
Core Data Snippets
Cocoa > Data Management

2009-03-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, and Cocoa are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction 5

Organization of This Document 5

Accessing the Core Data Stack 7

Getting a Managed Object Context 7
Creating a New Managed Object Context 7
Getting the Managed Object Model 8
Adding a Persistent Store 8

Fetching Managed Objects 11

Basic Fetch 11
Fetch with Sorting 11
Fetch with a Predicate 12
Fetch with a Predicate Template 12
Fetch with Sorting and a Predicate 13

Creating and Deleting Managed Objects 15

Creating a Managed Object 15
Saving a Managed Object 15
Deleting a Managed Object 15

Document Revision History 17

3
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

4
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

This document contains prototypes for commonly-used snippets of code that you’re likely to use in a program
that uses Core Data. In some cases (particularly in cases where a code snippet might be only one or two
lines), the document provides guidance rather than explicit code.

This document does not provide an in-depth explanation of the code snippets. You’re expected to be familiar
with the Core Data framework and understand how to use the snippets in context. To learn more about Core
Data, read Core Data Programming Guide.

Organization of This Document

The document contains the following articles:

 ■ “Accessing the Core Data Stack” (page 7)

 ■ “Fetching Managed Objects” (page 11)

 ■ “Creating and Deleting Managed Objects” (page 15)

Organization of This Document 5
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction

6 Organization of This Document
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction

This article contains snippets for creating and accessing parts of the Core Data stack.

How you access the parts of the Core Data stack may depend in part on the application architecture.
Broadly-speaking, there are two basic application architectures for programs that use Core Data:

 ■ Single-coordinator applications.

These applications typically have a single Core Data stack (as defined by a single persistent store
coordinator). They generally use a single persistent store for the whole application.

 ■ Document-based applications.

These use the Application Kit’s NSPersistentDocument class. There is a typically a persistent store
coordinator and a single persistent store associated with each document.

This article uses the terms “single-coordinator application” and “document-based application” to differentiate
between these architectures.

Getting a Managed Object Context

In an single-coordinator applications, you can get the application’s context directly from the application
delegate.

In document-based applications, you can get the context directly from the document instance.

Sometimes, though, it’s easier or more appropriate to retrieve the context from somewhere other than
application or the document. Several objects you might use in a Core Data-based application keep a reference
to a managed object context. A managed object itself has a reference to its own context, as do the various
controller objects that support Core Data such as array and object controllers (NSArrayController and
NSObjectController).

Retrieving the context from one of these objects has the advantage that if you re-architect your application,
for example to make use of multiple contexts, your code is likely to remain valid. For example, if you have a
managed object, and you want to create a new managed object that will be related to it, you can ask original
object for its managed object context and create the new object using that. This will ensure that the new
object you create is in the same context as the original.

Creating a New Managed Object Context

You sometimes need to create a new managed object context to contain a disjoint set of edits that you might
want to discard without perturbing the main context (for example, if you’re presenting a modal view to add
and edit a new object).

Getting a Managed Object Context 7
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

To create a new managed object context, you need a persistent store coordinator.

NSPersistentStoreCoordinator *psc = <#Get the coordinator#>;
NSManagedObjectContext *newContext = [[NSManagedObjectContext alloc] init];
[newContext setPersistentStoreCoordinator:psc];

In a single-coordinator application, you can get the coordinator directly from the application delegate

In a document-based application, you get the persistent store coordinator from the document instance’s
managed object context.

If you already have a reference to a context, you can ask it for its persistent store coordinator. This way you
can be sure that the new context is using the same coordinator as the existing one (assuming this is your
intent):

NSManagedObjectContext *context = <#Get the context#>;
NSPersistentStoreCoordinator *psc = [context persistentStoreCoordinator];
NSManagedObjectContext *newContext = [[NSManagedObjectContext alloc] init];
[newContext setPersistentStoreCoordinator:psc];

Getting the Managed Object Model

You sometimes need to access a managed object model to get information about a particular entity.

Applications typically have just a single model (although it may have more than one configuration). In a
single-coordinator application, you typically get the model directly from the application delegate. In a
document-based application, you get the model directly from the document.

If you have access to a managed object context—directly or indirectly (see “Getting a Managed Object
Context” (page 7))—you can get the model from the context’s persistent store coordinator.

Creating a managed object: When you create a new managed object, you need to specify its entity. Typically,
however, you don’t actually need to access the entity or model directly—see “Creating and Deleting Managed
Objects” (page 15).

Adding a Persistent Store

In many applications, there is only one persistent store for each persistent store coordinator. In an
single-coordinator application, the store is associated with the whole application. In a document-based
application, the each document has a separate store. Sometimes, however, you might want to add another
store. You add the store to the persistent store coordinator. You have to specify the store’s type, location,
and configuration (based on configurations present on the managed object model associated with the
coordinator). You can also specify other options, such as whether an old version of the store should be
migrated to a current version (see Core Data Model Versioning and Data Migration Programming Guide).

In an single-coordinator applications, you can get the application’s coordinator directly from the application
delegate.

In document-based applications, you can get the coordinator from the document’s managed object context.

8 Getting the Managed Object Model
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

NSPersistentStoreCoordinator *psc = <#Get the coordinator#>;
NSURL *storeUrl = [NSURL fileURLWithPath:@"<#Path to store#>"];
NSString *storeType = <#Store type#>; // A store type, such as NSSQLiteStoreType
NSError *error;
if (![psc addPersistentStoreWithType:storeType configuration:nil
 URL:storeUrl options:nil error:&error]) {
 // Handle error
}

Adding a Persistent Store 9
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

10 Adding a Persistent Store
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing the Core Data Stack

This article contains snippets for fetching managed objects.

To fetch managed objects, you minimally need a managed object context against which to execute the fetch,
and an entity description to specify the entity you want. You create an instance of NSFetchRequest and
specify its entity. You may optionally specify an array of sort orderings and/or a predicate.

How you get the managed object context depends on your application architecture—see “Getting a Managed
Object Context” (page 7). Once you have the context, though, you can get the entity using
NSEntityDescription’s convenience method, entityForName:inManagedObjectContext:.

Basic Fetch

To get all the managed objects of a given entity, create a fetch request and specify just the entity:

NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
name#>"
 inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSError *error;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
 // Handle error
}

[fetchRequest release];

Fetch with Sorting

To fetch managed objects in a particular order, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify an array of sort orderings:

NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
name#>"
 inManagedObjectContext:context];
[fetchRequest setEntity:entity];

Basic Fetch 11
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"<#Sort
 key#>"
 ascending:YES];
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];
[fetchRequest setSortDescriptors:sortDescriptors];

NSError *error;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
 // Handle error
}

[fetchRequest release];
[sortDescriptor release];
[sortDescriptors release];

Fetch with a Predicate

To fetch managed objects that meet given criteria, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify a predicate:

NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
name#>"
 inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"<#Predicate string#>",
 <#Predicate arguments#>];
[request setPredicate:predicate];

NSError *error;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
 // Handle error
}

[fetchRequest release];

For more about predicates, see Predicate Programming Guide. For an alternative technique for creating the
predicate that may be more efficient, see “Fetch with a Predicate Template” (page 12).

Fetch with a Predicate Template

To fetch managed objects that meet given criteria, in addition to the components in the basic fetch (described
in “Basic Fetch” (page 11)) you need to specify a predicate.NSPredicate’s predicateWithFormat:method
is typically the easiest way to use a predicate (as shown in “Fetch with a Predicate” (page 12)), but it’s not
the most efficient way to create the predicate itself. The predicate format string has to be parsed, arguments

12 Fetch with a Predicate
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

substituted, and so on. For performance-critical code, particularly if a given predicate is used repeatedly, you
should consider other ways to create the predicate. For a predicate that you might use frequently, the easiest
first step is to create a predicate template. You might create an accessor method that creates the predicate
template lazily on demand:

// Assume an instance variable:
// NSPredicate *predicateTemplate;

- (NSPredicate *)predicateTemplate {
 if (predicateTemplate == nil) {
 predicateTemplate = [[NSPredicate predicateWithFormat:
 @"<#Key#> <#Operator#> <#$Variable#>"] retain];
 }
 return predicateTemplate;
}

When you need to use the template, you create a dictionary containing the substitution variables and generate
the predicate using predicateWithSubstitutionVariables:.

NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
name#>"
 inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSDictionary *variables = [[NSDictionary alloc] initWithObjectsAndKeys:
 <#Value#>, @"<#Variable#>", nil];
NSPredicate *predicate = [[self predicateTemplate]
 predicateWithSubstitutionVariables:variables];
[request setPredicate:predicate];

NSError *error;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
 // Handle error
}

[fetchRequest release];
[variables release];

For more about predicates, see Predicate Programming Guide.

Fetch with Sorting and a Predicate

To fetch managed objects that meet given criteria and in a particular order, in addition to the components
in the basic fetch (described in “Basic Fetch” (page 11)) you need to specify a predicate and an array of sort
orderings.

NSManagedObjectContext *context = <#Get the context#>;

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

Fetch with Sorting and a Predicate 13
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

NSEntityDescription *entity = [NSEntityDescription entityForName:@"<#Entity
name#>" inManagedObjectContext:context];
[fetchRequest setEntity:entity];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc] initWithKey:@"<#Sort
 key#>" ascending:YES];
NSArray *sortDescriptors = [[NSArray alloc] initWithObjects:sortDescriptor,
nil];
[fetchRequest setSortDescriptors:sortDescriptors];

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"<#Predicate string#>",
 <#Predicate arguments#>];
[request setPredicate:predicate];

NSError *error;
NSArray *fetchedObjects = [context executeFetchRequest:fetchRequest error:&error];
if (fetchedObjects == nil) {
 // Handle error
}

[fetchRequest release];
[sortDescriptor release];
[sortDescriptors release];

For more about predicates, see Predicate Programming Guide. For an alternative technique for creating the
predicate that may be more efficient, see “Fetch with a Predicate Template” (page 12).

14 Fetch with Sorting and a Predicate
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Fetching Managed Objects

This article contains snippets you use when creating or deleting a managed object.

Creating a Managed Object

When you create a new managed object, you need to specify its entity. Typically, however, you don’t actually
need access to the model directly. Instead, you can NSEntityDescription’s class method
insertNewObjectForEntityForName:inManagedObjectContext: and pass the managed object context
in which you want to create the new managed object. The method returns an instance of whatever class is
defined in the managed object model to represent the entity, initialized with the default values given for its
entity in the model.

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7).

NSMangedObjectContext *context = <#Get the context#>;
<#Managed Object Class#> *newObject = [NSEntityDescription
 insertNewObjectForEntityForName:@"<#Entity name#>"
 inManagedObjectContext:context];

It is typically important to cast the new instance to the managed object class so that you can use the
appropriate accessor methods without the compiler generating a warning (or, if you’re using dot syntax, an
error).

Saving a Managed Object

Simply creating a managed object does not cause it to be saved to a persistent store. It is simply associated
with the managed object context. To commit changes to the store, you send the context a save: message.

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7).

NSMangedObjectContext *context = <#Get the context#>;
NSError *error;
if (![context save:&error]) {
 // Handle error
}

Deleting a Managed Object

Simply being deallocated does not cause a managed object to be deleted from the persistent store. To delete
a managed object you have to delete it from the context then save the context.

Creating a Managed Object 15
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

To learn how to retrieve the managed object context, read “Getting a Managed Object Context” (page 7)—or
you can simply ask the object itself what context it belongs to.

NSManagedObject *aManagedObject = <#Get the managed object#>;
NSMangedObjectContext *context = [aManagedObject managedObjectContext];
[context deleteObject:aManagedObject];
NSError *error;
if (![context save:&error]) {
 // Handle error
}

16 Deleting a Managed Object
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Creating and Deleting Managed Objects

This table describes the changes to Core Data Snippets.

NotesDate

New document that provides snippets of code that you can use when writing
a program that uses Core Data.

2009-03-04

17
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

18
2009-03-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Core Data Snippets
	Contents
	Introduction
	Accessing the Core Data Stack
	Getting a Managed Object Context
	Creating a New Managed Object Context
	Getting the Managed Object Model
	Adding a Persistent Store

	Fetching Managed Objects
	Basic Fetch
	Fetch with Sorting
	Fetch with a Predicate
	Fetch with a Predicate Template
	Fetch with Sorting and a Predicate

	Creating and Deleting Managed Objects
	Creating a Managed Object
	Saving a Managed Object
	Deleting a Managed Object

	Revision History

