

August 25, 1999
Technical Publications
© 1999 Apple Computer, Inc.

I N S I D E M A C I N T O S H

Thread Manager

8/25/99

 Apple Computer, Inc.

Apple Computer, Inc.
© 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the
United States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
PowerPC is a trademark of
Information Business Machines
Corporation, used under license
therefrom.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

3

8/25/99

 Apple Computer, Inc.

Contents

Figures, Tables, and Listings 5

Chapter 1

Thread Manager

7

Introduction to Threads 8
About the Thread Manager 9

Scheduling 11
The Main Thread 13
Custom Scheduler 13

Default Saved Thread Context 15
Custom Context-Switching Function 16

Thread Stacks 17
Creating and Disposing of Threads 18

Using the Thread Manager 19
Determining Attributes of the Thread Manager 19
Creating and Allocating a Thread 20

Creating a Pool of Threads 22
Allocating a Thread 24

Turning Scheduling Off 28
Working With Stacks 29

Creating Dialog Boxes That Yield 31
Passing Input and Output Parameters to a New Thread 33
Using Threads With I/O 36

Thread Manager Reference 44
Data Types 44

Gestalt Selector and Response Bits 44
The Thread State 45
The Thread Task Reference 46
The Thread Type 46
The Thread ID 47
Thread Options 48
The Scheduler Information Structure 49

Thread Manager Functions 49

4

8/25/99

 Apple Computer, Inc.

Creating and Getting Information About Thread Pools 50
Creating and Disposing of Threads 56
Getting Information About Specific Threads 60
Scheduling Threads 64
Preventing Scheduling 69
Getting Information and Scheduling Threads During Interrupts 72
Installing Custom Scheduling, Switching, Terminating, and Debugging

Functions 77
Application-Defined Routines 85

Summary of the Thread Manager 92
C Summary 92

Constants and Data Types 92
Thread Manager functions 93

Pascal Summary 96
Constants and Data Types 96
Thread Manager Functions 98

Assembly Language Information 100
Result Codes 101

Glossary

103

Index

105

5

8/25/99

 Apple Computer, Inc.

Figures, Tables, and Listings

Chapter 1

Thread Manager

7

Figure 1-1

Relationship of Thread Manager and Process Manager 10

Figure 1-2

Thread scheduling model 12

Figure 1-3

Thread Manager default and custom scheduling mechanisms 14

Figure 1-4

Custom context-switching function 17

Figure 1-5

Using a completion routine to wake up a thread making an
asynchronous I/O call 37

Figure 1-6

Using two threads to handle an asynchronous I/O call 38

Table 1-1

Registers in the 680x0 default thread context 15

Table 1-2

Registers in the PowerPC default thread context 16

Listing 1-1

Setting up the main thread 20

Listing 1-2

Creating a thread pool 23

Listing 1-3

Allocating threads 24

Listing 1-4

Using the

gPhilo

 structure in a subroutine 27

Listing 1-5

Marking a critical section of code 28

Listing 1-6

Increasing the size of the main thread’s stack area 30

Listing 1-7

Determining and increasing the stack size of a thread 31

Listing 1-8

Creating a dialog box that yields 31

Listing 1-9

Passing data between threads 33

Listing 1-10

Making an asynchronous I/O call with two threads 39

7

8/25/99

 Apple Computer, Inc.

C H A P T E R 1

Thread Manager 1Figure 1-0
Listing 1-0
Table 1-0

This chapter describes how you can use the Thread Manager to provide
threads, or multiple points of execution, in an application. You can think of the
Thread Manager as an enhancement to the Process Manager, which still governs
how applications work together in the Macintosh multitasking environment.
Therefore, you should already be familiar with the concepts in

Inside Macintosh:
Processes

 and

Inside Macintosh: Memory

 before reading this chapter.

Read this chapter if you are interested in developing an application with more
than one thread (called a

threaded application

 in this document).

If your
application uses no Thread Manager functions, the Process Manager treats it as
a single-threaded application (called a

nonthreaded application

 in this
document).The Process Manager does call the Thread Manager at launch time
to create the main thread for the application, but it does this transparently and
in no way affects the performance of your application.

This chapter begins by describing the

advantages of using threads within an
application context. It describes the scheduling model that the Thread manager
provides, the context information that the Thread Manager saves when it
switches one thread out and another one in, and it describes thread stacks. It
then shows how to

�

create threads and thread pools and set them up to run

�

turn scheduling on and off

�

work with stacks

�

create dialog boxes that yield control to other threads

�

pass information between threads

�

install custom scheduling and context-switching functions

�

use threads to make asynchronous I/O calls

C H A P T E R 1

Thread Manager

8

Introduction to Threads

8/25/99

 Apple Computer, Inc.

Introduction to Threads 1

Threads

, also known as

lightweight tasks

, are a way to develop concurrency, or
multiple points of execution, within a particular context, such as in an operating
system or application. The Thread Manager offers threads for use within an
application context only. It does not provide threads to be used on a
systemwide basis.

Threads offer a new and better way to structure applications for simplicity,
efficiency, and responsiveness. With multiple points of execution, you can do
things such as

�

separate the user interface from time-consuming tasks to guarantee
responsiveness to the user

�

place a modal dialog box in one thread and a function to process data or
perform calculations in a different thread so that your application can
continue working rather than sitting and waiting while a user decides which
choice to make in the dialog box

�

simplify your code by placing each element of a simulation in a separate
thread

�

increase the efficiency of your application by eliminating many VBL and
Time Manager tasks.

Although you can already do many of the things that threads enable you to do,
the implementation without threads can be difficult and inelegant. For example,
with null events at idle time you can write idle-processing procedures that
bring a measure of concurrency to your application. However, threads offer
many advantages not available with other methods of achieving concurrency in
an application program.

A major benefit of using threads is that you can enhance the logical structure of
your program. Using threads is in many ways like adding an object layer to
your program. For example, one way to write a traffic simulation program is to
create a separate thread to control each element of the simulation—that is, the
traffic signals and the individual cars. You could think of each thread as an
object with particular capabilities. In any case, programs with threads are easier
to write and much easier to understand than programs that achieve

C H A P T E R 1

Thread Manager

About the Thread Manager

9

8/25/99

 Apple Computer, Inc.

concurrency in a roundabout fashion, such as using idle-processing procedures
or state machines.

A thread consists of application code and the processor state or context to
execute it. The

thread context

 consists of a register set, a program counter, and a
stack. Each thread shares the address space, file access paths, and other system
resources of the application process in which it runs. Therefore, when the
Thread Manager switches control from one thread to another, the amount of
context information it must save is relatively small and the switch is much
faster than that between application processes.

About the Thread Manager 1

The Thread Manager manages threads within an application context. It
provides routines to create, get information about, schedule, and dispose of
threads. The Process Manager, on the other hand, is responsible for switching
the context between various application processes within the Macintosh
multitasking environment. Figure 1-1 illustrates the relationship between the
Thread Manager and the Process Manager.

C H A P T E R 1

Thread Manager

10

About the Thread Manager

8/25/99

 Apple Computer, Inc.

Figure 1-1

Relationship of Thread Manager and Process Manager

Threads in an application are available to run only when the Process Manager
schedules the application to run. For example, when the Process Managers
switches in application A, its threads can run. The Thread Manager saves the
thread context information each time it switches out one thread and schedules a
different one to run. When the Process Manager switches in application B, the
threads in application A are no longer available to run and the Thread Manager
now manages the threads in application B.

Process
Manager

Thread
Manager

Application A Application B

Threads in
application A

Threads in
application B

C H A P T E R 1

Thread Manager

About the Thread Manager

11

8/25/99

 Apple Computer, Inc.

Scheduling 1

The Thread Manager provides a single, cooperative method of scheduling
threads. In cooperative scheduling, a thread must explicitly yield control to give
other threads an opportunity to run.

Previously, the Thread Manager supported preemptive scheduling as well as
cooperative scheduling but currently only cooperative scheduling is supported.

The situation for threads within an application is similar to that of applications
in a multitasking environment. Every application must have periodic yielding
calls that allow the Process Manager to schedule other applications as
necessary—for example, when a user presses the mouse button to select another
application to run. Likewise, every thread within an application must make
regular yield calls to allow other threads to run. The Thread Manager provides
the following functions to yield control to other threads:

�

YieldToAnyThread

, which yields control to the next thread available to run

�

YieldToThread

, which yields control to a specific thread.

�

SetThreadState

, which you can use to change the state of the current thread
from running to ready or stopped. When you do so, you either specify a new
thread to run or let the Thread Manager schedule the next available thread.

As you can see from the three calls that yield control from the current thread,
there are two ways to determine the next thread to run. One way is for you to
specify a particular thread to run next; the other way is to allow the Thread
Manager to choose the next available thread to run. (An available thread is one
that is marked ready to run—an unavailable thread is one that is marked
stopped.) The Thread Manager queues up all of the threads that are ready to
run, and, when a nonspecific yield occurs, it executes the next available thread.
When a thread finishes executing, it moves to the back of the queue if it is still
ready to run, or, if it is marked as stopped, the Thread Manager removes it from
the queue of available threads.

Note

The previous paragraph describes the default Thread
Manager scheduling mechanism. You can also define a
custom scheduler for your application that works in
conjunction with the default scheduling mechanism to
determine the next thread to run. See “Custom Scheduler”
(page 13) for more information about creating a custom
scheduler for your application.

C H A P T E R 1

Thread Manager

12

About the Thread Manager

8/25/99

 Apple Computer, Inc.

Figure 1-2 shows the default Thread Manager scheduling model.

Figure 1-2

Thread scheduling model

Because threads yield control under explicit conditions, they have access to all
Toolbox and Operating System routines. They allow you do anything that you
can currently do in an application without threads, such as allocate memory,
perform file I/O, perform QuickDraw operations, and so on.

For situations in which you are concerned about the integrity of your data, the
Thread Manager provides a pair of functions,

ThreadBeginCritical

 and

ThreadEndCritical

, that enable you to mark a section of code as critical, turning
scheduling off. With scheduling off, the Thread Manager does not allow any
threads to be scheduled until scheduling is turned back on; that is, all yield and
other scheduling functions are ignored until the code exits the critical section.
See “Turning Scheduling Off” beginning on page 1-28 for information on how
and when to mark sections of code as critical.

Thread A
Yield

Yield

Yield
Thread B

Thread C

Time

Running/executingKey:

Ready to run

C H A P T E R 1

Thread Manager

About the Thread Manager

13

8/25/99

 Apple Computer, Inc.

The Main Thread 1

When the Process Manager launches your application, it creates and runs a
special thread, called the

main thread

 or application thread. The

main

 function
is the entry point to this thread and to the application. The main thread has
some characteristics that distinguish it from other threads. It is the only thread
that has a preallocated stack—the stacks for threads that your application
creates reside in separate areas of the heap. The main thread is the only thread
from which you properly can extend the application heap. Therefore you
should call

MaxApplZone

 from the main thread immediately after your
application launches, or at least before any other threads run.

Another characteristic of the main thread is that the Thread Manager assumes
the main thread handles event processing. Therefore, whenever an
operating-system event occurs, the Thread Manager schedules the main thread
at the next scheduling opportunity, no matter where the main thread happens
to be in the scheduling queue.

Note

After an operating-system event, the Thread Manager
schedules the main thread at the next opportunity unless
you have specified a particular thread to run. In other
words, if you call a function such as

YieldToAnyThread

 to
cause the rescheduling, the Thread Manager runs the main
thread. If, however, you call a function such as

YieldToThread

 and specify a particular thread to run, the
Thread Manager schedules that thread rather than the main
thread even after the occurrence of an operating-system
event.

�

To guarantee responsiveness to users, you should put all your event handling in
the main thread. For the same reason, it is highly recommended that you never
put the main thread in the stopped state.

Custom Scheduler 1

The Thread Manager allows you to install a custom scheduling function that
works in conjunction with the Thread Manager default scheduling mechanism.
You install the custom scheduling function with the

SetThreadScheduler

function. Figure 1-3 shows how the custom scheduler works with the default
Thread Manager scheduling mechanism.

C H A P T E R 1

Thread Manager

14

About the Thread Manager

8/25/99

 Apple Computer, Inc.

Figure 1-3

Thread Manager default and custom scheduling mechanisms

When a yield or other Thread Manager call triggers a reschedule, the Thread
Manager calls the custom scheduling function and passes it a scheduler
information structure. This structure has four fields; the first contains the size of
the structure and allows for expansion in the future. The next two fields are
thread IDs that identify the current thread and the thread that the application
has selected to run next. The final field was to identify a cooperative thread that
was interrupted by a preemptive thread. However, because it no longer
supports preemptive threads, the Thread Manager always passes the

kNoThreadID

 constant for this field.

The custom scheduling function can use this information to determine which
thread to schedule next. It returns to the default scheduling mechanism the

Custom
scheduler

Default
scheduler

Thread A

Thread C Thread DThread B

Thread ID
to schedule

Scheduler
information
structure

Yield

C H A P T E R 1

Thread Manager

About the Thread Manager

15

8/25/99

 Apple Computer, Inc.

thread ID of the next thread to schedule and the Thread Manager does the
actual scheduling.

Default Saved Thread Context 1

When the Thread Manager switches the context between one thread and
another, it saves a default context, which consists of the CPU registers, the
floating-point (FPU) registers (if any), and the location of the context
information.

The thread context resides on a thread’s stack and the Thread Manager saves
the location of this context when it switches contexts between threads. The A5
register (GPR1 on the PowerPC) for each thread contains a pointer to the
application’s global data world. When it switches contexts, the Thread Manager
initially sets A5 (GPR1) and the MMU mode to the same values as those in the
main thread. In this way all threads can share in the application’s global data
world.

Table 1-1 shows the registers that the Thread Manager saves for a 680x0
application.

Table 1-1

Registers in the 680x0 default thread context

For 680x0 applications, when you create or allocate a thread with the

NewThread

function, the Thread Manager provides an option that allows you to create a
thread whose FPU registers are not to be saved. This allows faster context
switches for threads that don’t use the FPU registers.

For PowerPC applications, the Thread Manager always saves the FPU registers,
regardless of any options you set because the PowerPC processor can use the
FPU registers for optimizations.

Table 1-2 shows the registers that the Thread manager saves for a PowerPC
application.

CPU registers FPU registers

D0–D7 FPCR, FPSR, FPIAR

A0–A7 FP0–FP7

SR (including CCR) FPU frame

C H A P T E R 1

Thread Manager

16

About the Thread Manager

8/25/99

 Apple Computer, Inc.

Table 1-2

Registers in the PowerPC default thread context

Custom Context-Switching Function 1

The Thread Manager allows you to install a custom context-switching function
to supplement the context information that the Thread Manager saves when it
switches control between one thread and another. This section describes how to
install a custom context-switching function and use it in conjunction with the
default context-switching mechanism.

You install a custom context-switching function with the

SetThreadSwitcher

function. You assign a custom switching function separately to each thread.
However, because you also pass a parameter containing thread specific
information, you can define a single switching function to assign to all threads
and use this parameter to pass specific information to each thread.

The Thread Manager calls the custom context-switching function,

MyThreadSwitchProc

, whenever the thread it is assigned to is scheduled. Because
it is a ‘switcher inner’ it is called just before the code starts executing. The
Thread Manager calls a ‘switcher outer’ custom switching function just after the
code in the thread stops executing. Figure 1-4 shows when the Thread Manager
calls each type of custom context-switching function.

CPU registers FPU registers Machine registers

R0–R31 FP0–FP31 CTR, LR, PC

FPSCR CR, XER

C H A P T E R 1

Thread Manager

About the Thread Manager

17

8/25/99

 Apple Computer, Inc.

Figure 1-4

Custom context-switching function

Thread Stacks 1

When the Process Manager launches a threaded application, it creates the main
thread and sets up the stack for it just like it would for a nonthreaded
application. You can expand this stack by calling the Memory Manager

SetApplLimit

 function at the beginning of your application. See “Working With
Stacks” (page 29) for an example of how to use this function.

For each subsequent thread that you create, the Thread Manager maintains a
separate stack in your application

heap

 area.

A’s custom outer

B’s custom inner

SwitchContext
switchers

Yield

Yield

B’s custom outer

A’s custom inner

SwitchContext
switchers

Thread A Thread B

C H A P T E R 1

Thread Manager

18

About the Thread Manager

8/25/99

 Apple Computer, Inc.

Note

Because the Thread Manager does not move stacks during
a thread context switch, you can pass function parameters
on the stack.

�

You specify the stack size when you create a new thread with the

CreateThreadPool

 or

NewThread

 function. The stack must be large enough to
handle saved thread context, normal application stack usage, interrupt
handling routines, and CPU exceptions. You can specify a particular size in
bytes or use the default size that the Thread Manager supplies for a thread. The
default size is more than adequate for most threads.

Creating and Disposing of Threads 1

There are two ways to create threads with calls to the Thread Manager. One is to
use the

NewThread

 function to create a single thread. The other way is to call the

CreateThreadPool

 function to create a pool of threads that you later allocate with
the

NewThread

 function. The advantage of the latter method is that you handle
memory allocation up front before fragmentation occurs.

When you create or allocate a thread with the

NewThread function, you specify,
among other things, the stack size. You also identify the function that is the
entry point to the thread and can pass it data if you wish. You can also allocate
storage that you can use to store the thread result.

When a thread finishes executing its code, the Thread Manager automatically
calls the DisposeThread function to clean up after the thread. The DisposeThread
function either removes the thread entirely (the default for cooperative threads)
or recycles the thread into the thread pool. You can call DisposeThread yourself
if you want to recycle a cooperative thread into the thread pool.

The DisposeThread function passes a parameter back to the NewThread function
that initially created and launched the thread. It places the information from
this parameter in the storage that the NewThread function allocated when it first
created the thread. You can use this parameter to pass the thread result back to
the calling thread, if you wish. For example, if you call a function to perform a
calculation or process data, you can use the DisposeThread function to pass the
result back.

See “Passing Input and Output Parameters to a New Thread” beginning on
page 1-33 for information on how to return data from a thread to the thread that
launched it.

C H A P T E R 1

Thread Manager

Using the Thread Manager 19
8/25/99 Apple Computer, Inc.

Using the Thread Manager 1

This section describes how you can take advantage of the Thread Manager to
create threaded applications. It describes how to

� use the Gestalt Manager to determine if the Thread Manager is available and
which features are supported

� create a thread pool and allocate and run threads

� turn off scheduling in critical sections of code

� create dialog boxes that leave an application free to do other work

� pass parameters between threads

� use threads with asynchronous I/O routines

Determining Attributes of the Thread Manager 1

To determine if the Thread Manager is available and which features are
supported, call the Gestalt function with the selector gestaltThreadMgrAttr. The
Gestalt function returns information by setting or clearing bits in the response
parameter. The following constants define the bits currently used.

enum { /* Gestalt selectors */
#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0,
gestaltSpecificMatchSupport = 1,
gestaltThreadsLibraryPresent = 2

};

gestaltThreadMgrPresent
This bit is set if the Thread Manager is present.

gestaltSpecificMatchSupport
This bit is set if the Thread Manager supports the allocation
of threads based on an exact match with the requested
stack size. If this bit is not set, the Thread Manager allocates
threads based on the closest match to the requested stack
size.

C H A P T E R 1

Thread Manager

20 Using the Thread Manager

8/25/99 Apple Computer, Inc.

gestaltThreadsLibraryPresent
This bit is set if the native version of the threads library has
been loaded.

Creating and Allocating a Thread 1

This section shows you how to create a pool of threads, allocate a thread from
that pool, and get this thread to run. The code samples in this section are
adapted from a sample application that addresses the classic computer science
dining philosophers problem. This application uses a separate thread to control
the display and movement of each philosopher icon as the philosophers move,
one by one, into a dining room, pick up a fork eat, and then leave the room.

When your application launches, the Process Manager automatically creates the
main, or application, thread. You are responsible for creating any additional
threads. The main function is the entry point to the main thread. One of the
features of the main thread is that it is the only thread from which you can
properly call the Memory Manager MaxApplZone function to expand your
application heap to its limit. You must call MaxApplZone before any other threads
run.

Listing 1-1 shows the main function for an application, which calls subroutines
that perform initializations and create and allocate threads. It also shows the
application’s event loop.

Listing 1-1 Setting up the main thread

void main()

{
WindowPtr appWindow;
MaxApplZone(); /* Expand application heap */

DoInitMac(); /* Standard Macintosh
application

initialization */
DoCreateTPool(); /* Create a pool of threads

*/

appWindow = DoInitRooms(); /* Drawing initialization */

C H A P T E R 1

Thread Manager

Using the Thread Manager 21
8/25/99 Apple Computer, Inc.

DoInitPhilos(appWindow); /* Initialize philosophers */
DoSpawnThreads(); /* Allocate new threads */
MyEventLoop(); /* Event handlers

}
...

void MyEventLoop()
{
EventRecord my_evt;

short got_evt = 0;
OSErr anError;
WindowPtr win;

while(!gDone)
{

got_evt = WaitNextEvent(everyEvent, &my_evt,
kSleepTicks, nil);

if (got_evt)
{

switch(my_evt.what)
{

/* Case statements for each event */
}

}
else
{

/* Draw window */
}

anError = YieldToAnyThread();
if (anError)

DoHandlerError ("\pError in yielding from the main
 thread",
 anError, kFatal);

}
/* Shutdown routines */

...
}

C H A P T E R 1

Thread Manager

22 Using the Thread Manager

8/25/99 Apple Computer, Inc.

In Listing 1-1, the first thing the main function does, after declaring a window
pointer variable, is to call the MaxApplZone function to extend the application
heap. To be safe, this call comes before any of the initialization calls. It must
come before any other thread runs in the application.

The main function calls two functions (DoInitMac, and DoInitPhilos) to perform
various Macintosh and application-specific initializations. These functions are
not of particular interest here, other than to show the order in which main calls
them in relationship to MaxApplZone, so the code they contain is not shown here.
The DoCreateTPool and DoSpawnThreads functions create a pool of threads and
allocate threads from the pool, respectively. The next two sections show and
describe the code for these functions.

Note that the main function contains the event loop for the application. While it
is not required that the main thread handle all events, it is highly recommended
that it do so. A characteristic of the main thread is that whenever an
operating-system event is pending, the Thread Manager schedules the main
thread at the next generic scheduling opportunity (that is, when a yield or other
call causes a reschedule but does not specify a particular thread to schedule
next), no matter where the main thread is in the scheduling queue. This
characteristic of the main thread guarantees responsiveness to users if, as in the
sample code, the main thread handles event-processing.

Listing 1-1 shows a skeletal view of MyEventLoop. It is a standard event loop,
with a while loop and various case statements to handle the various possible
Macintosh events. The main thread should make a yield call often enough to
allow other threads an opportunity to run. Therefore, it calls the Thread
Manager YieldToAnyThread function each time through the event loop.

Creating a Pool of Threads 1

The DoCreateTPool function in Listing 1-1 creates a pool of threads. While it isn’t
strictly necessary to create a pool of threads—you can create and allocate
threads in one step with the NewThread function—there are advantages to doing
so. For example, you can allocate all the memory for your threads up front
before memory is used or fragmented. Listing 1-2 shows the code in
DoCreateTPool, which creates a pool of threads.

C H A P T E R 1

Thread Manager

Using the Thread Manager 23
8/25/99 Apple Computer, Inc.

Listing 1-2 Creating a thread pool

#define kNumOfPhilos 5 /* Number of philosopher icons*/
#define kDefaultStackSize 0 /* System determines stack size
*/

void DoCreateTPool()
{

OSErr anError;

/* Make a pool of threads for the philosophers */
anError = CreateThreadPool(kCooperativeThread,

 kNumOfPhilos, kDefaultStackSize);
if (anError)

DoHandlerError ("\pProblem creating thread pool",
anError, kFatal);

}

The code in DoCreateTPool passes three parameters to the CreateThreadPool
function. The first, kCooperativeThread, is a constant defined by the Thread
Manager specifying that the threads to create are cooperative threads.

Note
Historically, the Thread Manager supported two types of
threads, cooperative and preemptive but now only
cooperative threads are supported. The CreateThreadPool
function (and the NewThread function) still require that you
specify the type of the thread, even though only one type is
available.

The next parameter, kNumOfPhilos, is an application-defined constant that
specifies the number of threads to create—in this case, five. The last parameter,
kDefaultStackSize, specifies that Thread Manager use the default stack size for
the five threads that it creates. You can specify the size in bytes if you don’t
wish to use the default size. The Thread Manager defines a default size that is
probably larger than the minimum size that is required.

If there is a problem creating the threads, DoCreateTPool calls the error handling
function and passes it the result code returned by CreateThreadPool. Note that if
there is not enough memory to create all the specified threads, CreateThreadPool
creates none and returns the memFullErr result code.

C H A P T E R 1

Thread Manager

24 Using the Thread Manager

8/25/99 Apple Computer, Inc.

Allocating a Thread 1

Once an application has created a pool of threads, it can allocate them by calling
the NewThread function. You specify to the NewThread function the type of thread
and stack size to use, whether to use an existing thread or create a new one, the
entry point function for the thread, data to pass to this function, and storage
that the thread can use to return data, if any, when it terminates. The NewThread
function allocates a thread from the pool (or creates a new one, depending on
the options you choose) and returns the thread ID.

In Listing 1-1, the main function calls DoSpawnThreads to allocate threads from the
thread pool. Listing 1-3 shows the code in DoSpawnThreads that creates a thread,
the code for the thread entry point function, DoPhiloActions, and the data
structure, gPhilo, for passing information to the entry point function.

Listing 1-3 Allocating threads

#define kNumOfPhilos 5 /* Number of philopher icons*/
#define kDefaultStackSize 0 /* System determines stack size
*/

/* Spawn each thread from the pool of newly created threads */
void DoSpawnThreads()
{

OSErr anError;
short index;

for (index = 0; index < kNumOfPhilos; index++)
{

anError = NewThread(kCooperativeThread,
 DoPhiloActions,
 (void *)&(gPhilo[index]),
 kDefaultStackSize,
 kUsePremadeThread,
 nil,
 &(gPhilo[index].theThread));

if (anError)
DoHandlerError("\pError in creating the New Thread
(DoSpawnThreads)", anError, kFatal);

}
}

C H A P T E R 1

Thread Manager

Using the Thread Manager 25
8/25/99 Apple Computer, Inc.

/* Global declarations */
#define kNumberOfIterations 1000 /*Number of iterations*/

...
typedef struct { /* Resource handles where it is and whether it

has a fork */

Rect thinking_location, waiting_location, dining_location;
Rect current_location;
short left_fork, fork_state;
ThreadID theThread;

} philoRecord, *philoPtr;
philoRecord gPhilo[kNumOfPhilos]; /* global declaration */

...
/* Thread entry function */
pascal void *DoPhiloActions(void *thisPhilo)
{

short index;

for (index = 0; index < kNumberOfIterations; index++)
{

DoThinkForAwhile();
DoGoToEat(thisPhilo);
DoPickUpLeftFork(thisPhilo);
DoPickUpRightFork(thisPhilo);
DoEatForAwhile(thisPhilo);
DoPutDownRightFork(thisPhilo);
DoPutDownLeftFork(thisPhilo);
GoToThink(thisPhilo);

}
}

As just mentioned, the NewThread function can either create a new thread or
allocate an existing one from the thread pool. If you scan the parameter list for
NewThread in Listing 1-3, you see that kUsePremade is passed as the fifth
parameter. This is one of five possible options you can pass in this parameter
(you sum them together if you want to use more than one) and it indicates to
allocate an existing thread from the thread pool. For a description of the other
four options, see “Thread Options” (page 48).

C H A P T E R 1

Thread Manager

26 Using the Thread Manager

8/25/99 Apple Computer, Inc.

The first parameter to the NewThread function specifies that NewThread allocate a
cooperative thread, and the fourth parameter (the stack size parameter)
contains kDefaultStackSize, which specifies the default stack size. The thread
pool that DoCreateTPool created in Listing 1-2 contains five threads and each of
these uses the Thread Manager default stack size.

As you can see, the DoSpawnThreads function calls the NewThread function in a
loop to allocate a number of threads. In this case, the index for the for loop is
the constant kNumOfPhilos, which is set to 5. So DoSpawnThreads calls the
NewThread function until it has allocated all five threads from the existing pool of
threads. If there is a problem allocating the threads, DoSpawnThreads calls the
error handling function and passes it the result code returned by NewThread.

The NewThread function uses the very last parameter to store the thread IDs of
the newly created threads. At each iteration of the loop, it places the thread ID
of the newly created thread in a field of the gPhilo structure. Actually, since
this structure is indexed, each thread ID is stored in a separate index of the
gPhilo structure.

The remaining three parameters set up the entry point to the thread. The second
parameter points to DoPhiloActions as the entry point function. Since the loop
in DoSpawnThreads creates five threads, DoPhiloActions is the entry point to each
thread.

With the next parameter, NewThread points to a structure, gPhilo, that it
passes to DoPhiloActions. This structure contains location information that is
used for screen drawing and updates for each of the philosopher icons. It also
contains the thread ID of each of the threads.

The NewThread function uses the second to last parameter to allocate storage for
the function result from the new thread. Here it passes nil to indicate that there
is no need to retrieve information from the newly created threads. See “Passing
Input and Output Parameters to a New Thread” (page 33) for information on
how to set up storage to return data from a thread that you create.

By default, NewThread marks each thread that it creates as ready to run. As
soon as the application executes the YieldToAnyThread function in MyEventLoop,
the Thread Manager begins executing the first of the new threads and the
application executes the code in DoPhiloActions.

In DoPhiloActions you can see that NewThread passes in the gPhilo structure as
the thisPhilo pointer, which DoPhiloActions passes on to each of its
subroutines, beginning with DoGoToEat. These subroutines use this structure to

C H A P T E R 1

Thread Manager

Using the Thread Manager 27
8/25/99 Apple Computer, Inc.

move the onscreen window icons from place to place and to “eat”. For example,
Listing 1-4 shows the code for one of the subroutines, DoEatForAwhile.

Listing 1-4 Using the gPhilo structure in a subroutine

void DoEatForAwhile(philoPtr thisPhilo)
{

short counter, timeToEat = Random() % kEatingTimeLimit;

thisPhilo->current_location = thisPhilo->dining_location;
for (counter = 0; counter < timeToEat; counter++)

YieldToAnyThread()
;

}

The code for DoEatForAwhile, places the icon in the dining room for a random
amount of time, then yields control to another thread. The code for the other
subroutines called by DoPhiloActions in Listing 1-3 is not shown here but it is
similar: it either moves the icon into a different room, makes it stay put for
awhile, or performs an action, such as lifting a fork.

When control moves to the next thread with the yield call, the same subroutines
are executed as in the first thread, but they affect a different icon because the
indexed data structure referenced by thisPhilo specifies five different icons in
turn.

When control returns to the first thread in this sequence, it comes back to the
statement in the DoEatForAwhile function after YieldToAnyThread, which was
the last statement executed. Since this is the end of this subroutine, control goes
back to DoPhiloActions, which then executes the next subroutine. This
subroutine performs an action and then, since it also has a yield call, it yields to
the next thread—the various threads continue to perform actions on the icon
that they control while yielding to each thread in turn.

As you can see, the design of this application is such that the actions are
controlled by one function, DoPhiloActions, and the icons are controlled by
separate threads. The yield calls in each subroutine of DoPhiloActions produce
the appearance of simultaneous movement of the different icons.

C H A P T E R 1

Thread Manager

28 Using the Thread Manager

8/25/99 Apple Computer, Inc.

Turning Scheduling Off 1

In cases where you need to ensure data coherency, The Thread Manager
provides a pair of functions, ThreadBeginCritical and ThreadEndCritical that
disable scheduling temporarily by marking a section of code as critical. While
the critical section of code is executing, no other threads can be scheduled; that
is, the Thread Manager ignores all yield and other scheduling functions until
the code exits the critical section.

Listing 1-5 shows a situation in which ThreadBeginCritical and
ThreadEndCritical mark a section of code as critical.

Listing 1-5 Marking a critical section of code

Boolean batch = true
#define kNumOfPhilos 5 /* Number of icons to create*/
#define kNoCreationOptions 0 /* Use default options*/
#define kDefaultStackSize 0 /* System determines stack size
*/

...
void DoCreateThreads()
{

OSErr anError;
short index;

if batch ThreadBeginCritical();
for (index = 0; index < kNumOfPhilos; index++)
{

anError = NewThread(kCooperativeThread,
 DoPhiloActions,
 (void *)&(gPhilo[index]),
 kDefaultStackSize,
 kNoCreationOptions,
 nil,
 &(gPhilo[index].theThread);

if (anError)
DoHandlerError("\pError in creating the New Thread
(DoSpawnThreads)", anError, kFatal);

YieldToAnyThread

C H A P T E R 1

Thread Manager

Using the Thread Manager 29
8/25/99 Apple Computer, Inc.

}
if batch ThreadEndCritical();
}

As you can see, the DoCreateThreads function calls the NewThread function in a
loop to allocate a number of threads. In this case, the index for the for loop is
the constant kNumOfPhilos, which is set to 5. So DoCreateThreads calls the
NewThread function until it has created five new threads. If there is a problem
allocating the threads, DoCreateThreads calls the error handling function and
passes it the result code returned by NewThread.

In some cases you might want each newly created thread to run before the rest
of the threads are created. However, in other cases, you might want
DoCreateThreads to create all the threads before any of them runs. The Boolean
variable batch and the ThreadBeginCritical and ThreadEndCritical functions
enable you to control whether the threads begin running individually or
together.

When batch is true, the code in the loop is marked as critical, so the Thread
Manager ignores the YieldToAnyThread function. All the threads are created
before any of them can run.

On the other hand, if batch is false, the loop is not marked as a critical section of
code. The current thread yields control at the end of the loop, and since threads
are created in the ready state, each newly created thread runs immediately after
creation.

Working With Stacks 1

The main thread, which is created by the Process Manager when it launches an
application, is the only thread whose stack resides in the application stack
area—the stacks for threads that you create reside in the application heap area.
The main thread’s stack in a threaded application is identical to the stack in a
nonthreaded application. Therefore, to increase the size of the main thread’s
stack in a threaded application, you can use the same Memory Manager
commands that you would use in a nonthreaded application. Listing 1-6 shows
how to do this.

C H A P T E R 1

Thread Manager

30 Using the Thread Manager

8/25/99 Apple Computer, Inc.

Listing 1-6 Increasing the size of the main thread’s stack area

OSErr IncreaseApplicationStack(Size incrementSize)
{
OSErr retCode;

SetApplLimit((Ptr) ((unsigned long) GetApplLimit()
incremmentSize));

retCode=MemError();
if(retCode==noErr)

MaxApplZone();

return retCode;
}

IMPORTANT

You call the function in Listing 1-6 only once at the
beginning of your application. You must call it before any
other threads in the application allocate memory. To be safe
you should call it before any other threads run, because
running another thread could trigger a call to the LoadSeg
function (on a 680x0 machine only), which allocates
memory and could grow the heap. �

For threads that you create in your application, the Thread Manager maintains
a separate stack in the application heap area. You specify the stack size when
you create a new thread with the CreateThreadPool or NewThread function. The
stack must be large enough to handle saved thread context, normal application
stack usage, interrupt handling routines, and CPU exceptions. You can specify a
particular size in bytes or use the default size that the Thread Manager supplies
for a thread. The default size, in most cases, is more than adequate for your
needs.

You can call GetDefaultThreadStackSize to determine the default amount of
space that the system allocates for threads.

If during testing you find that the stack size is inadequate for an individual
thread, you can increase the amount of space for it when you create the thread
with the CreateThreadPool or NewThread function. Listing 1-7 shows how to
determine the current stack space for a particular thread and how to increase it.

C H A P T E R 1

Thread Manager

Using the Thread Manager 31
8/25/99 Apple Computer, Inc.

Listing 1-7 Determining and increasing the stack size of a thread

OSErr IncreaseThreadStack(ThreadID testThread)
{

anError = ThreadCurrentStackSpace(testThread, currentStackSize);
anError = DisposeThread(testThread, 0, 0)
anError = NewThread(kCooperativeThread,

 DoSomething,
 nil,
 (currentStackSize) + 1000,
 kNoCreationOptions,
 nil,
 testThread);

}

The ThreadCurrentStackSpace function returns, in the currentStackSize
parameter, the amount of space available to the thread named testThread. Since
you have already determined that this size is inadequate, you dispose of the
thread by calling DisposeThread. Then NewThread creates a new thread. The third
parameter specifies the stack space to allocate for this thread. In this case, the
original amount is increased by a thousand bytes.

Creating Dialog Boxes That Yield 1

An easy thing to do with the Thread Manager is to free your application to do
useful work in the background while waiting for a user to respond to a dialog
box that is displayed on the screen. The way to do this is to handle the dialog
box in the main thread and to put a call in the dialog’s event filter function that
yields control to other threads that can do useful work while the dialog box is
displayed. Listing 1-8 shows the code to implement such a dialog box.

Listing 1-8 Creating a dialog box that yields

pascal boolean DoYieldFilter (DialogPtr theDialogPtr, EventRecord *theEvent,
 short *theItemHit)

 {
 /* Yield to whomever wants to run. */
 YieldToAnyThread();
 /* Call the standard filter procedure defined in Dialogs.h. */

C H A P T E R 1

Thread Manager

32 Using the Thread Manager

8/25/99 Apple Computer, Inc.

 return (MyStdFilterProc(theDialogPtr, theEvent, theItemHit));
 }
 /* The DoOKDialog function just handles a simple OK dialog box. */
 void DoOKDialog (short dialogID)
 {
 DialogPtr theDialog;
 short itemHit;
 GrafPtr savePort;
 OSErr theError;

 GetPort(&savePort);

 if ((theDialog = GetNewDialog(dialogID, NULL, (Ptr)-1)) != NULL)
 {
 SetPort(theDialog);
 ShowWindow(theDialog);
 do
 {
 ModalDialog(DoYieldFilter, &itemHit);
 } while (itemHit != okButton);
 DisposDialog(theDialog);
 } else
 DebugStr("\pCould not find dialog");
 SetPort(savePort);
 }

In Listing 1-8, DoOKDialog is a function that handles an OK dialog box. It calls
the Dialog Manager ModalDialog function to display the dialog box. The
ModalDialog function calls an event filter procedure, DoYieldFilter. This
procedure makes two calls; one to YieldToAnyThread and the other to
MyStdFilterProc. The call to YieldToAnyThread enables your application to
keep working while the dialog box is displayed. It yields control to any threads
that are waiting to execute. Each waiting thread that executes in turn, of course,
also has a yield call in it, so control eventually returns to DoYieldFilter.

When control returns, DoYieldFilter calls another event filter procedure,
MyStdFilterProc. If no events have occurred, it simply returns to the
ModalDialog function, which loops through again and calls the DoYieldFilter
function, enabling the working threads to gain control again. If an event does
occur, MyStdFilterProc handles it and returns the result to ModalDialog.
When a user chooses the OK or Cancel button, ModalDialog exits the loop.

C H A P T E R 1

Thread Manager

Using the Thread Manager 33
8/25/99 Apple Computer, Inc.

Keep in mind that when an operating-system event occurs, the Thread Manager
always returns control to the main thread at the first scheduling opportunity.
This means that if there are several threads in your application doing
background work while the dialog box is being displayed, at the first
scheduling opportunity after an operating-system event occurs (and if the yield
or other call causing the reschedule does not specify a particular thread to
schedule next), the Thread Manager schedules the main thread no matter which
threads are ahead of it in the scheduling queue. For this reason it is best to put
event handling functions in the main thread.

Passing Input and Output Parameters to a New Thread 1

When you create a new thread, you can pass data to it by passing a parameter
to the thread entry function. You can also retrieve data from the thread when it
terminates. You set up the storage for this data when you create the thread.

Listing 1-9 shows how to pass data to a newly created thread and create the
storage to hold the data returned by the new thread when it terminates.

Listing 1-9 Passing data between threads

#define kNoCreationOptions 0 /* Use the standard default
creation options */

#define kDefaultThreadStackSize 0 /* Use the default value*/

/* Define a structure */
struct ExampleRecord {

long someLongValue;
short someShortValue;
};

typedef struct ExampleRecord ExampleRecord;
typedef ExampleRecord *ExampleRecordPtr;

void MyParametersExample (void)
{

ThreadID tempThreadID;
OSErr err;
long myLong;
short myShort;
Boolean notDone = true;

C H A P T E R 1

Thread Manager

34 Using the Thread Manager

8/25/99 Apple Computer, Inc.

ExampleRecordPtr recordOutResult = nil; /* Declare a variable to
 store new thread’s

output */
ExampleRecord recordInParam; /* Declare a variable to

pass
 data to a new thread */

/* Assign values to pass to a new thread */
recordInParam.someLongValue = 0x1FFF2EEE;
recordInParam.someShortValue = 0xABCD;

/* Create a new thread */
err = NewThread(kCooperativeThread,

(ThreadEntryProcPtr)(MyExampleFunc),
(void*)&recordInParam,
kDefaultThreadStackSize,
kNoCreationOptionss,
(void**)&recordOutResult,
&tempThreadID);

if (err)
DebugStr("\p Could not make coop thread 2");

while (notDone)
{
YieldToAnyThread();/* Other threads run. */

if (recordOutResult != nil)
{
myLong = recordOutResult->someLongValue; /* Store thread

output */
myShort = recordOutResult->someShortValue; /* Store thread

output */
DoStuffWithParams(myLong, myShort); /* Use thread

output */
DisposePtr((Ptr)recordOutResult); /* Remove storage

*/
recordOutResult = nil; /* Neutralize

variable */
}

/* Handle user events until quit time */
GoHandleEvents(¬Done);

C H A P T E R 1

Thread Manager

Using the Thread Manager 35
8/25/99 Apple Computer, Inc.

}
return; /* Done. */

}
/* Thread entry function */
pascal ExampleRecordPtr MyExampleFunc (ExampleRecordPtr inputRecordParam)
{

ExampleRecordPtr myRecordPtr;

myRecordPtr = NewPtr(sizeof(ExampleRecord));
myRecordPtr->someLongValue = inputRecordParam->someLongValue;
myRecordPtr->someShortValue = inputRecordParam->someShortValue;

/* Do some calculations on the data and put the result in myRecordPtr */
...

return (myRecordPtr);/* Must be the size of a void*. */
}

The first thing the code in Listing 1-9 does is to define some symbolic variables
to make the code easier to read. When you create a thread with the NewThread
function, you can specify some options that define the behavior of the thread,
and you must specify a stack size for the thread. The two #define statements
define variables that specify to use the default options and to use the default
stack size.

The ExampleRecord structure defines a type of structure that later is used to pass
a long and a short value to a new thread and then back again. The code creates
the ExampleRecord type and also a pointer to it.

The MyParametersExample function performs the major work in this example. It
first declares some variables, including recordInParam and recordOutResult.
Note that recordInParam, which is used to pass data to a newly created thread, is
declared as an ExampleRecord structure, and recordOutResult, which is used to
store data returned from the new thread, is declared as a pointer to an
ExampleRecord structure.

Next, MyParametersExample assigns hex values to the someShortValue and
someLongValue fields of the recordInParam structure. It then uses the NewThread
function to create a new thread. It specifies MyExampleFunc as the thread’s entry
function and passes it the recordInParam structure. It also specifies
recordOutResult as the storage for any data returned from the new thread. Note
that NewThread passes recordInParam as a pointer to a value and recordOutResult
as a pointer to an address. As you recall, recordInParam is defined as an

C H A P T E R 1

Thread Manager

36 Using the Thread Manager

8/25/99 Apple Computer, Inc.

ExampleRecord structure and recordOutResult as a pointer to an ExampleRecord
structure.

The MyParametersExample function then sets up a while loop to see if the newly
created thread has returned any data yet. The YieldToAnyThread function
guarantees that the newly created thread—and any other thread in the
application—gets time to run. The variables myLong and myShort hold the data
that the new thread returns. The DoStuffWithParams function, whose code is not
shown here, passes in these variables and does some additional work on the
data. The Memory Manager DisposePtr function frees the memory used by the
recordOutResult structure. Note that the while loop also contains a function to
handle user events.

The MyExampleFunc function is the entry point to the thread that the
MyParametersExample function created with the NewThread function. It declares
myRecordPtr as an ExampleRecordPtr and then uses the Memory Manager NewPtr
function to allocate a block of memory for it that is the size of an ExampleRecord
structure. It then passes the hex values from the NewThread function to the
someLongValue and someshortValue fields of the structure pointed to by
myRecordPtr.

After doing some calculations on the hex values, MyExampleFunc returns the data
to the storage allocated in the MyParametersExample function.

Using Threads With I/O 1

This section shows you one way to make an asynchronous I/O call from a
threaded application. The straightforward way to do this is to create a separate
thread that makes the I/O call and then puts itself to sleep so that other threads
in the application can continue to work while the I/O request is being handled.
You would also provide a completion routine that wakes up the stopped thread
when the I/O task is complete.

Figure 1-5 shows the problem with this approach. It is possible for the
completion routine to execute before the thread puts itself in the stopped state.
If this happens, the completion routine returns without doing anything because
the thread is still running when the completion routine attempts to wake it up.
Then the thread puts itself in the stopped state and stays there forever waiting
for a completion routine that has already finished executing.

C H A P T E R 1

Thread Manager

Using the Thread Manager 37
8/25/99 Apple Computer, Inc.

Figure 1-5 Using a completion routine to wake up a thread making an
asynchronous I/O call

One solution to this problem is to create two threads, one to make the I/O call
and the other to wake up the first thread. Figure 1-6 illustrates this process.

Main thread

I/O thread

Completion routine

Time

Running/executingKey:

Ready to run

Stopped

Start
Async

I/O

Sleep

Yield

Start ExitMark wake-up
thread ready

C H A P T E R 1

Thread Manager

38 Using the Thread Manager

8/25/99 Apple Computer, Inc.

Figure 1-6 Using two threads to handle an asynchronous I/O call

As you can see in the figure, the thread making the I/O call creates a second
thread (the wake-up thread) that is in the stopped state. The purpose of the
completion routine is to start the wake-up thread. It doesn’t actually make the
thread ready to run but marks it as available to be ready to run. At the next

Main thread

I/O thread

Wake-up thread

Time

Running/executingKey:

Ready to run

Available to be
made ready at next schedule

Stopped

Start
Create

wake-up thread
Async

I/O

Start Wake-up
I/O thread

Exit

Yeild

Completion routine Start Exit
Mark wake-up
thread available
to be ready

Sleep

C H A P T E R 1

Thread Manager

Using the Thread Manager 39
8/25/99 Apple Computer, Inc.

scheduling opportunity, the wake-up thread is set to the ready-to-run state. At
the following scheduling opportunity, if it is at the top of the queue, it begins to
run and can wake up the I/O thread.

This scheme is guaranteed to work because there is no way that the I/O thread
can still be awake when the completion routine attempts to wake it up. The
wake-up thread can run only after the I/O thread has put itself to sleep.
Listing 1-10 shows the code to implement this process.

Listing 1-10 Making an asynchronous I/O call with two threads

/* Set up parameter block */
struct ExtendedParamBlk {

/* PB must be first so that the file system can get the data. */
ParamBlockRec pb;
ThreadTaskRef theAppTask;
ThreadID theThread;
};

typedef struct ExtendedParamBlk ExtendedParamBlk;
typedef ExtendedParamBlk *ExtendedParamBlkPtr;
/* Routine prototypes. */
pascal void MyIOExampleThread (void);
pascal void DoWakeUpThread (ThreadID threadToWake);
void MyCompletionRoutine (void);
/* Completion routines are called with register A0 pointing to */
/* the parameter block. */
pascal ExtendedParamBlkPtr GetPBPtr(void) = {0x2E88};

/* move.l a0, (sp) */

/* A routine in the main thread that creates a thread to make an I/O call */
void DoKickOffAnIOThread (void)
{

ThreadID newCoopID;
OSErr theError;

theError = NewThread(kCooperativeThread,
 (ThreadEntryProcPtr)MyIOExampleThread,
 nil,
 kDefaultThreadStackSize,
 kNoCreationOptions,

C H A P T E R 1

Thread Manager

40 Using the Thread Manager

8/25/99 Apple Computer, Inc.

 nil,
 &newCoopID);

if (theError)
DebugStr("\p Could not make cooperative I/O thread");

/* Return and let the I/O thread do its thing! */
}

/* The entry point for the code to make the I/O call */
pascal void MyIOExampleThread (void)
{

ThreadID wakeupThreadID, meThreadID;
ThreadTaskRef theAppRef;

ExtendedParamBlk myAsyncPB;
OSErr theError, theIOResult;

/* Get the ID of MyIOExampleThread. */
theError = MacGetCurrentThread(&meThreadID);
if (theError != noErr)

DebugStr("\pFailed to get the current thread ID");
/* Get the application's task reference. */
theError = GetThreadCurrentTaskRef(&theAppRef);
if (theError != noErr)

DebugStr("\Could not get our task ref");
/* Create a wake-up thread. */
theError = NewThread(kCooperativeThread,

 (ThreadEntryProcPtr)DoWakeUpThread,
 (void*)meThreadID,
 kDefaultThreadStackSize,
 kNewSuspend,
 nil,
 &wakeupThreadID);

if (theError != noErr)
DebugStr("\pFailed to create a cooperative thread");

/* Prepare for and make the I/O call */
myAsyncPB.pb.ioParam.ioCompletion = (ProcPtr)MyCompletionRoutine;

myAsyncPB.pb.ioParam.ioResult = 0;/* Initialize the result. */
myAsyncPB.pb.ioParam.ioNamePtr = nil; /* No name used here. */
myAsyncPB.pb.ioParam.ioVRefNum = -1;/* The boot drive. */
myAsyncPB.theThread = wakeupThreadID;

C H A P T E R 1

Thread Manager

Using the Thread Manager 41
8/25/99 Apple Computer, Inc.

myAsyncPB.theAppTask = theAppRef;
PBFlushVol((ParmBlkPtr)&myAsyncPB, async);

/* Put I/O thread to sleep */
theError = SetThreadState(kCurrentThreadID, kStoppedThreadState,

 kNoThreadID);
if (theError != noErr)

DebugStr ("\pFailed to put current thread to sleep");

/* Get the result of the I/O operation */
theIOResult = myAsyncPB.pb.ioParam.ioResult;

. . .
}
void MyCompletionRoutine (void)
{

ExtendedParamBlkPtr myAsyncPBPtr;
ThreadTaskRef theAppTaskRef;
ThreadID theThreadID;
ThreadState theThreadState;
OSErr theError;
/* Get the parameter block. */
myAsyncPBPtr = GetPBPtr();
/* Get the data. */
theAppTaskRef = myAsyncPBPtr->theAppTask;
theThreadID = myAsyncPBPtr->theThread;

/* See if the thread is stopped yet - just to be sure. */
theError = GetThreadStateGivenTaskRef(theAppTaskRef, theThreadID,

 &theThreadState);
/* If we can get the thread state, go for it! */
if (theError == noErr)

{
/* If it's not stopped, something is wrong. */
if (theThreadState != kStoppedThreadState)

DebugStr("\pWake-up thread is in the wrong state!");
/* Should be sleeping, mark it for wake up! */
else

SetThreadReadyGivenTaskRef(theAppTaskRef, theThreadID);
}

}

C H A P T E R 1

Thread Manager

42 Using the Thread Manager

8/25/99 Apple Computer, Inc.

/* The wake up thread wakes up the I/O thread */
pascal void DoWakeUpThread (ThreadID threadToWake)
{

OSErr theError;

theError = SetThreadState(threadToWake, kReadyThreadState,
 kNoThreadID);

if (theError != noErr)
DebugStr("\pFailed to wake our thread");

/* We've done our deed, so just return quietly and let it run. */
}

The code in Listing 1-10 is long but can be broken up into discreet parts. The
first thing it does is to set up the parameter block. The extended parameter
block holds the parameter block for use by the file system and has fields to hold
the thread task reference and thread ID of the wake-up thread for use by the
completion routine. After the parameter block declaration are prototypes for the
entry functions to the I/O thread and the wake-up thread, and for the
completion routine that marks the wake-up thread as ready. The inline routine
GetPBPtr retrieves the address of the parameter block for the completion routine
from register A0.

The DoKickOffThread function uses the NewThread function to create the
cooperative wake-up thread. The entry point to this thread is the
MyIOExampleThread function.

The MyIOExampleThread function does several things. It uses
MacGetCurrentThread to get and store its thread ID. Next it gets the thread task
reference for the application. The completion routine needs the thread task
reference to make any Thread Manager calls to a thread in this application
context because during execution of the completion routine, there is no
guarantee as to which application is the current context. Then the
MyIOExampleThread function creates the wake-up thread with the NewThread
function. It specifies the DoWakeUp function as the entry point to the routine and
passes its own thread ID as a parameter to this function. Note that the
kNewSuspend option creates the new thread in the stopped state.

Next, the MyIOExampleThread function prepares for the I/O call by setting up the
address of the completion routine and the extended data the completion routine
requires, including the thread ID of the wake-up thread and the thread task
reference for the current application. The actual I/O call is an asynchronous file
system command.

C H A P T E R 1

Thread Manager

Using the Thread Manager 43
8/25/99 Apple Computer, Inc.

The last thing MyIOExampleThread does is to call SetThreadState to put itself in
the stopped state. It passes the kNoThreadID constant as the last parameter to
indicate that the Thread Manager should schedule the next available thread,
rather than any particular thread.

IMPORTANT

It is always important to keep the main thread in the ready
or running state, and the current example shows one of the
reasons why. If the main thread has stopped itself, there
may be no threads running at all after the current thread
stops itself. The completion routine will return and mark
the wake-up thread as available, but without a
rescheduling call from the main thread or some other
thread, the wake-up thread will remain marked as
available but never ready or running. �

When the asynchronous I/O call completes, it calls the completion routine to
indicate that it has finished. The completion routine retrieves the parameter
block and gets the thread task reference for the application and the thread ID of
the wake-up thread. For good measure, it uses the GetThreadStateGivenTaskRef
function to verify that the wake-up thread is indeed stopped. It passes the
thread task reference and the thread ID of the wake-up thread to this function.
It then marks the wake-up thread as ready at the next reschedule with the
SetThreadReadyGivenTaskRef. Again, it passes the thread task reference and the
thread ID of the wake-up thread to this function.

At the next reschedule, the wake-up thread is made ready to run and eventually
it begins executing. The entry point to this thread is the DoWakeUpThread
function, which is passed the thread ID of the thread to wake—in this case, the
thread ID of the I/O thread. The DoWakeUpThread function calls SetThreadState
to change the state of the I/O thread from stopped to ready.

C H A P T E R 1

Thread Manager

44 Thread Manager Reference

8/25/99 Apple Computer, Inc.

Thread Manager Reference 1

This section describes the data types and functions that are specific to the
Thread Manager.

Data Types 1

This section describes the data types that the Thread Manager uses. These
include data types to

� determine if the Thread Manager is available and which features are
supported

� identify the state of a thread

� identify the application context from an interrupt or completion routine
when your application is not guaranteed to be the current context

� specify the type of thread

� specify the ID of a thread

� specify options for the creation of a thread

� pass information to a custom scheduling function

Gestalt Selector and Response Bits 1

To determine if the Thread Manager is available and which features are
supported, call the Gestalt function with the selector gestaltThreadMgrAttr. The
Gestalt function returns information by setting or clearing bits in the response
parameter. The following constants define the bits currently used.

enum { /* Gestalt selectors */
#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0,
gestaltSpecificMatchSupport = 1,
gestaltThreadsLibraryPresent = 2

};

C H A P T E R 1

Thread Manager

Thread Manager Reference 45
8/25/99 Apple Computer, Inc.

Constant Descriptions

gestaltThreadMgrPresent
This bit is set if the Thread Manager is present.

gestaltSpecificMatchSupport
This bit is set if the Thread Manager supports the allocation
of threads based on an exact match with the requested
stack size. If this bit is not set, the Thread Manager allocates
threads based on the closest match to the requested stack
size.

gestaltThreadsLibraryPresent
This bit is set if the native version of the threads library has
been loaded.

The Thread State 1

The Thread Manager provides various functions, such as GetThreadState and
SetThreadState, to get and set information about the state of a thread. These
functions use the ThreadState data type to get and set thread state information.

typedef unsigned short ThreadState;

There are three possible values for the thread state:

#define kReadyThreadState ((ThreadState) 0)
#define kStoppedThreadState ((ThreadState) 1)
#define kRunningThreadState ((ThreadState) 2)

Constant descriptions

kReadyThreadState
The thread is ready to run.

kStoppedThreadState
The thread is stopped and not ready to run.

kRunningThreadState
The thread is running.

C H A P T E R 1

Thread Manager

46 Thread Manager Reference

8/25/99 Apple Computer, Inc.

The Thread Task Reference 1

In certain cases, such as during execution of an interrupt routine, your
application is not guaranteed to be the current process. Since threads are
defined within an application context, it follows that in cases such as these, you
cannot get or set information about any particular threads in your application
unless you have a way of identifying the application context. The thread task
reference gives you a way of doing this.

You can obtain the thread task reference by calling GetCurrentThreadTaskRef at a
time when you know your application is the current context. Later, during
execution of an interrupt routine, you can use the thread task reference to
identify your application. For example, you can pass the thread task reference
to functions such as GetThreadStateGivenTaskRef and
SetThreadReadyGivenTaskRef in an interrupt routine to get and set information
about the state of particular threads in your application.

The ThreadTaskRef data type defines the thread task reference.

typdef void* ThreadTaskRef;

The Thread Type 1

Historically, the Thread Manager defined two types of threads to run in an
application context: cooperative and preemptive, but now it supports only
cooperative threads.

Although the Thread Manager only supports a single type of thread, many
Thread Manager functions (for historical reasons) require you to use the thread
type to specify the type of the thread.

The ThreadStyle data type specifies the type of a thread.

typedef unsigned long ThreadStyle;

Because there is only one type of thread (cooperative) the thread type accepts a
single value:

#define kCooperativeThread (1<<0)

C H A P T E R 1

Thread Manager

Thread Manager Reference 47
8/25/99 Apple Computer, Inc.

The Thread ID 1

The Thread Manager assigns a thread ID to each thread that you create or
allocate with the NewThread function. The thread ID uniquely identifies a thread
within an application context. You can use the thread ID in functions that
schedule execution of a particular thread, dispose of a thread, and get and set
information about a thread; for example, you pass the thread ID to functions
such as YieldToThread, DisposeThread, and GetThreadState.

The ThreadID data type defines the thread ID.

typedef unsigned long ThreadID;

The Thread Manager defines the following three constants that you can use in
addition to the specific thread IDs that the NewThread function returns:

#define kNoThreadID ((ThreadID) 0)
#define kCurrentThreadID ((ThreadID) 1)
#define kApplicationThreadID ((ThreadID) 2)

Constant descriptions

kNoThreadID Indicates no thread; for example, you can use a function
such as SetThreadState to put the current thread in the
stopped state and pass kNoThreadID to indicate that you
don’t care which thread runs next.

kCurrentThreadID
Identifies the currently executing thread.

kApplicationThreadID
Identifies the main application thread; this is the
cooperative thread that the Thread Manager creates at
launch time. You cannot dispose of this thread. All
applications—even those that are not aware of the Thread
Manager—have one main application thread. The Thread
Manager assumes that the main application thread is
responsible for event gathering; when operating-system
event occurs, the Thread Manager schedules the main
application thread as the next thread to execute.

C H A P T E R 1

Thread Manager

48 Thread Manager Reference

8/25/99 Apple Computer, Inc.

Thread Options 1

When you create or allocate a new thread with the NewThread function, you can
specify thread options that define certain characteristics of the thread. The
ThreadOptions data type defines the thread options.

typedef unsigned long ThreadOptions;

To specify more than one option, you sum them together and pass them as a
single parameter to the NewThread function.

#define kNewSuspend (1<<0)
#define kUsePremadeThread (1<<1)
#define kCreateIfNeeded (1<<2)
#define kFPUNotNeeded (1<<3)
#define kExactMatchThread (1<<4)

Constant descriptions

kNewSuspend Begin a new thread in the stopped state.
kUsePremadeThread

Use a thread from the existing supply.
kCreateIfNeeded

Create a new thread if one with the proper style and stack
size requirements does not exist.

kFPUNotNeeded Do not save the FPU context. This saves time when
switching contexts. Note, however, that for PowerPC
threads, the Thread Manager always saves the FPU
registers regardless of how you set this option. Because the
PowerPC microprocessor uses the FPU registers for
optimizations, they could contain necessary information.

kExactMatchThread
Allocate a thread from the pool only if it exactly matches
the stack-size request. Without this option, a thread is
allocated that best fits the request—that is, a thread whose
stack is greater than or equal to the requested size.

C H A P T E R 1

Thread Manager

Thread Manager Reference 49
8/25/99 Apple Computer, Inc.

The Scheduler Information Structure 1

You can, if you wish, use the SetThreadScheduler function to install a custom
scheduling function to work in conjunction with the default Thread Manager
scheduling mechanism. The Thread Manager uses the scheduler information
structure to pass information to the custom scheduling function that allows it to
decide which thread, if any, to schedule next.

struct SchedulerInfoRec {
unsigned long InfoRecSize;
ThreadID CurrentThreadID;
ThreadID SuggestedThreadID;
ThreadID InterruptedCoopThreadID;

};
typedef struct SchedulerInfoRec SchedulerInfoRec;
typedef SchedulerInfoRec *SchedulerInfoRecPtr;

Field descriptions
InfoRecSize The size of the structure.
CurrentThreadID

The thread ID of the current thread.
SuggestedThreadID

The thread ID of the thread that the application has
suggested to run.

InterruptedCoopThreadID
Historically, the thread ID of a preempted cooperative
thread if a cooperative thread has been interrupted and has
not yet resumed execution. Because it no longer supports
preemptive threads, the Thread Manager always passes the
constant kNoThreadID to indicate that there is no thread that
has been interrupted.

Thread Manager Functions 1

You can use Thread Manager functions to perform the following tasks:

� create and get information about pools of threads

� create and delete individual threads

� get information about individual threads

C H A P T E R 1

Thread Manager

50 Thread Manager Reference

8/25/99 Apple Computer, Inc.

� schedule threads

� disable scheduling

� get information about and schedule threads from interrupt code

� install custom scheduler, context switcher, termination, and debugging
functions

Creating and Getting Information About Thread Pools 1

This section describes functions that allow you to create a pool of threads and to
get information about the threads, such as the number of threads of a particular
stack size that are available or the default stack requirement for a thread.

CreateThreadPool 1

You can use the CreateThreadPool function to create a pool of threads for your
application.

pascal OSErr CreateThreadPool(ThreadStyle threadStyle,
 short numToCreate, Size stackSize);

threadStyle The type of thread to create for this set of threads in the pool.
Cooperative is the only type that you can specify. Historically,
the Thread Manger supported two types of threads, preemptive
and cooperative. However, due to severe limitations on their
use, the Thread Manager no longer supports preemptive
threads.

numToCreate The number of threads to create for the pool.

stackSize The stack size for this set of threads in the pool. This stack must
be large enough to handle saved thread context, normal
application stack usage, interrupt handling routines, and CPU
exceptions. Specify a stack size of 0 to request the Thread
Manager’s default stack size for the specified type of thread.

C H A P T E R 1

Thread Manager

Thread Manager Reference 51
8/25/99 Apple Computer, Inc.

DESCRIPTION

The CreateThreadPool function creates the specified number of threads with the
specified stack requirements. It places the threads that it creates into a pool for
use by your application.

When you call CreateThreadPool, if the Thread Manager is unable to create all
the threads that you specify, it doesn’t create any at all and returns the
memFullErr result code.

The threads in the pool are indistinguishable except by stack size. That is, you
cannot refer to them individually. When you want to use a thread to execute
some code in your application, you allocate a thread of a specific size from the
pool using the NewThread function. The NewThread function assigns a thread ID to
the thread and specifies the function that is the entry point to the thread.

Note that it is not strictly necessary to create a pool of threads before allocating
a thread. If you wish, you can use the NewThread function to create and allocate a
thread in one step. The advantage of using CreateThreadPool is that you can
allocate memory for threads early in your application’s execution before
memory is used or fragmented.

IMPORTANT

Before making any calls to CreateThreadPool, be certain that
you first have called the Memory Manager function
MaxApplZone to extend the application heap to its limit. You
must call MaxApplZone from the main application thread
before any other threads in your application run. �

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_ThreadDispatch $0501

noErr 0 Specified threads were created and are available
paramErr –50 Unknown thread type; or specified a preemptive

thread without architecture support
memFullErr –108 Insufficient memory to create the thread structures

C H A P T E R 1

Thread Manager

52 Thread Manager Reference

8/25/99 Apple Computer, Inc.

SEE ALSO

To allocate a thread from the pool created with CreateThreadPool, use the
NewThread function described on (page 56).

To determine how many threads in the pool are available for allocation, use the
GetFreeThreadCount function described on (page 52). To determine how many
threads of a particular stack size are available, use the
GetSpecificFreeThreadCount function described on (page 53).

GetFreeThreadCount 1

You can use the GetFreeThreadCount function to determine how many threads
are available to be allocated in a thread pool.

pascal OSErr GetFreeThreadCount(ThreadStyle threadStyle,
short *freeCount);

threadStyle
The type of thread to get information about. Cooperative is the
only type that you can specify. Historically, the Thread Manger
supported two types of threads, preemptive and cooperative,
but the Thread Manager no longer supports preemptive threads.

freeCount A pointer to the number of threads available to be allocated.

DESCRIPTION

The GetFreeThreadCount function determines how many threads are available to
be allocated. The number of threads in the pool varies throughout execution of
your application. Calls to CreateThreadPool add threads to the pool and calls to
NewThread, when an existing thread is allocated, reduce the number of threads.
You also add threads to the pool when you dispose of a thread with the
DisposeThread function and specify that the thread be recycled.

C H A P T E R 1

Thread Manager

Thread Manager Reference 53
8/25/99 Apple Computer, Inc.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the GetSpecificFreeThreadCount function (described next) to determine
how many threads of a particular stack size are available.

GetSpecificFreeThreadCount 1

You can use the GetSpecificFreeThreadCount function to determine how many
threads of a specified stack size are available to be allocated in a thread pool.

pascal OSErr GetSpecificFreeThreadCount
(ThreadStyle threadStyle,
Size stackSize, short *freeCount);

threadStyle
The type of thread to get information about. Cooperative is the
only type that you can specify. Historically, the Thread Manger
supported two types of threads, preemptive and cooperative,
but the Thread Manager no longer supports preemptive threads.

stackSize The stack size of the threads to get information about.

freeCount A pointer to the number of threads of the specified stack size
available to be allocated.

Trap macro Selector

_ThreadDispatch $0402

noErr 0 The number of available threads was returned
paramErr –50 Unknown thread type; or specified a preemptive thread

without architecture support

C H A P T E R 1

Thread Manager

54 Thread Manager Reference

8/25/99 Apple Computer, Inc.

DESCRIPTION

The GetSpecificFreeThreadCount function determines how many threads with a
stack size equal to or greater than the specified size are available to be allocated.
Use this function instead of GetFreeThreadCount when you are interested not
simply in the total number of available threads but when you want to know the
number of available threads of a specified stack size as well.

The number of threads in the pool varies throughout execution of your
application. Calls to CreateThreadPool add threads to the pool and calls to
NewThread, when an existing thread is allocated, reduce the number of threads.
You also add threads to the pool when you dispose of a thread with the
DisposeThread function and specify that the thread be recycled.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine how many threads of any stack size are available, use the
GetFreeThreadCount function ((page 52)).

GetDefaultThreadStackSize 1

You can use the GetDefaultThreadStackSize function to determine the default
stack size required by a thread.

pascal OSErr GetDefaultThreadStackSize(ThreadStyle threadStyle,
 Size *stackSize);

Trap macro Selector

_ThreadDispatch $0615

noErr 0 The number of available threads of the specified style and
stack size was returned

paramErr –50 Unknown thread type; or specified a preemptive thread
without architecture support

C H A P T E R 1

Thread Manager

Thread Manager Reference 55
8/25/99 Apple Computer, Inc.

threadStyle The type of thread to get information about. Cooperative is the
only type that you can specify. Historically, the Thread Manger
supported two types of threads, preemptive and cooperative,
but the Thread Manager no longer supports preemptive threads.

stackSize A pointer to the default stack size (in bytes) returned by the
Thread Manager. The GetDefaultThreadStackSize function
places this value in the variable that you pass to it. When you
create a thread pool or an individual thread, this is the stack size
that the Thread Manager allocates when you specify the default
size.

DESCRIPTION

The GetDefaultThreadStackSize function returns, in the stackSize parameter,
the default stack size required by a thread in your application. The Thread
Manager determines the default stack size.

Keep in mind that the default stack size is not an absolute value that you must
use but is a rough estimate.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine how much stack space is available for a particular thread, use the
ThreadCurrentStackSpace function described on (page 61).

Trap macro Selector

_ThreadDispatch $0413

noErr 0 The proper default stack size was returned for the
specified style of thread

paramErr –50 Unknown thread type; or specified a preemptive thread
without architecture support

C H A P T E R 1

Thread Manager

56 Thread Manager Reference

8/25/99 Apple Computer, Inc.

Creating and Disposing of Threads 1

This section describes functions that allow you to create or allocate threads and
to dispose of them when the code they contain has finished executing.

NewThread 1

You can use the NewThread function to create or allocate a thread with particular
characteristics.

pascal OSErr NewThread(ThreadStyle threadStyle,
 ThreadEntryProcPtr threadEntry,
 void *threadParam,
 Size stackSize,
 ThreadOptions options,
 void **threadResult,
 ThreadID *threadMade);

threadStyle
The type of thread to create. Cooperative is the only type that
you can specify. Historically, the Thread Manger supported two
types of threads, preemptive and cooperative, but the Thread
Manager no longer supports preemptive threads.

threadEntry A pointer to the thread entry function.

threadParam
A pointer to a value that the Thread Manager passes as a
parameter to the thread entry function. Specify nil if you are
passing no information.

stackSize The stack size (in bytes) to allocate for this thread. This stack
must be large enough to handle saved thread context, normal
application stack usage, interrupt handling routines, and CPU
exceptions. Specify a stack size of 0 (zero) to request the Thread
Manager’s default stack size.

options Options that define characteristics of the new thread. See the
ThreadOptions data type ((page 48)) for details on the options.
You sum the options together to create a single options
parameter.

C H A P T E R 1

Thread Manager

Thread Manager Reference 57
8/25/99 Apple Computer, Inc.

threadResult
A pointer to the address of a location to hold the function result
that is returned by the DisposeThread function when the thread
terminates. Specify nil for this parameter if you are not
interested in the function result.

threadMade A pointer to the thread ID of the newly created or allocated
thread that the NewThread function returns through this
parameter. If there is an error, NewThread sets the value of
threadMade to kNoThreadID.

DESCRIPTION

The NewThread function creates a new thread or allocates one from the existing
pool of threads. It returns a thread ID that you can use in other Thread Manager
functions to identify the thread. If you want to allocate a thread from the pool of
threads, specify the kUsePremadeThread option of the options parameter.
Otherwise, NewThread creates a new thread.

When you request a thread from the existing pool, the Thread Manager
allocates one that best fits your specified stack size. If you specify the
kExactMatchThread option of the options parameter, the Thread Manager
allocates a thread whose stack exactly matches your stack-size requirement or, if
it can’t allocate one because no such thread exists, it returns the
threadTooManyReqsErr result code.

IMPORTANT

Before making any calls to NewThread, be certain that you
first have called the Memory Manager function MaxApplZone
to extend the application heap to its limit. You must call
MaxApplZone from the main application thread before any
other threads in your application run. �

When you call the NewThread function, you pass, as the threadEntry parameter, a
pointer to the name of the entry function to the thread. When the newly created
thread runs initially, it begins by executing this function.

You can use the threadParam parameter to pass thread-specific information to a
newly created or allocated thread. In the data structure pointed to by this
parameter, you could place something like A5 information or the address of a
window to update. You could also use this parameter to specify a place for a
thread’s local storage.

C H A P T E R 1

Thread Manager

58 Thread Manager Reference

8/25/99 Apple Computer, Inc.

IMPORTANT

Be sure to create the storage for the threadResult parameter
in a place that is guaranteed to be available when the
thread terminates—for example, in an application global
variable or in a local variable of the application’s main
function (the main thread, by definition, cannot be
disposed of so it is always available). Do not create the
storage in a local variable of a subroutine that completes
before the thread terminates or the storage will become
invalid. �

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadEntry parameter to the NewThread
function. For all Thread Manager functions that pass a procedure pointer, such
as this one, you must pass the address of the routine, not the address of a
routine descriptor. You are required to use routine descriptors when you write
code in the PowerPC instruction set that passes a routine’s address to code that
might be in the 680x0 instruction set. However, the threads in your application
must all be in the same instruction set— 680x0 or PowerPC. Therefore, the
routine identified by the threadEntry parameter is by definition in the same
instruction set as the NewThread function and a routine descriptor is not
required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_ThreadDispatch $0E03

noErr 0 Specified thread was made or allocated
paramErr –50 Unknown thread type; or specified a

preemptive thread without architecture
support

memFullErr –108 Insufficient memory to create the thread
structures

threadTooManyReqsErr –617 No matching thread structures available

C H A P T E R 1

Thread Manager

Thread Manager Reference 59
8/25/99 Apple Computer, Inc.

SEE ALSO

To dispose of a thread, use the DisposeThread function described next.

See the description of the ThreadOptions data type on (page 48) for details on
the characteristics you can specify in the options parameter.

For more information about the thread entry function, see the myThreadEntry
function described on (page 85).

DisposeThread 1

You can use the DisposeThread function to delete a thread when it finishes
executing.

pascal OSErr DisposeThread(ThreadID threadToDump,
 void *threadResult,
 Boolean recycleThread);

threadToDump
The thread ID of the thread to delete.

threadResult
A pointer to the thread’s result. The DisposeThread function
returns this result to an address which you originally specify
with the threadResult parameter of the NewThread function when
you create or allocate the thread. Pass a value of nil (0) if you
are not interested in returning a function result.

recycleThread
A Boolean value that specifies whether to return the thread to
the allocation pool or to remove it entirely. Specify False (0) to
dispose of the thread entirely and True (1) to return it to the
thread pool.

DESCRIPTION

When a thread finishes executing, the Thread Manager automatically calls
DisposeThread to delete it. Therefore, the only reason for you to explicitly call
DisposeThread is to recycle a terminating thread. To do so, set the recycleThread
parameter to True (1). The Thread Manager clears out the thread’s internal data

C H A P T E R 1

Thread Manager

60 Thread Manager Reference

8/25/99 Apple Computer, Inc.

structure, resets it, and puts the thread in the thread pool where it can be used
again as necessary.

The DisposeThread function returns the thread’s function result in the
threadResult parameter. You allocate the storage for the thread result when you
create or allocate a thread with the NewThread function. See “Passing Input and
Output Parameters to a New Thread” beginning on page 1-33 for an example of
how to set up storage for the thread result when you create a new thread.

IMPORTANT

You cannot explicitly dispose of the main application
thread. If you attempt to do so, DisposeThread returns the
threadProtocolErr result code. �

When your application terminates, the Thread Manager calls DisposeThread to
terminate any active threads. It terminates stopped and ready threads first but
in no special order. It terminates the currently running thread last. This thread
should always be the main application thread.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To install a callback function to do special cleanup when a thread terminates,
use the SetThreadTerminator function described on (page 81).

Getting Information About Specific Threads 1

This section describes functions that allow you to get information about a
specific thread.

Trap macro Selector

_ThreadDispatch $0504

noErr 0 Specified thread was disposed of
threadNotFoundErr –618 No thread with the specified thread ID
threadProtocolErr –619 The thread specified in threadToDump was the

application thread

C H A P T E R 1

Thread Manager

Thread Manager Reference 61
8/25/99 Apple Computer, Inc.

ThreadCurrentStackSpace 1

You can use the ThreadCurrentStackSpace function to determine the amount of
stack space that is available for any thread in your application.

pascal OSErr ThreadCurrentStackSpace(ThreadID thread,
unsigned long *freeStack);

thread The thread ID of the thread about which you want information.

freeStack A pointer to the amount of stack space (in bytes) that is
available to the specified thread. The ThreadCurrentStackSpace
function returns this information.

DESCRIPTION

The ThreadCurrentStackSpace function returns the amount of stack space (in
bytes) that is available for a specified thread.

This function is primarily useful during debugging since you determine the
maximum amount of stack space you need for any particular thread before you
ship your application. However, if your application calls a recursive function
that could call itself many times, you might want to use
ThreadCurrentStackSpace to keep track of the stack space and take appropriate
action if it becomes too low.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_ThreadDispatch $0414

noErr 0 Amount of stack space available in the thread
was returned

threadNotFoundErr –618 No thread with the specified thread ID

C H A P T E R 1

Thread Manager

62 Thread Manager Reference

8/25/99 Apple Computer, Inc.

SEE ALSO

To determine the default size that the Thread Manager assigns to threads use
the GetDefaultThreadStackSize function described on (page 54).

For information on how to optimize memory use in a threaded application, see
the section “Thread Stacks” (page 17).

MacGetCurrentThread 1

You can use the MacGetCurrentThread function to obtain the thread ID of the
currently executing thread.

pascal OSErr MacGetCurrentThread (ThreadID *currentThreadID);

currentThreadID
A pointer to the thread ID of the current thread. The
MacGetCurrentThread function returns this information.

DESCRIPTION

The MacGetCurrentThread function retrieves the thread ID of the currently
executing thread and places it in the currentThreadID parameter. You can use
the thread ID in functions such as GetThreadState and SetThreadState to get
and set the state of a thread.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The ThreadID data type is described on (page 47).

Trap macro Selector

_ThreadDispatch $0206

noErr 0 ID of the current thread was returned
threadNotFoundErr –618 No current thread

C H A P T E R 1

Thread Manager

Thread Manager Reference 63
8/25/99 Apple Computer, Inc.

GetThreadState 1

You can use the GetThreadState function to obtain the state of any thread.

pascal OSErr GetThreadState(ThreadID threadToGet,
ThreadState *threadState);

threadToGet
The thread ID of the thread about which you want information.

threadState
A pointer to a ThreadState data structure in which
GetThreadState places the information about the state of the
specified thread.

DESCRIPTION

The GetThreadState function returns the state of the specified thread. A thread
can be in one of three states: ready to execute (kThreadReadyState), stopped
(kStoppedThreadState), or executing (kRunningThreadState).

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To change the state of a specified thread, use SetThreadState described on
(page 67).

The ThreadState data type is described on (page 45).

Trap macro Selector

_ThreadDispatch $0407

noErr 0 State of the specified thread was returned
threadNotFoundErr –619 No thread with the specified thread ID

C H A P T E R 1

Thread Manager

64 Thread Manager Reference

8/25/99 Apple Computer, Inc.

Scheduling Threads 1

This section describes functions that allow you to control the execution of
threads.

YieldToAnyThread 1

You can use the YieldToAnyThread function to relinquish the current thread’s
control.

pascal OSErr YieldToAnyThread(void);

DESCRIPTION

The YieldToAnyThread function invokes the Thread Manager’s scheduling
mechanism. The current thread relinquishes control and the Thread Manager
schedules the next available thread.

The current thread is suspended in the ready state and awaits rescheduling
when the CPU is available. When the suspended thread is scheduled again,
YieldToAnyThread regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the
thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to
relinquish control to another thread. You can either make this yield call or
another yield call such as YieldToThread; or you can make a call such as
SetThreadState to explicitly change the state of the thread.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

C H A P T E R 1

Thread Manager

Thread Manager Reference 65
8/25/99 Apple Computer, Inc.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To relinquish control to a specific thread, use the YieldToThread function
described next.

To change the state of a specified thread, use the SetThreadState function
described on (page 67).

For more information on how the Thread Manager schedules threads, see
“Scheduling” beginning on page 1-11.

YieldToThread 1

You can use the YieldToThread function to relinquish the current thread’s
control to a particular thread.

pascal OSErr YieldToThread(ThreadID suggestedThread);

suggestedThread
The ID of the thread to yield control to.

DESCRIPTION

The YieldToThread function invokes the Thread Manager’s scheduling
mechanism. The current thread relinquishes control and passes the thread ID of
a thread for the Thread Manager to schedule. The Thread Manager schedules
this thread if it is available. Otherwise, the Thread Manager schedules the next
available thread.

Trap macro Selector

_ThreadDispatch $303C

noErr 0 Current thread has yielded
threadProtocolErr –619 Current thread is in a critical section

C H A P T E R 1

Thread Manager

66 Thread Manager Reference

8/25/99 Apple Computer, Inc.

The current thread is suspended in the ready state and awaits rescheduling
when the CPU is available. When the suspended thread is scheduled again,
YieldToThread regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the
thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to
relinquish control to another thread. You can either make this yield call or
another yield call such as YieldToAnyThread; or you can make a call such as
SetThreadState to explicitly change the state of the thread.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To relinquish control without naming a specific thread, use the
YieldToAnyThread function described on (page 64).

To change the state of a specified thread, use the SetThreadState function
described on next.

For more information on how the Thread Manager schedules threads, see
“Scheduling” beginning on page 1-11.

Trap macro Selector

_ThreadDispatch $0205

noErr 0 Current thread has yielded and is now running
again

threadNotFoundErr –618 No thread with the specified thread ID or the
suggested thread is not in a ready state

threadProtocolErr –619 Current thread is in a critical section

C H A P T E R 1

Thread Manager

Thread Manager Reference 67
8/25/99 Apple Computer, Inc.

SetThreadState 1

You can use the SetThreadState function to change the state of any thread.

pascal OSErr SetThreadState(ThreadID threadToSet,
 ThreadState newState,
 ThreadID suggestedThread);

threadToSet
The thread ID of the thread whose state is to be changed.

newState The new state for the thread. You can specify ready to execute
(kThreadReadyState), stopped (kStoppedThreadState), or
executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread
if you are changing the state of the currently executing thread to
stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread
Manager schedules the next available thread to run.

DESCRIPTION

The SetThreadState function changes the state of the specified thread. The effect
of SetThreadState depends on whether the thread you specify for changing is
the currently executing thread or another thread. If you specify the current
thread and thus change the state to stopped or ready, SetThreadState invokes
the Thread Manager scheduling mechanism. The current thread relinquishes
control (it is put in the state you specify, stopped or ready) and the Thread
Manager schedules the thread that you specify with the suggestedThread
parameter. If this thread is unavailable for running, or if you passed
kNoThreadID, the Thread Manager schedules the next available thread.

If you change the state of the current thread to ready, the Thread Manager
suspends it awaiting availability of the CPU. When it is rescheduled,
SetThreadState regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the
thread ID of the suspended thread.

If you specify a thread other than the currently executing thread, no
rescheduling occurs. If you change the state from ready to stopped, the thread is

C H A P T E R 1

Thread Manager

68 Thread Manager Reference

8/25/99 Apple Computer, Inc.

removed from the scheduling queue. The Thread Manager does not schedule
this thread for execution again until you change its state to ready. On the other
hand, if you change the state from stopped to ready, you have in effect put the
thread in the scheduling queue, and the Thread Manager gives it CPU time as
soon as it reaches the top of the scheduling queue.

SPECIAL CONSIDERATIONS

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the
application was launched.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To obtain the state of any thread, use the GetThreadState function described on
(page 63).

To relinquish control to the next available thread, use the YieldToAnyThread
function described on (page 64). To relinquish control to a specific thread, use
the YieldToThread function described on (page 65).

The ThreadState data structure is described on (page 45).

For more information on how the Thread Manager schedules threads, see
“Scheduling” beginning on page 1-11.

To set the state of the current thread before it exits a critical section of code, use
the SetThreadStateEndCritical function described on (page 71).

Trap macro Selector

_ThreadDispatch $0508

noErr 0 Thread was put in the specified state; if this was
the current thread, it is now running again

threadNotFoundErr –618 No thread with the specified thread ID, or the
suggested thread is not in a ready state

threadProtocolErr –619 Specified thread is in a critical section, or the
new state that was specified is an invalid state

C H A P T E R 1

Thread Manager

Thread Manager Reference 69
8/25/99 Apple Computer, Inc.

Preventing Scheduling 1

This section describes functions that allow you to turn scheduling off and back
on again.

ThreadBeginCritical 1

You can use the ThreadBeginCritical function to indicate that the thread is
entering a critical code section.

pascal OSErr ThreadBeginCritical(void);

DESCRIPTION

The ThreadBeginCritical function disables scheduling by marking the
beginning of a section of critical code. That is, no other threads in the current
application can run—even if the current thread yields control—until the current
thread exits the critical section (by calling the ThreadEndCritical function).
Disabling scheduling allows the currently executing function to look at or
change shared or global data safely. You can nest critical sections within a
thread.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To mark the end of a critical code section and turn scheduling back on, use the
ThreadEndCritical function (described next). If you also need to set the state of
the current thread before scheduling is turned back on, use the
SetThreadStateEndCritical function (described on (page 71)).

Trap macro Selector

_ThreadDispatch $000B

noErr 0 Current thread can now execute critical section

C H A P T E R 1

Thread Manager

70 Thread Manager Reference

8/25/99 Apple Computer, Inc.

ThreadEndCritical 1

You can use the ThreadEndCritical function to indicate that the thread is leaving
a critical code section.

pascal OSErr ThreadEndCritical(void);

DESCRIPTION

The ThreadEndCritical function turns scheduling back on by indicating that the
thread is exiting a critical section of code. All scheduling operations are now
available to the application.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

Use the ThreadBeginCritical function (described on (page 69)) to mark the
beginning of a critical code section and turn scheduling off.

If you need to set the state of the current thread before scheduling is turned
back on, use the SetThreadStateEndCritical function described next.

Trap macro Selector

_ThreadDispatch $000C

noErr 0 Current thread is now out of most nested
critical section

threadProtocolErr –619 Current thread is not in a critical section

C H A P T E R 1

Thread Manager

Thread Manager Reference 71
8/25/99 Apple Computer, Inc.

SetThreadStateEndCritical 1

You can use the SetThreadStateEndCritical function to change the state of the
current thread and exit that thread’s critical section at the same time.

pascal OSErr SetThreadStateEndCritical(ThreadID threadToSet,
 ThreadState newState,
 ThreadID suggestedThread);

threadToSet
The thread ID of the thread whose state is to be changed.

newState The new state for the thread. You can specify ready to execute
(kThreadReadyState), stopped (kStoppedThreadState) or
executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread
if you are changing the state of the currently executing thread to
stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread
Manager schedules the next available thread to run.

DESCRIPTION

The SetThreadStateEndCritical function does in one step the same thing that
ThreadEndCritical and SetThreadState function do in two steps; that is, change
the state of the thread and exit the thread’s critical section.

Note
Historically, the primary purpose of the
SetThreadStateEndCritical function was to close the
scheduling window at the end of a critical section. A
preemptive thread that was waiting while the critical
section of code was executing could begin executing before
you changed the state of the current thread to stopped with
the SetThreadState function. Obviously, because the Thread
Manager no longer supports preemptive threads, this
function is no longer necessary to close the scheduling
window, but you can still use it to change the state of a
thread and exit a critical section in one step instead of two.

C H A P T E R 1

Thread Manager

72 Thread Manager Reference

8/25/99 Apple Computer, Inc.

When you change the state of the currently executing thread, the Thread
Manager schedules the thread you specify with the suggestedThread parameter.
If this thread is unavailable or if you pass kNoThreadID, the Thread Manager
schedules the next available thread.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To mark a section of code as critical, use the ThreadBeginCritical described on
(page 69) and the ThreadEndCritical function described on (page 70).

To change the state of any thread, use the SetThreadState function described on
(page 67).

For more information on how the Thread Manager schedules threads, see
“Scheduling” beginning on page 1-11.

Getting Information and Scheduling Threads During Interrupts 1

This section describes functions that allow you to get information about threads
and to schedule threads at times when your application is not necessarily the
current process, such as during the execution of interrupt code.

Trap macro Selector

_ThreadDispatch $0512

noErr 0 Thread was put in the specified state; if this was
the current thread, it is now running again

threadNotFoundErr –618 No thread with the specified thread ID, or the
suggested thread is not in a ready state

threadProtocolErr –619 Current thread is not in a critical section, or the
new state that was specified is an invalid state

C H A P T E R 1

Thread Manager

Thread Manager Reference 73
8/25/99 Apple Computer, Inc.

GetThreadCurrentTaskRef 1

You can use the GetThreadCurrentTaskRef function to obtain a thread task
reference.

pascal OSErr GetThreadCurrentTaskRef (ThreadTaskRef *threadTRef);

threadTRef A pointer to a thread task reference, which the
GetThreadCurrentTaskRef function returns.

DESCRIPTION

The GetThreadCurrentTaskRef function returns a thread task reference. The
thread task reference is somewhat of a misnomer because it identifies your
application context, not a particular thread. Identifying your application context
is necessary in situations where you aren’t guaranteed that your application is
the current context—such as during the execution of an interrupt routine. In
such cases, you need both the thread ID to identify the thread and the thread
task reference to identify the application context.

After you obtain the thread task reference, you can use it in the
GetThreadStateGivenTaskRef and SetThreadReadyGivenTaskRef functions to get
and set information about specific threads in your application at times when
you are not guaranteed that your application is the current context.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To get information about a thread when your application is not the current
process, use the GetThreadStateGivenTaskRef function described next.

Trap macro Selector

_ThreadDispatch $020E

noErr 0 Thread task reference was returned

C H A P T E R 1

Thread Manager

74 Thread Manager Reference

8/25/99 Apple Computer, Inc.

To change the state of a thread from stopped to ready when your application is
not the current process, use the SetThreadReadyGivenTaskRef function described
on (page 75).

The ThreadTaskRef data type is described on (page 46).

GetThreadStateGivenTaskRef 1

You can use the GetThreadStateGivenTaskRef function to obtain the state of a
thread when your application is not necessarily the current process—for
example, during execution of an interrupt routine.

pascal OSErr GetThreadStateGivenTaskRef(ThreadTaskRef threadTRef,
 ThreadID threadToGet,
 ThreadState *threadState);

threadTRef The thread task reference of the application containing the
thread whose state you want to determine.

threadToGet
The thread ID of the thread whose state you want to determine.

threadState
 A pointer to a thread state variable in which the function places
the state of the specified thread.

DESCRIPTION

The GetThreadStateGivenTaskRef function returns the state of the
specified thread. You can use GetThreadStateGivenTaskRef at times when
you aren’t guaranteed that your application is the current context, such as
during execution of an interrupt routine. In such cases you must identify the
thread task reference (the application context) as well as the thread ID.

You obtain the thread task reference for your application with the
GetThreadCurrentTaskRef function.

C H A P T E R 1

Thread Manager

Thread Manager Reference 75
8/25/99 Apple Computer, Inc.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To determine the thread task reference (application context) for your
application, use the GetThreadCurrentTaskRef function described on (page 73).

To change the state of a thread from stopped to ready when your application is
not the current process, use the SetThreadReadyGivenTaskRef function described
next.

The ThreadTaskRef data type is described on (page 46).

SetThreadReadyGivenTaskRef 1

You can use the SetThreadReadyGivenTaskRef function to change the state of a
thread from stopped to ready when your application is not the current process.

pascal OSErr SetThreadReadyGivenTaskRef(ThreadTaskRef threadTRef,
ThreadID threadToSet);

threadTRef The thread task reference of the application containing the
thread whose state you want to change.

threadToSet
The thread ID of the thread whose state you want to change.

Trap macro Selector

_ThreadDispatch $060F

noErr 0 State of the specified thread was returned
threadNotFoundErr –618 No thread with the specified thread ID and

thread task reference
threadProtocolErr –619 Specified thread task reference is invalid

C H A P T E R 1

Thread Manager

76 Thread Manager Reference

8/25/99 Apple Computer, Inc.

DESCRIPTION

The SetThreadReadyGivenTaskRef function changes the state of a thread from
stopped to ready to execute. In other words, when you mark a thread as ready
to run with this function, the Thread Manager does not put it immediately into
the scheduling queue but does so the next time it reschedules threads.

You can use SetThreadStateGivenTaskRef at times when you aren’t
guaranteed that your application is the current context, such as during
execution of an interrupt routine. In such cases you must identify the thread
task reference (the application context) as well as the thread ID.

You obtain the thread task reference for your application with the
GetThreadCurrentTaskRef function.

IMPORTANT

The SetThreadReadyGivenTaskRef function allows you to do
one thing only—change a thread from stopped to ready to
execute. You cannot change the state of an executing thread
to ready or stopped, nor can you change the state of a
ready thread to executing or stopped with this call. �

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To obtain the thread task reference of your application, use the
GetThreadCurrentTaskRef function described on (page 73).

Trap macro Selector

_ThreadDispatch $0410

noErr 0 Specified thread was marked as ready
threadNotFoundErr –618 No thread with the specified thread ID and

thread task reference
threadProtocolErr –619 Caller attempted to mark a thread ready that is

not in the stopped state, or the specified thread
task reference is invalid

C H A P T E R 1

Thread Manager

Thread Manager Reference 77
8/25/99 Apple Computer, Inc.

To determine the state of a thread when your application is not the current
process, use the GetThreadStateGivenTaskRef function described on (page 74).

See “Using Threads With I/O” beginning on page 1-36 for an example of using
the SetThreadReadyGivenTaskRef function to wake up a thread from a
completion routine.

Installing Custom Scheduling, Switching, Terminating, and Debugging Functions 1

This section describes functions that enable you to install custom functions that
are called whenever a thread is scheduled or terminates or when the context
switches. There is also a function for installing debugging functions that the
Thread Manager calls whenever it creates, schedules, or disposes of a thread.

SetThreadScheduler 1

You can use the SetThreadScheduler function to install a custom scheduling
function (custom scheduler).

pascal OSErr SetThreadScheduler
(ThreadSchedulerProcPtr threadScheduler);

threadScheduler
A pointer to a custom scheduler. Specify nil if you want to
remove an installed custom scheduler and use the default
Thread Manager scheduling mechanism.

DESCRIPTION

The SetThreadScheduler function installs a custom scheduler that runs in
conjunction with the default Thread Manager scheduling mechanism. The
Thread Manager uses a scheduler information structure ((page 49)) to pass the
custom scheduler the ID of the current thread and the ID of the thread that the
Thread Manager has scheduled to run next.

A custom scheduler should return to the Thread Manager the ID of the thread
that it determines to schedule. If it does not determine a particular thread to
schedule, it should return the constant kNoThreadID and the Thread Manager
default scheduling mechanism schedules the next thread.

C H A P T E R 1

Thread Manager

78 Thread Manager Reference

8/25/99 Apple Computer, Inc.

If you already have a custom scheduler installed when you call
SetThreadScheduler, it replaces the old one with a new one. If you want to
remove your custom scheduler and return to using the default Thread Manager
scheduling mechanism, call SetThreadScheduler and specify a value of nil for
the parameter.

IMPORTANT

The SetThreadScheduler function automatically disables
scheduling to avoid any reentrancy problems with the
custom scheduling function. Therefore, in your custom
scheduling function, you should make no yield calls or
other calls that would cause scheduling to occur. �

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadScheduler parameter to the
SetThreadScheduler function. As with all Thread Manager functions that pass a
procedure pointer, you must pass the address of the routine, not the address of
a routine descriptor. You are required to use routine descriptors when you write
code in the PowerPC instruction set that passes a routine’s address to code that
might be in the 680x0 instruction set. However, the threads in your application
must all be in the same instruction set—680x0 or PowerPC. Therefore, the
routine identified by the threadScheduler parameter is by definition in the same
instruction set as the SetThreadScheduler function and a routine descriptor is
not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

For more information on the custom scheduling function, see the
MyThreadScheduler function on (page 86) and “Custom Scheduler” (page 13).

Trap macro Selector

_ThreadDispatch $0209

noErr 0 Specified scheduler was installed

C H A P T E R 1

Thread Manager

Thread Manager Reference 79
8/25/99 Apple Computer, Inc.

For more information on how the Thread Manager schedules threads, see
“Scheduling” beginning on page 1-11.

SetThreadSwitcher 1

You can use the SetThreadSwitcher function to install a custom
context-switching function for any thread.

pascal OSErr SetThreadSwitcher (ThreadID thread,
 ThreadSwitchProcPtr threadSwitcher,
void *switchProcParam, Boolean inOrOut);

thread The thread ID of the thread to associate with a context-switching
function.

threadSwitcher
A pointer to the context-switching function.

switchProcParam
A pointer to a thread-specific parameter that you pass to the
context-switching function.

inOrOut A Boolean value that indicates whether the Thread Manager
calls the context-switching function when the specified thread
switches in (True) or when it is switched out by another thread
(False).

DESCRIPTION

The SetThreadSwitcher function installs a custom context-switching function
that is associated with a specified thread. The custom switching function allows
you to save context information in addition to the default context information
that the Thread Manager automatically saves when it switches contexts. The
default context information consists of the CPU registers, the FPU registers (if
any), and the location of the thread’s context.

You must actually define two context-switching functions, one for leaving a
thread and another for entering a thread. When leaving a thread, you call the
outer context-switching function to save additional context information. When
reentering a thread, you call the inner context-switching function to restore the

C H A P T E R 1

Thread Manager

80 Thread Manager Reference

8/25/99 Apple Computer, Inc.

extra information that was saved on exit. Use the inOrOut parameter of the
SetThreadSwitcher function to specify which type of context-switching function
is being installed.

You can pass a different switchProcParam parameter to each thread, which
allows you to write a single, application-wide custom switching function and
then pass any thread-specific information when the Thread Manager calls the
switching function for that thread.

IMPORTANT

The SetThreadSwitcher function automatically disables
scheduling to avoid any reentrancy problems with the
custom switching function. Therefore, in the custom
switching function, you should make no yield calls or other
calls that would cause scheduling to occur. �

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadSwitcher parameter to the
SetThreadSwitcher function. As with all Thread Manager functions that pass a
procedure pointer, you must pass the address of the routine, not the address of
a routine descriptor. You are required to use routine descriptors when you write
code in the PowerPC instruction set that passes a routine’s address to code that
might be in the 680x0 instruction set. However, the threads in your application
must all be in the same instruction set—680x0 or PowerPC. Therefore, the
routine identified by the threadSwitcher parameter is by definition in the same
instruction set as the SetThreadSwitcher function and a routine descriptor is not
required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_ThreadDispatch $070A

noErr 0 Specified thread switcher was installed
threadNotFoundErr –618 No thread with the specified thread ID

C H A P T E R 1

Thread Manager

Thread Manager Reference 81
8/25/99 Apple Computer, Inc.

SEE ALSO

For more information on the custom context-switching function, see the
MyThreadSwitch function on (page 87) and “Custom Context-Switching
Function” (page 16).

For information about the default context that the Thread Manager saves, see
“Default Saved Thread Context” (page 15).

SetThreadTerminator 1

You can use the SetThreadTerminator function to install a custom
thread-termination function for any thread.

pascal OSErr SetThreadTerminator (ThreadID thread,
ThreadTerminationProcPtr threadTerminator,
void *terminationProcParam);

thread The thread ID of the thread to associate with the
thread-termination function.

threadTerminator
A pointer to the thread-termination function.

terminationProcParam
A pointer to a thread-specific parameter that you pass to the
thread-termination function.

DESCRIPTION

The Thread Manager calls the custom termination function whenever the
specified thread completes execution of its code or when you manually dispose
of the thread with the DisposeThread function.

You can pass a different terminationProcParam parameter to each thread, which
allows you to write a single, application-wide custom thread-termination
function and then pass any thread-specific information when the Thread
Manager calls the termination function for that thread.

C H A P T E R 1

Thread Manager

82 Thread Manager Reference

8/25/99 Apple Computer, Inc.

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as the threadTerminator parameter to the
SetThreadTerminator function. As with all Thread Manager functions that
pass a procedure pointer, you must pass the address of the routine, not the
address of a routine descriptor. You are required to use routine descriptors
when you write code in the PowerPC instruction set that passes a routine’s
address to code that might be in the 680x0 instruction set. However, the threads
in your application must all be in the same instruction set—680x0 or PowerPC.
Therefore, the routine identified by the threadTerminator parameter is by
definition in the same instruction set as the SetThreadTerminator function
and a routine descriptor is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

To manually dispose of a thread, use the DisposeThread function described on
(page 59).

For more information on the custom thread-termination function, see the
MyThreadTermination function on (page 88).

For more information on what the Thread Manager does when a thread
terminates, see “Creating and Disposing of Threads” (page 18).

Trap macro Selector

_ThreadDispatch $0611

noErr 0 Specified thread terminator was installed
threadNotFoundErr –618 No thread with the specified thread ID

C H A P T E R 1

Thread Manager

Thread Manager Reference 83
8/25/99 Apple Computer, Inc.

SetDebuggerNotificationProcs 1

You can use the SetDebuggerNotificationProcs function to install functions that
notify the debugger when a thread is created, disposed of, or scheduled. You
generally use this function only during development of an application.

pascal OSErr SetDebuggerNotificationProcs
(DebuggerNewThreadProcPtr notifyNewThread,
DebuggerDisposeThreadProcPtr notifyDisposeThread,
DebuggerThreadSchedulerProcPtr
notifyThreadScheduler);

notifyNewThread
A pointer to the callback function that notifies the debugger
when a thread is created.

notifyDisposeThread
A pointer to the callback function that notifies the debugger
when a thread is disposed of. This function is called whether
you manually dispose of a thread with the DisposeThread
function or if a thread disposes of itself automatically when it
returns from its highest level of code.

notifyThreadScheduler
A pointer to the callback function that notifies the debugger
when a thread is scheduled.

DESCRIPTION

The SetDebuggerNotificationProcs function provides debugging support in a
threaded application by letting you know when any thread is created, disposed
of, or scheduled. The SetDebuggerNotificationProcs function installs three
separate callback functions that return the thread ID of a newly created thread,
the thread ID of a newly disposed of thread, and the thread ID of a newly
scheduled thread.

C H A P T E R 1

Thread Manager

84 Thread Manager Reference

8/25/99 Apple Computer, Inc.

Note
The SetDebuggerNotificationProcs function always installs
all three of the debugging functions. You cannot set only
one or two of these functions, nor can you chain them
together. These restrictions ensure that the function that
calls SetDebuggerNotificationProcs owns all three of the
debugging functions. If you want to prevent one or two of
these debugging functions from being called, you can do so
by setting them to nil. �

The Thread Manager calls the disposing-notification callback function whether
you manually dispose of a thread with the DisposeThread function or if a thread
disposes of itself automatically when it returns from its highest level of code.

To guarantee that the debugger is getting an accurate view of scheduling, the
Thread Manager doesn’t call the scheduling-notification callback function until
both the generic Thread Manager scheduler and any custom thread scheduler
have decided on a thread to schedule.

SPECIAL CONSIDERATIONS

Do not pass a routine descriptor as any of the parameters to the
SetDebuggerNotificationProcs function. As with all Thread Manager functions
that pass a procedure pointer, you must pass the address of the routine, not the
address of a routine descriptor. You are required to use routine descriptors
when you write code in the PowerPC instruction set that passes a routine’s
address to code that might be in the 680x0 instruction set. However, the threads
in your application must all be in the same instruction set—680x0 or PowerPC.
Therefore, the routines identified by the parameters in this function are by
definition in the same instruction set as the SetDebuggerNotificationProcs
function and a routine descriptor is not required.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Trap macro Selector

_ThreadDispatch $060D

noErr 0 Debugger procedures were installed

C H A P T E R 1

Thread Manager

Thread Manager Reference 85
8/25/99 Apple Computer, Inc.

SEE ALSO

To create or allocate a new thread, use the NewThread function described on
(page 56).

To dispose of a thread, use the DisposeThread function described on (page 59).

To schedule a thread, you can use a yield function such as YieldToAnyThread
((page 64)) or YieldToThread ((page 65)) or a function to change the state of a
thread, such as SetThreadState ((page 67)).

Application-Defined Routines 1

This section describes the function that you must provide as the entry point for
any thread that your application creates and it describes all the custom
functions that you can install, such as custom scheduling or context-switching
functions.

MyThreadEntry 1

You must provide a MyThreadEntry function as the entry point to any thread that
you create in your application.

typedef pascal void* MyThreadEntry(void *threadParam);

threadParam
A pointer to a void data structure passed to this function by the
NewThread function.

DESCRIPTION

The MyThreadEntry function is the entry point to a new thread. When you create
or allocate a new thread with the NewThread function, you pass the name of this
entry function. You also pass a parameter that the Thread Manager passes on to
the MyThreadEntry function. You can use this parameter to pass thread-specific
information to the newly created or allocated thread. For example, you could
pass something like A5 information or the address of a window to update. Or
you use this parameter to specify local storage for a thread that other threads
could access.

C H A P T E R 1

Thread Manager

86 Thread Manager Reference

8/25/99 Apple Computer, Inc.

When the code in a thread finishes executing, the Thread Manager
automatically calls the DisposeThread function to dispose of the thread. The
MyThreadEntry function passes its function result to DisposeThread. The
DisposeThread function passes this result back to the NewThread function that
called MyThreadEntry to begin with.

This mechanism allows you to spawn a thread that does some work and then
continue with your original thread. When the spawned thread is finished doing
its work—for example a calculation—it returns the result to the original thread.

SEE ALSO

See “Passing Input and Output Parameters to a New Thread” beginning on
page 1-33 for an example of passing input and output parameters between one
thread and the thread entry function in a newly created thread.

MyThreadScheduler 1

You may provide a custom scheduling function, MyThreadScheduler, to
supplement the Thread Manager default scheduling mechanism.

typedef pascal ThreadID MyThreadScheduler(SchedulerInfoRecPtr
 schedulerInfo);

schedulerInfo
A pointer to the scheduler information record that the Thread
Manager uses to pass information to MyThreadScheduler.

DESCRIPTION

You use the SetThreadScheduler function to install the MyThreadScheduler
custom scheduling function (custom scheduler). The MyThreadScheduler
function does not supplant the Thread Manager scheduling mechanism but
rather works in conjunction with it.

Whenever scheduling occurs, the Thread Manager passes a scheduler
information structure to MyThreadScheduler. Among other information, he
scheduler information structure contains the thread ID of the current thread and
the thread ID of the thread that the application has scheduled to run next.

C H A P T E R 1

Thread Manager

Thread Manager Reference 87
8/25/99 Apple Computer, Inc.

The MyThreadScheduler function returns to the Thread Manager the thread ID of
the thread that it has chosen to schedule and the Thread Manager does the
actual scheduling. If MyThreadScheduler decides not to schedule a thread, it
returns the constant kNoThreadID and the Thread Manager default scheduling
mechanism schedules the next thread.

IMPORTANT

When the SetThreadScheduler function installs the custom
scheduler, it automatically disables scheduling to avoid any
reentrancy problems. Therefore, in the custom scheduler,
you should make no yield calls or other calls that would
cause scheduling to occur.

SEE ALSO

See “The Scheduler Information Structure” (page 49) for more information on
how the Thread Manager passes information to MyThreadScheduler.

For more information on how the Thread Manager schedules threads to run, see
“Scheduling” beginning on page 1-11.

MyThreadSwitch 1

You may provide a custom switching function, MyThreadSwitch, to add to the
thread context information that the Thread Manager saves and restores.

typedef pascal void MyThreadSwitch(ThreadID threadBeingSwitched,
 void *switchProcParam);

threadBeingSwitched
The thread ID of the thread whose context is being switched.

 switchProcParam
A pointer to a void that the SetThreadSwitcher function passes to
MyThreadSwitch.

C H A P T E R 1

Thread Manager

88 Thread Manager Reference

8/25/99 Apple Computer, Inc.

DESCRIPTION

You use the SetThreadSwitcher function to install the MyThreadSwitch custom
context-switching function. The custom switching function allows you to save
and restore context information in addition to the default context information
that the Thread Manager automatically saves and restores when it switches
contexts. You must actually define two context-switching functions, one for
leaving a thread and another for entering a thread. When leaving a thread, you
call the outer context-switching function to save additional context information.
When reentering a thread, you call the inner context-switching function to
restore the extra information that was saved on exit.

The default context information consists of the CPU registers, the FPU registers
(if any), and the location of the thread’s context.

IMPORTANT

When the SetThreadSwitcher function installs the custom
switching function, it automatically disables scheduling to
avoid any reentrancy problems. Therefore, in the custom
switching function, you should make no yield calls or other
calls that would cause scheduling to occur. �

SEE ALSO

For more information on the thread context that the Thread Manager
automatically saves, see “Default Saved Thread Context” beginning on
page 1-15.

For more information about using a custom context-switching function, see
“Custom Context-Switching Function” (page 16).

MyThreadTermination 1

You may provide a custom termination function, MyThreadTermination, to do
additional cleanup when the code in a thread finishes executing.

typedef pascal void MyThreadTermination(ThreadID threadTerminated,
 void *terminationProcParam);

C H A P T E R 1

Thread Manager

Thread Manager Reference 89
8/25/99 Apple Computer, Inc.

threadTerminated
The thread ID of the thread being disposed of.

 terminationProcParam
A pointer to a void data structure that the SetThreadTerminator
function passes to MyThreadTermination.

DESCRIPTION

You use the SetThreadTerminator function to install the MyThreadTermination
custom termination function. The custom termination function allows you to do
additional cleanup when the code in a thread finishes executing or when you
call the DisposeThread function to manually dispose of a thread.

SEE ALSO

To dispose of a thread, use the DisposeThread function described on (page 59).

For more information on what the Thread Manager does when a thread
terminates, see “Creating and Disposing of Threads” (page 18).

MyDebuggerNewThread 1

You may provide a debugging callback function, MyDebuggerNewThread, that
the Thread Manager calls whenever it creates a new thread.

typedef pascal void MyDebuggerNewThread(ThreadID threadCreated);

threadCreated
The thread ID of the thread being created.

DESCRIPTION

The MyDebuggerNewThread function is one of three debugging functions that
you can install with the SetDebuggerNotificationProcs function. The Thread
Manager calls MyDebuggerNewThread whenever an application creates or
allocates a new thread with the NewThread function. The Thread Manager does
not call MyDebuggerNewThread when an application creates a thread pool
with the CreateThreadPool function.

C H A P T E R 1

Thread Manager

90 Thread Manager Reference

8/25/99 Apple Computer, Inc.

SEE ALSO

To create a new thread, use the NewThread function described on (page 56).

MyDebuggerDisposeThread 1

You may provide a debugging callback function, MyDebuggerDisposeThread, that
the Thread Manager calls whenever it disposes of a thread.

typedef pascal void MyDebuggerDisposeThread(ThreadID threadDeleted);

threadDeleted
The thread ID of the thread being disposed of.

DESCRIPTION

The MyDebuggerDisposeThread function is one of three debugging functions that
you can install with the SetDebuggerNotificationProcs function. The Thread
Manager calls MyDebuggerDisposeThread whenever an application disposes of a
thread. The thread manager calls this debugging function whether you
manually call DisposeThread to dispose of a thread or if a thread finishes
executing its code and the Thread Manager automatically disposes of it.

SEE ALSO

To dispose of a thread, use the DisposeThread function described on (page 59).

MyDebuggerThreadScheduler 1

You may provide a debugging callback function, MyDebuggerThreadScheduler,
that the Thread Manager calls whenever a thread is scheduled.

typedef pascal ThreadID MyDebuggerThreadScheduler
(SchedulerInfoRecPtr schedulerInfo);

C H A P T E R 1

Thread Manager

Thread Manager Reference 91
8/25/99 Apple Computer, Inc.

schedulerInfo
A pointer to a scheduler information structure that the
SetDebuggerNotificationProcs passes to the
MyDebuggerThreadScheduler function. Among other
information, the scheduler information structure contains the ID
of the current thread and the ID of the thread that the Thread
Manager has scheduled to run next.

DESCRIPTION

The MyDebuggerThreadScheduler function is one of three debugging
functions that you can install with the SetDebuggerNotificationProcs function.
The Thread Manager calls MyDebuggerThreadScheduler whenever an
application schedules a new thread to run. The
MyDebuggerThreadScheduler function gets the last look at the thread being
scheduled—that is, the Thread Manager calls this function after the Thread
Manager default scheduling mechanism and a custom scheduler, if you have
installed one, decide on the next thread to schedule.

If you wish, you can use this debugging callback function to schedule a
different thread than that chosen by the Thread Manager and any custom
scheduling function. The MyDebuggerThreadScheduler returns the thread
ID of the next thread to schedule. The MyDebuggerThreadScheduler can
specify kNoThreadID for the thread ID if you do not want to change the decision
of the Thread Manager default scheduler or a custom scheduler.

SEE ALSO

To schedule a thread, use functions such as YieldToAnyThread (described on
(page 64)), YieldToThread (described on (page 65)), and SetThreadState
(described on (page 67)).

The scheduler information structure is described on (page 49).

C H A P T E R 1

Thread Manager

92 Summary of the Thread Manager

8/25/99 Apple Computer, Inc.

Summary of the Thread Manager 1

C Summary 1

Constants and Data Types 1

enum { /* Gestalt selectors */
#define gestaltThreadMgrAttr 'thds' /* Thread Manager attributes */

gestaltThreadMgrPresent = 0, /* Thread Manager is present */
gestaltSpecificMatchSupport = 1, /* Thread Manager supports exact

match
creation option */

gestaltThreadsLibraryPresent = 2 /* Threads library (native version)
 has been loaded */

};

/* Thread states */
typedef unsigned short ThreadState;
#define kReadyThreadState ((ThreadState) 0) /* thread is ready to
run */
#define kStoppedThreadState ((ThreadState) 1) /* thread is stopped
and

not ready to run */
#define kRunningThreadState ((ThreadState) 2) /* thread is running */

/* Thread environment characteristics */
typedef void* ThreadTaskRef;

/* Thread characteristics */
typedef unsigned long ThreadStyle;
#define kCooperativeThread (1<<0) /* cooperative thread
*/

/* Thread identifiers */
typedef unsigned long ThreadID;
#define kNoThreadID ((ThreadID) 0) /* no specific thread

C H A P T E R 1

Thread Manager

Summary of the Thread Manager 93
8/25/99 Apple Computer, Inc.

*/
#define kCurrentThreadID ((ThreadID) 1) /* current thread */
#define kApplicationThreadID ((ThreadID) 2) /* main thread */

/* Options when creating a thread */
typedef unsigned long ThreadOptions;
#define kNewSuspend (1<<0) /* begin a new thread as
stopped */
#define kUsePremadeThread (1<<1) /* use a premade thread */
#define kCreateIfNeeded (1<<2) /* create a new thread if one
with

required size doesn’t exist
*/
#define kFPUNotNeeded (1<<3) /* don’t save FPU context */
#define kExactMatchThread (1<<4) /* use a thread only if it
exactly

matches size request */

/* Information supplied to the custom scheduler */
struct SchedulerInfoRec {

unsigned long InfoRecSize; /* size of the structure */
ThreadID CurrentThreadID; /* current thread */
ThreadID SuggestedThreadID; /* suggested thread to run next

*/
ThreadID InterruptedCoopThreadID;/* previously a preempted

thread; now use kNoThreadID
*/
};
typedef struct SchedulerInfoRec SchedulerInfoRec;
typedef SchedulerInfoRec *SchedulerInfoRecPtr;

Thread Manager functions 1

Creating and Getting Information About Thread Pools

pascal OSErr CreateThreadPool(ThreadStyle threadStyle, short numToCreate,
 Size stackSize);

pascal OSErr GetFreeThreadCount(ThreadStyle threadStyle, short *freeCount);

C H A P T E R 1

Thread Manager

94 Summary of the Thread Manager

8/25/99 Apple Computer, Inc.

pascal OSErr GetSpecificFreeThreadCount(ThreadStyle threadStyle,
 Size stackSize, short *freeCount);

pascal OSErr GetDefaultThreadStackSize(ThreadStyle threadStyle,
 Size *stackSize);

Creating and Disposing of Threads

pascal OSErr NewThread(ThreadStyle threadStyle,
ThreadEntryProcPtr threadEntry,
void *threadParam,
Size stackSize,
ThreadOptions options,
void **threadResult,
ThreadID *threadMade);

pascal OSErr DisposeThread(ThreadID threadToDump, void *threadResult,
 Boolean recycleThread);

Getting Information About Specific Threads

pascal OSErr ThreadCurrentStackSpace(ThreadID thread,
 unsigned long *freeStack);

pascal OSErr MacGetCurrentThread (ThreadID *currentThreadID);

pascal OSErr GetThreadState(ThreadID threadToGet, ThreadState *threadState);

Scheduling Threads

pascal OSErr YieldToAnyThread(void);

pascal OSErr YieldToThread(ThreadID suggestedThread);

pascal OSErr SetThreadState(ThreadID threadToSet, ThreadState newState,
 ThreadID suggestedThread);

Preventing Scheduling

pascal OSErr ThreadBeginCritical(void);

pascal OSErr ThreadEndCritical(void);

C H A P T E R 1

Thread Manager

Summary of the Thread Manager 95
8/25/99 Apple Computer, Inc.

pascal OSErr SetThreadStateEndCritical (ThreadID threadToSet,
ThreadState newState,
ThreadID suggestedThread);

Getting Information and Scheduling Threads During Interrupts

pascal OSErr GetThreadCurrentTaskRef (ThreadTaskRef *threadTRef);

pascal OSErr GetThreadStateGivenTaskRef (ThreadTaskRef threadTRef,
 ThreadID threadToGet,

 ThreadState *threadState);

pascal OSErr SetThreadReadyGivenTaskRef(ThreadTaskRef threadTRef,
 ThreadID threadToSet);

Installing Custom Scheduling, Switching, Terminating and Debugging Functions

pascal OSErr SetThreadScheduler(ThreadSchedulerProcPtr threadScheduler);

pascal OSErr SetThreadSwitcher(ThreadID thread,
 ThreadSwitchProcPtr threadSwitcher,
 void *switchProcParam, Boolean inOrOut);

pascal OSErr SetThreadTerminator(ThreadID thread,
 ThreadTerminationProcPtr threadTerminator,
 void *terminationProcParam);

pascal OSErr SetDebuggerNotificationProcs
(DebuggerNewThreadProcPtr notifyNewThread,
DebuggerDisposeThreadProcPtr notifyDisposeThread,
DebuggerThreadSchedulerProcPtr notifyThreadScheduler);

Application-Defined Routines

typedef pascal void* MyThreadEntry(void *threadParam);

typedef pascal ThreadID MyThreadScheduler(SchedulerInfoRecPtr schedulerInfo);

typedef pascal void MyThreadSwitch(ThreadID threadBeingSwitched,
void *switchProcParam);

typedef pascal void MyThreadTermination(ThreadID threadTerminated,
void *terminationProcParam);

C H A P T E R 1

Thread Manager

96 Summary of the Thread Manager

8/25/99 Apple Computer, Inc.

typedef pascal void MyDebuggerNewThread(ThreadID threadCreated);

typedef pascal void MyDebuggerDisposeThread(ThreadID threadDeleted);

typedef pascal ThreadID MyDebuggerThreadScheduler
(SchedulerInfoRecPtr

schedulerInfo);

Pascal Summary 1

Constants and Data Types 1

{ Gestalt selectors }

CONST

gestaltThreadMgrAttr = 'thds'; { Thread Manager attributes }

gestaltThreadMgrPresent = 0; { Thread Manager is present }

gestaltSpecificMatchSupport = 1; { Thread Manager supports exact
 match creation option }

gestaltThreadsLibraryPresent = 2; { The Threads library (native
version)

 has been loaded }

{ Thread states }
TYPE

ThreadState = INTEGER;
CONST

kReadyThreadState = 0; { thread is ready to run }
kStoppedThreadState = 1; { thread is stopped and not ready to run }
kRunningThreadState = 2; { thread is running }

{ Thread environment characteristics }
TYPE

ThreadTaskRef = Ptr;

C H A P T E R 1

Thread Manager

Summary of the Thread Manager 97
8/25/99 Apple Computer, Inc.

{ Thread characteristics }
TYPE

ThreadStyle = LONGINT;
CONST

kCooperativeThread = 1; { cooperative thread }

{ Thread identifiers }
TYPE

ThreadID = LONGINT;
CONST

kNoThreadID = 0; { no specific thread }
kCurrentThreadID = 1; { current thread }
kApplicationThreadID = 2; { main thread }

{ Options when creating a thread }
TYPE

ThreadOptions = LONGINT;
CONST

kNewSuspend = 1; { begin a new thread as stopped }
kUsePremadeThread = 2; { use a premade thread }
kCreateIfNeeded = 4; { create a new thread if one with

 required size doesn’t exist }
kFPUNotNeeded = 8; { don’t save FPU context }
kExactMatchThread = 16; { create a thread only if it exactly

 matches size request }

{ Information supplied to the custom scheduler }

TYPE
SchedulerInfoRecPtr= ^SchedulerInfoRec;
SchedulerInfoRec= RECORD

InfoRecSize: LONGINT; { size of the structure }
CurrentThreadID: ThreadID; { current thread }
SuggestedThreadID: ThreadID; { suggested thread to run next

}
InterruptedCoopThreadID: ThreadID; { previously a preempted

thread;
 now use kNoThreadID }

END;

C H A P T E R 1

Thread Manager

98 Summary of the Thread Manager

8/25/99 Apple Computer, Inc.

Thread Manager Functions 1

Creating and Getting Information About Thread Pools

FUNCTION CreateThreadPool(threadStyle: ThreadStyle; numToCreate: INTEGER;
stackSize: Size):OSErr;

FUNCTION GetFreeThreadCount(threadStyle: ThreadStyle;
VAR freeCount: INTEGER):OSErr;

FUNCTION GetSpecificFreeThreadCount(threadStyle: ThreadStyle;
 stackSize: Size;
 VAR freeCount: INTEGER):OSErr;

FUNCTION GetDefaultThreadStackSize(threadStyle: ThreadStyle;
 VAR stackSize: Size):OSErr;

Creating and Disposing of Threads

FUNCTION NewThread(threadStyle: ThreadStyle;
 threadEntry: ThreadEntryProcPtr;
 threadParam: LONGINT;
 stackSize: Size;
 options: ThreadOptions;
 threadResult: LongIntPtr;
 VAR threadMade: ThreadID):OSErr;

FUNCTION DisposeThread(threadToDump: ThreadID; threadResult: LONGINT;
 recycleThread: BOOLEAN):OSErr;

Getting Information About Specific Threads

FUNCTION ThreadCurrentStackSpace(thread: ThreadID;
 VAR freeStack: LONGINT):OSErr;

FUNCTION MacGetCurrentThread (VAR currentThreadID: ThreadID):OSErr;

FUNCTION GetThreadState(threadToGet: ThreadID;
 VAR threadState: ThreadState):OSErr;

C H A P T E R 1

Thread Manager

Summary of the Thread Manager 99
8/25/99 Apple Computer, Inc.

Scheduling Threads

FUNCTION YieldToAnyThread:OSErr;

FUNCTION YieldToThread(suggestedThread: ThreadID):OSErr;

FUNCTION SetThreadState(threadToSet: ThreadID; newState: ThreadState;
 suggestedThread: ThreadID):OSErr;

Preventing Scheduling

FUNCTION ThreadBeginCritical:OSErr;

FUNCTION ThreadEndCritical:OSErr;

FUNCTION SetThreadStateEndCritical(threadToSet: ThreadID;
newState: ThreadState;

 suggestedThread: ThreadID):OSErr;

Getting Information and Scheduling Threads During Interrupts

FUNCTION GetThreadCurrentTaskRef (VAR threadTRef: ThreadTaskRef):OSErr;

FUNCTION GetThreadStateGivenTaskRef(threadTRef: ThreadTaskRef;
 threadToGet: ThreadID;
 VAR threadState: ThreadState):OSErr;

FUNCTION SetThreadReadyGivenTaskRef(threadTRef: ThreadTaskRef;
 threadToSet: ThreadID):OSErr;

Installing Custom Scheduling, Switching, Terminating, and Debugging Functions

FUNCTION SetThreadScheduler(threadScheduler: ThreadSchedulerProcPtr):OSErr;

FUNCTION SetThreadSwitcher(thread: ThreadID;
 threadSwitcher: ThreadSwitchProcPtr;
 switchProcParam: LONGINT; inOrOut: BOOLEAN):OSErr;

FUNCTION SetThreadTerminator(thread: ThreadID;
 threadTerminator: ThreadTerminationProcPtr;
 terminationProcParam: LONGINT):OSErr;

C H A P T E R 1

Thread Manager

100 Summary of the Thread Manager

8/25/99 Apple Computer, Inc.

FUNCTION SetDebuggerNotificationProcs
(notifyNewThread: DebuggerNewThreadProcPtr;
notifyDisposeThread: DebuggerDisposeThreadProcPtr;
notifyThreadScheduler: DebuggerThreadSchedulerProcPtr):OSErr;

Application-Defined Functions

FUNCTION MyThreadEntry(threadParam: LONGINT): LONGINT; }

FUNCTION MyThreadScheduler(schedulerInfo: SchedulerInfoRec): ThreadID;

PROCEDURE MyThreadSwitch(threadBeingSwitched: ThreadID;
 switchProcParam: LONGINT);

PROCEDURE MyThreadTermination(threadTerminated: ThreadID;
 terminationProcParam: LONGINT);

PROCEDURE MyDebuggerNewThread(threadCreated: ThreadID);

PROCEDURE MyDebuggerDisposeThread(threadDeleted: ThreadID);

FUNCTION MyDebuggerThreadScheduler
(schedulerInfo: SchedulerInfoRec): ThreadID;

Assembly Language Information 1

Trap Macros Requiring Routine Selectors

_ThreadDispatch

Selector Routine

0x000B ThreadBeginCritical

0x000C ThreadEndCritical

0x0205 YieldToThread

0x0206 MacGetCurrentThread

0x0209 SetThreadScheduler

0x020E GetThreadCurrentTaskRef

0x303C YieldToAnyThread

C H A P T E R 1

Thread Manager

Summary of the Thread Manager 101
8/25/99 Apple Computer, Inc.

Result Codes 1

Thread Manager functions can return the following errors. Functions may also return standard
Macintosh result codes such as noErr (0, no error) and memFullErr (memory full).

0x0402 GetFreeThreadCount

0x0407 GetThreadState

0x0410 SetThreadReadyGivenTaskRef

0x0413 GetDefaultThreadStackSize

0x0414 ThreadCurrentStackSpace

0x0501 CreateThreadPool

0x0504 DisposeThread

0x0508 SetThreadState

0x0512 SetThreadStateEndCritical

0x060D SetDebuggerNotificationProcs

0x060F GetThreadStateGivenTaskRef

0x0611 SetThreadTerminator

0x0615 GetSpecificFreeThreadCount

0x070A SetThreadSwitcher

0x0E03 NewThread

threadTooManyReqsErr -617 No matching thread structures available
threadNotFoundErr -618 No thread available with the specified

Thread ID
threadProtocolErr -619 Attempted an invalid operation, such as

changing the state of a thread that is in a
critical section of code

Selector Routine

103
8/25/99 Apple Computer, Inc.

Glossary

application thread See main thread.

critical section of code A section of code
in which scheduling is disabled and the
current thread cannot yield control to
another thread.

concurrency Having multiple,
simultaneous points of execution within an
application.

context see thread context.

cooperative thread A thread that uses the
Operating System and Toolbox and hence
cannot be arbitrarily interrupted. A
cooperative thread explicitly indicates when
it is giving up CPU time. The Thread
Manager supports only cooperative threads.
Compare preemptive thread.

lightweight task A synonym for thread.

main thread The entry point to the
application. It is a cooperative thread and
typically handles all event processing. It is
also called the application thread. For
applications that do not explicitly use
threads, the Thread Manager defines a
single main thread.

multithreaded application See threaded
application.

nonthreaded application An application
that has a single point of execution.

preemptive thread A thread that does not
use the Operating System and Toolbox and
hence can be interrupted or gain control of

the CPU at almost any time. The Thread
Manager does not support preemptive
threads. Compare cooperative thread.

ready thread A thread that is available for
scheduling.

single-threaded application See
nonthreaded application.

stopped thread A thread that is
unavailable for scheduling.

thread The smallest amount of processor
context state necessary to encapsulate a
computation; a thread consists of a register
set, a program counter, and a stack. Threads
enable concurrency within an application
context. A thread is sometimes called a
lightweight task.

thread context Information the Thread
Manager maintains about a thread. It
includes a register set, program counter, and
stack.

thread pool A pool of threads that you
create for later allocation.

Thread Manager The part of the
Macintosh Operating System that provides
multiple points of execution within an
application context by managing the
scheduling, execution, and termination of
threads.

threaded application An application that
has multiple points of execution.

yield Give up control of the CPU to
another thread.

105
8/25/99 Apple Computer, Inc.

Index

Numerals

680x0 Macintosh applications
default thread context 15

A, B

asynchronous I/O
using threads with 36–43

C

completion routines
for Thread Manager routines 43

context. See thread context
CreateThreadPool function 50–52

example of use 23
specifying stack size with 30

critical code sections
defined 12
ending 28–29, 70–72
starting 28–29, 69

custom context-switching function
defined 87–88
installing 79–81

custom debugging functions
defined 89–91
installing 83–85

custom scheduling function
about 13
defined 86–87
installing 77–79

custom termination function
defined 88–89
installing 81–82

D

debugger disposing function 90
debugger notification functions

defined 89–90
installing 83–85

default scheduling mechanism 13
default stack size 54–55
dialog boxes

yielding control from 31–33
DisposeThread function 59–60

E

entry point function. See thread entry function
events

using main thread to handle 33

F

floating-point registers. See FPU registers.
FPU registers

saving 15

G, H

Gestalt Manager
using to determine attributes of Thread

Manager 19, 44
GetCurrentThread function See

MacGetCurrentThread function
GetDefaultThreadStackSize function 54–55
GetFreeThreadCount function 52–53
GetSpecificFreeThreadCount function 53–54

I N D E X

106
8/25/99 Apple Computer, Inc.

GetThreadCurrentTaskRef function 73–74
GetThreadState function 63
GetThreadStateGivenTaskRef function 74–75

using in I/O completion routine 43

I – L

interrupt routines
referring to threads from 46, 72–77

I/O
using threads with 36–43

M

MacGetCurrentThread function 42, 62
main thread

calling MaxApplZone in 20–22, 51
keeping ready or running 43
using to handle events 33

MaxApplZone function
calling in threaded applications 20–22, 51

MyDebuggerDisposeThread function 90
MyDebuggerNewThread function 89–90
MyDebuggerThreadScheduler function 90–91
MyThreadEntry function 85–86
MyThreadScheduler function 86–87
MyThreadSwitch function 87–88
MyThreadTermination function 88–89

N, O

NewThread function 56–59
allocating threads from pool with 24–27
specifying stack size with 30

P, Q

PowerPC applications
default thread context 15

Process Manager
relationship to Thread Manager 29

R

routine descriptors
warning about 58, 78, 80, 82, 84

S

SchedulerInfoRec 49
scheduler information structure

defined 49
using with custom scheduler 14

scheduling
See also custom scheduling function
changing thread state 67–68, 75–77
turning off 12, 28–29, 69
turning on 70, 71–72
yielding 64–65
yielding to particular thread 65–66

scheduling threads 11–18
SetDebuggerNotificationProcs function 83–85
SetThreadReadyGivenTaskRef function 75–77
SetThreadScheduler function 13, 77–79
SetThreadStateEndCritical function 71–72
SetThreadState function 43, 67–68
SetThreadStateGivenTaskRef function

using in I/O completion routine 43
SetThreadSwitcher function 16, 79–81
SetThreadTerminator function 81–82
680x0 Macintosh applications

default thread context 15

I N D E X

107
8/25/99 Apple Computer, Inc.

stacks, for threads
amount available, determining 61–62
default size 18, 30, 54–55
introduced 17
overflowing 30
size of 51
size of, specifying 18, 29
specifying 29

T – X

ThreadBeginCritical function 28, 69
thread context

default saved 15
defined 9
saving custom information 16, 79–81

ThreadCurrentStackSpace function 61–62
ThreadEndCritical function 28, 70
thread entry function

defined 85–86
how to specify 26
using 33–36

thread ID
defined 47
obtaining 62

ThreadID data type 47
Thread Manager 7–101

application-defined routines for 85–91
data structures for 44–49
determining attributes of 19, 44
functions in 49–85
relationship to Process Manager 29

thread options 48
ThreadOptions data type 48
thread pools

creating 18, 20–23, 50–52
threads

See also main thread
allocating 18, 20–27, 56–59
creating 18, 56–59
creating a pool of 18, 20–23, 50–52
defined 9
disposing of 18, 31, 59–60

passing data to 33–36
recycling 59
returning data from 18, 33–36, 60
scheduling 11–18
types of 46
uses of 8

Threads Package
difference from Thread Manager 18

thread stacks. See stacks, for threads
thread state

changing 67–68, 71–72
changing from interrupt-level code 75–77
defined 45
obtaining 63
obtaining from interrupt-level code 74–75

ThreadState data type 45
ThreadStyle data type 46
ThreadTaskRef data type 46
thread task reference

defined 46
obtaining 73–74

thread type 46

Y, Z

YieldToAnyThread function 32, 64–65
YieldToThread function 65–66

	IM: Thread Manager
	Contents
	Figures, Tables, and Listings
	Thread Manager
	Introduction to Threads
	About the Thread Manager
	Scheduling
	The Main Thread
	Custom Scheduler

	Default Saved Thread Context
	Custom Context-Switching Function

	Thread Stacks
	Creating and Disposing of Threads

	Using the Thread Manager
	Determining Attributes of the Thread Manager
	Creating and Allocating a Thread
	Creating a Pool of Threads
	Allocating a Thread

	Turning Scheduling Off
	Working With Stacks

	Creating Dialog Boxes That Yield
	Passing Input and Output Parameters to a New Thread
	Using Threads With I/O

	Thread Manager Reference
	Data Types
	Gestalt Selector and Response Bits
	The Thread State
	The Thread Task Reference
	The Thread Type
	The Thread ID
	Thread Options
	The Scheduler Information Structure

	Thread Manager Functions
	Creating and Getting Information About Thread Pools
	Creating and Disposing of Threads
	Getting Information About Specific Threads
	Scheduling Threads
	Preventing Scheduling
	Getting Information and Scheduling Threads During Interrupts
	Installing Custom Scheduling, Switching, Terminating, and Debugging Functions
	Application-Defined Routines

	Summary of the Thread Manager
	C Summary
	Constants and Data Types
	Thread Manager functions

	Pascal Summary
	Constants and Data Types
	Thread Manager Functions

	Assembly Language Information
	Result Codes

	Glossary
	Index

