

Technical Publications
© Apple Computer, Inc. 1998-1999

Network Services
Location Manager 1.1
Developer’s Kit

Apple Computer, Inc.
© 1998-1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Figures, Tables, and Listings 5

Preface About This Manual 7

Changes Since NSL 1.0 7
Conventions Used in This Manual 8
For more information 9

Chapter 1 About the Network Services Location Manager 11

About NSL Plug-ins 15
About the DNS Plug-in 16
About the SLP Plug-in 18
About the NBP Plug-in 20
About the LDAP Plug-in 20

Chapter 2 Using the Network Services Location Manager 23

Using the NSL Manager’s High-Level Functions 23
Registering and Deregistering Services 23
Displaying the “Select a Service” Dialog Box 25

Using the NSL Manager’s Low-Level Functions 31

Chapter 3 Network Services Location Manager Reference 37

NSL Manager Functions 37
Getting Information About the NSL Manager 37
Managing NSL Manager Sessions 38
Making a Lookup Request 40
Looking for Neighborhoods and Services 44
Managing Memory 55
Managing Services 57
3

NSL Manager Utility Functions 59
NSL Manager Plug-in Utility Functions 71
NSL Manager Application-Defined Routines 78

Filter Callback Routine 78
System Event Callback Routine 78

NSL Manager Plug-in Routines 79
NSL Manager Structures 90
NSL Error Resource 101
NSL Manager Result Codes 101

Index 105
4

Figures, Tables, and Listings

Chapter 1 About the Network Services Location Manager 11

Figure 1-1 Flow of a network service lookup 13
Figure 1-2 Flow of an SLP service registration 15
Figure 1-3 Flow of a DNS lookup 17
Figure 1-4 Flow of an SLP lookup 19

Table 1-1 Examples of neighborhoods 14

Chapter 2 Using the Network Services Location Manager 23

Figure 2-1 Service icons 26
Figure 2-2 The NSL Manager’s “Select a Service” dialog box 27
Figure 2-3 Services Selection menu 28
Figure 2-4 Shortcuts menu 28
Figure 2-5 Favorites menu 29
Figure 2-6 Recent menu 29

Listing 2-1 Initializing the NSL Manager 31
Listing 2-2 Creating a request parameter block 32
Listing 2-3 Preparing an NSL lookup request 32
Listing 2-4 Searching for neighborhoods 33
Listing 2-5 Searching for services 35
Listing 2-6 Reclaiming memory 35
Listing 2-7 Deinitializing the NSL Manager 36

Chapter 3 Network Services Location Manager Reference 37

Figure 3-1 NSL plug-in icon 79
Figure 3-2 Standard alert dialog box 95

Table 3-1 NSL problem and solution strings 96
5

6

P R E F A C E

About This Manual

This document describes the programming interface for the Network Services
Location (NSL) Manager 1.1. The NSL Manager provides a
protocol-independent way for applications to discover available network
services with minimal network traffic.

Changes Since NSL 1.0 0

The following list summarizes the differences between NSL 1.0 and NSL 1.1:

■ The ClientAsyncInfo structure has been renamed to the NSLClientAsyncInfo
structure. This change affects NSL Manager functions that take this structure
as a parameter.

■ Functions that took parameters of type NSLClientNotifyProcPtr now take
parameters of type NSLClientNotifyUPP.

■ The NSL Manager now provides two functions for verifying the presence of
the NSL Manager and its version: NSLLibraryPresent and NSLLibraryVersion.

■ The NSL Manager now provides a function, NSLStandardGetURL, that displays
a dialog box that allows the user to search for services. The new function,
NSLGetDefaultDialogOptions, is a utility function for controlling the
appearance of the dialog box. A new structure, NSLDialogOptions, is used to
store values that control the appearance of the dialog box.

■ The NSLRegisterService and NSLDeregister service functions have been
renamed to NSLStandardRegisterURL and NSLStandardDeregisterURL,
respectively. The parameters to these functions have been modified so that
they can be called without previously calling NSLOpenNavigationAPI.

■ The NSL Manager now provides an NSLNewThread function and an
NSLDisposeThread function for plug-ins to call, instead of calling the Thread
Manager’s NewThread and DisposeThread functions. The NSL Manager also
provides a new utility function (NSLCopyNeighborhood) that plug-ins can call
to copy NSL neighborhoods.
7

P R E F A C E

■ The NSL Manager now provides new utility functions for getting the name
from a neighborhood (NSLGetNameFromNeighborhood), getting the length of a
neighborhood (NSLGetNeighborhoodLength), getting the service portion of a
URL (NSLGetServiceFromURL), encoding portions of a URL (NSLHexEncodeText),
decoding portions of a URL, and determining whether a service is in a
services list (NSLGetServiceFromURL).

■ The NSLMakeRegistrationPB has been removed. It is made obsolete by the new
NSLStandardRegisterService function.

■ The NSLMakeRequestPB had been renamed to NSLMakeServicesRequestPB and its
parameters have been modified.

Conventions Used in This Manual 0

The Courier font is used to indicate function names, code, and text that you
type. This manual includes special text elements to highlight important or
supplemental information:

Note
Text set off in this manner presents sidelights or interesting
points of information. ◆

IMPORTANT

Text set off in this manner—with the word Important—
presents important information or instructions. ▲

▲ W AR N I N G

Text set off in this manner—with the word Warning—
indicates potentially serious problems. ▲
8

P R E F A C E

For more information 0

The following sources provide additional information that is important for NSL
developers:

■ Inside Macintosh, available online at http://devworld.apple.com/techinfo/
techdocs/mac/mac.html

■ NSL Network Administrators Guide, which tells administrators how to
configure DNS and SLP servers so they can participate in NSL lookups
(available with the final version of the NSL SDK)

■ DNS and Bind by Paul Albitz and Cricket Liu, O’Reilly & Associates, Inc. 1994

■ RFC 2589, Lightweight Directory Access Protocol Version 3, available at
ftp://ftp.isi.edu/in-notes/rfc2589.txt.

■ RFC 2608, Service Location Protocol Version 2, available at
http://www.rfc-editor.org/rfc/rfc2608.txt.
9

P R E F A C E
10

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

About the Network Services
Location Manager 1
The Network Services Location (NSL) Manager provides a
protocol-independent way for applications to discover available network
services with minimal network traffic.

The NSL Manager provides

■ AppleTalk-like ease-of-use for the dynamic discovery of traditional and
non-traditional network services

■ Support for accepted and proposed industry standards

■ A flexible, expandable architecture that can be easily leveraged by client and
server applications

A wide variety of applications will become easier to use when they call the NSL
Manager. For example,

■ Instead of requiring the user to type a URL to locate a web server, a browser
application that calls the NSL Manager could have an “Open Location”
command that polls the network for Hypertext Transfer Protocol (HTTP)
servers and displays a list of HTTP universal resource locators (URLs) from
which the user can select a particular URL.

■ Collaboration software, such as a video-conferencing server, would register
itself as an available service on the corporate Intranet. The users of client
video-conferencing software could then search the Intranet for available
conferences and join a particular conference without having to remember a
cryptic URL or Internet Protocol (IP) address.

The NSL Manager acts as an intermediary between the providers of network
services and applications that want information about such services. It also
registers network services that make registration requests.

This chapter describes how you can use the NSL Manager to

■ add network-service search functionality to your application
11

C H A P T E R 1

About the Network Services Location Manager

■ register a network service with the NSL Manager so that it can be found in
searches

Version 1.1 of the NSL Manager runs only on Power PC computers on which
Mac OS 9 is installed. Before your application calls the NSL Manager, it should
verify that Mac OS 9 is running.

Note
The NSL Manager calls the Thread Manager, so
applications that cannot call the Thread Manager should
not call the NSL Manager. In addition, mixed-mode
applications should not call the NSL Manager. ◆

This version of the NSL Manager comes with plug-ins for the following
protocols: Domain Name Service (DNS), Service Location Protocol (SLP), Name
Binding Protocol (NBP), and Lightweight Directory Access Protocol (LDAP).
Figure 1-1 illustrates the relationship between applications, the NSL Manager,
and the NSL plug-ins.
12

C H A P T E R 1

About the Network Services Location Manager

Figure 1-1 Flow of a network service lookup

Applications that search for services can focus the search by specifying two
values:

■ a services list, which is an NSL data type that specifies the services that are to
be searched for.

■ a neighborhood, which is an NSL data type that represents some part of a
network and the protocols that are relevant to that part. Table 1-1 lists some
examples of neighborhoods.

Application

NSL
Manager

NSL
plug-ins

Network of services

DNS SLP

Request flow

Response flow

LDAP NBP
13

C H A P T E R 1

About the Network Services Location Manager

Table 1-1 Examples of neighborhoods

The following steps outline the flow of a service lookup:

1. The application creates a lookup request and calls the NSL Manager’s
NSLStartServicesLookup function.

2. The NSL Manager receives the request and passes it to those NSL plug-ins
that are capable of responding to the request.

3. Each NSL plug-in that receives the request starts to look for the specified
services.

4. Providers of services send their responses to the NSL plug-ins.

5. The NSL plug-ins pass the responses to the NSL Manager.

6. The NSL Manager passes the responses to the application that initiated the
lookup. If more than one plug-in responds, the NSL Manager returns the
responses to the application in a single response stream.

Applications that provide services can register themselves with the NSL
Manager as shown in Figure 1-2.

Network Portion Protocol

apple.com DNS, SLP, and LDAP
My AppleTalk Zone NBP
Local Service SLP
14

C H A P T E R 1

About the Network Services Location Manager

Figure 1-2 Flow of an SLP service registration

The following steps outline the flow of a service registration:

1. The application creates a value of type NSLPath that specifies the URL to
register, calls NSLHexEncodeText to encode any illegal characters that may be
in the URL, and calls the NSL Manager’s NSLStandardRegisterURL function to
register the URL in a specific neighborhood.

2. The NSL Manager receives the request and passes it to the NSL plug-ins that
are capable of registering the service.

3. The NSL plug-in receives the request and registers the service.

4. The NSL Manager returns a value to the application indicating that the
service was registered successfully.

About NSL Plug-ins 1

An NSL plug-in is an extension that searches for services. It makes itself
available to the NSL Manager when the NSL Manager is initialized, and it

Network service application

NSL
Manager

Registration request

Registration response

NSL
plug-ins

DNS SLPLDAP NBP
About NSL Plug-ins 15

C H A P T E R 1

About the Network Services Location Manager

resides in memory only when it is responding to lookup requests from
applications.

Note
The Extensions Manager can be used to enable and disable
individual NSL plug-ins. ◆

The NSL Manager can pass lookup requests to any plug-in that adheres to the
NSL Manager API.

When the NSL Manager is initialized, each NSL plug-in provides the following
information to the NSL Manager:

■ the types of services the plug-in can search for, such as HTTP

■ the protocol the plug-in uses to conduct searches, such as DNS

The NSL SDK comes with two NSL plug-ins: DNS and SLP.

About the DNS Plug-in 1

The DNS plug-in allows applications to receive lists of services from DNS
servers. The information about each service is taken from the TXT record for
each domain for which the server is responsible. Figure 1-3 shows the flow of a
DNS lookup.
16 About NSL Plug-ins

C H A P T E R 1

About the Network Services Location Manager

Figure 1-3 Flow of a DNS lookup

The DNS plug-in provides the following routines for the NSL Manager to call:

■ An initialization routine that allocates memory and opens network
connections to DNS servers

■ A deinitialization routine that deallocates memory and closes network
connections

■ A start-neighborhood-lookup routine that starts a neighborhood lookup

■ A start-services-lookup routine that starts a service lookup

■ A continue-lookup routine that resumes a lookup for services or
neighborhoods that has paused in order to deliver lookup results to the
application

■ A cancel-lookup routine that cancels an ongoing lookup

Application

NSL
Manager

DNS plug-in

Request flow

Response flow
DNS server DNS server
About NSL Plug-ins 17

C H A P T E R 1

About the Network Services Location Manager
■ An error-number conversion routine that provides a pair of strings
describing the error and a possible solution for any error number that the
plug-in may return

■ An information routine that provides details about the services and protocols
the plug-in supports, as well as a comment string that describes the services
and protocol the plug-in supports

About the SLP Plug-in 1

The SLP plug-in uses the Service Location Protocol to locate services. The
Service Location Protocol is an emerging Internet Engineering Task Force (IETF)
protocol designed to simplify the discovery and use of network resources. SLP
is well-suited for client-server applications and for establishing connections
between network peers that offer or consume generic services. SLP supports
servers that register services dynamically as well as clients that use multicast
protocols to locate services.

Note
Version 1.1 of Apple Computer’s SLP plug-in conforms to
SLP Version 2, as described in RFC 2608, and is not
compatible with implementations of version 1 of that
specificiation nor is it compatible with version 1.0 or
version 1.0.1 of Apple Computer’s SLP plug-in. ◆

The SLP plug-in accepts service registrations from applications that provide
network services running on the local host. When the SLP plug-in registers a
service, it creates for that service an SLP Service Agent. Service Agents listen for
lookup requests and respond appropriately when the SLP plug-in queries them.

The SLP plug-in also listens for and registers with any SLP Directory Agent
Servers (DAs) that may be present on the local subnet. The SLP plug-in then
listens for and registers with any other DAs that may announce their
availability on the local subnet.

Note
When the SLP plug-in is first loaded into memory, it uses IP
multicast to locate DAs. To give the SLP plug-in access to
services beyond its immediate subnet, routers on the local
subnet must be configured to support IP multicast. ◆
18 About NSL Plug-ins

C H A P T E R 1

About the Network Services Location Manager
If a network has a DA, Service Agents register themselves with the DA. The SLP
plug-in can then query the DA directly, thereby minimizing network traffic. In
Figure 1-4, the SLP plug-in can bypass the Service Agents and query the DA
directly. If the DA becomes unavailable, the SLP plug-in will query each Service
Agent individually.

Figure 1-4 Flow of an SLP lookup

Like the DNS plug-in, the SLP plug-in provides routines that initialize and
deinitialize the plug-in, start, continue, and cancel a service or neighborhood
lookup, return a pair of strings that describe an error condition and a possible
solution for any error code that the SLP plug-in may return, and a routine that
returns information that describes the plug-in’s capabilities. The SLP plug-in
also provides routines to register and deregister services.

Application

NSL
Manager

SLP plug-in

Request flow

Response flow

SLP server
(Directory Agent)

SLP service agents
About NSL Plug-ins 19

C H A P T E R 1

About the Network Services Location Manager
When an application registers with the SLP plug-in, it has the option of
providing a neighborhood to register in. If the application provides a
neighborhood, the SLP plug-in uses the neighborhood as an SLP scope.
Subsequent SLP lookups will include that neighborhood.

If the application does not provide a neighborhood, the SLP plug-in determines
the scope as follows:

■ If the URL is a host name, the SLP plug-in generates the scope using the first
search domain name returned from the list of search domains configured in
the TCP/IP control panel. For example, the host name
“charlie.lucid.apple.com” would result in a neighborhood of
“lucid.apple.com” if the first search domain name is “apple.com”.

■ If the URL is an IP address, the SLP plug-in uses a default neighborhood that
is converted to a localized string in the SLP plug-in’s resource. In English, the
default neighorhood is “Local Services”.

For more information about SLP, see RFC 2165.

About the NBP Plug-in 1

The Network Bind Protocol (NBP) plug-in locates Network Bind Procotol (NBP)
services and returns AppleTalk-style URLs describing NBP tuples to
applications that look up AppleTalk network services. In AppleTalk
terminology, a zone is a neighborhood, and the default neighborhood is the
local AppleTalk zone.

The NBP plug-in retrieves a list of all AppleTalk zones when an application
requests as a neighborhood lookup on the local zone.

Note
The NBP plug-in does not support the registration of
AppleTalk services. ◆

About the LDAP Plug-in 1

The Lightweight Directory Access Protocol (LDAP) plug-in locates LDAP
services. The LDAP plug-in is similar to the DNS plug-in in that it queries
servers that have been statically defined in the LDAP control panel.

If the queried LDAP server supports LDAP version 3 or later, the LDAP plug-in
returns the containers retrieved from the server as its default neighborhoods. If
20 About NSL Plug-ins

C H A P T E R 1

About the Network Services Location Manager
the queried LDAP server is a version 2 LDAP server, the LDAP plug-in returns
all data located located on that server that match the requested service type.

Note
The LDAP plug-in does not support the registration of
LDAP services. ◆
About NSL Plug-ins 21

C H A P T E R 1

About the Network Services Location Manager
22 About NSL Plug-ins

C H A P T E R 2

Figure 2-0
Listing 2-0
Table 2-0
Using the Network Services
Location Manager 2
There are two ways to use the NSL Manager to search for network services:

■ Your application can call the NSL Manager’s NSLStandardGetURL function,
which displays the “Select a Service” dialog box. The “Select a Service”
dialog box allows the user to choose the services to search for and the
neighborhoods in which to search. The NSLStandardGetURL function creates
request parameter blocks and lookup requests based on the user’s selections
and starts, stops, and continues searches under the user’s control. If the user
selects a URL from the search results, the NSLStandardGetURL function returns
that URL to the calling application.

■ Your application can call NSL Manager low-level functions that open a
session with the NSL Manager, create a request parameter block, create a
lookup request, start a lookup, and continue a lookup.

Using the NSL Manager’s High-Level Functions 2

Registering and Deregistering Services 2

If your application only needs to register and deregister a network service, it
can call the following NSL Manager functions without having to call any other
NSL Manager functions:

■ NSLHexEncodeText. This function encodes any illegal characters that may be in
the URL so that the URL can be processed by NSLStandardRegisterURL. The
parameters for calling NSLHexEncodeText are
Using the NSL Manager’s High-Level Functions 23

C H A P T E R 2

Using the Network Services Location Manager
OSStatus NSLHexEncodeText (
char* rawText,
UInt16 rawTextLen,
char* newTextBuffer,
UInt16* newTextBufferLen,
Boolean* textChanged);

On input, the rawText parameter contains the portion of the URL that is to be
encoded. For example, if the URL is afp://17.221.40.66?NAME=Kevs/G3, the
portion of the URL that needs to be encoded is NAME=Kevs/G3. The forward slash
(/) in that portion is an illegal character.

On input, the rawTextLen parameter contains the length of the URL specified by
the rawText parameter.

On output, newTextBuffer parameter contains the encoded text and the
newTextBufferLen parameter contains the length of valid data in newTextBuffer.

If, on output, the contents of the string pointed to by rawText is different from
the contents of the string pointed to be newTextBuffer, the Boolean value
pointed to be textChanged is TRUE.

■ NSLStandardRegisterURL. This function registers network services.

The parameters for calling NSLStandardRegisterURL are

OSStatus NSLStandardRegisterURL (
NSLPath urlToRegister;
NSLNeighborhood neighborhoodToRegisterIn);

The urlToRegister parameter is a null-terminated character string containing
the name of the URL to register.
The neighborhoodToRegisterIn parameter specifies the neighborhood in
which the service is to be registered. If the neighborhoodToRegisterIn
parameter is NULL, the NSL plug-ins determine the neighborhood in which to
register the service.

■ NSLStandardDeregisterURL. This function deregisters a registered network
service.

The parameters for calling NSLStandardDeregisterURL are

OSStatus NSLStandardDeRegisterURL (
NSLPath urlToRegister;
NSLNeighborhood neighborhoodToRegisterIn);
24 Using the NSL Manager’s High-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
The urlToRegister parameter is a null-terminated character string containing
the name of the URL to deregister.
The neighborhoodToRegisterIn parameter is NULL. When this parameter is
NULL, the NSL plug-ins determine the neighborhood in which the service is to
be deregistered.

Displaying the “Select a Service” Dialog Box 2

Applications that need to allow the user to specify the services to search for and
the neighborhoods in which to search can call the NSLStandardGetURL function to
display a dialog box that allows the user to specify his or her choices. The
NSLStandardGetURL function displays the “Select a Service” dialog box.

Note
If you call NSLStandardGetURL, you do not need to call
NSLOpenNavigationAPI or any other NSL Manager
function. The NSLStandardGetURL function handles the
interface between the calling application and the NSL
Manager. ◆

Applications that call NSLStandardGetURL specify the service types for which the
search is to be conducted. The plug-ins that are capable of participating in the
search provide a starting point for the search by providing a list of default
neighborhoods. The user can expand the scope of the search by clicking the
disclosure triangle next to each neighborhood or service.

If the user selects a URL and clicks the Choose button, NSLStandardGetURL
returns the selected URL to the calling application and dismisses the “Select a
Service” dialog box.

Note
The “Select a Service” dialog box displayed by
NSLStandardGetURL is a movable modal dialog box. ▲

The parameters for calling NSLStandardGetURL is

OSStatus NSLStandardGetURL (
NSLDialogOptions* dialogOptions,
NSLEventUPP eventproc,
void* eventProcContextPtr,
Using the NSL Manager’s High-Level Functions 25

C H A P T E R 2

Using the Network Services Location Manager
NSLURLFilterUPP filterproc,
char* serviceTypeList,
char** urlSelectedURL);

The dialogOptions parameter is pointer to an NSLDialogOptions structure whose
fields specify the appearance of the dialog box, such as the text that appears in
the title bar of the “Select a Service” dialog box and the text that appears as
button labels.

The eventproc parameter points to an application-defined system event callback
routine that the NSL Manager calls so that your application can handle events
that may occur while the “Select a Service” dialog box is displayed. If eventProc
is NULL, your application will not receive update events while the “Select a
Service” dialog box is displayed.

The eventProcContextPtr parameter points to a value that the NSL Manager
passes to your system event callback routine so that your application can
associate any particular call of NSLStandardGetURL with any particular call of its
system event callback routine.

The filterproc parameter is a value of type NSLURLFilterUPP that points to an
application-defined callback routine that your application can use to filter the
results that are displayed.

The serviceTypeList is a null-terminated string of tuples that specify the
services that are to be search for. You can use the serviceTypeList parameter to
specify the service icon that is displayed for each service that is found. If you
specify a custom icon, your custom icon is displayed. Otherwise, default NSL
icons are displayed. Figure 2-1 shows the NSL service icons.

Figure 2-1 Service icons

AFP HTTP FTP
26 Using the NSL Manager’s High-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
The urlSelectedURL parameter contains the URL the user selected when
NSLStandardGetURL returns. The url parameter is empty if the user dismisses the
“Select a Service” dialog box without selecting a URL.

Figure 2-2 shows the “Select a Service” dialog box as it might appear when first
displayed. The Directory list consists of the neighborhoods that the plug-ins
become aware of when they are first initialized.

Figure 2-2 The NSL Manager’s “Select a Service” dialog box

The elements of the “Select a Service” dialog box are

■ Services Selection menu. When the dialog box is first displayed, the Services
Selection menu displays the currently selected service type as specified by
the calling application in the serviceTypeList parameter of the
NSLStandardGetURL function. For example, if the value of serviceTypeList is
“http,https;FTP Servers,ftp;AppleShare, afp;Web Servers", the Shortcuts
menu will look the menu shown in Figure 2-4.

Location button Shortcuts button

Favorites button

Recent button

Backward

Forward

Directory list
Using the NSL Manager’s High-Level Functions 27

C H A P T E R 2

Using the Network Services Location Manager
Figure 2-3 Services Selection menu

■ Shortcuts menu. When the “Select a Service” dialog box is first displayed, the
Shortcuts menu lists all of the default neighborhoods returned by all of the
NSL plug-ins. To narrow the focus to the neighborhood supported by a
particular protocol, the user the user can select one of the protocols listed in
the menu. To display the services of all available protocols, the user selects
the Neighborhoods item in the Shortcuts menu. Figure 2-4 shows a sample of
the Shortcuts menu.

Figure 2-4 Shortcuts menu

■ Favorites menu. This pop-up menu lists neighborhoods, services, or a
combination of neighborhoods and services that the user saved previously.
The services are filtered by the service types in the Shortcuts menu.

Figure 2-5 shows a sample of the items that might appear in the Favorites
menu:
28 Using the NSL Manager’s High-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
Figure 2-5 Favorites menu

The user saves favorites by selecting one or more neighborhoods or services in
the Directory list and choosing the “Add to Favorites” command in the
Favorites menu.
The user can remove services from the Favorites list by choosing the “Remove
From Favorites” command in the Favorites menu. Choosing “Remove From
Favorites” causes a dialog box to appear that lists each favorite neighborhood
or service. The user selects the items to remove and clicks the Remove button.

■ Recent menu. This pop-up menu shows a list of services recently selected by
the user in previous uses of the “Select a Service” dialog. Like the Favorites
menu, the services listed in the Recent menu are filtered by the service types
listed in the Shortcuts menu. Figure 2-6 shows a sample Recent menu.

Figure 2-6 Recent menu

AFP services

FTP services

HTTP services
Using the NSL Manager’s High-Level Functions 29

C H A P T E R 2

Using the Network Services Location Manager
■ Directory list. When the “Select a Service” dialog box first appears, the
Directory list consists of the default neighborhoods of the plug-ins that are
capable of searching for services specified by the servicetypeList parameter.
(The default neighborhoods are the neighborhoods that the plug-ins become
aware of when they are first initialized.) Thereafter, the list shows the results
of any searches.

Each entry in the Directory list includes an icon provided by the calling
application or by the NSL Manager if the calling application does not
provide an icon. The icon is followed by the name of the neighborhood or
service obtained as a result of a search, with the service information (such as
http://) removed. For example, the URL http://www.apple.com would
appear as www.apple.com.

The Directory list supports drag and drop. Items that are dragged from
Directory list to the Finder become URL aliases.

The “Select a Service” dialog can only return one URL to the calling
application, so when the user selects more than one item in the Directory list,
the Choose button is dimmed.

■ Backward arrow. The Backward arrow becomes active when the user
double-clicks an item in the Directory list. Clicking the Backward arrow
causes the parent of the selected item to be displayed.

■ Forward arrow. The Forward arrow becomes available when the user clicks
the Backward arrow. Clicking the Forward arrow when a directory in the
Directory list is selected causes the children of the selected item to be
displayed.

■ URL field. This editable text field, whose appearance can be controlled by the
calling application, shows the full URL of the selected item in the . The user
can append additional path information to the URL or can bypass the search
mechanism by entering a complete URL and pressing the Select button.

■ Add Neighborhood button. Clicking this button causes a dialog box to
appear that allows the user to enter the name of a neighborhood. When the
user clicks the OK button in the Add Neighborhood dialog box, the
neighborhood that the user entered is added to the Directory list.

The user can start a search in two ways:

■ By clicking the disclosure triangle next to a neighborhood. This sends a
request to the NSL Manager for a list of neighborhoods associated with this
30 Using the NSL Manager’s High-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
neighborhood and any services located in this neighborhood. The user can
click more than one disclosure triangle to initiate additional simultaneous
searches. The user can cancel any ongoing search by clicking its disclosure
triangle. A search that was started by clicking a disclosure triangle cannot be
paused by clicking the Backward button.

■ By double-clicking a neighborhood or service. The NSL Manager adds the
name of the neighborhood to the Location menu, clears the Directory list,
and displays the search results in the Directory list.

The user can stop a search in the following ways:

■ By clicking a disclosure triangle if the search was started by clicking that
disclosure triangle.

■ By clicking the Cancel button.

The NSL Manager displays an alert dialog box for any errors that occur. The
NSL Manager calls NSLErrorToString so that the alert dialog box can display an
error string describing the error and a solution string.

Using the NSL Manager’s Low-Level Functions 2

Applications that call NSL Manager functions must call standard application
initialization functions, such as MaxApplZone. Applications must also call
YieldToAnyThread from their main event loop in addition to calling
WaitNextEvent or SystemTask. If your application does not call YieldToAnyThread,
service lookups will fail and your application will appear to hang.

To search for network services using the NSL Manager’s low-level functions, an
application calls NSLOpenNavigationAPI to initialize the NSL Manager, as shown
in Listing 2-1.

Listing 2-1 Initializing the NSL Manager

OSStatus status;
NSLClientRef myClientRef;
status = NSLOpenNavigationAPI(&myClientRef);
Using the NSL Manager’s Low-Level Functions 31

C H A P T E R 2

Using the Network Services Location Manager
The NSL Manager returns a client reference that the application uses to prepare
a lookup request and to call NSLCloseNavigationAPI when the application no
longer needs to make lookup requests.

Next, the application calls NSLMakeNewServicesList to create a services list and
calls NSLMakeServicesRequestPB to convert the resulting services list into a
request parameter block, as shown in Listing 2-2.

Listing 2-2 Creating a request parameter block

NSLServicesList serviceList = NULL;
serviceList = NSLMakeNewServicesList("http,ftp");
iErr.theErr = NSLMakeServicesRequestPB(serviceList, &newDataPtr);

In Listing 2-2, the application creates a services list that specifies that HTTP and
FTP services are to be searched for. If the application doesn’t specify any
services, all services will be searched for. The application then calls
NSLMakeServicesRequestPB with the services list as a parameter. The
NSLMakeServicesRequestPB function formats the services list in a way that allows
any plug-in to parse the services list properly.

Next, the application creates a lookup request by calling NSLPrepareRequest, as
shown in Listing 2-3.

Listing 2-3 Preparing an NSL lookup request

long bufLen = 4096;
char* buffer = NULL;
NSLRequestRef myRequestRef;
NSLClientAsyncInfoPtr myAsyncInfo;
NSLError iErr = kNSLErrorNoErr;

buffer = NewPtr(bufLen);

iErr = NSLPrepareRequest(NULL, NULL, myClientRef, &myRequestRef,
 buffer, bufLen, &myAsyncInfo);

if (iErr.theErr)
32 Using the NSL Manager’s Low-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
{
// Handle error.

}

Calling NSLPrepareRequest returns a requestRef and sets up an
NSLClientAsyncInfo structure for this request. The application uses the
NSLClientAsyncInfo structure to search for neighborhoods and services. The
application can control the way the search is conducted by specifying

■ a maximum time for the search

■ an alert threshold (that is, return search results whenever a certain number if
items have been returned)

■ an alert interval (that is, return search results whenever a specified time
elapses)

The NSL Manager uses the NSLClientAsyncInfo structure to convey search
results and status information about the search from the plug-in to the
application.

In Listing 2-4, the application calls NSLStartNeighborhoodLookup to obtain the
first available neighborhood on the local network and calls NSLContinueLookup
until it has obtained all of the available neighborhoods on the local network.

Listing 2-4 Searching for neighborhoods

char *name;
long nameLength;
long neighborhoodLength;
NSLNeighborhood neighborhood;

// Set the values of the myAsyncInfo structure
myAsyncInfo->maxSearchTime = 0; // no max search time
myAsyncInfo->alertInterval = 0; // no alert interval
myAsyncInfo->alertThreshold = 1; // return after each item

if (iErr.theErr == noErr)

iErr = NSLStartNeighborhoodLookup(myRequestRef, neighborhood,
 myAsyncInfo);

do {
if (iErr.theErr == noErr && myAsyncInfo->totalItems > 0)
Using the NSL Manager’s Low-Level Functions 33

C H A P T E R 2

Using the Network Services Location Manager
{
while (NSLGetNextNeighborhood(myAsyncInfo, &nhPtr,

 &neighborhoodLength))
{

if (neighborhoodLength > 0 &&
neighborhoodLength < kBufferLength)

{
NSLGetNameFromNeighborhood(&name, &nameLength,

neighborhood);
}
else
{

done = true;
}

}
if (myAsyncInfo->searchState == kNSLSearchStateComplete)

done = true;
else

iErr = NSLContinueLookup(myAsyncInfo);
}

} while (!iErr.theErr && !done);

if (buffer)
DisposePtr(buffer);

}

The application could display the name of each neighborhood and allow the
user to select one.

In Listing 2-5, the application calls NSLStartServicesLookup to start the service
lookup in the selected neighborhood, as specified by the neighborhood
parameter. The myRequest parameter was created earlier by calling
NSLPrepareRequest and the newDataPtr parameter was created earlier by calling
NSLMakeServicesRequestPB.

The application continues to call NSLContinueLookup until it has received
information about all of the services that match the search criteria.
34 Using the NSL Manager’s Low-Level Functions

C H A P T E R 2

Using the Network Services Location Manager
Listing 2-5 Searching for services

iErr = NSLStartServicesLookup(myRequestRef, neighborhood, newDataPtr,
 myAsyncInfo);

do {
if (iErr.theErr == noErr && myAsyncInfo->totalItems > 0)
{

while (NSLGetNextUrl(myAsyncInfo, &urlPtr, &urlLength))
{

if (urlLength > 0)
{

// Process the result buffer.
}

else
{

done = true;
}

}
if (myAsyncInfo->searchState == kNSLSearchStateComplete)

done = true;
else

iErr = NSLContinueLookup(myAsyncInfo);
}

} while (!iErr.theErr && !done);

When the lookup is complete, the application reclaims memory allocated for the
services list, the request parameter block, and the lookup request, as shown in
Listing 2-6.

Listing 2-6 Reclaiming memory

NSLDisposeServicesList(serviceList);

// Calling NSLDeleteRequest releases the memory associated with the
// NSLClientAsyncInfo structure.

NSLDeleteRequest(myRequestRef);
NSLFreeTypedDataPtr(newDataPtr);
Using the NSL Manager’s Low-Level Functions 35

C H A P T E R 2

Using the Network Services Location Manager
When the application has no need to make additional lookups, it calls
NSLCloseNavigationAPI to close the NSL Manager, as shown in Listing 2-7.

Listing 2-7 Deinitializing the NSL Manager

NSLCloseNavigationAPI(myClientRef);

If this application is the last application that has a requirement for a particular
plug-in, the NSL Manager unloads that plug-in from memory.
36 Using the NSL Manager’s Low-Level Functions

C H A P T E R 3

Figure 3-0
Listing 3-0
Table 3-0
Network Services Location
Manager Reference 3
NSL Manager Functions 3

The NSL Manager functions are described in these sections:

■ “Getting Information About the NSL Manager” (page 37)

■ “Managing NSL Manager Sessions” (page 38)

■ “Making a Lookup Request” (page 40)

■ “Looking for Neighborhoods and Services” (page 44)

■ “Managing Memory” (page 55)

■ “Managing Services” (page 57)

■ “NSL Manager Utility Functions” (page 59)

■ “NSL Manager Application-Defined Routines” (page 78)

Getting Information About the NSL Manager 3

Before attempting to call the NSL Manager functions, you must make sure that
the NSL Manager is installed and that its version is compatible with your
application.
NSL Manager Functions 37

C H A P T E R 3

Network Services Location Manager Reference
NSLLibraryPresent 3

Determines whether the NSL Manager is present.

Boolean NSLLibraryPresent (void);

DISCUSSION

The NSLLibraryPresent function returns TRUE when the NSL Manager is
available.

NSLLibraryVersion 3

Determines which version of the NSL Manager is present.

UInt32 NSLLibraryVersion (void);

DISCUSSION

The NSLLibraryVersion function returns the version of the NSL Manager
installed on the system in hexadecimal format with the first set of two bytes
representing the version number, the second set of two bytes representing the
revision number, and the third set of two bytes representing the subrevision
number.

Managing NSL Manager Sessions 3

NSLOpenNavigationAPI 3

Opens a session with the NSL Manager.

OSStatus NSLOpenNavigationAPI (NSLClientRef * newref);
38 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
newref On input, a pointer to an NSLClientRef in which the NSL
Manager returns a value that your application uses in
subsequent NSLPrepareRequest (page 3-42) and
NSLCloseNavigationAPI calls (page 3-39).

function result A value of noErr indicates that the session was opened and all
available plug-ins loaded successfully. A value of
kNSLSomePluginsFailedToLoad indicates that the session was
opened and at least one plug-in loaded successfully. If
NSLOpenNavigationAPI returns any of the following error codes,
your application should not call any other NSL Manager
functions: kNSLNotInitialized, kNSLInsufficientSysVer,
kNSLInsufficientOTVer, kNSLPluginLoadFailed, or
kNSL68kContextNotSupported.

DISCUSSION

The NSLOpenNavigationAPI function opens a session with the NSL Manager and
returns an NSLClientRef that your application later uses to prepare NSL lookup
requests and to close the NSL session. If no other application has opened a
session, calling NSLOpenNavigationAPI initializes the NSL Manager. You must
call NSLOpenNavigationAPI before you call any other NSL Manager functions.

The version of the NSL Manager that comes with the NSL SDK requires Mac OS
version 9.0 or later and Open Transport 1.3 or later in order to initialize
successfully.

NSLCloseNavigationAPI 3

Closes a session with the NSL Manager.

void NSLCloseNavigationAPI (NSLClientRef theClient);

theClient On input, the NSLClientRef, obtained by previously calling
NSLOpenNavigationAPI (page 3-38), that identifies the session that
is to be closed.
NSL Manager Functions 39

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLCloseNavigationAPI function closes the specified NSL Manager session.

▲ W AR N I N G

If your application calls NSLCloseNavigationAPI while a
lookup is in progress, any data that would have been
returned is lost. ▲

Your application is responsible for reclaiming memory that it allocates for
services lists, parameter blocks, and lookup requests. Your application should
reclaim this memory by calling NSLDisposeServicesList (page 3-55),
NSLDeleteRequest (page 3-56) and NSLFreeTypedDataPtr (page 3-61), respectively.

Making a Lookup Request 3

NSLMakeNewServicesList 3

Creates a services list.

NSLServicesList NSLMakeNewServicesList (char* initialServiceList);

initialServiceList
On input, a pointer to a comma-delimited, null-terminated
string of service names, such as http,ftp.

function result A services list. NSLMakeNewServicesList returns NULL if it can’t
create the services list because, for example, there is not enough
memory or because the NSL Manager is not initialized.

DISCUSSION

The NSLMakeNewServicesList function creates a services list and fills it with the
names of the services specified in initialServiceList. After you create the
services list, you can add the names of additional services by calling
NSLAddServiceToServicesList (page 3-41).
40 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
When you have no further use for the services list, you can reclaim the memory
allocated to it by calling NSLDisposeServicesList (page 3-55).

NSLAddServiceToServicesList 3

Adds the name of a service to a services list.

NSLError NSLAddServiceToServicesList (
NSLServicesList serviceList,
NSLServiceType serviceType);

serviceList On input, a services list previously created by calling
NSLMakeNewServicesList (page 3-40).

serviceType On input, a service type that is to be added to the services list.

function result If the value of NSLError.theErr is noErr, the service was added to
the list. Other possible values are kNSLNotInitialized,
kNSLBadServiceTypeErr, kNSLNullListPtr, and
kNSLBadProtocolTypeErr.

DISCUSSION

The NSLAddServicesToServiceList function adds the name of the specified
service to a services list.

IMPORTANT

You must create serviceList by calling
NSLMakeNewServicesList before you call
NSLAddServicesToServicesList. ▲

Call NSLAddServiceToServicesList for each service that you want to add to the
services list.
NSL Manager Functions 41

C H A P T E R 3

Network Services Location Manager Reference
NSLPrepareRequest 3

Creates a lookup request.

NSLError NSLPrepareRequest (
NSLClientNotifyUPP notifier,
void * contextPtr,
NSLClientRef theClient,
NSLRequestRef * ref,
char * bufPtr,
unsigned long bufLen,
NSLClientAsyncInfoPtr * infoPtr);

notifier On input, NULL (for synchronous lookups) or a value of type
NSLClientNotifyUPP that points to your application’s notification
routine (for asynchronous lookups). Your notification routine
will be called when data is available, when the lookup is
complete, or when an error occurs. If you don’t provide a
notification routine, you should start searches from another
thread so that your application can process events in a different
thread.

contextPtr On input, an untyped pointer to arbitratry data that the NSL
Manager will pass to your application’s notification routine
when that routine is called. Your application can use contextPtr
to associate any particular execution of your notification routine
with any particular lookup request.

theClient On input, an NSLClientRef obtained by previously calling
NSLOpenNavigationAPI (page 3-38) that identifies the NSL
Manager session.

ref On output, a pointer to the resulting lookup request.

bufPtr On input, a pointer to the buffer in which lookup results are to
be placed.

bufLen On input, the length of the buffer pointed to by bufPtr.

infoPtr On output, infoPtr contains default information about how the
search is to be conducted. Your application can change the
defaults before it starts the lookup.
42 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
function result If the value of NSLError.theErr is noErr, the request was created.
Other possible values include kNSLNotInitialized,
kNSLDuplicateSearchInProgress, and kNSLBadClientInfoPtr.

DISCUSSION

The NSLPrepareRequest function creates a lookup request, which your
application later uses as a parameter when it calls NSLStartNeighborhoodLookup
(page 3-47) or NSLStartServicesLookup (page 3-49).

If notifier is null when you call NSLPrepareRequest, any lookup that uses the
resulting lookup request is performed synchronously. NSLStartServicesLookup
(page 3-49) and NSLContinueLookup (page 3-52) will return when the result buffer
is full, the lookup is complete, or an error occurs. Your application can cause
NSLStartServicesLookup and NSLContinueLookup to return at a specified interval,
when a specified number of items is in the result buffer, or when a specified
amount of time has elapsed by modifying the value of the alertInterval,
alertThreshold, and maxSearchTime fields, respectively, of the
NSLClientAsyncInfo structure (page 3-90) pointed to by infoPtr.

Note
When performing synchronous searches, setting the
maxSearchTime field may not cause the search to terminate
within the specified time. Instead, set the alertInterval
field to the desired maximum amount of search time and
call NSLCancelRequest (page 3-55) to cancel the search when
the alert interval expires. ◆

If notifier is a pointer to your application’s notification routine, your
application’s notification routine will be called when the result buffer contains
data, the result buffer is full, when the lookup is complete, or when an error
occurs. Your application can cause your application’s notification routine to be
called at a specified interval, when a specified number of items is in the result
buffer, or when a specified amount of time has elapsed by modifying the value
of the alertInterval, alertThreshold, and maxSearchTime fields, respectively, of
the NSLClientAsyncInfo structure (page 3-90) pointed to by infoPtr.

The NSL Manager does not call your application’s notification routine at
interrupt time, so your notification routine can allocate memory.

When your application no longer needs the lookup request, it should call
NSLDeleteRequest (page 3-56) to reclaim memory associated with the request.
NSL Manager Functions 43

C H A P T E R 3

Network Services Location Manager Reference
If NSLPrepareRequest returns kDuplicateSearchInProgress, there is an ongoing
lookup that is using an identical NSLRequestRef. Your application can ignore this
warning, delete the newly created NSLRequestRef, or cancel the lookup that is
using the identical NSLRequestRef.

Looking for Neighborhoods and Services 3

NSLStandardGetURL 3

Displays a dialog box that allows the user to conduct a search.

OSStatus NSLStandardGetURL (
NSLDialogOptions * dialogOptions,
NSLEventUPP eventProc,
void * eventProcContextPtr,
NSLURLFilterUPP filterProc,
char * serviceTypeList,
char ** userSelectedURL);

dialogOptions On input, a pointer to an NSLDialogOptions structure (page 3-93)
whose fields specify the appearance of the dialog box. Call
NSLGetDefaultDialogOptions to fill the fields of an
NSLDialogOptions structure with the default dialog options.
After calling NSLGetDefaultDialogOptions, you can customize
the contents of the fields in the NSLDialogOptions structure.

eventProc On input, a value of type NSLEventUPP that points to an
application-defined system event callback routine as described
in “System Event Callback Routine” (page 78) or NULL. If
eventProc is NULL, your application will not receive update
events while the “Select a Service” dialog box is displayed.

eventcontextPtr
On input, an untyped pointer to arbitrary data that the
NSL Manager passes to the application-defined system event
callback routine specified by eventProc. Your application can use
44 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
contextPtr to associate any particular execution of your system
event callback routine with any particular call of the
NSLStandardGetURL function.

filterProc On input, a value of type NSLURLFilterUPP that specifies your
application-defined filter routine (page 3-78), or NULL if you do
not have a filter routine. If specified, your filter routine will be
called for each URL that is about to be displayed in the dialog
box. If your filter routine returns TRUE, you have the option of
specifying the name the URL is listed under by filling in the
displayString parameter, which is passed as a parameter to
your filter routine. If your filter routine returns FALSE, the URL is
not displayed.

serviceTypeList
On input, a null-terminated string of tuples that describe the
services that are to be searched for. The format of the tuples is as
follows:

service-name,service-descriptor-list;

where service-descriptor-list is a comma-delimited list of services.
For example, if you want to search for HTTP, HTTPS, and FTP,
the value of serviceTypeList would be

"Web Servers, http,https;FTP Servers,ftp"

The result of setting serviceTypeList in this way would be a
popup menu containing two items: “Web Servers” and “FTP
Servers.” The result of a search performed on these two items
would consist of a list HTTP and HTTPS services followed by a
list of FTP services.

See the Discussion section below for information about using
serviceTypeList to control the icon that is displayed for each
service type.

userSelectedURL
On input, the address of a pointer to a string. On output, if
NSLStandardGetURL returns noErr, url contains the
null-terminated URL the user selected. When your application
no longer needs userSelectedURL, it should call NSLFreeURL
(page 3-62) to reclaim the memory associated with it.
NSL Manager Functions 45

C H A P T E R 3

Network Services Location Manager Reference
function result If NSLStandardGetURL returns noErr, the user selected a URL and
it is stored in the userSelectedURL parameter. If
NSLStandardGetURL returns kNSLUserCanceled, the user clicked
the Cancel button in the dialog box and the userSelectedURL
parameter is empty.

DISCUSSION

The NSLStandardGetURL function displays a dialog box that allows the user to
select the type of service that is to be searched for and the neighborhood in
which the search is to be conducted. The calling application is responsible for
specifying the list of services types, and the NSL Manager is responsible for
displaying the neighborhoods, which it obtains by querying the NSL plug-ins
that support the services specified by serviceTypeList.

The NSLStandardGetURL function displays a unique icon for each of the http,
https, ftp, afp, lpr, LaserWriter, and AFPServer service descriptors and the same
generic icon for any other service descriptor. You can use the serviceTypeList
parameter to specify the display of an application-defined icon instead of an
icon defined by the NSL Manager.

To cause the NSL Manager to display an application-defined icon, specify an
icon suite resource id in the serviceTypeList parameter. For example, if the
value of serviceTypeList is

“Web Servers, http,https;Telnet Servers,telnet;NFS Servers, nfs,129”

the NSL Manager’s unique icons will be displayed for HTTP and HTTPS
services, the NSL Manager’s generic icon will be displayed for Telnet services,
and the icon at resource ID 129 in your application’s resource fork will be
displayed for NFS services.

IMPORTANT

Be sure to dispose of the url parameter by calling
NSLFreeURL(page 62) when urlSelectedParameter is no
longer needed. ▲
46 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
NSLStartNeighborhoodLookup 3

Looks for neighborhoods.

NSLError NSLStartNeighborhoodLookup (
NSLRequestRef ref,
NSLNeighborhood neighborhood,
NSLClientAsyncInfo *asyncInfo);

ref On input, an NSLRequestRef created by previously calling
NSLPrepareRequest (page 3-42).

neighborhood On input, an NSLNeighborhood value created by previously
calling NSLMakeNewNeighborhood (page 3-69). If neighborhood was
created with a value of name that was NULL,
NSLStartNeighborhoodLookup returns the first default
neighborhood. If neighborhood was created with a value of name
that is a name, NSLStartNeighborhoodLookup returns a related
name. For example, if neighborhood was created with a value of
name that is apple.com, NSLStartNeighborhoodLookup returns a
subdomain of apple.com.

asyncInfo On input, a pointer to the asyncInfo structure in whose
resultBuffer field NSLStartNeighborhood is to store
neighborhood lookup results.

function result If the value of NSLError.theErr is noErr,
NSLStartNeighborhoodLookup returned successfully. Possible
errors are kNSLNotInitialized, kNSLSearchAlreadyInProgress,
kNSLNoPluginsForSearch, kNSLBufferTooSmallForData, and
kNSLNullNeighborhoodPtr.

DISCUSSION

The NSLStartNeighborhoodLookup function returns a neighborhood value that
your application can use to define the scope of a subsequent service lookup.

IMPORTANT

For any NSLRequestRef, only one neighborhood or service
lookup can be in progress at any one time. ▲
NSL Manager Functions 47

C H A P T E R 3

Network Services Location Manager Reference
If ref was created with a value of notifier that is null,
NSLStartNeighborhoodLookup operates synchronously. If ref was created with a
value of notifier that is pointer to your application’s notification routine,
NSLStartNeighborhoodLookup operates asynchronously.

When NSLStartNeighborhoodLookup returns (if called synchronously) or when
the NSL Manager calls your application’s notification routine (if
NSLStartNeighborhoodLookup is called asynchronously), your application should
check the value of asyncInfo.searchState, which contains one of the following
values:

kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4,
kNSLWaitingForContinue = 5

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup (page 3-52) to resume the lookup.

IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup to resume the lookup.

If the value of asyncInfo.searchState is kNSLSearchStateComplete and
NSLStartNeighborhoodLookup does not return an error, the lookup is complete.
Your application should process the data returned in asyncInfo.resultBuffer.
If the value of asyncInfo.searchState is kNSLSearchStateComplete and
NSLStartNeighborhoodLookup returns an error, the error is a fatal error and you
cannot call NSLContinueLookup.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
to resume the lookup.
48 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
If NSLStartNeighborhoodLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup to resume the lookup even though some data will be
lost.

IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLStartNeighborhoodLookup returns an error code from one
of the plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateOngoing, the error code is not fatal. Your
application should process the data in the result buffer and
can call NSLContinueLookup to continue the lookup. ▲

SEE ALSO

NSLGetNextNeighborhood (page 3-64) for information about processing the data
in the result buffer.

NSLStartServicesLookup 3

Looks for services.

NSLError NSLStartServicesLookup (
NSLRequestRef ref,
NSLNeighborhood neighborhood,
NSLTypedDataPtr requestData,
NSLClientAsyncInfo *asyncInfo);

ref On input, an NSLRequestRef created by previously calling
NSLPrepareRequest (page 3-42).

neighborhood On input, an NSLNeighborhood value created by previously
calling NSLMakeNewNeighborhood (page 3-69).

requestData On input, a parameter block that describes the search
parameters. To format requestData properly, call
NSLMakeServicesRequestPB (page 3-70).
NSL Manager Functions 49

C H A P T E R 3

Network Services Location Manager Reference
asyncInfo On input, a pointer to a NSLClientAsyncInfo structure
(page 3-90) obtained by calling NSLPrepareRequest.

function result If the value of NSLError.theErr is noErr, NSLStartServicesLookup
returned successfully. Other possible values are
kNSLNotInitialized, kNSLSearchAlreadyInProgress,
kNSLNoPluginsForSearch, kNSLNullNeighborhoodPtr, and
kNSLBufferTooSmallForData.

DISCUSSION

The NSLStartServicesLookup function starts a service lookup.

IMPORTANT

For any NSLRequestRef, only one neighborhood or service
lookup can be ongoing at any one time. ▲

If ref was created with a value of notifier that is null, NSLStartServicesLookup
operates synchronously. If ref was created with a value for notifier that is
pointer to your application’s notification routine, NSLStartServicesLookup
operates asynchronously.

▲ W AR N I N G

In addition to calling WaitNextEvent or SystemTask from
your main event loop, your application must call
YieldToAnyThread. If your application does not call
YieldToAnyThread, service lookups will fail and your
application will appear to hang. ▲

When NSLStartServicesLookup returns (if called synchronously) or when the
NSL Manager calls your application’s notification routine (if
NSLStartServicesLookup is called asynchronously), your application should
check the value of asyncInfo.searchState, which contains one of the following
values:

kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup (page 3-52) to resume the lookup.
50 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup to resume the lookup.

If the value of asyncInfo.searchState is kNSLSearchStateComplete, the lookup is
complete.Your application should process the data returned in
asyncInfo.resultBuffer.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
to resume the lookup.

If NSLStartServicesLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup to resume the lookup even though some data will be
lost.

IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLStartServicesLookup returns an error code from one of
the plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateBufferFull, your application should
process the data in the result buffer. ▲

To cancel an ongoing lookup, call NSLCancelRequest (page 3-55).

SEE ALSO

NSLGetNextUrl (page 3-65) for information about processing the data in the
result buffer. NSLDeleteRequest (page 3-56) for information about deleting a
lookup request that is no longer needed.
NSL Manager Functions 51

C H A P T E R 3

Network Services Location Manager Reference
NSLContinueLookup 3

Continues a lookup.

NSLError NSLContinueLookup (NSLClientAsyncInfo *asyncInfo);

asyncInfo A pointer to the NSLClientAsyncInfo structure (page 3-90) for
this lookup.

function result If the value of NSLError.theErr is noErr, NSLContinueLookup
returned successfully. Possible errors include
kNSLNotInitialized, kNSLNoContextAvailable,
kNSLBadClientInfoPtr, and kNSLCannotContinueLookup, and
kNSLBufferTooSmallForData.

DISCUSSION

The NSLContinueLookup function continues a service lookup or a neighborhood
lookup that has paused because NSLStartNeighborhoodLookup,
NSLStartServicesLookup, or a previous call to NSLContinueLookup has returned,
or because your application’s notification routine has been called. Your
application should check the value of asyncInfo.searchState, which contains
one of the following values:

kNSLSearchStateBufferFull = 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

If the value of asyncInfo.searchState is kNSLSearchStatusBufferFull, your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup again to resume the lookup.

IMPORTANT

Calling NSLContinueLookup will cause the information in the
result buffer to be overwritten. ▲

If the value of asyncInfo.searchState is kNSLSearchStateOnGoing, the value of
asyncInfo.alertInterval or asyncInfo.alertThreshold has been reached. Your
application should process the data returned in asyncInfo.resultBuffer. Then it
should call NSLContinueLookup again to resume the lookup.
52 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
If the value of asyncInfo.searchState is kNSLSearchStateComplete, the lookup is
complete.Your application should process the data returned in
asyncInfo.resultBuffer.

If the value of asyncInfo.searchState is kNSLSearchStateStalled, the value of
asyncInfo.alertInterval or asyncInfo.maxSearchTime has been reached, but
there is no data in the result buffer. One or more plug-ins for this lookup is
waiting to receive data from a server but has not yet timed out. If the value of
asyncInfo.searchState is noErr, your application should call NSLContinueLookup
again to resume the lookup.

If NSLContinueLookup returns kNSLBufferTooSmallForData, the value of
asyncInfo.maxBuffserSize is too small to hold an item that would otherwise
have been returned. Your application can cancel and restart the lookup, or it can
call NSLContinueLookup again to resume the lookup even though some data will
be lost.

IMPORTANT

If more than one plug-in participates in a lookup, the result
buffer may contain valid data even though
NSLContinueLookup returns an error code from one of the
plug-ins. If the value of asyncInfo.searchState is
kNSLSearchStateBufferFull, your application should
process the data in the result buffer. ▲

To cancel an ongoing lookup, call NSLCancelRequest (page 3-55).

SEE ALSO

NSLGetNextUrl (page 3-65) for information about processing the data in the
result buffer when looking for services. NSLDeleteRequest (page 3-56) for
information about deleting a lookup request that is no longer needed.
NSL Manager Functions 53

C H A P T E R 3

Network Services Location Manager Reference
NSLErrorToString 3

Obtains information about an error.

OSStatus NSLErrorToString (
NSLError theErr,
char * errorString,
char * solutionString);

theErr On input, an NSLError structure (page 3-94) whose theErr field
contains an NSL error number.

errorString On input, a pointer to the buffer in which NSLErrorToString is to
place a null-terminated string containing a description of the
problem that caused the error. The length of errorString should
be 256 bytes.

solutionString
On input, a pointer to the buffer in which NSLErrorToString is to
place a null-terminated string containing a possible solution to
the problem. The length of solutionString should be 256 bytes.

function result A value of noErr indicates that NSLErrorToString returned
successfully. If NSLError.theContext is zero and NSLError.theErr
contains an error number that is not within the range of NSL
error numbers, NSLErrorToString returns kNSLBadReferenceErr.

DISCUSSION

The NSLErrorToString function obtains information about an NSLError structure
(page 3-94) so that your application can display an appropriate error message.
The NSLError structure may have been returned by the NSL Manager or by an
NSL plug-in. For any given lookup, search results may be returned by more
than one plug-in. You may not want to display an error message if one or more
plug-ins return data without error.
54 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
NSLCancelRequest 3

Cancels an ongoing lookup.

NSLError NSLCancelRequest (NSLRequestRef ref);

ref On input, the NSLRequestRef obtained by previously calling
NSLPrepareRequest (page 3-42) for the lookup that is to be
canceled.

function result If the value of NSLError.theErr is noErr, the request was
canceled successfully. Other possible values are
kNSLNotInitialized and kNSLBadReferenceErr.

DISCUSSION

The NSLCancelRequest function cancels an ongoing lookup. Any outstanding
I/O is also canceled.

Managing Memory 3

NSLDisposeServicesList 3

Disposes of a services list.

void NSLDisposeServicesList (NSLServicesList theList);

theList On input, the services list that is to be disposed of.

DISCUSSION

The NSLDisposeServicesList function reclaims memory by disposing of a
services list. Once you’ve incorporated the information in a services list into a
request parameter block, you can dispose of the services list.
NSL Manager Functions 55

C H A P T E R 3

Network Services Location Manager Reference
Calling NSLCloseNavigationAPI (page 3-39) does not reclaim memory allocated
for services lists, so your application should dispose of services lists before it
closes the NSL session.

NSLDeleteRequest 3

Deletes a lookup request.

NSLError NSLDeleteRequest (NSLRequestRef ref);

ref On input, the NSLRequestRef obtained by previously calling
NSLPrepareRequest (page 3-42) for the lookup request that is to
be deleted.

function result If the value of NSLError.theErr is noErr, the lookup request was
deleted. Other possible values are kNSLNotInitialized and
kNSLBadReferenceErr.

DISCUSSION

The NSLDeleteRequest function deletes the specified lookup request and
deallocates memory associated with it, including the NSLClientAsyncInfo
structure. If a lookup is in progress for the specified lookup request when you
call NSLDeleteRequest, the lookup is terminated and any outstanding I/O is lost.

The NSLDeleteRequest function does not deallocate memory associated with the
services list or request parameter blocks. To deallocate memory for services
lists, call NSLDisposeServicesList (page 3-55); to deallocate memory for
parameter blocks, call NSLFreeTypedDataPtr (page 3-61).
56 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
Managing Services 3

NSLStandardRegisterURL 3

Registers the URL of a service.

OSStatus NSLStandardRegisterURL (
NSLPath urlToRegister,
NSLNeighborhood neighborhoodToRegisterIn);

urlToRegister On input, a value of type NSLPath specifying the URL to register.

neighborhoodToRegisterIn
On input, a value of type NSLNeighborhood specifying the
neighborhood in which to register the service, or NULL. If NULL,
the plug-ins that handle the service specified by urlToRegister
determine the neighborhood in which the service is registered.

function result If the value returned by NSLStandardRegisterURL is noErr, the
service was registered. The NSLStandardRegisterURL function
returns kNSLNoSupportForService, which indicates that none of
the currently installed plug-ins support the service for which
registration is requested or that none of the currently installed
plug-ins support any type of service registration.

DISCUSSION

The NSLStandardRegisterURL function registers the specified URL with the
NSL Manager without requiring that your application previously call
NSLOpenNavigationAPI.

Note
NSLStandardRegisterURL returns kNSLBadURLSyntax if
urlToRegister contains illegal characters. If portions of the
URL that you are registering contain illegal characters, call
NSLHexEncodeText (page 3-68) to encode the illegal
characters before you call NSLStandardRegisterURL. ◆
NSL Manager Functions 57

C H A P T E R 3

Network Services Location Manager Reference
An application that provides a network service should call
NSLStandardRegisterURL as part of its standard startup procedure.

▲ W AR N I N G

In addition to calling WaitNextEvent or SystemTask from
your main event loop, your application must call
YieldToAnyThread. If your application does not call
YieldToAnyThread, services will not be registered and your
application will appear to hang. ▲

Your application should deregister the service by calling
NSLStandardDeregisterURL as part of its standard shutdown routine to indicate
that the service is no longer available.

Note
The NSLStandardRegisterURL function is available in NSL
1.1 and later, and supersedes the NSLRegisterService
function, which was provided in NSL 1.0. ◆

NSLStandardDeregisterURL 3

Deregisters a service registered by NSLStandardRegisterURL.

OSStatus NSLStandardDeregisterURL (
NSLPath urlToDeregister,
NSLNeighborhood neighborhoodToDeregisterIn);

urlToDeregister
On input, a value of type NSLPath specifying the URL that is to
be deregistered.

neighborhoodToDeRegisterIn
On input, a value of type NSLNeighborhood specifying the
neighborhood in which to deregister the service, or NULL. If NULL,
the plug-ins that handle the service specified by urlToRegister
determine the neighborhood from which the service is
deregistered.
58 NSL Manager Functions

C H A P T E R 3

Network Services Location Manager Reference
function result If the value returned by NSLStandardDeregisterURL is noErr, the
service was deregistered. The NSLStandardDeregisterURL
function returns kNSLNoSupportForService, which indicates that
none of the currently installed plug-ins support the service for
which deregistration is requested or don’t support registration
at all. Other possible errors include kNSLNotInitialized.

DISCUSSION

The NSLStandardDeregisterURL function deregisters the service specified by
urlToDeregister. You should call NSLStandardDeregisterURL as part of your
standard shutdown procedure for services that your application registered by
calling NSLStandardRegisterURL.

Note
NSLStandardDeregisterURL returns kNSLBadURLSyntax if
urlToDeregister contains illegal characters. If portions of
the URL that you are deregistering contain illegal
characters, call NSLHexEncodeText (page 3-68) to encode the
illegal characters before you call
NSLStandardDeregisterURL. ◆

Note
The NSLStandardDeregisterURL function is available in NSL
1.1 and later, and supersedes the NSLRegisterService
function, which was provided in NSL 1.0. ◆

NSL Manager Utility Functions 3

You can use these utility functions to manipulate create, manipulate, and
dispose of neighborhoods, to create and dispose of request parameter blocks, to
encode and decode characters in a URL, and to manipulate service lists.

■ NSLCopyNeighborhood (page 3-60) makes a copy of a neighborhood.

■ NSLFreeNeighborhood (page 3-61) disposes of a neighborhood value.

■ NSLFreeTypedDataPtr (page 3-61) deallocates the memory associated with a
request parameter block.
NSL Manager Utility Functions 59

C H A P T E R 3

Network Services Location Manager Reference
■ NSLFreeURL (page 3-61) deallocates the memory associated with a URL.

■ NSLGetDefaultDialogOptions (page 3-62) sets the fields of an
NSLDialogOptions structure to the default values.

■ NSLHexDecodeText (page 3-68) decodes the portion of a URL that has been
encoded.

■ NSLHexEncodeText (page 3-68) encodes a portion of a URL.

■ NSLGetNameFromNeighborhood (page 3-63) obtains the name of a neighborhood.

■ NSLGetNeighborhoodLength (page 3-64)obtains the length of a neighborhood.

■ NSLGetNextNeighborhood (page 3-64) obtains a pointer to the name of the next
neighborhood in a buffer.

■ NSLGetNextUrl (page 3-65) obtains a pointer to the next URL in a buffer.

■ NSLGetServiceFromURL (page 3-66) obtains the service portion of a URL.

■ NSLMakeNewNeighborhood (page 3-69) creates a neighborhood value.

■ NSLMakeServicesRequestPB (page 3-70) creates a service request parameter
block.

■ NSLServiceIsInServiceList(page 3-71) determines whether a service is in a
service list.

NSLCopyNeighborhood 3

Copies a neighborhood.

NSLNeighborhood NSLCopyNeighborhood (NSLNeighborhood neighborhood);

neighborhood On input, a value of type NSLNeighborhood representing the
neighborhood that is to be copied.

function result An NSLNeighborhood value that can be used in a subsequent call
to NSLStartServicesLookup. If NSLCopyNeighborhood can’t create
the copy of neighborhood, it returns NULL. This might happen, for
example, if there is not enough memory.
60 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLCopyNeighborhood function creates a copy of the specified neighborhood.
When an application calls the NSL Manager’s NSLStartNeighborhoodLookup
function, it passes a neighborhood as a parameter. The NSL Manager passes the
neighborhood to one or more plug-ins. The calling application can delete the
neighborhood at any time, so upon receipt of a neighborhood, each plug-in
should call NSLCopyNeighborhood to make a copy of it.

When you have no further use for an NSLNeighborhood value, you can reclaim
the memory allocated to it by calling NSLFreeNeighborhood (page 3-61).

NSLFreeNeighborhood 3

Disposes of an NSLNeighborhood value.

NSLNeighborhood NSLFreeNeighborhood (NSLNeighborhood neighborhood);

neighborhood On input, the NSLNeighborhood value that is to be disposed of.

function result An NSLNeighborhood whose value is always NULL.

DISCUSSION

The NSLFreeNeighborhood function disposes of an NSLNeighborhood value and
reclaims that memory that was allocated to it.

NSLFreeTypedDataPtr 3

Frees memory allocated for a request parameter block.

NSLTypedDataPtr NSLFreeTypedDataPtr (NSLTypedDataPtr nslTypeData);

nslTypeData On input, a value of type NSLTypedDataPtr obtained by
previously calling NSLMakeServicesRequestPB (page 3-70).

function result A value of type NSLTypedDataPtr whose value is always NULL.
NSL Manager Utility Functions 61

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLFreeTypedDataPtr function frees memory that your application caused
to be allocated when it previously called NSLMakeServicesRequestPB (page 3-70).
Your application should call NSLFreeTypedDataPtr (page 3-61) when it has no
further use for the parameter block specified by nslTypeData.

NSLFreeURL 3

Frees memory allocated for a URL.

(char *) NSLFreeURL (char * URL);

URL On input, a pointer to a character string obtained by previously
calling NSLStandardGetURL (page 3-44).

function result NULL, which allows URL to be set to NULL and the memory
associated with URL to be freed in one step.

DISCUSSION

The NSLFreeURL function frees the memory that is allocated for URL when an
application calls NSLStandardGetURL (page 3-44). Your application should call
NSLFreeURL when it has no further use for the URL that the user selects in the
“Select a Service” dialog box.

NSLGetDefaultDialogOptions 3

Assigns the default dialog options to an NSLDialogOptions structure.

OSStatus NSLGetDefaultDialogOptions (NSLDialogOptions * dialogOptions);

dialogOptions On input, a pointer to a dialogOptions structure. On output, the
fields of the dialogOptions structure are set with the default
values.

function result A result code. See “NSL Manager Result Codes” (page 101) for
possible values.
62 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLGetDefaultDialogOptions function sets the fields of an NSLDialogOptions
structure to values that are the defaults for the “Select a Service” dialog box. For
the default values, see the section “NSLDialogOptions” (page 93).

NSLGetNameFromNeighborhood 3

Locates the neighborhood name in a neighborhood.

void NSLGetNameFromNeighborhood (
NSLNeighborhood neighborhood,
char ** name,
long * length);

neighborhood On input, a value of type NSLNeighborhood from which the name
is to be obtained.

name On input, the address of a pointer. On output, name contains the
address of a pointer to the name in the neighborhood parameter.

length On input, a pointer to a location in memory. On output, length
points to the length in bytes of the name in the neighborhood
parameter.

DISCUSSION

The NSLGetNameFromNeighborhood function locates the name in a neighborhood
so that your application can, for example, display the name. The name that
NSLGetNameFromNeighborhood locates is not null-terminated. Use the value
pointed to by length to determine the length of the name.

Note
The NSLGetNameFromNeighborhood function does not allocate
any memory. ◆
NSL Manager Utility Functions 63

C H A P T E R 3

Network Services Location Manager Reference
NSLGetNeighborhoodLength 3

Obtains the length of a neighborhood.

long NSLGetNeighborhoodLength (NSLNeighborhood neighborhood);

neighborhood On input, a value of type NSLNeighborhood whose length is to be
obtained.

function result The length in bytes of the specified neighborhood.

DISCUSSION

The NSLGetNeighborhoodLength function obtains the length of the specified
neighborhood.

NSLGetNextNeighborhood 3

Obtains the next neighborhood in a buffer.

Boolean NSLGetNextNeighborhood (NSLClientAsyncInfoPtr infoPtr,
NSLNeighborhood * neighborhood,
long * neighborhoodlength);

infoPtr On input, a pointer to an NSLClientAsyncInfo structure
(page 3-90) whose resultBuffer field may contain another
neighborhood.

neighborhood On input, a pointer to a value of type NSLNeighborhood. On
output, neighborhood points to the next neighborhood in the
resultBuffer field of the NSLClientAsyncInfo structure pointed
to by infoPtr.

neighborhoodLength
On output, the length of the neighborhood pointed to by
neighborhood.
64 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
function result A Boolean value. A value of TRUE indicates that neighborhood
points to the next neighborhood in resultBuffer. A value of
FALSE indicates that there are no more neighborhoods in
resultBuffer.

DISCUSSION

The NSLGetNextNeighborhood function obtains the starting position and the
length of the next neighborhood in a result buffer.

If you want to keep a copy of the neighborhood, call NSLCopyNeighborhood
(page 3-60) to copy the neighborhood from the buffer.

If you want to get the name of the neighborhood, call
NSLGetNameFromNeighborhood (page 3-63).

NSLGetNextUrl 3

Obtains information about the next URL in a buffer.

Boolean NSLGetNextUrl (
NSLClientAsyncInfoPtr infoPtr,
char ** urlPtr,
long * urlLength);

infoPtr On input, a pointer to an NSLClientAsyncInfo structure
(page 3-90) whose resultBuffer field may contain a URL.

urlPtr On output, if a URL was found in resultBuffer, a pointer to the
beginning of the URL.

urlLength On output, the length of the URL pointed to by urlPtr.

function result A Boolean value. A value of TRUE indicates that urlPtr points to
the next URL in resultBuffer. A value of FALSE indicates that
there are no more URLs in resultBuffer.
NSL Manager Utility Functions 65

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLGetNextUrl function obtains the starting position and the length of the
next URL in a result buffer. You call NSLGetNextUrl to parse the URLs returned
by a previous call to NSLStartServicesLookup.

NSLGetServiceFromURL 3

Obtains the service portion of a URL.

OSStatus NSLGetServiceFromURL (
char* theURL,
char** svcString,
UInt16* svcLen);

theURL On input, a pointer to a null-terminated string containing a
URL.

svcString On input, a pointer to the address of a string in memory. On
output, svcString points to the service portion of the URL
specified by theURL.

svcLen On input, a pointer to an unsigned 16-bit value. On output,
svcLen contains the length in bytes of svcString.

function result A value of noErr indicates that NSLGetServiceFromURL
successfully obtained the service portion of the specified URL.

DISCUSSION

The NSLGetServiceFromURL function obtains the service portion of a URL.
66 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
NSLHexDecodeText 3

Decodes the encoded portion of a URL.

OSStatus NSLHexDecodeText (
char* encodedText,
UInt16 encodedTextLen,
char* decodedTextBuffer,
UInt16* decodedTextBufferLen,
Boolean* textChanged);

encodedText On input, a pointer to a buffer containing the portion of a URL
that has been encoded.

encodedTextLen
On input, a value of type UInt16 that specifies the length of
encodedText.

decodedTextBuffer
On input, a pointer to a buffer in which the decoded text is to be
stored. On output, decodedTextBuffer contains the decoded text.

decodedTextBufferLen
On input, a pointer to a value of type UInt16 containing the
maximum length of decodedTextBuffer. On output,
decodedTextBufferLen contains the length of the decoded text
pointed to by decodedTextBuffer.

textChanged On input, a pointer to a Boolean value. On output, textChanged
points to a value that is TRUE if the contents of the string pointed
to by encodedText does not match the content of the string
pointed to by decodedTextBuffer.

function result A value of noErr indicates that NSLHexDecodeText returned
successfully.

DISCUSSION

The NSLHexDecodeText function decodes the portion of a URL that has been
encoded by calling NSLHexEncodeText (page 3-68).
NSL Manager Utility Functions 67

C H A P T E R 3

Network Services Location Manager Reference
If NSLHexDecodeText returns noErr, and textChanged is FALSE, decodedTextBuffer
points to a copy of the data pointed to by encodedText. That is, the data pointed
to by encodedText is copied regardless of whether any decoding takes place.

NSLHexEncodeText 3

Encodes a portion of a URL.

OSStatus NSLHexEncodeText (
char* rawText,
UInt16 rawTextLen,
char* newTextBuffer,
UInt16* newTextBufferLen,
Boolean* textChanged);

rawText On input, a pointer to a character array containing the portion of
the URL that is to be encoded. For example, if the URL is
afp://17.221.40.66?NAME=Kevs/G3, the portion of the URL that
may contain illegal characters is Kevs/G3. In this example, the
forward slash (/) is an illegal character.

rawTextLen On input, a value of type UInt16 containing the length in bytes
of rawText.

newTextBuffer On input, a pointer to a buffer. On output, the buffer contains
the encoded text.

newTextBufferLen
On input, a pointer to an unsigned short. On output,
newTextBufferLen contains the length of the encoded text
pointed to by newTextBuffer.

textChanged On input, a pointer to a Boolean value. On output, textChanged
is TRUE if the encoded data is different from the original data and
FALSE if the encoded data has not changed.

function result A value of noErr indicates that NSLHexEncodeText returned
successfully.
68 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLHexEncodeText function uses the US ASCII character code set to encode
the portion of a URL that may contain illegal characters. Illegal characters are
hexadecimal values in ranging from 01 to 1F, from 80 to FF, and 7F, as well as
the following characters:

< > " # { } | \ ^ ~ []

In addition, NSLHexEncodeText also encodes the following characters that are
reserved for URL syntax:

; / ? : @ = % &

Call NSLHexDecodeText (page 3-67) to decode a string that has been encoded.

Note
The NSLStandardRegisterURL function returns an error if the
URL that you try to register contains illegal characters. ◆

If NSLHexEncodeText returns noErr and textChanged is FALSE, newTextBuffer
points to a copy of the data pointed to by rawText. That is, the data pointed to
by rawText is copied regardless of whether any encoding takes place.

NSLMakeNewNeighborhood 3

Creates a neighborhood.

NSLNeighborhood NSLMakeNewNeighborhood (
char * name,
char * protocolList);

name On input, a pointer to a null-terminated string containing a
name. If dns is specified in protocolList, the value of name
should be a domain name, such as apple.com. If slp is specified
in protocolList, the value of name should be a scope. Other
types of names may be appropriate depending on the installed
plug-ins. To create an NSLNeighborhood that can be used to obtain
a list of default neighborhoods when you call
NSLStartNeighborhoodLookup, set name to NULL.
NSL Manager Utility Functions 69

C H A P T E R 3

Network Services Location Manager Reference
protocolList On input, a pointer to a comma-separated, null-terminated list
of protocols (such as dns,slp) that are to participate in a lookup
conducted with the resulting NSLNeighborhood value. If the value
of protocolList is NULL, all available protocols will participate in
the lookup.

function result An NSLNeighborhood value that can be used in a subsequent call
to NSLStartServicesLookup. If NSLMakeNewNeighborhood can’t
create an NSLNeighborhood value, it returns NULL. This might
happen, for example, if there is not enough memory.

DISCUSSION

The NSLMakeNewNeighborhood function creates an NSLNeighborhood value that
defines the boundary of a subsequent search.

When you have no further use for an NSLNeighborhood value, you can reclaim
the memory allocated to it by calling NSLFreeNeighborhood (page 3-61).

NSLMakeServicesRequestPB 3

Creates a request parameter block.

OSStatus NSLMakeServicesRequestPB (
NSLServicesList serviceList,
NSLTypedDataPtr * newDataPtr);

serviceList On input, an NSLServicesList created by previously calling
NSLMakeNewServicesList(page 40).

newDataPtr On input, the address of the NSLTypedDataPtr at which
NSLMakeServicesRequestPB is to place the resulting parameter
block.

function result A value of noErr indicates that NSLMakeServicesRequestPB
returned successfully. Possible errors include kNSLBadDomainErr.
70 NSL Manager Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLMakeServicesRequestPB function creates a parameter block that is
formatted properly for use with subsequent calls to
NSLStartServicesLookup(page 49).

NSLServiceIsInServiceList 3

Determines whether a service is in a service list.

Boolean NSLServiceIsInServiceList (
NSLServicesList serviceList,
NSLServiceType svcToFind);

serviceList On input, an NSLServicesList created by previously calling
NSLMakeNewServicesList (page 3-40).

svcToFind On input, a value of type NSLServiceType that contains a
null-terminated service that is to be checked.

function result A value of TRUE indicates that the service specified by svcToFind
is in the service list specified by serviceList; otherwise,
NSLServiceIsInServiceList returns FALSE.

DISCUSSION

The NSLServiceIsInServiceList function determines whether the service
specified by svcToFind is in the service list specified by serviceList.

NSL Manager Plug-in Utility Functions 3

NSL plug-ins use the utility functions described in this section to obtain error
strings, to manage threads, and to parse parameter blocks.

■ NSLGetErrorStringsFromResource (page 3-72) gets the error and solution
string from a plug-in’s ’NSLE’ resource fork using the ID for the plug-in’s
error resource.
NSL Manager Plug-in Utility Functions 71

C H A P T E R 3

Network Services Location Manager Reference
■ NSLDisposeThread (page 3-73) disposes of a thread created by calling
NSLNewThread.

■ NSLNewThread (page 3-74) creates a thread for use by an NSL plug-in.

■ NSLParseServiceRegistrationPB (page 3-76) parses a service registration
parameter block.

■ NSLParseServicesRequestPB (page 3-77) parses a services request parameter
block.

NSLGetErrorStringsFromResource 3

Obtain error strings from the plug-in’s resource fork.

OStatus NSLGetErrorStringsFromResource (
OStatus theErr,
FSSpecPtr fileSpecPtr,
SInt16 errorResID,
char* errorString,
char* solutionString);

theErr On input, a value of type OSStatus containing an error code.

fileSpecPtr On input, a value of type FSSpecPtr that points to the plug-in’s
resource that contain a list of error codes, error strings, and
solution strings.

errorResID On input, a value of type SInt16 containing the resource ID of
the plug-in’s ’NSLE’ resource.

errorString On input, a pointer to a character string that is at least 256 bytes
in length. On output, errorString contains the error string that
corresponds to the error code specified by theErr.

solutionStringOn input, a pointer to a character string that is at least 256 bytes
in length. On output, solutionString contains the solution string
that corresponds to the error code specified by theErr.
72 NSL Manager Plug-in Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The NSLGetErrorStringsFromResource function reads the specified resource ID
in the resource fork specified by fileSpecPtr looking for an error code that
matches theErr. If GetNSLErrorStringFromResource finds a match, it stores the
error and solution strings associated with that error code in errorString and
solutionString, respectively.

The sample plug-in in the NSL SDK includes a template for creating an ’NSLE’
resource.

NSLDisposeThread 3

Disposes of a thread created by calling NSLNewThread.

OSErr NSLDisposeThread (ThreadID threadToDump,
void * threadResult,
Boolean recycleThread);

threadToDump On input, a value of type ThreadID that represents the thread
you want to dispose of.

threadResult On input, a pointer to a arbitrary data.

recycleThread On input, a Boolean value that is TRUE if you want to return the
thread to the pool of premade threads or FALSE if you want to
dispose of the thread entirely.

function result A value of noErr indicates that thread was disposed of. Possible
errors include threadNotFoundErr (the specified thread does not
exist), and threadProtocolErr (the threadToDump parameter
specifies the application thread).

DISCUSSION

The NSLDisposeThread function disposes of a thread that was created by calling
NSLNewThread (page 3-74).

Note
Returning from a thread causes the thread to be disposed of
automatically. ◆
NSL Manager Plug-in Utility Functions 73

C H A P T E R 3

Network Services Location Manager Reference
NSLNewThread 3

Creates a thread for use by an NSL plug-in.

OSErr NSLNewThread (ThreadStyle threadStyle,
ThreadEntryProcPtr threadEntry,
void * threadParam,
Size stackSize,
ThreadOptions options,
void** threadResult,
ThreadID * threadMade);

threadStyle On input, a value of type ThreadStyle. Set threadStyle to
kCooperativeThread.

threadEntry On input, a value of type ThreadEntryProcPtr that points to the
function that is to be executed when the created thread is
resumed.

threadParam On input, a pointer to an arbitrary application-defined value
that is passed to threadEntry for its use.

stackSize On input, a value of type Size that specifies the requested stack
size of the new thread. The stack size must be large enough to
handle saved thread context, normal application stack usage,
interrupt handling routine, and CPU exceptions. By setting
stackSize to zero, NSLNewThread uses the default stack size for
cooperative threads.

options On input, a value of type ThreadOptions that specifies optional
characteristics of the created thread. The options are summed
together to create the desired combination. See the Discussion
section for information on available options.

threadResult On input, a pointer to a pointer to an arbitrary value. When a
called thread terminates, its result is stored in threadResult. If
you are not interested in the result, set threadResult to NULL.

threadMade On input, a pointer to value of type ThreadID. On output,
threadMade contains the thread’s identifier.
74 NSL Manager Plug-in Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
function result A value of noErr indicates that the thread was created. Possible
errors include memFullErr (not enough memory to create the
thread),threadTooManyReqsErr (no thread are available), and
paramErr (for example, an unknown thread style was specified).

DISCUSSION

The NSLNewThread function creates or allocates a thread for use by an NSL
plug-in and makes the thread’s identifier available in the threadMade parameter.
NSL plug-ins that would otherwise use the Thread Manager to create or
allocate threads must call NSLNewThread instead of the Thread Manager’s
NewThread function. To dispose of a thread created by calling NSLNewThread, NSL
plug-ins must call NSLDisposeThread. NSL plug-ins can call any other Thread
Manager function to manage threads created by NSLNewThread.

The following constants are available for use with the options parameter:

kNewSuspend Allocates the new thread so that it begins in the
kStoppedThreadState and is ineligible for execution.
Otherwise, the thread is created in the
kReadyThreadState and is eligible to run.

kUsePremadeThread Allocates the new thread from the pool of premade
threads. By default, threads allocated from the
thread pool are made on a stack size best-fit basis.

kExactMatchThread Requires that the stack size of threads allocated
from the pool of premade threads exactly match the
stack size specified by the stackSize parameter.

kCreateIfNeeded Allocates an entirely new thread if the pool of
premade threads is exhausted.
NSL Manager Plug-in Utility Functions 75

C H A P T E R 3

Network Services Location Manager Reference
NSLParseServiceRegistrationPB 3

Parse a registration parameter block.

OSStatus NSLParseServiceRegistrationPB (NSLTypedDataPtr newDataPtr,
NSLNeighborhood* neighborhoodPtr,
UInt16* neighborhoodLen,
char** urlPtr,
UInt16* urlLen);

newDataPtr On input, a value of type NSLTypedDataPtr that points to the
registration parameter block that is to be parsed.

neighborhoodPtr
On input, a pointer of type NSLNeighborhood. On output,
neighborhoodPtr pointer to the neighborhood portion of the
newDataPtr parameter.

neighborhoodLen
On input, a pointer to a value of type UInt16. On output,
neighborhoodLen points to a value that contains the length in
bytes of the neighborhood pointed to by neighborhoodPtr.

urlPtr On input, the address of a pointer to a character string. On
output, urlPtr contains the address of a pointer that points to
the portion of the newDataPtr parameter containing the URL that
is to be registered.

urlLen On input, a pointer to a value of type UInt16. On output, urlLen
points to a value that contains the length of the URL referenced
by urlPtr.

function result A value of noErr indicates that NSLParseServicesRegistrationPB
returned successfully. The NSLParseServicesRegistrationPB
function returns kBadDataTypeError if newDataPtr is not a valid
request parameter block.

DISCUSSION

The NSLParseServiceRegistrationPB function parses a registration parameter
block. When the NSL Manager calls an NSL plug-in’s Register routine
(page 3-81), the NSL Manager passes the registration parameter block to the
plug-in. The plug-in calls NSLParseServiceRegistrationPB to determine the
76 NSL Manager Plug-in Utility Functions

C H A P T E R 3

Network Services Location Manager Reference
location in the registration parameter block of the neighborhood and the URL of
the service that is to be registered.

NSLParseServicesRequestPB 3

Parse a services request parameter block.

OSStatus NSLParseServicesRequestPB (NSLTypedDataPtr newDataPtr,
char** serviceListPtr,
UInt16* serviceListLen);

newDataPtr On input, a value of type NSLTypedDataPtr which points to the
address of the request parameter block that is to be parsed.

serviceListPtr
On input, the address of a pointer to a character string. On
output, serviceListPtr is set to the address of a pointer that
points to the portion of NewDataPtr that holds the list of services
for which a search is to be conducted.

serviceListLen
On input, a pointer to a value of type UInt16. On output,
serviceListLen points to a value that contains the length in
bytes of the list of services referenced by serviceListPtr.

function result A value of noErr indicates that NSLParseServicesRequestPB
returned successfully. The NSLParseServicesRequestPB function
returns kBadDataTypeError if newDataPtr is not a valid request
parameter block.

DISCUSSION

The NSLParseServicesRequestPB function parses a request parameter block.
When the NSL Manager calls an NSL plug-in’s StartServicesLookup routine
(page 3-83), the NSL Manager passes the parameter block to the plug-in, which
calls NSLParseServicesRequestPB to determine the location of the service list and
attributes that the application has specified for the lookup.
NSL Manager Plug-in Utility Functions 77

C H A P T E R 3

Network Services Location Manager Reference
NSL Manager Application-Defined Routines 3

Filter Callback Routine 3

When you call NSLStandardGetURL (page 3-44) to display the “Select a Service”
dialog box that allows the user to specify the services to search for and the
neighborhoods in which to search, you can provide a callback routine that
filters the search results. This is how you would declare your filter callback
routine if you were to name it MyNSLFilterProcPtr:

Boolean MyNSLFilterProcPtr (char* url,
Str255 displayString);

url A pointer to a string containing the URL to filter.

displayString A value of type Str255. If your filter callback routine returns
TRUE, it could set displayString to a value that you want to be
displayed in the directory listing part of the “Select a Service”
dialog box. By default, any data in a URL that follows the tag
“?NAME=” is for display purposes only and is dropped from
the url that is returned to the calling application.

result Your filter routine should return TRUE if the URL specified by url
should be displayed. It should return FALSE to prevent the URL
from being displayed.

DISCUSSION

Only those results that pass through your filter callback routine are displayed in
the Directory list area of the “Select a Service” dialog box.

System Event Callback Routine 3

If your application calls NSLStandardGetURL (page 3-44), you may want to
provide a routine that handles system events that may occur while the “Select a
78 NSL Manager Application-Defined Routines

C H A P T E R 3

Network Services Location Manager Reference
Service” dialog box is active. A typical system event callback routine might be
defined in the following way:

typedef pascal void (NSLEventProcPtr) (
EventRecord* newevent,
void* userContext);

newevent A pointer to a structure of type eventRecord that describes the
event that triggered the callback. For more information on the
EventRecord structure, see Inside Macintosh: Overview.

userContext An untyped pointer to arbitrary data that your application
previously passed to NSLStandardGetURL (page 3-44).

result Your system event callback routine should process the system
event.

DISCUSSION

When your system event callback routine is called, it should process the event
immediately.

NSL Manager Plug-in Routines 3

NSL plug-ins reside in the Extensions folder inside the System Folder. The icon
for NSL plug-ins is shown in Figure 3-1.

Figure 3-1 NSL plug-in icon

The creator code for an NSL plug-in is 'NSLp' and the type code is 'shlb'.
NSL Manager Plug-in Routines 79

C H A P T E R 3

Network Services Location Manager Reference
Every NSL plug-in must provide the following routines for the NSL Manager to
call:

■ InitPlugin(page 80). Initializes the plug-in.

■ Register(page 81). Registers a service that the plug-in supports.

■ StartNeighborhoodLookup(page 82). Initiates a search for neighborhoods.

■ StartServicesLookup(page 83). Initiates a search for services.

■ ContinueLookup(page 85). Continues a search for neighborhoods or services.

■ ErrNumToString(page 87). Provides strings that contain a description and a
resolution for the specified error number.

■ CancelLookup(page 88). Cancels a search for services or neighborhoods.

■ Deregister(page 88). Deregisters a service that was previously registered.

■ KillPlugin(page 89). Prepares the plug-in for being unloaded from memory.

In addition to providing these routines, every NSL plug-in must have an NSLI
resource that provides information about the plug-in to the NSL Manager. See
SamplePlugin.rsrc in the sample code that comes with the NSL Developer’s Kit.

Note
Instead of calling the Thread Manager to create and dispose
of threads, NSL plug-ins must call NSLNewThread(page 74)
and NSLDisposeThread(page 73), respectively. ◆

InitPlugin 3

Initializes the plug-in.

OSStatus InitPlugin (void);

result A value of noErr indicates that InitPlugin successfully
initialized the plug-in.
80 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The InitPlugin routine allocates memory for the plug-in and opens network
connections that the plug-in will use.

Register 3

Registers services.

OSStatus Register (NSLTypedDataPtr dataPtr);

dataPtr A value of type NSLTypedDataPtr that points to a value that
specifies the services that are to be registered.

result A value of noErr indicates that Register successfully registered
the specified services. To indicate that the services were not
successfully registered, Register can return any NSL error code.
For example, if Register cannot parse dataPtr, it should return
kNSLBadDataTypeErr.

DISCUSSION

The Register routine registers the services specified by dataPtr. The NSL
Manager calls a plug-in’s Register routine in response to an application that
calls the NSL Manager function NSLStandardRegisterURL(page 57).

▲ W AR N I N G

The calling application can delete dataPtr at any time, so
the Register routine should make a copy of it as soon as
possible. ▲

To parse the services specified by dataPtr, the Register routine calls
NSLParseServiceRegistrationPB(page 76).

Note
If your plug-in doesn’t set the SupportsRegistration flag in
the NSLI resource, the plug-in’s Register routine will not
be called. ◆
NSL Manager Plug-in Routines 81

C H A P T E R 3

Network Services Location Manager Reference
StartNeighborhoodLookup 3

Looks for neighborhoods.

OSStatus StartNeighborhoodLookup (NSLNeighborhood neighborhood,
NSLMgrNotifyUPP notifier,
NSLPluginAsyncInfoPtr pluginInfo);

neighborhood A value of type NSLNeighborhood that identifies the
neighborhood in which the lookup is to be conducted.

notifier A value of type NSLMgrNotifyUPP that points to the NSL Manager
notification routine. The StartNeighborhoodLookup routine
should call the notification routine when the result buffer
contains one item, the lookup is complete, or an error has
occurred. The NSL Manager’s notification routine allocates
memory, so you should not call it at interrupt time.

pluginInfo A value of type NSLPluginAsyncInfoPtr that points to an
NSLPluginAsyncInfo(page 99) structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be started, whose maxSearchTime field
may limit the amount of time that is to be spent on the lookup,
whose resultBuffer field is to be changed to point to the
plug-in’s lookup result, and whose searchState and
searchResult fields are used to store status information about
the lookup.

result A value of noErr indicates that StartNeighborhoodLookup
completed successfully. The StartNeighborhoodLookup routine
can return any NSL error code to indicate that it did not start the
lookup. A value of kNSLBadDataTypeErr indicates that the search
was not started because one or more of the input parameters is
invalid.

DISCUSSION

The StartNeighborhoodLookup routine performs the lookup specified by
neighborhood. The NSL Manager calls a plug-in’s StartNeighborhoodLookup
routine in response to an application that calls the NSL Manager function
NSLStartNeighborhoodLookup(page 47).
82 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Reference
To obtain the name of the neighborhood specified by neighborhood, the
StartNeighborhoodLookup routine calls NSLGetNameFromNeighborhood(page 63).

▲ W AR N I N G

The calling application can delete neighborhood at any time,
so the StartNeighborhoodLookup routine should call
NSLCopyNeighborhood(page 60) to copy the neighborhood as
soon as possible. ▲

A plug-in’s StartNeighborhoodLookup routine stores one neighborhood in its
result buffer, changes pluginInfo.resultBuffer to point to its result buffer, sets
pluginInfo.bufferLen to the length of the valid data in its result buffer, and calls
the NSL Manager’s notification routine.

If the value of pluginInfo.maxSearchTime is a non-zero positive value when the
plug-in’s StartNeighborhoodLookup routine is called, StartNeighborhoodLookup
routine should maintain a count of the time in ticks that it spends on this
lookup.

To maintain context information about this lookup, the
StartNeighborhoodLookup routine can use pluginInfo.pluginContext.

▲ W AR N I N G

The NSL Manager’s notification routine allocates memory,
so you should not call it at interrupt time. ▲

StartServicesLookup 3

Looks for services.

OSStatus StartServicesLookup (NSLNeighborhood neighborhood,
NSLTypedDataPtr dataPtr,
NSLMgrNotifyUPP notifier,
NSLPluginAsyncInfo* pluginInfo);

neighborhood A vale of type NSLNeighborhood that specifies the neighborhood
in which the service lookup is to be conducted.

dataPtr A value of type NSLTypedDataPtr that points to a value that
identifies the parameters for a lookup.
NSL Manager Plug-in Routines 83

C H A P T E R 3

Network Services Location Manager Reference
notifier A value of type NSLMgrNotifyProcUPP that points to the NSL
Manager notification routine. The StartNeighborhoodLookup
routine should call the notification routine when the result
buffer contains one item, the lookup is complete, or an error has
occurred. The NSL Manager’s notification routine allocates
memory, so you should not call it at interrupt time.

pluginInfo A value of type NSLPluginAsyncInfoPtr that points to an
NSLPluginAsyncInfo(page 99) structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be started, whose maxSearchTime field
may specify a limit on the amount of time that is to be spent on
the search, whose resultBuffer field should be changed to point
to the plug-in result, and whose searchState and searchResult
fields are used to store status information about the lookup.

result A value of noErr indicates that StartServicesLookup completed
successfully. The StartServicesLookup routine can return any
NSL error code to indicate that it did not start the lookup. A
value of kNSLBadDataTypeErr indicates that the search was not
started because one or more of the input parameters is invalid.

DISCUSSION

The StartServicesLookup routine performs the lookup specified by dataPtr. The
NSL Manager calls a plug-in’s StartServicesLookup routine in response to an
application that calls the NSL Manager’s NSLStartServicesLookup function
(page 3-49).

IMPORTANT

The StartServicesLookup routine may be called
synchronously or asynchronously, so it should be prepared
to handle both modes. ▲

To obtain the name of the neighborhood specified by neighborhood, the
StartNeighborhoodLookup routine calls NSLGetNameFromNeighborhood (page 3-63).

▲ W AR N I N G

The calling application can delete neighborhood and dataPtr
at any time, so the plug-in should copy these values as
soon as it receives them. To copy neighborhood, call
NSLCopyNeighborhood (page 3-60). ▲
84 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Reference
To parse the lookup parameters specified by dataPtr, the StartServicesLookup
routine calls NSLParseServicesRequestPB (page 3-77).

Upon receipt of a URL, a plug-in’s StartServicesLookup routine places the URL
in its result buffer, changes pluginInfo.resultBuffer to point to its result buffer,
sets pluginInfo.bufferLen to the length of the valid data in its result buffer, and
calls the NSL Manager’s notification routine.

If the value of pluginInfo.maxSearchTime is a non-zero positive value,
StartServicesLookup should limit the overall time for this lookup to the
specified time in ticks if the specified time is less than the plug-in’s own limit.

To maintain context information about this lookup, the StartServicesLookup
routine can use pluginInfo.pluginContextPtr.

▲ W AR N I N G

The NSL Manager’s notification routine allocates memory,
so you should not call it at interrupt time. ▲

ContinueLookup 3

Continues a lookup.

OSStatus ContinueLookup (NSLMgrNotifyUPP notifier,
NSLPluginAsyncInfo* pluginInfo);

notifier A value of type NSLMgrNotifyProcPtr that points to the NSL
Manager notification routine. The ContinueLookup routine
should call the notification routine when the result buffer
contains one item, the lookup is complete, the maximum search
time has been reached, or an error has occurred. The NSL
Manager’s notification routine allocates memory, so you should
not call it at interrupt time.

pluginInfo A value of type NSLPluginAsyncInfoPtr that points to an
NSLPluginAsyncInfo(page 99) structure whose clientRef and
requestRef fields identify the application and request associated
with the lookup that is to be continued, whose maxSearchTime
field may specify a limit on the amount of time that is to be
spent on the search, whose resultBuffer field should be
changed to point to the plug-in result, and whose searchState
NSL Manager Plug-in Routines 85

C H A P T E R 3

Network Services Location Manager Reference
and searchResult fields are used to store status information
about the lookup. Your ContinueLookup routine should make a
copy of pluginInfo because the client application may free
pluginInfo at any time.

result A value indicating that ContinueLookup completed successfully.
The ContinueLookup routine can return any NSL error code to
indicate that it did not continue the lookup.

DISCUSSION

The ContinueLookup routine continues a lookup that is in progress. The lookup
that is to be continued is identified by pluginInfo.requestRef. The NSL Manager
calls a plug-in’s ContinueLookup routine in response to an application that calls
the NSL Manager function NSLContinueLookup(page 52).

Upon receipt of an item, a plug-in’s ContinueLookup routine places the item in its
result buffer, changes pluginInfo.resultBuffer to point to its result buffer, sets
pluginInfo.bufferLen to the length of the valid data in its result buffer, and calls
the NSL Manager’s notification routine.

If the value of pluginInfo.maxSearchTime was a non-zero positive value when
the plug-in’s StartServicesLookup routine was called, ContinueLookup routine
should maintain a count of the time that it has spent on this lookup and limit
the search to the specified time.

Note
For a particular lookup, the value of
pluginInfo.maxSearchTime should not change between calls
to StartServicesLookup and ContinueLookup or between
successive calls to ContinueLookup. ◆

▲ W AR N I N G

The NSL Manager’s notification routine allocates memory,
so you should not call it at interrupt time. ▲
86 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Reference
ErrNumToString 3

Provides strings that correspond to error codes.

OSStatus ErrNumToString (
OSStatus errNum,
char* errString,
char* theSolution);

errNum The error code, previously returned by one of the plug-in’s
routines, for which a string description and string solution are to
be obtained.

errString A pointer to the character string in which ErrorToString is to
place a null-terminated string of up to 256 bytes that describes
the error condition that corresponds to theError.

theSolution A pointer to the character string in which ErrNumToString is to
place a null-terminated string of up to 256 bytes that suggests a
solution to the error condition that corresponds to errNum.

result A value indicating that ErrNumToString completed successfully.
The ErrNumToString routine can return any NSL error code to
indicate that it did not provide the requested strings.

DISCUSSION

The ErrNumToString routine stores in errString a string that describes the error
number specified by errNum and stores in theSolution a suggested solution. The
NSL Manager calls a plug-in’s ErrNumToString routine when an application calls
the NSL Manager function NSLErrorToString NSLErrorToString(page 54).

When ErrNumToString returns, the NSL Manager returns the strings to the
application. The application may choose to display errString and theSolution
to the user, so both strings should be suitable for display.

If your plug-in has a resource of type’NSLE’, it can call
NSLGetErrorStringsFromResource(page 72) to obtain the information required to
fill in errString and theSolution. For information about the ’NSLE’ resource, see
the section “NSL Error Resource” (page 101).
NSL Manager Plug-in Routines 87

C H A P T E R 3

Network Services Location Manager Reference
IMPORTANT

A plug-in’s ErrNumToString routine should be able to
provide a value for errString and theSolution for every
error code that the plug-in returns. ▲

CancelLookup 3

Cancels a lookup.

OSStatus CancelLookup (NSLPluginAsyncInfoPtr pluginInfo);

infoPtr A value of type NSLPluginAsyncInfoPtr that points to the
NSLPluginAsyncInfo(page 99) structure whose requestRef field
identifies the lookup that is to be canceled.

result A value indicating that CancelLookup successfully canceled the
lookup. The CancelLookup routine can return any NSL error code
to indicate that it did not cancel the lookup.

DISCUSSION

The CancelLookup routine cancels the lookup associated with pluginInfo. The
NSL Manager calls a plug-in’s CancelLookup routine when an application calls
the NSL Manager’s NSLCancelRequest function (page 3-55).

Deregister 3

Deregisters services.

OSStatus Deregister (NSLTypedDataPtr dataPtr);

dataPtr A value of type NSLTypedDataPtr that identifies the services that
are to be deregistered.
88 NSL Manager Plug-in Routines

C H A P T E R 3

Network Services Location Manager Reference
result A value of noErr indicates that Deregister successfully
deregistered the specified services. To indicate that the services
were not successfully deregistered, Deregister can return any
NSL error code. For example, if Deregister cannot parse
dataPtr, it should return kNSLBadDataTypeErr.

DISCUSSION

The Deregister routine deregisters the services specified in dataPtr. The NSL
Manager calls a plug-in’s Deregister routine in response to an application that
calls the NSL Manager function NSLStandardDeregisterURL(page 58).

▲ W AR N I N G

The calling application can delete dataPtr at any time, so
the Deregister routine should make a copy of it as soon as
possible. ▲

To parse the services specified by dataPtr, the Deregister routine calls
NSLParseServiceRegistrationPB(page 76).

KillPlugin 3

Prepares the plug-in for unloading.

OSStatus KillPlugin(Boolean forceQuit);

forceQuit A Boolean value. If forceQuit is TRUE, the KillPlugin routine
must deinitialize itself completely. If forceQuit is FALSE, the
KillPlugin routine can conduct all or part of its deinitialization
procedures at its discretion.

result A value of noErr indicates that KillPlugin successfully
deinitialized the plug-in. If the value of forceQuit is FALSE,
KillPlugin can return any NSL error code to indicate that it
needs to remain in memory.
NSL Manager Plug-in Routines 89

C H A P T E R 3

Network Services Location Manager Reference
DISCUSSION

The KillPlugin routine prepares the plug-in to be unloaded from memory by
stopping any lookups that the plug-in is conducting, closing open network
connections, and deallocating memory that the plug-in has allocated.

The NSL Manager calls a plug-in’s KillPlugin routine in response to an
application that calls the function NSLCloseNavigationAPI(page 39) when that
application is the last application that has an open NSL Manager session.

If the plug-in needs to remain in memory (for example, to handle requests for
registered services) and if forceQuit is FALSE, the plug-in can return an error
code and remain in memory. However, if forceQuit is TRUE, the plug-in must
deinitialize itself completely and prepare to be unloaded from memory.

NSL Manager Structures 3

The following structures supply the information that applications need to call
NSL Manager functions.

■ The structure NSLClientAsyncInfo(page 90) contains all of the information
required to start a neighborhood or service lookup.

■ The structure NSLDialogOptions(page 93) contains all of the information
required to call NSLStandardGetURL to display the “Select a Service” dialog
box.

■ The structure NSLError(page 94) is used by NSL Manager functions to return
an error code as well as contextual information about that error code.

The structure NSLPluginAsyncInfo(page 99) is used by plug-ins to receive
information from the NSL Manager about a lookup request.

NSLClientAsyncInfo 3

The NSLClientAsyncInfo structure contains information about how a
neighborhood or a service lookup is to be conducted and where lookup results
are to be stored. You obtain a pointer to a NSLClientAsyncInfo structure by
calling NSLPrepareRequest(page 42), and you pass that pointer as a parameter
90 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
when you call NSLStartNeighborhoodLookup(page 47),
NSLStartServicesLookup(page 49), or NSLContinueLookup(page 52).

Before you call NSLStartServicesLookup or NSLStartNeighborhoodLookup, you can
modify the way in which the lookup is conducted by changing certain values in
the NSLClientAsyncInfo structure. However, once you call
NSLStartServicesLookup or NSLStartNeighborhoodLookup, you should not
modify the NSLClientAsyncInfo structure.

When NSLStartServicesLookup, NSLStartNeighborhoodLookup, or
NSLContinueLookup returns, or when your application’s notification routine is
called, the NSLClientAsyncInfo structure contains information about the status
of the lookup and any search results.

struct NSLClientAsyncInfo
{

void* clientContextPtr;
void* mgrContextPtr;
char* resultBuffer;
long bufferLen;
long maxBufferSize;
UInt32 startTime;
UInt32 intStartTime;
UInt32 maxSearchTime;
UInt32 alertInterval;
UInt32 totalItems;
UInt32 alertThreshold;
NSLSearchState searchState;
NSLError searchResult;
NSLEventCode searchDataType

};
typedef struct NSLClientAsyncInfo NSLClientAsyncInfo;
typedef NSLClientAsyncInfo * NSLClientAsyncInfoPtr;

Field descriptions
clientContextPtr A value set by the application for its own use.
mgrContextPtr A value set by the NSL Manager for its own use.
resultBuffer A pointer to the buffer that contains lookup results.
bufferLen The number of bytes in resultBuffer that contain valid

data.
maxBufferSize The length of resultBuffer.
NSL Manager Structures 91

C H A P T E R 3

Network Services Location Manager Reference
startTime Used by the NSL Manager for internal purposes. Your
application should not modify this field.

intStartTime Used by the NSL Manager for internal purposes. Your
application should not modify this field.

maxSearchTime An application-specified limit in ticks on the total amount
of time that is to be expended on the search. The default
value is zero, which indicates that the search time is not to
be limited. The value of maxSearchTime does not override
any limit that a plug-in may impose.

alertInterval An application-specified value that defines in ticks the
interval at which the application’s notification routine is to
be called or the interval at which NSLStartServicesLookup,
NSLStartNeighborhoodLookup, or NSLContinueLookup are to
return. The default value is zero, which indicates that no
alert interval is specified.

totalItems The total number of items in resultbuffer.
alertThreshold An application-specified value that causes the application’s

notification routine to be called or NSLStartServicesLookup,
NSLStartNeighborhoodLookup, or NSLContinueLookup to
return whenever the specified number of items have been
placed in resultBuffer. Typically, applications that cause
NSLStartServicesLookup or NSLStartNeighborhoodLookup to
operate asynchronously set alertThreshold to 1, and
applications that cause NSLStartNeighborhood or
NSLStartServicesLookup to operate synchronously set
alertThreshold to zero, which indicates that no alert
threshold is specified. The default value is zero.

searchState A value that describes the current search state. The value
can be one of the following:

kNSLSearchStateBufferFull= 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

searchResult An NSLError structure containing an error code that the
NSL Manager or a plug-in may have returned.

searchDataType An event code that indicates whether the information
stored in this NSLClientAsyncInfo structure pertains to a
92 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
neighborhood lookup (kNSLNeighborhoodLookupDataEvent)
or a service lookup (kNSLServicesLookupDataEvent).

NSLDialogOptions 3

The NSLDialogOptions structure contains information that controls the
appearance of the “Select a Service” dialog box, which is displayed by calling
NSLStandardGetURL.

struct NSLDialogOptions {
UInt16 version;
NSLDialogOptionFlags dialogOptionFlags;
Str255 windowTitle;
Str255 actionButtonLabel;
Str255 cancelButtonLabel;
Str255 message;

};
typedef struct NSLDialogOptions NSLDialogOptions;

Field descriptions
version A value that specifies the version.

dialogOptionFlags A bit map whose value controls whether to display the
URL text field that allows the user to enter a URL.

windowTitle A string containing the name that is to appear in the title
bar. The default title is “Select a Service”.

actionButtonLabel A string containing the name that is to be used as the label
for the action button. If NULL, the default name is used. The
default is “Choose.”

cancelButtonLabel A string containing the name that is to be used as the label
for the cancel button. If NULL, the default name is used. The
default is “Cancel.”

message A string containing the text that is to be used for a custom
prompt. If NULL, no prompt is displayed.

The dialogOptions flags enumeration defines constants for use in
dialogOptionsFlags field:
NSL Manager Structures 93

C H A P T E R 3

Network Services Location Manager Reference
enum {
kNSLDefaultNSLDlogOptions = 0x00000000,
kNSLNoURLTEField = 0x00000001

};
typedef UInt32 NSLDialogOptionFlags;

NSLError 3

The NSLError structure is used by certain NSL Manager functions to return an
error code as well as contextual information about that error code.

typedef struct NSLError {
OSStatus theErr;
UInt32 theContext;

};
typedef struct NSLError NSLError;
typedef NSLError * NSLErrorPtr;

Field descriptions
theErr The error code.

theContext A value used by the NSL Manager to determine whether it
generated the error code or whether a plug-in generated
error code. If a plug-in generated the error code, the value
of theContext allows the NSL Manager to identify the
responsible plug-in.

Comparing the constant kNSLErrorNoErr to the value returned by an function
that returns an NSLError structure is a simple way to determine whether an
error occurred.

If you want to display information about the error to the user, your application
should call NSLErrorToString(page 54) to obtain two strings — a problem string
and a solution string. To display the strings, use a movable modal dialog box, as
shown in Figure 3-2.
94 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
Figure 3-2 Standard alert dialog box

Table 3-1 lists the problem and solution strings for error conditions that
commonly occur.

Problem string

Solution string
NSL Manager Structures 95

C H A P T E R 3

Network Services Location Manager Reference
Table 3-1 NSL problem and solution strings

Error string Solution String Source

The request could not be
completed due to an
internal error in NSL.

Please try again. If you still
have problems, try
restarting the application
or the computer, then try
your request again.

NSL Manager

The NSL Manager could
not be initialized.

Restart the computer and
try again.

NSL Manager

The installed system
software does not support
this version of NSL.

Install Mac OS System
Software version 8.7 or
later.

NSL Manager

Your computer is not
connected to the network.

Check your network
settings and make sure all
networking cables are
properly attached. Then
try your request again.

NSL Manager

Unable to load NSL
plugins during startup.

Restart your computer and
try your request again.

NSL Manager

The NSL Manager could
not find any plugins to
load.

Make sure you have at
least one NSL Plugin in
your Extensions folder.

NSL Manager

The NSL Manager could
not load any plugins to
handle your request.

Check your network
settings and make sure all
networking cables are
properly attached. Then
try your request again.

NSL Manager

Some, but not all, NSL
plugins failed to load.

You can continue, since at
least one plugin is
available. Look in the
Extensions Manager
control panel to see which
plugin is available.

NSL Manager

The NSL UI Library is not
available.

Please make sure this
shared library is in your
Extensions folder and try
again.

NSL Manager

continued
96 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
A file needed for this
operation was not
available.

Make sure you have
installed all components
correctly.

NSL Manager

The last command could
not be completed because
there is not enough
memory.

Quit some applications
and close some windows
to make more memory
available.

NSL Manager,
DNS plug-in,
LDAP plug-in,
NBP plug-in,
SLP plug-in

The last command could
not be completed because
your hard disk is full.

Quit the application and
delete some items to free
up some disk space.

DNS plug-in,
LDAP plug-in,
SLP plug-in

The last command could
not be completed because
the startup disk is locked.

Unlock your startup disk
and try again.

DNS plug-in,
SLP plug-in

The correct version of
Open Transport is not
available.

Install Open Transport 1.3
or later

NSL Manager,
DNS plug-in,
LDAP plug-in,
SLP plug-in

The <name-of-plug-in>
plugin could not complete
the request due to a
network error.

Check to make sure that
your network is set up
correctly.

DNS plug-in,
SLP plug-in

The <name-of-plug-in>
plugin could not complete
the request due to an
internal error.

Please try again. If you still
have problems, try
restarting the application
or the computer, then try
the request again.

DNS plug-in,
LDAP plug-in,
NBP plug-in,
SLP plug-in

Unable to reach Name
server.

Open your TCP/IP control
panel and enter a valid
Name server address.

DNS plug-in

The name server is not
responding.

This is probably due to
access restrictions at the
name server. Contact your
network administrator for
help with name server
access.

DNS plug-in

continued

Error string Solution String Source
NSL Manager Structures 97

C H A P T E R 3

Network Services Location Manager Reference
The LDAP plugin could
not complete the request
because no LDAP server is
available.

Make sure that your LDAP
server is working and that
the server name is
specified in the Internet
control panel. To see
LDAP information, set the
Internet control panel to
Advanced user mode.

LDAP plug-in

The LDAP plugin could
not complete the request
because the LDAP server
did not respond.

Make sure that your LDAP
server is working and that
the correct server name is
specified in the Internet
control panel. To see
LDAP information, set the
Internet control panel to
Advanced user mode.

LDAP plug-in

The LDAP plugin could
not complete the request
because it could not find a
nameserver.

Make sure you have
specified a valid DNS
nameserver in the TCP/IP
control panel.

LDAP plug-in

The LDAP plugin could
not complete the request
because LDAP returned
nil data.

Please try again. If it still
fails, try to make your
request more specific and
try the request again.

LDAP plug-in

Invalid hostname for
LDAP server.

Make sure that your LDAP
server is working and that
the server name is
specified in the Internet
control panel. To see
LDAP information, set the
Internet control panel to
Advanced user mode.

LDAP plug-in

The LDAP plugin could
not complete the request
because a nil pointer was
encountered.

This problem is usually
related to memory. Quit
some applications and try
the request again.

LDAP plug-in

continued

Error string Solution String Source
98 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
NSLPluginAsyncInfo 3

The NSL Manager passes an NSLPluginAsyncInfo structure as a parameter to the
plug-in’s StartNeighborhoodLookup(page 82), StartServicesLookup(page 83), and
ContinueLookup(page 85) routines. The NSLPluginAsyncInfo structure contains all
of the information that the plug-in needs to start or continue a lookup. The
plug-in uses the NSLPluginAsyncInfo structure to maintain state information
about an ongoing lookup request and to return information about the lookup to
the NSL Manager.

struct NSLPluginAsyncInfo
{

void * mgrContextPtr;
void * pluginContextPtr;
void * pluginPtr;
char * resultBuffer;
long bufferLen;
long maxBufferSize;
UInt32 maxSearchTime;
UInt32 reserved1;
UInt32 reserved2;

The LDAP plugin could
not complete the request
because a buffer is not big
enough.

This problem is usually
related to memory. Quit
some applications and try
the request again.

LDAP plug-in

The LDAP plugin could
not complete the request
because it encountered a
bad parameter.

Please try again. If you still
have problems, try
restarting the application
or the computer, then try
the request again.

LDAP plug-in

The SLP Plugin could not
be used due to an error
with the preferences file.

Please make sure that the
SLP Preferences file is
valid or remove it so that
the SLP Plugin can create a
new default preferences
file.

SLP plug-in

Error string Solution String Source
NSL Manager Structures 99

C H A P T E R 3

Network Services Location Manager Reference
UInt32 reserved3;
NSLCLientRef clientRef
NSLRequestRef requestRef
NSLSearchState searchState;
OSStatus searchResult;

};
typedef struct NSLPluginAsyncInfo NSLPluginAsyncInfo;
typedef NSLPluginAsyncInfo * NSLPluginAsyncInfoPtr;

Field descriptions
mgrContextPtr A value set by the NSL Manager for its own use.
pluginContextPtr A value set by the plug-in for its own use.
pluginPtr A pointer to the plug-in object that is waiting for the

application to call NSLContinueLookup(page 52).
resultBuffer A pointer to the buffer that the plug-in can use to store

lookup results.
bufferLen The length of valid data in resultBuffer.
maxBufferSize The maximum length of resultBuffer.
maxSearchTime The maximum length of time to search in ticks. A value of

zero indicates an unlimited search time.
Reserved1 Reserved.
Reserved2 Reserved.
Reserved3 Reserved.
clientRef A value identifying the application that made the request.
requestRef A value specifying the lookup request.
searchState A value that the plug-in sets to indicate the current state of

the lookup. The value can be one of the following:
kNSLSearchStateBufferFull= 1,
kNSLSearchStateOnGoing = 2,
kNSLSearchStateComplete = 3,
kNSLSearchStateStalled = 4

searchResult An NSLError structure that the plug-in uses to return error
information.
100 NSL Manager Structures

C H A P T E R 3

Network Services Location Manager Reference
NSL Error Resource 3

If your plug-in has an ’NSLE’ resource containing error codes and their
corresponding error strings and error solution strings, your plug-in’s
ErrNumToString routine can call the NSL Manager utility function
NSLGetErrorStringsFromResource to obtain the error string and error solution
string for a given error code.

The NSL SDK includes a template for creating your plug-in’s ’NSLE’ resource.

NSL Manager Result Codes 3

All of the NSL Manager functions return a result code. The result codes specific
to the NSL Manager are listed here. In addition, NSL Manager functions may
return other Mac OS result codes, which are described in Inside Macintosh.

noErr 0 No error.
kNSLNotInitialized -4199 The NSL Manager could

not be initialized.
kNSLInsufficientSysVer -4198 The installed version of

the Mac OS does not
support the NSL
Manager. (For the NSL
Manager SDK, Version
9.0 or later is required.)

kNSLInsufficientOTVer -4197 The installed version of
Open Transport does
support the NSL
Manager. (Open
Transport 1.3 or later is
required.)

kNSLNoElementsInList -4196 A specified list is empty.
kNSLBadReferenceErr -4195 The specified

NSLClientRef or
NSLRequestRef is invalid.

kNSLBadServiceTypeErr -4194 The specified service type
is not supported.
NSL Error Resource 101

C H A P T E R 3

Network Services Location Manager Reference
kNSLBadDataTypeErr -4193 The specified parameter
is not of the correct data
type.

kNSLBadNetConnection -4192 A network error
occurred. AppleTalk or
TCP/IP may be turned
off, or the computer may
not be connected to the
network.

kNSLNoSupportForService -4191 No plug-in supports the
requested service
registration or
deregistration.

kNSLInvalidPluginSpec -4190 The theContext field of
the specified NSLError
structure is invalid.

kNSLRequestBufferAlreadyInList -4189 Reserved.
kNSLNoContextAvailable -4188 The asyncInfo parameter

provided in a call to
NSLContinueLookup is
invalid.

kNSLBufferTooSmallForData -4187 The application’s result
buffer is too small to store
the data returned by a
plug-in.

kNSLCannotContinueLookup -4186 The lookup cannot be
continued due to an error
condition or a bad state.

kNSLBadClientInfoPtr -4185 The specified
NSLClientAsyncInfoPtr is
invalid.

kNSLNullListPtr -4184 The pointer to the
specified list is invalid.

kNSLBadProtocolTypeErr -4183 The specified
NSLServiceType is empty.

kNSLPluginLoadFailed -4182 During system
initialization, the NSL
Manager was unable to
load one of the plug-ins.

kNSLNoPluginsFound -4181 During system
initialization, the NSL
Manager was unable to
find any valid plug-ins to
load.
102 NSL Manager Result Codes

C H A P T E R 3

Network Services Location Manager Reference
kNSLSearchAlreadyInProgress -4180 A search is already in
progress for the specified
clientRef.

kNSLNoPluginsForSearch -4179 None of the installed
plug-ins are able to
respond to the lookup
request.

kNSLNullNeighborhoodPtr -4178 The pointer to a
neighborhood is invalid.

kNSLSomePluginsFailedToLoad -4177 During system
initialization, the NSL
Manager was unable to
load some plug-ins.

kNSLErrNullPtrError -4176 A specified pointer is
invalid.

kNSLUILibraryNotAvailable -4174 The NSL UI Library is not
available.

kNSLBadURLSyntax –4172 The caller passed a URL
that contains illegal
characters.

kNSLSchedulerError –4171 A custom thread routine
encountered an error.

kNSL68kContextNotSupported –4170 NSL was called from a
non-PPC application.
NSL Manager Result Codes 103

C H A P T E R 3

Network Services Location Manager Reference
104 NSL Manager Result Codes

Index
A, B

alert
interval 92
threshold 92

C

canceling lookup requests 55
CancelLookup routine 88
ContinueLookup routine 85–86
continuing lookups

applications 33, 34, 52–53
plug-ins 85–86

creator code for plug-ins 79

D

deregistering services 58–59, 88–89
Deregister routine 88–89
dialog box, "Select a Service" 25–31, 44–46
dialog options 62, 63
DNS plug-in 16–18

E

ErrNumToString routine 87–88
error codes 101–103
error strings

obtaining 54, 72
providing 87–88

F, G, H

filter callback routine 78
functions
NSLAddServicesToServicesList 41
NSLCancelRequest 55
NSLCloseNavigationAPI 36, 39
NSLContinueLookup 33, 34, 52–53
NSLDeleteRequest 35, 56
NSLDisposeServicesList 35, 55
NSLErrorToString 54
NSLFreeTypedDataPtr 35
NSLLibraryPresent 38
NSLLibraryVersion 38
NSLMakeNewServicesList 32, 40
NSLMakeRequestPB 32
NSLOpenNavigationAPI 38–39
NSLPrepareRequest 32, 42–44
NSLStandardDeregisterURL 58–59
NSLStandardGetURL 44–46
NSLStandardRegisterURL 57–58
NSLStartNeighborhoodLookup 33, 47–49
NSLStartServicesLookup 34, 49–51

I, J, K

icon for plug-ins 79
InitPlugin routine 80
interval, alert 92

L

looking for
neighborhoods

applications 47–49
105

I N D E X
plug-ins 82–83
services

applications 34, 49–51
overview 14
plug-ins 83–85

lookup requests
canceling

applications 55
plug-in 88

continuing 85–86
deleting 56
making 32
preparing 42–44

M

maximum search time 92
memory, reclaiming 35, 56, 61, 62

N

neighborhoods
copying 60–61
definition 13
disposing of 61
length of 64
looking for

applications 33, 47–49
plug-ins 82–83

making 69
obtaining 64–65

NSLAddServicesToServicesList function 41
NSLCancelRequest function 55
NSLClientAsyncInfo structure 90–93
NSLCloseNavigationAPI function 36, 39
NSLContinueLookup function 33, 34, 52–53
NSLCopyNeighborhood utility function 60–61
NSLCreateThread thread function 74
NSLDeleteRequest function 35, 56
NSLDisposeServicesList function 35, 55
NSLDisposeThread utility function 73

NSLError structure 94–99
NSLErrorToString function 54
NSLFreeNeighborhood function 61
NSLFreeTypedDataPtr function 35, 61
NSLFreeTypedURL function 62
NSLGetDefaultDialogOptions function 62
NSLGetErrorStringsFromResource function 72
NSLGetNameFromNeighborhood function 63
NSLGetNeighborhoodLength function 64
NSLGetNextNeighborhood function 64–65
NSLGetNextURL function 65
NSLGetServiceFromURL function 66
NSLHexDecodeText function 67
NSLHexEncodeText function 68
NSLLibraryPresent 38
NSLLibraryVersion 38
NSLMakeNewNeighborhood utility function 69
NSLMakeNewServicesList function 32, 40
NSLMakeRequestPB utility function 32
NSLMakeServicesRequestPB utility

function 70–71
NSLOpenNavigationAPI function 38–39
NSLParseServiceRegistrationPB function 76
NSLParseServicesRequestPB function 77
'NSLp' creator code 79
NSLPluginAsyncInfo structure 99–100
NSLPrepareRequest function 32, 42–44
NSLRegisterService 59
NSLServiceIsInServiceList function 71
NSLStandardDeregisterURL function 58–59
NSLStandardGetURL 44–46
NSLStandardRegisterURL function 57–58
NSLStartNeighborhoodLookup function 33,

47–49
NSLStartServicesLookup function 34, 49–51

O

overview of the NSL Manager 11
106

I N D E X
P, Q

parsing
registration parameter blocks 76
request parameter blocks 77

plug-ins
creator code for 79
DNS 16–18
icon for 79
location of 79
overview 15–21
routines for 79–90
SLP 18–20
type code for 79

problem string 94

R

registering services
applications 57–58
overview 14–15
plug-ins 81

Register routine 81
registration parameter blocks

disposing of 61
parsing 76

request parameter blocks
disposing of 61
making 32, 70–71
parsing 77

requests, lookup
canceling 55
continuing 52–53
deleting 56
preparing 42–44
starting 49–51

result codes 101–103
routines

filter callback 78
plug-in
CancelLookup 88
ContinueLookup 85–86
Deregister 88–89

ErrNumToString 87–88
InitPlugin 80
Register 81
StartNeighborhoodLookup 82–83
StartServicesLookup 83–85
UnloadPlugin 89–90

system event callback 78–79

S

sample code 31–36
search time, maximum 92
"Select a Service" dialog box 25–31, 44–46
services

deregistering
applications 58–59
plug-ins 88–89

looking for
applications 34, 49–51
plug-ins 83–85

registering
applications 57–58
plug-ins 81

services lists
adding to 41
definition 13
making 32, 40

'shlb' type code 79
SLP plug-in 18–20
solution string 94
StartNeighborhoodLookup routine 82–83
StartServicesLookup routine 83–85
structures
NSLClientAsyncInfo structure 90–93
NSLDialogOptions structure 93–94
NSLError structure 94–99
NSLPluginAsyncInfo 99–100

system event callback routine 78–79
107

I N D E X
T

thread functions
NSLCreateThread 74

threads
creating 74
disposing of 73

threshold, alert 92
type code for plug-ins 79

U, V, W, X, Y, Z

UnloadPlugin routine 89–90
URLs

decoding 67
disposing of 62
encoding 68
processing 65
service, getting 66

utility functions
NSLCopyNeighborhood 60–61
NSLDisposeThread 73
NSLFreeNeighborhood 61
NSLFreeTypedDataPtr 61
NSLFreeURL 62
NSLGetDefaultDialogOptions 62
NSLGetErrorStringsFromResource 72
NSLGetNameFromNeighborhood 63
NSLGetNeighborhoodLength 64
NSLGetNextNeighborhood 64–65
NSLGetNextURL 65
NSLGetServiceFromURL 66
NSLHexDecodeText 67
NSLHexEncodeText 68
NSLMakeNewNeighborhood 69
NSLMakeServicesRequestPB 70–71
NSLParseServiceRegistrationPB 76
NSLParseServicesRequestPB 77
NSLServiceIsInServiceList 71
108

	Network Services Location Manager 1.1 Developer’s Kit
	Contents
	Figures, Tables, and Listings
	About This Manual
	Changes Since NSL 1.0
	Conventions Used in This Manual
	For more information
	About the Network Services Location Manager
	About NSL Plug-ins
	About the DNS Plug-in
	About the SLP Plug-in
	About the NBP Plug-in
	About the LDAP Plug-in

	Using the Network Services Location Manager
	Using the NSL Manager’s High-Level Functions
	Registering and Deregistering Services
	Displaying the “Select a Service” Dialog Box

	Using the NSL Manager’s Low-Level Functions

	Network Services Location Manager Reference
	NSL Manager Functions
	Getting Information About the NSL Manager
	NSLLibraryPresent
	NSLLibraryVersion

	Managing NSL Manager Sessions
	NSLOpenNavigationAPI
	NSLCloseNavigationAPI

	Making a Lookup Request
	NSLMakeNewServicesList
	NSLAddServiceToServicesList
	NSLPrepareRequest

	Looking for Neighborhoods and Services
	NSLStandardGetURL
	NSLStartNeighborhoodLookup
	NSLStartServicesLookup
	NSLContinueLookup
	NSLErrorToString
	NSLCancelRequest

	Managing Memory
	NSLDisposeServicesList
	NSLDeleteRequest

	Managing Services
	NSLStandardRegisterURL
	NSLStandardDeregisterURL

	NSL Manager Utility Functions
	NSLCopyNeighborhood
	NSLFreeNeighborhood
	NSLFreeTypedDataPtr
	NSLFreeURL
	NSLGetDefaultDialogOptions
	NSLGetNameFromNeighborhood
	NSLGetNeighborhoodLength
	NSLGetNextNeighborhood
	NSLGetNextUrl
	NSLGetServiceFromURL
	NSLHexDecodeText
	NSLHexEncodeText
	NSLMakeNewNeighborhood
	NSLMakeServicesRequestPB
	NSLServiceIsInServiceList

	NSL Manager Plug-in Utility Functions
	NSLGetErrorStringsFromResource
	NSLDisposeThread
	NSLNewThread
	NSLParseServiceRegistrationPB
	NSLParseServicesRequestPB

	NSL Manager Application-Defined Routines
	Filter Callback Routine
	System Event Callback Routine

	NSL Manager Plug-in Routines
	InitPlugin
	Register
	StartNeighborhoodLookup
	StartServicesLookup
	ContinueLookup
	ErrNumToString
	CancelLookup
	Deregister
	KillPlugin

	NSL Manager Structures
	NSLClientAsyncInfo
	NSLDialogOptions
	NSLError
	NSLPluginAsyncInfo

	NSL Error Resource
	NSL Manager Result Codes

	Index

