



Seed Note

APPLE CONFIDENTIAL

Unreleased Preliminary

October 1, 1998
Technical Publications
© 1998 Apple Computer, Inc.



I N S I D E M A C I N T O S H

Seed Note

Supporting Unicode Input

8/13/98 Confidential draft.



 Apple Computer, Inc.



Apple Computer, Inc.
© 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the ÒkeyboardÓ Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 InÞnite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.
Adobe, the Adobe logo, Acrobat, the
Acrobat logo, Distiller, PostScript,

and the PostScript logo are
trademarks of Adobe Systems
Incorporated.
Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD ÒAS
IS,Ó AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modiÞcation,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you speciÞc legal rights,
and you may also have other rights
which vary from state to state.

Contents

About Unicode Input 7
A Brief Introduction to International Text on the Mac OS 7

Languages, Writing Systems, Scripts, and Orthographies 7
Script Systems and Script Codes 9
Characters, Character Encodings, and Unicode 9
Keyboards and Input Methods 10
The Text Services Manager 11

About Unicode Text on the Mac OS 11
Unicode Script Codes 12
Unicode Keyboard-Layout Resource and the UCKeyTranslate Function 12
Unicode in the Keyboard Menu 14

Supporting Unicode Input in Applications and Input Methods 17
Supporting Unicode Input in Applications 17

Identifying an Application as Supporting Unicode 18
Event Handling for Unicode Text 19

Providing Unicode Support in Input Methods 25
Identifying an Input Method as Supporting Unicode 26
Responding to the UCTextServiceEvent Function 27
Supporting Unicode in Text Services Manager Apple Events 28
Handling Low-Level Keyboard Events for Input Methods 28
Handling Compatibility Issues 29

Using the UCKeyTranslate Function 30
Creating a 'uchr' Resource 32

Unicode Utilities Reference 35
Unicode Utilities Function 35
Unicode Utilities Data Types 38
Unicode Utilities Constants 61

Key Output Index Masks 61
Key State Entry Format Constants 62
Key Format Code Constants 62
Key Action Constants 63
Key Translation Options Constants 64

Unicode Utilities Result Codes 64
iii
Draft. Confidential.  Apple Computer, Inc. 10/1/98

Appendix A What’s New With Text Services Manager 1.5 67

About Text Services Manager 1.5 67
Text Services Manager 1.5 Reference 67

Gestalt Selectors for Text Services Manager 1.5 68
Functions for Text Services Manager 1.5 68
Constants for Text Services Manager 1.5 69
iv
Draft. Confidential.  Apple Computer, Inc. 10/1/98

1 About Unicode Input
Contents
A Brief Introduction to International Text on the Mac OS 7
Languages, Writing Systems, Scripts, and Orthographies 7
Script Systems and Script Codes 9
Characters, Character Encodings, and Unicode 9
Keyboards and Input Methods 10
The Text Services Manager 11

About Unicode Text on the Mac OS 11
Unicode Script Codes 12
Unicode Keyboard-Layout Resource and the UCKeyTranslate Function 12
Unicode in the Keyboard Menu 14
Contents 5
10/1/98 Confidential draft.  Apple Computer, Inc.

6 Contents

10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input 1

This document describes how applications and input methods can use Text
Services Manager 1.5 and Unicode Utilities to support Unicode input on the
Mac OS.

IMPORTANT

This is draft documentation. While every effort has been
made to ensure accuracy, sections with change bars have
not received Þnal technical review.

In addition to Unicode input, most complete Unicode applications will need
various other services which will not be covered in this document, such as
imaging services for Unicode text as well as processing of this text. While these
topics are not addressed here, it is assumed that an application that supports
Unicode will use Apple Type Services for Unicode Imaging (ATSUI) to provide
the Unicode imaging capability, although Unicode input via the methods
described in this document is compatible with any other service for imaging
Unicode.

This chapter contains an overview of international text handling on the Mac OS
and a more speciÞc introduction to some of the Unicode facilities available with
Mac OS 8.5.

A Brief Introduction to International Text on the Mac OS 1

The following is a quick orientation to some of the terminology used in
discussing international text handling in Mac OS 8. If youÕre already familiar
with working with international text on the Mac OS, you can skip this section
and go to ÒAbout Unicode Text on the Mac OSÓ (page 11). On the other hand, if
you would like more details about Mac OS text handling, you can read Inside
Macintosh:Text. If you would like more information on Unicode and related
topics, see Inside Macintosh: Programming With the Text Encoding Conversion
Manager.

Languages, Writing Systems, Scripts, and Orthographies 1
Writing systems and scripts are understood differently in Mac OS 8 and System
7. Mac OS 8 text handling and internationalization software uses the concepts of
writing systems and scripts as they are understood in the area of linguistics.
A Brief Introduction to International Text on the Mac OS 7
10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

This differs from System 7, in which the concept of a script system and what
composed one was particular to System 7. If you have relied on the
understanding of these concepts imparted by descriptions of System 7 and its
predecessor versions, youÕll need to adjust your perspective somewhat to make
the transition to international text support in Mac OS 8.

Written representation of a spoken language relies on a writing system. A
writing system, then, is an artiÞcial construct used to record language in
written form. It can be viewed as having three main componentsÑlanguage,
scripts, and orthographyÑwith well deÞned relations to one another.

A script comprises a set of symbols that represent the components of a
language. A writing system uses one or more scripts for the symbols required to
represent linguistic elements, which include sound, meaning, syntax and so
forth. A script can be coupled with one language, or it can represent and be
used by many languages. Moreover, a language can have more than one script
associated with it. For example, the Japanese language uses the Japanese script,
while the French, Italian, and Spanish languages all use parts of the Latin script.

A script exists apart from both the languages it represents and the writing
systems for which it is used. (A small number of scripts, less than 100, are used
by writing systems despite the large number of existing modern and archaic
languages.) A special category of scripts, called pseudoscripts, exists for use
with other scripts. These pseudoscripts include symbols, numbers, and
punctuation.

Writing systems can use different scripts at the same time. A writing system
uses at least one script and typically one or more pseudoscripts. In this sense,
then, it is best to refer to the characters a writing system includes as a repertoire
of characters, rather than a character set, because these characters can belong to
different scripts.

The writing system for a language entails an orthography which deÞnes the
relationship between the written language and one or more scripts. Among the
rules an orthography speciÞes are rules of directionality, level of discreteness,
and units of representation. For example, for mixed-directional text, the
direction of a paragraph is important. For writing systems based in European
languages, a paragraph is considered a unit of representation, as is a word.
Word division and paragraph identiÞcation are easily determined for these
languages, but this is not necessarily the case for other writing systems, such as
those based in Japanese or Indic languages.
8 A Brief Introduction to International Text on the Mac OS

10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

Script Systems and Script Codes 1
Traditionally, on the Mac OS, a script system has been understood to be a
collection of software facilities that provides for the representation of a speciÞc
writing system. This usage of the term ÒscriptÓ in the phrase Òscript systemÓ
should not be confused with the more current, linguistics-derived notion of
scripts that is used in Mac OS 8 and described in ÒLanguages, Writing Systems,
Scripts, and OrthographiesÓ (page 7).

Types of Mac OS script systems include

■ 1-byte simple: small character set, non-contextual, not bidirectional (example:
English)

■ 1-byte complex: small character set, but with contextual or bidirectional text
(example: Devanagari)

■ 2-byte: large character set (examples: Japanese, Korean, Chinese, and
SimpliÞed Chinese)

At minimum, a script system consists of

■ keyboard resources, which provide for text input in any language from any
keyboard; these allow for convenient switching from one input language to
another on a single keyboard

■ international resources, which contain information speciÞc to a particular
language, such as its date and time formats, sorting order, and word-break
rules

■ fonts, that is, sets of glyphs that are associated with speciÞed characters

A script code is a numeric value indicating a particular Mac OS script system.
Constants are deÞned for each of the script codes recognized by the Mac OS.

Characters, Character Encodings, and Unicode 1
A writing systemÕs alphabet, numbers, punctuation, and other writing marks
consist of characters. A character is a symbolic representation of an element of a
writing system; it is the concept of, for example, Òlowercase aÓ or Ònumber 3Ó.

In memory, text is stored as character codes, where each code is a numeric
value that deÞnes a particular character. A character encoding is the
organization of the set of numeric codes that represent all the meaningful
characters of a script system in memory. There are two fundamental classes of
Mac OS character encodings: 1-byte and 2-byte.
A Brief Introduction to International Text on the Mac OS 9
10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

Unicode is an international standard that combines the characters for all
commonly used writing systems into a single, coded character set, based upon a
16-bit character encoding standard. With a universal character encoding such as
Unicode, the character sets of separate writing systems do not overlap.
Furthermore, Unicode resolves the issue of conßicting character encodings
within a single writing system; for example, in Unicode, there is no overlap
between Roman character codes and the Symbol fontÕs character codes.

Keyboards and Input Methods 1
By means of keyboard input, the user can create text that your application
stores as character codes.

The system reports the userÕs key-down, key-up, and auto-key events to your
application via the event record. Key-down and key-up events report that the
user pressed or released a key, respectively. Auto-key events report that the
user has held a key down for a certain amount of time. For keyboard-related
events, the application receives both the virtual key code and the character code
for the key that is pressed, as well as the state of any modiÞer keys (Shift, Caps
Lock, Command, Option, and Control) at the time of the event.

To obtain this information for your application, the Mac OS uses keyboard
resources to convert keypresses into the correct character codes for the current
writing system, taking into account the type of keyboard being used.

Key translation is the process by which character codes are generated. Each
keyboard has a particular physical arrangement of keys, and each keypress
generates a value called a raw key code, which indicates which key was
pressed. The keyboard driver that handles the keypress maps these raw key
codes to keyboard-independent virtual key codes.

Any given script system has one or more keyboard-layout resources. The
keyboard-layout resources provide script-speciÞc maps for converting a virtual
key code into the character code that is passed to your application. As part of
the key-translation process, the keyboard-layout resources must take into
account the current dead-key state. A dead key is a keypress or
modiÞer-plus-keypress combination that produces no immediate character
output, but instead affects the character(s) that are ultimately produced by the
following keypress(es).

A keyboard layout is what the Key Caps application shows. For the purposes
of this document, a keyboard-layout resource is the critical item in determining
keyboard layout; changing the keyboard layout means changing the
10 A Brief Introduction to International Text on the Mac OS

10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

keyboard-layout resource. Because keyboard layouts are independent of the
physical keyboard attached to the computer, your application has the ßexibility
of changing text input from one writing system to another by simply using a
different keyboard-layout resource.

For languages with large character sets, it is impractical to manufacture
keyboards with keys for every possible character. In such a case, it is usually the
job of an input method, working in conjunction with a keyboard, to handle text
input. An input method is a software module, often independent of the
application it serves, that performs complex processing of text input, prior to
the applicationÕs processing of the text. A typical example of an imput method
is a translation service that converts character codes that can be entered from
the keyboard into character codes that cannot; text input in Japanese, Chinese,
and Korean usually requires an input method.

The Text Services Manager 1
The Text Services Manager is the part of the Mac OS that provides an
environment for applications to use text services such as input methods. The
Text Services Manager handles communication between client applications that
request text services and the software modules, known as text service
components, that provide them. The Text Services Manager presents two
separate programming interfaces to the features it provides: one for
applications and another for text service components.

While the Mac OS Unicode input architecture allows existing applications to
gain the beneÞts of some forms of Unicode input without undergoing any
change whatsoever, full support for Unicode input in a Mac OS application
depends on adoption of the text input model provided by the Text Services
Manager.

About Unicode Text on the Mac OS 1

This section provides an overview of the facilities provided by Text Services
Manager 1.5 and Unicode Utilities for supporting Unicode text input.
About Unicode Text on the Mac OS 11
10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

Unicode Script Codes 1
The set of Mac OS script codes that identify particular script systems now
includes Unicode, which is handled as a special Mac OS script code. The Text
Encoding Converter and other Mac OS facilities use the constant
kTextEncodingUnicodeDefault (0x0100) to designate Unicode. However, because
some components have only 7 bits available for a script code, rather than the
typical 16 bits, the value smUnicodeScript (0x7E) can also be used to indicate
Unicode. For example, the Text Encoding Converter handles the
smUnicodeScript value just like kTextEncodingUnicodeDefault.

Note
The smUnicodeScript symbolic constant is not deÞned in the
3.2 Universal Interfaces, so your application may have to
deÞne this constant itself.

Unicode Keyboard-Layout Resource and the UCKeyTranslate Function 1
Mac OS 8.5 introduces the Unicode keyboard-layout resource ('uchr'). Like the
(pre-Unicode) keyboard-layout resource ('KCHR'), the 'uchr' resource contains
the data necessary to map virtual key codes to character codes for various
keyboard layouts. However, the 'uchr' resource speciÞes Unicode keyboard
layoutsÑthat is, keyboard layouts which produce Unicode character codes,
rather than characters in a Mac OS encoding.

Because some Unicode character codes can be mapped to Mac OS encoded
character codes (while some cannot), for the purposes of key translation there
are considered to be two categories of Unicode keyboard-layout resources. The
Þrst category of 'uchr' resources is one that produces Unicode character codes
that are all within the range of a single Mac OS encoding. That is, these partial
Unicode 'uchr' resources contain only Unicode characters that can be mapped
to characters belonging to the Mac OS encoding associated with its ID range.

The second category of 'uchr' resources may produce any Unicode characters.
That is, these full Unicode 'uchr' resources contain Unicode characters that are
either not all within the range of a single Mac OS encoding or are not within the
range of any Mac OS encoding. Table 0-1 shows the relationships of
keyboard-layout resources to differing types of text input.
12 About Unicode Text on the Mac OS

10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input

Table 0-1 Text input types and keyboard layouts

The function UCKeyTranslate is also available as of Mac OS 8.5. In a similar
fashion to the (pre-Unicode) KeyTranslate function, which used the 'KCHR'
resource to produce character codes, UCKeyTranslate uses the 'uchr' resource to
produce Unicode character codes. However, unlike KeyTranslate,
UCKeyTranslate also

1. Outputs multiple character codes. A single keycode (or a dead-key sequence)
can produce a string of up to 255 Unicode characters. This facility is useful
both for some international script systems and for the production of macros.
As an example of the former, the Devanagari keyboard in the Indian
Language Kit must be able to produce up to three characters from a single
keypress to support the keyboard standards of India.

2. Allows multiple dead keys. The keyboard standards for some countries
require double dead keys. For example, Greek keyboards use two dead keys
for adding diacritical marks.

3. Handles virtual key codes with a range greater than 0Ð127. While this
requirement is currently uncommon on the Mac OS, some types of
keyboardsÑfor example, older Kanji keyboards and keyboards for some
other operating systemsÑmay use a larger key code range.

4. Allows virtual key code mapping to depend on keyboard type. While the use
of virtual key codes should theoretically remove all dependencies on
particular physical keyboards, in some cases key translation does depend on
the keyboard type (due to certain scripts, languages, and regions needing
subtle differences in layout for speciÞc keyboards). Prior to Mac OS 8.5, the
system would use the key-remap resource ('itlk') to map the virtual key
codes and modiÞer state for some key combinations on certain keyboards,
before using the 'KCHR' resource. The UCKeyTranslate function accommodates
this need by requesting keyboard type information and using the 'uchr'
resource to access the proper keyboardÕs mapping tables in cases where there

Input Type Keyboard Layout

Resource type, ID

Produces Mac OS encoded characters KCHR, ≥ 0

Produces partial Unicode characters uchr, ≥ 0

Produces full Unicode characters uchr < 0
About Unicode Text on the Mac OS 13
10/1/98 Confidential draft.  Apple Computer, Inc.

About Unicode Input
is a keyboard-speciÞc dependency, thus eliminating the need to use the
'itlk' resource.

Unicode in the Keyboard Menu 1
The Keyboard menu appears on the right side of the menu bar when more than
one script system is enabled. It permits the user to choose among keyboard
layouts, input methods, and script systems, for text input.

If there are input methods for any of the Mac OS 2-byte script systems that are
enabled, the Keyboard menu shows only the input methods; otherwise, in the
absence of input methods, it shows the keyboard layouts. For all other enabled
script systems, including Unicode, the keyboard menu will show keyboard
layouts and input methods.

Note
The Keyboard menu shows each keyboard layout as a
single entry, regardless of whether it is speciÞed by a
'KCHR', a 'uchr', or both.

To display a full Unicode script system in the Keyboard menu, the System Þle
must include an international bundle resource ('itlb') with a resource ID of
smUnicodeScript (0x7E) and one or more full Unicode keyboard layouts or input
methods.

Full Unicode keyboard layouts and input methods (that is, for input sources
that produce Unicode characters that are not within the range of a single Mac
encoding), if enabled, are shown in their own section of the menu, after all of
those for Mac OS script systems.
14 About Unicode Text on the Mac OS

10/1/98 Confidential draft.  Apple Computer, Inc.

2 Supporting Unicode Input in
Applications and Input Methods
Contents
Supporting Unicode Input in Applications 17
Identifying an Application as Supporting Unicode 18
Event Handling for Unicode Text 19

Modifying Existing Apple Event Handlers for Unicode 20
Supporting the Unicode (Not From Input Method) Apple Event 21
Handling Low-Level Keyboard Events for Applications 24

Providing Unicode Support in Input Methods 25
Identifying an Input Method as Supporting Unicode 26
Responding to the UCTextServiceEvent Function 27
Supporting Unicode in Text Services Manager Apple Events 28
Handling Low-Level Keyboard Events for Input Methods 28
Handling Compatibility Issues 29

Using the UCKeyTranslate Function 30
Creating a 'uchr' Resource 32
Contents 15
10/1/98 Confidential draft.  Apple Computer, Inc.

16 Contents

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods 2

This chapter describes how applications and input methods can support
Unicode input by using Text Services Manager 1.5 and Unicode Utilities.

■ Application developers should read ÒSupporting Unicode Input in
ApplicationsÓ (page 17) to learn about the steps required for an application
to support Unicode input.

■ Input method developers should read ÒProviding Unicode Support in Input
MethodsÓ (page 25) to learn about the steps required for an input method to
support Unicode input.

■ Typically the Text Services Manager calls the UCKeyTranslate function when
needed. However, there are occasions when an application or input method
may need to use this function. See ÒUsing the UCKeyTranslate FunctionÓ
(page 30) for more details.

■ ÒCreating a 'uchr' ResourceÓ (page 32): This section is under development.

IMPORTANT

This is draft documentation. While every effort has been
made to ensure accuracy, sections with change bars have
not received Þnal technical review.

Supporting Unicode Input in Applications 2

In order to support Unicode input, an application must both support the Text
Services Manager and request Unicode input.

Applications that do not support Unicode input fall in two categories: those
that do not support the Text Services Manager, and those that do, but which do
not request Unicode input. In both cases, these applications do receive some of
the beneÞt of text input from new Unicode input sources which can take the
form of either Unicode keyboard layouts (speciÞed by 'uchr' resources) or
Unicode input methods and text services.

However, the kinds of Unicode input available to applications that do not
support Unicode input are restricted. These applications receive only input
from partial Unicode input sources, that is sources that generate only Unicode
characters that are all within the repertoire of a single Mac encoding, usually
the Mac encoding determined by the current keyboard script. This is because
text from partial Unicode input sources is automatically converted by the Text
Supporting Unicode Input in Applications 17
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Services Manager to a Mac OS encoding for delivery to these applications. Full
Unicode input sourcesÑthat is, those which either generate characters within
the repertoire of several Mac encodings or outside the repertoire of any Mac
encodingÑare not available to these applications and appear disabled in the
Keyboard menu.

Supporting the Text Services Manager requires an application to provide Apple
event handlers for the full suite of Text Services Manager Apple events in order
to support inline input of text. While input can be handled via the bottomline
method, this mode of input will not support full Unicode input sources, but
only those input sources whose output can be converted to a given Mac
encoding (that is, partial Unicode input sources).

Implementing a set of Apple event handlers for the Text Services Manager suite,
for the purpose of supporting inline input in general and Unicode input in
particular, greatly enhances the text input experience for users of your
applications in a variety of existing input sources as well as new Unicode input
sources. Even if the majority of existing input methods are associated with a
particular Mac script system (and therefore a particular Mac encoding), your
application will automatically support these input sources because the Text
Services Manager converts all text from Mac OS encoding input sources to
Unicode for delivery to applications that have requested Unicode input.

Note
TSMTE does not currently support Unicode input. If an
application does rely on TSMTE for input, its input sources
will be limited to those which generate input within the
repertoire of individual Mac OS encodings.

Identifying an Application as Supporting Unicode 2
Text Services Manager client applications must create an internal record called a
TSM document (deÞned by the TSMDocument data type) before they can use any
services provided through the Text Services Manager. A TSM document is a
private data structure that your application associates with each of its
documents that use a text service.

There is a new TSM document type for requesting Unicode input:
kUnicodeDocument ('udoc'). When a Unicode-input TSM document is active, the
associated application receives input in Unicode. It can receive input from all
input types: full Unicode, partial Unicode, and Mac OS encodings.
18 Supporting Unicode Input in Applications

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Non-Unicode (Mac OS encoded) input is converted to Unicode before being
delivered to a Unicode-input TSM document.

When non-Unicode TSM documents are active or when the current application
is not a Text Services Manager client, the application receives Mac OS encoded
input. In these cases, full Unicode input sources are disabled in the Keyboard
menu and cannot be used, and input from partial Unicode sources is
automatically converted to the current keyboard script (a Mac OS encoding) by
the Text Services Manager.

Your application creates a Unicode TSM document by specifying the
kUnicodeDocument ('udoc') type in the supportedInterfaceTypes parameter of
NewTSMDocument.

Event Handling for Unicode Text 2
Text Services Manager 1.5 introduces a new Unicode Apple event that allows
applications with Unicode TSM documents to streamline their event handling.

In the old model, your application calls the function WaitNextEvent and, when it
receives a low-level keyboard event, it passes the event to the Text Services
Manager via the TSMEvent function. TSMEvent then passes the event along to any
text service components which might be associated with the document. If a text
service component handles the event, TSMEvent returns true, and your
application receives the component-processed character codes in an Apple
event. If a text service component does not handle the event, TSMEvent returns
false, and your application handles the event from its WaitNextEvent loop.

In the new model, your application still calls WaitNextEvent and passes
low-level keyboard events to the Text Services Manager via TSMEvent. The
difference is that TSMEvent always returns true, to indicate that the key event
was processed, either by an input method (and delivered via the standard Text
Services Manager Apple events) or by means of direct delivery to the
application (via the kUnicodeNotFromInputMethod Apple event). Because the
kUnicodeNotFromInputMethod Apple event contains both the Unicode character
code(s) and a copy of the original low-level key event record, your application
can now consolidate all of its keyboard input processing in a single logical unit
in its Apple event handlers, rather than in its event loop.

This section provides details on how to modify existing Text Services Manager
Apple event handlers and discusses the new Text Services Manager Apple
event required to support Unicode input. If your application already supports
the Text Services Manager, these changes are minimal. If your application does
Supporting Unicode Input in Applications 19
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
not currently support the Text Services Manager, you should Þrst implement
support for the Text Services Manager; see Inside Macintosh: Text for details on
implementing handlers for Text Services Manager Apple events and user
interface guidelines for inline input of text.

Modifying Existing Apple Event Handlers for Unicode 2
When the active TSM document is of type kUnicodeDocument, the Text Services
Manager will deliver all text content in Text Services Manager Apple events as
Unicode text, in a descriptor whose keyword continues to be keyAETheData, but
whose descriptor type is typeUnicodeText.

When known data structures accompanying the Unicode text contain offsets to
text, these offsets are also converted, if needed, to Unicode (byte) offsets to
match the encoding of the text delivered to the applicationÕs Apple event
handler. This delivery of text (and accompanying byte offsets) in Unicode
occurs regardless of the type of input source. If the input source is a Unicode
input method, text and offsets are passed through by the Text Services Manager
to the applicationÕs handler unchanged, but if the input source generates text in
a Mac encoding, the generated text is converted to Unicode automatically by
the Text Services Manager.

Text is converted between Unicode and Mac OS encodings as necessary. Text
from Unicode input sources is automatically converted to Mac encodings for
delivery to applications that donÕt use Unicode TSM documents; text from
Mac OS encoding input sources is converted to Unicode for delivery to
applications using Unicode TSM documents. Similarly, application text
requested by an input method (with the Apple event ID kGetSelectedText) is
converted as necessary.

The Update Active Input Area Event 2

Your applicationÕs Apple event handler for the kUpdateActiveInputArea Apple
event must obtain the keyAETheData parameter using the descriptor type
typeUnicodeText to obtain the Unicode content of the active input area. The
keyAEFixLength, keyAEHiliteRange, keyAEUpdateRange, and keyAEClauseOffsets
parameters all contain byte offsets into the Unicode text.

For more details on the kUpdateActiveInputArea Apple event, see Inside
Macintosh: Text.
20 Supporting Unicode Input in Applications

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
The Position To Offset Event 2

Your applicationÕs Apple event handler for the kPos2Offset Apple event must
reply with the keyAEOffset parameter containing a Unicode text (byte) offset. If
the text service requesting the offset is associated with a Mac OS encoding, the
Text Service Manager will convert the text offset from Unicode to that of the
Mac OS encoding.

For more details on the kPos2Offset Apple event, see Inside Macintosh: Text.

The Offset To Position Event 2

Your applicationÕs Apple event handler for the kOffset2Pos Apple event must
treat the keyAEOffset parameter as a Unicode text (byte) offset. If the text service
specifying the text offset is associated with a Mac OS encoding, the Text
Services Manager will convert the text offset from the Mac OS encoding to
Unicode before forwarding the Apple event to the application.

For more details on the kOffset2Pos Apple event, see Inside Macintosh: Text.

The Get Selected Text Event 2

Your applicationÕs Apple event handler for the kGetSelectedText Apple event
must return the current text selection as Unicode text. If the text service
specifying the text offset is associated with a Mac OS encoding, the Text
Services Manager will convert the Unicode text to the Mac OS encoding before
forwarding the Apple event to the text service. Supporting this event is
optional, but recommended.

Note
For a discussion of providing a handler for the Get Selected
Text Apple event, see develop, Issue 29. This event is not
discussed in Inside Macintosh: Text.

Supporting the Unicode (Not From Input Method) Apple Event 2
To support Unicode input via the Text Services Manager, your application must
provide a handler for the new Text Services Manager Unicode Apple event
whose event ID is kUnicodeNotFromInputMethod. When the user generates
Unicode input that does not originate from an input method (that is, the
Unicode text may be generated by a keyboard layout or is simply not handled
by an input method) the Text Services Manager will forward the generated
Supporting Unicode Input in Applications 21
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
input to your application as Unicode text in the kUnicodeNotFromInputMethod
Apple event.

Note
Unicode text resulting from input method interactions will
be delivered using the UpdateActiveInputArea Apple event,
as is the case for non-Unicode text.

The kUnicodeNotFromInputMethod Apple event contains the Unicode text, a copy
of the original low-level key event, and a ScriptLanguageRecord structure that
identiÞes the current keyboard script. Your applicationÕs event handler for the
kUnicodeNotFromInputMethod Apple event must obtain the keyAETheData
parameter using the descriptor type typeUnicodeText to obtain the input as
Unicode text.

Your applicationÕs Apple event handler can also obtain the original low-level
key event from a parameter whose keyword is keyAETSMEventRecord and whose
descriptor type is typeLowLevelEventRecord. If the current keyboard layout is
determined by a 'KCHR' resource, you can pass the virtual key code and
modiÞers to the function KeyTranslate to produce a Mac OS encoding character
code. Otherwise, if a Unicode keyboard layout is being used (that is, if the
keyboard layout is determined by a 'uchr' resource), you can use the
UCKeyTranslate function. Typically, you do not need to perform either action.

The applicationÕs Apple event handler for the kUnicodeNotFromInputMethod
event should always fully process the input and return noErr. Returning any
error or not providing a handler will cause the TSMEvent function to indicate
that the low-level key event was not handled, in which case your application
may not be able to generate the correct text, depending on whether the input
source is a Unicode keyboard layout and whether a dead-key sequence is in
progress.

Note
Inside Macintosh: Text states that each Text Services Manager
Apple event contains two required parameters, one of
which is the keyAEServerInstance parameter, which
identiÞes the component that is sending the Apple event. In
the case of the kUnicodeNotFromInputMethod Apple event,
this parameter is not included because the event only
pertains to cases where a component (such as, an input
method) is not handling the data.
22 Supporting Unicode Input in Applications

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Class kTextServiceClass

ID kUnicodeNotFromInputMethod

Requested action Accept Unicode text.

Required Parameters

Keyword keyAETheData

Descriptor Type typeUnicodeText

Data Unicode text. Note that this text data has not been
processed in any way by a text service component.

Keyword keyAETSMEventRecord

Descriptor Type typeLowLevelEventRecord

Data A copy of the original low-level key event record.

Keyword keyAETSMDocumentRefcon

Descriptor Type typeLongInteger

Data A TSM document speciÞer (reference constant) supplied by
the application in a prior call to the NewTSMDocument
function. This value is associated with the TSM document
that is receiving Unicode text input.

Keyword keyAETSMScriptTag

Descriptor Type typeIntlWritingCode

Data A ScriptLanguageRecord structure that identiÞes the script
code and language code associated with the text returned
in the keyAETheData parameter. If the current input source is
partial Unicode, this contains a Mac OS script code. If the
current input source is full Unicode, it is 0x7E
(smUnicodeScript).

Optional Parameters

(none)

Return Parameter

Keyword keyErrorNumber

Descriptor Type: typeShortInteger
Supporting Unicode Input in Applications 23
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Data Any errors that the application needs to return to the Text
Services Manager to terminate processing of the key event
that the application passed to TSMEvent. TSMEvent will
return false to indicate to the application that the key
event was not handled. The application can then attempt to
process the event in its event loop. Note that the character
code data in the returned key event is not valid in general,
but the virtual key code and modiÞer-key data could still
be processed.

Handling Low-Level Keyboard Events for Applications 2
While low-level keyboard events appear essentially unchanged with Unicode
text input, there are certain differences which can affect how text is converted.

Whether or not a Unicode script system is present, the keyboard driver always
uses a 'KCHR' resource to generate the character codes that are posted in the
low-level event. Even if the current keyboard layout is speciÞed solely by a
'uchr' resource, the Script Manager will supply the keyboard driver with the
best approximation of an appropriate 'KCHR' resource to use. However, the
resulting character in the low-level event may have no relation to the actual
Unicode character, as speciÞed by the 'uchr' resource. Also, in this case, when
the current keyboard layout is speciÞed by a 'uchr' resource alone, the Text
Services Manager disables driver dead-key processing for 'KCHR' resources and
performs all dead-key processing itself.

If the current keyboard layout is speciÞed only by a partial Unicode 'uchr'
resource, and the current application is not using a Unicode TSM document, the
Text Services Manager will intercept the key event posted by the driver before it
is delivered to the application. The Text Services Manager uses the 'uchr'
resource with the function UCKeyTranslate to map the virtual key code and
modiÞers in the event to a string of Unicode character codes. It will then
convert these to character codes in the appropriate Mac OS encoding and post
these for delivery to the application in a series of keyboard events. While these
appear to your application as normal keyboard events, you cannot
automatically reproduce the characters in the events by using the (pre-Unicode)
KeyTranslate function to convert the key code and modiÞers in the event.
Instead, you must check to see if a 'uchr' resource is present to know whether
to use KeyTranslate or UCKeyTranslate.

If the current application is using a Unicode TSM document, the keyboard
event posted by the driver is not modiÞed before delivery to the application.
24 Supporting Unicode Input in Applications

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Instead, the application is expected to pass the event to the Text Services
Manager via the function TSMEvent, which handles all necessary UCKeyTranslate
calls or conversion to Unicode.

For keyboard layouts that have 'uchr' resources, TSMEvent will use
UCKeyTranslate to convert the keycode and modiÞers in the key event to a
sequence of Unicode characters. For keyboard layouts that only have 'KCHR'
resources, TSMEvent will convert the Mac OS encoding character in the event to
Unicode.

Providing Unicode Support in Input Methods 2

While existing applications process inline input text in Mac OS encodings, as
applications adopt Unicode they will also support input from Unicode input
methods, greatly increasing the characters available to the user in individual
scripts and offering a convenient and comprehensive environment for
multi-script or multilingual text entry. Also, because text contained in Apple
events from Unicode input methods does not need to be converted by the Text
Services Manager to Unicode for application delivery, the efÞciency of inline
input processing is greatly improved.

This section identiÞes the requirements for development of Unicode input
methods. While the main requirement imposed by the Text Services Manager is
that these input methods communicate externally using Unicode text, the Text
Services Manager does not require that an input method perform its internal
processing in Unicode nor that the input method image Unicode text in its user
interface (input method palettes), although these features are assumed to be
desirable or necessary for other reasons.

Text Services Manager 1.5 deÞnes two types of Unicode input methods: full
Unicode input methods and partial Unicode input methods. A full Unicode
input method is deÞned to be an input method which may generate Unicode
characters outside of the repertoire of any given Mac OS encoding, in multiple
Mac OS encoding repertoires, or both. A partial Unicode input method always
adheres (externally) to the repertoire of the Mac OS encoding deÞned by the
Mac OS script system to which it belongs.

Partial Unicode input methods appear in the Keyboard menu section for the
script to which they belong. Full Unicode input methods and keyboard layouts
Providing Unicode Support in Input Methods 25
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
appear in a new section near the bottom of the Keyboard menu, after the section
for Mac OS encodings.

This section describes only the requirements related to Unicode support for
input methods. See Inside Macintosh: Text for details on implementing classic
input methods or for information regarding input methods in general.

Identifying an Input Method as Supporting Unicode 2
Both partial and full Unicode input methods continue to be Component
Manager components, described by the ComponentDescription ßags in the
component 'thng' resource. A partial Unicode input method speciÞes the
Mac OS script code with which it is associated, while a full Unicode input
method speciÞes the constant 0x7E (smUnicodeScript). Note that while a partial
Unicode input method, like a non-Unicode (Mac OS encoding) input method,
advertises itself as being associated with a Mac OS script code, it is
distinguished by the contents of the ScriptLanguageRecord structure that it
returns when it responds to a GetScriptLanguageSupport call.

While GetScriptLanguageSupport has not been a required input method function
prior to Text Services Manager 1.5, this is now the mechanism used by the Text
Services Manager to distinguish a Mac OS encoding input method from a
partial Unicode input method. Since both of these input methods specify a
Mac OS script code in the component description ßags of the 'thng' resource, a
partial Unicode input method implements its GetScriptLanguageSupport
function to return an array that includes a ScriptLanguageRecord structure with
the proper Mac OS language code and a script code of
kTextEncodingUnicodeDefault (0x0100).

Full Unicode input methods, like non-Unicode input methods, do not need to
implement this function, although a full Unicode input method may wish to
return an array of ScriptLanguageRecord structures, each specifying the
kTextEncodingUnicodeDefault constant for the script code and the appropriate
language code to identify those languages for which it is most suited.

Table 0-2 shows the relationships of keyboard-layout resources and input
methods to differing types of text input, including whether the input method
must identify the script systems it supports in a ScriptLanguageRecord structure
to respond to the Text Services Manager function GetScriptLanguageSupport.
26 Providing Unicode Support in Input Methods

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Table 0-2 Text input types, keyboard layouts, and input method script systems

Responding to the UCTextServiceEvent Function 2
Partial Unicode and full Unicode input methods are no longer called via the
TextServiceEvent function. For any Unicode input method, the Text Services
Manager always uses the new UCTextServiceEvent function.

Like the pre-Unicode TextServiceEvent function, UCTextServiceEvent speciÞes
the low-level event record, but it also contains the Unicode text stream resulting
from the keypress. This is important because the keyboard layout being used
may be a Unicode keyboard-layout ('uchr') resource, which may generate more
than one character as the result of a single keypress or no characters in the case
of a dead-key sequence.

Note that the Text Services Manager forwards the key event to the input
method in all cases, even when no output is produced by the 'uchr' resource.
Therefore, the input method should be prepared to be called by the
UCTextServiceEvent function with just the key event and no Unicode text
(unicodeString=NULL, unicodeStrLength=0). This allows input methods to

Input Type Keyboard Layout Input Method Script Systems Input Method Script Systems

Resource type, ID

As identified by the
ComponentDescription flags in
the component ('thng')
resource

As identified in the
ScriptLanguageRecord
structure (if necessary)

Produces
Mac OS
encoded
characters

KCHR, ≥ 0 Supply any Mac OS script
code

(0x00Ð0x20)

Not necessary, but can supply
any Mac OS script code

(0x00Ð0x20)

Produces partial
Unicode
characters

uchr, ≥ 0 Supply any Mac OS script
code

(0x00Ð0x20)

Necessary; must supply the
16-bit Unicode script code

(0x0100 =
kTextEncodingUnicodeDefault)

Produces full
Unicode
characters

uchr < 0 Supply the 7-bit Unicode
script code

(0x7E = smUnicodeScript)

Not necessary, but can supply
the 16-bit Unicode script code

(0x0100 =
kTextEncodingUnicodeDefault)
Providing Unicode Support in Input Methods 27
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
process Option-Shift equivalents without the need to override the keyboard
layout data used by the keyboard driver, as sometimes has been necessary in
the past.

Supporting Unicode in Text Services Manager Apple Events 2
A Unicode input method must transmit all text that is sent via Text Services
Manager Apple events as Unicode text, in a descriptor whose keyword
continues to be keyAETheData, but whose descriptor type is typeUnicodeText. All
text offsets speciÞed in these Apple events must specify byte offsets into the
corresponding Unicode text. This applies to all currently deÞned Text Services
Manager Apple Events: Update Active Input Area, Offset To Position, Position
To Offset, and Get Selected Text.

Handling Low-Level Keyboard Events for Input Methods 2
While low-level keyboard events appear essentially unchanged with Unicode
text input, there are certain differences which can affect how text is converted.

Whether or not a Unicode script system is present, the keyboard driver always
uses a 'KCHR' resource to generate the character codes that are posted in the
low-level event. Even if the current keyboard layout is speciÞed solely by a
'uchr' resource, the Script Manager will supply the keyboard driver with the
best approximation of an appropriate 'KCHR' resource to use. However, in the
latter case, the resulting character in the low-level event may have no relation to
the actual Unicode character as speciÞed by the 'uchr' resource.

Because keyboard drivers are not equipped to handle a Unicode
keyboard-layout ('uchr') resource, which may generate more than one
character as the result of a single keypress or no characters in the case of a
dead-key sequence, there are three cases where the Text Services Manager
disables keyboard driver dead-key processing and performs all dead-key
processing itself:

■ if an input method of any type is in use

■ if the current keyboard layout is speciÞed solely by a 'uchr' resource (that is,
if no 'KCHR' resource is available)

■ if the current document identiÞes itself as a Unicode TSM document and a
'uchr' resource is available
28 Providing Unicode Support in Input Methods

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
In any of these cases, when the Text Services Manager disables dead-key
processing in the keyboard driver, it passes each key event to the
UCKeyTranslate function, whose output is then forwarded to the input method.
When a 'uchr' is not available for input into a Unicode input method, the Text
Services Manager relies on the Text Encoding Converter to generate the
Unicode characters.

Handling Compatibility Issues 2
There are two main compatibility issues for Unicode input methods: running on
systems with Text Services Manager 1.0 and providing support for applications
that do not themselves support Unicode.

Unicode input methods of any kind cannot be selected, and are not loaded, on a
system with Text Services Manager 1.0. While this is true of both full Unicode
input methods and partial Unicode input methods, a partial Unicode input
method could be implemented such that it behaves as a Mac OS encoding input
method with Text Services Manager 1.0, and a partial Unicode input method
with Text Services Manager 1.5. In the presence of Text Services Manager 1.0,
the input method could continue to perform its internal processing in Unicode
and convert text to Mac encoding using the Text Encoding Converter either for
display in its own palettes (if ATSUI is not available) or for Apple event content.
The input methodÕs component description ßags specify the Mac script in either
world, and, in the presence of Text Services Manager 1.5, the input method may
respond to a GetScriptLanguageSupport call by returning an array that includes
a ScriptLanguageRecord structure with the proper Mac OS script code and a
language code of kTextEncodingUnicodeDefault.

Full Unicode input methods cannot be selected by the user unless the current
applicationÕs active TSM Document is created with the kUnicodeDocument
interface type. Until Unicode is adopted to a greater extent, input methods may
beneÞt from restricting Unicode output to the repertoire of a single Mac OS
script system, and possibly generate Unicode outside of a Mac encodingÕs
repertoire only when it is certain that the current document is a Unicode TSM
document.
Providing Unicode Support in Input Methods 29
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
Using the UCKeyTranslate Function 2

In most cases, application and input methods do not need to use
UCKeyTranslate, because the Text Services Manager automatically calls it when
handling input from a Unicode keyboard layout. However, there may be some
circumstances when you may wish to call UCKeyTranslate directly.

For example, an application may need to determine what character code(s)
would have been generated for the virtual key code in the current key-down
event if a different modiÞer-key combination had been used. Listing 0-1 shows
how an application could use the function UCKeyTranslate to perform its own
virtual key code to Unicode character code conversion in an event loop.

Listing 0-1 Using UCKeyTranslate in an event loop

#include <MacTypes.h>
#include <Events.h>
#include <LowMem.h>
#include <Resources.h>
#include <Script.h>
#include <UnicodeUtilities.h>

enum {
kMaxUnicodeInputStringLength = 16

};

main()
{
EventRecord *eventPtr;
Handle uchrHandle;
UInt32 deadKeyState;
SInt16 currentKeyScript;
SInt16 lastKeyLayoutID;
UniChar unicodeInputString[kMaxUnicodeInputStringLength];
OSStatus status;
30 Using the UCKeyTranslate Function

10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
// initialization
currentKeyScript = GetScriptManagerVariable(smKeyScript);
lastKeyLayoutID = GetScriptVariable(currentKeyScript, smScriptKeys);
deadKeyState = 0;
uchrHandle = GetResource('uchr', lastKeyLayoutID);
…

// event loop
while(true)

{

// get next event from WaitNextEvent, then
switch (eventPtr->what)

{
…

case keyDown:
case keyUp:
case autoKey:

{
SInt16 currentKeyLayoutID;

currentKeyScript = GetScriptManagerVariable(smKeyScript);
currentKeyLayoutID = GetScriptVariable(currentKeyScript, smScriptKeys);
if (currentKeyLayoutID != lastKeyLayoutID)

{
// reset the dead key state if the keyboard layout has changed
deadKeyState = 0;
// attempt to get the handle for the new keyboard layout’s 'uchr'
uchrHandle = GetResource('uchr', currentKeyLayoutID);
lastKeyLayoutID = currentKeyLayoutID;
}

// if there is a 'uchr' for the current keyboard layout, use it
if (uchrHandle != NULL)

{
UInt32 keyboardType;
UInt32 modifierKeyState;
UInt16 virtualKeyCode;
UInt16 keyAction;
UniCharCount actualStringLength;
Using the UCKeyTranslate Function 31
10/1/98 Confidential draft.  Apple Computer, Inc.

Supporting Unicode Input in Applications and Input Methods
virtualKeyCode = ((eventPtr->message) >> 8) & 0xFF;
keyAction = eventPtr->what - keyDown;
modifierKeyState = ((eventPtr->modifiers) >> 8) & 0xFF;
keyboardType = LMGetKbdType();

status = UCKeyTranslate(*uchrHandle, virtualKeyCode, keyAction,
modifierKeyState, keyboardType, 0,
&deadKeyState, kMaxUnicodeInputStringLength,
&actualStringLength, unicodeInputString);

// now do something with status and unicodeInputString
…
}

else
{
// no 'uchr' resource, do something with 'KCHR'?
…
}

}
break;

} // end switch on eventPtr->what
} // end of while statement for event loop

}

Creating a 'uchr' Resource 2

This section is forthcoming.
32 Creating a 'uchr' Resource

10/1/98 Confidential draft.  Apple Computer, Inc.

3 Unicode Utilities Reference
Contents
Unicode Utilities Function 35
UCKeyTranslate 35

Unicode Utilities Data Types 38
'uchr' 38
UCKeyOutput 47
UCKeyCharSeq 48
UCKeyStateRecord 49
UCKeyStateEntryTerminal 51
UCKeyStateEntryRange 52
UCKeyboardLayout 53
UCKeyboardTypeHeader 54
UCKeyLayoutFeatureInfo 56
UCKeyModifiersToTableNum 56
UCKeyToCharTableIndex 57
UCKeyStateRecordsIndex 58
UCKeyStateTerminators 59
UCKeySequenceDataIndex 60

Unicode Utilities Constants 61
Key Output Index Masks 61
Key State Entry Format Constants 62
Key Format Code Constants 62
Key Action Constants 63
Key Translation Options Constants 64

Unicode Utilities Result Codes 64
Contents 33
10/1/98 Confidential draft.  Apple Computer, Inc.

34 Contents

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference 3

This chapter discusses the Unicode Utilities programming interface in detail.

■ ÒUnicode Utilities FunctionÓ (page 35) describes UCKeyTranslate.

■ ÒUnicode Utilities Data TypesÓ (page 38) describes the 'uchr' resource and
related structures.

■ See also ÒUnicode Utilities ConstantsÓ (page 61) and ÒUnicode Utilities
Result CodesÓ (page 64).

IMPORTANT

This is draft documentation. While every effort has been
made to ensure accuracy, sections with change bars have
not received Þnal technical review.

Unicode Utilities Function 3

UCKeyTranslate 0

Converts a combination of a virtual key code, a modiÞer key state, and a
dead-key state into a string of one or more Unicode characters.

pascal OSStatus UCKeyTranslate (
UCKeyboardLayout *keyLayoutPtr,
UInt16 virtualKeyCode,
UInt16 keyAction,
UInt32 modifierKeyState,
UInt32 keyboardType,
OptionBits keyTranslateOptions,
UInt32 *deadKeyState,
UniCharCount maxStringLength,
UniCharCount *actualStringLength,
UniChar unicodeString[]);
Unicode Utilities Function 35
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
keyLayoutPtr A pointer to the Þrst element in a resource of type 'uchr'
(page 38). Pass a pointer to the 'uchr' resource that you wish the
UCKeyTranslate function to use when converting the virtual key
code to a Unicode character. The resource handle associated
with this pointer need not be locked, since the UCKeyTranslate
function does not move memory.

virtualKeyCode
An unsigned 16-bit integer. Pass a value specifying the virtual
key code that is to be translated. For ADB keyboards, virtual key
codes are in the range from 0 to 127.

keyAction An unsigned 16-bit integer. Pass a value specifying the current
key action. See ÒKey Action ConstantsÓ (page 63) for
descriptions of possible values.

modifierKeyState
An unsigned 32-bit integer. Pass a bit mask indicating the
current state of various modiÞer keys. You may obtain this value
from the modifiers Þeld of the event record as follows:
modifierKeyState = ((EventRecord.modifiers) >> 8) & 0xFF;

keyboardType An unsigned 32-bit integer. Pass a value specifying the physical
keyboard type (that is, the keyboard shape shown by Key Caps).
You may call the low-memory accessor function LMGetKbdType
for this value.

keyTranslateOptions
A bit mask of options for controlling UCKeyTranslate. See ÒKey
Translation Options ConstantsÓ (page 64) for descriptions of
possible values.

deadKeyState A pointer to an unsigned 32-bit value, initialized to zero.
UCKeyTranslate uses this value to store private information
about the current dead key state.

maxStringLength
A value of type UniCharCount. Pass the number of 16-bit Unicode
characters that are contained in the buffer passed in the
unicodeString parameter. This may be a value of up to 255,
although it would be rare to get more than 4 characters.
36 Unicode Utilities Function

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
actualStringLength
A pointer to a value of type UniCharCount. On return this value
contains the actual number of Unicode characters placed into
the buffer passed in the unicodeString parameter.

unicodeString[]
An array of UniChar values. Pass a pointer to the buffer whose
sized is speciÞed in the maxStringLength parameter. On return,
the buffer contains a string of Unicode characters resulting from
the virtual key code being handled. The number of characters in
this string is less than or equal to the value speciÞed in the
maxStringLength parameter.

function result A result code. See ÒUnicode Utilities Result CodesÓ (page 64). If
you pass NULL in the keyLayoutPtr parameter, UCKeyTranslate
returns paramErr. UCKeyTranslate also returns paramErr for an
invalid 'uchr' resource format or for invalid virtualKeyCode or
keyAction values, as well as for NULL pointers to output values.
The result kUCOutputBufferTooSmall (-25340) is returned for an
output string length greater than maxStringLength.

DISCUSSION

The UCKeyTranslate function uses the data in a Unicode keyboard-layout
('uchr') resource to map a combination of virtual key code and modiÞer key
state to a sequence of up to 255 Unicode characters. This mapping process
depends on, and may update, a dead key state; the UCKeyTranslate function and
the 'uchr' resource support multiple dead keys. The mapping may also depend
on the speciÞc type of key action and the type of physical keyboard being used.
The UCKeyTranslate function supports non-ADB keyboards, an extensible set of
modiÞer keys, and other possible extensions.

In most cases, your application does not need to call UCKeyTranslate, since the
Text Services Manager will automatically call it on your behalf to handle input
from a Unicode keyboard layout. However, there may be some circumstances in
which your application should call UCKeyTranslate. For example, your
application may need to determine what character(s) would have been
generated for the virtual key code in the current key-down event if a different
modiÞer-and-key combination had been used.
Unicode Utilities Function 37
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Unicode Utilities Data Types 3

'uchr' 0

The Unicode keyboard-layout ('uchr') resource contains the data necessary to
map virtual key codes to Unicode character codes for a given keyboard layout.
Each installed script system has one or more keyboard-layout resources, which
may be of type 'uchr' or 'KCHR' (an older, non-Unicode keyboard-layout
format). There may be one or more keyboard-layout resources for each
language or region, depending upon the preference of the user.

The 'uchr' resource ID is determined as for the 'KCHR' resource, with one
exception. That is, typically, the resource ID for each Unicode keyboard-layout
resource is within the range of resource ID numbers for its script system. The ID
number of the default keyboard-layout resource for a script system is speciÞed
in the itlbKeys Þeld of the scriptÕs international bundle ('itlb') resource. The
exception to this is that if a given 'uchr' resource speciÞes any Unicode
characters that are not within the range of a single Mac OS encoding (or are not
in any Mac OS encoding), then you must use a negative number for the
resource.

For a given resource ID, the system may contain a 'KCHR' resource, a 'uchr'
resource, or both. If both a 'KCHR' resource and a 'uchr' resource are present,
they must have the same ID, and the 'uchr' resource should match the behavior
of the 'KCHR' resource. The keyboard menu shows each keyboard layout as a
single entry, regardless of whether it is speciÞed by a 'KCHR', a 'uchr', or both.

Note
The 'uchr' resource contains offsets to tables that may be in
any order. Because of the complexity of this format, Rez
may not readily be used to create 'uchr' resources. A
'uchr' resource may be created in any data-description
language that allows the speciÞcation of arbitrary binary
data.
38 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
The UCKeyTranslate Function and the Unicode Keyboard-Layout Resource 3

You pass a pointer to a 'uchr' resource to the function UCKeyTranslate (page 35)
so that the function may use the resource to translate a virtual key code and
produce a string of up to 255 Unicode characters on return.

The basic process by which UCKeyTranslate uses the 'uchr' resource to translate
virtual key codes into Unicode characters is as follows. For details on speciÞc
steps, see the descriptions of the various sections of the 'uchr' resource in ÒThe
Unicode Keyboard-Layout Resource FormatÓ (page 39) and the descriptions for
each of the speciÞc types used in the resource that are referenced below.

5. The bit pattern specifying the modiÞer key state is mapped by the
UCKeyModifiersToTableNum (page 56) structure to a table number.

6. The table number maps to an offset within a UCKeyToCharTableIndex (page 57)
structure that refers to the actual key-code-to-character tables.

7. The key-code-to-character tables map the virtual key code to UCKeyOutput
(page 47) values, for which there are two possibilities:

■ If bits 15 and 14 of the UCKeyOutput value are 01, the UCKeyOutput value is
an index into the offsets contained in a UCKeyStateRecordsIndex (page 58)
structure. If this occurs, the mapping process for the virtual key code
continues on to Step 4.

■ Otherwise, the UCKeyOutput value produces one or more Unicode
characters, either directly or via reference to a UCKeySequenceDataIndex
(page 60) structure. This ends the mapping process for a given virtual key
code.

8. The offsets in a UCKeyStateRecordsIndex structure refer to UCKeyStateRecord
(page 49) dead-key state records.

9. The dead-key state records map from the current dead-key state to one or
more Unicode characters to be output or the following dead-key state (if
any). The mapping process for a given virtual key code may end with the
dead-key state record or, if there is no dead-key state record entry for the key
code, with a default state terminator, as speciÞed in the resourceÕs
UCKeyStateTerminators (page 59) table.

The Unicode Keyboard-Layout Resource Format 3

The 'uchr' format consists of a header information section and Þve key
mapping data sections, as shown in Figure 0-1.
Unicode Utilities Data Types 39
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Figure 0-1 'uchr' resource layout

The header section of a compiled 'uchr' resource contains a structure of type
UCKeyboardLayout (page 53) and an optional structure of type
UCKeyLayoutFeatureInfo (page 56). See Figure 0-2 for an illustration of this
section.

Overview of a 'uchr' resource

Dead-key state records

Default dead-key state terminators

Character key sequences

Resource header

Modifier-key-to-character table numbers

Key-code-to-character tables
40 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Figure 0-2 'uchr' resource header

The elements in the header section of a 'uchr' resource are

■ the resource header format

■ the version of the data in this resource

■ an offset to a UCKeyLayoutFeatureInfo structure, if any

■ a count of the UCKeyboardTypeHeader structures that follow

■ an array of structures of type UCKeyboardTypeHeader (page 54); each
UCKeyboardTypeHeader entry speciÞes a range of physical keyboard types and
contains offsets to each of the key mapping sections to be used for that range
of keyboard types

■ Þrst keyboard type in this entry
■ last keyboard type in this entry
■ offset to the UCKeyModifiersToTableNum structure (required)
■ offset to the UCKeyToCharTableIndex structure (required)
■ offset to the UCKeyStateRecordsIndex structure (optional, may be 0 if there

is no table)

2

2

UCKeyboardLayout
structure

UCKeyboardLayoutFeatureInfo
structure

Header section of a
'uchr' resource Bytes

Offset to UCKeyLayoutFeatureInfo structure

Count of UCKeyboardTypeHeader structures

Array of UCKeyboardTypeHeader structures

UCKeyLayoutFeatureInfo format

Reserved

Size of longest possible output string for this resource

Resource header format

Resource data version

4

4

Variable

2

2

4

Unicode Utilities Data Types 41
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
■ offset to the UCKeyStateTerminators structure (optional, may be 0 if there is
no table)

■ offset to the UCKeySequenceDataIndex structure (optional, may be 0 if there
is no table)

■ the format of the UCKeyLayoutFeatureInfo structure

■ a reserved Þeld

■ a value of type UniCharCount, specifying the longest possible output string to
be produced by this 'uchr' resource

There may be a variable number of each of the following 'uchr' key mapping
sections.

The Þrst key mapping section contains a structure of type
UCKeyModifiersToTableNum (page 56), which maps a modiÞer key combination to
a particular key-code-to-character table number; and alignment bytes. There
may be multiple instances of this entire key mapping section. See Figure 0-3 for
an illustration of this section.

Figure 0-3 'uchr' modifier combination to key-code-to-character table number map

The elements in the Þrst key mapping section of a 'uchr' resource are

■ the format of the UCKeyModifiersToTableNum structure

2

2

UCKeyModifiersToTableNum
structure

First key mapping section of a
'uchr' resource Bytes

Range of modifier combinations

Array of table numbers

Alignment bytes

UCKeyModifiersToTableNum format

Default modifier combination table number

4

Variable

0 to 3
42 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
■ the table number for modiÞer combinations that are outside of the range of
the tableNum ÞeldÕs array; that is, the default (fallback) table number

■ the range of modiÞer bit combinations for which there are entries in the
tableNum ÞeldÕs array

■ an array of indexes into the key-code-to-character table offsets contained in
the UCKeyToCharTableIndex structure in the next section

■ alignment bytes (to a 4-byte boundary)

The second key mapping section contains a structure of type
UCKeyToCharTableIndex (page 57); the list of key-code-to-character tables, each of
which maps a virtual key code to a 16-bit UCKeyOutput value; and alignment
bytes. There may be multiple instances of this entire key mapping section. See
Figure 0-4 for an illustration of this section.

Figure 0-4 'uchr' key-code-to-character tables

The elements in the second key mapping section of a 'uchr' resource are

■ the format of the UCKeyToCharTableIndex structure

■ the number of virtual key codes supported by this resource

■ a count of the key-code-to-character tables

2

2

UCKeyToCharTableIndex
structure

Second key mapping section of a
'uchr' resource Bytes

Count of key-code-to-character tables

Offsets to key-code-to-character tables

Array of key-code-to-character tables

Alignment bytes

UCKeyToCharTableIndex format

Number of key codes supported by this resource

4

Variable

Variable

0-3
Unicode Utilities Data Types 43
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
■ an array of offsets from the beginning of the resource to each of the
key-code-to-character tables

■ an array of key-code-to-character tables containing values of type
UCKeyOutput (page 47)

■ alignment bytes (to a 4-byte boundary)

The third key mapping section is a map to dead-key state records. It contains a
structure of type UCKeyStateRecordsIndex (page 58), which is an index to
UCKeyStateRecord structures; a variable number of dead-key state records of
type UCKeyStateRecord (page 49); and alignment bytes. There may be multiple
instances of this entire key mapping section (or 0; this section need not be
present if no UCKeyOutput value refers to a dead-key state record). See Figure 0-5
for an illustration of this section.

Figure 0-5 'uchr' dead-key state records

The elements in the third key mapping section of a 'uchr' resource are

■ the format of the UCKeyStateRecordsIndex structure

2

2

UCKeyStateRecordsIndex
structure

UCKeyStateRecord
structure (variable number)

Third key mapping section of a
'uchr' resource Bytes

Offsets to UCKeyStateRecord structures

Default character output

Next dead-key state

Count of dead-key state entries

Dead-key state entries

Alignment bytes

UCKeyStateRecordsIndex format

Count of UCKeyStateRecord structures

Variable

2

2

2

Format of dead-key state entries 2

Variable

0 to 3
44 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
■ a count of the dead-key state records to follow

■ an array of offsets from the beginning of the resource to each of the
UCKeyStateRecord values following

Immediately following the UCKeyStateRecordsIndex structure are a variable
number of values of type UCKeyStateRecord (page 49). Any keycode-modiÞer
combination which initiates a dead-key state or which is a valid terminator of a
dead-key state refers to one of these records. However, these records also
permit more complex dead-key state processing, such as a series of transitions
from one dead-key state directly into another in which each transition can emit
a sequence of one or more Unicode characters. Each record contains

■ a value of type UCKeyCharSeq (page 48) specifying the character(s) produced
by the input keycode when no dead-key state is currently in effect

■ a value specifying the dead-key state produced by the input keycode when
no dead-key state is currently in effect

■ a count of the elements in the stateEntryData[] ÞeldÕs array

■ the format of the data in the stateEntryData[] ÞeldÕs array

■ an array of dead-key state entry data; each entry maps from the current
dead-key state to the character(s) that are produced or to the following
dead-key state, if any

■ alignment bytes (to a 4-byte boundary)

The fourth key mapping section contains a structure of type
UCKeyStateTerminators (page 59) and alignment bytes. This is an optional list of
default terminators (characters or sequences) for each state; if this table is not
present or does not extend far enough to have a terminator for the state,
nothing is output when the state terminates. There may be multiple (or 0)
instances of this entire key mapping section. See Figure 0-6 for an illustration of
this section.
Unicode Utilities Data Types 45
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Figure 0-6 'uchr' default dead-key state terminators

The elements in the fourth key mapping section of a 'uchr' resource are

■ the format of the UCKeyStateTerminators structure

■ a count of default dead-key state terminators contained in the
keyStateTerminators ÞeldÕs array

■ an array of default dead-key state terminators, described as values of type
UCKeyCharSeq (page 48)

■ alignment bytes (to a 4-byte boundary)

The Þfth key mapping section of the resource is an optional list of character
sequences; it contains a structure of type UCKeySequenceDataIndex (page 60) and
Unicode character sequences. This permits a single keypress to generate a
sequence of characters, or to generate a single character outside the range that
can be represented directly by a UCKeyOutput (page 47) or UCKeyCharSeq (page 48)
value. There may be multiple (or 0) instances of this entire key mapping section.
See Figure 0-7 for an illustration of this section.

2

2

UCKeyStateTerminators
structure

Fourth key mapping section of a
'uchr' resource Bytes

Array of default dead-key state terminators

Alignment bytes

UCKeyStateTerminators format

Count of default dead-key state terminators

Variable

0 to 3
46 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Figure 0-7 'uchr' character key sequences

The elements in the Þfth key mapping section of a 'uchr' resource are

■ the format of the UCKeySequenceDataIndex structure

■ a count of the Unicode character sequences that follow the
UCKeySequenceDataIndex structure

■ an array of offsets from the beginning of the UCKeySequenceDataIndex
structure to the Unicode character sequences that follow it

■ an array of Unicode character sequences

■ alignment bytes (to a 4-byte boundary)

UCKeyOutput 0

The UCKeyOutput type is a 16-bit value used in the second key mapping section
of the 'uchr' (page 38) resource to specify values in key-code-to-character
tables. You use a UCKeyOutput value in a key-code-to-character table to represent
one of the following:

■ an index to a dead-key state record

■ an index to a Unicode character sequence

■ a single Unicode character

2

2

UCKeySequenceDataIndex
structure

Fifth key mapping section of a
'uchr' resource Bytes

Offsets to character key sequences

Array of character key sequences

Alignment bytes

UCKeySequenceDataIndex format

Count of character key sequences

Variable

Variable

0 to 3
Unicode Utilities Data Types 47
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
typedef UInt16 UCKeyOutput;

The interpretation of a UCKeyOutput value depends on bits 15 and 14.

If they are 01 (that is, for values in the range of 0x4000Ð0x7FFF), then bits 0Ð13
are an index into the keyStateRecordOffsets[] Þeld of a UCKeyStateRecordsIndex
(page 58) structure, which contains offsets to a separate resource-wide list of
dead-key state records.

If they are 10 (that is, for values in the range of 0x8000Ð0xBFFF), then bits 0Ð13
are an index into the charSequenceOffsets[] Þeld of a UCKeySequenceDataIndex
(page 60) structure, which contains offsets to a separate resource-wide list of
Unicode character sequences. If a UCKeySequenceDataIndex structure is not
present in the resource or the index is beyond the end of the list, then the entire
value (that is, bits 0Ð15) is a single Unicode character to emit.

Otherwise (for values in the range of 0x0000Ð0x3FFF and 0xC000Ð0xFFFD), bits
0Ð15 are a single Unicode character, with the exception that a value of
0xFFFEÐ0xFFFF means no character output (these are invalid Unicodes).

Most single Unicode characters that are likely to be generated by direct
keyboard input are in the range 0x0000Ð0x33FF or 0xE000Ð0xFFFD, and so are
covered by the single-character cases above. Characters outside this range can
still be generated by direct keyboard inputÑin which case they must be
represented as 1-character sequences. The Þfth key mapping section of the
'uchr' resource, introduced by the UCKeySequenceDataIndex (page 60) type,
provides for this option.

UCKeyCharSeq 0

The UCKeyCharSeq type is a 16-bit value used in the third key mapping section of
the 'uchr' (page 38) resource to specify the output of a dead-key state.
SpeciÞcally, the dead-key state recordÑa structure of type UCKeyStateRecord
(page 49)Ñuses a UCKeyCharSeq value to contain the character output that
results from the resolution of a given dead-key state. You can use a
UCKeyCharSeq value in a dead-key state record to represent one of the following:

■ an index to a Unicode character sequence

■ a single Unicode character
48 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
UCKeyCharSeq is similar to UCKeyOutput (page 47), but does not itself support
indices into dead-key state records.

typedef UInt16 UCKeyCharSeq;

The interpretation of UCKeyCharSeq depends on bits 15 and 14.

If they are 10 (that is, for values in the range of 0x8000Ð0xBFFF), then bits 0Ð13
are an index into the charSequenceOffsets[] Þeld of a UCKeySequenceDataIndex
(page 60) structure, which contains offsets to a separate resource-wide list of
Unicode character sequences. If a UCKeySequenceDataIndex structure is not
present in the resource or the index is beyond the end of the list, then the entire
value (that is, bits 0Ð15) is a single Unicode character to emit.

Otherwise (for values in the range of 0x0000Ð0x7FFF and 0xC000Ð0xFFFD), bits
0Ð15 are a single Unicode character, with the exception that a value of
0xFFFEÐ0xFFFF means no character output (these are invalid Unicodes).

UCKeyStateRecord 0

The following is the UCKeyStateRecord type, which is used in the third key
mapping section of the 'uchr' (page 38) resource to determine dead-key state
transitions. The UCKeyStateRecord structure permits complex dead-key state
processing, such as a series of transitions from one dead-key state directly into
another, in which each transition can emit a sequence of one or more Unicode
characters.

Any modiÞer key combination which initiates a dead-key state or which is a
valid terminator of a dead-key state refers to one of these records via the
UCKeyOutput (page 47) values in key-code-to-character tables. A UCKeyOutput
value may index the offsets contained in a UCKeyStateRecordsIndex (page 58)
structure, which in turn refers to the actual dead-key state records.

Each UCKeyStateRecord structure maps from the current dead-key state to the
character data to be output or the following dead-key state (if any), as follows:

■ If the current dead-key state is zero (that is, there are no dead keys in effect)
the value in stateZeroCharData is output and the state is set to the value in
stateZeroNextState (this can be used to initiate a dead-key state).
Unicode Utilities Data Types 49
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
■ If the current dead-key state is non-zero and there is an entry for the state in
stateEntryData, then the corresponding value in stateEntryData.charData is
output. The next state is then set to either a kUCKeyStateEntryTerminalFormat
or a kUCKeyStateEntryRangeFormat value; in either case, if the next dead-key
state is 0, this implements a valid dead-key state terminator.

■ If the current dead-key state is non-zero, and there is no entry for the state in
stateEntryData, the default state terminator is output from the 'uchr'
resourceÕs UCKeyStateTerminators (page 59) table for the current state (or
nothing may be output, if there is no UCKeyStateTerminators table or it has no
entry for the current state). Then the value in stateZeroCharData is output,
and the state is set to the value in stateZeroNextState.

struct UCKeyStateRecord {
UCKeyCharSeq stateZeroCharData;
UInt16 stateZeroNextState;
UInt16 stateEntryCount;
UInt16 stateEntryFormat;
UInt32 stateEntryData[kVariableLengthArray];

};

Field descriptions

stateZeroCharData A value of type UCKeyCharSeq (page 48) specifying the
Unicode character(s) produced from a given key code
while no dead-key state is in effect.

stateZeroNextState An unsigned 16-bit integer specifying the dead-key state
produced from a given key code when no previous
dead-key state is in effect. If the UCKeyStateRecord structure
does not intiate a dead-key state (but only provides
terminators for other dead-key states), this will be 0. A
non-zero value speciÞes the resulting new dead-key state
and refers to the current state entry within the
stateEntryData[] Þeld for the following dead-key state
record that is applied.

stateEntryCount An unsigned 16-bit integer specifying the number of
elements in the stateEntryData[] ÞeldÕs array for a given
dead-key state record.

stateEntryFormat An unsigned 16-bit integer specifying the format of the
data in the stateEntryData[] ÞeldÕs array. This should be 0
if the stateEntryCount Þeld is set to 0. Currently available
50 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
values are kUCKeyStateEntryTerminalFormat and
kUCKeyStateEntryRangeFormat; see ÒKey State Entry Format
ConstantsÓ (page 62) for descriptions of these values.

stateEntryData[] An array of dead-key state entries, whose size depends on
their format, but which will always be a multiple of 4 bytes.
Each entry maps from the current dead-key state to the
Unicode character(s) that result when a given character key
is pressed or to the next dead-key state, if any. The format
of the entry is speciÞed by the stateEntryFormat Þeld to be
either that of type UCKeyStateEntryTerminal (page 51) or
UCKeyStateEntryRange (page 52).

UCKeyStateEntryTerminal 0

The following is the UCKeyStateEntryTerminal type, which is used in the
stateEntryData[] Þeld of the UCKeyStateRecord (page 49) structure. You should
use the UCKeyStateEntryTerminal format for simple dead-key states that are
terminated by a single keystroke, as in the U.S. keyboard layout. Each entry
maps from the current dead-key state to the Unicode character(s) produced
when a given character key is pressed that terminates the dead-key state.

struct UCKeyStateEntryTerminal {
UInt16 curState;
UCKeyCharSeq charData;

};

Field descriptions

curState An unsigned 16-bit integer specifying the current dead-key
state.

charData A value of type UCKeyCharSeq (page 48) specifying the
Unicode character(s) produced when a given character key
is pressed.
Unicode Utilities Data Types 51
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
UCKeyStateEntryRange 0

The following is the UCKeyStateEntryRange type, which is used in the
stateEntryData[] Þeld of the UCKeyStateRecord (page 49) structure. You should
use the UCKeyStateEntryRange format for complex (multiple) dead-key states.

For each virtual key code, an entry in its dead-key state record maps from the
current dead-key state to the Unicode character(s) produced or to the next
dead-key state, as follows.

If the current dead-key state is within a valid dead-key state range for the given
input characterÑthat is, if its value is greater than or equal to curStateStart
and less than or equal to curStateStart + curStateRangeÑthen

■ If the base charData value for the given dead-key state range is in the range
of valid Unicode characters, a character is produced and the dead-key state
may be terminated.

and/or

■ If the base nextState value is not 0, a new dead-key state is produced.

In the Þrst case, the output character is determined as follows: The base
charData value is incremented by the resulting product of (the difference
between the current state and the start of that stateÕs range) and (a multiplier).
That is: charData += (curState - curStateStart) * deltaMultiplier

Similarly, in the second case, the resulting dead-key state, which is the new
curState value, is determined as follows: The base nextState value is
incremented by the resulting product of (the difference between the current
state and the start of that stateÕs range) and (a multiplier). That is:
nextState += (curState - curStateStart) * deltaMultiplier

The Þelds of the UCKeyStateEntryRange structure are brießy described below.

struct UCKeyStateEntryRange {
UInt16 curStateStart;
UInt8 curStateRange;
UInt8 deltaMultiplier;
UCKeyCharSeq charData;
UInt16 nextState;

};
52 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Field descriptions

curStateStart An unsigned 16-bit integer specifying the beginning of a
given dead-key state range.

curStateRange An unsigned 8-bit integer specifying the number of entries
in a given dead-key state range.

deltaMultiplier An unsigned 8-bit integer.
charData A value of type UCKeyCharSeq (page 48). This base character

value is used to determine the actual Unicode character(s)
produced when a given dead-key state terminates.

nextState An unsigned 16-bit integer. This base dead-key state value
is used to determine the following dead-key state, if any.

UCKeyboardLayout 0

The following is the UCKeyboardLayout type, which is used in the 'uchr'
(page 38) resource header. It speciÞes version and format information, offsets to
the various subtables, and an array of UCKeyboardTypeHeader entries.

struct UCKeyboardLayout {
UInt16 keyLayoutHeaderFormat;
UInt16 keyLayoutDataVersion;
ByteOffset keyLayoutFeatureInfoOffset;
ItemCount keyboardTypeCount;
UCKeyboardTypeHeader keyboardTypeList[kVariableLengthArray];

};

Field descriptions

keyLayoutHeaderFormat
An unsigned 16-bit integer identifying the format of the
structure. Set to kUCLayoutHeaderFormat.

keyLayoutDataVersion
An unsigned 16-bit integer identifying the version of the
data in the resource, in binary code decimal format. For
example, 0x0100 would equal version 1.0.

keyLayoutFeatureInfoOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeyLayoutFeatureInfo (page 56), if such
Unicode Utilities Data Types 53
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
is used in the resource. May be 0 if no
UCKeyLayoutFeatureInfo table is included in the resource.

keyboardTypeCount An unsigned 32-bit integer specifying the number of
UCKeyboardTypeHeader structures in the keyboardTypeList[]
ÞeldÕs array.

keyboardTypeList[] A variable-length array containing structures of type
UCKeyboardTypeHeader (page 54). Each
UCKeyboardTypeHeader entry speciÞes a range of physical
keyboard types and contains offsets to each of the key
mapping sections to be used for that range of keyboard
types.

UCKeyboardTypeHeader 0

The following is the UCKeyboardTypeHeader type, which speciÞes a range of
physical keyboard types and contains offsets to each of the key mapping
sections to be used for that range of keyboard types. Typically, you use an array
of UCKeyboardTypeHeader structures, of which the Þrst entry in the array is the
default and will be used if the keyboard type does not fall within the range for
any other entry. See UCKeyboardLayout (page 53) for a further discussion of the
context for use of the UCKeyboardTypeHeader type.

struct UCKeyboardTypeHeader {
UInt32 keyboardTypeFirst;
UInt32 keyboardTypeLast;
// The next 5 fields are offsets to the five key mapping sections
ByteOffset keyModifiersToTableNumOffset;
ByteOffset keyToCharTableIndexOffset;
ByteOffset keyStateRecordsIndexOffset;
ByteOffset keyStateTerminatorsOffset;
ByteOffset keySequenceDataIndexOffset;

};

Field descriptions

keyboardTypeFirst An unsigned 32-bit integer specifying the Þrst keyboard
type in this entry. For the initial entry (that is, the default
entry) in an array of UCKeyboardTypeHeader structures, you
should set this value to 0. The initial UCKeyboardTypeHeader
54 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
entry will be used if the keyboard type passed to
UCKeyTranslate does not match any other entry, that is, if it
is not within the range of values speciÞed by
keyboardTypeFirst and keyboardTypeLast for any entry.

keyboardTypeLast An unsigned 32-bit integer specifying the last keyboard
type in this entry. For the initial entry (that is, the default
entry) in an array of UCKeyboardTypeHeader structures, you
should set this value to 0.

keyModifiersToTableNumOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeyModifiersToTableNum (page 56). The
'uchr' resource requires a UCKeyModifiersToTableNum
structure, therefore this Þeld must contain a non-zero
value.

keyToCharTableIndexOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeyToCharTableIndex (page 57). The
'uchr' resource requires a UCKeyToCharTableIndex structure,
therefore this Þeld must contain a non-zero value.

keyStateRecordsIndexOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeyStateRecordsIndex (page 58), if such
is used in the resource. This value may be 0 if no dead-key
state records are included in the resource.

keyStateTerminatorsOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeyStateTerminators (page 59), if such is
used in the resource. This value may be 0 if no dead-key
state terminators are included in the resource.

keySequenceDataIndexOffset
An unsigned 32-bit integer providing an offset to a
structure of type UCKeySequenceDataIndex (page 60), if such
is used in the resource. This value may be 0 if no character
key sequences are included in the resource.
Unicode Utilities Data Types 55
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
UCKeyLayoutFeatureInfo 0

The following is the UCKeyLayoutFeatureInfo type, which is used in the header
section of the 'uchr' (page 38) resource.

struct UCKeyLayoutFeatureInfo {
UInt16 keyLayoutFeatureInfoFormat;
UInt16 reserved;
UniCharCount maxOutputStringLength;

};

Field descriptions

keyLayoutFeatureInfoFormat
An unsigned 16-bit integer identifying the format of the
UCKeyLayoutFeatureInfo structure. Set to
kUCKeyLayoutFeatureInfoFormat.

reserved Reserved. Set to 0.
maxOutputStringLength

An unsigned 32-bit integer specifying the longest possible
output string of Unicode characters to be produced by this
'uchr' resource.

UCKeyModiÞersToTableNum 0

The following is the UCKeyModifiersToTableNum type, which is used in the Þrst
key mapping section of the 'uchr' (page 38) resource. It maps a modiÞer key
combination to a particular key-code-to-character table number.

struct UCKeyModifiersToTableNum {
UInt16 keyModifiersToTableNumFormat;
UInt16 defaultTableNum;
ItemCount modifiersCount;
UInt8 tableNum[kVariableLengthArray];

};
56 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Field descriptions

keyModifiersToTableNumFormat
An unsigned 16-bit integer identifying the format of the
UCKeyModifiersToTableNum structure. Set to
kUCKeyModifiersToTableNumFormat.

defaultTableNum An unsigned 16-bit integer identifying the table number to
use for modiÞer combinations that are outside of the range
included in the tableNum[] Þeld.

modifiersCount An unsigned 32-bit integer specifying the range of modiÞer
bit combinations for which there are entries in the
tableNum[] Þeld.

tableNum[] An array of unsigned 8-bit integers that map modiÞer bit
combinations to table numbers. These values are indexes
into the keyToCharTableOffsets[] array in
UCKeyToCharTableIndex (page 57); these, in turn, are offsets
to the actual key-code-to character tables, which follow the
UCKeyToCharTableIndex structure in the resource.

UCKeyToCharTableIndex 0

The following is the UCKeyToCharTableIndex type, which is used in the second
key mapping section of the 'uchr' (page 38) resource. It precedes the list of
key-code-to-character tables, each of which maps a key code to a 16-bit
UCKeyOutput (page 47) value.

struct UCKeyToCharTableIndex {
UInt16 keyToCharTableIndexFormat;
UInt16 keyToCharTableSize;
ItemCount keyToCharTableCount;
ByteOffset keyToCharTableOffsets[keyToCharTableCount];

};

Field descriptions

keyToCharTableIndexFormat
An unsigned 16-bit integer identifying the format of the
UCKeyToCharTableIndex structure. Set to
kUCKeyToCharTableIndexFormat.
Unicode Utilities Data Types 57
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
keyToCharTableSize
An unsigned 16-bit integer specifying the number of virtual
key codes supported by this resource; for ADB keyboards
this is 128 (with virtual key codes ranging from 0 to 127).

keyToCharTableCount
An unsigned 32-bit integer specifying the number of
key-code-to-character tables, typically 6 to 12.

keyToCharTableOffsets[]
An array of offsets from the beginning of the 'uchr'
resource to each of the UCKeyOutput (page 47)
key-code-to-character tables in the keyToCharData[] array
that follows this structure in the resource.

UCKeyStateRecordsIndex 0

The following is the UCKeyStateRecordsIndex type, which is used in the third
key mapping section of the 'uchr' (page 38) resource. The
UCKeyStateRecordsIndex structure is an index to dead-key state records of type
UCKeyStateRecord (page 49). Any keycode-modiÞer combination which initiates
a dead-key state or which is a valid terminator of a dead-key state refers to one
of these records, via the UCKeyStateRecordsIndex structure.

struct UCKeyStateRecordsIndex {
UInt16 keyStateRecordsIndexFormat;
UInt16 keyStateRecordCount;
ByteOffset keyStateRecordOffsets[keyStateRecordCount];

};

Field descriptions

keyStateRecordsIndexFormat
An unsigned 16-bit integer identifying the format of the
UCKeyStateRecordsIndex structure. Set to
kUCKeyStateRecordsIndexFormat.

keyStateRecordCount
An unsigned 16-bit integer specifying the number of
dead-key state records that are included in the resource.
58 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
keyStateRecordOffsets[]
An array of offsets from the beginning of the resource to
each of the UCKeyStateRecord (page 49) values that follow
this structure in the 'uchr' resource.

UCKeyStateTerminators 0

The following is the UCKeyStateTerminators type, which is used in the fourth
key mapping section of the 'uchr' (page 38) resource. The
UCKeyStateTerminators structure contains the list of default terminators
(characters or sequences) for each dead-key state that is handled by a 'uchr'
(page 38) resource. When a dead-key state is in effect but a modiÞer-and-key
combination is typed which has no special handling for that state, the default
terminator for the state is output before the modiÞer-and-key combination is
processed. If this table is not present or does not extend far enough to have a
terminator for the state, nothing is output when the state terminates.

struct UCKeyStateTerminators {
UInt16 keyStateTerminatorsFormat;
UInt16 keyStateTerminatorCount;
UCKeyCharSeq keyStateTerminators[keyStateTerminatorCount];

};

Field descriptions

keyStateTerminatorsFormat
An unsigned 16-bit integer identifying the format of the
UCKeyStateTerminators structure. Set to
kUCKeyStateTerminatorsFormat.

keyStateTerminatorCount
An unsigned 16-bit integer specifying the number of
default dead-key state terminators contained in the
keyStateTerminators[] array.

keyStateTerminators[]
An array of default dead-key state terminators, described
as values of type UCKeyCharSeq (page 48);
keyStateTerminators[0] is the terminator for state 1, and so
on.
Unicode Utilities Data Types 59
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
UCKeySequenceDataIndex 0

The following is the UCKeySequenceDataIndex type, which is used in the Þfth key
mapping section of the 'uchr' (page 38) resource. The UCKeySequenceDataIndex
structure contains offsets to a list of character sequences for the 'uchr' resource.
This permits a single keypress to generate a sequence of characters, or to
generate a single character outside the range that can be represented directly by
a UCKeyOutput or UCKeyCharSeq value.

struct UCKeySequenceDataIndex {
UInt16 keySequenceDataIndexFormat;
UInt16 charSequenceCount;
UInt16 charSequenceOffsets[charSequenceCount+1];

};

Field descriptions

keySequenceDataIndexFormat
An unsigned 16-bit integer identifying the format of the
UCKeySequenceDataIndex structure. Set to
kUCKeySequenceDataIndexFormat.

charSequenceCount An unsigned 16-bit integer specifying the number of
Unicode character sequences that follow the end of the
UCKeySequenceDataIndex structure.

charSequenceOffsets[]
An array of offsets from the beginning of the
UCKeySequenceDataIndex structure to the Unicode character
sequences that follow it. Because a given offset indicates
both the beginning of a new character sequence and the
end of the sequence that precedes it, the length of each
sequence is determined by the difference between the offset
to that sequence and the value of the next offset in the
array. The array contains one more entry than the number
of character sequences; the Þnal entry is the offset to the
end of the Þnal character sequence.
60 Unicode Utilities Data Types

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Unicode Utilities Constants 3

Key Output Index Masks 0

You can use the following masks to test the bits in values of type UCKeyOutput
(page 47).

enum {
kUCKeyOutputStateIndexMask = 0x4000,
kUCKeyOutputSequenceIndexMask = 0x8000,
kUCKeyOutputTestForIndexMask = 0xC000, // test bits 14-15
kUCKeyOutputGetIndexMask = 0x3FFF // get bits 0-13

};

Constant descriptions

kUCKeyOutputStateIndexMask
If the bit speciÞed by this mask is set, the UCKeyOutput value
contains an index into a UCKeyStateRecordsIndex structure.

kUCKeyOutputSequenceIndexMask
If the bit speciÞed by this mask is set, the UCKeyOutput value
contains an index into a UCKeySequenceDataIndex structure.

kUCKeyOutputTestForIndexMask
You can use this mask to test the bits in the UCKeyOutput
value that determine whether the value contains an index
to any other structure. If both bits speciÞed by this mask
are clear, the UCKeyOutput value does not contain an index
to any other structure.

kUCKeyOutputGetIndexMask
You can use this mask to test the bits in a UCKeyOutput value
that provide the actual index to another structure.
Unicode Utilities Constants 61
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Key State Entry Format Constants 0

The following constants are used in structures of type UCKeyStateRecord
(page 49) to indicate the format for dead-key state records.

enum {
kUCKeyStateEntryTerminalFormat = 0x0001,
kUCKeyStateEntryRangeFormat = 0x0002

};

Constant descriptions

kUCKeyStateEntryTerminalFormat
SpeciÞes that the entry format is that of the
UCKeyStateEntryTerminal (page 51) structure. Use this
format for simple (single) dead-key states, as in the U.S.
keyboard layout.

kUCKeyStateEntryRangeFormat
SpeciÞes that the entry format is that of the
UCKeyStateEntryRange (page 52) structure. Use this format
for complex (multiple) dead-key states, as in the hex input
and Hangul input keyboard layouts.

Key Format Code Constants 0

The following constants are those currently deÞned to be used within the
various structures in a 'uchr' (page 38) resource to indicate each structureÕs
format.

enum {
kUCKeyLayoutHeaderFormat = 0x1002,
kUCKeyLayoutFeatureInfoFormat = 0x2001,
kUCKeyModifiersToTableNumFormat = 0x3001,
kUCKeyToCharTableIndexFormat = 0x4001,
kUCKeyStateRecordsIndexFormat = 0x5001,
kUCKeyStateTerminatorsFormat = 0x6001,
kUCKeySequenceDataIndexFormat = 0x7001

};
62 Unicode Utilities Constants

10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
Constant descriptions

kUCKeyLayoutHeaderFormat
The format of a structure of type UCKeyboardLayout
(page 53).

kUCKeyLayoutFeatureInfoFormat
The format of a structure of type UCKeyLayoutFeatureInfo
(page 56).

kUCKeyModifiersToTableNumFormat
The format of a structure of type UCKeyModifiersToTableNum
(page 56).

kUCKeyToCharTableIndexFormat
The format of a structure of type UCKeyToCharTableIndex
(page 57).

kUCKeyStateRecordsIndexFormat
The format of a structure of type UCKeyStateRecordsIndex
(page 58).

kUCKeyStateTerminatorsFormat
The format of a structure of type UCKeyStateTerminators
(page 59).

kUCKeySequenceDataIndexFormat
The format of a structure of type UCKeySequenceDataIndex
(page 60).

Key Action Constants 0

You can supply the following constants for the keyAction parameter of the
function UCKeyTranslate (page 35) to indicate the current key action.

enum {
kUCKeyActionDown = 0,
kUCKeyActionUp = 1,
kUCKeyActionAutoKey = 2,
kUCKeyActionDisplay = 3

};

Constant descriptions

kUCKeyActionDown The user is pressing the key.
kUCKeyActionUp The user is releasing the key.
Unicode Utilities Constants 63
10/1/98 Confidential draft.  Apple Computer, Inc.

Unicode Utilities Reference
kUCKeyActionAutoKey
The user has the key in an Òauto-keyÓ pressed state; that is,
the user is holding down the key for an extended period of
time and is thereby generating multiple key strokes from
the single key.

kUCKeyActionDisplay
The user is requesting information for key display, as in the
Key Caps application.

Key Translation Options Constants 0

The following are the currently deÞned bit assignments and masks for the
keyTranslateOptions parameter of the function UCKeyTranslate (page 35).

enum {
kUCKeyTranslateNoDeadKeysBit = 0
kUCKeyTranslateNoDeadKeysMask = 1L << kUCKeyTranslateNoDeadKeysBit

};

Constant descriptions

kUCKeyTranslateNoDeadKeysBit
The bit number of the bit that turns off dead-key
processing. This prevents setting any new dead-key states,
but allows completion of any dead-key states currently in
effect.

kUCKeyTranslateNoDeadKeysMask
The mask for the bit that turns off dead-key processing.
This prevents setting any new dead-key states, but allows
completion of any dead-key states currently in effect.

Unicode Utilities Result Codes 3

The Unicode Utilities result codes are listed below.

kUCOutputBufferTooSmall -25340 Output buffer too small for Unicode string
result
64 Unicode Utilities Result Codes

10/1/98 Confidential draft.  Apple Computer, Inc.

4 WhatÕs New With Text Services
Manager 1.5
Contents
About Text Services Manager 1.5 67
Text Services Manager 1.5 Reference 67

Gestalt Selectors for Text Services Manager 1.5 68
Functions for Text Services Manager 1.5 68

UCTextServiceEvent 68
NewCServiceWindow 69

Constants for Text Services Manager 1.5 69
Unicode Document and Text Service Constants 69
Language and Script Constants 70
Unicode Text Services Manager Apple Event Constants 70
Contents 65
10/1/98 Confidential draft.  Apple Computer, Inc.

66 Contents

10/1/98 Confidential draft.  Apple Computer, Inc.

A P P E N D I X A

Figure A-0
Listing A-0
Table A-0
WhatÕs New With Text Services
Manager 1.5 A

This appendix covers whatÕs new in Text Services Manager 1.5 For information
about Text Services Manager 1.0, see Inside Macintosh: Text.

IMPORTANT

This appendix is an incomplete preliminary draft. While
every effort has been made to ensure accuracy, sections
with change bars have not received Þnal technical review.

About Text Services Manager 1.5 4

The Text Services Manager was originally released with System 7.1. Version 1.0
of the Text Services Manager provided support for input methods in a limited
set of script systems (Japanese, Korean, and SimpliÞed and Traditional
Chinese). Text Services Manager 1.5 supports input methods for all script
systems available on the Mac OS, as well as Unicode, and is fully PowerPC
native.

Text Services Manager 1.5 Reference 4

For descriptions of Text Services Manager 1.5 Gestalt selectors, see ÒGestalt
Selectors for Text Services Manager 1.5Ó (page A-68).

For descriptions of Text Services Manager 1.5 functions, see ÒFunctions for Text
Services Manager 1.5Ó (page A-68).

For descriptions of Text Services Manager 1.5 constants, see ÒConstants for Text
Services Manager 1.5Ó (page A-69).
About Text Services Manager 1.5 A-67
Draft. Confidential.  Apple Computer, Inc. 10/1/98

A P P E N D I X A

What’s New With Text Services Manager 1.5
Gestalt Selectors for Text Services Manager 1.5 A

The following gestalt selector and value can be used to determine the version of
the Text Services Manager.

enum {
gestaltTSMgrVersion = 'tsmv',
gestaltTSMgr15 = 0x0150

};

Discussion to come.

Functions for Text Services Manager 1.5 A

UCTextServiceEvent A

Routes an event to a speciÞed Unicode-supportive text service component.

pascal ComponentResult UCTextServiceEvent (
ComponentInstance ts,
short numOfEvents,
EventRecord *event,
UniChar unicodeString[],
UniCharCount unicodeStrLength);

ts A value of type ComponentInstance identifying the currently
executing instance of the text service component.

numOfEvents A short integer value specifying the number of events that the
Text Services Manager is passing.

event A pointer to the event record for the event that the Text Services
Manager is passing to the text service.

unicodeString[]
An array of UniChar values. The Text Services Manager passes
the text service the string of Unicode characters resulting from
A-68 Text Services Manager 1.5 Reference

Draft. Confidential.  Apple Computer, Inc. 10/1/98

A P P E N D I X A

What’s New With Text Services Manager 1.5
the virtual key code being handled. The number of characters in
this string is equal to the value speciÞed in the unicodeStrLength
parameter.

unicodeStrLength
A value of type UniCharCount. The number of 16-bit Unicode
characters contained in the buffer passed in the unicodeString[]
parameter.

function result A value of type ComponentResult. If the text service component
handles the event, it should return a nonzero value and change
the event to a null event. If it does not handle the event, it
should return 0.

DISCUSSION

Partial Unicode and full Unicode input methods are no longer called via the
TextServiceEvent function. For any Unicode input method, the Text Services
Manager always uses the new UCTextServiceEvent function.

The Text Services Manager forwards the key event to the input method in all
cases, even when no output is produced by the 'uchr' resource. Therefore, the
input method should be prepared to be called by the UCTextServiceEvent
function with just the key event and no Unicode text (unicodeString=NULL,
unicodeStrLength=0). This allows input methods to process Option-Shift
equivalents without the need to override the keyboard layout data used by the
keyboard driver, as sometimes has been necessary in the past.

NewCServiceWindow A

To come.

Constants for Text Services Manager 1.5 A

Unicode Document and Text Service Constants A

Discussion to come.
Text Services Manager 1.5 Reference A-69
Draft. Confidential.  Apple Computer, Inc. 10/1/98

A P P E N D I X A

What’s New With Text Services Manager 1.5
enum {
kUnicodeDocument = 'udoc',

/* TSM Document type for Unicode-savvy application */
kUnicodeTextService = 'utsv'

/* Component type for Unicode Text Service */
};

Language and Script Constants A

Discussion to come.

enum {
kUnknownLanguage= 0xFFFF,
kUnknownScript = 0xFFFF,
kNeutralScript = 0xFFFF

};

Unicode Text Services Manager Apple Event Constants A

Discussion to come.

kUnicodeNotFromInputMethod'unim'; Unicode text when event not handled by
Input Method or no Input Method

; AppleScript 1.3: New Text types
typeUnicodeText'utxt'
typeStyledUnicodeText'sutx'
A-70 Text Services Manager 1.5 Reference

Draft. Confidential.  Apple Computer, Inc. 10/1/98

A P P E N D I X A

What’s New With Text Services Manager 1.5
Text Services Manager 1.5 Reference A-71
Draft. Confidential.  Apple Computer, Inc. 10/1/98

T H E A P P L E P U B L I S H I N G S Y S T E M
This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobeª Illustrator and
Adobe Photoshop.

Text type is Palatino¨ and display type is
Helvetica¨. Bullets are ITC Zapf
Dingbats¨. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Donna S. Lee

Acknowledgments to Jim Chan, Andy
Daniels, Peter Edberg, Michael Grady, and
Eric Simenel.
10/1/98 Confidential draft.  Apple Computer, Inc.

T H E A P P L E P U B L I S H I N G S Y S T E M
10/1/98 Confidential draft.  Apple Computer, Inc.

	About Unicode Input
	A Brief Introduction to International Text on the Mac OS
	Languages, Writing Systems, Scripts, and Orthographies
	Script Systems and Script Codes
	Characters, Character Encodings, and Unicode
	Keyboards and Input Methods
	The Text Services Manager

	About Unicode Text on the Mac OS
	Unicode Script Codes
	Unicode Keyboard-Layout Resource and the UCKeyTranslate Function
	Unicode in the Keyboard Menu

	Supporting Unicode Input in Applications and Input Methods
	Supporting Unicode Input in Applications
	Identifying an Application as Supporting Unicode
	Event Handling for Unicode Text
	Modifying Existing Apple Event Handlers for Unicode
	Supporting the Unicode (Not From Input Method) Apple Event
	Handling Low-Level Keyboard Events for Applications

	Providing Unicode Support in Input Methods
	Identifying an Input Method as Supporting Unicode
	Responding to the UCTextServiceEvent Function
	Supporting Unicode in Text Services Manager Apple Events
	Handling Low-Level Keyboard Events for Input Methods
	Handling Compatibility Issues

	Using the UCKeyTranslate Function
	Creating a 'uchr' Resource

	Unicode Utilities Reference
	Unicode Utilities Function
	UCKeyTranslate

	Unicode Utilities Data Types
	'uchr'
	UCKeyOutput
	UCKeyCharSeq
	UCKeyStateRecord
	UCKeyStateEntryTerminal
	UCKeyStateEntryRange
	UCKeyboardLayout
	UCKeyboardTypeHeader
	UCKeyLayoutFeatureInfo
	UCKeyModifiersToTableNum
	UCKeyToCharTableIndex
	UCKeyStateRecordsIndex
	UCKeyStateTerminators
	UCKeySequenceDataIndex

	Unicode Utilities Constants
	Key Output Index Masks
	Key State Entry Format Constants
	Key Format Code Constants
	Key Action Constants
	Key Translation Options Constants

	Unicode Utilities Result Codes
	About Text Services Manager 1.5
	Text Services Manager 1.5 Reference
	Gestalt Selectors for Text Services Manager 1.5
	Functions for Text Services Manager 1.5
	UCTextServiceEvent
	NewCServiceWindow

	Constants for Text Services Manager 1.5
	Unicode Document and Text Service Constants
	Language and Script Constants
	Unicode Text Services Manager Apple Event Constants

