
Sherlock Channels
(Legacy)

Internet & Web > Web Services

2007-04-09

Apple Inc.
© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Cocoa, Mac, Mac
OS, Macintosh, Pages, Safari, and Sherlock are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder and Numbers are trademarks of Apple
Inc.

DEC is a trademark of Digital Equipment
Corporation.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Sherlock Channels 9

Organization of This Document 9
Limitations 10

Architecture of Sherlock Channels 11

Sherlock Overview 11
Channel Architecture 12

Overview 12
Channel Structure 13
Understanding the Data Store 14
Understanding Triggers 16
Deploying Channels 17

Web Services 18
Data Caching Strategies 18

Using Checkpoints 18
Favoring Cached Data 19

Version Information 19

Developing Channels 21

The Channel’s Interface 21
Writing Your Channel Code 23

About Triggers 23
The XML Trigger File 24
Initializing Your Channel 24
Factoring Your Trigger Code 25

Localizing Resources 26
Configuring Your Channel For Use 27
Deploying Your Channel 28

Sherlock Scripting Language Support 29

Introduction to JavaScript 29
Introduction to XQuery 29

Accessing the Data Store 30
Commenting Out Text 30
Support for Additional Data Types 30
Accessing the Web 30

Deciding Which Language To Use 31
Supported XQuery Functions 32

3
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Deprecated XQuery Constructs in Mac OS X 10.3 32

Sherlock Reference 33

XML Tag Syntax 33
Channel Information Tag Syntax 33
Channels Tags Syntax 34
Script Tag Syntax 35
Trigger Tag Syntax 36

Predefined Data Store Paths 39
Nib File Installation 39
Persistent Storage Paths 40
Printing Paths 40
URL Paths 41

Control Properties 41
HTMLView 42
NSBrowser 42
NSButton 43
NSComboBox 44
NSControl 44
NSDrawer 45
NSImageView 45
NSMatrix 46
NSMovieView 46
NSPopUpButton 47
NSProgressIndicator 47
NSSlider 47
NSSplitView 48
NSStepper 48
NSTableView 48
NSTabView 50
NSTextField 51
NSTextView 51
NSView 51
NSWindow 52
SherlockAddressComboBox 53

JavaScript Extensions 54
AddressBook Object 54
DataStore Object 56
System Object 57
XMLQuery Object 57

XQuery Extensions 58
base-url 58
base64-decode 58
base64-encode 58
channel-version 58

4
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

charset-encoding 59
charset-name 59
convert-entities 59
convert-html 59
curl 60
data 60
data-length 60
data-match 60
data-match-all 60
data-match-ignore-case 61
data-match-ignore-case-all 61
dictionary 61
dictionary-get 62
encoded-data-to-string 62
eval 62
http-get 62
http-head 63
http-post 63
http-request 64
load-service 65
localized-resource 66
localized-url 66
msg 66
null 66
property-list-decode 67
property-list-encode 67
reg-exp 67
sherlock-function 67
source 68
string-combine 68
string-separate 68
string-to-encoded-data 68
unique-id 68
url 69
url-decode 69
url-encode 69
url-host 69
url-last-path-component 70
url-path 70
url-query 70
url-query-value 70
url-scheme 71
url-with-base 71
version 71

5
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Creating a New Channel 73

Installing the Sherlock Tools 73
Create the Channel Project 73
Loading the Channel 74
Debugging Tools 74

Channel Tools 75
Debug Menu 75

Accessing Channels 77

Loading a Channel From a URL 77
Setting Up Subscriptions 78

Printing Your Channel’s Content 79

Supporting Custom Printing 79
Using a Custom Print View 80

Using Web Services 83

Defining a New Web Service 83
Accessing SOAP Services 84

Trigger Examples 87

Initiating a Search Using a URL 87
Initiating a Search From a Button Click 88
Opening a New Channel From a Trigger 89

Document Revision History 91

6
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Architecture of Sherlock Channels 11

Figure 1 Sherlock stock channel 12
Figure 2 Basic channel structure 14
Figure 3 Sherlock tab of the Info Window 15
Figure 4 Object containment hierarchy for a view 16
Figure 5 Relationship between the channel interface and triggers 17
Table 1 Sherlock version information 19

Developing Channels 21

Figure 1 Creating your channel interface in Interface Builder 22
Listing 1 Contents of a channel definition file 24
Listing 2 Initializing a channel 25
Listing 3 Defined strings from the Dictionary channel 26
Listing 4 Channel directory structure 27
Listing 5 Channel info tag 28

Sherlock Scripting Language Support 29

Table 1 Deprecated XQuery constructs 32

Sherlock Reference 33

Figure 1 Control inheritance hierarchy 42
Table 1 channel_info attributes 33
Table 2 script attributes 35
Table 3 scripts attributes 35
Table 4 Common trigger attributes 37
Table 5 JavaScript trigger attributes 38
Table 6 XQuery trigger attributes 38
Table 7 Nib file installation paths 39
Table 8 Printing paths 40
Table 9 HTMLView path properties 42
Table 10 NSBrowser path properties 43
Table 11 NSButton path properties 43
Table 12 NSComboBox path properties 44
Table 13 NSControl path properties 45
Table 14 NSDrawer path properties 45
Table 15 NSImageView path properties 45
Table 16 NSMatrix path properties 46
Table 17 NSMovieView path properties 46

7
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Table 18 NSPopUpButton path properties 47
Table 19 NSProgressIndicator path properties 47
Table 20 NSSplitView path properties 48
Table 21 NSTableView path properties 48
Table 22 NSTabView path properties 50
Table 23 NSTextField path properties 51
Table 24 NSTextView path properties 51
Table 25 NSView path properties 52
Table 26 NSWindow path properties 52
Table 27 SherlockAddressComboBox path properties 53
Table 28 AddressBook object methods 54
Table 29 Address keys 54
Table 30 Comparison key values 56
Table 31 DataStore object methods 56
Table 32 System object methods 57
Table 33 Keys returned by http-get 63
Table 34 Keys returned by http-head 63
Table 35 Keys returned by http-post 64
Table 36 Keys for additionalInfo parameter 64
Table 37 Keys returned by http-request 65

Accessing Channels 77

Table 1 Supported actions for Sherlock URLs 77

8
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Important: Sherlock is unsupported in Mac OS X v10.5 and later.

The Sherlock application provides Macintosh users with a powerful tool for searching the Web. Users access
different types of information in Sherlock through channels.

Prior to Mac OS X 10.2, channels in Sherlock were implemented as plug-ins that the user (or Sherlock)
downloaded from the web and installed locally. These plug-ins provided a mapping for Sherlock to use in
interpreting search results from an online source. The Sherlock application then merged the results from
multiple sources and displayed them in a unified interface. Beginning with Mac OS X 10.2, Sherlock uses a
powerful, new model for channels that gives channel developers more flexibility in how their data is displayed.

Organization of This Document

Sherlock channels provide a way to organize search results in a more intuitive and useful way. A channel
implements a front-end interface for a Web-based search engine or other information database. However,
unlike most browser-based searches, channels display the results using an Aqua interface and are capable
of dynamically updating information.

Although it might seem like using Aqua to display search results would be a lot of work, Sherlock provides
a significant amount of infrastructure to simplify the code required for your channel. Sherlock provides
infrastructure for running the interface, dispatching events, managing network connections, parsing XML,
and executing script code is transparent to the channel developer. With this infrastructure in place, channel
developers are free to concentrate on the appearance and custom behavior of their channel.

This document describes how to create and manage a Sherlock channel and how to load the channel from
a web page.

This programming topic contains the following articles:

 ■ “Architecture of Sherlock Channels” (page 11)

 ■ “Developing Channels” (page 21)

 ■ “Sherlock Scripting Language Support” (page 29)

 ■ “Sherlock Reference” (page 33)

 ■ “Creating a New Channel” (page 73)

 ■ “Accessing Channels” (page 77)

 ■ “Printing Your Channel’s Content” (page 79)

 ■ “Using Web Services” (page 83)

 ■ “Trigger Examples” (page 87)

Organization of This Document 9
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Introduction to Sherlock Channels

For more information about Sherlock, and to obtain a copy of the Sherlock SDK, please visit the Sherlock
Channel Development page: http://developer.apple.com/macosx/sherlock/.

Limitations

The channel architecture described in this document is available only versions of Sherlock that shipped in
Mac OS X 10.2 or later. You cannot create channels for earlier versions of Sherlock using this architecture. If
you want to build channels for earlier versions of Sherlock, you need to use the Sherlock plug-in architecture
described in Technical Note TN1141: Extending and Controlling Sherlock.

The Sherlock channel architecture uses XML and supports the use of the JavaScript and XQuery languages
for writing script code. Developing your channel interface requires Interface Builder with the Sherlock palette
installed.

10 Limitations
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Introduction to Sherlock Channels

http://developer.apple.com/macosx/sherlock/

This article provides an overview of Sherlock channels and their architecture. It describes the components
involved in creating channels, how they fit together, and how they work within the Sherlock environment.

Sherlock Overview

Sherlock is an application that incorporates Internet search capabilities into a flexible and extensible
environment. The Sherlock application manages the infrastructure and support for channels, which do the
work of gathering and displaying information.

A channel is a search-engine interface that uses the Sherlock infrastructure to access network-based resources
and display the results to the user. Channels are not search engines in themselves; they take advantage of
search engines on local intranets and the Internet to find information. However, channels can do more than
just search for strings of characters. Channels can have a context in which to interpret the data they receive
from a search engine. Using this context, the channel can then narrow the search criteria or perform additional
searches to focus on information the user really wants.

You can develop channels to display a range of content, from movie showtimes to stock quotes, to yellow
pages listings to news. You decide the level of detail you want to include in your channel and what context
is required to achieve that detail. You then use that context to gather related information for the user. For
example, a generic restaurant channel could use a postal code to provide restaurant listings in the user’s
area. A more complex restaurant channel could then use other web services to obtain driving directions or
restaurant reviews. Your job as a channel developer is to set up the channel context to acquire the relevant
data.

Figure 1 shows Sherlock’s stock channel, which displays information about the user’s selected stocks, current
prices, and news. When the user selects a stock, the channel displays a list of headlines. Selecting a headline
then displays the article associated with that headline. All of this information is gathered dynamically by the
channel. The only information the user provides is the stock symbol or company name.

Sherlock Overview 11
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Figure 1 Sherlock stock channel

Most of window content you see in Figure 1 is provided by the channel. Sherlock manages the interface and
code provided by the channel but is not responsible for providing the channel’s behavior. The only portion
of the window that Sherlock manages is the toolbar along the top edge. For more information on channel
interfaces and how to create them, see “The Channel’s Interface” (page 21).

Channel Architecture

The original architecture for Sherlock channels was relatively simple. The channel developer’s main job was
to provide a direct mapping between Sherlock data fields and the developer’s search engine. The Sherlock
application would then display search results as a weighted result set pulled from various sources. The new
channel architecture gives you much more freedom to display information the way you want.

Overview

The goal of a Sherlock channel is to provide the user with relevant information for a specific topic. While you
can use channels to act as a front-end for search engines, doing so does not take advantage of the power
offered by Sherlock. The new architecture gives you a chance to create an intelligent search agent that gathers
specific information and displays it in an intuitive way to the user.

12 Channel Architecture
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

The way you gather information in a channel is through a combination of search engines and web services.
Search engines are a good starting point for finding basic text. However, web services are also becoming
more prominent and are capable of offering more specific types of information. The script languages used
by Sherlock make it easy to build XML queries and use them to communicate with SOAP services, among
others.

Once you have the data you want, you must display it. Instead of the traditional search results table, Sherlock
now supports the creation of custom user interfaces using Aqua controls. You can define an interface for
your channel that is as complex or as simple as you want it to be. In either case, the result is a channel that
behaves more like a Cocoa application than a web page of search results.

Channel Structure

The way you create a channel has changed somewhat from previous versions of Sherlock. Whereas a channel
used to consist of a mapping between the search engine syntax and the Sherlock syntax, channels now
provide a user interface and script code to drive that interface. Sherlock still relies heavily on XML as a way
of organizing the channel contents; however, channels also use the JavaScript and XQuery scripting languages
to provide dynamic responses to data changes.

The channel itself now more closely resembles an application bundle containing resources and code files.
The user interface for a channel is stored in a nib file that you create using Interface Builder. Your script code
resides in an XML file, where it can be organized into small functions, called triggers, that respond to specific
changes and events in your channel.

The Sherlock application provides the runtime environment in which channels operate. Sherlock provides a
tremendous amount of infrastructure to support channels, including data storage, network services, and the
script interpreters for your JavaScript and XQuery code. The most prominent piece of infrastructure is the
data store, which acts as a repository for your channel’s data. The data store also acts as the connection
point between your channel’s user interface and code, providing the place where the two exchange data.

Figure 2 shows the basic content of a channel and how that content relates to the Sherlock application and
infrastructure. Each channel contains a nib file with the channel’s user interface. Code resides in the XML
triggers file. Sherlock uses the channel’s XML configuration file to locate channel resources, including the
nib file, XML triggers, and any additional resources. The Sherlock application coordinates interactions between
your channel’s files and the Sherlock infrastructure.

Channel Architecture 13
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Figure 2 Basic channel structure

Channel contents

XML
triggers

Additional
resources

XML
config

Icons

Images

Strings

Sherlock application

(JavaScript,
XQuery,

Web services)

Sherlock
services Data store

Understanding the Data Store

Understanding the data store and what it does is important for the development of Sherlock channels. The
main function of the data store is, as its name implies, to store the data created by your channel or entered
by the user. However, the data store has other behaviors that are important to the design and implementation
of channels.

When a user selects your channel, Sherlock loads your channel’s interface from the nib file you provide and
incorporates it into the main Sherlock window. Because the Sherlock application runs the Sherlock window,
your channel code has no direct connection to your user interface. Instead, Sherlock runs the interface and
uses the data store as an intermediary for communications between the interface and your channel code.

Whenever the user interacts with your channel’s user interface, Sherlock updates the data store to reflect
the interaction. The data store is both a repository of information and a source of notifications for your
channel. If the user types a value in a text field, Sherlock stores that value in an appropriate location in the
data store and generates a notification that the data changed. If the user clicks a button, Sherlock does not
modify any data store values, but it does generate a notification.

14 Channel Architecture
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Information in the data store is organized on the concept of paths. A path is a string that uniquely identifies
an object or property in the data store. Paths are not themselves objects that you manipulate. They are merely
labels for data and services in the data store. You can use a path name to get or set the value for a control
in your channel’s interface. You can also send a notification to a particular path. The result of sending a
notification is that Sherlock executes the script code for the trigger that associates itself with the notified
path.

Every relevant view and control in your user interface must have a path. You assign path names using a
special palette in Interface Builder. This palette (available as part of the Sherlock SDK) adds a new tab to the
Info Window that lets you enter path name information for the controls and views of your interface. The path
information is stored in your nib file and read by Sherlock when it loads your channel. Figure 3 shows the
Info Window with the Sherlock tab.

Figure 3 Sherlock tab of the Info Window

On the Sherlock tab, the control name is only part of the path name for that control. Your user interface must
have a top-level view in which all other views and controls are embedded. The name of this view is prepended
to the names of all other embedded views and controls. Sherlock includes only the top-level view in the path
name for a control. It does not include the names of any other intervening views.

To access a property of a control, your script code must know the path to the control and the name of the
desired property. Figure 4 shows a channel with a main view and several controls. The diagram to the right
shows the organization and path names for each of the controls. To locate a property of a control, you would
build a path with the name of the main view, the control name, and the property name, separating each
name from the others with a period. For example, to access the data in the SearchString text field, you
would create the path “mainView.SearchString.objectValue” and pass that path to the method for
getting the data. For information on the properties defined for controls and views, see “Control
Properties” (page 41).

Channel Architecture 15
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Figure 4 Object containment hierarchy for a view

mainView

GoButton ResultsTblSearchString

Sherlock defines specific paths for several predefined services and uses. Your channel can use these paths
to store data persistently or to customize aspects of your channel such as its printing behavior. Some of these
paths represent temporary variables, while others generate special notifications. You can define triggers for
any of these paths to respond to its changes or notifications.

Channels do not share data with other channels or other instances of the same channel by default. Each
window in Sherlock contains its own instantiation of a particular channel, and as such maintains its own
separate copy of the data store. The only way to share data between channels is through the persistent
storage paths of the data store. For more information, see “Persistent Storage Paths” (page 40).

Understanding Triggers

A trigger is an event handler that responds to changes in the data store or to explicit notifications sent by
Sherlock or your channel. You use triggers to respond to events in your channel’s user interface and to handle
other explicit or implicit notifications. The implementation of your trigger defines the behavior of your
channel.

You define a trigger using the <trigger> tag in your channel’s XML Triggers file. The content of this tag is
the script code you want to execute. Every trigger must be associated with a specific path in the data store.
Sherlock calls your trigger when a notification is sent to that path, whether because of a change in the data
at that location or because of an explicit notification sent by Sherlock or your code. You specify the trigger’s
path using the path attribute. You can include additional attributes to specify other information needed by
the trigger. See “Trigger Tag Syntax” (page 36) for more information.

Figure 5 shows the relationship between a channel’s user interface and its triggers. The search button action
has a specific path in the data store. When the user clicks the button, Sherlock generates a notification at
that path to notify the channel that the button was pressed. Sherlock finds the trigger that responds to that
path and executes its script code, passing in any additional information requested by the trigger.

16 Channel Architecture
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Figure 5 Relationship between the channel interface and triggers

Channel view

Data store

Triggers

view.CityStateZip.objectValue

view.SearchBtn.action

<trigger path="view.SearchBtn.action">
 // script code.
</ trigger>

<trigger path="view.CityStateZip.objectValue">
 // script code.
</ trigger>

<trigger path="view.ResultsTable.selectedRows">
 // script code.
</ trigger>

The script code for your triggers can be written using either JavaScript or XQuery, which is part of the XML
Query specification. Each language has its strengths and weaknesses depending on the intended use.
JavaScript is well suited for triggers that need to make dynamic decisions based on the current state of the
channel. XQuery is well suited for performing operations that require complex text processing of data, such
as generating query strings and parsing search results. Apple provides extensions to both languages for
accessing Sherlock functionality. For more information on these extensions, see “Sherlock Reference” (page
33).

Deploying Channels

Unlike previous versions of Sherlock, which required the user to download a plug-in and install it locally,
Sherlock now supports channel deployment over the Web. Web deployment simplifies the task of installing
channels and also provides an easy way to update the channel content automatically. Sherlock caches the
files of a channel and downloads them again when it detects any changes.

Channel Architecture 17
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

Sherlock also supports the grouping of channels together into a subscription. Subscriptions let the user
enable or disable a group of channels all at once. They also make it easier for the user to download a group
of channels initially. For example, Apple provides a subscription for three development-related channels.
You can enable these channels from the Debug menu, when it is enabled.

Web Services

Although many developers will want to create channels for use in Sherlock, you can also create web services
for use by channels. A web service is a routine or library of routines that performs a specific operation.
Developing web services for your channels is a very simple process. All you do is place one or more routines
in an XML file and deploy that file on your website.

Unlike many web services which run on the server, Sherlock web services run locally in the user’s environment.
Sherlock web services are essentially script files that the user’s machine downloads and executes. A channel
can include a web service file directly or it can use the sherlock-function routine from an XQuery script
to access a specific routine of the web service.

In addition to developing your own web services, you can access existing web services by writing your own
protocol wrappers. For examples of how to create and use web services, see the article “Using Web
Services” (page 83).

Data Caching Strategies

In order to improve performance, Sherlock provides caching facilities to store channel files and data locally.
Because caching may not be appropriate all the time, Sherlock provides channel developers with some
flexibility over when to employ it. This section discusses the caching strategies available to developers of
Sherlock channels.

Using Checkpoints

Although storing channel files on a server makes it easier to deploy updates to your channels, performance
issues arise for users with slow network connections. Normally, when a channel is selected, Sherlock checks
the modification dates of every file in the channel to see if any of the files changed. While it may not download
every file, performing the network requests for these files can still take a noticeable amount of time. To
eliminate this performance penalty, Sherlock supports the use of a checkpoint file to determine when a
channel has changed.

If you implement checkpoint support, your channel configuration file acts as the checkpoint for your channel.
The channel configuration file is the first file accessed by Sherlock when your channel is selected. This file
contains a single channel_info tag with attributes telling Sherlock where to find your channel’s resources.
With checkpoints enabled, Sherlock compares the modification date of the cached file with the one on the
server. If the modification dates are the same, Sherlock knows that the channel has not changed and uses
the cached files whose download date is later than the checkpoint file.

If you implement checkpoint support in your channel, it is your responsibility to touch the modification date
of your channel configuration file whenever you modify your channel. If you do not, users may not receive
updates to your channel.

18 Web Services
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

If your company provides a subscription for several channels, you can also use checkpoints in your subscription
files to further reduce the number of network requests. Subscription files contain links to one or more channels.
If the modification date of the cached subscription file differs from the server-based file, Sherlock then
proceeds to check for changes to the channels of the subscription; otherwise, it assumes all channels are
up-to-date.

For more information on the channel_info tag and enabling checkpoints in channels, see “Channel
Information Tag Syntax” (page 33). For information on creating a subscription, see “Setting Up
Subscriptions” (page 78).

Favoring Cached Data

Another place where Sherlock provides caching support is in the loading of files from the network. The
http-request function in XQuery lets you request data from a network server. When you request a file for
the first time using this method, Sherlock fetches it from the network and caches it. On subsequent requests,
Sherlock compares the modification date of the cached file to the server file and returns the cached file if
the dates are the same. However, you can eliminate this secondary network access by specifying some
additional flags with the http-request function.

When you include the flag FavorCache in a request, Sherlock attempts to load the file from the cache. If
the file is cached, Sherlock returns the cached copy without checking the network; otherwise, Sherlock loads
the file from the network as usual. You can also use the FavorCacheUpdate flag to tell Sherlock to use the
cached version now but to check the network for a newer version in the background. You may not get the
newest file right away, but the next time you need it, the latest copy will be in the cache.

For more information on loading cached data files, see the description for “http-request” (page 64).

Version Information

As new features are added to the Sherlock development environment, developers may be wary of adding
those features to a channel because of problems with backwards compatibility. Because not all users will
have the same version of Sherlock installed on their system, channels need a way to identify code with new
features and prevent them from running in unsupported environments. Sherlock handles this through the
use of version attributes on a channel’s tags. With version attributes, you can be sure that Sherlock runs new
code in only those environments that support the new features.

Sherlock provides version information for three distinct portions of the system: the channel, the XQuery
language, and the JavaScript language. Each tag that recognizes version information supports both a version
and maxVersion attribute to specify the minimum and maximum supported versions, respectively. Table 1
shows the version information for Sherlock in different releases of Mac OS X.

Table 1 Sherlock version information

10.310.2.510.2.310.2.210.2Item

1.41.31.21.11.0Channel

1.01.01.01.01.0XQuery

1.01.01.01.01.0JavaScript

Version Information 19
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

The channel version information is supported by the following tags:

 ■ <channel> tags in a subscription file

 ■ <channel_info> tag in a channel configuration file

 ■ <scripts> tags in a code file

Although Sherlock performs version checks of tags internally, you can also get the channel version information
programmatically if needed. To get the channel version, use the channel-version function from XQuery
or the ChannelVersion function of the System object from JavaScript.

Important: The version of Sherlock that shipped with the original Mac OS X version 10.2 does not recognize
the version attribute in channel_info tags. If you have a channel that requires Mac OS X 10.2.2 or later,
you should include initialization code in your channel that checks the current channel version programmatically.
If the channel version is “1.0”, you can suggest upgrading to the latest system software using the System
Update Preference panel.

The XQuery and JavaScript version information is checked by the following tags:

 ■ <initialize> tag in a channel code file

 ■ <trigger> tags in a channel code file

 ■ <script> tags in a code file

To get the current JavaScript version, use the Version method of the System object. To get the current
XQuery version, use the version function.

For more information on tag syntax and version attributes, see “XML Tag Syntax” (page 33).

20 Version Information
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Architecture of Sherlock Channels

This article describes the contents of a Sherlock channel. Channels are implemented using a combination of
XML code, script code, and various resources. A standard Sherlock channel consists of the following files:

 ■ A nib file containing the channel user interface.

 ■ A TIFF or icon file containing an image to display in the Sherlock toolbar.

 ■ One or more XML files containing the script code for the channel’s triggers

 ■ An XML configuration file to tell Sherlock how to use the channel

 ■ Localized versions of resources (including the Nib file, icons, and strings)

When you deploy your channel on a web server, you can organize these files in virtually any way you want.
Your XML configuration file acts as a pointer to individual files, telling Sherlock where to find them. However,
the section “Configuring Your Channel For Use” (page 27) provides some general guidelines on how to
organize your files in an efficient way.

The sections that follow describe the contents of these files and how you use them to define your channel.

The Channel’s Interface

The first step in creating a Sherlock channel is deciding the layout of your channel’s interface. Unlike previous
versions of Sherlock, you can now define a custom interface for your channel using the Interface Builder
application and Aqua-style controls. With these tools, you can display search results in a more intuitive and
user-friendly way. And because it is implemented using Cocoa, your channel’s interface is much more
responsive and flexible than before.

The main purpose of your channel’s nib file is to provide the layout and path information for your interface.
Unlike traditional Cocoa applications, Sherlock channels do not use much of the resource information provided
by Interface Builder. For example, channels do not rely on outlets or actions. Instead, Sherlock identifies your
views and controls using path names, which you assign in Interface Builder. As a result, you can use an empty
project file for any new channels you create in Interface Builder.

The main interface for a channel is always a custom view you create in Interface Builder. Because it hosts
several channels, the Sherlock application provides the main window for the channel content. This window
displays the Sherlock toolbar and contains an area in which to display the currently selected channel. When
a new channel is selected, Sherlock looks for a custom view in the channel’s nib file, and when it finds it,
loads that view into the main window.

Your channel interface is not limited to a single view. You can define additional views for printing or for other
versions of your channel. You can also define windows to implement sheets. However, if your channel’s nib
file contains multiple views, Sherlock needs to know which one to use in the main window. You tell Sherlock

The Channel’s Interface 21
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

which channel you want to use by assigning the name of the main view to the path mainViewIdentifier
in your channel’s initialization code. Sherlock checks this path and uses the value to load the view with the
matching name. See “Initializing Your Channel” (page 24) for more information on channel initialization.

It is important to provide path names for each of the relevant views and controls in your channel interface.
You assign path names to controls using the Sherlock tab of the Info Window in Interface Builder. You must
provide path names for each top-level view and for any controls or subviews that you plan to use. The path
of each top-level view defines the context for identifying the view and its contained controls in the data
store. When referring to a control, the path name of the control always includes the name of the top-level
view.

Figure 1 shows a sample Interface Builder project file with a custom channel view. The channel view contains
a text field, button, and table used to gather search criteria and display the results. The Info Window on the
right shows the path name information for the currently selected control. You need only enter the name of
the individual control. Interface Builder constructs the full path name for you and displays it below the control
name.

Figure 1 Creating your channel interface in Interface Builder

You do not need to add a path name for static text or image controls unless you plan to change the information
displayed by that control from within your channel. Similarly, you do not need to assign path names to any
views that do not contain additional controls. However, you should always remember to assign a name to
the top-level view containing your channel interface.

22 The Channel’s Interface
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

Note: When assigning path names to controls, make sure you assign the name to the actual control and not
to any parent view in which it’s nested. For example, when naming an NSTableView, you must apply the
path name to the NSTableView object, not its enclosing NSScrollView.

As you implement your channel interface, keep in mind how information flows in the interface. Channel
script code reacts to changes in a control’s data, so it is a good idea to spend time laying out the flow of
information from one control to the next. Knowing this flow ahead of time makes it easier to implement your
script code.

Once you are satisfied with your user interface, you can save your nib file and exit Interface Builder. The next
stage in channel development is writing the XML and script code that defines the runtime behavior of your
channel interface. This process is described in the section “Writing Your Channel Code” (page 23).

For an example of how to build a simple channel interface, see the article “Creating a New Channel” (page
73).

Writing Your Channel Code

Once you have defined the interface for your channel, you need to write the code to respond to events in
that interface. Sherlock provides most of the infrastructure for managing your interface and informing your
channel of changes. However, you are still responsible for implementing the specific behavior of your channel
such as performing queries, organizing the resulting data, and updating the data store. You do this using
triggers, which are described in the following sections.

About Triggers

Triggers make up the bulk of your channel’s code. While you can use web services to perform specific tasks,
triggers are how you receive notifications from Sherlock that something has happened. It is up to you to
decide how you want to respond to each notification you receive.

The controls of your channel interface have properties that you can access from your triggers to get information
about the control. You can gather information from these properties and use it to determine what actions
to perform. You can write data to these properties to update your channel’s interface. You can use these
properties as targets for notifications and use them to execute other triggers.

Note: It is possible to supress the execution of triggers when you modify the data at a path. In JavaScript,
you can call the SetNoNotify method of the DataStore object. In XQuery, you can add the noNotify
attribute to your trigger tag. For information on the DataStore object, see “Sherlock Reference” (page 33).
.

Sherlock supports trigger scripts written using either JavaScript or XQuery. You can use one language or the
other or you can mix calls between the languages using the objects and functions provided by Apple. For
information on these languages, see “Sherlock Scripting Language Support” (page 29). For information on
the JavaScript and XQuery language extensions, see “Sherlock Reference” (page 33).

For more information about triggers, see “Understanding Triggers” (page 16)

Writing Your Channel Code 23
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

The XML Trigger File

Each channel has one main code file that contains the triggers for the channel. The content of this file is a
set of structured XML tags organizing the triggers and initialization code. A basic channel definition file has
the following structure:

Listing 1 Contents of a channel definition file

<?xml version="1.0" encoding="UTF-8"?>
<channel>
 <initialize language="JavaScript">
 // Initialize any data store variables here.
 </initialize>
 <triggers>
 <trigger language="JavaScript" path="URL.search">
 // Trigger script code
 </trigger>
 <trigger language="XQuery" path="Control.action">
 {-- Trigger script code --}
 </trigger>

 <!-- Additional trigger definitions -->
 </triggers>
</channel>

The <channel> tag is the top-level tag for your code file. All of your code must be nested inside this tag.
The channel tag can contain an <initialize> tag with the channel’s initialization code and a <triggers>
tag with the channel’s triggers.

The <initialize> tag provides a convenient way to initialize data store paths and configure your channel
for first use. Sherlock executes the code in your initialization block the first time your channel is loaded in a
new window. You can initialize data values, send notifications, read in values from persistent storage, or
perform any other actions you need to prepare the channel for use. See “Initializing Your Channel” (page
24) for more information.

The <triggers> tag marks the beginning of the channel’s trigger definitions. Nested inside this tag are one
or more <trigger> tags defining the triggers for your channel. Each trigger has a path attribute specifying
the data store path monitored by the trigger. Changes to the data at a path cause Sherlock to execute the
trigger with the matching path attribute. Similarly, notifications sent by your script code to that path result
in the execution of any matching triggers. See “Trigger Tag Syntax” (page 36) for more information.

Initializing Your Channel

When Sherlock first loads your channel, it executes a special block of code in your XML Trigger file. This block
is identified by the <initialize> XML tag and contains script code to execute during the loading of your
channel. You can use this initialization block to perform any initial setup required by your channel. For
example, you can initialize the values of any controls or data variables. If your channel uses multiple views,
you can also use this block to specify the channel’s main view.

Sherlock executes your channel’s initialization code the first time your channel is loaded into a window.
Sherlock does not call your initialization code when the user toggles between channels in the same window.
However, Sherlock does call your initialization code again if the user opens a new window.

24 Writing Your Channel Code
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

The following example shows the initialization code for the Yellow Pages channel. The code enables printing
for the channel and then proceeds to adjust the controls to their initial values. The code sets some display
parameters, sets some button images, and tells the data store to send notifications whenever the main search
attributes change. The code also sets the temporary variable Defaults.cityStateZip to its initial state.
The value in this variable is used by the channel’s triggers when the user does not specify a zip code, city, or
state information.

Listing 2 Initializing a channel

<initialize language="JavaScript">
 DataStore.Set("mainViewIdentifier", "YellowPages");

 /* set up the data store to indicate that we want to handle printing */
 DataStore.Set("customPrint", 1);

 DataStore.Set("YellowPages.minViewSize", "{width=780; height=490}");
 DataStore.Set("Defaults.cityStateZip", "Cupertino, CA");
 DataStore.Set("YellowPages.CityStateZipField.updateValueOnTextChanged",
 true);
 DataStore.Set("YellowPages.MainQueryField.updateValueOnTextChanged",
 true);
 DataStore.Set("YellowPages.SearchButton.imageURL",
 "../shared/search.tiff");
 DataStore.Set("YellowPages.SearchButton.altImageURL",
 "../shared/searchDown.tiff");
 DataStore.Set("YellowPages.OpenLocations", false);

 DataStore.Set("YellowPages.PanX", 0);
 DataStore.Set("YellowPages.PanY", 0);
 DataStore.Set("YellowPages.MapZoom", 3);

 DataStore.Set("YellowPages.PanUp.imageURL", "panUp.tiff");
 DataStore.Set("YellowPages.PanDown.imageURL", "panDown.tiff");
 DataStore.Set("YellowPages.PanRight.imageURL", "panRight.tiff");
 DataStore.Set("YellowPages.PanLeft.imageURL", "panLeft.tiff");
 DataStore.Set("YellowPages.PanCenter.imageURL", "panCenter.tiff");

 /* Attribution */
 DataStore.Set("YellowPages.infousaImageButton.imageURL",
 "infousa.tiff");
 DataStore.Set("YellowPages.SwitchboardImageButton.imageURL",
 "Switchboard.tiff");
</initialize>

For more information on printing, see the article “Printing Your Channel’s Content” (page 79). For information
on the DataStore object, see “DataStore Object” (page 56).

Factoring Your Trigger Code

An important consideration when writing your trigger code is reuse. If you have a complex channel, you may
want to be able to initiate a particular action in several different ways. For example, a user could trigger the
action using a control in your channel interface while an HTML page could trigger the action using a Sherlock
URL. It is a good idea to separate out reusable pieces of code into separate functions that you can call from
multiple triggers.

Writing Your Channel Code 25
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

When you factor code, you do not have to include all of your subroutines in your channel’s main code file.
Instead, you can declare your functions in a separate file and include it from your XML Trigger file. The content
of an include file is usually only script code. To make it easy to include the file anywhere, you should always
surround your code with a <script> tag containing a language attribute. The script tag ensures that the
proper language is specified for your code. For example, if you create a file called moreCode.xml and use
it to store some XQuery functions, the outline of your code file would look something like the following:

<scripts>
 <script language="XQuery">
 define function MyFunction($param1, $param2)
 {
 {-- Your code here. --}
 }
 </script>
</scripts>

To include this file in your XML Trigger file, you use the <scripts> tag in your <triggers> code block.
You specify the file you want to load using the src attribute of the tag. The src attribute specifies the path
to the include file, which can be a relative or fixed path. For example, to load the file moreCode.xml located
in the subdirectory services, you would use the following code:

<triggers>
 <scripts src="services/moreCode.xml" />

 <!-- Additional triggers. -->
</triggers>

Localizing Resources

Sherlock supports channel localization using a mechanism similar to Mac OS X bundles. At the root level of
your channel folder, you create subfolders for each of the localizations you support. The name of each
subfolder consists of the two-letter ISO 639 language code followed by the .lproj extension. For example,
the folder for English localized resources would be called en.lproj. Inside of each folder, you put the
localized resources needed by your channel, including nib files, string resources, and image files.

When a user accesses your channel, Sherlock automatically checks the language preferences of that user and
loads the appropriate nib file from your channel. To load localized resources from your script code, you can
use the XQuery functions localized-resource and localized-url. To load localized resources from
JavaScript, you must call these same functions using the XMLQuery object. See “XMLQuery Object” (page
57).

String resources reside in a property list file called LocalizedResources.plist inside of each localized
resource directory. Sherlock requires that the name of your channel be included in this file as a localized
string with the key CHANNEL_NAME. You can include additional strings, dictionaries, and arrays as needed by
your channel. The following listing shows the strings defined by the Dictionary channel.

Listing 3 Defined strings from the Dictionary channel

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist SYSTEM
 "file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
 <dict>

26 Localizing Resources
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

 <key>CHANNEL_NAME</key>
 <string>Dictionary</string>
 <key>SPELLING_SUGGESTIONS</key>
 <string>Spelling Suggestions</string>
 <key>AMERICAN_HERITAGE_DICTIONARY</key>
 <string>American Heritage Dictionary</string>
 </dict>
</plist>

To load a localized string, you use the localized-resource routine in XQuery. This routine accepts a key
name and returns the string appropriate for the user’s current locale settings. The following code load shows
how to use this routine in your XQuery code.

let $columnTitle = localized-resource("SPELLING_SUGGESTIONS")

If you are writing your channel code using JavaScript, you can use the XMLQuery object to evaluate any
XQuery expressions, as shown in the following example:

columnTitle = XMLQuery.localized_resource(""SPELLING_SUGGESTIONS");

For more information, see the description for “XMLQuery Object” (page 57).

Configuring Your Channel For Use

In order to make your channel available, you must tell Sherlock where to find it. Sherlock channels are
distributed over the Web to make them easier to maintain and update. However, in order to distribute a
channel over the web, Sherlock needs to know the location of your channel’s code and resources. You do
this by specifying a channel configuration file. Links that refer to your channel point to this file so that Sherlock
can load the information it needs.

The channel configuration file is an XML file containing a single <channel_info> XML tag. The attributes
of this tag identify the location of your channel’s resource files relative to the configuration file itself. Listing
4 shows a sample channel directory structure with the channel’s code and resource files. In this listing the
MyChannel.xml file is the channel configuration file while channel.xml is the main code file containing
the channel’s triggers.

Listing 4 Channel directory structure

MyChannel/
 channel.xml
 en.lproj/
 channel.nib
 help/
 help.html
 localizedResources.plist
 mychannel.icns
 mychannel.tiff
MyChannel.xml

Configuring Your Channel For Use 27
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

The following code listing shows the complete contents of the file MyChannel.xml. Sherlock loads this file
and automatically interprets it as an XML tag. The attributes of the tag provide Sherlock with a way of uniquely
identifying the channel, along with the location of the channel’s resources, here shown as relative paths on
the Web server. See “Channel Information Tag Syntax” (page 33) for a complete description of the
channel_info tag and attributes.

Listing 5 Channel info tag

<!-- My channel info file -->
<channel_info
 identifier="com.company.MyChannel"
 icon_url="MyChannel/mychannel.tiff"
 channel_url="MyChannel/channel.xml"
 localized_base_url="MyChannel/"
 nib_url="channel.nib/objects.nib"
 icns_icon_url="MyChannel/mychannel.icns"
 help_file="help/help.html"
/>

In addition to configuring your channel, you may also want to provide a description of your channel for the
channel management portion of the Sherlock window. To specify this string, add the CHANNEL_DESCRIPTION
key to the LocalizedResources.plist file in each of your localized directories. The value of this key is
the description of your channel. See “Localizing Resources” (page 26) for more information on localizing
strings.

Once you have organized your project and created your configuration file, you can proceed to install your
channel and debug it. For more information, see “Accessing Channels” (page 77).

Deploying Your Channel

The first step in using a channel is to make it accessible to users. Because Sherlock channels are small, they
are ideally suited for deployment over the web. The minimal channel consists of two XML files, a nib file, a
property list, and a TIFF image.

For testing purposes, you can deploy your web on your local machine using the personal web sharing feature
of Mac OS X. With personal web sharing, you just need to drag your channel files into the current user’s
Sites folder to make the files accessible on the web. When you are satisfied that your channel works as
expected, you can deploy it to a more public server and establish links to the channel’s configuration file.
For information on loading a channel from a URL, see “Loading a Channel From a URL” (page 77).

Regardless of where you deploy your channel, the channel configuration file must contain valid paths to the
files of your channel. For more information on creating a channel configuration file, see “Configuring Your
Channel For Use” (page 27).

28 Deploying Your Channel
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Developing Channels

Sherlock provides you with two different languages—JavaScript and XQuery—for writing your channel’s
script code. These languages provide you with both the power and flexibility to process data and manipulate
your channel’s contents dynamically. This article provides a brief introduction to each language and provides
information about Apple’s implementation.

Introduction to JavaScript

The JavaScript language was originally developed by Netscape as a way to implement dynamic HTML pages
in a client’s web browser. JavaScript is an interpreted language whose syntax resembles those of C in some
aspects, but which also includes a mechanism for declaring and using objects. JavaScript is also known by
the name ECMAScript and is typically used for writing short subroutines to manipulate browser data or
respond to user interactions within web pages.

Sherlock supports JavaScript as one of the primary languages for writing triggers. Sherlock’s uses a standard
implementation of the JavaScript engine to interpret and execute script code in the Sherlock application
environment. The JavaScript syntax is documented in numerous third-party books and is not covered in this
article. However, developers familiar with the C and Java languages will find some familiar programming
constructs.

Apple provides several predefined objects for JavaScript code to use. These objects are specific to the Sherlock
channel environment and are described in more detail in “JavaScript Extensions” (page 54).

Introduction to XQuery

XQuery is a part of the XML Query specification currently being defined by the World Wide Web Consortium.
The goal of XML Query is to provide a convenient way to extract data from real and virtual documents on
the web. The medium for achieving this goal is XML and the script language used to manipulate the data is
called XQuery.

A complete discussion of the XQuery language is beyond the scope of this article. For the latest information
about XML Query, visit the World Wide Web Consortium website (http://www.w3c.org/XML/Query). This
site includes information about the XQuery language and other current developments.

Apple provides several additions to the XQuery language that allow you to manage Sherlock resources.
Apple’s additions are documented in “XQuery Extensions” (page 58).

For new and experienced XQuery programmers, the following sections include some tips and techniques
for using XQuery in your Sherlock channels.

Introduction to JavaScript 29
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Scripting Language Support

Accessing the Data Store

Because XQuery triggers do not have access to the data store, you must use the inputs and output attributes
of the trigger to get and set data store values. These parameters are described further in the section “Trigger
Tag Syntax” (page 36).

An alternative to using the output attribute to return values is to return a dictionary of key/value pairs
instead. When you return a dictionary of values from an XQuery trigger, the data store interprets the keys of
the dictionary as paths. The data store then assigns the value for each key back to the corresponding path.

Commenting Out Text

Comments in XQuery begin with an open curly brace followed by two hyphens. To close the comment, use
two hyphens followed by a close curly brace, as shown in the following example:

{-- Comments go here. --}

Support for Additional Data Types

Apple defines additional data types to supplement those provided by the XQuery language. Among the data
types are the data, dictionary, and url types, which correspond to the Core Foundation types CFDataRef,
CFDictionaryRef, and CFURLRef respectively.

The dictionary type is especially useful when writing XQuery-based triggers. To create a dictionary, you
use the dictionary function provided by Apple and defined in “XQuery Extensions” (page 58). When you
return a dictionary from an XQuery trigger, Sherlock interprets the dictionary keys as data store paths and
proceeds to update the corresponding values with the dictionary data.

Accessing the Web

Apple provides several additions to the XQuery language that make it easy to access web-based resources.
The additions are built on top of Apple’s Web Foundation Framework and provide access to the web using
the HTTP protocol.

To request a URL, you can use any of the following functions:

 ■ http-get

 ■ http-head

 ■ http-post

 ■ http-request

These functions take the requested URL and any parameters and use them to generate an HTTP request.
They return a dictionary of keys identifying the returned data and status information.

30 Introduction to XQuery
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Scripting Language Support

Deciding Which Language To Use

When it comes time to write your trigger code, you need to choose which language to use. Most tasks can
be performed using either JavaScript or XQuery; however, some tasks are better performed in one language
than the other. Knowing which language to use for a given trigger can simplify the channel development
process.

Common uses for the JavaScript language include executing conditional code, putting values in the data
store, and opening URLs based on user actions.

Advantages of using the JavaScript language to develop triggers and services include:

 ■ JavaScript triggers run synchronously, allowing for more dynamic processing of inputs.

 ■ Data store variables can be retrieved and set directly using the DataStore object.

 ■ JavaScript is an established language with numerous resources available for learning the language.

 ■ JavaScript can use XQuery functions through the XMLQuery object.

Disadvantages include:

 ■ Performance of JavaScript triggers is typically slower due to their synchronous execution.

 ■ JavaScript does not have a strong set of tools for processing text and XML expressions.

 ■ There is no direct way to initiate HTTP requests from JavaScript. They must be performed using the
XQuery functions.

Common uses for the XQuery language include retrieving data from a URL and parsing XML/HTML to create
a list of results.

Advantages of using the XQuery language to develop triggers and services include:

 ■ The XQuery syntax is well suited for transforming data and processing XML expressions.

 ■ XQuery triggers run asynchronously by default, providing better performance and the ability to process
several expressions simultaneously.

 ■ Apple-provided extensions make it easy to access web pages and Sherlock web services.

Disadvantages include:

 ■ The XQuery specification is still in flux and subject to change.

 ■ There are fewer resources available for learning the XQuery syntax.

 ■ XQuery triggers cannot access the data store directly. Triggers must use the inputs and output attributes
to move data back and forth

Deciding Which Language To Use 31
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Scripting Language Support

Supported XQuery Functions

Sherlock supports a subset of the XQuery functions defined at http://www.w3.org/TR/2002/WD-xquery-op-
erators-20020816/ . The supported functions are listed here in functional groups.

Date, Time, and Duration
current-dateTime, dateTime, date, time, duration

Numbers
number, ceiling, floor, round, sum

Strings
string, string-length, normalize-space, concat, contains, starts-with, ends-with,
substring, substring-after, substring-before, translate, compare, lower-case,
upper-case, replace, string-pad, match, matches, string-join, codepoints-to-string,
string-to-codepoints

Other
document, count, local-name, boolean, false, true, not, empty, exists, distinct-values,
distinct-nodes, insert, remove, sublist, min, max, to, item-at, index-of, deep-equal

Deprecated XQuery Constructs in Mac OS X 10.3

In Mac OS X 10.3, Table 1 list identifies the XQuery constructs that are being deprecated. You should update
your channel code to eliminate calls these functions.

Table 1 Deprecated XQuery constructs

NotesConstruct

This function is being replaced by the “order by” expressions instead.sortby function

Use the is and isnot operators instead.== and !== operators

An example of this construct is . You must
now include quotes around the attribute value, so that the above
construct would now be .

XML constructs with non-quoted
attributes

If you use a variable that has not been defined or initialized with a
value, you will get an error.

Using uninitialized variables

Using a close curly brace character } inside a comment now generates
an error.

Comments

32 Supported XQuery Functions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Scripting Language Support

http://www.w3.org/TR/2002/WD-xquery-operators-20020816/
http://www.w3.org/TR/2002/WD-xquery-operators-20020816/

This article provides a reference for the various extensions and predefined data paths provided by Sherlock.

XML Tag Syntax

Sherlock channels use XML tags to organize and identify channel resources. The following sections describe
the syntax for the XML tags you can use with Sherlock.

Channel Information Tag Syntax

The channel configuration file constitutes the entry point to a channel. This file contains a single
channel_info tag that identifies the key locations of the channel’s resource files. Sherlock uses the attributes
of this tag to identify the channel and to load its resources. This file can also act as a checkpoint for determining
when the channel files have changed.

Table 1 describes the attributes of the channel_info tag.

Table 1 channel_info attributes

DescriptionAttribute

Specifies the path to your channel’s main code file. This is the XML file containing
your channel’s initialization code and triggers.

channel_url

Specifies whether the file containing the channel_info tag should act as a
check point for changes to the channel. If the value of this attribute is true,
Sherlock compares the modification dates of the cached file and the file on the
server. If they are the same, Sherlock assumes the channel has not changed and
does not download any channel resources from the server. If the dates are
different, Sherlock updates the channel resources from the server normally.

check_point

Specifies the location of a help file. The value of this attribute is the path to the
HTML file relative to the localized resource directories in your channel folder.
(Ignored on versions of Mac OS X earlier than version 10.3.)

help_file

Specifies the location of your channel’s file-system icon (.icns) file. This icon is
downloaded and used when the user attempts to make a shortcut to the channel
in the file system. The icon file you specify must contain an icon that is 128 pixels
by 128 pixels in size.

icns_icon_url

XML Tag Syntax 33
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionAttribute

Specifies the path to the icon (.icns) or image file (.tiff) you want to use for
your channel’s toolbar icon. Typically, this path is relative to the location of the
channel configuration file. (A 32 pixel by 32 pixel TIFF image is preferred for this
icon.)

icon_url

Specifies a unique identifier for the channel. Sherlock uses this value to distinguish
your channel from other channels. Typically, you encode your channel name and
company domain name in this string using Java-style package naming
conventions.

identifier

Specifies the path to the parent directory containing your localized resource
project directories. The directory you specify for this attribute should contain
additional project directories for each language your channel supports. For
example, if your project supports English and French locales, this directory would
contain en.lproj and fr.lproj subdirectories.

localized_base_url

Specifies the maximum channel version under which this trigger can execute.
Use this attribute to prevent the loading and execution of a channel with a later
version of Sherlock than the one supported. A value of “1.0” represents the channel
version initially made available with Mac OS X version 10.2. (Note that support
for this attribute was added in Mac OS X 10.2.2. Earlier versions of Sherlock will
ignore the attribute.)

maxVersion

Specifies the location of your channel’s interface objects without any preceding
path information. This string is comprised of the name of your nib file followed
by /objects.nib. Sherlock uses this attribute together with the
localized_base_url and current user’s language settings to build a path to
the appropriate nib file.

nib_url

Specifies the minimum channel version required to run the channel. Use this
attribute to prevent the loading and execution of a channel with an earlier version
of Sherlock than the one supported. A value of “1.0” represents the channel
version initially made available with Mac OS X version 10.2. (Note that support
for this attribute was added in Mac OS X 10.2.2. Earlier versions of Sherlock will
ignore the attribute.)

version

For more information on using the channel_info tag, see “Configuring Your Channel For Use” (page 27).

Channels Tags Syntax

The following listing shows the format of the tags in a channel subscription file. The <channels> tag encloses
one or more <channel> tags, each of which contains a URL to a channel configuration file. The
<localized-strings> tag is optional and used primarily for the localization of the channel name itself.

<channels name="subscription_name" [check_point=<"true" | "false">] >
 [<channel url="channel_url" [version="min_version"]
 maxVersion="max_version"] />]+
 [<localized-strings>
 <localized-string language="2-letter_iso_code"
 key="key_name"

34 XML Tag Syntax
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

 string="value_for_key" />
 </localized-strings>]
</channels >

The following example shows a modified version of the channel subscription file provided by Apple for
Sherlock development channels. In this example, the file includes a localized string for the subscription name.
Sherlock displays the localized name for the subscription in the application preferences window. This example
also includes two channels that support specific versions of Sherlock.

<channels name="Developer">
 <channel url="channels/xquery.xml" version="1.0" maxVersion="1.0" />
 <channel url="channels/javascript.xml"/>
 <channel url="channels/htmlview.xml" version="1.1" maxVersion="1.1" />
 <localized-strings>
 <localized-string language="en" key="Developer"
 string="Apple Developer Channels" />
 </localized-strings>
</channels >

Script Tag Syntax

The scripts and script tags let you modularize your channel’s source code and include additional web
services. The scripts tag either loads a source file from server or encapsulates one or more script tags
and makes the corresponding code available to your channel code. The script tag groups functions
implemented using the same language into one location.

Table 2 describes the attributes of the script tag.

Table 2 script attributes

DescriptionAttribute

Specifies language used to implement the enclosed code. The value of this tag can be either
JavaScript or XQuery.

language

Specifies the maximum XQuery or JavaScript version under which this script code can
execute. Use this attribute to limit the execution of script code to specific versions of Sherlock.

maxVersion

Specifies the minimum XQuery or JavaScript version required to run the trigger. Use this
attribute to limit the execution of a trigger to specific versions of Sherlock.

version

Table 3 describes the attributes of the scripts tag.

Table 3 scripts attributes

DescriptionAttribute

Specifies the maximum channel version under which the code in this script file can execute.
Use this attribute to limit the execution of script code to specific versions of Sherlock. A
value of “1.0” represents the channel version initially made available with Mac OS X version
10.2.

maxVersion

XML Tag Syntax 35
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionAttribute

Specifies the location of the script file to include. The value of this attribute can be either a
full or partial path to the target file.

src

Specifies the minimum channel version required to run the code in this script file. Use this
attribute to limit the execution of script code to specific versions of Sherlock. A value of
“1.0” represents the channel version initially made available with Mac OS X version 10.2.

version

The following example shows the use of the scripts and script tag to declare a function. This declaration
could be placed inline with the channel’s triggers or in a separate file.

<scripts>
 <script language="XQuery">
 define function HTMLToText($html)
 {
 $html/source(.)
 }
 </script>
</scripts>

If you were to place the preceding code in a separate file and include it, you would use another scripts
tag to include it in the code file containing your triggers. The URL you specify can be either a full path to the
server with the file, or a relative path if the file is on the same server.

<scripts src="http://www.mycompany.com/services/webservices.xml"/>

For more information on using the scripts and script tags, see “Factoring Your Trigger Code” (page 25).

Trigger Tag Syntax

Triggers are a combination of XML tags and script code that you include in your channel’s XML Triggers file.
A trigger is identified by the <trigger> XML tag. The attributes of this tag identify information about the
trigger, such as the path it responds to, the language of the enclosed script code, and any other execution
options. The content of the tag is the script code to execute in the language given by the tag attributes.
Sherlock triggers support script code written in the JavaScript and XQuery languages. The basic syntax of
the trigger tag is as follows:

<trigger language="trigger_language" path="data_store_path"
 [additional_trigger_attributes]>
 [script_code]
</trigger>

Important: The trigger tag and all attribute names are case-sensitive.

The following example shows a trigger definition from the Yellow Pages channel. This trigger receives the
value from a text field and stores it in the channel’s preferences file. The path attribute of the trigger tag
identifies the data store path to which the trigger responds—a text field with the name CityStateZipField
in this case. The inputs attribute is a way of initializing local script variables with values from the data store.

 <trigger language="JavaScript"
 path="YellowPages.CityStateZipField.objectValue"

36 XML Tag Syntax
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

 inputs="cityStateZip=YellowPages.CityStateZipField.objectValue">
 DataStore.Set("PERSISTENT.cityStateZip", cityStateZip);
 DataStore.Set("YellowPages.ClickAgaintext.stringValue", " ");
</trigger>

Common Trigger Attributes

Table 4 lists the <trigger> tag attributes you can use for all triggers. All attribute names are case-sensitive
and optional unless otherwise noted.

Table 4 Common trigger attributes

DescriptionAttribute

Binds this trigger’s canonical full path to a local variable. For example, suppose your
general script code assigns the value “name” to the path Data.results[1].title.
If you define a trigger with the path Data.results, Sherlock binds the string
“Data.results.1.title ” to the local variable you specify for the fullPathInput
attribute.

fullPathInput

Binds the value located at the trigger’s path to a local variable. For example, suppose
your general script code assigns the string “name” to the path
Data.results[1].title. If you define a trigger with the path Data.results,
Sherlock binds the string “name ” to the local variable you specify for the fullPathValue
attribute.

fullPathValue

Specifies a binding between one or more data store paths and local script variables.
Use this attribute to transfer values from the data store to your scripts. To specify more
than one binding, separate the entries with a comma. This parameter is used primarily
if you are writing your trigger code using XQuery, which does not have direct access to
the data store. You can also use this attribute in JavaScript to retain the original value
of a path whose contents may change.

inputs

Assign the language in which the trigger script code is written to this attribute. Currently,
this value can be either JavaScript or XQuery. This parameter is required.

language

Specifies the maximum XQuery or JavaScript version under which this trigger can
execute. Use this attribute to limit the execution of a trigger to specific versions of
Sherlock.

maxVersion

Identifies a mutex for the trigger. Only one trigger at a time may run with a given mutex.mutex

Specifies the name of the trigger. This attribute is used primarily for debugging purposes.name

Assign a data store path to this attribute. The data store executes the trigger script when
the value at the specified path changes or receives a notification. For a complete list of
control attributes that you can use as paths, see “Control Properties” (page 41). This
parameter is required.

path

Binds the path of this trigger to the specified local variable. You can use the resulting
variable in your script code to identify the data store path to which this trigger responds.

pathInput

XML Tag Syntax 37
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionAttribute

Binds this trigger’s canonical subpath information to a local variable. The subpath
information is the portion of a path that describes the instance and attribute information
of the specific object being accessed. For example, suppose your general script code
assigns the value “name” to the path Data.results[1].title. If you define a trigger
with the path Data.results, Sherlock binds the string “1.title” to the local variable
you specify for the subPathInput attribute.

subPathInput

Set this attribute to true to cancel any previously running instances of this trigger. This
attribute is useful for a situation where you do not want to complete the current
operation before moving to the next operation. For example, suppose the user is
browsing a list of items in an NSBrowser control that updates its columns with child
information. Without this attribute set, selecting an item would load all of the child
information for that item before allowing a new selection. With this attribute set,
selecting a new item would cancel the previous load operation and proceed to load
the child information for the new item.

task

Specifies that the trigger is to run at specified intervals. If this attribute is set to true,
the data store uses the value at the trigger’s path as the execution interval (measured
in seconds). For example, if you associate a trigger with the path Data.results and
the value at that path is 2, the data store executes the trigger every two seconds.

timer

Specifies the minimum XQuery or JavaScript version required to run the trigger. Use
this attribute to limit the execution of a trigger to specific versions of Sherlock.

version

JavaScript Trigger Attributes

Table 5 lists the <trigger> tag attributes available for triggers written using JavaScript. All attribute names
are case-sensitive and optional unless otherwise noted.

Table 5 JavaScript trigger attributes

DescriptionAttribute

If present, executes the trigger’s JavaScript code in parallel with the code of other triggers. This
option is disabled by default, causing triggers to run synchronously.

async

XQuery Trigger Attributes

Table 6 lists the attributes available for triggers written using XQuery. All attribute names are case-sensitive
and optional unless otherwise noted.

Table 6 XQuery trigger attributes

DescriptionAttribute

Contains a boolean value specifying whether the trigger should append the output results to
the specified path, rather than replace the original contents.

append

38 XML Tag Syntax
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionAttribute

Prevents a notification from being sent when the output value is returned to the data store.
Normally, return of an output value generates a notification because it involves changing a
field value. The inclusion of this attribute suppresses that notification.

noNotify

Contains a comma separated list of data store paths to be notified upon completion of the
trigger. You can use this attribute to trigger other actions.

notify

Specifies a binding between the return value of the function and a data store path. When the
function finishes executing, Sherlock sets the value of the specified data path to the return
value of the function.

output

Contains a boolean value indicating that you want the trigger to return a partial result set
initially and write the rest of the data out asynchronously. This feature improves performance
when a search may take time due to network or server delays.

stream

The following example shows the use of several XQuery specific attributes. In this example, the trigger
appends output data to the path “Stocks.SymbolTable.dataValue”. To prevent delays, the data is
streamed out and a notification is sent to the path “Stocks.action.updateQuotes” when all of the data
has been returned.

<trigger path="Stocks.action.symbols" language="XQuery"
 inputs="symbols= Stocks.action.symbols,
 table=Stocks.SymbolTable.dataValue"
 output="Stocks.SymbolTable.dataValue"
 notify="Stocks.action.updateQuotes"
 stream="true" append="true">
let $newSymbols := for $symbol in $symbols where
 empty($table/symbol[. = $symbol])
 return dictionary(("symbol", $symbol), ("id", string(unique-id())))
return $newSymbols
</trigger>

Predefined Data Store Paths

The data store includes several predefined paths that you can use to access or store data. This section describes
these paths and explains how to use them.

Nib File Installation

Sherlock defines several trigger paths for determining when a channel’s interface is displayed or removed
from the Sherlock window. Table 7 lists the paths along with a description of when the path is triggered.

Table 7 Nib file installation paths

DescriptionPath

Called immediately after the nib file contents are installed in Sherlock’s window..didInstall

Predefined Data Store Paths 39
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionPath

Called immediately after the nib file contents are removed from Sherlock’s window..didRemove

Called immediately before the nib file contents are installed in Sherlock’s window..willInstall

Called immediately before the nib file contents are removed from Sherlock’s window..willRemove

Persistent Storage Paths

Sherlock uses the PERSISTENT path to manage data in the Sherlock preferences file for the current user.
You can use this path to get or set channel-specific data you want to retain between Sherlock sessions. You
can also use it to access data shared by multiple channels.

To store channel-specific data, specify the PERSISTENT base path followed by a unique path name to identify
the stored data. For example, to save the postal code of the current user to the preferences file, you could
use the following JavaScript code:

userPostalCode = 95014;
DataStore.Set("PERSISTENT.postalCode", userPostalCode);

Inside the preferences file, Sherlock creates a dictionary for each channel’s individual preferences. Any data
a channel writes to the PERSISTENT path are placed inside that channel’s dictionary and are accessible only
by that channel.

If you want to share persistent data with other channels, you must do so using the PERSISTENT.SHARED
base path. This path defines an area of the preferences file where channels may share data they find useful.
To store shared data, you must add your channel identifier and the path name for the data to the
PERSISTENT.SHARED path name. For example, to store a value at the path MyData in the channel whose
identifier is com.apple.MyChannel, you would use the following path:

PERSISTENT.SHARED.com.apple.MyChannel.MyData

All channels use the same path to access your channel’s shared data. However, paths you create in the
persistent storage space are accessible for reading and writing by your channel but are read-only to all other
channels.

Printing Paths

Sherlock provides several specific paths to implement printing support for channels. The use of these paths
is discussed in detail in the article “Printing Your Channel’s Content” (page 79).

Table 8 Printing paths

DescriptionPath

Set the value of this path to 1 if your channel supports printing using a custom
view. You do not need to assign a value to this path if you want to use Sherlock’s
default printing support.

customPrint

40 Predefined Data Store Paths
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionPath

Use this path to distinguish your channel’s main view. from any other views, such
as a print view. The value at this path contains the name of the view.

mainViewIdentifier

Use this path to receive printing notifications.print

URL Paths

Sherlock supports the automatic loading and execution of a channel using a browser URL. Sherlock defines
a URL base path for accessing the query attributes of a URL. If a URL attribute has a value, Sherlock stores
the value in the URL path under the name of the attribute. Attributes without values generate notifications
instead.

For example, the following code shows a potential URL that can be sent to Sherlock:

sherlock://com.apple.yellowPages?query=sushi&zip=95120&search

When this URL is received, Sherlock writes each query attribute to the URL path. Query attributes are written
in the same order as they appear in the query string. After all of the parameters are written, Sherlock sends
a notification to the path URL.complete to signal the end of the parameter list. So, from the preceding
example, Sherlock would perform the following equivalent operations (shown here as if they were part of a
JavaScript trigger) to store the data:

DataStore.Set("URL.query", "sushi");
DataStore.Set("URL.zip", "95120");
DataStore.Notify("URL.search");
DataStore.Notify("URL.complete");

For each data value it sets, Sherlock also generates a notification to any triggers monitoring that path. If your
channel defined a trigger that monitored the URL.query path, that trigger would be called prior to any
triggers for the URL.zip or URL.search paths.

Control Properties

The controls you use to define your channel interface have properties that you can access from your script
code. Control properties are cumulative through the view and control hierarchies, that is, a specific instance
of a control inherits the properties of its parent classes. Thus, an NSButton control inherits the attributes of
NSControl and NSView. Figure 1 shows the inheritance hierarchy of the controls available to Sherlock channels.

Control Properties 41
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Figure 1 Control inheritance hierarchy

NSDrawer
NSView
NSWindow

NSBrowser
NSButton
NSImageView
NSMatrix
NSSlider
NSTableView
NSStepper
NSTextField

NSControl
NSMovieView
NSProgressIndicator
NSSplitView
NSTabView
HTMLView

NSText NSTextView

NSPopUpButton

NSComboBox SherlockAddressComboBox

The sections that follow describe the individual properties for each control.

HTMLView

HTMLView objects contain properties for rendering HTML content. HTMLView inherits properties from
NSControl and NSView. Table 9 lists the path properties for HTMLView.

Table 9 HTMLView path properties

DescriptionProperty

Contains a string with the base URL to be prepended to any relative items or links
in the HTML content.

baseURL

Contains a string with the name of the character set used by the HTML. Specify
this value if the HTML does not already contain the information.

charset

Contains a boolean indicating whether new URLs may be loaded by clicking links
in the view.

followLinksInView

Contains a string with the HTML data to render in the view. If you specify this value,
do not specify a value for the url attribute.

htmlData

Contains a string with the URL of the page to be rendered in the view. If you specify
this value, do not specify a value for the htmlData attribute.

url

This control is supported only on Mac OS X version 10.3 and later.

NSBrowser

NSBrowser objects contain properties for accessing the column data of a browser (column view) control.
NSBrowser inherits properties from NSControl and NSView. Table 9 lists the path properties for NSBrowser.

42 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Table 10 NSBrowser path properties

DescriptionProperty

Contains an array with one or more subarrays, each of which represents a column of
the browser. Each subarray contains one or more dictionaries with key/value pairs
associated with the current entry in the browser. Each dictionary can also contain the
keys VALUE and IS_LEAF. The VALUE key contains the row-item text to display in the
browser column. The IS_LEAF key identifies whether the current dictionary is a leaf.

data

Notified when the user double-clicks an item in the control. Your handler should check
the selected cells to see what was clicked.

doubleAction

Contains an array with one or more arrays, each of which represents a column of the
browser. The contents of each subarray are the selected cells in that column.

selectedCells

Although you can store hierarchical data using text and numbers in the data array of a browser, an easier
way is to use dictionaries. When you specify a dictionary of items for a row, you can include a key called
IS_LEAF to indicate that Sherlock should treat the dictionary as hierarchical data. When the key is set to
true, Sherlock displays a right-arrow icon next to the row entry indicating there is more data.

NSButton

NSButton objects contain properties for getting and setting the display characteristics of the button. NSButton
inherits properties from NSControl and NSView. You can use the action property inherited from NSControl
to respond to button clicks. Table 11 lists the path properties for NSButton.

Table 11 NSButton path properties

DescriptionProperty

Contains the button’s alternate NSImage.alternateImage

Contains a string or an array of strings with the URL’s to use for the button’s alternate
image. If you specify an array of strings, Sherlock uses the first one if it is available; if
not, it uses the second and the third and so on.

altImageURL

Contains a boolean indicating whether the button has a border.bordered

Contains the button’s NSImage.image

Contains a string or an array of strings with the URL’s to use for the button. If you
specify an array of strings, Sherlock uses the first one if it is available; if not, it uses the
second and the third and so on.

imageURL

Contains a string with the button’s title.title

Control Properties 43
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

NSComboBox

NSComboBox objects contain properties for getting and setting the items and text-completion characteristics
of the combo box. NSComboBox inherits properties from NSTextField, NSControl, and NSView. Table 11 lists
the path properties for NSComboBox.

Table 12 NSComboBox path properties

DescriptionProperty

Path that is notified whenever the combo-box selection changes.comboBoxSelection-
DidChange

Contains an integer indicating the techniques used to automatically
complete typed text entries. You can set this property to any combination
of the following values: 1 - case-insensitive search 2 - literal search 3 -
backwards search 4 - anchored search

completionFlags

Contains a boolean value indicating whether the combo box automatically
completes item names as the user types them.

completes

Contains a boolean value indicating whether the combo box displays a
vertical scroller.

hasVerticalScrollBar

Contains an array of strings representing the items in the combo box.items

Contains a boolean value indicating whether the text in the combo box
should be selected when the user clicks it. This value is false by default.

selectAllOnFirst-
MouseDown

Contains a kCFNumberSInt32Type that represents the index of the selected
item.

selectedItem

Contains a boolean value indicating whether the combo box automatically
shows its list when it becomes the first responder. This value is false by
default.

showListOnBecome-
FirstResponder

Contains a boolean indicating whether the combo box displays the list of
choices as soon as a character is typed. This value is false by default.

showListOnBeginEditing

Contains a boolean indicating whether the combo box uses a data source
to display its contents.

usesDataSource

NSControl

NSControl defines common properties for the NSBrowser, NSButton, NSImageView, NSMatrix, NSSlider,
NSTableView, NSStepper, and NSTextField controls. NSControl also inherits properties from NSView. Table
13 lists the path properties for NSControl.

44 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Table 13 NSControl path properties

DescriptionProperty

Path that is notified whenever the control’s action occurs (such as when a button is clicked).action

Contains a URL to open when the control’s action occurs. If this path contains an empty
value, nothing happens.

actionURL

Contains a boolean indicating whether the control is enabled.enabled

Contains a value of type id with the control’s value. If you want to monitor the control’s
value, use this path instead of stringValue.

objectValue

Contains a string value with the control’s value.stringValue

NSDrawer

NSDrawer objects contain properties to which you can send open and close notifications. Table 14 lists the
path properties for NSDrawer.

Table 14 NSDrawer path properties

DescriptionProperty

Post a notification to this path to close the drawer. This notification always occurs
asynchronously.

close

Path that is notified when the drawer is closed. (Supported on Mac OS X version 10.3
and later.)

drawerDidClose

Path that is notified when the drawer is opened. (Supported on Mac OS X version 10.3
and later.)

drawerDidOpen

Post a notification to this path to open the drawer. This notification always occurs
asynchronously.

open

Post a notification to this path to toggle the state of the drawer. This notification always
occurs asynchronously.

toggle

NSImageView

NSImageView objects contain properties for accessing the image data and URL. NSImageView inherits
properties from NSControl and NSView. Table 15 lists the path properties for NSImageView.

Table 15 NSImageView path properties

DescriptionProperty

Contains the cached NSImage object. This value is read-only.cachedNSImage

Control Properties 45
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionProperty

Contains the raw image data.data

Contains a boolean indicating whether the image should be cached in the data
store.

shouldCacheNSImage

Contains the URL that points to the image.url

NSMatrix

NSMatrix objects contain the currently selected cells in the matrix. NSMatrix inherits properties from NSControl
and NSView. Table 16 lists the path properties for NSMatrix.

Table 16 NSMatrix path properties

DescriptionProperty

Contains an array of cell objects.cells

Contains the URL for the image you want to display in the specified cell.cells[n].imageURL

Contains the URL for the alternate image you want to display in the specified
cell.

cells[n].altImageURL

Contains an array of zero-based indexes identifying the currently selected cells
of the matrix.

selectedCells

NSMovieView

NSMovieView objects contain properties for loading and playing a movie. NSMovieView inherits properties
from NSView. Table 17 lists the path properties for NSMovieView.

Table 17 NSMovieView path properties

DescriptionProperty

Contains a boolean indicating whether or not the movie is playing. Setting this value
to 1 initiates playback. Setting the value to 0 stops playback.

play

Contains a boolean indicating whether or not to show the movie controls.showController

Contains the URL for a network-based movie.URL

46 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

NSPopUpButton

NSPopUpButton objects contain properties identifying the items of the pop-up menu. NSPopUpButton
inherits properties from NSButton, NSControl, and NSView. Table 18 lists the path properties for
NSPopUpButton.

Table 18 NSPopUpButton path properties

DescriptionProperty

Contains an array of strings, or an array of dictionaries with the keys title and
representedObject. The title key identifies the string to be displayed. The
representedObject key identifies the item represented by the corresponding row.

items

Contains the index of the selected item.selectedItem

To insert a menu-item separator in the pop-up menu, add the string “SherlockMenuItemSeparator” to the
array of strings in items. If you use an array of dictionaries to specify your menu items, put the
“SherlockMenuItemSeparator” string in the title key and omit the representedObject key.

NSProgressIndicator

NSProgressIndicator objects contain properties for controlling the appearance of the progress bar.
NSProgressIndicator inherits properties from NSView. Table 19 lists the path properties for NSProgressIndicator.

Table 19 NSProgressIndicator path properties

DescriptionProperty

Contains a boolean indicating whether the progress bar has a bezel.bezeled

Contains the current value of the progress indicator.doubleValue

Contains a boolean indicating whether the progress bar is indeterminate.indeterminate

Contains the minimum value of the progress indicator.minValue

Contains the maximum value of the progress indicator.maxValue

Send a notification to this path to start the progress bar animation.startAnimation

Send a notification to this path to stop the progress bar animation.stopAnimation

Contains a boolean indicating whether the progress bar uses a threaded
animation.

usesThreadedAnimation

NSSlider

NSSlider has no accessible properties of its own, but it does inherit properties from NSControl and NSView.
To set the minimum and maximum values of the slider, you must do so from Interface Builder.

Control Properties 47
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

NSSplitView

NSSplitView objects contain a property defining the minimum size of a split-view pane. NSSplitView inherits
properties from NSView. Table 20 lists the path properties for NSSplitView.

Table 20 NSSplitView path properties

DescriptionProperty

Contains an array of numbers indicating the minimum number of pixels for each pane
in the NSSplitView.

minPositions

NSStepper

NSStepper has no accessible properties of its own, but it does inherit properties from NSControl and NSView.
To set the minimum and maximum values of the stepper, you must do so from Interface Builder.

NSTableView

NSTableView objects contain properties identifying the appearance of the table’s columns and rows, as well
as the contents of the table. NSTableView inherits properties from NSControl and NSView. Table 21 lists the
path properties for NSTableView.

Table 21 NSTableView path properties

DescriptionProperty

Contains an array of strings listing the supported data types that can be
dropped on the table view. The list of acceptable types includes
NSStringPboardType, NSTIFFPboardType, and NSURLPboardType.
(Supported on Mac OS X version 10.3 and later.)

acceptableDropTypes

Install a trigger on this path to receive notifications when a column header
is clicked. This path contains the column identifier of the column that was
clicked. If this path does not exist and the disableSorting attribute is
not set to true, a default sorting routine is used for the table items.

clickedColumnHeader

Contains a string identifying the location of the view objects to use for the
column’s cells. For example, if your view is defined in the nib file
MyView.nib, you would specify the value “MyView.nib/objects.nib”.
The path you specify is relative to the XML Triggers file. If you specify a value
for this property, you must also specify the value “SherlockCell” for the
columns.<column_id>.dataCellType property.

columns.<column_id>.
cell.nibURL

48 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionProperty

Contains a string identifying the type of information stored in the column.
You can set this value to “RankCell” if you want the cell to contain ranking
information for the row. Set this value to “SherlockCell” if you want to
display a view object in the cell. If you use the “SherlockCell” value, you
must specify the nib file containing your view in the columns.<column_-
id>.cell.nibURL property.

columns.<column_id>.
dataCellType

Contains the title for the column with the specified column ID.columns.<column_id>.
headerCell.objectValue

Contains a string or array of strings with the URLs to use for the title image
of the column with the specified column ID.

columns.<column_id>.
indicatorImage

Contains a boolean indicating whether sorting is disabled for a specific
column. (Supported on Mac OS X version 10.3 and later.)

columns.<column_id>.
noSort

Contains a string with the sort key for the column. If this attribute is not set,
the column identifier is used as the sort key. (Supported on Mac OS X version
10.3 and later.)

columns.<column_id>.
sortKey

Contains an array of table values. If each item in the table is a string, then
each array entry is a string. If the table has more than one column, each
array entry contains a dictionary. The keys in each dictionary are the column
identifiers that you set in Interface Builder.

dataValue

Contains a boolean that indicates whether Sherlock is prevented from
autosaving the column positions and widths. (Supported on Mac OS X
version 10.3 and later.)

disableAutoSave

Contains a boolean that indicates whether sorting of the table’s contents
should be disabled. (Supported on Mac OS X version 10.3 and later.)

disableSorting

Install a trigger on this path to receive notifications when a row is
double-clicked.

doubleAction

Contains a URL to open when the cell is double-clicked. If this path contains
an empty value, nothing happens.

doubleClickURL

Contains an array of the items that were dropped onto the table view.droppedItems

Contains a zero-based integer indicating the first visible row in the table.
The controls scrolls its contents as needed to make this row the first row.

firstVisibleRow

Contains the column identifier of the currently highlighted column.highlightedColumn

Contains an array of dictionaries with the supported types of data for
copy/drag operations. You must set the value for each supported pasteboard
type to the data path containing the data. See the example that follows for
more information.

pasteboardTypes

Contains the height of each row as an integer.rowHeight

Control Properties 49
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionProperty

Contains an array of column identifiers indicating which columns can be
selected.

selectableColumns

Contains an array of zero-based integers indicating the currently selected
rows.

selectedRows

Contains a boolean indicating whether the user can delete rows of the table
by selecting them and pressing the Delete key. If you do not explicitly assign
a value of false to this property, NSTableView permits the user to delete
rows from the table.

shouldDeleteSelection

Contains a boolean indicating whether the value of the first visible row
attribute should be updated when the table contents are scrolled.

trackFirstVisibleRow

Contains an array of column identifiers indicating which columns can be
dragged by the user. Note, that the column identifier is a separate attribute
set in the Info Window of Interface Builder and does not necessarily equal
the column title.

visibleDragColumns

To specify pasteboard types, you associate an appropriate path name with the pasteboard type key. When
the data is copied, Sherlock copies the data at the specified path to the pasteboard. For example, the following
JavaScript code sets two different pasteboard types for a row. The first line sets the string version of the URL
to the string object of the row. The second line sets the URL pasteboard data to the double-click URL for the
row.

DataStore.Set(
 "Internet.SearchResultsTable.pasteboardTypes.NSStringPboardType",

"description.URL.objectValue");DataStore.Set("Internet.SearchResultsTable.pasteboardTypes.NSURLPboardType",
 "doubleClickURL");

Note that you should not specify the path to the row itself in the paths you specify. Sherlock assumes that
you are copying from the current row automatically.

NSTabView

NSTabView objects contain a property identifying the currently selected tab. NSTabView inherits properties
from NSView. Table 22 lists the path properties for NSTabView.

Table 22 NSTabView path properties

DescriptionProperty

Contains the identifier of the currently selected tab.selectedTabIdentifier

50 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

NSTextField

NSTextField objects contain properties for the control contents as well as for receiving notifications. NSTextField
inherits properties from NSControl and NSView.

Table 23 lists the path properties for NSTextField.

Table 23 NSTextField path properties

DescriptionProperty

Path that is notified whenever the field’s user action occurs. The user action can
be triggered on the end of editing or on pressing Return depending on how
the control was set up in Interface Builder.

action

Assign HTML text to the value at this path and it will be converted to a text
representation and displayed in the text field.

htmlData

Contains a boolean indicating whether notifications should be sent as the user
types. Notifications generated by this message monitor the objectValue path
of the text field for changes.

updateValueOn-
TextChanged

NSTextView

NSTextView objects contain properties identifying their enclosed text. NSTextView inherits properties from
NSView. Table 24 lists the path properties for NSTextView.

Table 24 NSTextView path properties

DescriptionProperty

Contains a boolean value indicating whether the control draws its own background.drawsBackground

Contains a boolean value indicating whether the text is editable.editable

Assign HTML text to the value at this path and it will be converted to a text
representation and displayed in the text field

htmlData

Contains the value of the NSTextView.objectValue

Path that is notified whenever the value of the NSTextView changes.textChanged

Contains the value of the NSTextView formatted as a string. The value at this path is
read-only.

valueAsString

NSView

NSView objects define common properties for many controls and views. Table 25 lists the path properties
for NSView.

Control Properties 51
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Table 25 NSView path properties

DescriptionProperty

Contains a boolean value indicating whether this view should be made the
first to respond to events.

becomeFirstResponder

Contains a boolean value indicating the visibility of the view. You can set this
value to change the state of the view. The default value of this attribute is NO.

hidden

Post a notification to this path if your channel supports custom printing and
you received a print notification from Sherlock. This notification tells the view
to print its contents.

print

NSWindow

NSWindow objects define properties for displaying and manipulating windows. Table 26 lists the path
properties for NSWindow.

Table 26 NSWindow path properties

DescriptionProperty

Post a notification to this property if you want to display the specified window
as a sheet of the current channel window.

beginSheet

Post a notification to this path to close the specified window.close

Post a notification to this path if you want to force the window to redraw itself
entirely.

display

Post a notification to this path to dismiss a sheet posted with the beginSheet
notification.

endSheet

Post a notification to this path if you want to flush the window buffer to the
screen.

flushWindow

Contains a boolean value that indicates whether the window has a shadow.hasShadow

Post a notification to this path to make the window the key window. This
notification also moves the window in front of any other windows.

makeKeyAndOrderFront

Contains a string with the window title.title

You typically use NSWindow objects defined in your nib files as sheets for your main channel window. To
display a sheet, you send a beginSheet notification to the target window. For example, to display a sheet
named MySheet when the user clicked a button, you would use the following code:

<trigger path="MyChannel.DisplaySheetBtn.action" language="JavaScript">
 DataStore.Notify("MySheet.beginSheet");
</trigger>

52 Control Properties
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

To respond to events in the sheet, you would define additional triggers to handle the sheet’s controls, just
as you do for your channel controls. For example, to respond to an OK button on the sheet, you would use
code similar to the following:

<trigger path="MySheet.OKButton.action" language="JavaScript">
 DataStore.Notify("MySheet.endSheet");
</trigger>

SherlockAddressComboBox

SherlockAddressComboBox objects contain properties for displaying address information from the user’s
Address Book database. This control displays an NSComboBox control that can be used to enter or select
address information. The control keeps a list of the 10 most recently used addresses for auto-completion
purposes. SherlockAddressComboBox inherits properties from NSControl and NSView. Table 27 lists the path
properties for SherlockAddressComboBox.

Table 27 SherlockAddressComboBox path properties

DescriptionProperty

Contains an array of one or more of the following strings: address,
addressTitle, cityState, cityStateZip, or custom, Each string represents
a type of information to auto-complete for the user. Types are auto-completed
in the order they are listed in the array. If you specify the custom string, you
must provide a set of custom items to auto-complete in the customItems
attribute.

autoCompletionTypes

Contains a boolean indicating whether the combo box should automatically
display matches.

autoPopupToShow-
Matches

Contains an array of dictionaries. Each dictionary contains information about
the items to display in the popup and must contain the following keys: title
and representedObject. The title key contains the string to be used for
auto-completion. TherepresentedObject key contains the object representing
the particular item.

customItems

Contains a number indicating the maximum number of auto-completed matches.maxAutoComplete-
Matches

Contains the object associated with a custom popup item.representedObject

Contains a dictionary with the auto-completion results. This path will always
contain a dictionary with one or more of the following keys set to a non-nil
value: Street, City, State, ZIP, Country, CountryCode, UserText,
representedObject, The values for all of these keys are strings, except for
representedObject, which is a custom popup item.

resultAddress

Contains the objectValue of the NSComboBox in situations where the controller
cannot determine that the text is either an address in the user’s address book
or a city/state/zip combination.

UserText

This control is supported only on Mac OS X version 10.3 and later.

Control Properties 53
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

JavaScript Extensions

Sherlock comes with an implementation of the JavaScript language that you can use to write your triggers.
In addition to the standard features available with JavaScript, Sherlock defines several additional objects that
you can use in your trigger code. These objects are declared implicitly by Sherlock for you, so you do not
need to create or declare these objects directly in your scripts.

AddressBook Object

The AddressBook object provides access to the local Address Book database. You can use this object to add
new addresses to the database and search for existing addresses. Table 28 lists the methods defined by the
AddressBook object.

Table 28 AddressBook object methods

DescriptionsMethod Syntax

Creates a new record in the Address Book database. The address parameter
is a dictionary containing the address information you want to add. The
method returns a string containing the unique ID for the new record. See
“Address keys” (page 54) for a list of valid keys.

Object Add(address)

Returns a dictionary containing address information for the record with the
ID specified in the uid parameter. See “Address keys” (page 54) for a list of
keys available in the returned object.

Object
AddressWithUID(uid)

Searches the Address Book database for a specific address. The params
parameter contains a dictionary with the address search strings. (See Table
29 for the address keys.) The options parameter contains a dictionary with
the options to apply to the address search strings. See “Address keys” (page
54) for a list of valid keys.

Object Search(params,
options)

Address keys

Table 29 lists the keys used to identify address information in the methods of the AddressBook object.

Table 29 Address keys

ValueKey

Contains a dictionary with one or more of the keys Home and Work. Each of these keys,
in turn, contains a dictionary with the following keys: Street, City, State, ZIP,
Country, and CountryCode. All of these keys contain strings. The value for the
CountryCode key is a two-letter country code.

Address

Contains a dictionary with one or more of the keys Home and Work. Each of these keys
is a string containing the appropriate email address.

Email

54 JavaScript Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

ValueKey

Contains a dictionary with one or more of the keys Home, Work, Mobile, Main, HomeFAX,
WorkFAX, or Pager. Each of these keys contains a string with the appropriate phone
number.

Phone

Contains a string with the first name of the individual.First

Contains a string with the last name of the individualLast

Contains a string with the phonetic first name of the individual.FirstPhonetic

Contains a string with the phonetic last name of the individual.LastPhonetic

Contains a string with the company name associated with the address.Organization

Contains a string with the job title of the individual.JobTitle

Contains a string with the URL of the individual’s home page.HomePage

Contains a date with the birthday of the individual.Birthday

Contains a string with any notes associated with the address.Note

Contains a string with the phonetic middle name of the individual.MiddlePhonetic

Contains a string with the title of the individual.Title

Contains a string with any suffixes associated with the individual’s name.Suffix

Contains a string with the nickname of the individual.Nickname

Contains a string with the maiden name of the individual.MaidenName

Contains a read-only string with the unique ID of the Address Book record.UID

Contains a read-only date of the last time the record was modified.Modification

Contains a read-only date of when the record was created.Creation

Search Options

The options parameter of the Search method accepts a dictionary with two keys: conjunction and
comparison. The value of the conjunction key indicates how to combine search parameters. You can
specify either the string “and” or “or” for this value to indicate all parameters must be met or any of the
parameters must be met, respectively.

The comparison parameter indicates the way in which search parameters are compared against database
entries. All search parameters are compared using the same comparison operator. Table 30 lists the valid
values for the comparison key.

JavaScript Extensions 55
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Table 30 Comparison key values

DescriptionValue

Perform an equality check using a case-sensitive comparison.Equal

Perform an inequality check using a case-sensitive comparison.NotEqual

Look for values less than the specified value.LessThan

Look for values less than or equal to the specified value.LessThanOrEqual

Look for values greater than the specified value.GreaterThan

Look for values greater than or equal to the specified value.GreaterThanOrEqual

Perform an equality check using a case-insensitive comparison.
(Strings only)

EqualCaseInsensitive

Look for values that contain the specified substring. (Strings only)ContainsSubString

Look for values that contain the specified substring using a
case-insensitive comparison. (Strings only)

ContainsSubString-
CaseInsensitive

Look for values that start with the specified string. (Strings only)PrefixMatch

Look for values that start with the specified string using a
case-insensitive comparison. (Strings only)

PrefixMatchCaseInsensitive

DataStore Object

The DataStore object provides access to the channel’s field data and coordinates the transmission and receipt
of notifications. You use this object in your script code to get or set data store values. You can also use it to
generate explicit notifications from your script code. Table 31 lists the methods defined by the DataStore
object.

Table 31 DataStore object methods

DescriptionMethod Syntax

Appends a value to the specified path in the data store. When
appending data to a path, Sherlock treats the contents of the path as
an array, with each appended piece of data a separate array entry.

void Append(path, value)

Gets a value from the specified path in the data store.Object Get(path)

Sets the value at the specified path in the data store. This method
generates a notification event for the specified path.

void Set(path,value)

Sends a notification event to the specified path in the data store.void Notify(path)

Sets the value at the specified path in the data store, but does not
generate a notification event for the path.

void SetNoNotify(path,
value)

56 JavaScript Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

For example, to get the value at the path MyPath.MyTextField.objectValue, you would use the following
JavaScript code:

value = DataStore.Get("MyPath.MyTextField.objectValue");

System Object

The System object provides some useful utilities, which are listed in Table 32.

Table 32 System object methods

DescriptionSyntax

Returns an array of dictionaries containing country information from
the system. Each dictionary contains an isoCode key and a name
key. The value for the isoCode key is the two-digit ISO country code.
The value for the name key is the country name.

Object AllCountries ()

Returns the current channel implementation version. Sherlock uses
the channel version to determine whether to load or execute XML
tags that have version and maxVersion attributes.

type ChannelVersion()

Returns an array of dictionaries containing the country information
for countries whose language matches the current user’s language
settings. Each dictionary contains an isoCode key and a name key.
The value for the isoCode key is the two-digit ISO country code. The
value for the name key is the country name.

Object
CountriesForCurrentLanguage
()

Tells the system to open a URL with the appropriate application, as
defined by the system defaults. This method supports the
addressbook, help, http, https, ical, mailto, sherlock, and
webcal schemes.

void OpenURL(url)

Returns an array of strings representing the user’s current language
preferences. Entries in the array are sequential based on the order
specified in the user’s system preferences.

Object
UserPreferredLanguages ()

Returns the version of Sherlock’s JavaScript implementation.type Version ()

XMLQuery Object

The XMLQuery object provides an interface for calling XQuery functions from JavaScript. This object provides
access to all of the built-in XQuery functions as well as to the Apple-specific additions. Each XQuery function
is implemented as a method of the XMLQuery object. For example, to call the url function, you would use
the following syntax:

urlObject = XMLQuery.url("http://www.apple.com");

Due to JavaScript naming conventions, when you call an XQuery function whose name contains a hyphen
(-) character, you must replace the character with an underscore (_) instead. For example, to call the
convert-entities function from JavaScript, you would use the following syntax:

JavaScript Extensions 57
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

outString = XMLQuery.convert_entities("&");

XQuery Extensions

Sherlock comes with an implementation of the XQuery language that you can use to write your triggers. In
addition to the XQuery functions, Sherlock defines several additional functions that you can use in your
trigger code. The following sections describe the purpose and syntax of each function.

base-url

The base-url function returns a URL to the directory containing the file that called this method. The syntax
for this function is as follows:

url base-url()

This function returns the location of the code file that called this method.

base64-decode

The base64-decode function decodes a base-64 encoded block of data into a string. The syntax for this
function is as follows:

data base64-decode(source)

Base-64 encoding packs three 8-bit bytes into four 7-bit ASCII characters. If the number of bytes in the original
data is not divisible by three, “=” characters are used to pad the encoded data. This function reverses the
process to yield the original string.

base64-encode

The base64-encode function encodes the source data using base-64 encoding. The syntax for this function
is as follows:

data base64-encode(source)

Base-64 encoding packs three 8-bit bytes into four 7-bit ASCII characters. If the number of bytes in the original
data is not divisible by three, “=” characters are used to pad the encoded data.

For example, the following function call would yield an encoded value of “MQ==“:

base64-encode("1")/string()

channel-version

The channel-version function returns a CFNumberRef with the current channel implementation version.
The syntax for this function is as follows:

58 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

number channel-version()

charset-encoding

The charset-encoding function returns the encoding index for the specified IANA character set name.
The syntax for this function is as follows:

number charset-encoding(encoding)

The encoding parameter contains the character set name.

charset-name

The charset-name function returns the IANA character set name corresponding to the specified index. The
syntax for this function is as follows:

string charset-name(encoding)

The encoding parameter is an integer specifying the string encoding.

convert-entities

The convert-entities function converts HTML entity characters in a string to their equivalent display
characters. The syntax of this function is as follows:

string convert-entities(source)

The source parameter contains a text string. Any characters of the form &<code>; where <code> is an
entity name are converted to display characters. For example, the string & is converted to the ampersand
character “&”. This function returns a new string with the converted characters.

convert-html

The convert-html function converts HTML entity characters to displayable text and normalizes the spaces
in the string. The syntax of this function is as follows:

string convert-html(source)

The source parameter contains a string with HTML text. This function converts entity characters to their
displayable forms and normalizes whitespace characters. This function returns a new string with the displayable
text.

In the following example, the call to convert-html returns the string “&picture“.

convert-html(" &picture ")

XQuery Extensions 59
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

curl

The curl function performs an HTTP GET request using curl to initiate the request. The syntax for this
function is as follows:

data curl(source)

The source parameter contains the URL to request.

data

The data function builds and returns an object of type CFDataRef. The syntax of this function is as follows:

data data(theData)

data-length

The data function returns the number of bytes in a data block. The syntax of this function is as follows:

number data-length(theObject)

data-match

The data-match function searches a data block for the specified starting and ending patterns and returns
the first match it finds. The syntax for this function is as follows;

data data-match(source, matchStart, matchEnd, includeStart, includeEnd)

The source parameter contains the data block you want to search. The matchStart parameter contains
the initial match data. Once found, the match continues until the data in the matchEnd parameter is found.
This function returns a data object with the matched contents.

The includeStart and includeEnd parameters tell this function whether to include the starting and
ending match data in the returned string. These parameters are set to false by default and may be omitted.

The following example returns the data “0x3334”, which represents the last two bytes of the data block. Only
the last two bytes are returned because false is specified for the includeStart parameter.

data-match("1234","2","4",false(),true())

data-match-all

The data-match-all function searches a data block for the specified starting and ending patterns and
returns a list of matches. The syntax for this function is as follows:

seq data-match-all(source, matchStart, matchEnd, includeStart,
 includeEnd)

60 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

The source parameter contains the data block you want to search. The matchStart parameter contains
the initial match data. Once found, the function accumulates data until the matchEnd parameter is found.
This function returns a data object with the matched contents.

The includeStart and includeEnd parameters tell this function whether to include the starting and
ending match data in the returned string. These parameters are set to false by default and may be omitted.

The following example returns the data “0x3334, 0x3534”, which matches the two patterns within the data
block. Only the last two bytes of each match are returned because false is specified for the includeStart
parameter.

data-match("1234 1254","2","4",false(),true())

data-match-ignore-case

The data-match function searches a data block for the specified starting and ending patterns and returns
the first match it finds. The syntax for this function is as follows:

data data-match-ignore-case(source, matchStart, matchEnd, includeStart,
 includeEnd)

The source parameter contains the data block you want to search. The matchStart parameter contains
the initial match data. Once found, the function accumulates data until the matchEnd parameter is found.
Matches do not take case into account. This function returns a data object with the matched contents.

The includeStart and includeEnd parameters tell this function whether to include the starting and
ending match data in the returned string. These parameters are set to false by default and may be omitted.

data-match-ignore-case-all

The data-match-ignore-case-all function searches a data block for the specified starting and ending
patterns and returns a list of matches. The syntax for this function is as follows:

seq data-match-ignore-case-all(source, matchStart, matchEnd,
 includeStart, includeEnd)

The source parameter contains the data block you want to search. The matchStart parameter contains
the initial match data. Once found, the function accumulates data until the matchEnd parameter is found.
Matches do not take case into account. This function returns a data object with the matched contents.

The includeStart and includeEnd parameters tell this function whether to include the starting and
ending match data in the returned string. These parameters are set to false by default and may be omitted.

dictionary

The dictionary function builds and returns a dictionary object from the specified parameters. The syntax of
this function is as follows:

dictionary dictionary (...)

Use this function to build a dictionary of key/value pairs in an XQuery function.

XQuery Extensions 61
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

dictionary-get

The dictionary-get function returns the value for the specified key in a dictionary. The syntax of this
function is as follows:

node dictionary-get(source, key)

The source parameter contains the dictionary. The key parameter contains the key to search for in the
dictionary.

encoded-data-to-string

The encoded-data-to-string function converts a data object to a string. The syntax for this function is
as follows:

string encoded-data-to-string(source, charset)

The source parameter contains the data object to convert. The charset parameter contains the name of
the IANA registry character set to use for the conversion.

eval

The eval function evaluates the specified XQuery string and returns the result. The syntax for this function
is as follows:

type eval(string)

The string parameter contains an XQuery statement to be evaluated.

The eval function optionally takes a second argument. In this case, string can contain variables that are
defined in the second argument, which is a dictionary of key-value pairs. For example:

eval("concat('eval may take ',$number, ' argument',$plural)",
dictionary(("number", 2),("plural","s")))

This call returns the string “eval may take 2 arguments”.

http-get

The http-get function initiates an HTTP GET request for the given URL and returns the results. The syntax
for this function is as follows:

dictionary http-get(source, headers)

The source parameter contains the URL string to request. The headers parameter is an optional dictionary
you can use to specify HTTP request header information. On return, this function returns a dictionary with
the keys listed in Table 33.

62 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

Table 33 Keys returned by http-get

DescriptionKey

Contains an integer with the HTTP status code of the request. For example, a value of
404 means the specified URL was not found.

STATUS_CODE

Contains the original URL that was requested.REQUEST_URL

Contains the actual URL from which the response came. This value may be different
than the requested URL if the request was redirected.

ACTUAL_URL

Contains the data from the request if there were no errors.DATA

Contains the data of the request if there was an error.ERROR_DATA

Contains a dictionary with the HTTP headers returned by the server.HEADERS

Contains a string with the HTTP headers returned by the server.HEADER_STRING

http-head

The http-head function initiates an HTTP HEAD request and returns only the header portion. The syntax
for this function is as follows:

dictionary http-head(source, headers)

The source parameter contains the URL string to request. The headers parameter is an optional dictionary
you can use to specify HTTP request header information. On return, this function returns a dictionary with
the keys listed in Table 33.

Table 34 Keys returned by http-head

DescriptionKey

Contains an integer with the HTTP status code of the request. For example, a value of
404 means the specified URL was not found.

STATUS_CODE

Contains the original URL that was requested.REQUEST_URL

Contains the actual URL from which the response came. This value may be different
than the requested URL if the request was redirected.

ACTUAL_URL

Contains a dictionary with the HTTP headers returned by the server.HEADERS

Contains a string with the HTTP headers returned by the server.HEADER_STRING

http-post

The http-post function initiates an HTTP POST request for the given URL and returns the results. The syntax
for this function is as follows:

XQuery Extensions 63
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

dictionary http-post(source, postdata, headers)

The source parameter contains the URL string to request. The headers parameter is an optional dictionary
you can use to specify HTTP request header information. On return, this function returns a dictionary with
the keys listed in Table 33.

Table 35 Keys returned by http-post

DescriptionKey

Contains an integer with the HTTP status code of the request. For example, a value of
404 means the specified URL was not found.

STATUS_CODE

Contains the original URL that was requested.REQUEST_URL

Contains the actual URL from which the response came. This value may be different
than the requested URL if the request was redirected.

ACTUAL_URL

Contains the data from the request if there were no errors.DATA

Contains the data of the request if there was an error.ERROR_DATA

Contains a dictionary with the HTTP headers returned by the server.HEADERS

Contains a string with the HTTP headers returned by the server.HEADER_STRING

http-request

The http-request function initiates a generic HTTP request for the given URL and returns the results. The
syntax for this function is as follows:

dictionary http-request(url, additionalInfo)

You can use this function to initiate a request of any type: GET, POST, HEAD. The url parameter contains the
URL string to request. The additionalInfo parameter contains a dictionary with information to add to the
request. This dictionary contains the keys shown in Table 36.

Table 36 Keys for additionalInfo parameter

DescriptionKey

Contains a string with one of the following values: GET, HEAD, or POST. If you do
not include this key, the function uses the default value GET.

Method

Contains a boolean that when set to true suppresses error dialogs. This value is set
to false by default.

DisableAlerts

Contains a boolean value that, when set, forces Sherlock to perform an HTTP request
to retrieve the item, ignoring any cached copies of it.

DisableCache

Contains a boolean value that when set to true suppresses automatic HTTP redirects.
This value is set to false by default.

DisableRedirects

64 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

DescriptionKey

Contains a boolean value indicating whether Sherlock should return a cached copy
of the item, if one exists, without performing a network check for a newer item. If
the item is not in the cache, Sherlock performs an HTTP request to get it.

FavorCache

Contains a boolean value indicating whether Sherlock should return a cached copy
of the item, if one exists, without performing an immediate network check for a
newer item. If the item is not in the cache, Sherlock performs an HTTP request to
get it. If the item is in the cache, Sherlock returns the cached item and then performs
an HTTP request in the background to update the cached data.

FavorCacheUpdate

Contains a dictionary of additional headers to include with the request.Headers

Contains data to send with a POST request.PostData

On return, this function returns a dictionary with keys appropriate to the type of request. The possible keys
are listed in Table 33.

Table 37 Keys returned by http-request

DescriptionKey

Contains an integer with the HTTP status code of the request. For example, a value of
404 means the specified URL was not found.

STATUS_CODE

Contains the original URL that was requested.REQUEST_URL

Contains the actual URL from which the response came. This value may be different
than the requested URL if the request was redirected.

ACTUAL_URL

Contains the data from the request if there were no errors.DATA

Contains the data of the request if there was an error.ERROR_DATA

Contains a dictionary with the HTTP headers returned by the server.HEADERS

Contains a string with the HTTP headers returned by the server.HEADER_STRING

load-service

The load-service function loads the services from the specified URL and makes them available to your
script code. The syntax for this function is as follows:

boolean load-service(url)

The url parameter contains the URL of the file containing the service. The function returns a boolean value
indicating whether the services were successfully loaded.

XQuery Extensions 65
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

localized-resource

The localized-resource function returns a localized resource based on the user’s current language
settings. The syntax for this function is as follows:

type localized-resource(key, baseURL, fileName)

The key parameter identifies a key in the LocalizedResources.plist file of the language folder matching
the user’s current settings. The value associated with this key should be the name of the resource file you
want to locate.

The baseURL and fileName parameters are optional. Use the baseURL parameter to override the default
location for localized resources, which is specified in the channel configuration file. Use the fileName
parameter to specify a property-list file other than LocalizedResources.plist in which to look up the
desired key.

localized-url

The localized-url function returns the location of the localized resource file based on the user’s current
language settings. The syntax for this function is as follows:

type localized-url(fileName, baseURL)

The fileName parameter specifies the name of a localized resource file. Localized copies of the file must be
located in the channel’s language folders. The baseURL parameter is optional and is used to override the
default base folder to use when searching for localized resources.

msg

The msg function prints a message to stderr. The syntax for this function is as follows:

type msg(debug_msg)

This function returns the message that was printed. Debugging must be enabled before you can view the
output messages. To enable debugging, open a Terminal window on your system and define the environment
variable SHERLOCK_DEBUG_CHANNELS with a value of 1. Once this variable is defined, launch Sherlock from
the command line to begin your debugging session.

null

The null function returns the null object. The syntax for this function is as follows:

null null()

You can use the returned value to determine if an XQuery object is valid.

66 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

property-list-decode

The property-list-decode function converts an XML property list into a property-list data object. The
syntax for this function is as follows:

data property-list-decode(source)

The source parameter contains the raw bytes from the XML property-list file. If a parsing error occurs, this
function returns an empty object.

property-list-encode

The property-list-encode function converts a source object into a data object whose contents are an
XML property list. The syntax for this function is as follows:

data property-list-encode(source)

The source parameter contains the property-list data you want to encode as XML. The resulting data is
appropriate for writing out to an XML file, but is returned as a data object instead of a string.

reg-exp

The reg function performs a pattern match on the specified string and returns the matching text. The syntax
of this function is as follows:

seq reg-exp(source, reg-exp)

The source parameter contains the string to search. The reg-exp parameter contains the regular expression
to apply to the string. This function returns a sequence of strings, each of which contains the text from a
specific match.

The syntax for regular expressions is identical to those for the matches function defined in XQuery. For a
complete specification of the expression syntax, see http://www.w3.org/TR/xmlschema-2/#regexs.

sherlock-function

The sherlock-function function calls a Sherlock Web Service to perform a specific task. The syntax for
this function is as follows:

type sherlock-function(sourceURL, functionName, ...)

The sourceURL parameter specifies the URL for the file containing the web services code you want to access.
The functionName parameter contains the name of a specific function you want to access. If the web-service
function takes any parameters of its own, you can pass those in as extra arguments to sherlock-function.

XQuery Extensions 67
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

source

The source function returns an XML string representing the specified node. The syntax for this function is
as follows:

string source(node)

string-combine

The string-combine function concatenates a sequence of strings together using a designated separator
string. The syntax of this function is as follows:

string string-combine(strings, separator)

The strings parameter contains the sequence of strings to be concatenated. The separator parameter
contains the separator string. The function returns the resulting string.

string-separate

The string-separate function splits a string based on the specified separator string. The syntax of this
function is as follows:

seq string-separate(source, separator)

The source parameter contains the string you want to split. The separator parameter contains the separator
string. The function returns the resulting sequence of strings. This function does not include the separator
string in the strings of the returned sequence.

string-to-encoded-data

The string-to-encoded-data function converts a string to a data object. The syntax for this function is
as follows:

data string-to-encoded-data(source, charset)

The source parameter contains the string to convert. The charset parameter contains the name of the
IANA registry character set to use for the conversion.

For example, the following function call would yield a data object with the contents 0xffef0031:

string-to-encoded-data("1", "UTF-16")

unique-id

The unique-id function returns a unique number for the current channel. The syntax for this function is as
follows:

number unique-id()

68 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

url

The url function returns a CFURLRef object for the specified source. The syntax for this function is as follows:

url url(source)

The source parameter contains a string with the URL text.

url-decode

The url-decode function decodes a string with encoded characters, returning a regular text string. The
syntax for this function is as follows:

string url-decode(urlSource, charactersToLeaveEscaped)

The urlSource parameter contains the string you want to decode. The charactersToLeaveEscaped
parameter contain specific characters to leave untouched. The encoding parameter specifies the encoding
format for the returned string.

The following example decodes the colon and forward-slash encoded characters in the string. The string
returned by this function call is “http://”:

url-decode("http%3A%2F%2F", "")

url-encode

The url-encode function encodes the characters of a URL string. The syntax for this function is as follows:

string url-encode(urlSource, charactersToLeaveUnescaped,
 legalURLCharactersToBeEscaped, encoding)

The urlSourceparameter contains the URL string you want to encode. The charactersToLeaveUnescaped
andlegalURLCharactersToBeEscapedparameters contain specific characters to modify or leave untouched.
The encoding parameter specifies the encoding format for the returned string.

The following example encodes the colon and forward-slash characters in the given string. The string returned
by this function call is “http%3A%2F%2F”:

url-encode("http://", "", ":/", "UTF-8")

url-host

The url-host function returns the hostname information from a URL string. The syntax for this function is
as follows:

string url-host(urlSource)

The urlSource parameter contains the URL path whose hostname you want to obtain. The return value
omits any scheme and pathname information. For example, the following function call returns the string
“www.apple.com”:

XQuery Extensions 69
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

url-host("http://www.apple.com/index.html")

url-last-path-component

The url-last-path-component function returns the last path component of a URL string. The syntax for
this function is as follows:

string url-last-path-component(urlSource)

The urlSource parameter contains the URL whose path information you want to obtain. The return value
omits any scheme, hostname, and leading path information. For example, the following function call returns
the string “index.html”:

url-last-path-component("http://www.apple.com/test/index.html")

url-path

The url-path function returns the relative path information from a URL string. The syntax for this function
is as follows:

string url-path(urlSource)

The urlSource parameter contains the URL whose path information you want to obtain. The return value
omits any scheme and hostname information. For example, the following function call returns the string
“/test/index.html”:

url-path("http://www.apple.com/test/index.html")

url-query

The url-query function returns the query attributes of a URL string. The syntax for this function is as follows:

string url-query(urlSource)

The urlSource parameter contains the URL whose attribute information you want to obtain. The return
value omits any scheme, hostname, and leading path information. For example, the following function call
returns the string “action=search”:

url-query("http://www.apple.com/index.html?action=search")

url-query-value

The url-query-value function extracts the value of an attribute from a URL string. The syntax for this
function is as follows:

string url-query-value(urlSource, key)

70 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

The urlSource parameter contains the URL whose attribute information you want to obtain. The key
parameter contains the name of the attribute to return. The return value omits any scheme, hostname, and
leading path information. For example, the following function call returns the string “search”:

url-query-value("http://www.apple.com/index.html?action=search", "action")

url-scheme

The url-scheme function returns the scheme type of a URL string. The syntax for this function is as follows:

string url-scheme(urlSource)

The urlSource parameter contains the URL path whose scheme you want to obtain. The return value omits
any host and pathname information. For example, the following function call returns the string “http”:

url-scheme("http://www.apple.com/index.html")

url-with-base

The url-with-base function returns a CFURLRef object built from the specified base and relative paths.
The syntax for this function is as follows:

url url-with-base(urlSource, base)

The urlSource parameter contains a relative pathname to append to the URL path in the base parameter.

version

The version function returns a CFNumberRef with the version of the XQuery implementation currently in
use. The syntax for this function is as follows:

number version()

XQuery Extensions 71
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

72 XQuery Extensions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Sherlock Reference

This article takes you through the steps for creating a simple channel that displays an interface and responds
to user input. The goal is to get the channel up and running quickly so that you can see how the user interface
and underlying script code interact. The channel in this article does not attempt to connect to the Internet
or gather information.

Installing the Sherlock Tools

Before you can begin developing Sherlock channels, you must make sure your system has the proper tools.
Sherlock requires the developer tools available for Mac OS X 10.2 or later. In particular, you must have the
Interface Builder application to design your channel’s interface. You must also have the Sherlock palette
before you can add path information to the views and controls of your channel.

Install the developer tools for your system using either the Developer Tools CD that came with Mac OS X
10.2 or by downloading the tools from the developer section of Apple’s website. Once you have these tools
installed, download the Sherlock SDK from the developer section of Apple’s website and install it. This SDK
installs a Sherlock palette, documentation, and channel templates for you to use in creating channels.

Create the Channel Project

The Sherlock SDK installs a Project Builder template you can use to create new Sherlock channels. This
template implements a simple Internet channel that lets the user enter a search string and retrieve the results.
You should use this template as the starting point for any new channels you want to create.

1. Launch Project Builder.

2. Select New Project from the File menu.

3. From the New Project window, select Sherlock Channel from the Standard Apple Plug-ins section.

4. Click Next.

5. Enter the name and location of your project.

6. Click Finish.

Your new project includes a channel configuration file, a main code file, a default icon, and a nib file with a
predefined window. The project also includes a Read Me file with the latest instructions on how to modify
and debug your channel. You should read these instructions before deploying your channel for testing.

Installing the Sherlock Tools 73
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Creating a New Channel

Loading the Channel

When you are ready to test your channel, you need to post it to a web server and tell Sherlock to load it. The
simplest way to do this is to enable Personal Web Sharing on your local machine and place your channel
files in the Sites directory of an active user. You can then load the channel from a browser address line.

The following steps show you how to load the default channel project. If you added any files to the project,
you may need to copy those files to the Sites folder along with the standard channel files that came with the
project:

1. In the Sharing System Preference, enable Personal Web Sharing on your test machine.

2. Copy the SherlockChannel.xml and Channel.icns files and the Channel directory to the Sites
directory of your user home directory.

3. Launch Safari.

4. In the browser address bar, enter the path to the SherlockChannel.xml file of your channel. For
example, if you put your channel in local user Steve’s Sites directory, your URL might look like the
following:

sherlock://localhost/~steve/SherlockChannel.xml

Important: Starting with Mac OS X 10.2.4, Sherlock can access your computer (localhost) only when the
SHERLOCK_DEBUG_CHANNELS environment variable is set to 1. (This requirement may be removed in future
versions of Mac OS X). This variable is set for you automatically when you create a new Sherlock project. See
“Debug Menu” (page 75) for more information on setting environment variables.

Entering the URL for your channel configuration file launches Sherlock and tells it to load your channel.
However, the icon for your channel does not appear in the toolbar until you explicitly add it, either
programmatically or from the Sherlock application.

To add a channel to the toolbar from the Sherlock application, you would simply select the Add Channel to
Toolbar command from the Channel menu. To add your test channel to the toolbar programmatically, you
would use the following URL instead of the one in the preceding step:

sherlock://localhost/~steve/SherlockChannel.xml?action=add

For more information on loading channels using the sherlock scheme, see “Accessing Channels” (page
77).

Debugging Tools

Apple provides several tools to aid you in debugging your trigger code.

74 Loading the Channel
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Creating a New Channel

Channel Tools

Developers can add the Channel Development Tools subscription to Sherlock to access some special channels:
an XQuery code tester, a JavaScript code tester, an HTML View tool, and a XPath Finder tool. The XQuery and
JavaScript code testers let you execute trigger code in a Sherlock environment and view the results. The
HTML View tool lets you load and view an HTML page. The XPath Finder tool gives you the XQuery path to
a specific HTML tag in a document.

To subscribe to the developer channels, go to the following URL from your browser. This URL will load the
developer channels and add them to your current subscription list:

sherlock://si.info.apple.com/sherlock3s/
 developerChannels.xml?action=subscribe

Debug Menu

Sherlock includes support for runtime debugging of your channel using the Sherlock Debug menu. You
enable this feature by launching Sherlock from the Terminal application in the following way:

1. Launch the Terminal application.

2. In your shell, set the environment variable DEBUG_SHERLOCK_CHANNELS to the value 1. For example,
in the tcsh shell, you would use the following command:

setenv DEBUG_SHERLOCK_CHANNELS 1

3. Launch Sherlock from the command-line. You can do this by navigating to the directory containing the
Sherlock application bundle and executing the following command:

./Sherlock.app/Contents/MacOS/Sherlock

Another way to enable the Debug menu is to modify the SherlockDebug preference in the system defaults
database. When set to 1, Sherlock displays the Debug menu; when set to 0, Sherlock hides it. The following
example shows you how to enable the Debug menu from Terminal:

defaults write com.apple.Sherlock SherlockDebug 1

Launching Sherlock with either of these options adds a Debug menu to the end of the Sherlock menu bar.
This menu contains commands for reloading the channel and for examining both the data store and the
view hierarchy.

The Data Store command displays a browser window with which you can navigate the data store variable
space. Following the path hierarchies, you can examine the data currently being managed by your channel
at a specific path. You can use this tool to validate the integrity of your channel’s data.

The Examine View Hierarchy command displays a window with an outline view that shows the object hierarchy
of your channel’s views. Each object is identified by its type and by the current address of the object itself.
This information is read-only and cannot be permanently changed.

Debugging Tools 75
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Creating a New Channel

76 Debugging Tools
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Creating a New Channel

Once you have created a channel, you need to test it and make it available for clients to use. The way you
test and deploy a channel is over the web. By posting the files for your channel on a local web server, you
can access them from the Sherlock application and verify that everything works. When you’re ready to deploy,
you provide links to your channel using the sherlock web scheme.

If you are developing multiple related channels, you can group your channels together and distribute them
as a subscription. Subscriptions simplify the process of loading multiple channels by making it possible to
load all of the channels with one URL. The subscription itself simply contains a pointer to the individual
channels you want to load.

Loading a Channel From a URL

Once your channel is deployed, you access it by entering the URL of your channel configuration file. In order
to launch your channel in the Sherlock application, your URL must use the sherlock web scheme, that is,
it must use the string sherlock:// in place of the http:// in the URL. Thus, the URL for accessing a test
channel might look something like the following:

sherlock://localhost/~steve/MyChannel.xml

This URL tells the browser to let Sherlock handle the URL. Sherlock locates your channel configuration file
and uses the information in that file to load your channel and display it in the Sherlock application window.

In addition to simply displaying your channel, you can add an action attribute to a sherlock URL to perform
additional actions. Table 1 lists the actions you can perform on a channel. If you do not specify an action,
Sherlock performs the display action by default.

Table 1 Supported actions for Sherlock URLs

DescriptionAction

Adds the specified channel to the current user’s preferences. This action also adds the Sherlock
toolbar and menu for the current user. This action also displays the channel in the current
window, or in a new window if the new_window attribute is present.

add

Displays the specified channel in the frontmost window, or in a new window if the
new_window attribute is present.

display

Subscribes the user to the channels in the subscription file specified by the URL.subscribe

Set the value of this attribute to hidden if you want to hide the Sherlock toolbar on the
window. Set it to shown to display the toolbar. If you do not specify this attribute, Sherlock
shows or hides the toolbar based on the last user modification. Thus, if the user last hid the
toolbar on a window, Sherlock hides the toolbar on the window being loaded.

toolbar

Loading a Channel From a URL 77
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Accessing Channels

When adding or displaying channels, you can append the new_window attribute to the URL to open the
channel in a new Sherlock window. For example, if you want to add your test channel to the toolbar and
display the channel in a new window, you would use a URL similar to the following:

sherlock://localhost/~steve/MyChannel.xml?action=add&new_window

Setting Up Subscriptions

Sherlock supports the ability to subscribe to a group of channels all at once. Subscriptions are convenient if
you have several related channels that you want users to install. Rather than force the user to install each
channel separately, you can give them the URL of a subscription file and let them install the entire group of
channels.

Another advantage of subscriptions is that you can adjust the contents of the subscription file at any time
to change the currently available channels. Because the subscription file is located on the network, any
changes you make to the file are reflected the next time the user launches Sherlock.

Note: All of the channels in a subscription must have the same hostname. Sherlock enforces this rule and
does not load subscriptions containing channels from multiple hosts.

Users can hide and show channels belonging to a subscription using the Sherlock application. The Channels
view provides options for moving subscriptions to a folder or toolbar. You can also use this view to unsubscribe
to channels altogether.

The following listing shows the format of a channel subscription file and is taken from the developer channels
subscription provided by Apple. Each <channel> tag contains a URL to a channel configuration file. The
<localized-strings> tag is used primarily for the localization of the channel name itself. The name you
specify is displayed in the Sherlock application preferences window.

<channels name="Developer">
 <channel url="channels/xquery.xml"/>
 <channel url="channels/javascript.xml"/>
 <channel url="channels/htmlview.xml"/>
 <localized-strings>
 <localized-string language="en" key="Developer"
 string="Apple Developer Channels" />
 </localized-strings>
</channels >

For more information on the syntax for the channels and channel tags, see “Channels Tags Syntax” (page
34).

78 Setting Up Subscriptions
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Accessing Channels

This article describes Sherlock’s printing support for channels. Sherlock provides both default and custom
printing support for channels. With the default support, Sherlock sends a snapshot of your channel’s interface
to the printer when the user selects the Print command. Default printing happens automatically and requires
no effort on your part.

If you want to alter the appearance of your channel prior to printing, you must add code to implement
custom printing. With custom printing, you can make minor changes to your channel’s existing interface or
use a completely separate view to display your data.

This article covers the steps needed to support custom printing in your channel.

Supporting Custom Printing

Custom printing lets you adjust the content and display of your channel prior to it being rendered for the
printer. You do not need to implement custom printing support if you want to display the existing contents
of your channel without modification. However, if you want to make modifications to content or use a different
view for printing, you must enable custom printing.

To enable custom printing, you must tell Sherlock that your channel supports it. To do this, you assign a
non-zero value to the customPrint path in the data store. You should do this in your channel’s initialization
code, as shown in the following example:

<initialize language="JavaScript">
 DataStore.Set("customPrint", 1);
</initialize>

Assigning a value to customPrint tells Sherlock that your channel defines a trigger to handle printing. The
trigger you define must respond to the print path, which Sherlock notifies when it receives a print request.
In your trigger, you can adjust the content or print specific portions of your channel. For example, if you want
to print the contents of only one subview, you can use your print trigger to reroute the print notification to
that subview. The following example reroutes the print notification to the search results table of the channel
to print only the search results.

<trigger language="JavaScript" path="print">
 /* Print only the results table. */
 DataStore.Notify("MyChannel.ResultsTable.print");
</trigger>

If you plan to make significant changes to a channel’s printed content, or if you want to rearrange controls
in your main view, do not try to use the print trigger alone. For significant printing changes, it is better to
define a custom print view to handle printing. For information on custom print views, see “Using a Custom
Print View” (page 80).

Supporting Custom Printing 79
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Printing Your Channel’s Content

Using a Custom Print View

If you want to present a different interface for printing than you do for general display, you can do it using
a custom print view. A custom print view is another view you create using Interface Builder and store in your
channel’s nib file. Sherlock loads this view with the rest of the nib file and calls your channel’s print trigger
at print time to prepare the view for printing.

A custom print view must be an entirely separate view hierarchy from your channel’s main display view. Your
print view should contain only those elements you want to be printed. You do not have to have a one-to-one
correspondence between controls in your display view and print views. You can even use completely different
controls in the two views as long as you know how to map information from one view to the other in your
print trigger.

When you supply additional views in your nib file, such as a print view, you must tell Sherlock which view to
use for displaying content. Sherlock loads all of the views in your nib file by default. If only one view is present,
it uses that view for both display and printing. However, if multiple views are present, you must tell Sherlock
which view is your main display view. You do this by setting the mainViewIdentifier path to the name
of your display view during initialization, as shown in the following example:

<initialize language="JavaScript">
 /* Indicate which view is for display */
 DataStore.Set("mainViewIdentifier", "MyDisplayView");

 /* Enable printing */
 DataStore.Set("customPrint", 1);
</initialize>

Important: Setting the main display view is required if your nib file contains multiple views. Without this
information, Sherlock may not display your channel properly.

In your print trigger, you can decide which view to use for printing. If you want to print from a custom view,
your print trigger is responsible for populating that view with data prior to printing. When the print command
is received, your channel’s main display view contains the current data to be printed. Transfer whatever data
you need and then send the print notification to your custom view to begin printing.

The following example shows a complete print trigger from the Yellow Pages channel. In this example, the
channel copies the selected address, driving directions, and map data over to the view named PrintView.
Once all the data is set up, the trigger sends a notification to the path PrintView.print to begin printing.

 <trigger language="JavaScript" path="print">
/* set up the print view */
selectedData = DataStore.Get("YellowPages.data.SelectedRow");
if (selectedData == null)
{
 DataStore.Set("PrintView.name.stringValue", "");
 DataStore.Set("PrintView.address.stringValue", "");
 DataStore.Set("PrintView.phone.stringValue", "");
}
else
{
 DataStore.Set("PrintView.name.stringValue", selectedData.name);
 DataStore.Set("PrintView.address.stringValue", selectedData.address);
 DataStore.Set("PrintView.phone.stringValue", selectedData.phone);

80 Using a Custom Print View
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Printing Your Channel’s Content

}

mapImage = DataStore.Get("YellowPages.MapImage.data");
DataStore.Set("PrintView.MapImage.data", mapImage);

drivingDirections =
 DataStore.Get("YellowPages.DrivingDirectionsTable.dataValue");
DataStore.Set("PrintView.DrivingDirectionsTable.dataValue",
 drivingDirections);

/* print */
DataStore.Notify("PrintView.print");
</trigger>

Using a Custom Print View 81
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Printing Your Channel’s Content

82 Using a Custom Print View
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Printing Your Channel’s Content

The following tasks show you how to create and use web services in your channel. Web services are remote
functions that clients call over an intranet or the Internet to perform specific tasks. For example, the publisher
of a stock website can define a service that takes a stock symbol and returns the current price of that stock.
Sherlock also defines a type of web service that you link to from your channel code to take advantage of its
functionality. You can use existing web services or you can define your own web services to separate out
code from your channel that you want to share.

Defining a New Web Service

To publish a new web service, you must first assemble the code file containing your web service code. You
place your web service code in an XML file. Because web services contain script code, you use the <scripts>
tag as the top-level element wrapping your code. When declaring web services, you do not need to include
any attributes for this tag. However, when you want to load a web service, you should include a src attribute
to specify the location of the web service code file.

Inside the <scripts> tag, put a <script> tag and include the language attribute identifying the type for
your functions. The content of the <script> tag is the functions you want to define. You can include multiple
script tags if your service includes both JavaScript and XQuery syntax.

The following listing illustrates one way to write a web service for finding city, state, and zip code information.
The service defines two functions using the XQuery language.

<!-- Copyright (c) 2002, Apple Computer, Inc. -->
<!-- All rights reserved. -->

<scripts>
<script language="XQuery">

{-- CityStateZipFromZip - return city/state/zip --}
define function CityStateZipFromZip($zip)
{
 let $query_url := "http://www.usps.gov/cgi-bin/zip4/ctystzip2"
 let $post_data := concat("ctystzip=", $zip)/url-encode(., " ", "+")/
 translate(., " ", "+")
 let $start := "----------
"
 let $end := "ACCEPTABLE"
 let $computedCityAndState := http-post($query_url, $post_data)/DATA/
 data-match(., $start, $end)/normalize-space()
 let $computedCityAndStateArray := string-separate($computedCityAndState,
 " ")
 let $computedState := item-at($computedCityAndStateArray,
 count($computedCityAndStateArray))
 let $computedCity := substring-before($computedCityAndState,
 $computedState)/normalize-space()
 let $newCity := if ($computedCity) then $computedCity else $city

Defining a New Web Service 83
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Web Services

 let $newState := if ($computedState) then $computedState else $state
 return dictionary(
 ("city", $newCity),
 ("state", $newState),
 ("zip", $zip))
}

{-- CityStateZipFromCityState --}
define function CityStateZipFromCityState($city, $state)
{
 let $query_url := "http://www.usps.gov/cgi-bin/zip4/ctystzip2"
 let $post_data := concat("ctystzip=", $city, " ", $state)/
 url-encode(., " ", "+")/translate(., " ", "+")
 let $computedZip := http-post($query_url, $post_data)/DATA/
 data-match(., "

", "ACCEPTABLE")/
 normalize-space()
 let $firstComputedZip := string-separate($computedZip, " ")[1]
 let $newZip := if ($firstComputedZip) then $firstComputedZip else $zip
 return dictionary(
 ("city", $city),
 ("state", $state),
 ("zip", $newZip))
}
</script>
</scripts>

Making your services available is a simple process of placing your web service code file on your web server
and notifying clients where they can find it. If you are going to make your web services available to the public,
you should also document the syntax for your functions. Clients can then include the code in their scripts
using the <scripts> tag.

Accessing SOAP Services

In addition to defining your own services, you can also use Sherlock to access other web services using the
Simple Object Access Protocol (SOAP). To generate a SOAP request, you must construct the XML query
required by the target server. You can then send the request using the Apple-provided functions http-post
and http-request.

The following example, written in XQuery, shows you how to access a SOAP web service for retrieving stock
prices. In this example, the StockSymbolLookup function creates the XML objects to be passed to the SOAP
server as part of the request. The data is then passed to the SOAPQuery method, which creates a set of default
HTTP headers, posts the request, and returns the result.

Important: To make the following example more readable, the characters ‘<‘ and ‘>’ are not escaped. When
writing a channel, however, you must escape these characters to "<" and ">", respectively.

{-- SOAPQuery: executes the query --}
define function SOAPQuery($query, $action, $soapAddress)
{
 {-- set the content type and the soap action for the request --}
 let $headers := dictionary (
 ("Content-Type", "text/xml; charset=utf-8"),

84 Accessing SOAP Services
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Web Services

 ("SOAPAction", $action)
)

 {-- send the request --}
 return http-post($soapAddress, $query, $headers)/DATA
}

{-- StockSymbolLookup based on --}
{-- http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl --}
define function StockSymbolLookup($symbol)
{
 {-- construct the XML query --}
 let $soapQuery :=
 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getQuote
 xmlns:ns1="urn:xmethods-delayed-quotes"
 SOAP-ENV:encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/" >
 <symbol xsi:type="xsd:string" > { $symbol } </symbol>
 </ns1:getQuote>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

 {-- send the request and parse out the result --}
 return SOAPQuery($soapQuery, "urn:xmethods-delayed-quotes#getQuote",
 "http://66.28.98.121:9090/soap")//Result/number()
}

To retrieve a stock quote, you would then call the StockSymbolLookup function from your code, as shown
in the following example:

let $stockValue := StockSymbolLookup("AAPL")

Accessing SOAP Services 85
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Web Services

86 Accessing SOAP Services
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Using Web Services

This article includes some sample triggers from the Yellow Pages channel that comes with Sherlock. These
examples use a combination of JavaScript and XQuery code to perform searches for the user.

Initiating a Search Using a URL

The following example shows some code from the Yellow Pages channel that handles URL-based search
requests. If the user clicks a Sherlock link in an HTML browser, the browser sends the URL text to Sherlock
for processing. By the time a URL reaches a specific trigger, Sherlock has parsed the URL text and determined
which trigger to call.

In this example, the trigger responds to the path URL.complete, which Sherlock calls after it has parsed the
URL attributes. The trigger expects the URL request to contain some other attributes and values, in this case
a query string and either a zip attribute or a city and state attribute. It populates the data store with
these values and then initiates the query. Because the same data store fields are used to store values entered
into the controls of the channel’s interface by the user, the behavior is the same as if the user had entered
the values and clicked the search button.

 <trigger language="JavaScript" path="URL.complete">
/* this trigger handles sherlock url query */
query = DataStore.Get("URL.query");
DataStore.Set("YellowPages.MainQueryField.objectValue", query);

zip = DataStore.Get("URL.zip");
if (zip)
{
 DataStore.Set("YellowPages.CityStateZipField.objectValue", zip);
}
else
{
 city = DataStore.Get("URL.city");
 state = DataStore.Get("URL.state");
 if (city != null && state != null)
 {
 cityAndState = city + ", " + state;
 DataStore.Set("YellowPages.CityStateZipField.objectValue",
 cityAndState);
 }
}

DataStore.Notify("YellowPages.SearchButton.action");
</trigger>

Initiating a Search Using a URL 87
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Trigger Examples

Initiating a Search From a Button Click

The following example shows how the Yellow Pages channel responds to the user clicking the search button
from the channel interface. The code for initiating a search from a URL click also calls this code to begin the
search.

The following two triggers show the initial search setup. In the first trigger, clicking the button sends a new
notification to perform the actual setup. The second trigger uses XQuery code to return a dictionary of paths
and values. Upon return from the second trigger, Sherlock assigns each value to the path specified by its key,
generating appropriate notifications for each assignment.

 <trigger language="JavaScript" path="YellowPages.SearchButton.action">
DataStore.Notify("YellowPages.action.yellowPagesSearchSetUp");
</trigger>

<trigger language="XQuery" path="YellowPages.action.yellowPagesSearchSetUp"
 notify="YellowPages.action.yellowPagesSearch">
dictionary(
 ("YellowPages.ResultsTable.dataValue", ()),
 ("YellowPages.ResultsTable.selectedRows", -1),
 ("YellowPages.NetworkArrows.animating", true())
)
</trigger>

Once the search parameters are set up, the final notification sent from the yellowPagesSearchSetup
trigger is to the YellowPages.action.yellowPagesSearch path to perform the search. The trigger that
responds to this path is shown in the following code listing. The yellowPagesSearch trigger performs the
search using the web service YellowPagesSearch and puts a subset of the results in the channel’s results
table. It then sets several other properties, storing old search data and keeping track of the current location
in the search result set. The yellowPagesSearchComplete trigger performs some late housekeeping tasks
to indicate to the user that the search is complete.

 <trigger language="XQuery" path="YellowPages.action.yellowPagesSearch"
 inputs="csz=YellowPages.CityStateZipField.objectValue,
 query=YellowPages.MainQueryField.objectValue,
 lastCsz=YellowPages.data.lastCityStateZip,
 lastQuery=YellowPages.data.lastQuery,
 moreString=YellowPages.clickAgainString,
 attemptNum=YellowPages.data.attemptNumber,
 lastResults=YellowPages.data.lastResults">
let $attemptNum := if (not($attemptNum)) then 0 else $attemptNum

let $newQuery := if (($query != $lastQuery) or ($csz != $lastCsz) or
 ($attemptNum = 0)) then 1 else 0
let $cityStateZip := string-replace($csz, "/", ", ")
let $resultsToSave := if ($newQuery) then YellowPagesSearch($cityStateZip,
 $query) else $lastResults

let $resultsCount := count($resultsToSave)
let $newResultsStart := 1+($attemptNum * 10)
let $resultsEndMax := $newResultsStart + 9
let $resultsEnd := if ($resultsCount < $resultsEndMax) then $resultsCount
 else $resultsEndMax

let $resultsToShow := sublist($resultsToSave, 1, $resultsEnd)

88 Initiating a Search From a Button Click
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Trigger Examples

let $moreResults := if ($resultsCount > $resultsEnd) then 1 else 0
let $labelText := if ($moreResults) then $moreString else " "
let $attempt := if ($moreResults) then $attemptNum+1 else 0

return dictionary(
 ("YellowPages.ResultsTable.dataValue", $resultsToShow),
 ("YellowPages.data.lastResults", $resultsToSave),
 ("YellowPages.action.yellowPagesSearchComplete", unique-id()),
 ("YellowPages.ResultsTable.highlightedColumn", "distance"),
 ("YellowPages.ResultsTable.columns.distance.indicatorImage",
 "../shared/Ascending.tiff"),
 ("YellowPages.data.sortColumn", "distance"),
 ("YellowPages.data.sortOrder", "ascending"),
 ("YellowPages.ClickAgainText.stringValue", $labelText),
 ("YellowPages.data.lastCityStateZip", $csz),
 ("YellowPages.data.lastQuery", $query),
 ("YellowPages.data.attemptNumber", $attempt)
)
</trigger>

<trigger language="XQuery"
 path="YellowPages.action.yellowPagesSearchComplete">
dictionary(
 ("YellowPages.ResultsTable.selectedRows", 0),
 ("YellowPages.NetworkArrows.animating", false()))
</trigger>

Opening a New Channel From a Trigger

If your channel wants to redirect the user to another channel to handle some task, you can do so
programmatically from your channel’s controls. To open another channel, simply ask Sherlock to open a URL
that is prefaced with the sherlock web scheme identifier (sherlock://). When opening a channel, you can
specify a URL with the location of the channel’s main XML file. For channels that are already registered with
Sherlock, you can specify the channel identifier instead of a file URL. The following example opens a new
Sherlock window for the Internet channel using the channel identifier. The example uses the new_window
identifier to open the channel in a new window.

<trigger language="JavaScript" path="MyChannel.MyButton.action">
 System.OpenURL("sherlock://com.apple.internet?new_window");
</trigger>

Opening a New Channel From a Trigger 89
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Trigger Examples

90 Opening a New Channel From a Trigger
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Trigger Examples

This table describes the changes to Sherlock Channels.

NotesDate

Sherlock is unsupported in Mac OS X v10.5 and later.2007-04-09

Minor bug fixes.2003-12-02

Updated content to include additions for Mac OS X 10.32003-09-18

AddressBook object added to JavaScript object reference.

HTMLView and SherlockAddressComboBox UI objects documented.

Updated other objects to include new attributes.

Documented the help_file attribute for the channel_info tag.

Updated channel version information.

Updated document to reflect current Sherlock support for the XQuery
specification.

Updated content for WWDC.2003-05-01

First version of Sherlock Channels.2002-08-23

91
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Document Revision History

92
Legacy Document | 2007-04-09 | © 2002, 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Sherlock Channels
	Contents
	Figures, Tables, and Listings
	Introduction
	Architecture of Sherlock Channels
	Sherlock Overview
	Channel Architecture
	Overview
	Channel Structure
	Understanding the Data Store
	Understanding Triggers
	Deploying Channels

	Web Services
	Data Caching Strategies
	Using Checkpoints
	Favoring Cached Data

	Version Information

	Developing Channels
	The Channel’s Interface
	Writing Your Channel Code
	About Triggers
	The XML Trigger File
	Initializing Your Channel
	Factoring Your Trigger Code

	Localizing Resources
	Configuring Your Channel For Use
	Deploying Your Channel

	Sherlock Scripting Language Support
	Introduction to JavaScript
	Introduction to XQuery
	Accessing the Data Store
	Commenting Out Text
	Support for Additional Data Types
	Accessing the Web

	Deciding Which Language To Use
	Supported XQuery Functions
	Deprecated XQuery Constructs in Mac OS X 10.3

	Sherlock Reference
	XML Tag Syntax
	Channel Information Tag Syntax
	Channels Tags Syntax
	Script Tag Syntax
	Trigger Tag Syntax
	Common Trigger Attributes
	JavaScript Trigger Attributes
	XQuery Trigger Attributes

	Predefined Data Store Paths
	Nib File Installation
	Persistent Storage Paths
	Printing Paths
	URL Paths

	Control Properties
	HTMLView
	NSBrowser
	NSButton
	NSComboBox
	NSControl
	NSDrawer
	NSImageView
	NSMatrix
	NSMovieView
	NSPopUpButton
	NSProgressIndicator
	NSSlider
	NSSplitView
	NSStepper
	NSTableView
	NSTabView
	NSTextField
	NSTextView
	NSView
	NSWindow
	SherlockAddressComboBox

	JavaScript Extensions
	AddressBook Object
	Address keys
	Search Options

	DataStore Object
	System Object
	XMLQuery Object

	XQuery Extensions
	base-url
	base64-decode
	base64-encode
	channel-version
	charset-encoding
	charset-name
	convert-entities
	convert-html
	curl
	data
	data-length
	data-match
	data-match-all
	data-match-ignore-case
	data-match-ignore-case-all
	dictionary
	dictionary-get
	encoded-data-to-string
	eval
	http-get
	http-head
	http-post
	http-request
	load-service
	localized-resource
	localized-url
	msg
	null
	property-list-decode
	property-list-encode
	reg-exp
	sherlock-function
	source
	string-combine
	string-separate
	string-to-encoded-data
	unique-id
	url
	url-decode
	url-encode
	url-host
	url-last-path-component
	url-path
	url-query
	url-query-value
	url-scheme
	url-with-base
	version

	Creating a New Channel
	Installing the Sherlock Tools
	Create the Channel Project
	Loading the Channel
	Debugging Tools
	Channel Tools
	Debug Menu

	Accessing Channels
	Loading a Channel From a URL
	Setting Up Subscriptions

	Printing Your Channel’s Content
	Supporting Custom Printing
	Using a Custom Print View

	Using Web Services
	Defining a New Web Service
	Accessing SOAP Services

	Trigger Examples
	Initiating a Search Using a URL
	Initiating a Search From a Button Click
	Opening a New Channel From a Trigger

	Revision History

