



Preliminary

October 21, 1999
Technical Publications
© 1999 Apple Computer, Inc.



Seed Draft

Simplifying Networked Gaming
Using NetSprocket

For NetSprocket 1.7.1

10/21/99 Preliminary



 Apple Computer, Inc.



Apple Computer, Inc.
© 1996, 1999 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

C H A P T E R 1

Figure 1-0
Listing 1-0
Table 1-0

Introduction 1
IMPORTANT

This is a preliminary document. Although it has been
reviewed for technical accuracy, it is not final. Apple
Computer, Inc. is supplying this information to help you
plan for the adoption of the technologies and programming
interfaces described herein. This information is subject to
change, and software implemented according to this
document should be tested with final operating system
software and final documentation. You can check <http://
developer.apple.com/techpubs/macos8/SiteInfo/
whatsnew.html> for information about updates to this and
other developer documents. To receive notification of
documentation updates, you can sign up for ADC's free
Online Program and receive their weekly Apple Developer
Connection News e-mail newsletter. (See <http://
developer.apple.com/membership/index.html> for more
details about the Online Program.) ▲

NetSprocket is a subset of Apple Game Sprockets that provides networking
capabilities specifically geared for game developers. You can use NetSprocket to
set up and host your game, respond to incoming messages, and send messages
to other players. NetSprocket handles delivery and receipt of all game messages
without any additional effort on your part.

This document assumes you are familiar with programming Macintosh
computers. It does not discuss the details of networking on Macintosh
computers; for that information you should consult Inside Macintosh: Networking
with Open Transport.

If you are building a game, you may also want to consult other Game Sprocket
documentation:

■ Manipulating Displays Using DrawSprocket
3
10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 1

Introduction

■ Configuring Game Input Devices with InputSprocket

■ SoundSprocket documentation (forthcoming)

This document currently covers NetSprocket in the following chapters:

■ Chapter 2, “NetSprocket Reference,”contains a complete programming
reference, documenting the functions, data types, and constants available
with NetSprocket.

■ Appendix A, “Unimplemented or Unused Functions and Data Types,”
describes NetSprocket functions and types that are currently unused or
unimplemented.

■ Appendix B, “Document Version History,” describes changes made from
previous versions of NetSprocket documentation.

For additional information about creating games for the Macintosh, you should
check the Apple Developer games Web site:

<http://developer.apple.com/games/>
4
10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R

Contents

10/21/99 Preliminary



 Apple Computer, Inc.

Contents

Figure 2-0
Listing 2-0
Table 2-0
2 NetSprocket Reference
Functions 9
Initializing NetSprocket 10

NSpInitialize 10
Human Interface Functions 12

NSpDoModalJoinDialog 12
NSpDoModalHostDialog 14

Hosting and Joining a Game 15
NSpGame_Host 16
NSpGame_Join 18
NSpGame_EnableAdvertising 19
NSpGame_Dispose 20
NSpGame_GetInfo 21
NSpInstallJoinRequestHandler 21

Sending and Receiving Messages 22
NSpMessage_Send 23
NSpMessage_SendTo 24
NSpMessage_Get 25
NSpMessage_Release 26
NSpInstallAsyncMessageHandler 27

Managing Network Protocols 27
NSpProtocol_Dispose 28
NSpProtocolList_New 29
NSpProtocolList_Dispose 29
NSpProtocolList_Append 30
NSpProtocolList_Remove 31
NSpProtocolList_RemoveIndexed 31
NSpProtocolList_GetCount 32
5

C H A P T E R

NSpProtocolList_GetIndexedRef 32
NSpProtocol_CreateAppleTalk 33
NSpProtocol_CreateIP 34

Managing Player Information 35
NSpPlayer_ChangeType 36
NSpPlayer_Remove 37
NSpPlayer_GetAddress 37
NSpPlayer_GetMyID 38
NSpPlayer_GetInfo 38
NSpPlayer_ReleaseInfo 39
NSpPlayer_GetEnumeration 40
NSpPlayer_ReleaseEnumeration 40
NSpPlayer_GetThruput 41

Managing Groups of Players 42
NSpGroup_New 42
NSpGroup_Dispose 43
NSpGroup_AddPlayer 44
NSpGroup_RemovePlayer 44
NSpGroup_GetInfo 45
NSpGroup_ReleaseInfo 46
NSpGroup_GetEnumeration 46
NSpGroup_ReleaseEnumeration 47

Utility Functions 47
NSpGetVersion 48
NSpSetConnectTimeout 48
NSpClearMessageHeader 49
NSpGetCurrentTimeStamp 49
NSpConvertOTAddrToAddressReference 50
NSpConvertAddressReferenceToOTAddr 51
NSpReleaseAddressReference 51

Application-Defined Functions 52
MyJoinRequestHandler 52
MyMessageHandler 54

Data Types 55
NSpGameID 56
NSpPlayerID 56
NSpGroupID 57
NSpPlayerType 57
6 Contents

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R
NSpFlags 58
NSpPlayerName 58
NSpGameReference 58
NSpProtocolReference 59
NSpListReference 59
NSpAddressReference 59
NSpJoinRequestHandlerProcPtr 60
NSpMessageHandlerProcPtr 60
NSpPlayerInfo 61
NSpPlayerEnumeration 61
NSpGroupInfo 62
NSpGroupEnumeration 63
NSpGameInfo 63
NSpMessageHeader 64
NSpErrorMessage 66
NSpJoinRequestMessage 66
NSpJoinApprovedMessage 67
NSpJoinDeniedMessage 68
NSpPlayerJoinedMessage 69
NSpPlayerLeftMessage 69
NSpGameTerminatedMessage 70
NSpCreateGroupMessage 71
NSpDeleteGroupMessage 71
NSpAddPlayerToGroupMessage 72
NSpRemovePlayerFromGroupMessage 73
NSpPlayerTypeChangedMessage 73

Constants 74
Maximum String Length Constants 75
Network Message Priority Flags 75
Network Message Delivery Flags 76
Options for Hosting, Joining, and Disposing Games 78
Network Message Types 78
Reserved Player IDs for Network Messages 80
Topology Types 81

Summary of NetSprocket 82
NetSprocket Functions 82
Application-Defined Functions 86
Data Types 87
Contents 7
10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R
Constants 92
Result Codes 93
8 Contents

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2
NetSprocket Reference 2

This chapter describes the NetSprocket application programming interface
(API) introduced with NetSprocket 1.7. This chapter contains the following
sections:

■ “Functions” (page 9)

■ “Data Types” (page 55)

■ “Constants” (page 74)

■ “Result Codes” (page 93)

Some NetSprocket functions and data types that appear in the NetSprocket.h
header file are currently unimplemented or unused. For descriptions of these
APIs, see Appendix A.

Note
This document describes version 1.7 of NetSprocket. For a
list of functions changed or added between versions 1.0
and 1.7, see Appendix B. ◆

Functions 2

This section describes the functions provided by NetSprocket. They are
organized according to the following categories:

■ “Initializing NetSprocket” (page 10)

■ “Human Interface Functions” (page 12)

■ “Hosting and Joining a Game” (page 15)

■ “Managing Network Protocols” (page 27)

■ “Managing Player Information” (page 35)

■ “Managing Groups of Players” (page 42)

■ “Utility Functions” (page 47)

■ “Application-Defined Functions” (page 52)
Functions 9
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
IMPORTANT

With the exception of the function NSpMessage_Get
(page 25), you should not assume that NetSprocket
functions are interrupt-safe. If you must call a NetSprocket
function at interrupt time, you should do so through the
Deferred Task Manager. ▲

Initializing NetSprocket 2

You use the function in this section to initialize NetSprocket.

■ NSpInitialize (page 10) initializes the NetSprocket library.

NSpInitialize 2

Initializes the NetSprocket library.

OSStatus NSpInitialize (
UInt32 inStandardMessageSize,
UInt32 inBufferSize,
UInt32 inQElements,
NSpGameID inGameID,
UInt32 inTimeout);

inStandardMessageSize
This value is the maximum size (in bytes) of each message you
expect to send regularly. For example, if your game is sending
keyboard state most of the time and the keyboard state message
is 40 bytes long (including the NSpMessageHeader) then you
should set this value to 40. NetSprocket uses this value to
optimize the message receipt buffers. Typically, games send
messages that are either relatively constant in size, or the size of
the message is proportional to the number of players. If your
game doesn’t have a typical message size, or if you want
NetSprocket to choose a size for you, set this parameter to 0.
Setting this value greater than 586 bytes while using AppleTalk
may force NetSprocket to use multiple packets for sending the
message and potentially decrease game performance.
10 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inBufferSize The number of bytes that NetSprocket will allocate in its
interrupt-safe memory pool for networking during
initialization. Usually, 200 KB or more is recommended for most
games. You can approximate the networking pool with this
formula: ((size of standard message * (send frequency or get
frequency)) * max players) + 50 KB safety padding).
NetSprocket cannot allocate memory at interrupt time. If you do
not plan to call NetSprocket functions at interrupt time or use
the asynchronous functions, or if you want NetSprocket to
allocate the default amount (currently 400 KB), set this value to
0. Because NetSprocket is unable to grow its buffer after
initialization, it is important to allocate enough memory in
NetSprocket to send, receive, and queue the messages your
game will be using.

inQElements The maximum number of queue elements that NetSprocket will
allocate. The queue elements are used to store messages until
you receive them from NetSprocket; the more frequently you
check for messages, the fewer queue elements you need to
allocate. NetSprocket can automatically expand its message
queue, if necessary, but this will degrade performance.
Specifying a small number (< 10) will use less memory, but may
cause messages to be discarded due to lack of buffer space.
Specifying a larger number (> 20) will allow you to call
NSpMessage_Get less often and more efficiently.

inGameID A unique identifier for your game, typically your application’s
creator ID. For instance, if you do not specify an NBP (Name
Binding Protocol) type to NetSprocket when registering a game
on an AppleTalk network, it will use this ID instead.

inTimeout Currently unused. Pass 0 for this parameter.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

You must initialize NetSprocket before you can call functions from the
NetSprocket library.

This function may fail under a variety of circumstances, including the failure to
allocate enough application memory, insufficient system memory, or failure to
initialize networking in the Mac OS.
Functions 11
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

Human Interface Functions 2

NetSprocket provides human interface functions you can use to speed
prototyping and to allow players to host and join games.

The NetSprocket human interface functions are forward-compatible with new
protocols as they become available. This means that you don’t have to change
your code to accommodate new protocols when joining or hosting a game.

■ NSpDoModalJoinDialog (page 12) presents to the user a default dialog box for
finding and joining a game advertised on the network.

■ NSpDoModalHostDialog (page 14) presents your user with a default modal
dialog box for hosting a game on the network.

NSpDoModalJoinDialog 2

Presents to the user a default dialog box for finding and joining a game
advertised on the network.

NSpAddressReference NSpDoModalJoinDialog (
ConstStr31Param inGameType,
ConstStr31Param inEntityListLabel,
Str31 ioName,
Str31 ioPassword,
NSpEventProcPtr inEventProcPtr);

inGameType A Pascal (maximum 31 characters) string used to register your
game’s NBP (Name Binding Protocol) type. This must be the
same as the one used to host a game. If you pass NULL or an
empty string, then NetSprocket uses the game ID (as passed to
NSpInitialize (page 10)) to search for games on the AppleTalk
network.
12 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inEntityListLabel
A Pascal string that will be displayed above the entity list in the
AppleTalk panel of the dialog box, as a label for the list of
available games.

ioName A Pascal (maximum 31 characters) string of the user name
(generally from a preferences setting). Pass an empty string (not
NULL) if you do not want a default name displayed in the dialog
box. This string pointed to by ioName will contain any changes
the user made to the name on return.

ioPassword A Pascal (maximum 31 characters) string of the password
(generally from a preferences setting). Pass an empty string (not
NULL) if you do not want a default password displayed in the
dialog box. This field will contain the any changes the user
made to the password on return.

inEventProcPtr
A pointer to DialogProcUPP, the dialog filter function for
handling Mac OS events that may affect other windows you
have displayed on the screen concurrently. Pass NULL if you do
not need to receive Mac OS events while the NetSprocket dialog
box is being displayed.

function result An opaque reference to the protocol address selected by the
user.

DISCUSSION

If the user cancels the dialog box, the function will return NULL. If the user
selects OK, it will return a reference to the protocol address of a game host. You
should then pass this reference to the function NSpGame_Join (page 18). Once
you have called NSpGame_Join, call NSpReleaseAddressReference (page 51) to
release the reference.

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 13
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpDoModalHostDialog 2

Presents your user with a default modal dialog box for hosting a game on the
network.

Boolean NSpDoModalHostDialog (
NSpProtocolListReference ioProtocolList,
Str31 ioGameName,
Str31 ioPlayerName,
Str31 ioPassword,
NSpEventProcPtr inEventProcPtr);

ioProtocolList
An opaque reference to a list of protocols. You can create an
empty list that will be filled in with information about the
protocols the user selects, but you cannot pass NULL. If you wish
to preconfigure certain protocols, you can create protocol
references for them, then add them to your protocol list before
passing it to this function.

ioGameName A Pascal string (maximum 31 characters) of the name of the
game to be registered in NBP and displayed to users if you are
using the NSpGame_Join function in their game. Pass an empty
string (not NULL) if you don’t want to display a default game
name. The value of ioGameName is often obtained from a
preferences setting. This field contains changes (if any) the user
made to the ioGameName field.

ioPlayerName A Pascal (maximum 31 characters) string of the user name
(generally from a preferences setting). Pass an empty string (not
NULL) if you do not want a default name displayed in the dialog
box. This field contains any changes the user has made to the
name.

ioPassword A Pascal (maximum 31 characters) string of the password
(generally from a preferences setting). Pass an empty string (not
NULL) if you do not want a default password displayed in the
dialog box. This field contains any changes the user made to the
password.

inEventProcPtr
A pointer to DialogProcUPP, the dialog filter function for
handling Mac OS events that may affect other windows you
14 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
have displayed on the screen concurrently. Pass NULL if you do
not need to receive Mac OS events while the dialog box is being
displayed.

function result A value of true if the user selected OK, false if the user selected
Cancel.

DISCUSSION

This function fills in the protocol list with the protocol(s) the user has selected
and configures the protocol references in the list with the proper information. If
the user did not cancel the dialog box, you should then pass the protocol list to
the NSpGame_Host function.

VERSION NOTES

Introduced with NetSprocket 1.0.

Hosting and Joining a Game 2

You can use the NetSprocket functions in this section to create and manage your
game. This includes both hosting and joining games on a network using various
protocols and instantiating custom network message handlers as required by
your game.

■ NSpGame_Host (page 16) creates a new game object that other players can then
join.

■ NSpGame_Join (page 18) joins a game specified by an address.

■ NSpGame_EnableAdvertising (page 19) enables or disables advertising of the
game on the network.

■ NSpGame_Dispose (page 20) removes a player or host from the game.

■ NSpGame_GetInfo (page 21) obtains information about the game to join.

■ NSpInstallJoinRequestHandler (page 21) installs the application=defined join
request handler
Functions 15
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpGame_Host 2

Creates a new game object that other players can then join.

OSStatus NSpGame_Host (
NSpGameReference *outGame,
NSpProtocolListReference inProtocolList,
UInt32 inMaxPlayers,
ConstStr31Param inGameName,
ConstStr31Param inPassword,
ConstStr31Param inPlayerName,
NSpPlayerType inPlayerType,
NSpTopology inTopology,
NSpFlags inFlags);

outGame The address of a game reference which will be filled in by this
function. Upon successful return, it will contain a pointer to the
newly created game object. This field is invalid if the function
returns anything other than noErr.

inProtocolList
An opaque reference to a list of protocols that has been returned
from DoModalHostDialog, or created by you in your own
application for advertising your game on the network.

inMaxPlayers The maximum number of players permitted to join the game. If
you want to allow unlimited players, set this value to 0.
NetSprocket is more efficient when the maximum number of
players is set in the inMaxPlayers field. The number of allowed
groups does not affect the maximum number of players.

inGameName A Pascal string containing the name of the game that will
appear in game browsers. You must pass a valid Pascal string in
this field.

inPassword The password that prospective players must match to join the
game. Players who do not enter a correct password will not be
allowed to join. Pass NULL if you do not require a password for
players joining your game.

inPlayerName The name of the player hosting the game. If there is no player
associated with the computer hosting the game (for example, if
the computer is a dedicated game server), you should pass NULL.
16 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inPlayerType The player type, which is used only if there is a player
associated with the application hosting the game. This
parameter is stored in NetSprocket’s player information table
and may be used by the game application. It is not used by
NetSprocket.

inTopology A constant indicating the topology to use in the game. The only
topology implemented in version 1.0 is client/server, indicated
by the constant kNSpClientServer.

inFlags Options for creating the new game object. The only currently
permissible value of inFlags in NetSprocket is
kNSpGameFlag_DontAdvertise, which causes the NSpGame_Host
function to create a game object, but not actually advertise the
game on the network.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

You use this function when your application hosts a game.

Once the game is created, the game will automatically be advertised over the
protocols in the protocol list.

When you have created a game object by calling NSpGame_Host, you will pass the
game object to other host functions you call. Do not use this function for joining
games; you should use the NSpGame_Join (page 18) function instead.

NSpGame_Host will return noErr upon successful completion, placing the new
game object in the outGame parameter. If the game could not be created for some
reason, the NSpGameReference will be invalid (NULL). You should check the result
code and determine the appropriate course of action.

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 17
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpGame_Join 2

Joins a game specified by an address.

OSStatus NSpGame_Join (
NSpGameReference *outGame,
NSpAddressReference inAddress,
ConstStr31Param inName,
ConstStr31Param inPassword,
NSpPlayerType inType,
Uint32 inCustomDataLen,
void *inCustomData,
NSpFlags inFlags);

outGame A pointer to a game reference structure that is filled in by the
function. You must provide a pointer to an NSpGameReference in
the outGame parameter. This pointer will be filled in with a valid
NSpGameReference on return.

inAddress A valid address reference returned from the
NSpDoModalJoinDialog function or created by the application.

inName The player’s name as it will appear to other players in the game.
You must pass a valid Pascal string. NULL is not permitted in this
field.

inPassword The password entered by the user to join the game. Pass NULL or
an empty string if no password is required.

inType The player’s type. This value is for your own use in classifying
players. It is stored, but not used by NetSprocket.

inCustomDataLen
The length of custom authentication data being sent to the host
as part of the join request. If your game does not use a custom
authentication mechanism, you must set the value to 0.

inCustomData A pointer to custom data being sent to the host for use by your
custom authentication function. This parameter is passed to the
host, but not used by NetSprocket. If your game does not use a
custom authentication mechanism, you should set this value to
NULL.
18 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inFlags Options for joining the game. There are no options for this field
as of NetSprocket version 1.7.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

This function joins the game specified by the inAddress parameter. You can
obtain an address reference from NSpDoModalJoinDialog (page 12) or
NSpConvertOTAddrToAddressReference (page 50).

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGame_EnableAdvertising 2

Enables or disables advertising of the game on the network.

OSStatus NSpGame_EnableAdvertising (
NSpGameReference inGame,
NSpProtocolReference inProtocol,
Boolean inEnable);

inGame An opaque reference to your game object.

inProtocol An opaque reference to the protocol for which you wish to start
or stop advertising. Pass NULL to stop advertising on all
protocols.

inEnable A value of true to start advertising or false to stop advertising.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

The function NSpGame_Host (page 16) automatically advertises the game, unless
you passed kNSpGameFlag_DontAdvertise in its inFlags field.
Functions 19
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGame_Dispose 2

Removes a player or host from the game.

OSStatus NSpGame_Dispose (NSpGameReference inGame,
NSpFlags inFlags);

inGame An opaque reference to your game object.

inFlags Options for leaving the game. See “Options for Hosting, Joining,
and Disposing Games” (page 78) for a list of possible values.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

If your application is hosting the game and you pass
kNSpGameFlag_ForceTerminateGame in the inFlags parameter, the game will be
stopped for all participants and the game object will be deleted. However, if
you do not pass kNSpGameFlag_ForceTerminateGame, NetSprocket will attempt to
negotiate with another player to become the host. If the negotiation is
successful, the other players will be notified that the host has changed and you
will be dropped from the game. If the negotiation fails, NSpGame_Dispose returns
an error and no further action is taken.

If your application is operating as a player (created by NSpGame_Join), the other
players are notified that you are leaving the game. The game is not terminated
if you make this call as a player.

VERSION NOTES

Introduced with NetSprocket 1.0.
20 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpGame_GetInfo 2

Obtains information about an available game.

OSStatus NSpGame_GetInfo (
NSpGameReference inGame,
NSpGameInfo *ioInfo);

inGame A reference to the game you want to obtain information about.

ioInfo On return, a pointer to game information. See NSpGameInfo
(page 63) for the format of the returned information.

function result A result code. See “Result Codes” (page 93).

DESCRIPTION

If you are running a server capable of hosting multiple games, then you could
use this function to display information about each available game. Similarly,
you could use this function on a player’s computer to obtain and display
available games to join.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpInstallJoinRequestHandler 2

Installs the application-defined join request handler.

OSStatus NSpInstallJoinRequestHandler (
NSpJoinRequestHandlerProcPtr inHandler,
void *inContext);

inHandler A pointer to your join request function.

inContext A pointer that will be passed to your handler when it is called
by NetSprocket.

function result A result code of noErr, or a NetSprocket result code.
Functions 21
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
DISCUSSION

You can use the NSpInstallJoinRequestHandler function to install a special
function to process join requests for your game object. When your custom
function is installed, NetSprocket will call this function whenever a join request
occurs. You do not need to develop and install custom join request handlers if
the NetSprocket functions already meet your requirements.

You can install a custom join request handler to override the standard
authentication method of NetSprocket. By default, when a NetSprocket host
receives a join request, it will first make sure that the maximum number of
players has not been exceeded. Then, it will check the prospective player’s
password (if required) and admit the player if the password matches.

When you override this behavior, your join request function is called and
passed the NSpJoinRequestMessage (page 66) sent by the player who wants to
join. You must decide whether or not to allow the player to join, based on
whatever criteria you desire. Your function must return a Boolean value to
indicate whether the player can join the game.

After your custom join request handler has been installed, any subsequent join
requests will be passed to this function for processing.

Also note that since the maximum round-trip time is specified when hosting a
game, requests from prospective players who do not meet the maximum
criterion will not be passed to your game.

NetSprocket returns an error if there was a problem installing the handler.

VERSION NOTES

Introduced with NetSprocket 1.0.

Sending and Receiving Messages 2

You may use these NetSprocket functions to manage the messages being sent
and received by your game. You should construct your messages based on the
message header structure and pass them to NSpMessage_Send for delivery to their
intended recipients.

■ NSpMessage_Send (page 23) delivers a message to other players in the game.

■ NSpMessage_SendTo (page 24) creates a message header and sends a message
to other players in the game.
22 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
■ NSpMessage_Get (page 25) receives messages that have been delivered to your
game.

■ NSpMessage_Release (page 26) releases a message obtained by calling
NSpMessage_Get.

■ NSpInstallAsyncMessageHandler (page 27) installs a message handler for your
game object.

NSpMessage_Send 2

Delivers a message to other players in the game.

OSStatus NSpMessage_Send (
NSpGameReference inGame,
NSpMessageHeader *inMessage,
NSpFlags inFlags);

inGame An opaque reference to your game object.

inMessage A pointer to the message you want to deliver. This structure can
contain any data your game requires, provided that it begins
with a NSpMessageHeader. The header must contain valid
information about the intended recipient and the size of the
message. To impose a reasonable amount of type-safety, you
must pass &myStruct.headerField to ensure the structure
contains an NSpMessageHeader as its first element.

inFlags Flags that specify how the message should be sent, as specified
in the message header structure. See “Network Message Priority
Flags” (page 75) and “Network Message Delivery Flags”
(page 76) for more information.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

Before calling this function, you must fill out the message header and message.
To send a message and have the message header created for you, call the
function NSpMessage_SendTo (page 24) instead.
Functions 23
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Although there is no restriction on the size of your message, extremely large
messages (about 50 percent of the memory allocated to NetSprocket at
initialization) may not be delivered if the receiver lacks the memory to process
your message.

NetSprocket will return an error if it was unable to deliver your message.

Note that NSpMessage_Send may return noErr, even though the intended
recipient did not receive the message. Depending on the options you have
chosen and other network conditions beyond the knowledge or control of the
application, the message may not have been received by its intended recipients.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpMessage_SendTo 2

Creates a message header and sends a message to other players in the game.

OSStatus NSpMessage_SendTo (
NSpGameReference inGame,
NSpPlayerID inTo,
SInt32 inWhat,
void * inData,
UInt32 inDataLen,
NSpFlags inFlags);

inGame An opaque reference to your game object.

inTo The ID of the player to whom you want to send the message.

inWhat An integer indicating the type of message to be sent. See
“Network Message Types” (page 78) for a listing of possible
types.

inData A pointer to the message to send.

inDataLen The length of the message in bytes.
24 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inFlags Flags that specify how the message should be sent. See
“Network Message Priority Flags” (page 75) and “Network
Message Delivery Flags” (page 76) for more information.

function result A result code. See “Result Codes” (page 93).

DESCRIPTION

Unlike the NSpMessage_Send (page 23) function, NSpMessage_SendTo creates a
message header based on the information you pass to it. Otherwise it functions
identically to NSpMessage_Send.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpMessage_Get 2

Receives messages that have been delivered to your game.

NSpMessageHeader *NSpMessage_Get (
NSpGameReference inGame);

inGame An opaque reference to your game object.

function result A pointer to your incoming message data structure.

DISCUSSION

You can use this function to retrieve and process messages whether you are a
player in the game or you are hosting a game.

Once game play has begun, you will probably want to call this function each
time you pass through your game loop to process all network messages as
quickly and efficiently as possible.

NSpMessage_Get returns NULL if there are no messages pending. If a message has
been received, NetSprocket will return a pointer to a message structure.
Functions 25
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpMessage_Get returns a pointer to an NSpMessageHeader-based structure that is
allocated by NetSprocket. You should call NSpMessage_Release to release the
memory back to NetSprocket when you’re done with the message. Failure to
release memory in a timely fashion will limit NetSprocket’s ability to handle
more incoming messages. NSpMessage_Get and NSpMessage_Release are a more
efficient method of message processing than the time-consuming process of
copying incoming messages from NetSprocket into your application’s message
buffer.

You should call NSpMessage_Get as frequently as you can to get messages that
have been sent to your player.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpMessage_Release 2

Releases a message obtained by calling NSpMessage_Get.

void NSpMessage_Release (
NSpGameReference inGame,
NSpMessageHeader *inMessage);

inGame An opaque reference to your game object.

inMessage A pointer to the message to be released.

DISCUSSION

When you have finished processing a message, you should call
NSpMessage_Release to release the memory allocated for it.

VERSION NOTES

Introduced with NetSprocket 1.0.
26 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpInstallAsyncMessageHandler 2

Installs a message handler for your game object.

OSStatus NSpInstallAsyncMessageHandler (
NSpMessageHandlerProcPtr inHandler,
void *inContext);

inHandler A pointer to your message handling function. See
MyMessageHandler (page 54) for more information about
implementing this function.

inContext The pointer that NetSprocket will pass to your message
handling function.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

You do not need to install a message handler, unless you want NetSprocket to
call your handler function back as soon as a completed message has arrived.
The message handler is called whenever NetSprocket receives an incoming
message.

Your message handler should be in place and ready to receive messages before
this function returns. NetSprocket returns an error if there was a problem
installing the handler.

VERSION NOTES

Introduced with NetSprocket 1.0.

Managing Network Protocols 2

In order to be protocol-independent and forward-compatible with new
protocols, NetSprocket uses opaque protocol references. You can use the
following functions to define and create protocol references for use by the
NSpGame_Host function in your game, rather than having NetSprocket maintain
them for you.

■ NSpProtocol_Dispose (page 28) deletes a protocol reference.
Functions 27
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
■ NSpProtocolList_New (page 29) creates a new list for storing multiple
protocol references.

■ NSpProtocolList_Dispose (page 29) deletes a protocol list.

■ NSpProtocolList_Append (page 30) adds a new protocol reference to the list.

■ NSpProtocolList_Remove (page 31) removes a protocol reference from the list.

■ NSpProtocolList_RemoveIndexed (page 31) removes the protocol reference at a
specific location in the list.

■ NSpProtocolList_GetCount (page 32) returns the number of protocol
references in the list.

■ NSpProtocolList_GetIndexedRef (page 32) receives the protocol reference at
the indicated location in the list.

■ NSpProtocol_CreateAppleTalk (page 33) Creates an AppleTalk protocol
reference using the specified parameters.

■ NSpProtocol_CreateIP (page 34) creates an IP protocol reference.

NSpProtocol_Dispose 2

Deletes a protocol reference.

void NSpProtocol_Dispose (
NSpProtocolReference inProtocolRef);

inProtocolRef An opaque reference to the protocol being deleted.

DISCUSSION

You should use this function to delete a protocol reference you created (for
example, by calling NSpProtocol_CreateIP (page 34)).

Note that if you have added a protocol reference to a protocol list, the list owns
the memory associated with the protocol reference and will delete it when the
list is deleted.
28 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_New 2

Creates a new list for storing multiple protocol references.

OSStatus NSpProtocolList_New (
NSpProtocolReference inProtocolRef,
NSpProtocolListReference *outList);

inProtocolRef An opaque reference to the protocol reference to be added to the
list when it is created. Pass NULL if you don’t want to add any
protocol references at this time.

outList An opaque reference to the protocol list that was created. This is
only valid if the function returns noErr.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

The NSpGame_Host function requires a list of protocol references, so that the game
can be hosted on multiple protocols. Also, the NSpDoModalHostDialog function
requires you to pass a protocol list that it fills in. Once a protocol reference has
been added to a list, its memory belongs to the list.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_Dispose 2

Deletes a protocol list.

void NSpProtocolList_Dispose (NSpProtocolListReference inProtocolList);
Functions 29
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
inProtocolList
An opaque reference to a list of protocols. When you use
NSpProtocolList_Dispose to delete a protocol list, all the protocol
references in it are deleted.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_Append 2

Adds a new protocol reference to the list.

OSStatus NSpProtocolList_Append (
NSpProtocolListReference inProtocolList,
NSpProtocolReference inProtocolRef);

inProtocolList
An opaque reference to a protocol list.

inProtocolRef An opaque reference to the protocol being appended.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

The specified protocol reference is appended to the list of protocol references.
Note that after appending, the reference becomes the property of the list; you
cannot call NSpProtocol_Dispose (page 28) to delete a protocol reference in the
list.

VERSION NOTES

Introduced with NetSprocket 1.0.
30 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpProtocolList_Remove 2

Removes a protocol reference from the list.

OSStatus NSpProtocolList_Remove (
NSpProtocolListReference inProtocolList,
NSpProtocolReference inProtocolRef);

inProtocolList
An opaque reference to a protocol list.

inProtocolRef An opaque reference to the protocol you are removing.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

When a protocol reference is removed from a protocol list, its memory once
again belongs to the application and should be released with a call to
NSpProtocol_Dispose (page 28).

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_RemoveIndexed 2

Removes the protocol reference at a specific location in the list.

OSStatus NSpProtocolList_RemoveIndexed (
NSpProtocolListReference inProtocolList,
UInt32 inIndex);

inProtocolList
An opaque reference to a protocol list.

inIndex The index entry to be removed. The index is zero-based.

function result A result code. See “Result Codes” (page 93).
Functions 31
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
DISCUSSION

This function is usually used in conjunction with the NSpProtocolList_GetCount
(page 32) function for stepping through a protocol list and removing a specific
protocol reference.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_GetCount 2

Returns the number of protocol references in the list.

UInt32 NSpProtocolList_GetCount (
NSpProtocolListReference inProtocolList);

inProtocolList
An opaque reference to a protocol list.

function result The number of protocol references in the list.

DISCUSSION

Use this function when iterating through the protocol list.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocolList_GetIndexedRef 2

Receives the protocol reference at the indicated location in the list.

NSpProtocolReference NSpProtocolList_GetIndexedRef (
NSpProtocolListReference inProtocolList,
UInt32 inIndex);
32 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inProtocolList
An opaque reference to a list of protocols.

inIndex A valid index entry. The index is zero-based.

function result The protocol reference at the specified index.

DISCUSSION

NSpProtocolList_GetIndexedRef does not remove the protocol from the list, so
you must not delete its reference.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocol_CreateAppleTalk 2

Creates an AppleTalk protocol reference using the specified parameters.

NSpProtocolReference NSpProtocol_CreateAppleTalk (
ConstStr31Param inNBPName,
ConstStr31Param inNBPType,
UInt32 inMaxRTT,
UInt32 inMinThruput);

inNBPName The Name Binding Protocol name you wish users to see when
browsing the AppleTalk network.

inNBPType The Name Binding Protocol type to use when advertising the
game on an AppleTalk network. This name should be
representative of your game, but is never displayed to users.
This name must be the same as the one you use in the
ioGameType field of the NSpGame_Join function.

inMaxRTT The maximum round-trip time (RTT) allowed for new players.
Pass 0 if you do not wish to have round-trip time checked. This
does not guarantee that RTT will remain at the level it is when
the player joins. RTT is in milliseconds.
Functions 33
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
inMinThruput The minimum throughput required of any prospective entrant
into the game. Pass 0 if you do not wish to have throughput
checked. This does not guarantee that throughput will remain at
the level it is when the player joins. Throughput is measured in
bytes per second.

function result A reference to the created protocol, or NULL if there was an error
in specifying the protocol.

DISCUSSION

Use this function if you wish to preconfigure the AppleTalk protocol before
calling NSpDoModalHostDialog, or if you want to host the game
programmatically.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocol_CreateIP 2

Creates an IP protocol reference.

NSpProtocolReference NSpProtocol_CreateIP (
InetPort inPort,
UInt32 inMaxRTT,
UInt32 inMinThruput);

inPort The port on which you wish to listen for new players. Since
there is no dynamic name lookup in IP, prospective players
cannot know what port a game is being played on unless they
receive that information from the hosting player in a manner
external to the network. In order to notify you, the person
hosting the game might send you electronic mail, call you, or
leave a sticky note on your computer telling you what game the
port is on and what time to join. When you use the
NSpProtocol_CreateIP function, you can specify the default port
your game is hosted on. You can then specify the same port as
the default port to use when joining a game.
34 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inMaxRTT The maximum round-trip time (RTT) allowed for new players.
Pass 0 if you do not wish to have round-trip time checked. This
does not guarantee that RTT will remain at the same level when
the player joins. RTT is specified in milliseconds.

inMinThruput The minimum throughput required of any prospective entrant
into the game. Pass 0 if you do not wish to have throughput
checked. This does not guarantee that throughput will remain at
the same level when the player joins. Throughput is measured
in bytes per second.

function result A reference to the created protocol, or NULL if there was an error
in specifying the protocol.

DISCUSSION

Use this function if you wish to preconfigure the TCP/IP protocol before calling
NSpDoModalHostDialog (page 14) or if you want to host the game
programmatically.

Note that NetSprocket creates both TCP and UDP endpoints. System messages
and messages with the Registered flag set are sent using TCP; all others are sent
using UDP.

VERSION NOTES

Introduced with NetSprocket 1.0.

Managing Player Information 2

You can use these NetSprocket functions to get information about the players
participating in your game. You can also use these functions to control player
information data structures.

■ NSpPlayer_ChangeType (page 36) changes the player’s type.

■ NSpPlayer_Remove (page 37) removes a player.

■ NSpPlayer_GetAddress (page 37) obtains a player’s network address.

■ NSpPlayer_GetMyID (page 38) obtains the ID of the player associated with the
game object on the current computer.
Functions 35
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
■ NSpPlayer_GetInfo (page 38) obtains information about a player.

■ NSpPlayer_ReleaseInfo (page 39) releases a player information structure
obtained by the NSpPlayer_GetInfo function.

■ NSpPlayer_GetEnumeration (page 40) takes a snapshot that describes each
player currently in the game.

■ NSpPlayer_ReleaseEnumeration (page 40) releases the player enumeration
structure.

■ NSpPlayer_GetThruput (page 41) determines the data throughput between the
caller and the specified player.

NSpPlayer_ChangeType 2

Changes the player’s type.

OSStatus NSpPlayer_ChangeType (
NSpGameReference inGame,
NSpPlayerID inPlayerID,
NSpPlayerType inNewType);

inGame An opaque reference to your game object.

inPlayerID The ID of the player whose player type you want to change.

inNewType The new type to assign. The player type is an arbitrary integer
that you can use to help classify players. For example, in a
particular game, you may assign a type to indicate players who
are wounded or immobilized.

function result A result code. See “Result Codes” (page 93).

VERSION NOTES

Introduced with NetSprocket 1.7.
36 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpPlayer_Remove 2

Removes a player.

OSStatus NSpPlayer_Remove (
NSpGameReference inGame,
NSpPlayerID inPlayerID);

inGame An opaque reference to your game object.

inPlayerID The ID of the player you want to remove.

function result A result code. See “Result Codes” (page 93).

DESCRIPTION

Unlike the function NSpGame_Dispose (page 20), NSpPlayer_Remove forcibly
removes a player from the game. You can call this function only when the
application is hosting the game.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpPlayer_GetAddress 2

Obtains a player’s network address.

OSStatus NSpPlayer_GetAddress (
NSpGameReference inGame,
NSpPlayerID inPlayerID,
OTAddress ** outAddress);

inGame An opaque reference to your game object.

inPlayerID The ID of the player whose network address you want to
determine.

outAddress On return, a pointer to the TCP/IP or Appletalk OTAddress of the
player, as returned by Open Transport.
Functions 37
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
function result A result code. See “Result Codes” (page 93).

DESCRIPTION

You can call the function NSpConvertOTAddrToAddressReference (page 50) to
convert the returned OTAddress to an address of type NSpAddressReference. Note
however, that to release the memory associated with the address, you must call
DisposePtr, not NSpReleaseAddressReference (page 51).

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpPlayer_GetMyID 2

Obtains the ID of the player associated with the game object on the current
computer.

NSpPlayerID NSpPlayer_GetMyID (NSpGameReference inGame);

inGame An opaque reference to your game object.

function result A valid player ID. NetSprocket returns 0 if there is no player
associated with the game object.

NSpPlayer_GetInfo 2

Obtains information about a player.

OSStatus NSpPlayer_GetInfo (
NSpGameReference inGame,
NSpPlayerID inPlayerID,
NSpPlayerInfoPtr *outInfo);

inGame An opaque reference to your game object.

inPlayerID The ID of the player you want information about.
38 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
outInfo A pointer to NSpPlayerInfoPtr which contains a pointer to the
player’s information data structure you have requested.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

When you are done with the player’s information, you should call
NSpPlayer_ReleaseInfo (page 39) to release memory associated with the
structure.

NetSprocket returns an error if it could not obtain the player’s information.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayer_ReleaseInfo 2

Releases a player information structure obtained by the NSpPlayer_GetInfo
(page 38) function.

void NSpPlayer_ReleaseInfo (
NSpGameReference inGame,
NSpPlayerInfoPtr inInfo);

inGame An opaque reference to your game object.

inInfo The information structure you want to release.

DISCUSSION

You should use the NSpPlayer_ReleaseInfo function to release each player
information structure obtained by NSpPlayer_GetInfo (page 38).

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 39
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpPlayer_GetEnumeration 2

Takes a snapshot that describes each player currently in the game.

OSStatus NSpPlayer_GetEnumeration (
NSpGameReference inGame,
NSpPlayerEnumerationPtr *outPlayers);

inGame An opaque reference to your game object.

outPlayers A pointer to a player enumeration structure which is allocated
and set by NetSprocket.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

NSpPlayer_GetEnumeration places the information on each player in the player
enumeration structure. This structure is made available to your game via
NSpPlayerEnumerationPtr.

It is important to release the memory held by the player enumeration structure
by calling the NSpPlayer_ReleaseEnumeration function when you are done.

If there was a problem getting the player information, NetSprocket returns an
error; in such cases the value of outPlayers is invalid.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayer_ReleaseEnumeration 2

Releases the player enumeration structure.

void NSpPlayer_ReleaseEnumeration (
NSpGameReference inGame,
NSpPlayerEnumerationPtr inPlayers);

inGame An opaque reference to your game object.
40 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inPlayers The player enumeration structure obtained from
NSpPlayer_GetEnumeration.

DISCUSSION

For each NSpPlayer_GetEnumeration (page 40) call, you should execute a
corresponding NSpPlayer_ReleaseEnumeration call to release the player
enumeration structure when you no longer need it.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayer_GetThruput 2

Determines the data throughput between the caller and the specified player.

UInt32 NSpPlayer_GetThruput (
NSpGameReference inGame,
NSpPlayerID inPlayer);

inGame An opaque reference to your game object.

inPlayer The ID of the player you are sending the test message to.

function result The throughput between the caller and the player. Throughput
is measured in bytes per second.

DISCUSSION

This function is synchronous. That is, it blocks until it finishes testing
throughput unless the timeout is reached. If time-out is exceeded, -1 will be
returned. Throughput between any two players may vary greatly during the
course of a game.

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 41
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Managing Groups of Players 2

You may use these NetSprocket functions to create and manage groups of
players participating in your game. Groups are a shared resource of the entire
game. When a group is created by one player, it can be used, modified, or
deleted by any player in the game.

■ NSpGroup_New (page 42) creates a new group of players.

■ NSpGroup_Dispose (page 43) removes a group from the game.

■ NSpGroup_AddPlayer (page 44) adds a player from a group.

■ NSpGroup_RemovePlayer (page 44) removes a player from a group.

■ NSpGroup_GetInfo (page 45) obtains the group’s information structure.

■ NSpGroup_ReleaseInfo (page 46) releases memory held by the group
information structure.

■ NSpGroup_GetEnumeration (page 46) obtains a list of the groups in the game.

■ NSpGroup_ReleaseEnumeration (page 47) releases memory held by the group
enumeration structure.

NSpGroup_New 2

Creates a new group of players.

OSStatus NSpGroup_New (
NSpGameReference inGame,
NSpGroupID *outGroupID);

inGame An opaque reference to your game object.

outGroupID A unique number identifying the new group you have created.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

Once a group is created, the value in the outGroupID parameter is distributed to
each player in the game. This group ID value is independent of the network
42 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
transport used. Any player in the game can use the outGroupID parameter to
send messages to the players in the group.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroup_Dispose 2

Removes a group from the game.

OSStatus NSpGroup_Dispose (
NSpGameReference inGame,
NSpGroupID inGroupID);

inGame An opaque reference to your game object.

inGroupID The ID of the group to delete.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

NSpGroup_Dispose does not delete the players in the group. It simply deletes the
group ID. A deleted group is no longer usable by any player in the game.

NetSprocket returns an error if it could not delete the group.

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 43
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpGroup_AddPlayer 2

Adds a player to a group.

OSStatus NSpGroup_AddPlayer (
NSpGameReference inGame,
NSpGroupID inGroupID,
NSpPlayerID inPlayerID);

inGame An opaque reference to your game object.

inGroupID The group to which you are adding the player.

inPlayerID The player to be added.

function result A result code. See “Result Codes” (page 93).

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroup_RemovePlayer 2

Removes a player from a group.

OSStatus NSpGroup_RemovePlayer (
NSpGameReference inGame,
NSpGroupID inGroupID,
NSpPlayerID inPlayerID);

inGame An opaque reference to your game object.

inGroupID The group from which the player is to be removed.

inPlayerID The player to be removed.

function result A result code. See “Result Codes” (page 93).
44 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
DISCUSSION

NetSprocket returns an error if the NSpGroup_RemovePlayer function could not
remove the player or if the player ID or group ID is invalid. This function does
not remove the player from the game. It only removes the player from the list of
players in the group.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroup_GetInfo 2

Obtains the group’s information structure.

OSStatus NSpGroup_GetInfo (
NSpGameReference inGame,
NSpGroupID inGroupID,
NSpGroupInfoPtr *outInfo);

inGame An opaque reference to your game object.

inGroupID The group you want information about.

outInfo A pointer to an array of group information structures.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

The group information data structure will be allocated by NetSprocket and the
structure will be populated with the group’s information. When you have
finished with the NSpGroupInfo data structure, you should release it by calling
NSpGroup_ReleaseInfo (page 46).

NetSprocket returns an error if NetSprocket could not build the group
information data structure or if the group ID was invalid.

VERSION NOTES

Introduced with NetSprocket 1.0.
Functions 45
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpGroup_ReleaseInfo 2

Releases memory held by the group information structure.

void NSpGroup_ReleaseInfo (
NSpGameReference inGame,
NSpGroupInfoPtr inInfo);

inGame An opaque reference to your game object.

inInfo A pointer to an array of group information structures.

DISCUSSION

For each NSpGroup_GetInfo call, you should execute a corresponding
NSpGroup_ReleaseInfo call to release the memory held by the group information
structure.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroup_GetEnumeration 2

Obtains a list of the groups in the game.

OSStatus NSpGroup_GetEnumeration (
NSpGameReference inGame,
NSpGroupEnumerationPtr *outGroups);

inGame An opaque reference to your game object.

outGroups A pointer to the group enumeration structure that is allocated
and populated by NetSprocket.

function result A result code. See “Result Codes” (page 93).
46 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
DISCUSSION

For efficient memory management, the group enumeration structure should be
released by NetSprocket by calling NSpGroup_ReleaseEnumeration (page 47).

NetSprocket returns an error if it could not build the group list.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroup_ReleaseEnumeration 2

Releases memory held by the group enumeration structure.

void NSpGroup_ReleaseEnumeration (
NSpGameReference inGame,
NSpGroupEnumerationPtr inGroups);

inGame An opaque reference to your game object.

inGroups A pointer to a group enumeration structure.

DISCUSSION

For each NSpPlayer_GetEnumeration (page 40) call, you should execute a
corresponding NSpGroup_ReleaseEnumeration call to release the memory held by
the structure.

VERSION NOTES

Introduced with NetSprocket 1.0.

Utility Functions 2

The following are some useful functions for use with NetSprocket. These
include network performance testing, and some functions associated with Open
Transport.
Functions 47
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
■ NSpGetVersion (page 48) returns the version of NetSprocket.

■ NSpSetConnectTimeout (page 48) sets the timeout period to create a new
network connection.

■ NSpClearMessageHeader (page 49) initializes the entire header structure.

■ NSpGetCurrentTimeStamp (page 49) compares time stamps.

■ NSpConvertOTAddrToAddressReference (page 50) obtains a NetSprocket
NSpAddressReference from an Open Transport OTAddress.

■ NSpConvertAddressReferenceToOTAddr (page 51) obtains an Open Transport
OTAddress from a NetSprocket NSpAddressReference.

■ NSpReleaseAddressReference (page 51) releases memory associated with an
address reference allocated by NetSprocket.

NSpGetVersion 2

Returns the version of NetSprocket.

NumVersion NSpGetVersion (void);

function result The version of NetSprocket.

VERSION NOTES

Introduced with NetSprocket 1.0.3.

NSpSetConnectTimeout 2

Sets the timeout period to create a new network connection.

void NSpSetConnectTimeout (UInt32 inSeconds);

inSeconds The timeout period in seconds. If you pass 0, then NetSprocket
will use the default TCP timeout of 4 minutes.
48 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
DESCRIPTION

If the timeout exceeds the limit set by this function, then NetSprocket will stop
trying to create a connection. This timeout period is applies only to the game
making the call.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpClearMessageHeader 2

Initializes the entire header structure.

void NSpClearMessageHeader (NSpMessageHeader *ioMessage);

ioMessage A pointer to the message to be initialized.

DISCUSSION

You should call the NSpClearMessageHeader function each time before you start
filling in your message structures. If you fail to initialize your message
structures, you may end up with invalid data.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGetCurrentTimeStamp 2

Compares time stamps.

UInt32 NSpGetCurrentTimeStamp (NSpGameReference inGame);

inGame An opaque reference to your game object.

function result The time value in milliseconds.
Functions 49
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
DISCUSSION

You can use this function to compare the time stamp of a message with the
current time stamp to determine how long ago a message was sent. This value
is only as accurate as the round-trip time to the application hosting the game.
This is a normalized value established by the server. That is, anyone in the
current game who calls this function will get the same value.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpConvertOTAddrToAddressReference 2

Obtains a NetSprocket NSpAddressReference from an Open Transport OTAddress.

NSpAddressReference NSpConvertOTAddrToAddressReference (
OTAddress *inAddress);

inAddress A valid (TCP/IP or AppleTalk) OTAddress returned from Open
Transport.

function result A valid NSpAddressReference.

DISCUSSION

You should use this function when you do not wish to use the human interface
functions provided by NetSprocket for standard hosting, browsing, and joining.

SPECIAL CONSIDERATIONS

When you no longer need the address reference, do not call
NSpReleaseAddressReference (page 51) to release it. You must dispose of the
original OTAddress reference in the usual manner (such as by calling
DisposePtr).

VERSION NOTES

Introduced with NetSprocket 1.0.
50 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpConvertAddressReferenceToOTAddr 2

Obtains an Open Transport OTAddress from a NetSprocket NSpAddressReference.

OTAddress *NSpConvertAddressReferenceToOTAddr (
NSpAddressReference inAddress);

inAddress A valid NSpAddressReference returned from
NSpDoModalJoinDialog.

function result A valid OTAddress.

DISCUSSION

Use NSpConvertAddressReferenceToOTAddr when you want to use the
NSpDoModalJoinDialog function and you do not plan to use any other functions
provided in NetSprocket, such as networking, group, or player functions.

When you no longer need the address reference, you can call
NSpReleaseAddressReference (page 51) to release it.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpReleaseAddressReference 2

Releases memory associated with an address reference allocated by
NetSprocket.

void NSpReleaseAddressReference (
NSpAddressReference inAddress);

inAddress A valid NSpAddressReference returned from
NSpDoModalJoinDialog or NSpConvertOTAddrToAddressReference.
Functions 51
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
DISCUSSION

For efficient memory management, you should call NSpReleaseAddressReference
when your game no longer needs an address reference.

SPECIAL CONSIDERATIONS

You should only call this function to release address references that NetSprocket
obtains on your behalf, such as when calling the function NSpDoModalJoinDialog
(page 12). Address references obtained by other means must be disposed by
other means. For example, to release an address reference converted from an
OTAddress, you should release the memory associated with the address by
calling DisposePtr.

VERSION NOTES

Introduced with NetSprocket 1.0.

Application-Defined Functions 2

This section describes functions that you can implement for customizing
features.

■ MyJoinRequestHandler (page 52) customizes the criteria for joining a game.

■ MyMessageHandler (page 54) supplies custom code for handling incoming
messages.

MyJoinRequestHandler 2

Customizes the criteria for joining a game.

typedef pascal Boolean (*NSpJoinRequestHandlerProcPtr) (
NSpGameReference inGame,
NSpJoinRequestMessage *inMessage,
void* inContext,
Str255 outReason);
52 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
inGame An opaque reference to the game object that received the join
request.

inMessage A pointer to the join request message. This is data passed to
your function by NetSprocket. It will contain the name,
password, and any custom data that your game specifies.

inContext The context pointer you passed to NetSprocket when you first
installed the join request handler.

outReason A pointer to a Pascal string that NetSprocket will allocate for
you. You can use this string to send textual information to a
player. For example, if you are going to deny a join request, you
may send your reason for denial into outReason.

function result A value of true to inform NetSprocket to allow the prospective
player into the game, or false to deny entry based on the
criteria you have established.

DISCUSSION

This is a function that you as the game developer must provide if you are going
to provide a custom join request handler. Once you have installed your join
request handler, it will be called whenever a new player wishes to enter the
game. Your function must return true or false, telling NetSprocket whether or
not to admit the prospective player.

The purpose of the custom function is to allow more flexibility in controlling
access to the game. By default, NetSprocket allows players to join the game
based on the password and minimum round-trip time of the prospective player.
However, you may want to restrict play to a particular network zone, or you
may decide that certain levels of games may be played only by players with a
previous score history.

Also note that before calling your request handler, NetSprocket will always
make two checks for a prospective player. First, it will make sure that the
prospective player’s round-trip time meets your minimum requirements, if you
have specified any. Second, it will make sure that allowing this player into the
game will not exceed your maximum player count.

You should not release the message passed to this function.
Functions 53
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

MyMessageHandler 2

Supplies custom code for handling incoming messages.

typedef pascal Boolean (*NSpMessageHandlerProcPtr) (
NSpGameReference inGame,
NSpMessageHeader *inMessage,
void* inContext);

inGame An opaque reference to the game object that received the
message.

inMessage A pointer to the message.

inContext The context pointer you passed in when you installed the
handler.

DISCUSSION

Your function must handle the message and return as quickly as possible. You
should not free the message, as it will be automatically freed when your
function returns. If you return true, then NetSprocket will put the message back
into the incoming message queue. When you call the NSpMessage_Get (page 25)
function you will receive the message again. If you return false, the message
will be deleted when your function returns. As an example, if you receive a
message and you want to change part of the message or add to it, you can make
a note in the message and then receive it again (by calling NSpMessage_Get)with
the note added to the message. You can also use this as a mechanism for time
stamping messages and only act on the latest messages.

You do not need to define a function of this type if you use NetSprocket in the
normal event-loop mode.

Your handler must obey all the rules of interrupt-safe functions.
54 Functions

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

Data Types 2

This section describes the data structures provided by NetSprocket for use in
your game. These structures define the players, groups, and message header
structure, as well as information about the game.

■ NSpGameID (page 56)

■ NSpPlayerID (page 56)

■ NSpGroupID (page 57)

■ NSpPlayerType (page 57)

■ NSpFlags (page 58)

■ NSpPlayerName (page 58)

■ NSpGameReference (page 58)

■ NSpProtocolReference (page 59)

■ NSpListReference (page 59)

■ NSpAddressReference (page 59)

■ NSpJoinRequestHandlerProcPtr (page 60)

■ NSpMessageHandlerProcPtr (page 60)

■ NSpPlayerInfo (page 61)

■ NSpPlayerEnumeration (page 61)

■ NSpGroupInfo (page 62)

■ NSpGroupEnumeration (page 63)

■ NSpGameInfo (page 63)

■ NSpMessageHeader (page 64)

■ NSpErrorMessage (page 66)

■ NSpJoinRequestMessage (page 66)
Data Types 55
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
■ NSpJoinApprovedMessage (page 67)

■ NSpJoinDeniedMessage (page 68)

■ NSpPlayerJoinedMessage (page 69)

■ NSpPlayerLeftMessage (page 69)

■ NSpCreateGroupMessage (page 71)

■ NSpDeleteGroupMessage (page 71)

■ NSpAddPlayerToGroupMessage (page 72)

■ NSpRemovePlayerFromGroupMessage (page 73)

■ NSpPlayerTypeChangedMessage (page 73)

NSpGameID 2

When calling the function NSpInitialize (page 10), you must specify a unique
ID that NetSprocket will use to keep track of your game on the network. Such
an ID has the following type definition:

typedef SInt32 NSpGameID;

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayerID 2

Each player in a game has a unique player ID so NetSprocket can keep track of
them on the network. Such a player ID has the following type definition:

typedef SInt32 NSpPlayerID;

NetSprocket automatically assigns a player ID to each player who joins the
game.
56 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroupID 2

NetSprocket allows you to organize players into arbitrary groups. Each such
group is identified by a group ID, which has the following type definition:

typedef NSpPlayerID NSpGroupID;

NetSprocket automatically assigns an ID to a group when you call the function
NSpGroup_New (page 42).

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayerType 2

Each player in a game can have a player type, which is an arbitrary
classification determined by the application. The player type has the following
type definition:

typedef UInt32 NSpPlayerType;

VERSION NOTES

Introduced with NetSprocket 1.0.
Data Types 57
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpFlags 2

A number of NetSprocket functions (such as NSpGame_Host (page 16) and
NSpGame_Join (page 18)) allow you to specify options by passing constants of
type NSpFlags. Such constants have the following type definition:

typedef SInt32 NSpFlags;

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayerName 2

You can handle player names in NetSprocket by passing a string of type
NSpPlayerName:

typedef Str31 NSpPlayerName;

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGameReference 2

You use the game reference to identify your game to the NetSprocket library.
You can obtain a game reference by calling the function NSpGame_Host (page 16)
or NSpGame_Join (page 18).

typedef struct OpaqueNSpGameReference *NSpGameReference;

VERSION NOTES

Introduced with NetSprocket 1.0.
58 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpProtocolReference 2

You use the protocol reference to identify and configure transport protocols
without having to know what the protocol actually is.

typedef struct OpaqueNSpProtocolReference *NSpProtocolReference;

You obtain a protocol reference by calling the function NSpDoModalHostDialog
(page 14), NSpProtocol_CreateAppleTalk (page 33), or NSpProtocol_CreateIP
(page 34).

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpListReference 2

You use the protocol list reference to refer to a list of protocol references. You
pass this list to the function NSpGame_Host (page 16) to tell NetSprocket which
protocols the game is to be hosted (advertised) on.

typedef struct OpaqueNSpProtocolListReference *NSpProtocolListReference;

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpAddressReference 2

You use the address reference to manipulate protocol references. You obtain an
address reference by calling NSpDoModalJoinDialog (page 12) or by converting
an Open Transport OTAddress.

typedef struct OpaqueNSpAddressReference *NSpAddressReference;
Data Types 59
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpJoinRequestHandlerProcPtr 2

If you want to supply your own custom code for allowing players to join your
game, you can specify an application-defined function to do so. Such a function
has the following type definition:

typedef pascal Boolean (*NSpJoinRequestHandlerProcPtr) (
NSpGameReference inGame, NSpJoinRequestMessage *inMessage,
void* inContext, Str255 outReason);

See MyJoinRequestHandler (page 52) for more information about how to
implement this function.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpMessageHandlerProcPtr 2

If you want to supply your own custom code for handling incoming messages,
you can specify an application-defined function to do so. Such a function has
the following type definition:

typedef pascal Boolean (*NSpMessageHandlerProcPtr) (NSpGameReference
inGame, NSpMessageHeader *inMessage, void* inContext);

See MyMessageHandler (page 54) for more information about how to implement
this function.

VERSION NOTES

Introduced with NetSprocket 1.0.
60 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpPlayerInfo 2

You use the player information structure to obtain information about each
player in the game. It contains the player’s ID, along with pertinent information
about the player, including the groups he may belong to. The player
information structure is defined by the NSpPlayerInfo data type.

typedef struct NSpPlayerInfo {
NSpPlayerID id;
NSpPlayerType type;
Str31 name;
UInt32 groupCount;
NSpGroupID groups[kVariableLengthArray];

} NSpPlayerInfo, *NSpPlayerInfoPtr;

Field descriptions

id A unique number for each player within a game. A player
who leaves and re-enters a game will receive a new ID.

type A player type. This parameter is not used by NetSprocket,
but you can use it to classify players.

name A user-readable Pascal string (maximum 31 characters).
groupCount The number of groups the player is currently in.
groups An array containing a list of the group IDs the player

currently belongs to.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayerEnumeration 2

You use the player enumeration structure to obtain a list of all the players
currently in the game. It contains a count of the players, followed by pointers to
each of the playerInfo structures. The player enumeration structure is defined
by the NSpPlayerEnumeration data type.
Data Types 61
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
typedef struct NSpPlayerEnumeration {
UInt32 count;
NSpPlayerInfoPtr playerInfo[kVariableLengthArray];

} NSpPlayerEnumeration, *NSpPlayerEnumerationPtr;

Field descriptions

count The number of players (and player information structures)
listed in NSpPlayerEnumeration.

playerInfo An array of pointers to player information structures for
each player in the game.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGroupInfo 2

You use the group information structure to obtain information about each of the
players in a group. It includes the number of players, along with an array of the
player IDs. The group information structure is defined by the NSpGroupInfo data
type.

typedef struct NSpGroupInfo {
NSpGroupID id;
UInt32 playerCount;
NSpPlayerID players[kVariableLengthArray];

} NSpGroupInfo, *NSpGroupInfoPtr;

Field descriptions

id A unique number identifying the group.
playerCount The number of players in the group.
players An array of pointers to player information structures.

VERSION NOTES

Introduced with NetSprocket 1.0.
62 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpGroupEnumeration 2

You use the group enumeration structure to obtain a list of all the groups
currently in the game. In addition to the number of groups currently in the
game, it contains an array of pointers to the group information structures. The
group enumeration structure is defined by the NSpGroupEnumeration data type.

typedef struct NSpGroupEnumeration {
UInt32 count;
NSpGroupInfoPtr groups[kVariableLengthArray];

} NSpGroupEnumeration, *NSpGroupEnumerationPtr;

Field descriptions

count The number of groups in the game.
groups An array of pointers to group information structures.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGameInfo 2

Basic information about the game is organized in the game information
structure. You can use this structure to maintain and obtain basic information
about key elements in the game, including information about players, groups,
and topology. The game information structure is defined by the NSpGameInfo
data type.

typedef struct NSpGameInfo {
UInt32 maxPlayers;
UInt32 currentPlayers;
UInt32 currentGroups;
NSpTopology topology;
UInt32 reserved;
Str31 name;
Str31 password;

} NSpGameInfo;
Data Types 63
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Field descriptions

maxPlayers The maximum number of players allowed in the game, as
specified in the inMaxPlayers parameter NSpGame_Host
function. A value of 0 means there is no limit.

currentPlayers The number of players currently participating in the game.
currentGroups The number of groups in the game.
topology A constant describing the topology of the network. See

“Topology Types” (page 81) for a list of possible values.
reserved This field is reserved for future use in NetSprocket. Do not

modify or rely upon any data in this field.
name The text descriptor identifying the game.
password The password required to join the game. A null string

means no password is required.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpMessageHeader 2

The most important structure in NetSprocket is the abstract message type. It is
comprised of the NSpMessageHeader itself and is followed by custom data. The
message header structure contains information about the nature of the message
being delivered. The message header structure is defined by the
NSpMessageHeader data type.

The fields of the message header are used by NetSprocket to deliver your
message to the specified recipients. Before you send a network message, you
should fill in the what, to, and messageLen parameters. NetSprocket will set the
remaining parameters.

typedef struct NSpMessageHeader {
UInt32 version;
SInt32 what;
NSpPlayerID from;
NSpPlayerID to;
UInt32 id;
64 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
UInt32 when;
UInt32 messageLen;

} NSpMessageHeader;

Field descriptions

version Private version information for NetSprocket. Do not
modify or rely upon any data in this field.

what A constant describing the network message type. You
should set this field with the constants defined in
NetSprocket (as listed in “Network Message Types”
(page 78)) or a network message type that you have
defined in your application.

from A read-only parameter, which NetSprocket sets to the
player ID of the sender.

to The ID of the intended recipient. You can pass a player ID
or a group ID, or the constants kNSpAllPlayers or
kNSpServerOnly.

id This is a read-only parameter. The NetSprocket library will
assign a unique ID to each message emanating from a
given player. Thus, the from and id parameters make up a
unique message identifier. This allows you to identify
duplicate messages.

when This is a read-only parameter. NetSprocket will place a time
stamp in milliseconds here when the message is sent from
its originator. When you receive a message, you can
compare this field against the value returned by the
NSpGetCurrentTimeStamp function to find out how long ago
the message was sent. This value is only a relative value
and is accurate only to about 30 to 60 milliseconds.

messageLen Set this field to the size of your entire message structure (as
specified in the sizeof parameter), including the header
and any data that follows the header.

Note
Apple reserves all messages that have a negative value
(anything with the high bit set to 1). Otherwise, you can
define your own custom message types (for example,
keyboard state, voice transmission, or game map). ◆
Data Types 65
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpErrorMessage 2

The error message structure is a standard NetSprocket message you receive
when extreme error conditions occur in NetSprocket. This can occur when
functions fail or when network failures among players are detected by
NetSprocket in the course of the game. NetSprocket indicates error messages by
passing the constant kNSpError in the what field of the NSpMessageHeader
(page 64) structure. The error message structure is defined by the
NSpErrorMessage data type.

typedef struct NSpErrorMessage {
NSpMessageHeader header;
OSStatus error;

} NSpErrorMessage;

Field descriptions

header An NSpMessageHeader structure.
error A constant of OSStatus type describing the error

encountered.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpJoinRequestMessage 2

The join request message structure is a standard NetSprocket network message
you can use to notify the hosting application that a player wishes to join a game
about to start or one that is in progress. NetSprocket indicates join request
messages by passing the constant kNSpJoinRequest in the what field of the
NSpMessageHeader (page 64) structure. This structure will only be passed to your
application if you install a custom join request handler. You will not get this
66 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
structure via the NSpMessage_Get (page 25) function. See the function
NSpInstallJoinRequestHandler (page 21) for more information. The join request
message structure is defined by the NSpJoinRequestMessage data type.

typedef struct NSpJoinRequestMessage {
NSpMessageHeader header;
Str31 name;
Str31 password;
UInt32 type;
UInt32 customDataLen;
UInt8 customData[kVariableLengthArray];

} NSpJoinRequestMessage;

Field descriptions

header An NSpMessageHeader structure.
name The name of a prospective player.
password A string being passed by the prospective player to attempt

to match the password required by the host.
type The type of the prospective player.
customDataLen The length of the custom data passed by the game

attempting to join.
customData Data that was passed to a call to the NSpGame_Join function

made by the prospective player. This is not used by
NetSprocket.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpJoinApprovedMessage 2

When your application is hosting a game, you can use the join approved
message structure to send a message to the player who has been granted entry
to the game. This is an advisory message; there are no additional information
fields. NetSprocket indicates join approved messages by passing the constant
kNSpJoinApproved in the what field of the NSpMessageHeader (page 64) structure.
Data Types 67
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
The join approved message structure is defined by the NSpJoinApprovedMessage
data type.

typedef struct NSpJoinApprovedMessage {
NSpMessageHeader header;

} NSpJoinApprovedMessage;

Field descriptions

header An NSpMessageHeader structure.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpJoinDeniedMessage 2

When your application is hosting a game, you can send the join denied message
structure to a prospective player who has been denied entry into the game. If a
request to join a game is denied, subsequent calls by the player attempting to
join the game will return an error from NetSprocket. NetSprocket indicates join
denied messages by passing the constant kNSpJoinDenied in the what field of the
NSpMessageHeader (page 64) structure. The game object should be deleted when
a join request is denied. The join denied message structure is defined by the
NSpJoinDeniedMessage data type.

typedef struct NSpJoinDeniedMessage {
NSpMessageHeader header;
Str255 reason;

} NSpJoinDeniedMessage;

header An NSpMessageHeader structure.
reason A string indicating the explanation for refusing entry into

the game.

VERSION NOTES

Introduced with NetSprocket 1.0.
68 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpPlayerJoinedMessage 2

The player joined message structure is used to send a message to all players in
the game to notify them that a player has joined a game. It includes an updated
count of players and the new player’s data structure. NetSprocket indicates
player joined messages by passing the constant kNSpPlayerJoined in the what
field of the NSpMessageHeader (page 64) structure. The player joined message
structure is defined by the NSpPlayerJoinedMessage data type.

typedef struct NSpPlayerJoinedMessage {
NSpMessageHeader header;
UInt32 playerCount;
NSpPlayerInfo playerInfo;

} NSpPlayerJoinedMessage;

Field descriptions

header An NSpMessageHeader structure.
playerCount The number of players in the game.
playerInfo Player information structure.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayerLeftMessage 2

The player left message structure is used to send a message to all players when
a player leaves a game. It includes the updated count of players and the ID of
the player who has departed. NetSprocket indicates player left messages by
passing the constant kNSpPlayerLeft in the what field of the NSpMessageHeader
(page 64) structure. The player left message structure is defined by the
NSpPlayerLeftMessage data type.

typedef struct NSpPlayerLeftMessage {
NSpMessageHeader header;
UInt32 playerCount;
Data Types 69
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpPlayerID playerID;
NSpPlayerName playerName;

} NSpPlayerLeftMessage;

Field descriptions

header An NSpMessageHeader structure.
playerCount The number of players left in the game.
playerID A valid player ID.
playerName The name of the player who left.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpGameTerminatedMessage 2

NetSprocket uses the game terminated message structure to send a message to
all players when a game in progress has ended. This is an advisory message
that contains no additional information. NetSprocket indicates game terminated
messages by passing the constant kNSpGameTerminated in the what field of the
NSpMessageHeader (page 64) structure. The game terminated message structure
is defined by the NSpGameTerminatedMessage data type.

typedef struct NSpGameTerminatedMessage {
NSpMessageHeader header;

} NSpGameTerminatedMessage;

Field descriptions

header An NSpMessageHeader structure.

VERSION NOTES

Introduced with NetSprocket 1.0.
70 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
NSpCreateGroupMessage 2

NetSprocket uses the NSpCreateGroupMessage structure to send a message to all
players when a group is created. It indicates group created messages by passing
the constant kNSpGroupCreated in the what field of the NSpMessageHeader
(page 64) structure. Note that NetSprocket handles this message internally
unless you had specified a custom message handler, in which case you can
interpret the message in your handler and take any desired actions.

struct NSpCreateGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID requestingPlayer;

};
typedef struct NSpCreateGroupMessage NSpCreateGroupMessage;

Field descriptions

header An NSpMessageHeader structure.
groupID The ID of the group being created.
requestingPlayer The ID of the player requesting the group creation.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpDeleteGroupMessage 2

NetSprocket uses the NSpDeleteGroupMessage structure to send a message to all
players when a group is removed. It indicates group deleted messages by
passing the constant kNSpGroupDeleted in the what field of the NSpMessageHeader
(page 64) structure. Note that NetSprocket handles this message internally
unless you had specified a custom message handler, in which case you can
interpret the message in your handler and take any desired actions.

struct NSpDeleteGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
Data Types 71
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpPlayerID requestingPlayer;
};
typedef struct NSpDeleteGroupMessage NSpDeleteGroupMessage;

Field descriptions

header An NSpMessageHeader structure.
groupID The ID of the group being deleted.
requestingPlayer The ID of the player requesting the group deletion.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpAddPlayerToGroupMessage 2

NetSprocket uses the NSpAddPlayerToGroupMessage structure to send a message
to all players when a player is added to a group. It indicates player added to
group messages by passing the constant kNSpPlayerAddedToGroup in the what
field of the NSpMessageHeader (page 64) structure. Note that NetSprocket
handles this message internally unless you had specified a custom message
handler, in which case you can interpret the message in your handler and take
any desired actions.

struct NSpAddPlayerToGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID player;

};
typedef struct NSpAddPlayerToGroupMessage NSpAddPlayerToGroupMessage;

Field descriptions

header An NSpMessageHeader structure.
groupID The ID of the group.
player The ID of the player being added.
72 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
VERSION NOTES

Introduced with NetSprocket 1.7.

NSpRemovePlayerFromGroupMessage 2

NetSprocket uses the NSpRemovePlayerFromGroupMessage structure to send a
message to all players when a player is removed from a group. It indicates
player removed grom group messages by passing the constant
kNSpPlayerRemovedFromGroup in the what field of the NSpMessageHeader (page 64)
structure. Note that NetSprocket handles this message internally unless you
had specified a custom message handler, in which case you can interpret the
message in your handler and take any desired actions.

struct NSpRemovePlayerFromGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID player;

};
typedef struct NSpRemovePlayerFromGroupMessage

NSpRemovePlayerFromGroupMessage;

Field descriptions

header An NSpMessageHeader structure.
groupID The group ID
player The ID of the player being removed.

VERSION NOTES

Introduced with NetSprocket 1.7.

NSpPlayerTypeChangedMessage 2

NetSprocket uses the NSpPlayerTypeChangedMessage structure to send a message
indicating that a player’s type has changed. It indicates player type changed
Data Types 73
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
messages by passing the constant kNSpPlayerTypeChanged in the what field of the
NSpMessageHeader (page 64) structure.

struct NSpPlayerTypeChangedMessage {
NSpMessageHeader header;
NSpPlayerID player;
NSpPlayerType newType;

};
typedef struct NSpPlayerTypeChangedMessage NSpPlayerTypeChangedMessage;

Field descriptions

header An NSpMessageHeader structure.
player The ID of the player whose type changed.
newType The new player type.

VERSION NOTES

Introduced with NetSprocket 1.7.

Constants 2

This section describes the constants provided by NetSprocket.

■ “Maximum String Length Constants” (page 75)

■ “Network Message Priority Flags” (page 75)

■ “Network Message Delivery Flags” (page 76)

■ “Options for Hosting, Joining, and Disposing Games” (page 78)

■ “Network Message Types” (page 78)

■ “Reserved Player IDs for Network Messages” (page 80)

■ “Topology Types” (page 81)
74 Constants

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Maximum String Length Constants 2

These constants define the maximum lengths allowed for various strings used
in NetSprocket. You should use these constants in place of hardcoded values
when checking for string lengths.

enum {
kNSpMaxPlayerNameLen = 31
kNSpMaxGroupNameLen = 31,
kNSpMaxPasswordLen = 31,
kNSpMaxGameNameLen = 31,
kNSpMaxDefinitionStringLen = 255

};

Constant descriptions

kNSpMaxPlayerNameLen
The maximum length for a player’s name.

kNSpMaxGroupNameLen
The maximum length for a group.

kNSpMaxPasswordLen The maximum length for a password (used to join a game).
kNSpMaxGameNameLen The maximum length for the name of the game.
kNSpMaxDefinitionStringLen

The maximum allowable string length.

VERSION NOTES

Introduced with NetSprocket 1.0.

Network Message Priority Flags 2

These constants are used to identify various priorities you may assign to
network messages using a mail service metaphor. You use these flags in the
NSpFlags parameter of the NSpMessage_Send function (page 23).

enum {
kNSpJunk = 0x10000000,
kNSpNormal = 0x20000000,
kNSpRegistered = 0x30000000

};
Constants 75
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Constant descriptions

kNSpJunk This message is junk mail. This type of message will be sent
only when no other messages of higher priority are
pending. This is essentially a “fire and forget” message.
Delivery will only be attempted once, and there is no
guarantee of receipt.

kNSpNormal This message is an ordinary, every-day message. It will be
sent immediately, but like kNSpJunk, delivery will only be
attempted once, and there is no guarantee of receipt.

kNSpRegistered Like registered mail, this message is quite important.
Delivery is of the highest priority. For example, if
kNSpNormal or kNSpJunk messages are being sent (or if a
message is being chunked for delivery in multiple packets),
they will be interrupted in favor of a kNSpRegistered
message. NetSprocket will demand proof of receipt and
will continue retrying until the maximum retry limit has
been exceeded.

VERSION NOTES

Introduced with NetSprocket 1.0.

Network Message Delivery Flags 2

These constants are message delivery flags to assist you in determining and
controlling the status of message delivery. You can OR these constants together
with the network message priority flags.

Note
A message that is successfully sent does not ensure receipt
by the intended players unless kNSpRegistered is specified.
It simply means that NetSprocket successfully delivered
the message to the appropriate network protocol handler
and the message has been duly passed on. ◆
76 Constants

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
enum {
kNSpFailIfPipeFull = 0x00000001,
kNSpSelfSend = 0x00000002,
kNSpBlocking = 0x00000004

};

Constant descriptions

kNSpFailIfPipeFull NetSprocket will not accept the network message you are
attempting to send if there are too many messages pending
in the output buffer. Use this if you want to send data that
is extremely time critical and useless if not delivered
immediately.

kNSpSelfSend This flag is used to instruct NetSprocket to send a copy of
this message to yourself as a player in addition to any other
players or groups it is addressed to. You will receive a copy
of your message in the message queue. If you send a
message to all players (kNSpAllPlayers) without setting this
flag, NetSprocket will not deliver the message to the
sender.

kNSpBlocking This flag is used to have NetSprocket block the call and not
return until the message has been successfully sent. The
combination of kNSpBlocking and kNSpRegistered may
cause your application to wait a significant period of time
before satisfying these requirements, because it will wait
until all the recipients have acknowledged receipt of the
message or the retry limit has been reached.

Note
In NetSprocket version 1.0, a message sent from any player
who is not the host with this flag set will return when the
message has been delivered to the host. The message may
or may not have been received by all of the intended
recipients. ◆

VERSION NOTES

Introduced with NetSprocket 1.0.
Constants 77
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Options for Hosting, Joining, and Disposing Games 2

These constants are used to control games. You use these constants in the
inFlags parameter of the NSpGame_Host (page 16), NSpGame_Join (page 18), and
NSpGame_Dispose (page 20) functions.

enum {
kNSpGameFlag_DontAdvertise = 0x00000001,
kNSpGameFlag_ForceTerminateGame = 0x00000002

};

kNSpGameFlag_DontAdvertise
When this flag is passed with NSpGame_Host, the game object
is created, but the game is not advertised on any protocols.
By default, a call to NSpGame_Host advertises the game on
the protocols in the protocol list.

kNSpGameFlag_ForceTerminateGame
When the host calls NSpGame_Delete with this flag set,
NetSprocket will end the game without attempting to find
a host replacement. All the players will receive a message
that the game has been ended, and any further calls from
them will return an error. Normally, a call to
NSpGame_Delete by the host will cause NetSprocket to
negotiate a new host.

VERSION NOTES

Introduced with NetSprocket 1.0.

Network Message Types 2

These constants are used to identify standard message types when passed in a
message header. NetSprocket uses these types to clearly identify the network
messages so you can process the message with the appropriate data structure.

enum {
kNSpSystemMessagePrefix = 0x80000000,
kNSpError = kNSpSystemMessagePrefix | 0x7FFFFFFF,
kNSpJoinRequest = kNSpSystemMessagePrefix | 0x00000001,
kNSpJoinApproved = kNSpSystemMessagePrefix | 0x00000002,
78 Constants

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
kNSpJoinDenied = kNSpSystemMessagePrefix | 0x00000003,
kNSpPlayerJoined = kNSpSystemMessagePrefix | 0x00000004,
kNSpPlayerLeft = kNSpSystemMessagePrefix | 0x00000005,
kNSpHostChanged = kNSpSystemMessagePrefix | 0x00000006,
kNSpGameTerminated = kNSpSystemMessagePrefix | 0x00000007,
kNSpGroupCreated = kNSpSystemMessagePrefix | 0x00000008,
kNSpGroupDeleted = kNSpSystemMessagePrefix | 0x00000009,
kNSpPlayerAddedToGroup = kNSpSystemMessagePrefix | 0x0000000A,
kNSpPlayerRemovedFromGroup = kNSpSystemMessagePrefix | 0x0000000B,
kNSpPlayerTypeChanged = kNSpSystemMessagePrefix | 0x0000000C

};

Constant descriptions

kNSpSystemMessagePrefix
This is the prefix of all NetSprocket system messages. You
can OR a message’s what field with this constant to
determine if the message is a system message.

kNSpError A local error has occurred. It may have occurred when
receiving a message, attempting to send a message, or
attempting to allocate memory.

kNSpJoinRequest A player wants to join a game. You do not need to respond
to this message. NetSprocket will either use the default
password check, or your custom join handler (if installed)
to approve or deny the join request.

kNSpJoinApproved Your request to join a game has been approved.
kNSpJoinDenied Your request to join a game has been denied.
kNSpPlayerJoined A player has joined the game.
kNSpPlayerLeft A player has left the game.
kNSpHostChanged The host of the game has changed. This message type is

unused as NetSprocket does not currently support host
renegotiation.

kNSpGameTerminated The game has been permanently stopped.
kNSpGroupCreated Someone has created a group.
kNSpGroupDeleted Someone has deleted a group.
kNSpPlayerAddedToGroup

A player was added to a group.
kNSpPlayerRemovedFromGroup

A player was removed from a group.
Constants 79
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
kNSpPlayerTypeChanged
A player’s type was changed.

Note
All message types with negative values are reserved for use
by Apple Computer, Inc. ◆

VERSION NOTES

Introduced with NetSprocket 1.0.

Reserved Player IDs for Network Messages 2

These constants are used to identify player IDs that are reserved for message
delivery. Specify one of these special IDs in the to field of a message structure.

enum {
kNSpAllPlayers = 0x00000000,
kNSpServerOnly = 0xFFFFFFFF

};

Constant descriptions

kNSpAllPlayers Send the message to all players.
kNSpServerOnly Send the message to the player currently hosting the game.

Note
It is possible for the host to change during the course of a
game. It is also possible for a host to not have a player ID,
because someone may host a game without participating as
a player. Therefore you should not use a player ID to send a
message to the host. Instead, you should use
kNSpServerOnly reserved for a host. ◆

VERSION NOTES

Introduced with NetSprocket 1.0.
80 Constants

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Topology Types 2

You use these constants to identify the topology you are choosing for your
game. You pass this value in the inTopology field of NSpGame_Host (page 16).

typedef enum {
kNSpClientServer = 0x00000001

} NSpTopology;

Constant descriptions

kNSpClientServer Client/server topology.

Note
NetSprocket version 1.0 currently supports only client/
server topology. ◆

VERSION NOTES

Introduced with NetSprocket 1.0.
Constants 81
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Summary of NetSprocket 2

NetSprocket Functions 2

Initializing NetSprocket
OSStatus NSpInitialize (UInt32 inStandardMessageSize,

UInt32 inBufferSize,
UInt32 inQElements,
NSpGameID inGameID,
UInt32 inTimeout);

OSStatus NSpInstallCallbackHandler (NSpCallbackProcPtr inHandler,
void *inContext);

Human Interface Functions
NSpAddressReference NSpDoModalJoinDialog

(ConstStr31Param inGameType,
ConstStr31Param inEntityListLabel,
Str31 ioName,
Str31 ioPassword,
NSpEventProcPtr inEventProcPtr);

Boolean NSpDoModalHostDialog (NSpProtocolListReference ioProtocolList,
Str31 ioGameName,
Str31 ioPlayerName,
Str31 ioPassword,
NSpEventProcPtr inEventProcPtr);

Hosting and Joining a Game
OSStatus NSpGame_Host (NSpGameReference *outGame,

NSpProtocolListReference inProtocolList,
UInt32 inMaxPlayers,
ConstStr31Param inGameName,
ConstStr31Param inPassword,
82 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
ConstStr31Param inPlayerName,
NSpPlayerType inPlayerType,
NSpTopology inTopology,
NSpFlags inFlags);

OSStatus NSpGame_Join (NSpGameReference *outGame,
NSpAddressReference inAddress,
ConstStr31Param inName,
ConstStr31Param inPassword,
NSpPlayerType inType,
Uint32 inUserDataLen,
void *inUserData,
NSpFlags inFlags);

OSStatus NSpGame_EnableAdvertising
(NSpGameReference inGame,
NSpProtocolReference inProtocol,
Boolean inEnable);

OSStatus NSpGame_Dispose (NSpGameReference inGame,
NSpFlags inFlags);

OSStatus NSpGame_GetInfo
(NSpGameReference inGame,
NSpGameInfo * ioInfo);

OSStatus NSpInstallJoinRequestHandler
(NSpJoinRequestHandlerProcPtr inHandler,
void *inContext);

Sending and Receiving Messages
OSStatus NSpMessage_Send (

NSpGameReference inGame,
NSpMessageHeader *inMessage,
NSpFlags inFlags);

OSStatus NSpMessage_SendTo (
NSpGameReference inGame,
NSpPlayerID inTo,
SInt32 inWhat,
void * inData,
UInt32 inDataLen,
NSpFlags inFlags);
Summary of NetSprocket 83
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpMessageHeader *NSpMessage_Get (NSpGameReference inGame);

void NSpMessage_Release (NSpGameReference inGame,
NSpMessageHeader *inMessage);

OSStatus NSpInstallAsyncMessageHandler
(NSpMessageHandlerProcPtr inHandler,
void *inContext);

Managing Network Protocols
OSStatus NSpProtocol_New (const char* inDefinitionString,

NSpProtocolReference *outReference);

void NSpProtocol_Dispose (NSpProtocolReference inProtocolRef);

OSStatus NSpProtocol_ExtractDefinitionString
(NSpProtocolReference inProtocolRef,
char *outDefinitionString);

OSStatus NSpProtocolList_New (NSpProtocolReference inProtocolRef,
NSpProtocolListReference *outList);

void NSpProtocolList_Dispose (NSpProtocolListReference inProtocolList);

OSStatus NSpProtocolList_Append (NSpProtocolListReference inProtocolList,
NSpProtocolReference inProtocolRef);

OSStatus NSpProtocolList_Remove (NSpProtocolListReference inProtocolList,
NSpProtocolReference inProtocolRef);

OSStatus NSpProtocolList_RemoveIndexed
(NSpProtocolListReference inProtocolList,
UInt32 inIndex);

UInt32 NSpProtocolList_GetCount (NSpProtocolListReference inProtocolList);

NSpProtocolReference NSpProtocolList_GetIndexedRef
(NSpProtocolListReference inProtocolList,
UInt32 inIndex);

NSpProtocolReference NSpProtocol_CreateAppleTalk (ConstStr31Param inNBPName,
ConstStr31Param inNBPType,
UInt32 inMaxRTT,
UInt32 inMinThruput);

NSpProtocolReference NSpProtocol_CreateIP (InetPort inPort,
UInt32 inMaxRTT,
UInt32 inMinThruput);
84 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Managing Player Information
OSStatus NSpPlayer_ChangeType (

NSpGameReference inGame,
NSpPlayerID inPlayerID,
NSpPlayerType inNewType);

OSStatus NSpPlayer_Remove (
NSpGameReference inGame,
NSpPlayerID inPlayerID);

OSStatus NSpPlayer_GetAddress (
NSpGameReference inGame,
NSpPlayerID inPlayerID,
OTAddress ** outAddress);

NSpPlayerID NSpPlayer_GetMyID (NSpGameReference inGame);

OSStatus NSpPlayer_GetInfo (NSpGameReference inGame,
NSpPlayerID inPlayerID,
NSpPlayerInfoPtr *outInfo);

void NSpPlayer_ReleaseInfo (NSpGameReference inGame,
NSpPlayerInfoPtr inInfo);

OSStatus NSpPlayer_GetEnumeration (NSpGameReference inGame,
NSpPlayerEnumerationPtr *outPlayers);

void NSpPlayer_ReleaseEnumeration (NSpGameReference inGame,
NSpPlayerEnumerationPtr inPlayers);

UInt32 NSpPlayer_GetThruput (NSpGameReference inGame,
NSpPlayerID inPlayer,
UInt32 inTimeout);

Managing Groups of Players
OSStatus NSpGroup_New (NSpGameReference inGame,

NSpGroupID *outGroupID);

OSStatus NSpGroup_Dispose (NSpGameReference inGame,
NSpGroupID inGroupID);

OSStatus NSpGroup_AddPlayer (NSpGameReference inGame,
NSpGroupID inGroupID,
NSpPlayerID inPlayerID);
Summary of NetSprocket 85
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
OSStatus NSpGroup_RemovePlayer (NSpGameReference inGame,
NSpGroupID inGroupID,
NSpPlayerID inPlayerID);

OSStatus NSpGroup_GetInfo (NSpGameReference inGame,
NSpGroupID inGroupID,
NSpGroupInfoPtr *outInfo);

void NSpGroup_ReleaseInfo (NSpGameReference inGame,
NSpGroupInfoPtr inInfo);

OSStatus NSpGroup_GetEnumeration (NSpGameReference inGame,
NSpGroupEnumerationPtr *outGroups);

void NSpGroup_ReleaseEnumeration (NSpGameReference inGame,
NSpGroupEnumerationPtr inGroups);

Utility Functions
NumVersion NSpGetVersion (void);

void NSpSetConnectTimeout (UInt32 inSeconds);

void NSpClearMessageHeader (NSpMessageHeader *ioMessage);

UInt32 NSpGetCurrentTimeStamp (NSpGameReference inGame);

NSpAddressReference NSpConvertOTAddrToAddressReference
(OTAddress *inAddress);

OTAddress *NSpConvertAddressReferenceToOTAddr
(NSpAddressReference inAddress);

void NSpReleaseAddressReference (NSpAddressReference inAddress);

Application-Defined Functions 2

pascal void MyCallbackHandler (NSpGameReference inGame,
void *inContext,
NSpEventCode inCode,
OSStatus inStatus,
void* inCookie);
86 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
pascal Boolean MyJoinRequestHandler (NSpGameReference inGame,
NSpJoinRequestMessage *inMessage,
void* inContext,
Str255 outReason);

pascal Boolean MyMessageHandler (NSpGameReference inGame,
NSpMessageHeader *inMessage,
void *inContext);

Data Types 2

typedef SInt32 NSpEventCode;

typedef SInt32 NSpGameID;

typedef SInt32 NSpPlayerID;

typedef NSpPlayerID NSpGroupID;

typedef UInt32 NSpPlayerType;

typedef SInt32 NSpFlags;

typedef Str31 NSpPlayerName;

Opaque Game Reference Structures

typedef struct OpaqueNSpGameReference *NSpGameReference;

typedef struct OpaqueNSpProtocolReference *NSpProtocolReference;

typedef struct OpaqueNSpProtocolListReference
*NSpProtocolListReference;

typedef struct OpaqueNSpAddressReference *NSpAddressReference;

Callback Procedure Pointers
typedef pascal void (*NSpCallbackProcPtr) (NSpGameReference inGame,

void *inContext, NSpEventCode inCode, OSStatus
inStatus,
void* inCookie);
Summary of NetSprocket 87
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
typedef pascal Boolean (*NSpJoinRequestHandlerProcPtr) (
NSpGameReference inGame, NSpJoinRequestMessage
*inMessage,
void* inContext, Str255 outReason);

typedef pascal Boolean (*NSpMessageHandlerProcPtr) (NSpGameReference
inGame, NSpMessageHeader *inMessage, void*
inContext);

Player Information Structure

typedef struct NSpPlayerInfo {
NSpPlayerID id;
NSpPlayerType type;
Str31 name;
UInt32 groupCount;
NSpGroupID groups[kVariableLengthArray];

} NSpPlayerInfo, *NSpPlayerInfoPtr;

Player Enumeration Structure

typedef struct NSpPlayerEnumeration {
UInt32 count;
NSpPlayerInfoPtr playerInfo[kVariableLengthArray];

} NSpPlayerEnumeration, *NSpPlayerEnumerationPtr;

Group Information Structure

typedef struct NSpGroupInfo {
NSpGroupID id;
UInt32 playerCount;
NSpPlayerID players[kVariableLengthArray];

} NSpGroupInfo, *NSpGroupInfoPtr;

Group Enumeration Structure

typedef struct NSpGroupEnumeration {
UInt32 count;
NSpGroupInfoPtr groups[kVariableLengthArray];

} NSpGroupEnumeration, *NSpGroupEnumerationPtr;
88 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Game Information Structure

typedef struct NSpGameInfo {
UInt32 maxPlayers;
UInt32 currentPlayers;
UInt32 currentGroups;
NSpTopology topology;
UInt32 reserved;
Str31 name;
Str31 password;

} NSpGameInfo;

Message Header Structure

typedef struct NSpMessageHeader {
UInt32 version;
SInt32 what;
NSpPlayerID from;
NSpPlayerID to;
UInt32 id;
UInt32 when;
UInt32 messageLen;

} NSpMessageHeader;

Error Message Structure

typedef struct NSpErrorMessage {
NSpMessageHeader header;
OSStatus error;

} NSpErrorMessage;

Join Request Message Structure

typedef struct NSpJoinRequestMessage {
NSpMessageHeader header;
Str31 name;
Str31 password;
UInt32 type;
UInt32 customDataLen;
UInt8 customData[kVariableLengthArray];

} NSpJoinRequestMessage;
Summary of NetSprocket 89
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
Join Approved Message Structure

typedef struct NSpJoinApprovedMessage {
NSpMessageHeader header;

} NSpJoinApprovedMessage;

Join Denied Message Structure

typedef struct NSpJoinDeniedMessage {
NSpMessageHeader header;
Str255 reason;

} NSpJoinDeniedMessage;

Player Joined Message Structure

typedef struct NSpPlayerJoinedMessage {
NSpMessageHeader header;
UInt32 playerCount;
NSpPlayerInfo playerInfo;

} NSpPlayerJoinedMessage;

Player Left Message Structure

typedef struct NSpPlayerLeftMessage {
NSpMessageHeader header;
UInt32 playerCount;
NSpPlayerID playerID;

} NSpPlayerLeftMessage;

Host Changed Message Structure

typedef struct NSpHostChangedMessage {
NSpMessageHeader header;
NSpPlayerID newHost;

} NSpHostChangedMessage;

Game Terminated Message Structure

typedef struct NSpGameTerminatedMessage {
NSpMessageHeader header;

} NSpGameTerminatedMessage;
90 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Group Created Message Structure

struct NSpCreateGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID requestingPlayer;

};
typedef struct NSpCreateGroupMessage NSpCreateGroupMessage;

Group Deleted Message Structure

struct NSpDeleteGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID requestingPlayer;

};
typedef struct NSpDeleteGroupMessage NSpDeleteGroupMessage;

Player Added to Group Message Structure

struct NSpAddPlayerToGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID player;

};
typedef struct NSpAddPlayerToGroupMessage NSpAddPlayerToGroupMessage;

Player Removed From Group Message Structure

struct NSpRemovePlayerFromGroupMessage {
NSpMessageHeader header;
NSpGroupID groupID;
NSpPlayerID player;

};
typedef struct NSpRemovePlayerFromGroupMessage NSpRemovePlayerFromGroupMessage;

Player Type Changed Message Structure

struct NSpPlayerTypeChangedMessage {
NSpMessageHeader header;
NSpPlayerID player;
Summary of NetSprocket 91
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
NSpPlayerType newType;
};
typedef struct NSpPlayerTypeChangedMessage NSpPlayerTypeChangedMessage;

Constants 2

#define kNSpMaxPlayerNameLen 31
#define kNSpMaxGroupNameLen 31
#define kNSpMaxPasswordLen 31
#define kNSpMaxGameNameLen 31
#define kNSpMaxDefinitionStringLen 255

Network Message Priority Flags

enum {
kNSpJunk = 0x10000000,
kNSpNormal = 0x20000000,
kNSpRegistered = 0x30000000

};

Network Message Delivery Flags

enum {
kNSpFailIfPipeFull = 0x00000001,
kNSpSelfSend = 0x00000002,
kNSpBlocking = 0x00000004

};

Options for Hosting, Joining, and Ending Games

enum {
kNSpGameFlag_DontAdvertise = 0x00000001,
kNSpGameFlag_ForceTerminateGame = 0x00000002

};
92 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Network Message Types

enum {
kNSpSystemMessagePrefix = 0x80000000,
kNSpError = kNSpSystemMessagePrefix | 0x7FFFFFFF,
kNSpJoinRequest = kNSpSystemMessagePrefix | 0x00000001,
kNSpJoinApproved = kNSpSystemMessagePrefix | 0x00000002,
kNSpJoinDenied = kNSpSystemMessagePrefix | 0x00000003,
kNSpPlayerJoined = kNSpSystemMessagePrefix | 0x00000004,
kNSpPlayerLeft = kNSpSystemMessagePrefix | 0x00000005,
kNSpHostChanged = kNSpSystemMessagePrefix | 0x00000006,
kNSpGameTerminated = kNSpSystemMessagePrefix | 0x00000007,
kNSpGroupCreated = kNSpSystemMessagePrefix | 0x00000008,
kNSpGroupDeleted = kNSpSystemMessagePrefix | 0x00000009,
kNSpPlayerAddedToGroup = kNSpSystemMessagePrefix | 0x0000000A,
kNSpPlayerRemovedFromGroup = kNSpSystemMessagePrefix | 0x0000000B,
kNSpPlayerTypeChanged = kNSpSystemMessagePrefix | 0x0000000C

};

Reserved Player IDs for Network Messages

enum {
kNSpAllPlayers = 0x00000000,
kNSpServerOnly = 0xFFFFFFFF

};

Topology Types

typedef enum {
kNSpClientServer = 0x00000001

} NSpTopology;

Result Codes 2

In addition to the following codes, some NetSprocket functions may also return Open
Transport result codes.

noErr 0 No error
kNSpInitializationFailedErr –30360 NetSprocket could not be initialized
kNSpAlreadyInitializedErr –30361 NetSprocket has already been initialized
Summary of NetSprocket 93
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference

e

that

that
kNSpTopologyNotSupportedErr –30362 The requested topology is unimplemented, or invalid value
kNSpMessageSizeTooBigErr –30363 Current memory conditions prevent message from being sent
kNSpBufferTooSmallErr -30364 The buffer allocated is too small to handle the data
kNSpReceiveDataErr -30365 A problem occurred when attempting to receive data
kNSpProtocolNotAvailableErr –30366 A protocol reference indicated a protocol that is unavailable
kNSpInvalidGameRefErr –30367 An invalid game reference was passed
kNSpInvalidNetMessageErr –30368 An invalid message was passed
kNSpInvalidParameterErr -30369 A generic parameter error occurred
kNSpOTNotPresentErr –30370 Open Transport is not installed or not installed correctly
kNSpOTVersionTooOldErr –30371 The version of Open Transport available is too old to use with

NetSprocket
kNSpNotHostAddressErr –30372 The address specified does not identify a NetSprocket host
kNSpMemAllocationErr –30373 NetSprocket has run out of memory
kNSpAlreadyAdvertisingErr –30374 The game is already being advertised on the specified protocol
kNSpNoTypeSpecifiedErr –30375 An AppleTalk protocol reference that does not specify an NBP typ

was passed to the host
kNSpNotAdvertisingErr –30376 The game is not being advertised at this time
kNSpInvalidAddressErr –30377 An invalid address was passed
kNSpFreeQExhaustedErr –30378 NetSprocket has exhausted its allocated queue elements and new

messages will be dropped
kNSpRemovePlayerFailedErr -30379 Your attempt to remove a player failed
kNSpAddressInUseErr -30380 You are attempting to use an address that is already in use
NSpFeatureNotImplementedErr -30381 You called a NetSprocket function that is not implemented
NSpNameRequiredErr -30382 You atemped to join a game without specifying a player name
NSpInvalidPlayerIDErr -30383 You tried to send a message to or get information about a player

is not currently in the game
NSpInvalidGroupIDErr -30384 You tried to send a message to, or get information about a group

is not currently in the game
NSpNoPlayersErr -30385 Returned by NSpPlayer_Enumerate when there are no players
NSpNoGroupsErr -30386 Returned by NSpGroup_Enumerate when there are no groups
NSpNoHostVolunteersErr -30387 Returned by NSpGame_Delete when called by a host and there

are no other players capable of taking over the game
kNSpCreateGroupFailedErr -30388 The attempt to creat a group failed
NSpAddPlayerFailedErr -30389 An attempt to add a player to a group failed
NSpInvalidDefinitionErr -30390 A invalid protocol definition string was passed to

NSpProtocol_Create
NSpInvalidProtocolRefErr -30391 An invalid protocol reference was passed
NSpInvalidProtocolListErr -30392 An invalid protocol list was passed
kNSpTimeoutErr -30393 A time out error has occurred
kNSpGameTerminatedErr -30394 An attempt to terminate the game has failed
kNSpConnectFailedErr -30395 A connection attempt has failed
kNSpSendFailedErr -30396 An attempt to send a message has failed
kNSpMessageTooBigErr -30397 The message you wanted to send was too long
kNSpCantBlockErr -30398 The player you sent a message to is not playing the game
kNSpJoinFailedErr -30399 The attempt to join the game failed
94 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

C H A P T E R 2

NetSprocket Reference
Summary of NetSprocket 95
10/21/99 Preliminary  Apple Computer, Inc.

 C H A P T E R 2

NetSprocket Reference
96 Summary of NetSprocket

10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
Unimplemented or Unused Functions
and Data Types A

This appendix describes NetSprocket functions and types that appear in the
NetSprocket.h header file but are either unimplemented or otherwise unused.

Functions A

NSpProtocol_New 2

Creates a new protocol reference from a definition string.

OSStatus NSpProtocol_New (
const char* inDefinitionString,
NSpProtocolReference *outReference);

inDefinitionString
A string defining which protocol to use and what values to set
for various configuration options.

outReference An opaque reference to the protocol created. Valid only if the
function returns noErr.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

As the definition strings are currently private, in most cases you should use the
helper functions NSpProtocol_CreateAppleTalk (page 33) or
NSpProtocol_CreateIP (page 34) to create a protocol reference.
Functions 97
10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Unimplemented or Unused Functions and Data Types
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpProtocol_ExtractDefinitionString 2

Copies the definition string of the given protocol into the provided buffer.

OSStatus NSpProtocol_ExtractDefinitionString (
NSpProtocolReference inProtocolRef,
char *outDefinitionString);

inProtocolRef An opaque reference to the protocol whose definition string you
want to obtain.

outDefinitionString
The buffer into which the string is copied. You must allocate a
buffer of size kNSpMaxDefinitionStringLen before calling this
function.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

You can extract the definition string to clone the protocol reference or modify it
for use when you create a new protocol reference. Even though this function is
implemented in NetSprocket, it does not support the creation of protocols with
definition strings directly.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpPlayer_GetRoundTripTime 2

This function is currently unimplemented.
98 Functions

10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Unimplemented or Unused Functions and Data Types
VERSION NOTES

Introduced with NetSprocket 1.0.

NSpInstallCallbackHandler 2

Installs a generic callback handler for using NetSprocket in asynchronous
mode.

OSStatus NSpInstallCallbackHandler (
NSpCallbackProcPtr inHandler,
void *inContext);

inHandler A pointer to your callback function.

inContext A context pointer for your use. This is passed back to your
callback function.

function result A result code. See “Result Codes” (page 93).

DISCUSSION

NetSprocket currently does not handle asynchronous callbacks using this
handler. Although you can install this callback handler, it will never get called.

VERSION NOTES

Introduced with NetSprocket 1.0.

MyCallbackFunction 2

Performs application-defined actions for various asynchronous events.

pascal void MyCallbackFunction (
NSpGameReference inGame,
void *inContext,
Functions 99
10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Unimplemented or Unused Functions and Data Types
NSpEventCode inCode,
OSStatus inStatus,
void *inCookie);

inGame An opaque reference to the game object making the callback.

inContext A pointer that you passed in to the installation function.

inCode A value describing what kind of event is being passed to your
generic callback function when the callback is made.

inStatus A status code containing noErr, a NetSprocket error, or an Open
Transport error.

inCookie A pointer that may be NULL or point to certain extra data for
certain kinds of events.

DISCUSSION

You can define a callback function that NetSprocket will call for various
asynchronous events. You do not need to define a callback function unless you
plan to use certain advanced features of NetSprocket.

To install this application-defined function, you must call the function
NSpInstallCallbackHandler (page 99).

Currently NetSprocket does not make any asynchronous callbacks, so you do
not need to implement this function.

VERSION NOTES

Introduced with NetSprocket 1.0.
100 Functions

10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Unimplemented or Unused Functions and Data Types
Data Types A

NSpEventCode 2

When calling your application-defined event handling function, NetSprocket
passes a value of type NSpEventCode to indicate the type of event that occurred.

typedef SInt32 NSpEventCode;

No event constants are currently defined.

VERSION NOTES

Introduced with NetSprocket 1.0.

NSpCallbackProcPtr 2

If you want to handle asynchronous events, you can specify an
application-defined function to do so. Such a function has the following type
definition:

typedef pascal void (*NSpCallbackProcPtr) (NSpGameReference inGame,
void *inContext, NSpEventCode inCode, OSStatus inStatus,
void* inCookie);

See MyCallbackFunction (page 99) for more information on how to implement
this function.

VERSION NOTES

Introduced with NetSprocket 1.0.
Data Types 101
10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Unimplemented or Unused Functions and Data Types
NSpHostChangedMessage 2

NetSprocket uses the host changed message structure to send a message when
the host of a game in progress has been changed. NetSprocket indicates host
changed messages by passing the constant kNSpHostChanged in the what field of
the NSpMessageHeader (page 64) structure. Currently, NetSprocket does not
support host renegotiation, so your game will never receive this message.

The host changed message structure is defined by the NSpHostChangedMessage
data type.

typedef struct NSpHostChangedMessage {
NSpMessageHeader header;
NSpPlayerID newHost;

} NSpHostChangedMessage;

Field descriptions

header An NSpMessageHeader structure.
newHost The player ID of the new host.

VERSION NOTES

Introduced with NetSprocket 1.0.
102 Data Types

10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X B

Figure B-0
Listing B-0
Table B-0
Document Version History B

This document has had the following releases:

Table B-1 NetSprocket documentation revision history

Version Notes

October 21,
1999

First seed draft release.

This document reflects the changes to NetSprocket since version 1.0
documented in Chapter 4 of the Apple Game Sprockets Guide. A summary
of changes is as follows:

New functions added: NSpGame_GetInfo (page 21), NSpMessage_SendTo
(page 24), NSpPlayer_ChangeType (page 36), NSpPlayer_Remove (page 37),
NSpPlayer_GetAddress (page 37), NSpGetVersion (page 48), and
NSpSetConnectTimeout (page 48).

The following functions and data types were moved to Appendix A because
they are unused or were never implemented: NSpProtocol_New (page 97),
NSpProtocol_ExtractDefinitionString (page 98),
NSpPlayer_GetRoundTripTime (page 98), NSpInstallCallbackHandler
(page 99), MyCallbackFunction (page 99), NSpEventCode (page 101),
NSpCallbackProcPtr (page 101), and NSpHostChangedMessage (page 102).

All NSpxxx_Create and NSpxxx_Delete functions renamed as NSpxxx_New and
NSpxxx_Dispose respectively. For example, the NSpProtocol_Create function is
now named NSpProtocol_New (page 97).

Change made to the function NSpDoModalJoinDialog (page 12): if you pass
NULL or an empty string in the inGameType parameter , then NetSprocket uses
the game ID (as passed to NSpInitialize (page 10)) to search for games on
the AppleTalk network.

Warning added for NSpReleaseAddressReference (page 51): You must call
this function only to release address references that were allocated by
NetSprocket. For example, you should not attempt to use this function to
release a reference converted from an Open Transport OTAddress.
103
10/21/99 Preliminary  Apple Computer, Inc.

A P P E N D I X

Document Version History
New data structures and types added: NSpCreateGroupMessage (page 71),
NSpDeleteGroupMessage (page 71), NSpAddPlayerToGroupMessage (page 72),
NSpRemovePlayerFromGroupMessage (page 73), and
NSpPlayerTypeChangedMessage (page 73).

New playerName field added to the NSpPlayerLeftMessage (page 69)
structure. Note that this version of the structure (introduced with version
1.1) is not backwards compatible with NetSprocket builds without the extra
field.

The utility function NSpClearMessageHeader (page 49) no longer requires a
game reference parameter.

“Maximum String Length Constants” (page 75) added. These were formerly
#define values in the NetSprocket.h header.

New constants added to “Network Message Types” (page 78).

The following result codes are new or have changed:

kNSpHostFailedErr (-30371) replaced by kNSpOTVersionTooOldErr.

kNSpPortTakenErr (-30397) replaced by kNSpMessageTooBigErr.

kNSpNotPlayingErr (-30398) replaced by kNSpCantBlockErr.

kNSpJoinFailedErr (-30399) added.

Table B-1 NetSprocket documentation revision history

Version Notes
104
10/21/99 Preliminary  Apple Computer, Inc.

Index
D

document revision history 103

E

error message structure 66

G

game information structure 63
game terminated message structure 70
group 42
group enumeration structure 63
group information structure 62

H

host changed message structure 102
hosting a game 12

I

initializing NetSprocket 10

J

join approved message structure 67
join denied message structure 68
join request message 66

M

message header structure 64
messages

receiving 22
sending 22

N

NetSprocket
constants for 74–81
data structures for 55–74
functions in 9–55
result codes 93
summary of 82–93

network
performance testing 47

O

Open Transport 47

P

performance testing 47
player 35

enumeration structure 61
information structure 61
joined message structure 69
left message structure 69

protocol reference 27
105
10/21/99 Preliminary  Apple Computer, Inc.

I N D E X
R

result codes 93
revision history, document 103
106
10/21/99 Preliminary  Apple Computer, Inc.

I N D E X
107
10/21/99 Preliminary  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M

10/21/99 Preliminary  Apple Computer, Inc.

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

Special thanks to Chris DeSalvo, Quinn
(the Eskimo!) and Jasjeet Thind.

Acknowledgements to Dave Bice, Judy
Helfland, Tim Monroe, and Larry Wood,
who wrote the previous Game Sprockets
guide.

	Simplifying Networked Gaming Using NetSprocket
	Introduction
	NetSprocket Reference
	Functions
	Initializing NetSprocket
	NSpInitialize

	Human Interface Functions
	NSpDoModalJoinDialog
	NSpDoModalHostDialog

	Hosting and Joining a Game
	NSpGame_Host
	NSpGame_Join
	NSpGame_EnableAdvertising
	NSpGame_Dispose
	NSpGame_GetInfo
	NSpInstallJoinRequestHandler

	Sending and Receiving Messages
	NSpMessage_Send
	NSpMessage_SendTo
	NSpMessage_Get
	NSpMessage_Release
	NSpInstallAsyncMessageHandler

	Managing Network Protocols
	NSpProtocol_Dispose
	NSpProtocolList_New
	NSpProtocolList_Dispose
	NSpProtocolList_Append
	NSpProtocolList_Remove
	NSpProtocolList_RemoveIndexed
	NSpProtocolList_GetCount
	NSpProtocolList_GetIndexedRef
	NSpProtocol_CreateAppleTalk
	NSpProtocol_CreateIP

	Managing Player Information
	NSpPlayer_ChangeType
	NSpPlayer_Remove
	NSpPlayer_GetAddress
	NSpPlayer_GetMyID
	NSpPlayer_GetInfo
	NSpPlayer_ReleaseInfo
	NSpPlayer_GetEnumeration
	NSpPlayer_ReleaseEnumeration
	NSpPlayer_GetThruput

	Managing Groups of Players
	NSpGroup_New
	NSpGroup_Dispose
	NSpGroup_AddPlayer
	NSpGroup_RemovePlayer
	NSpGroup_GetInfo
	NSpGroup_ReleaseInfo
	NSpGroup_GetEnumeration
	NSpGroup_ReleaseEnumeration

	Utility Functions
	NSpGetVersion
	NSpSetConnectTimeout
	NSpClearMessageHeader
	NSpGetCurrentTimeStamp
	NSpConvertOTAddrToAddressReference
	NSpConvertAddressReferenceToOTAddr
	NSpReleaseAddressReference

	Application-Defined Functions
	MyJoinRequestHandler
	MyMessageHandler

	Data Types
	NSpGameID
	NSpPlayerID
	NSpGroupID
	NSpPlayerType
	NSpFlags
	NSpPlayerName
	NSpGameReference
	NSpProtocolReference
	NSpListReference
	NSpAddressReference
	NSpJoinRequestHandlerProcPtr
	NSpMessageHandlerProcPtr
	NSpPlayerInfo
	NSpPlayerEnumeration
	NSpGroupInfo
	NSpGroupEnumeration
	NSpGameInfo
	NSpMessageHeader
	NSpErrorMessage
	NSpJoinRequestMessage
	NSpJoinApprovedMessage
	NSpJoinDeniedMessage
	NSpPlayerJoinedMessage
	NSpPlayerLeftMessage
	NSpGameTerminatedMessage
	NSpCreateGroupMessage
	NSpDeleteGroupMessage
	NSpAddPlayerToGroupMessage
	NSpRemovePlayerFromGroupMessage
	NSpPlayerTypeChangedMessage

	Constants
	Maximum String Length Constants
	Network Message Priority Flags
	Network Message Delivery Flags
	Options for Hosting, Joining, and Disposing Games
	Network Message Types
	Reserved Player IDs for Network Messages
	Topology Types

	Summary of NetSprocket
	NetSprocket Functions
	Application-Defined Functions
	Data Types
	Constants
	Result Codes

	Unimplemented or Unused Functions
and Data Types Listing A-0
Table A-0
	Document Version History
	Index

