocket documentation revision history

Version Notes

October 20,
1999

First preliminary release.

This document reflects the changes to DrawsSprocket since version 1.0
documented in Chapter 2 of the Apple Game Sprockets Guide. A summary
of changes is as follows:

New functions added: DSpGetVersion (page 10), DSpGetCurrentContext
(page 15),DSpFindBestContextOnDisplayID (page 14), DSpContext_Reserve
(page 25), DSpContextQueue (page 26), DSpContextSwitch (page 27),
DSpContext_GetFrontBuffer (page 36), DSpBlit_Faster (page 46),
DSpBlit_Fastest (page 47), and MyBlitDone (page 62).

The function DSpAltBuffer_New (page 48) now takes an additional
parameter: a pointer to an alternate buffer attributes structure,
DSpAltBufferAttributes (page 68). Note that DrawSprocket still supports
the older version of this call.

DrawSprocket no longer supports GoggleSprocket. This document does not
contain any GoggleSprocket-related constants (such as display features and
buffer kind). Attempts to invoke GoggleSprocket-related features will return
the new result code kDSpStereoContextErr.

The context option constant kDSpContextOption_TripleBuffering replaced by
kDSpContextOption_DontUseVBL. You now specify triple buffering by passing 3
in the pageCount parameter of the DSpContextAttributes structure.

Pixel scaling and overlays were documented but never actually
implemented; this document does not contain any APIs related to scaling or
overlays. That is, the following functions no longer appear:
DSpContext_SetScale, DSpContext_GetScale,
DSpContext_SetOverlayAltBuffer, DSpContext_GetOverlayAltBuffer, and
DSpAltBuffer_RebuildTransparencyMask. The pixel scaling constants were
also removed.
89
10/20/99 Preliminary Apple Computer, Inc.

A P P E N D I X

Document Version History
Application-defined function MyEventHandler (page 63) no longer requires
Pascal calling conventions.

Table A-1 DrawSprocket documentation revision history

Version Notes
90
10/20/99 Preliminary Apple Computer, Inc.

Index
A

alternate buffer functions 48–53
application-defined functions 61

C

color lookup tables
manipulating 56–58

color needs constants 73
context attributes structure

defined 65
contexts

manipulating 24–31

D

debugging function 59
depth mask constants 72
display configuration functions 12–21
document revision history 89
drawing and double-buffering functions 31–46
DrawSprocket

application-defined functions 61
constants 71–78, 85–87
data structures 64–71
data types 83
functions for manipulating color lookup

tables 56
functions for manipulating contexts 24–31

DSpAltBufferAttributes type 68
DSpAltBuffer_Dispose function 49
DSpAltBuffer_GetCGrafPtr function 50
DSpAltBuffer_InvalRect function 52
DSpAltBuffer_New function 48

DSpBlit_Faster function 46
DSpBlit_Fastest function 47
DSpCallbackProcPtr type 70
DSpCanUserSelectContext function 19
DSpColorNeeds type 73
DSpContextAttributes type 65
DSpContext_FadeGamma function 32
DSpContext_FadeGammaIn function 35
DSpContext_FadeGammaOut function 34
DSpContext_Flatten function 23
DSpContext_GetAttributes function 18
DSpContext_GetBackBuffer function 37
DSpContext_GetCLUTEntries function 57
DSpContext_GetDirtyRectGridSize

function 42
DSpContext_GetDirtyRectGridUnits

function 43
DSpContext_GetDisplayID function 14
DSpContext_GetFlattenedSize function 23
DSpContext_GetFrontBuffer function 36
DSpContext_GetMaxFrameRate function 45
DSpContext_GetMonitorFrequency function 45
DSpContext_GetState function 30
DSpContext_GetUnderlayAltBuffer

function 52
DSpContext_GlobalToLocal function 55
DSpContext_InvalBackBufferRect function 38
DSpContext_IsBusy function 40
DSpContext_LocalToGlobal function 55
DSpContextOption type 74
DSpContext_Release function 28
DSpContext_Reserve function 25
DSpContext_Restore function 22
DSpContext_SetCLUTEntries function 56
DSpContext_SetDirtyRectGridSize

function 41
DSpContext_SetMaxFrameRate function 44
DSpContext_SetState function 28
91
10/20/99 Preliminary Apple Computer, Inc.

I N D E X
DSpContext_SetUnderlayAltBuffer
function 51

DSpContext_SetVBLProc function 60
DSpContextState type 75
DSpContext_SwapBuffers function 39
DSpContextSwitch function 27
DSpDepthMask type 72
DSpFindBestContext function 13
DSpFindBestContextOnDisplayID function 14
DSpFindContextFromPoint function 53
DSpGetCurrentContext function 15
DSpGetFirstContext function 16
DSpGetMouse function 54
DSpGetNextContext function 17
DSpGetVersion function 10
DSpProcessEvent function 58
DSpSetBlankingColor function 30
DSpSetDebugMode function 59
DSpShutdown function 11
DSpStartup function 11
DSpUserSelectContext function 20

G

gamma fading functions 32–35

K

kDSpBufferKind_Normal constant 74
kDSpColorNeeds_DontCare constant 73
kDSpColorNeeds_Request constant 73
kDSpColorNeeds_Require constant 73
kDSpContextOption_DontSyncVBL constant 74
kDSpContextOption_PageFlip constant 74
kDSpContextOption_QD3DAccel constant 74
kDSpContextState_Active constant 75
kDSpContextState_Inactive constant 75
kDSpContextState_Paused constant 75
kDSpDepthMask_16 constant 72
kDSpDepthMask_1 constant 72
kDSpDepthMask_2 constant 72

kDSpDepthMask_32 constant 72
kDSpDepthMask_4 constant 72
kDSpDepthMask_8 constant 72
kDSpDepthMask_All constant 73

M

mouse handling functions 53–56
MyBlitDone function 62
MyCallbackFunction application-defined

function 62
MyEventHandler function 63

P

play state constants 75

R

result codes 87
revision history, document 89

S

special display features constants 73
switching processes 58
92
10/20/99 Preliminary Apple Computer, Inc.

I N D E X
93
10/20/99 Preliminary Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

10/20/99 Preliminary Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

Special thanks to Chris DeSalvo, Geoff
Stahl, George Warner, Tim Carroll, and
Jasjeet Thind.

Acknowledgements to Dave Bice, Judy
Helfland, Tim Monroe, and Larry Wood,
who wrote the previous Game Sprockets
guide.

	Manipulating Displays Using DrawSprocket
	Introduction
	DrawSprocket Reference
	DrawSprocket Functions
	Data Types
	DSpContextReference
	VERSION NOTES

	DSpAltBufferReference
	VERSION NOTES

	DSpContextAttributes
	VERSION NOTES

	DSpAltBufferAttributes
	VERSION NOTES

	DSpBlitInfo
	VERSION NOTES

	DSpCallbackProcPtr
	VERSION NOTES

	DSpBlitDoneProc
	VERSION NOTES

	DSpEventProcPtr
	VERSION NOTES

	Testing for the Availability of DrawSprocket
	Activating and Deactivating DrawSprocket
	DSpGetVersion
	VERSION NOTES

	DSpStartup
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpShutdown
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Choosing a Context
	DSpFindBestContext
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpFindBestContextOnDisplayID
	DISCUSSION
	VERSION NOTES

	DSpContext_GetDisplayID
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpGetCurrentContext
	VERSION NOTES

	DSpGetFirstContext
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpGetNextContext
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetAttributes
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpCanUserSelectContext
	DISCUSSION
	VERSION NOTES

	DSpUserSelectContext
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Saving and Restoring a Context
	DSpContext_Restore
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetFlattenedSize
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_Flatten
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Manipulating a Context
	DSpContext_Reserve
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContextQueue
	DISCUSSION
	VERSION NOTES

	DSpContextSwitch
	DISCUSSION
	VERSION NOTES

	DSpContext_Release
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_SetState
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetState
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpSetBlankingColor
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Drawing and Double Buffering
	DSpContext_FadeGamma
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_FadeGammaOut
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_FadeGammaIn
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetFrontBuffer
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetBackBuffer
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_InvalBackBufferRect
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_SwapBuffers
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_IsBusy
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_SetDirtyRectGridSize
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetDirtyRectGridSize
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetDirtyRectGridUnits
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_SetMaxFrameRate
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetMaxFrameRate
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetMonitorFrequency
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Blitting Functions
	DSpBlit_Faster
	DESCRIPTION
	VERSION NOTES

	DSpBlit_Fastest
	DESCRIPTION
	VERSION NOTES

	Using Alternate Buffers
	DSpAltBuffer_New
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpAltBuffer_Dispose
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpAltBuffer_GetCGrafPtr
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_SetUnderlayAltBuffer
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetUnderlayAltBuffer
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpAltBuffer_InvalRect
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Handling a Mouse
	DSpFindContextFromPoint
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpGetMouse
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GlobalToLocal
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_LocalToGlobal
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Manipulating Color Lookup Tables
	DSpContext_SetCLUTEntries
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	DSpContext_GetCLUTEntries
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Processing System Events
	DSpProcessEvent
	DISCUSSION
	SPECIAL CONSIDERATIONS
	VERSION NOTES

	Utility Functions
	DSpSetDebugMode
	DISCUSSION
	VERSION NOTES

	DSpContext_SetVBLProc
	DISCUSSION
	VERSION NOTES

	Application-Defined Functions
	MyCallbackFunction
	DISCUSSION
	VERSION NOTES

	MyBlitDone
	DISCUSSION
	VERSION NOTES

	MyEventHandler
	DISCUSSION
	VERSION NOTES

	Constants
	Depth Masks
	VERSION NOTES

	Color Need Constants
	VERSION NOTES

	Special Display Feature Constants
	VERSION NOTES

	Buffer Kind Constant
	VERSION NOTES

	Play State Constants
	VERSION NOTES

	Alternate Buffer Options Constant
	VERSION NOTES

	Blit Mode Constants
	VERSION NOTES

	Every Context Constant
	VERSION NOTES

	Summary of DrawSprocket
	DrawSprocket Functions
	Activating and Deactivating DrawSprocket
	Choosing a Context
	Saving and Restoring a Context
	Manipulating a Context
	Drawing and Double Buffering
	Blitting Functions
	Using Alternate Buffers
	Handling a Mouse
	Manipulating Color Lookup Tables
	Processing System Events
	Utility Functions

	Application-Defined Functions
	Data Types
	Context Attributes Structure
	Alternate Drawing Buffer Attributes
	Blitting Information Structure

	Constants
	Depth Masks
	Color Need Constants
	Special Display Features
	Buffer Kind
	Play State
	Alternate Buffer Option Constant
	Blit Mode Constants
	Every Context Constant

	Result Codes

	Index
	Document Version History

