
AppleScript Studio Programming Guide
Scripting & Automation > AppleScript

2006-04-04

Apple Inc.
© 2001, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, AppleScript
Studio, Aqua, Carbon, Cocoa, Mac, Mac OS,
Macintosh, Objective-C, QuickTime, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to AppleScript Studio Programming Guide 13

Who Should Read This Document 13
Organization of This Document 14
Conventions 15
See Also 15

Chapter 1 About AppleScript Studio 17

What Is AppleScript Studio? 17
What Makes AppleScript Studio Special? 17

AppleScript 17
Integrated Development Environment 18
Application Framework 19
Strengths and Limitations 20

How AppleScript Studio Works 20
AppleScript Studio’s Components 21
AppleScript Studio Applications 22
Connecting Actions to Scripts 22
Putting It All Together 25

Creating a Hello World Application 27
AppleScript Studio Sample Applications 35

Chapter 2 AppleScript Studio Components 39

AppleScript Overview 39
How AppleScript Is Implemented 40
Scripting in AppleScript Studio 41
Terms for Classes and Objects 41

Xcode Features for AppleScript Studio 42
AppleScript Studio Application Templates 42
AppleScript Studio Xcode Plug-in Template 43
Default Project Contents 43
The Targets Group 48
Source Code Editor 48
Debugging Features 50
Terminology Browser 50

Interface Builder Features for AppleScript Studio 53
Interface Creation 53
Interface Connections 56

Cocoa Framework Overview 57
Cocoa Scripting Support 58

3
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Cocoa User Interface Objects 58
Cocoa Application Framework 58

AppleScriptKit Framework Overview 59

Chapter 3 Programming With AppleScript Studio 61

Additional Information on AppleScript Studio 61
Organizing an AppleScript Studio Project 61
Naming Conventions for Methods and Handlers 63
Accessing Code From AppleScript Studio Scripts 64
Persistent Script Properties 67
Accessing Script Globals 67
Overridden Scripting Additions 68
How Xcode Formats Scripts 68
Switching Between AppleScript Studio and Script Editor 70
Scripting AppleScript Studio Applications 71
Using Script Editor to Test AppleScript Studio Terminology 71

AppleScript Studio Terminology 73
Overview 73
General Sources of Scripting Terminology 74
Terminology From the AppleScriptKit Framework 74
Finding Terminology Information 77

Programming Tips 79
Targeting an AppleScript Studio Application 79
Using Make, Not Create, to Create New Objects in Scripts 79
Using the Log Command to Track Your Scripts 80
Basic Tips and Reminders 80

Troubleshooting 81
My Script Statements Aren’t Working 81
Several Windows in My Application Have ID 0 82
I Can’t Script My UI to Do QA Testing 82

Chapter 4 AppleScript Studio Cookbook 83

Performing User Interface Actions 83
Specifying Minimum Requirements for an Application 84
Adding AppleScript Studio Support to Your Cocoa Application 84
Setting the Keyboard Focus 85
Obtaining the Path to the Current Application 85

Chapter 5 Currency Converter Tutorial 87

Design the Application 88
Create a Project 88
Build the Interface 89

Launch Interface Builder 90

4
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Adjust the Title, Size, and Other Attributes of the Currency Converter Window 90
Add Text Input Fields and Labels 96
Add a Result Field and Label 103
Add Number Formatters to the Input and Result Fields 105
Add a Convert Button 108
Add a Horizontal Separator 109
Finalize the Layout 110

Connect the Interface 110
Write Event Handlers 113
Build and Run the Application 115
Where To Go From Here 115

Chapter 6 Mail Search Tutorial: Design the Application 117

Before You Start This Tutorial 117
Identify a Goal for the Application 118
Examine Mail’s Scripting Dictionary 118
Specify Operations for Mail Search 120
Design the Interface 121

Identify Objects for the User Interface 121
Arrange the User Interface 122

Plan the Code 125
Event Handlers in Mail Search 126
Additional Handlers and Scripts in Mail Search 127

Chapter 7 Mail Search Tutorial: Create the Interface 131

Create a Project 131
Add an Image File to the Project 133
Build the Interface 134

Examine the Default Menus 134
Create the Message Window 135
Create a Status Dialog 143
Create the Search Window 150

Chapter 8 Mail Search Tutorial: Connect the Interface 167

Connect the Interface 167
Connect the Application Object 167
Connect Interface Items in the Search Window 170

Chapter 9 Mail Search Tutorial: Write the Code 185

Obtaining the Code for the Mail Search Tutorial 185
Define Global Variables and Properties 186
Write Event Handlers for the Interface 186

5
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Application Object Handler 187
Search Window Handlers 187
Text Field Handler 188
Find Button Handler 189
Search Results Table View Handler 189

Write Scripts and Additional Handlers 190
Write the Controller Script 190
Write Handlers for Working With Controllers 200
Write Handlers for Working With the Status Dialog 201
Write Handlers for Working With Message Windows 201
Write Utility Handlers 202

Chapter 10 Mail Search Tutorial: Build and Test the Application 203

Build and Run Mail Search 203
Check for Syntax Errors 204

Chapter 11 Mail Search Tutorial: Customize the Application 207

Customize Menus 207
Rename Menus and Menu Items 207
Set Menu Attributes 208
Remove Menus and Menu Items 209

Customize the About Window 210
Customize Version and Copyright Information 211
Customize Icons 212

Add an Icon Resource File to the Project 213
Supply a Creator Code 216

Appendix A AppleScript Studio System Requirements and Version Information 217

Appendix B Mail Search Tutorial, Full Script Listing 219

Mail Search Copyright Notice 229

Glossary 231

Document Revision History 235

6
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 About AppleScript Studio 17

Figure 1-1 The Drawer sample application 18
Figure 1-2 The components of AppleScript Studio 21
Figure 1-3 Connections between user interface items and scripts in an AppleScript Studio

application 23
Figure 1-4 Interface Builder’s Palette window, showing the Cocoa-Controls palette 24
Figure 1-5 A window containing a button 24
Figure 1-6 The Info window for a button 25
Figure 1-7 Creating an application with AppleScript Studio 26
Figure 1-8 Choosing an AppleScript Studio application in Xcode 27
Figure 1-9 A newly-created AppleScript Studio application project 28
Figure 1-10 A project with many groups and files expanded 29
Figure 1-11 A default application window in Interface Builder 30
Figure 1-12 Interface Builder’s Palette window, showing the Cocoa-Controls palette 30
Figure 1-13 A window containing a button 31
Figure 1-14 The Hello World button 31
Figure 1-15 The Info window for the Hello World button 32
Figure 1-16 Editing a clicked handler in Xcode 33
Figure 1-17 The Hello World application in action 34
Listing 1-1 A simple event handler 23

Chapter 2 AppleScript Studio Components 39

Figure 2-1 Default contents of an AppleScript Application project 44
Figure 2-2 Default contents of an AppleScript Document-based Application project 47
Figure 2-3 The Mail Search Target inspector 48
Figure 2-4 Editing a Hello World script in Xcode 49
Figure 2-5 The Open Dictionary dialog in Xcode 51
Figure 2-6 The AppleScript Studio scripting dictionary in a browser window 52
Figure 2-7 Interface Builder windows after opening the MainMenu.nib file 54
Figure 2-8 The AppleScript palette in Interface Builder’s Palette window 55
Figure 2-9 The Info window for a button 56
Listing 2-1 Full Objective-C code for a simple AppleScript Studio application 59

Chapter 3 Programming With AppleScript Studio 61

Figure 3-1 Syntax for the call method command 65
Figure 3-2 Setting Text Editing preferences in Xcode 70
Figure 3-3 The AppleScript Studio scripting dictionary in Xcode 77
Table 3-1 Naming conventions in Cocoa and AppleScript Studio 64
Table 3-2 Cocoa types and their AppleScript equivalents 67

7
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Table 3-3 AppleScript Studio sample applications and the objects they use 78
Listing 3-1 Detecting which button was clicked 62
Listing 3-2 Calling a document method with two parameters 66
Listing 3-3 Calling a method of a button 66
Listing 3-4 Calling a class method 66
Listing 3-5 Calling a method of the application 66
Listing 3-6 Telling Script Editor where to look for AppleScript Studio terminology 70
Listing 3-7 Setting text in the Drawer application from an external script 71
Listing 3-8 Scripting the Drawer application from Script Editor 72
Listing 3-9 Examining the views of an AppleScript Studio application 72
Listing 3-10 A new clicked handler 80

Chapter 4 AppleScript Studio Cookbook 83

Listing 4-1 Manipulating a button in the Drawer application from an external script 83
Listing 4-2 will finish launching handler that checks for required version of AppleScript Studio

84

Chapter 5 Currency Converter Tutorial 87

Figure 5-1 The Currency Converter window 88
Figure 5-2 The project after opening several groups 89
Figure 5-3 Selected text for Window instance in MainMenu.nib window 90
Figure 5-4 The default window in the Currency Converter project 91
Figure 5-5 The Attributes pane of the Info window for a window object 92
Figure 5-6 The Info window after retitling the Currency Converter window 93
Figure 5-7 The final Attributes settings for the Currency Converter window 94
Figure 5-8 The Size pane of the Currency Converter window 95
Figure 5-9 The modified Currency Converter window 96
Figure 5-10 The Cocoa-Text palette of Interface Builder’s Palette window 97
Figure 5-11 Positioning a text input field for the exchange rate 97
Figure 5-12 Resizing the exchange rate input field 98
Figure 5-13 The Attributes pane of the Info window for the exchange rate field 98
Figure 5-14 The Info window, after supplying an AppleScript name for the exchange rate field

99
Figure 5-15 The MainMenu.nib window showing an AppleScript Info object (not selected) 100
Figure 5-16 Positioning a label field for the exchange rate 100
Figure 5-17 Resizing the label field for the exchange rate 101
Figure 5-18 The Info window, after setting text and attributes for the exchange rate label 102
Figure 5-19 The exchange rate label field (selected) 102
Figure 5-20 The Currency Converter window with input fields and labels 103
Figure 5-21 The Currency Converter window with all text fields and labels 104
Figure 5-22 The Info window, after disabling editing for the amount in other currency field

105
Figure 5-23 Adding a number formatter to the exchange rate input field 106
Figure 5-24 The Formatter pane for the exchange rate input field 107

8
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 5-25 The Formatter pane for the amount in other currency field 108
Figure 5-26 The Currency Converter window with a “Convert” button 109
Figure 5-27 The Currency Converter window with a horizontal separator 109
Figure 5-28 Fields from the Info window for setting keystroke equivalent 110
Figure 5-29 Fields from the Info window for setting keystroke equivalent 110
Figure 5-30 The Info window after connecting a clicked handler to the Convert button 111
Figure 5-31 The Info window after connecting a handler to the application object 113
Figure 5-32 The Currency Converter application in action 115
Listing 5-1 The empty clicked handler 113
Listing 5-2 The complete clicked handler 114
Listing 5-3 The should quit after last widow closed handler 114

Chapter 6 Mail Search Tutorial: Design the Application 117

Figure 6-1 The Mail application’s scripting dictionary in an Xcode window 119
Figure 6-2 Mail Search’s search window in Interface Builder 123
Figure 6-3 A status dialog in Interface Builder 124
Figure 6-4 Mail Search’s menu nib in Interface Builder, showing the application menu 124
Figure 6-5 A Mail Search message window in Interface Builder 125

Chapter 7 Mail Search Tutorial: Create the Interface 131

Figure 7-1 Default contents of a document-based AppleScript Studio project 132
Figure 7-2 Deleting a file from a project 132
Figure 7-3 Adding a file to a project 133
Figure 7-4 Interface Builder windows after opening Mail Search’s MainMenu.nib file 135
Figure 7-5 Creating a new nib file in Interface Builder 136
Figure 7-6 A new nib file in Interface Builder 136
Figure 7-7 The Cocoa-Windows palette of Interface Builder’s Palette window 137
Figure 7-8 The Message.nib window, showing a window instance 138
Figure 7-9 The AppleScript pane in the Info window for a window object 139
Figure 7-10 The Message.nib window showing an AppleScript Info object (not selected) 140
Figure 7-11 The Cocoa-Text palette of Interface Builder’s Palette window 141
Figure 7-12 Positioning a text view object 141
Figure 7-13 The finished message window 142
Figure 7-14 Attributes pane in Info window for text vie 143
Figure 7-15 The status dialog as previously designed 144
Figure 7-16 The revised Attributes pane in the Info window for the status dialog 145
Figure 7-17 The Size pane in the Info window for the status dialog 145
Figure 7-18 The resized status dialog 146
Figure 7-19 The Cocoa-Controls palette of Interface Builder’s Palette window 146
Figure 7-20 Positioning the progress bar 147
Figure 7-21 Resizing the progress bar 147
Figure 7-22 Positioning a status text field above the progress bar 148
Figure 7-23 Resizing the status text field 148

9
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Figure 7-24 The Attributes pane in the Info window for the text field 149
Figure 7-25 The invisible status text field 149
Figure 7-26 The resized, empty search window 150
Figure 7-27 Positioning a popup button in the search window 151
Figure 7-28 The default contents of a popup button 152
Figure 7-29 A popup button with a new item 152
Figure 7-30 A renamed popup button item 152
Figure 7-31 Popup button with renamed items 153
Figure 7-32 The popup button after checking the Small checkbox 153
Figure 7-33 Resizing the popup button 153
Figure 7-34 Positioning a text field in the search window 154
Figure 7-35 Resized text field in the search window 154
Figure 7-36 Positioning a button in the search window 155
Figure 7-37 The Info window for the find button 155
Figure 7-38 The button and magnifying glass 156
Figure 7-39 Aligning the right edge of the window with the button 156
Figure 7-40 Inserting an outline view in the search window 157
Figure 7-41 Resizing the outline view in the search window 158
Figure 7-42 A selected outline view 159
Figure 7-43 The Info window for the outline view, after changes 160
Figure 7-44 The outline view after naming the Mailboxes column 160
Figure 7-45 The Info window for the scroll view containing the outline view 161
Figure 7-46 Inserting a table view in the search window 162
Figure 7-47 The Info window for the table view, after changes 163
Figure 7-48 The table view with titles 164
Figure 7-49 The final search window, now containing a split view 165

Chapter 8 Mail Search Tutorial: Connect the Interface 167

Figure 8-1 The File’s Owner instance in the MainMenu.nib window 168
Figure 8-2 The Info window for the File’s Owner instance 169
Figure 8-3 The Info window for the Mail Search window instance 171
Figure 8-4 The Info window for the search text field 173
Figure 8-5 The Info window for the find button 174
Figure 8-6 The Info window for the search results table view 175
Figure 8-7 The Document.nib window with a data source object 176
Figure 8-8 Connecting the outline view to the data source object 177
Figure 8-9 The Info window for the outline view after connecting a data source outlet 178
Figure 8-10 The Info window after entering an outline column identifier 179
Figure 8-11 The Document.nib window 180
Figure 8-12 The Document.nib window in outline view 180
Figure 8-13 Connections for the NSOutlineView object 181
Figure 8-14 The Info window for the table view after connecting a data source outlet 182
Figure 8-15 The Info window after entering a table column identifier 183
Listing 8-1 A new handler declaration for the will finish launching handler 170
Listing 8-2 New handler declarations for several handlers 172

10
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 8-3 A new action handler for a text field 173

Chapter 9 Mail Search Tutorial: Write the Code 185

Listing 9-1 Global list variable to store instances of controller script 186
Listing 9-2 Properties used in Mail Search 186
Listing 9-3 The will finish launching handler for the application object 187
Listing 9-4 will open handler for search window 187
Listing 9-5 The became main handler for the search window 188
Listing 9-6 The will close handler for the search window 188
Listing 9-7 The action handler for the search text field 188
Listing 9-8 The clicked handler for the find button 189
Listing 9-9 The double clicked handler for the search results table view 189
Listing 9-10 Properties of the controller script 190
Listing 9-11 The controller script’s initialize handler 191
Listing 9-12 The controller script’s loadMailboxes handler 192
Listing 9-13 The controller script’s addMailboxes handler 192
Listing 9-14 The controller script’s addAccounts handler 193
Listing 9-15 The controller script’s addMailbox handler 194
Listing 9-16 The controller script’s find handler 194
Listing 9-17 The controller script’s findMessages handler 196
Listing 9-18 The controller script’s openMessageWindow handler 199
Listing 9-19 The makeMessageWindow handler 201
Listing 9-20 Utility function to delete an item from a list 202

Chapter 10 Mail Search Tutorial: Build and Test the Application 203

Figure 10-1 An uncompiled handler 204
Figure 10-2 A syntax error in an Xcode script editor window 205
Figure 10-3 A compiled handler 206
Figure 10-4 Event handlers in an Xcode pop-up menu 206

Chapter 11 Mail Search Tutorial: Customize the Application 207

Figure 11-1 Mail Search’s menu nib in Interface Builder, showing the application menu 208
Figure 11-2 The revised Mail Search application menu 208
Figure 11-3 The Info window for the About Mail Search menu item 209
Figure 11-4 AppleScript Studio’s default About window 210
Figure 11-5 The About window after modifying the application description 211
Figure 11-6 The About window after modifying version and copyright information 212
Figure 11-7 Mail Search’s icons displayed in Icon Composer 213
Figure 11-8 Adding a file to a project 214
Figure 11-9 The Icon field in a target window for the Mail Search target 215
Figure 11-10 The About window after customizing icons 215
Figure 11-11 The Mail Search icon in the Finder 216

11
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 11-1 The default InfoPlist.strings file from an AppleScript Studio application 211

Appendix A AppleScript Studio System Requirements and Version Information 217

Table A-1 Availability for AppleScript Studio development environment and runtime 217

Appendix B Mail Search Tutorial, Full Script Listing 219

Listing B-1 Mail Search’s global variables and event handlers 219
Listing B-2 The controller script definition 220
Listing B-3 Handlers for working with controller script objects 227
Listing B-4 The message window handler 228
Listing B-5 The status dialog script definition 228
Listing B-6 The delete items in list utility 229

12
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled “Building Applications With AppleScript Studio.”

Important: This is a preliminary draft of AppleScript Studio documentation. Although it has been reviewed
for technical accuracy, some information is subject to change. In particular, information about AppleScript
Studio features that became available after version 1.1 is incomplete. Screenshots and tutorial instructions
for tools such as Xcode and Interface Builder refer to Mac OS X version 10.3 versions of the tools.

For the latest documentation on AppleScript Studio, see AppleScript Studio Terminology Reference.

AppleScript Studio Programming Guide provides the key information you’ll need to create AppleScript Studio
applications.

AppleScript Studio is a powerful tool for quickly creating native Mac OS X applications that support the Aqua
user interface guidelines. It combines features from AppleScript, Xcode, Interface Builder, and the Cocoa
application framework. With AppleScript Studio, you can work in a full-featured development environment
to create applications that use AppleScript scripts to control a broad range of Cocoa user-interface objects.

Note: AppleScript Studio requires Mac OS X version 10.1.2 or later, both to build and to deploy applications.
See Appendix A, “AppleScript Studio System Requirements and Version Information”, (page 217) for more
information.

AppleScript Studio has something to offer both to scripters and to those with Cocoa development experience:

 ■ It provides access to AppleScript’s ability to control multiple applications, including parts of the Mac OS
itself.

 ■ Scripters can create applications with a complex user interface, including windows, buttons, menus, text
fields, tables, and much more. Scripts have full access to user interface objects.

 ■ Cocoa developers can use AppleScript Studio to speed up prototyping, testing, and deploying of
applications.

Who Should Read This Document

This document assumes that you have some familiarity with AppleScript and know how to write and execute
scripts.

Previous experience building applications with an integrated development environment is also
recommended—familiarity with Xcode and Interface Builder is especially useful.

Who Should Read This Document 13
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Studio
Programming Guide

Previous experience with Cocoa is not required, but can be helpful in understanding some of AppleScript
Studio’s underlying mechanisms.

For documentation and other resources for these technologies, see “See Also” (page 15).

For information on whether AppleScript Studio is appropriate to your task, see “Strengths and
Limitations” (page 20).

Organization of This Document

This document contains the following chapters:

 ■ “Introduction to AppleScript Studio Programming Guide” (page 13) briefly describes AppleScript Studio,
provides a description for each chapter, and lists some related documentation.

 ■ “About AppleScript Studio” (page 17) introduces AppleScript Studio’s key features and shows how to
create a simple “Hello World” application.

 ■ “AppleScript Studio Components” (page 39) provides a detailed description of AppleScript Studio,
including descriptions of the key features in Xcode and Interface Builder, as well as overviews of the
Cocoa and AppleScriptKit frameworks.

 ■ “Programming With AppleScript Studio” (page 61) describes additional features and issues you’ll want
to know more about as you work with AppleScript Studio. It also describes the scripting terminology
you need to write scripts and provides tips for programming with AppleScript Studio.

 ■ “AppleScript Studio Cookbook” (page 83) provides step-by-step instructions for performing some
common AppleScript Studio tasks.

 ■ “Currency Converter Tutorial” (page 87) provides a simple tutorial that introduces the tools and processes
you’ll use in most AppleScript Studio development.

 ■ “Mail Search Tutorial: Design the Application” (page 117) is the first of several chapters that make up a
tutorial for a more complex AppleScript Studio application. This chapter describes the process of designing
the application.

 ■ “Mail Search Tutorial: Create the Interface” (page 131) describes how to create the interface for the Mail
Search application.

 ■ “Mail Search Tutorial: Connect the Interface” (page 167) shows how to connect Mail Search’s interface to
event handlers in the application’s scripts.

 ■ “Mail Search Tutorial: Write the Code” (page 185) describes the handlers and script statements for the
Mail Search application.

 ■ “Mail Search Tutorial: Build and Test the Application” (page 203) provides information on how to build
and test the Mail Search application.

 ■ “Mail Search Tutorial: Customize the Application” (page 207) provides steps for customizing menus, icons,
and version and copyright information in the Mail Search application.

 ■ “AppleScript Studio System Requirements and Version Information” (page 217) describes the system
requirements for building and running AppleScript Studio applications.

 ■ “Mail Search Tutorial, Full Script Listing” (page 219) contains a complete listing of the Mail Search
application’s script file.

 ■ “Document Revision History” (page 235) describes changes made to this document.

14 Organization of This Document
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Studio Programming Guide

 ■ “Glossary” (page 231) defines key terms for working with AppleScript Studio.

Conventions

You’ll see the AppleScript continuation character (¬, which you create by typing Option-l) in some of the
script listings in this document. When a line in a script ends with a continuation character, the next line is
considered to be part of that line. You shouldn’t need the continuation character when you actually compile
the scripts in AppleScript Studio, because you can use Xcode’s ability to wrap text instead. For more
information, see “How Xcode Formats Scripts” (page 68).

Some listings in this document may use wrapped text, rather than the continuation character.

See Also

You can find getting started and overview documentation for AppleScript, AppleScript Studio, and related
technologies, with links to all the available Apple documentation and resources (including mailing lists), here:

 ■ Getting Started With AppleScript

 ■ AppleScript Overview

Because AppleScript Studio relies heavily on the Cocoa application framework, you may also want to visit
the Cocoa Documentation area, particularly these documents:

 ■ Application Architecture Overview

 ■ Cocoa Scripting Guide

You can also use any web search engine to many third-party books, products, and websites for AppleScript
and AppleScript Studio.

Conventions 15
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Studio Programming Guide

16 See Also
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to AppleScript Studio Programming Guide

AppleScript Studio is a powerful tool for quickly creating native Mac OS X applications that support the Aqua
user interface guidelines. AppleScript Studio applications use AppleScript scripts to control complex user
interfaces. This chapter introduces AppleScript Studio, provides a basic description of its key features, and
shows you how to build a simple application.

Note: AppleScript Studio requires Mac OS X version 10.1.2 or later, both to build and to deploy applications.
See Appendix A, “AppleScript Studio System Requirements and Version Information”, (page 217) for more
information.

What Is AppleScript Studio?

AppleScript Studio is a combination of application framework and development environment. It combines
features from AppleScript, Xcode, Interface Builder, and the Cocoa application framework. Together, these
components provide a sophisticated environment for creating AppleScript solutions. Using AppleScript
Studio:

 ■ Scripters can build native Mac OS X applications that execute AppleScript scripts, have access to a wide
range of user interface objects, and can control scriptable applications and scriptable parts of the Mac
OS. These applications are referred to as AppleScript Studio applications.

 ■ Cocoa developers can take advantage of AppleScript’s many features, including controlling other
applications, and can add sophisticated scripting capabilities (not currently available in Cocoa alone) to
their applications.

What Makes AppleScript Studio Special?

AppleScript Studio is special because it makes it easier to create Mac OS X applications with complex user
interfaces that can communicate with and control other applications. The following sections describe additional
features that help make AppleScript Studio one of a kind.

AppleScript

AppleScript provides the powerful ability to control multiple applications, including many parts of the Mac
OS itself. That allows scripters to set up workflow solutions with a combined power that exceeds that of any
individual application.

In addition to the ability to control multiple applications, AppleScript’s strengths include:

What Is AppleScript Studio? 17
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

 ■ an English-like language that makes scripts easier to write and understand

 ■ powerful language features, including list and record manipulation, as well as script objects that provide
features such as inheritance and encapsulation; script objects are described in “Additional Handlers and
Scripts in Mail Search” (page 127)

 ■ the ability to target applications on remote machines

 ■ with the addition of support for SOAP (simple object access protocol) and XML-RPC (a simple protocol
for making remote procedure requests to Internet-based servers) in Mac OS X version 10.1, the ability
to target Internet servers with remote procedure calls

With AppleScript Studio, script developers can take advantage of all these features, while quickly creating
applications that include complex user interfaces. For example, Figure 1-1 shows Drawer, one of many sample
applications distributed with AppleScript Studio. Drawer demonstrates how to use a number of interface
classes, including buttons, text fields, radio buttons, steppers, and even its namesake, a drawer. Other sample
applications display file and folder information in windows similar to the Finder’s column and list view. See
“AppleScript Studio Sample Applications” (page 35) for a complete list of sample applications.

Figure 1-1 The Drawer sample application

Integrated Development Environment

Because it is integrated with Apple’s development environment, AppleScript Studio can take advantage of
powerful features provided by Xcode and Interface Builder. These include:

 ■ use of Cocoa’s rich set of user interface classes; layout tools include built-in support for Aqua interface
guidelines

 ■ tools that simplify building and maintaining complex projects with multiple targets and build steps

 ■ easy customization of application menus, icons, and About windows

AppleScript Studio supports a number of scripting features that are also available in the Script Editor application
distributed with Mac OS X version 10.3, but were not available in previous versions of the Script Editor. These
include:

 ■ creation of arbitrarily large scripts

18 What Makes AppleScript Studio Special?
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

 ■ search and replace in scripts

 ■ easy access to handlers and properties in scripts (through a pop-up menu)

 ■ a flexible dictionary viewer for working with application scripting terminologies

For more information, see “Xcode Features for AppleScript Studio” (page 42) and “Interface Builder Features
for AppleScript Studio” (page 53).

Application Framework

Because AppleScript Studio applications are Cocoa applications, they benefit from Cocoa’s full-featured
application framework. As a result, an AppleScript Studio application can perform many operations
automatically, without any additional Objective-C code from the developer. Built-in features allow users to
open multiple windows, resize and minimize windows, display an About window, enter text in text fields,
and even shuffle column positions in a table view.

Note: Objective-C is Cocoa’s native programming language, but you can use other kinds of code within an
AppleScript Studio application. For more information, see the section “Accessing Code From AppleScript
Studio Scripts” (page 64) and the description of the Multi-Language application in “AppleScript Studio Sample
Applications” (page 35).

To experiment with the features you get in the simplest document-based AppleScript Studio application,
even before adding any code or scripts, see the steps in “Create a Project” (page 131).

Users with previous Cocoa experience will also find a lot to like in AppleScript Studio, including the ability
to

 ■ use AppleScript to control other applications

 ■ do quick prototyping, with scripts taking the place of unimplemented methods

 ■ perform simple automated testing, using AppleScript Studio’s ability to script Cocoa user interface objects
(not available in Cocoa alone); for more information, see “Scripting AppleScript Studio Applications” (page
71)

Note: AppleScript Studio also supports calling code directly from scripts. For more information, see “Accessing
Code From AppleScript Studio Scripts” (page 64).

Although you can create applications that perform virtually all of their operations by executing AppleScript
scripts, you are free to include additional Cocoa code in applications. You may find it useful to learn more
about the Cocoa code working behind the scenes—to do so, see the information provided in “Cocoa
Framework Overview” (page 57), as well as the Cocoa documentation described in “See Also” (page 15).

What Makes AppleScript Studio Special? 19
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Strengths and Limitations

AppleScript Studio offers a number of powerful features. However, for scripting tasks that don’t require a
complex user interface, such as adjusting your workspace or automating repetitive tasks, the Script Editor
(distributed with the Mac OS) or a third-party scripting application is usually a more appropriate tool. You’ll
have access to AppleScript’s key features without the overhead that comes with AppleScript Studio’s additional
power.

AppleScript Studio shows its strength for tasks that require:

 ■ a complex user interface

 ■ manipulation of information associated with user interface elements

 ■ display of information provided or manipulated by other processes (including information gathered
from databases)

 ■ the ability to take advantage of features written in standard programming languages (which you can
access from AppleScript Studio scripts, as shown in the Multi-Language sample application, described
in “AppleScript Studio Sample Applications” (page 35))

 ■ a fully functional build environment

AppleScript Studio is less appropriate for tasks that require:

 ■ display of large amounts of data (such as massive tables)

 ■ intensive computation or manipulation of large amounts of data in AppleScript Studio scripts

 ■ intensive interaction with a file system (such as displaying large numbers of files; you can try the Browser
sample application, described in “AppleScript Studio Sample Applications” (page 35), to experiment
with the performance of an application that browses the file system)

 ■ simple scripting operations, especially those with little or no user interface

You may notice that AppleScript Studio performs poorly when you use AppleScript scripts to perform
computation-intensive operations. This reflects the limits of the processing power of the AppleScript language,
which was not designed for those kinds of tasks. One way to work around these issues is to have your scripts
call into C, C++, Objective-C, or Java code to perform computation-intensive operations. The Multi-Language
sample application, distributed with AppleScript Studio, demonstrates how to access code written in various
languages from an AppleScript Studio application.

AppleScript Studio does not support building non-Cocoa applications, or applications that must run in Mac
OS 9, or in versions of Mac OS X before version 10.1.2.

AppleScript Studio applications, like other Cocoa applications, can access frameworks and libraries outside
the Cocoa framework, including the Carbon framework, although detailed steps for doing so are not described
in this document.

How AppleScript Studio Works

This section provides a brief description of AppleScript Studio’s components, introduces key concepts, and
lists the steps required to create an AppleScript Studio application. It contains the following

20 How AppleScript Studio Works
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

“AppleScript Studio’s Components” (page 21)
“AppleScript Studio Applications” (page 22)
“Connecting Actions to Scripts” (page 22)
“Putting It All Together” (page 25)

AppleScript Studio’s Components

Figure 1-2 shows the components that make up AppleScript Studio: AppleScript, Xcode, Interface Builder,
the Cocoa framework, and AppleScript Studio’s own framework, the AppleScriptKit framework. A framework
is a type of bundle (or directory in the file system) that packages software with the resources that software
requires, including its interface.

Figure 1-2 The components of AppleScript Studio

AppleScript

AppleScript Studio

Interface Builder

Xcode

Cocoa.framework AppleScriptKit.framework

Here’s how AppleScript Studio’s components work together to produce AppleScript Studio applications:

 ■ AppleScript: Provides the ability to control multiple applications, including parts of the Mac OS, by
writing scripts. For more information, see “AppleScript Overview” (page 39).

 ■ Cocoa framework: Provides an application framework, including a robust set of user interface classes.
You use these classes in Interface Builder to create an interface for your AppleScript Studio application.
You also link with Cocoa in Xcode to build the application itself. For more information, see “Cocoa
Framework Overview” (page 57).

How AppleScript Studio Works 21
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

 ■ Interface Builder: Provides a graphical environment for creating user interface descriptions. You also
use Interface Builder to link user actions, such as clicking a button or choosing an item in a pop-up menu,
to specific handlers in scripts. (Handlers are described in “Connecting Actions to Scripts” (page 22).) For
more information, see “Interface Builder Features for AppleScript Studio” (page 53).

 ■ Xcode: Provides the development environment to edit, build, and debug AppleScript Studio applications,
as well as to display dictionaries of scripting terms. For more information, see “Xcode Features for
AppleScript Studio” (page 42).

 ■ AppleScriptKit framework: Provides code and scripting terminology to support AppleScript Studio
features, including enhanced scriptability for user interface objects and the ability to call Objective-C
methods from scripts. For more information, see “AppleScriptKit Framework Overview” (page 59).

See Chapter 3, “AppleScript Studio Components”, (page 39) for a more detailed description of AppleScript
Studio’s components.

AppleScript Studio Applications

AppleScript Studio applications take advantage of the Cocoa framework, which works “behind the curtain”
to display the interface, respond to user actions, and more. However, there is very little visible Cocoa code
required for an AppleScript Studio application (see Listing 2-1 (page 59). As a result, scripters gain the ability
to create complex interfaces and work in a powerful development environment, while still being able to use
AppleScript script statements to control applications.

Connecting Actions to Scripts

The ability to connect application events to scripts is a key concept in understanding AppleScript Studio. In
every AppleScript Studio application you write, you will connect actions involving the application’s user
interface objects to event handlers in its script files, the result of which is shown in Figure 1-3.

A handler is a series of one or more script statements that are executed in response to an action or condition.
In the case of a simple subroutine, a handler is similar to a function. Handlers that respond to action events
in the application are called event handlers to distinguish them from other handlers.

22 How AppleScript Studio Works
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Figure 1-3 Connections between user interface items and scripts in an AppleScript Studio application

Scripts

User interface objects

AppleScript Studio application

Handlers can have zero or more parameters. Listing 1-1 shows a simple event handler, where (*Add your
script here.*) is an AppleScript comment. All event handlers start with the keyword on. The clicked
handler has one parameter, theObject, which represents the user interface object that received the clicked
message. Most event handlers in AppleScript Studio have this same parameter.

Listing 1-1 A simple event handler

on clicked theObject
 (*Add your script here.*)
end clicked

You’ll see the full details later in this chapter, but in brief, the process of connecting actions to event handlers
consists of these steps:

1. Use Interface Builder to create a new user interface resource file (or nib file), or to open an existing nib
file. The default nib file in an AppleScript Studio project, called MainMenu.nib, automatically contains
one window object.

How AppleScript Studio Works 23
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

2. Add interface objects (such as buttons and text views) in Interface Builder. Figure 1-4 shows one of the
palettes of objects available in Interface Builder.

Figure 1-4 Interface Builder’s Palette window, showing the Cocoa-Controls palette

Figure 1-5 shows the results of dragging a button object from the palette to a window.

Figure 1-5 A window containing a button

3. Select an interface item (such as a button) in Interface Builder and open the Info window. Figure 1-6
shows the Info window for a button, with the AppleScript pane visible, showing the possible event
handler groups for the object. Each group contains one or more handlers.

24 How AppleScript Studio Works
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

4. Click to select the checkbox for the event handler (or handlers) you want to connect, then select a script
file to connect it to, as shown in Figure 1-6. The available event handlers are grouped according to their
function. The Action group contains just the clicked handler. Interface Builder inserts an empty event
handler, in this case the clicked handler shown in Listing 1-1, into the selected script file in your
application project.

Figure 1-6 The Info window for a button

5. Open the script in Xcode and write script statements for the event handler. You can open the script by
clicking the Edit Script button.

These steps are shown in more detail in “Creating a Hello World Application” (page 27).

Putting It All Together

Previous sections have described AppleScript Studio’s components, AppleScript Studio applications, and the
key steps for connecting actions to scripts. By adding just a bit more detail, you have an algorithm for creating
an application with AppleScript Studio:

1. Use Xcode to create a new project, using one of the AppleScript Studio application templates Xcode
supplies.

2. Build the application’s user interface (which is stored in user interface resource files, or nib files) by adding
user interface objects with Interface Builder.

How AppleScript Studio Works 25
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

3. Use the Info window in Interface Builder to hook up user actions, such as mouse clicks and menu
selections, to event handlers in scripts.

4. Edit the scripts in Xcode to add script statements that perform the desired operations.

5. Build the application in Xcode.

A pictorial version of these steps is shown in Figure 1-7, and a simple tutorial demonstrates them in “Creating
a Hello World Application” (page 27). Of course you may need to repeat steps 2 through 5 as you build and
test your application. You’ll find more information on these operations throughout this document.

Figure 1-7 Creating an application with AppleScript Studio

Project Interface Builder

Your application

1 3

4

5

Xcode

2

26 How AppleScript Studio Works
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Creating a Hello World Application

This section shows how easy it is to create a simple “Hello World” application with AppleScript Studio. See
Chapter 6, “Currency Converter Tutorial”, (page 87) for a slightly more complex tutorial that demonstrates
additional features of AppleScript Studio. See Chapter 7, “Mail Search Tutorial: Design the Application”, (page
117) to start a multi-chapter tutorial that builds a more complete AppleScript Studio application.

If you’d like to know more about AppleScript Studio before you start programming, feel free to read Chapter
3, “AppleScript Studio Components”, (page 39) before going ahead with the Hello World tutorial.

To create a “Hello World” AppleScript Studio application, perform these steps:

1. See the information in “AppleScript Studio System Requirements and Version Information” (page 217)
to make sure that AppleScript Studio is available on your computer.

2. Open the Xcode application, located in /Developer/Applications.

3. Choose New Project from the File menu. Xcode opens the dialog shown in Figure 1-8:

Figure 1-8 Choosing an AppleScript Studio application in Xcode

Creating a Hello World Application 27
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

4. Select one of the AppleScript Studio application templates. For this example, choose the “AppleScript
Application” template, then click the Next button. You will then get a chance to name the project and
save it in the location of your choice. Type “Hello World” (without the quotes) for the project name. The
resulting project is shown in Figure 1-9.

Figure 1-9 A newly-created AppleScript Studio application project

28 Creating a Hello World Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

5. The project’s contents are visible in the detail view (to the right of the Groups & Files list). You can click
the disclosure triangles in the Groups & Files list to see how the contents are stored in the project. Figure
1-10 shows the Groups & Files list with most groups expanded. The items are described in “Default Project
Contents” (page 43).

Figure 1-10 A project with many groups and files expanded

6. Save the new project by typing Command-S or by choosing the Save command from the File menu.

Important: Don’t forget to save your project periodically as you make changes to it.

Creating a Hello World Application 29
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

7. Double-click the icon for the MainMenu.nib file to open the Interface Builder application (located in
/Developer/Applications). Interface Builder opens a number of windows. One of those windows,
the default application window is shown in Figure 1-11. Drag the resize control in the lower-right corner
of the window to reduce the window to a size suitable for containing one button.

Figure 1-11 A default application window in Interface Builder

8. Figure 1-12 shows the Palette window, another window that opens when you open Interface Builder.
You can change the current palette by clicking one of the buttons in the window’s toolbar.

Figure 1-12 Interface Builder’s Palette window, showing the Cocoa-Controls palette

30 Creating a Hello World Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Drag a button from the Cocoa-Controls palette into the “Window” window; the result is shown in Figure
1-13.

Figure 1-13 A window containing a button

9. Double-click Button to select the button title text, then type “Hello World” as the button title. The result
is shown in Figure 1-14.

Figure 1-14 The Hello World button

10. With the Hello World button selected, choose Show Info from the Tools menu (or type Command-Shift-I)
to open the Info window. Use the pop-up menu at the top of the window to display the AppleScript
pane. Then click the disclosure triangle next to the Action checkbox (if it isn’t already open) and click
the “clicked” checkbox. The result is shown in Figure 1-15.

Creating a Hello World Application 31
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Selecting the clicked action indicates that the Hello World button should have a clicked event handler,
to be called when a user clicks the button.

Figure 1-15 The Info window for the Hello World button

11. In the Script pane in the Info window shown in Figure 1-15, select the checkbox for Hello
World.applescript, the default script for the application. That tells AppleScript Studio to put the
clicked handler for the Hello World button in the selected script. In this example there is only one
script—for an example that uses multiple scripts, see the Display Panel sample application (distributed
with AppleScript Studio).

When you click the Edit Script button, Xcode becomes active to allow you to edit the selected script, as
shown in Figure 1-16. AppleScript Studio has already inserted the following handler, which is called
whenever a user clicks the button:

on clicked theObject
 (*Add your script here.*)

32 Creating a Hello World Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

end clicked

Figure 1-16 Editing a clicked handler in Xcode

12. Select the text (*Add your script here.*) and replace it with display dialog "Hello World!"

You could, of course, insert many other kinds of AppleScript statements as part of the handler executed
when a user clicks the button.

13. Build the Hello World application by typing Command-B or choosing Build from the Build menu. (You
can also use one of the build buttons, which have a hammer icon.)

The script Application.applescript is compiled automatically when you build the application. Later
chapters in this document describe how to compile scripts separately.

Building the application also compiles the Cocoa code in the application’s main.m file, prepares the
application’s resources, and links the application with the required frameworks.

14. Run the Hello World application by typing Command-R or choosing Build and Run from the Build menu.
(Both of these options actually rebuild the application, but since you already built it in the previous step,
the application should open quickly.) Figure 1-17 shows the result of clicking the Hello World button.

Creating a Hello World Application 33
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Figure 1-17 The Hello World application in action

Building this Hello World application required very little Objective-C code, and that code was auto-generated
by AppleScript Studio. In fact, you can build quite complex AppleScript Studio applications with no additional
Cocoa code. However, every AppleScript Studio application is a Cocoa application, and it’s the Cocoa
application framework that’s working behind the scenes. This suggests several possible paths for Studio
developers, depending on your background and goals:

 ■ Anyone interested in AppleScript Studio should:

 ❏ See Chapter 3, “AppleScript Studio Components”, (page 39) for a more detailed introduction to
AppleScript Studio.

 ❏ Work through the tutorials in this document and experiment with the applications described in
“AppleScript Studio Sample Applications” (page 35).

 ❏ See “Terminology From the AppleScriptKit Framework” (page 74) to learn more about the user
interface objects you can use with AppleScript Studio and about the classes, properties, events, and
enumerations you can use in scripts. (This section in turn points to the document AppleScript Studio
Terminology Reference, the best source for terminology information.)

 ■ If you have a scripting background and your main goal is to create scripting applications with complex
user interfaces:

 ❏ Use your scripting knowledge, along with information in this document and AppleScript Studio
Terminology Reference, to help you quickly take advantage of AppleScript Studio.

 ❏ Be aware of AppleScript Studio’s Cocoa underpinnings, and that the interface objects you use are
implemented by Cocoa classes. Don’t be afraid to occasionally read the Cocoa information described
in this document or pointed to elsewhere.

 ■ If you have a Cocoa background and you’d like to take advantage of features of AppleScript Studio:

 ❏ See “AppleScript Overview” (page 39) for an introduction to AppleScript.

 ❏ Refer to the documents described in “See Also” (page 15) as needed for more information on
scripting.

 ❏ Use your knowledge of Cocoa, along with information in this document, to provide a head start in
understanding and taking advantage of Cocoa’s important role in AppleScript Studio.

34 Creating a Hello World Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

 ❏ See the document AppleScript Studio Terminology Reference, which describes the terms you use to
work with buttons, menus, views, and other interface items in AppleScript Studio scripts. Most
AppleScript Studio classes are based on Cocoa user interface classes, and where this is the case, the
document contains a link to the Cocoa documentation for the corresponding Cocoa class.

AppleScript Studio Sample Applications

AppleScript Studio includes the following sample applications, which can serve as a valuable source of
examples and coding techniques for working with the many available user interface objects. The applications
are located in /Developer/Examples/AppleScript Studio/. Table 3-3 (page 78) lists the main user
interface objects used in some of the applications.

Sample applications that were added after AppleScript Studio version 1.1 are so noted. For related information,
see “AppleScript Studio System Requirements and Version Information” (page 217).

 ■ Archive Maker demonstrates many Cocoa user interface objects, such as drawers and panels, in a
graphical front end to the gnutar shell tool (for building tar archives). It also shows how to use a call
method statement to call an Objective-C method, and how to use a do shell script statement to
execute a shell command.

AppleScript’s do shell script command is documented in “Technical Note TN2065: do shell
script in AppleScript” at http://developer.apple.com/technotes/tn2002/tn2065.html.

 ■ Assistant presents one possible implementation of an Assistant, using a tab view with separate tab view
items to represent an information panel. The tab view has no border or visible tabs, which supports the
appearance of switching a full panel of user interface elements in and out.

 ■ Browser browses the file system, displaying files and folders in a window similar to the Finder’s column
view.

 ■ Command Finder finds shell commands that match specified text strings, according to the current search
type in a pop-up menu (such as “begins with” or “contains”). Double-clicking a found command opens
a window containing the man page for that command.

 ■ Coordinate System demonstrates how to specify the coordinate system for an application. Added in
AppleScript Studio version 1.4 (along with the support for alternate coordinate systems).

 ■ Countdown Timer demonstrates how to use an idle event handler to build a countdown timer. It also
shows how to display an alert as a sheet. Added in AppleScript Studio version 1.2.1.

 ■ Currency Converter is a simple application that converts a dollar amount to an amount in another
currency.

 ■ Currency Converter (SOAP) is a version of the Currency Converter that uses SOAP commands to look
up exchange rates. Added in AppleScript Studio version 1.2.

 ■ Daily Dilbert uses the date and curl shell script commands to load and display an image, given a URL
from a web service. Added in AppleScript Studio version 1.2.

 ■ Debug Test provides a test bed for debugging an AppleScript Studio script. It displays a progress bar
and an incrementing text field so that you can set break points and examine values.

AppleScript Studio Sample Applications 35
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

http://developer.apple.com/technotes/tn2002/tn2065.html

 ■ Display Alert demonstrates the display alert command, which you can use in place of display
dialog to alert the user to some condition. You can specify the alert icon, whether to display the alert
as a sheet (a modal dialog attached to a document window), the alert message, and the alert button
titles. The window also displays the button returned when the user closes the alert.

 ■ Display Dialog demonstrates various ways of using the display dialog command. The application
provides a window for specifying the text, buttons, and other inputs for a display dialog command,
including whether to display the dialog as a sheet. The window also displays information returned when
the user closes the dialog.

 ■ Display Panel demonstrates the display panel command, which allows you to create your own
dialogs and display them either as a dialog or attached to a window as a sheet. The application shows
how to load and display a panel from a nib (or user interface resource) file. Also demonstrates the use
of multiple scripts in a project.

 ■ Drag and Drop demonstrates how a number of user interface items can accept drags, including files
dragged from the Finder into a table, a color dragged from a color well into a table, text dragged into
a button to change its title, text dragged into a text field, and images dragged into an image view. Added
in AppleScript Studio version 1.2.

 ■ Drag Race is an amusing demonstration of racing buttons.

 ■ Drawer, shown in Figure 1-1 (page 18), demonstrates how to use a number of interface classes, including
buttons, text fields, radio buttons, steppers, and yes, even drawers.

 ■ Image demonstrates how to load an image and add it to an image view.

 ■ Language Translator is another sample that uses SOAP requests—in this case, to translate text to other
languages.

 ■ Mail Search (in AppleScript Studio 1.0, Mail Search was known as “Watson”) is an application that searches
specified Mail application mailboxes for any specified text, either in the Subject or To fields or in the
body of messages. It demonstrates how to work with outline and table views, as well as progress bars.
The Mail Search tutorial, which begins in Chapter 7, “Mail Search Tutorial: Design the Application”, (page
117) provides a detailed tutorial for building Mail Search.

 ■ Multi-Language demonstrates how to access code written in various languages from an AppleScript
Studio application. It works with C, C++, Objective-C, Objective-C++, and Java (both directly and through
the Mac OS X Java bridge).

 ■ Open Panel demonstrates how to use the open-panel class, either as a modal panel or as a panel attached
to a window. You can access an open panel as a property of the Application class.

 ■ Outline uses an outline view to browse the file system, displaying files and folders in a window similar
to the Finder’s list view.

 ■ Outline Reorder demonstrates how to set the contents of an outline view using a single list of records.
It also shows how to turn automatic reordering support on or off dynamically. Added in AppleScript
Studio version 1.4 (along with the support for automatic reordering in data views).

 ■ Plain Text Editor provides a simple example of how to write a document-based plain-text editor. It takes
advantage of the lower level handlers for document handling, namely read from file and write
to file, so that it can read text documents created by other applications. (The Task List sample shows
how to use the two higher level handlers, data representation and load data representation.)
Added in AppleScript Studio version 1.2.

 ■ Save Panel demonstrates how to use the save-panel class, either as a modal panel or as a panel attached
to a window. You can access a save panel as a property of the Application class.

 ■ Simple Outline provides an example of how to populate an outline view using a data source. Added in
AppleScript Studio version 1.2.1.

36 AppleScript Studio Sample Applications
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

Updated in AppleScript Studio 1.4 to demonstrate the new drag and drop support for data views and
the new change cell value event handler added.

 ■ Simple Shell shows how to use the do shell script command to make UNIX shell calls (such as ls,
man, and so on).

 ■ Simple Table provides an example of how to populate an outline view using a data source. Added in
AppleScript Studio version 1.2.1.

Updated in AppleScript Studio 1.4 to demonstrate how to set the contents of a table view using a list of
lists of strings, as well as how to use the new drag and drop event handlers for data views.

 ■ Simple Toolbar demonstrates how to create a toolbar in a window and populate it with toolbar items.
Added in AppleScript Studio version 1.4.

 ■ SOAP Talk is a tool that helps to build the syntax needed to make SOAP requests over the Internet.

 ■ Table demonstrates two ways to work with table views (data displayed in rows and columns): with a
data source object to supply table data (the approach also used by the Mail Search sample application),
and without a data source object (supplying the data directly from a script). Data source objects are
described in “Interface Creation” (page 53).

 ■ Table Reorder demonstrates how to set the contents of a table view using a single list of records. It also
shows how to turn automatic reordering support on or off dynamically. Added in AppleScript Studio
version 1.4 (along with the support for automatic reordering in data views).

 ■ Table Sort demonstrates how to add sorting to a table. Clicking in a column header sorts the table based
on that column. Clicking more than once in the same column header changes the sort order of that
column. Added in AppleScript Studio version 1.2.

 ■ Talking Head shows how to use a movie view to display QuickTime movies.

 ■ Task List demonstrate how to write a document-based application using the higher level handlers data
representation and load data representation. These handlers allow you to return and set any
type of data, but the documents you create with them are readable only by your application. (The Plain
Text Editor sample shows how to use the lower level handlers read from file and write to file.)
Task List also demonstrates how to work with a table view, including support for sorting, as well as with
menu items. Added in AppleScript Studio version 1.2.

 ■ Unit Converter converts values between different units of measurement.

 ■ XMethods Service Finder demonstrates how to use Web Services. It uses a service from XMethods.org
that provides information about all of the services available at that site. It also shows how to create and
use a data sources with a table view. Added in AppleScript Studio version 1.2.

AppleScript Studio Sample Applications 37
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

38 AppleScript Studio Sample Applications
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About AppleScript Studio

AppleScript Studio is a combination of a development environment and an application framework that lets
you quickly build AppleScript Studio applications—Mac OS X applications that combine AppleScript scripts
and Cocoa user-interface objects. It also supplies enhanced scripting capabilities to Cocoa applications.

AppleScript Studio makes use of features from AppleScript, Xcode, Interface Builder, and the Cocoa application
framework. See “About AppleScript Studio” (page 17) for a brief introduction to AppleScript Studio.

This chapter describes, in the following sections, the key features you use to create AppleScript Studio
applications:

 ■ “AppleScript Overview” (page 39) describes the scripting system you use in AppleScript Studio.

 ■ “Xcode Features for AppleScript Studio” (page 42) describes AppleScript Studio–specific features in this
integrated development environment.

 ■ “Interface Builder Features for AppleScript Studio” (page 53) describes features for creating user interfaces
for AppleScript Studio applications.

 ■ “Cocoa Framework Overview” (page 57) describes the sophisticated application framework you use to
create AppleScript Studio applications.

 ■ “AppleScriptKit Framework Overview” (page 59) describes the framework that allows AppleScript Studio
applications to script Cocoa user interface objects.

For additional overview information, see the chapter “Terminology Fundamentals” in AppleScript Studio
Terminology Reference.

AppleScript Overview

AppleScript is a scripting system that provides direct control of scriptable Macintosh applications, including
many parts of the Mac OS itself. Instead of using a mouse or keyboard to manipulate applications, you create
scripts—sets of English-like instructions—to automate tasks, control applications on local or remote computers,
and even control complex workflows. There are examples of AppleScript scripts throughout this document.

AppleScript is the scripting language of choice for many Macintosh users. To provide scripters with increased
flexibility and power, developers make applications scriptable, or capable of responding to Apple events.
Although Carbon and Cocoa applications use different internal mechanisms to support scripting, scripters
can access features in any scriptable application, allowing them to combine features from many applications.

Sophisticated scripters use AppleScript to provide customized solutions that typically make use of multiple
scriptable applications, as well as scriptable parts of the Mac OS, including:

 ■ The Finder, which supports a host of operations on files, folders, windows, and other components of the
Macintosh desktop

AppleScript Overview 39
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

 ■ Mail, which supports operations such as getting, reading, and deleting mail. AppleScript Studio includes
the Mail Search sample application, described in detail starting in Chapter 7, “Mail Search Tutorial: Design
the Application”, (page 117) which uses scripts to search mailboxes in the Mac OS X Mail application.

 ■ QuickTime Player, which supports operations such as opening, playing, and stepping through movies.
The Talking Head sample application shows how to play QuickTime movies in an AppleScript Studio
application.

AppleScript scripts can target applications on remote machines and can even make remote procedure calls
to access services over the Internet (starting with Mac OS X version 10.1). AppleScript’s support for remote
procedure calls, including XML-RPC and SOAP requests, provides access to a variety of web-based servers
that can check spelling, translate text between languages, obtain stock quotes, and more. The SOAP Talk
AppleScript Studio application, described in “AppleScript Studio Sample Applications” (page 35), shows one
way to provide a user interface to access SOAP services. For documentation on AppleScript’s support for
remote procedure calls, see XML-RPC and SOAP Programming Guide, available in AppleScript Documentation.

As an established scripting language, supported by a large number of scriptable applications and available
on almost every Mac, AppleScript is the driving force behind AppleScript Studio.

How AppleScript Is Implemented

You can use AppleScript Studio to create complex scripting solutions without detailed knowledge of how
AppleScript is implemented in Mac OS X. Therefore, this section provides only a brief description of that
implementation. For a more detailed description, see the additional documentation listed in “See Also” (page
15).

The following are some of the key frameworks and other components that support scripting in Mac OS X.
Note, however, that you aren’t required to work directly with any of these frameworks in your AppleScript
Studio project.

 ■ The Open Scripting Architecture (OSA) provides an API for compiling and executing scripts, and for
creating scripting components, such as AppleScript itself. It is implemented in
OpenScripting.framework, a subframework of Carbon.framework.

 ■ The Apple Event Manager provides an API for sending and receiving Apple events and working with
the information they contain. Scripting components use Apple events to send commands and data to
targeted processes. The Apple Event Manager is implemented in AE.framework, a subframework of
ApplicationServices.framework.

 ■ The AppleScript component in Mac OS X implements the AppleScript scripting language. A scripting
component provides services for compiling and executing scripts (and relies on the OSA).

 ■ The Script Editor application provides the ability to edit, compile, and execute scripts, to examine the
scripting terminology of scriptable applications (the terms you can use in scripts to communicate with
applications), and to perform other scripting tasks. When you use it to execute a script, Script Editor calls
on the AppleScript component to convert script statements into the appropriate Apple events to the
targeted applications. In Mac OS X, Script Editor is located in /Applications/AppleScript. Third-party
script editors provide many additional features.

Most scripters are familiar with Script Editor, and you can learn more about it in AppleScript Help in the
Help Center. The version released with Mac OS X version 10.3 provides a number of new and enhanced
features, such as a pop-up menu for inserting common script coding blocks, and histories of previous
results and event logs.

40 AppleScript Overview
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Scripting in AppleScript Studio

An AppleScript script can target any scriptable application in the Mac OS, including those in the Classic
environment and on remote machines. It can also target scriptable parts of the Mac OS, and use any scripting
features provided by AppleScript. With few exceptions, you can use any statements in an AppleScript Studio
script that you would use in any other AppleScript script in Mac OS X.

AppleScript Studio also supports a key additional feature: the ability to access Cocoa’s rich set of user interface
objects in scripts. These objects range from buttons and text fields to pop-up menus, browsers, and table
views. For more information, see “Cocoa User Interface Objects” (page 58)

To write scripts for an AppleScript Studio application, you need to know what terminology you can use with
the user interface objects in the application. For information on how to find the available terminology, see
“AppleScript Studio Terminology” (page 73) in this document, as well as AppleScript Studio Terminology
Reference. In addition, Cocoa’s user interface objects are described in “Cocoa User Interface Objects” (page
58).

Terms for Classes and Objects

This document uses the following definitions to help distinguish between various kinds of Cocoa and
AppleScript classes and objects you work with in AppleScript Studio:

 ■ A Cocoa user interface class is an Objective-C class, generally defined in the AppKit framework, that
supports a user interface item. For example, NSButton and NSBrowser are Cocoa user interface classes.

 ■ A Cocoa user interface object is an instance of a Cocoa user interface class. When creating the interface
for an AppleScript Studio application with Interface Builder, for example, you drag user interface objects
such as buttons and browsers into your application windows, where the objects are instances of NSButton
and NSBrowser, respectively.

When you select a Cocoa user interface object in Interface Builder and examine it in the Info window,
you see its class name in the window’s title bar (for example, NSButton).

 ■ An AppleScript object class is a category for AppleScript objects that share characteristics, such as
properties and elements. For example, if you open the dictionary for an AppleScript Studio application,
you see button in the list of classes in the Control View suite.

 ■ An AppleScript object is an instance of an AppleScript object class. An AppleScript object is typically a
distinct object in an application or its documents that can be specified in a script. In an AppleScript
Studio application, for example, you write statements similar to the following:

set currentButton to button "Search" of window "Some Window"

where currentButton is a reference to an AppleScript object specified by button "Search". The
button referred to is also a Cocoa user interface object (an instance of NSButton) in the application. For
user interface objects in AppleScript Studio applications, there is usually a corresponding Cocoa object
for each AppleScript object.

AppleScript Overview 41
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Xcode Features for AppleScript Studio

Xcode is Apple’s integrated development environment for Mac OS X. It supports building Cocoa and Carbon
applications (as well as bundles, frameworks, plug-ins, and tools) with C, C++, Objective-C, and Java. Xcode
has extensive online help and release notes. There are also several tutorials available that describe how to
build and debug standard applications.

When AppleScript Studio is installed, Xcode provides support for building AppleScript Studio applications.
See Appendix A, “AppleScript Studio System Requirements and Version Information”, (page 217) for information
on how to make sure AppleScript Studio is available.

You use the following Xcode features to create AppleScript Studio applications:

 ■ Project templates Xcode provides project templates for three types of AppleScript Studio application:
AppleScript Application, AppleScript Document-based Application, and AppleScript Droplet. These
templates are described in “AppleScript Studio Application Templates” (page 42) and “Default Project
Contents” (page 43).

Starting in AppleScript Studio version 1.3, Xcode also provides a template you can use to add features
to Xcode itself. This template is described in “AppleScript Studio Xcode Plug-in Template” (page 43).

 ■ Interface support AppleScript Studio relies on Interface Builder to create a user interface for AppleScript
Studio applications, as described in “Interface Builder Features for AppleScript Studio” (page 53). As you
work on an AppleScript Studio application, you can easily switch back and forth between Xcode and
Interface Builder.

 ■ Source code editor Xcode’s source code editor allows you to edit and compile AppleScript scripts. Scripts
can be arbitrarily long and you can perform search and replace and other standard operations. For more
information, see “Source Code Editor” (page 48).

 ■ Terminology Browser Xcode provides an Open Dictionary command (in the File menu) to view the
terminology for any scriptable application. For details, see “Terminology Browser” (page 50).

 ■ Debugging support Xcode provides AppleScript Studio with debugging support that allows you to
perform a variety of debugging tasks. However, that support is not currently complete. For more
information, see “Debugging Features” (page 50).

 ■ Xcode Documentation Window Xcode’s Help menu provides the Documentation Window for quick
access to reference, release notes, websites, and other documentation for working with AppleScript
Studio.

The following sections describe these features in more detail. You can also find step-by-step instructions for
working with Xcode in the Mail Search tutorial, starting in Chapter 7, “Mail Search Tutorial: Design the
Application”, (page 117) and in “Creating a Hello World Application” (page 27).

AppleScript Studio Application Templates

To create a new AppleScript Studio application project in Xcode, you choose New Project from the File menu.
The resulting template window is shown in Figure 1-8 (page 27). Xcode provides three kinds of templates
for AppleScript Studio projects: AppleScript Application, AppleScript Document-based Application, and
AppleScript Droplet. You use the first for applications that don’t need documents, the second for applications
that create and manage multiple documents, and the third for simple droplets (defined in “AppleScript
Droplet Template” (page 47)).

42 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

When you create a new project, you specify a name, which becomes the default name for the application as
well. You can also choose a location for the project. The default location is your home directory (~/), or the
last location you specified when creating a previous project.

AppleScript Studio Xcode Plug-in Template

Starting in AppleScript Studio version 1.3, first distributed with Mac OS X version 10.3, Xcode provides a new
template for creating an AppleScript plug-in for Xcode. That is, you can use AppleScript Studio to create a
plug-in that adds features to Xcode itself.

To create an AppleScript plug-in project in Xcode, you follow these steps:

1. Choose File > New Project

2. In the New Project Assistant window, scroll down to the section for Standard Apple Plug-ins.

3. Select AppleScript Xcode Plugin

Once you’ve built your plug-in, you place it in one of the following locations so that it will be loaded by Xcode
the next time Xcode is launched:

 ■ ~/Library/Application Support/Apple/Developer Tools/Plug-Ins

check for plug-ins in the user’s home directory

 ■ /Library/Application Support/Apple/Developer Tools/Plug-Ins

check in the system domain

 ■ /Network/Library/Application Support/Apple/Developer Tools/Plug-Ins

check in the network domain

For an example of a plug-in script, see the Example section for the plugin loaded event in the PlugIn suite
in AppleScript Studio Terminology Reference.

Default Project Contents

Xcode organizes a project’s files in a nested hierarchy of groups, displayed in the Files list in the project’s
Groups & Files list, as shown in Figure 2-1. A group is represented by a folder icon, but items in a group do
not necessarily reside in the same folder. If an item has a checked checkbox in the Target column (the column
headed by a target symbol, next to the Groups & Files column), it is part of the current target and is included
when that target is built. You can add an item to a build or remove it by clicking to select or deselect its
checkbox in the target column. For more information on targets and builds, see the Documentation Window
in the Xcode Help menu.

The default contents of the Groups & Files list is different for a new project based on the AppleScript
Application and AppleScript Droplet templates than for one based on the AppleScript Document-based
Application template, as described in the following sections.

Xcode Features for AppleScript Studio 43
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

AppleScript Application Template

A new project based on the AppleScript Application template contains all of the items shown in Figure 2-1.

Figure 2-1 Default contents of an AppleScript Application project

The following is a description of these default items:

 ■ The Scripts group contains the application’s script files, all of which must have the extension
.applescript so that Xcode’s source code editor recognizes them as AppleScript script files.

Application.applescript is the default script file, which is created as an empty file. When you write
script statements to perform operations in your application, you do so in this file, or in additional script
files you create.

 ■ The Resources group contains all of the application’s resources, and you should store any resource you
add in this group. The default resources include the following:

 ❏ AppleScriptKit.asdictionary is a pointer to a file in the AppleScriptKit framework (described
below). This file describes the scripting terminology you can use in AppleScript Studio scripts. It
includes terms that are available to all Cocoa applications that support scripting (in the Standard
and Text suites) and those that are specific to AppleScript Studio applications (the Application,
Container View, Control View, Data View, Menu, Panel, and Text View suites). See “AppleScript Studio
Terminology” (page 73) for more information on these suites.

44 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

AppleScriptKit.asdictionary is provided so that you can conveniently examine the terminology
before the application is built (and without opening the dictionary of some other built AppleScript
Studio application). You can click the file’s icon to examine its contents; for details, see “Terminology
Browser” (page 50).

Note: Unlike the formatting for script files in an AppleScript Studio project, the formatting in
AppleScriptKit.asdictionary is fixed when the file is created, and does not change to match
settings you specify in the preferences for the Script Editor application. (In versions of Script Editor
released prior to Mac OS X version 10.3, you set formatting by choosing the AppleScript Formatting
menu item.) However the formatting for dictionaries from other applications that you open will
reflect your settings. For information on script formatting, see “How Xcode Formats Scripts” (page
68).

 ❏ MainMenu.nib is the main nib file (or user interface resource file) for the application. Nib files are
described in “Interface Builder Features for AppleScript Studio” (page 53). You double-click the nib
icon to open the file in Interface Builder, where you can add interface items, assign event handlers
to them, and connect them to scripts.

English contains the English version of any localized information for MainMenu.nib. By default,
the application does not contain localized information for any other languages, so clicking or
double-clicking English has the same affect as clicking or double-clicking MainMenu.nib.

Note: Localization is too complex a topic to describe here. For a description of how to localize
resources, see the “Bundles” chapter of Mac OS X Technology Overview.

 ❏ InfoPlist.strings contains strings representing information that is displayed to the user, such
as the application name, version, and copyright information. For a description of how this information
is used, see “Customize Version and Copyright Information” (page 211).

English contains the English version of any localized string information. By default, the application
contains only an English version, so clicking or double-clicking English has the same affect as
clicking or double-clicking InfoPlist.strings.

 ■ The Other Sources group contains the file main.m. This file contains the minimum Cocoa code required
by the application. That code is shown in Listing 2-1 (page 59). You don’t typically need to make any
changes to this code file.

 ■ The Frameworks group contains two subgroups, Linked Frameworks and Other Frameworks. The Linked
Frameworks group contains two frameworks:

 ❏ Cocoa.framework The Cocoa framework includes both the AppKit and Foundation frameworks,
which together provide the code and resources for Cocoa applications, including the user interface
classes you use in AppleScript Studio. All AppleScript Studio applications link against this framework.

 ❏ AppleScriptKit.framework This framework provides the scripting terminology and other
extensions to Cocoa that allow AppleScript Studio applications to make use of Cocoa user interface
classes. All AppleScript Studio applications link against this framework.

For more information, see “AppleScriptKit Framework Overview” (page 59).

The Other Frameworks group also contains two frameworks:

Xcode Features for AppleScript Studio 45
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

 ❏ Foundation.frameworkAs you’ve seen, the Cocoa framework includes the Foundation framework.
Foundation is included in the Other Frameworks group as a convenience—by opening the framework,
you can quickly access header and documentation files associated with it.

 ❏ AppKit.framework As with the Foundation framework, the AppKit framework is included for
convenience.

 ■ The Products group contains the products produced by the targets in the project. The default project
has just one target, which creates an application. In this example, Simple Application.app is the
name of the application, where .app is the extension (which is not displayed in the Finder) for an
application.

The applications you build are saved in the build directory, which is usually a folder named “build” in
the project folder. When you are ready to distribute your AppleScript Studio application, you copy it
from this location.

Document-based Application Template

Figure 2-2 shows the Groups & Files list for a new document-based project (the Mail Search project, from a
later tutorial in this document), with most groups expanded. Many of the items are common to all AppleScript
Studio project templates, and are described in “AppleScript Application Template” (page 44). The following
is a description of the default items that are unique to a document-based project:

 ■ Document.applescript is the default document script file, which is created as an empty file. If you
have any document-related script statements, you should add them to this file.

 ■ Document.nib is the nib file for creating document-associated windows. Nib files are described in
“Interface Builder Features for AppleScript Studio” (page 53). You double-click the nib icon to open the
file in Interface Builder.

 ■ Credits.rtf is a rich text format (.rtf) file that supplies text for the default About window in a Cocoa
application. You edit this file to supply your own About window information, as described in “Customize
the About Window” (page 210).

Note: In earlier versions of AppleScript Studio, the project contained a Classes group, which in turn contained
two files, Document.h and Document.m. Those files contained the minimum code required to support
documents in a document-based Cocoa application. Starting with AppleScript Studio version 1.2, they are
no longer needed.

If you write Cocoa classes for your AppleScript Studio application, you can create a group for them.

46 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Figure 2-2 Default contents of an AppleScript Document-based Application project

AppleScript Studio version 1.2 provides new terms for working with documents. These terms are documented
in AppleScript Studio Terminology Reference, and you can also examine them in the Document suite in the
AppleScript Studio scripting dictionary AppleScriptKit.asdictionary. For details on how to view this
dictionary, see “Terminology Browser” (page 50).

AppleScript Droplet Template

AppleScript Studio provides the AppleScript Droplet template for creating its namesake—droplets. A droplet
is a script application that launches when you drag a file or folder icon in the Finder and “drop” it on the
droplet’s icon. A droplet contains an on open handler, which receives a list of descriptors for the folders or
files dropped on it. Droplets are a popular kind of application because they can conveniently handle everyday
tasks, such as changing file extensions, printing, or performing more complicated operations, on each item
in a list of files or folders.

A project created with the AppleScript Droplet template contains the same items shown in Figure 2-1 (page
44) for the AppleScript Application template. The one difference is that the default script file,
Application.applescript, is not empty in a droplet application. Instead, it contains the following handlers:

 ■ on idle: Script statements you add to this handler perform idle time processing.

 ■ on open: Script statements you add to this handler perform the droplet’s main function.

By default, the open handler ends with a quit statement. If you want the handler to stay open, remove
the quit statement.

By adding script statements to these handlers, you can quickly create droplet applications.

Xcode Features for AppleScript Studio 47
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

The Targets Group

Xcode keeps track of project targets in the Targets group. A new AppleScript Studio project contains just
one target, with the same name as the application (without the .app extension). For example, the default
target for the project described in “Default Project Contents” (page 43) is “Simple Application”. More
complicated applications can have multiple targets.

Figure 2-3 shows the Targets inspector for the Mail Search application, developed in a tutorial later in this
document. The figure shows the Styles pane, containing a pop-up menu to choose between Development
and Deployment styles. By default, a new application uses the development build style. In a development
build, debugging symbols are included and compiled script files in the application’s bundle include the script
text. In addition, ZeroLink is active. In a deployment build, symbols and script text are not included, and
ZeroLink is turned off. As a result, a deployment build may have a much smaller disk footprint.

Note: ZeroLink is a feature you can read about in Xcode Help. You can create fairly complex AppleScript
Studio applications without having to modify default settings.

Figure 2-3 The Mail Search Target inspector

Source Code Editor

Xcode provides a robust source code editor with many features, including:

48 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

 ■ options for switching between recently edited files, jumping to named handlers, and performing split-pane
editing

 ■ syntax checking for AppleScript, Java, C, and C++, as well as syntax coloring, which uses fonts, styles,
and colors to distinguish, for example, between key words, comments, and so on

 ■ automatic indenting and adjustable tab width

 ■ matching of parentheses, braces, and brackets

When AppleScript Studio is installed, Xcode recognizes files that end in .applescript as script files. For
example, the name of the default script file created for a new AppleScript Studio project is
Application.applescript. When you select a script file in the Groups & Files list and click the Show Editor
button, Xcode displays the file’s contents in the main project window, as shown in Figure 2-4. (You can also
double-click the file to open it in a separate editor window.) This window includes:

 ■ a pair of arrows (the Go Back and Go Forward arrows) for switching between files displayed in the editor
window

 ■ a script icon, indicating the file is a script file (if you position the cursor over the script icon, it displays
the full path to the script file)

 ■ the name of the file (the name is in a pop-up menu; if you have displayed more than one file in the
window, you can choose between them)

 ■ a pop-up menu for navigating to any handler in the script (the current, and in this case only, handler is
the on clicked handler)

 ■ a “Go to Counterpart” button for switching between header and source files (not applicable for script
files)

 ■ a button for splitting the window into more than one pane (clicking again rejoins split panes

Figure 2-4 Editing a Hello World script in Xcode

Xcode Features for AppleScript Studio 49
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

You build an AppleScript Studio application with any of Xcode’s mechanisms for starting a build, which
include menu commands (such as Build in the Build menu), keystroke shortcuts (such as Command-B), and
clickable buttons (any of the buttons that include a hammer). Building creates the application or other product
specified by the current target.

When you build an AppleScript Studio application, all modified script files that belong to the current target
are compiled automatically. You can compile an individual script in an editor window by typing Command-K
or pressing the Enter key.

Building the application also compiles the Cocoa code in the application’s main.m file (shown in Figure
1-10 (page 29)) and in any other source files in the current target, and links with the application’s frameworks.
For more information on building applications, see any of the tutorials in this document, or refer to the
Documentation Window in the Xcode Help menu.

In Figure 2-4 (page 49), AppleScript keywords are shown in blue (on, end) and application keywords in red
(clicked, display dialog). For information on script formatting, see “How Xcode Formats Scripts” (page
68).

You can read more about the standard features available with Xcode’s source code editor in the Documentation
Window, found in the Xcode Help menu.

Debugging Features

Note: AppleScript Studio’s support for line-by-line debugging in Xcode is still in development. This document
will be updated to describe this support as it becomes available.

The following sections contain some information that can help you debug your application:

 ■ “Programming Tips” (page 79) provides pointers for creating Studio applications. The section “Using
the Log Command to Track Your Scripts” (page 80) can be useful in debugging your scripts.

 ■ “Troubleshooting” (page 81) provides a list of common problems and tips for solving them.

You may be also able to debug your application with a third-party debugger.

Terminology Browser

Xcode provides the Open Dictionary command in the File menu to examine the scripting dictionary of any
scriptable Carbon or Cocoa application. The dictionary defines the application’s scripting terminology—the
English-like words and phrases you can use in a script to communicate with and control that application.

The Open Dictionary command brings up a dialog similar to the one in Figure 2-5, where you can select from
among the currently available scriptable applications.

50 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Figure 2-5 The Open Dictionary dialog in Xcode

Within an AppleScript Studio project, you can display the AppleScript Studio scripting dictionary by
double-clicking the icon for AppleScriptKit.asdictionary in the Files list in Xcode’s Groups & Files list.
The result is a browser window similar to the one shown in Figure 2-6. If you merely click the icon, or if you
choose an AppleScript Studio application with the Open Dictionary command, the browser is displayed as
a pane within the project window. In either case, you have access to the same information and navigation
options.

Note: The color of text you see when you display AppleScriptKit.asdictionary depends on the color
settings at the time the file was created, and may vary from what is shown in Figure 2-6.

You can also open dictionaries in the Script Editor application. Both applications provide the same information.

Xcode Features for AppleScript Studio 51
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Figure 2-6 The AppleScript Studio scripting dictionary in a browser window

Figure 2-6 shows the classes (which can include elements and properties) and events (which provide syntax
descriptions) of the Container View Suite, with the terminology for the tab view item class currently visible.

Note: The Event container in the scripting dictionary can contain both commands and events. A command
is a word or phrase a script can send to an object to request an action. For example, a script can send a stop
command to a progress indicator.

An event is an action an object can respond to. For example, a button click is an event that may result in
execution of a clicked handler for the button that was clicked.

More simply, scripts can send commands to objects, while events, often the result of user actions, generate
calls to event handlers in scripts.

Figure 2-6 also shows a number of suites of related terminology. The Standard and Text suites are part of
Cocoa and are available to all Cocoa applications that turn on scripting support. The remaining suites are
provided by AppleScript Studio, which groups its scripting terminology in these suites. See AppleScript Studio
Terminology Reference for detailed information about the available terminology, and also the section
“AppleScript Studio Terminology” (page 73) in this document.

52 Xcode Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Note: Outline items in the dictionary viewer shown in Figure 2-6 do not remember their expanded state, so
if you shift to display another file in the window, when you shift back to the dictionary viewer all of the items
will be collapsed. To avoid this, open the dictionary viewer in its own window. You can do so by double-clicking
the file AppleScriptKit.asdictionary in the Files list in an AppleScript Studio project’s Groups & Files
list.

Interface Builder Features for AppleScript Studio

Interface Builder is Apple’s graphical interface builder for Mac OS X. Interface Builder lets you lay out interface
objects (including windows, controls, menus, and so on), resize them, set their attributes, and make connections
to other objects. The resulting information is stored in user interface resources, called nibs, which in turn are
stored in nib files that become part of your application. (A nib file is an Interface Builder file—the ”ib” in
”nib” stands for Interface Builder.) When the application is opened, it creates an interface containing the
windows, buttons, and other user interface objects specified in its nib files.

The Interface Builder application is located in /Developer/Applications. Interface Builder has extensive
online help and release notes. There are also tutorials available that describe how to build interfaces for
Carbon and Cocoa applications.

Interface Builder’s support for AppleScript Studio includes the following features:

 ■ Graphical tools for creating sophisticated interfaces (not limited to AppleScript Studio applications).
Some of these tools are reviewed in “Interface Creation” (page 53). For additional documentation, see
the tutorials throughout this document, as well as the tutorials and online help for Interface Builder.

 ■ Access to Cocoa’s rich set of user interface objects (also not limited to AppleScript Studio applications).
For more information, see “Cocoa User Interface Objects” (page 58).

 ■ An AppleScript palette, which provides custom AppleScript Studio objects. For more information, see
“Interface Creation” (page 53).

 ■ An AppleScript pane in the Info window. You can use this pane to connect user interface objects to
scripts—when an event occurs, such as a user clicking a button, the application calls a specified event
handler in a script. For more information, see “Interface Connections” (page 56).

The following sections describe these features in more detail.

Interface Creation

To create an interface with Interface Builder, you create and edit a nib file containing descriptions of the
interface elements in your application. A nib file can describe all or part of a user interface. Many applications
use multiple nib files—for more information, see “Deciding How Many Nib Files to Use” (page 63).

When you create an AppleScript Studio application with Xcode, it automatically contains a default nib file
named MainMenu.nib. The icon for this nib file is shown in Figure 2-1 (page 44). Double-clicking the icon
for a nib file opens Interface Builder. When you open the default MainMenu.nib file for an AppleScript Studio
application, Interface Builder opens four windows, such as those shown in Figure 2-7.

Interface Builder Features for AppleScript Studio 53
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Figure 2-7 Interface Builder windows after opening the MainMenu.nib file

The MainMenu.nib window displays the Instances pane, showing four instances, two of which (MainMenu
and Window) are shown in their own windows. The four instances are:

 ■ File’s Owner: Every nib file has one owner, an object outside the nib file that relays messages between
objects that are created from the nib. In this, the main nib file, File’s Owner always represents NSApp, a
global constant that references the NSApplication object for the application. The application object
serves as the master controller for the application. For more information on the application object, see
“Cocoa Application Framework” (page 58). For more on File’s Owner, see “Connect the Application
Object” (page 167). For more detail, see the Cocoa documentation described in “See Also” (page 15).

 ■ First Responder: This instance identifies the object that is the first target in the application for keystrokes.
You won’t typically need to modify this instance in AppleScript Studio applications.

Note: There is a window property first responder you use to set the current focus; for example set
first responder of window 1 to text field 1 of window 1 sets the focus to the specified
text field so that it will receive keystrokes. As of AppleScript Studio version 1.2, you can only set the
first responder property; getting it will not return a useful value.

 ■ MainMenu: This instance defines the menus for the application. It is displayed in its own window in
Figure 2-7. For information on working with menus, see “Customize Menus” (page 207).

 ■ Window: This instance defines the document window for the application, and is also displayed in its own
window in Figure 2-7. For information on working with windows, see “Create the Message Window” (page
135) and “Create the Search Window” (page 150).

For information on the other panes visible in the MainMenu.nib window, see Interface Builder Help.

54 Interface Builder Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

The window containing a number of buttons and fields is the Palette window. You click the buttons in the
Palette window’s toolbar to display other palettes, such as the AppleScript palette (whose button is on the
left of the toolbar).

Note: Interface Builder allows you to customize the toolbar, so it may not appear exactly as shown in Figure
2-7. To customize, click in the toolbar while holding down the Control key to see a menu of options.

To add Cocoa user interface objects to your application’s main window, you simply drag them from the
Cocoa-Controls palette (or from another palette) and position them in the Window window.

To create a new Window, you drag a window out of the Cocoa-Windows palette and release it. The window
will appear both as an instance in the nib window and as a window, into which you can drag user interface
items.

One feature of the Palette window that is unique to AppleScript Studio is the AppleScript palette, shown in
Figure 2-8. This palette provides access to special-purpose objects the AppleScriptKit framework supplies for
use in AppleScript Studio applications. For example, the icon in Figure 2-8 represents a data source object
that supplies data to a table view or other view with rows and columns. (The data source icon shown is
subject to change.) The section “Connect the Search Window” (page 171) in the Mail Search tutorial defines
the data source and describes how to work with data source objects.

Figure 2-8 The AppleScript palette in Interface Builder’s Palette window

Interface Builder provides several mechanisms for modifying interface items:

 ■ You can drag to move or resize items; as you drag, Interface Builder provides feedback to help align
items according to the Aqua interface guidelines.

 ■ For many items, such as buttons, you can double-click the item to select its title, then type a new title.

 ■ You can use commands from the Format, Layout, and Tools menus to modify and position user interface
items.

 ■ You can select a user interface item, then open the Info window (by typing Command-Shift-I or choosing
Show Info from the Tools menu). The Info window has a number of panes, selected through a pop-up
menu, which allow you to set attributes, adjust size, and perform other operations. The AppleScript pane
is shown in Figure 2-9 and described in “Interface Connections” (page 56).

Interface Builder Features for AppleScript Studio 55
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Interface Connections

Interface Builder provides the AppleScript pane in the Info window to connect objects in an application’s
user interface to application scripts. You create connections so that when a user performs an action, such as
typing text, clicking a button, or choosing a menu command, the application calls the appropriate handler
to deal with that action.

To connect a handler, you select a user interface item in an Interface Builder window, then open the Info
window by typing Command-Shift-I or choosing Show Info from the Tools menu. Use the pop-up menu at
the top of the window to choose the AppleScript pane. Figure 2-9 shows the Info window for a button in
the Hello World application, described in “Creating a Hello World Application” (page 27).

Figure 2-9 The Info window for a button

The AppleScript pane provides the ability to

 ■ select any available event handlers for an object

The Info window shows all the event handlers available to objects of the current class (in this case, the
button object is an instance of NSButton). That may include handlers inherited from superclasses.

Event handlers are grouped by function. You click the checkbox for any group to connect all handlers
in that group, or click one or more checkboxes within a group to connect individual handlers.

 ■ assign selected event handlers to an existing script or to a new script you create

Any existing scripts in your application appear in the Script list. You click the New Script button to create
a new script, which is added to the list of scripts.

56 Interface Builder Features for AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

To assign a handler to a script, check the handler, select the checkbox for the script, then click the Edit
Script button. This automatically switches to an editor window in Xcode for the selected script. Xcode
inserts an empty handler for the event, such as the following clicked handler:

on clicked theObject
 (*Add your script here.*)
end clicked

You can then add any desired script statements to the handler.

 ■ identify objects by an automatically assigned index, or by a name you supply

The button object in Figure 2-9 has index 1, meaning it is the first button in the window. You can also
type a name in the Name field. Then, from within your scripts, you can refer to the object by either name
or index. You can also manipulate objects in scripts by ID, but AppleScript Studio and Interface Builder
do not supply a mechanism for obtaining the ID while creating the interface.

Note: Identifying an object in a script by its unique ID is generally safer than using an index number,
which can change during script execution.

You can use the AppleScript pane in the Info window to examine the event handler definitions for all available
handlers for a particular object. Just select all the checkboxes, choose a script, and click the Edit Script button.
Xcode inserts an empty handler for every selected event.

As mentioned in “Interface Creation” (page 53), the Info window provides panes for performing many
operations, such as setting the enabled state and other attributes of an object. The tutorial chapters in this
document describe how to perform operations with the Info window, and you can also read about those
operations in Interface Builder Help. It is possible to use the Info window to hook up objects to Cocoa class
methods. See the Cocoa documentation described in “See Also” (page 15) for more information.

Cocoa Framework Overview

While a previous section described AppleScript as the driving force behind AppleScript Studio, the Cocoa
application framework provides the key technology for creating AppleScript Studio applications and supplying
their user interfaces. This section provides a brief overview of features of the Cocoa framework.

The Cocoa framework is an object-oriented application framework. It pulls together two other frameworks,
the AppKit and Foundation frameworks. Together, the classes and resources in these frameworks provide
the basic building blocks for sophisticated Mac OS X applications.

The Foundation framework defines a layer of useful primitive object classes, including support for Unicode
strings, allocation and deallocation of objects, arrays and collections, dates, ports, and more. The AppKit
framework provides classes for a graphical, event-driven user interface, including windows, buttons, text
fields, and more.

These frameworks are located in /System/Library/Frameworks, along with the other frameworks available
with Mac OS X.

Cocoa Framework Overview 57
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

Cocoa Scripting Support

Cocoa applications can take advantage of automated scripting support supplied by the Foundation and
AppKit frameworks. With the help of a scripting definition supplied by the application itself, this support
converts incoming Apple events into script command objects that access application objects automatically
to perform the specified operation. This mechanism makes it very easy to provide basic scripting support,
such as responding to Apple events by manipulating scriptable objects and data in the application.

To turn on Cocoa’s built-in scripting support, an application must link with the AppKit and Foundation
frameworks, and must also add a key to its Info.plist file:

NSAppleScriptEnabled = YES

When you choose an AppleScript Studio project template in Xcode, this key is automatically added to your
application’s Info.plist file.

AppleScript Studio uses an additional framework, the AppleScriptKit framework, to enhance the built-in
scriptability available to Cocoa applications. That framework is described in “AppleScriptKit Framework
Overview” (page 59). For information on how to use this framework with your Cocoa application, see “Adding
AppleScript Studio Support to Your Cocoa Application” (page 84).

Cocoa User Interface Objects

Cocoa provides a wide variety of user interface objects for use in your application. These objects range from
the basic (buttons, checkboxes, text fields) to the sophisticated (windows, panes, tabs, browsers). You add
these items to your application’s user interface with Interface Builder, as described in “Interface Creation” (page
53). That section describes how to view the available objects in Interface Builder’s Palette window, shown
in Figure 2-7 (page 54).

Another way to examine the user interface objects available in AppleScript Studio is to build the various
applications distributed with AppleScript Studio. These applications are described in “AppleScript Studio
Sample Applications” (page 35).

The user interface objects you use in AppleScript Studio are instances of Cocoa classes defined in the AppKit
framework. These classes are part of an application framework that provides many sophisticated features for
creating object-oriented applications. For more information, see the Cocoa documentation described in “See
Also” (page 15).

Scripters can access these user interface classes through the terminology provided by AppleScript Studio.
“AppleScript Studio Terminology” (page 73) describes AppleScript Studio’s script suites, which specify the
available objects and events you can use in AppleScript Studio scripts.

Cocoa Application Framework

Because Cocoa is a full-featured application framework, just building the default application from a Cocoa
project template results in an application that is ready to do real work, including displaying its interface and
responding to user actions.

58 Cocoa Framework Overview
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

AppleScript Studio applications take advantage of the Cocoa framework, which works “behind the curtain”
to display the interface, respond to user actions, and more. But there is very little visible Cocoa code required
for an AppleScript Studio application (see Listing 2-1). As a result, scripters gain the ability to create complex
interfaces, work in a powerful development environment, and control applications using AppleScript script
statements.

Listing 2-1 Full Objective-C code for a simple AppleScript Studio application

extern int NSApplicationMain(int argc, const char *argv[]);

int main(int argc, const char *argv[])
{
 return NSApplicationMain(argc, argv);
}

In Listing 2-1, the main function calls NSApplicationMain to create an application object, load the
application’s main nib file (thus creating the interface), and call the application object’s run method. The
application object’s main task is to receive events and distribute them to the objects in the application that
should respond to them. For example, all keyboard and mouse events go directly to the window object
associated with the event. In an AppleScript Studio application, these events can then be dispatched to script
event handlers (described in the next section) associated with user interface objects.

Although you can create applications that perform virtually all of their operations by executing AppleScript
scripts, you are free to include additional Cocoa code in applications. And if you want to know more about
the Cocoa code working behind the scenes, see the Cocoa documentation described in “See Also” (page 15).

AppleScriptKit Framework Overview

Any Cocoa application can take advantage of automated scripting support supplied by the Foundation and
AppKit frameworks. AppleScript Studio uses an additional framework, the AppleScriptKit framework, to
supply advanced Cocoa scripting support that allows AppleScript Studio applications to work with Cocoa
user interface objects in scripts. All AppleScript Studio applications automatically link with this framework.Cocoa
applications can also link with it, as described in “Adding AppleScript Studio Support to Your Cocoa
Application” (page 84).

When you install AppleScript Studio, the AppleScriptKit framework is installed in
/System/Library/Frameworks. The framework is also installed automatically with Mac OS X version 10.1.2
and later, so even users who haven’t installed AppleScript Studio can use your Studio applications if they
have installed the corresponding version of Mac OS X. See “AppleScript Studio System Requirements and
Version Information” (page 217) for details on how to determine what version (if any) of AppleScript Studio
is installed.

The primary importance of AppleScriptKit.framework to scripters is that it supplies the scripting
terminology you use to access user interface objects in AppleScript Studio scripts. You can read about this
terminology in “AppleScript Studio Terminology” (page 73) and find instructions on how to display it in
“Terminology Browser” (page 50). For very detailed terminology reference, see AppleScript Studio Terminology
Reference.

AppleScriptKit Framework Overview 59
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

60 AppleScriptKit Framework Overview
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AppleScript Studio Components

This chapter describes a number of features and issues that will help you get the most from AppleScript
Studio. It contains the following sections:

 ■ “Additional Information on AppleScript Studio” (page 61)

 ■ “AppleScript Studio Terminology” (page 73)

 ■ “Programming Tips” (page 79)

 ■ “Troubleshooting” (page 81)

For related information, see “Strengths and Limitations” (page 20).

Additional Information on AppleScript Studio

The following sections describe additional features and issues you’ll want to know more about as you work
with AppleScript Studio.

 ■ “Organizing an AppleScript Studio Project” (page 61)

 ■ “Naming Conventions for Methods and Handlers” (page 63)

 ■ “Accessing Code From AppleScript Studio Scripts” (page 64)

 ■ “Persistent Script Properties” (page 67)

 ■ “Accessing Script Globals” (page 67)

 ■ “Overridden Scripting Additions” (page 68)

 ■ “How Xcode Formats Scripts” (page 68)

 ■ “Switching Between AppleScript Studio and Script Editor” (page 70)

 ■ “Scripting AppleScript Studio Applications” (page 71)

 ■ “Using Script Editor to Test AppleScript Studio Terminology” (page 71)

Organizing an AppleScript Studio Project

Two questions you may frequently face in organizing an AppleScript Studio project are whether to use one
or many script files and whether to use one or many nib files. In each case, the answer depends on the scope
and goals of the project.

Additional Information on AppleScript Studio 61
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Deciding How Many Script Files to Use

When you create a new AppleScript Studio project in Xcode with the AppleScript Application or Droplet
templates, it contains one script file, Application.applescript. If you use the Document-based template,
you get an additional script file, Document.applescript. As the names suggest, these script files are
intended for handlers related to the application and its documents, respectively. However, you are free to
delete these script files, to rename them, or to add additional script files.

Given this freedom of choice, how should you organize the handlers and other script statements you write
for an AppleScript Studio application? As you might expect, the answer depends on the scope of the project
and the complexity of the user interface.

There are several advantages to putting all of your script statements in one file:

 ■ Because they are in one file, handlers and script objects have access to other handlers, script objects,
and global properties in the file. When this access is important, use of one file makes sense. Script objects
are described in “Additional Handlers and Scripts in Mail Search” (page 127).

 ■ There is less overhead with a single script file. For a small application or one with a simple user interface,
creating multiple script files may slow the pace of development.

A significant disadvantage of using a single script file is that if many similar objects in the interface (such as
buttons) share a handler (such as the clicked handler), you may need to do lengthy testing to determine
which object the handler was called for. An example is shown in Listing 3-1. Thus using a single script file
can have drawbacks in the case of a complex interface with many similar objects, such as a preferences panel.
It can also lead to greater complexity in testing and debugging.

Listing 3-1 Detecting which button was clicked

on clicked theObject
 if the name of the object is "Dial button" then
 --do something
 else if name of the object is "Hang Up button" then
 --do something else
 else if name of the object is "Panic button" then
 --do a third thing
 else if ...

There are also advantages to using multiple script files:

 ■ Modularity is a widely-accepted principle in software development. Grouping like things together can
make the application both easier to understand and easier to test and debug.

 ■ Having one script per significant object allows you to avoid the code complexity shown in Listing 3-1.
Within a handler, you know which object triggered the call. In fact, you should put a comment to that
affect in the handler itself.

The downside to using multiple script files is a proliferation of small files in the project. That makes multiple
script files most appropriate for projects with a significant, but manageable, number of similar user interface
objects.

Finally, you may want to provide one script file per window in your application. This approach may make
sense if you are using a similar approach for nib files (as described in the next section).

62 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Deciding How Many Nib Files to Use

To create an interface with Interface Builder, you create and edit a nib resource file that contains descriptions
of the interface elements in your application. A nib file can describe all or part of a user interface. Many
applications use two or more nib files, with one of them designated as the main nib file. The main nib file
contains the main menu and any windows and panels you want to appear when your application starts up.

In addition to the main nib file, you can have one or more nib files that you load whenever you need them.
Loading a nib file unarchives (or creates instances of) whatever user-interface objects are described in the
nib. For example, if your application creates its own document type, you might have a separate nib file for
a document window. Each time a user opens a new document, you would create a document window by
loading the auxiliary nib file.

It is certainly possible to put a large number of user interface definitions into a single nib file. However, as
you add object instances (and possibly classes, images, and sounds as well) to a nib file, the task of working
with the nib in Interface Builder becomes more complicated. For example, you can use Interface Builder to
examine the objects in a nib file in an outline view, as described in “Examining an Object Hierarchy in the
Nib View” (page 179). This mode of display can be very useful for examining an object hierarchy and viewing
the connections between objects. However, as you add objects to the nib file, the clarity of the hierarchy
and relationships diminishes.

As a result, using a single nib file probably only makes sense for relatively small AppleScript Studio applications
with simple user interfaces, and for applications that are not built with the Document-based project template.

A rule of thumb for creating nib files is to use one nib for each separate kind of window in the application.
For example, the Mail Search application, described in detail in the tutorial beginning in Chapter 7, “Mail
Search Tutorial: Design the Application”, (page 117) uses four nib files: one for the application and its menus,
one for the search window, one for the message window, and one for a status dialog. By using a single nib
for a window definition, you can easily create instances of that window object by loading the nib with the
load nib command.

Note: When you load a nib file, Cocoa instantiates all the top level objects archived in the nib. So if you have
more than one window defined in a nib file, loading the nib file will instantiate each window. That may be
appropriate if your application has several windows that you always want to instantiate on launch, and not
again thereafter. And you can use a window object’s visible property to control when the window is visible.

One final advantage of using multiple nib files is that doing so can help simplify the task of finding and
correcting interface-related bugs—and in AppleScript Studio, the interface is likely to be a major factor in
most applications.

Naming Conventions for Methods and Handlers

The Cocoa application framework follows a naming convention that helps explain when certain methods
are called. This convention, which is reflected in the terminology for AppleScript Studio’s event handlers,
inserts should, will, and did in method names. Table 3-1 describes the meaning of these terms. Note that
to indicate a completed operation, AppleScript Studio uses the past tense, rather than the term did.

Additional Information on AppleScript Studio 63
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Table 3-1 Naming conventions in Cocoa and AppleScript Studio

AppleScript Studio examplesExplanationCocoa phrase

should open

should close

Asks whether an operation should take place. You can
cancel the operation by returning false.

should

will resize

will hide

will quit

An operation is about to take place. You can prepare for
it, but not prevent it.

will

activated

launched

miniaturized

zoomed

An operation has completed. You can perform actions in
response to it. AppleScript Studio uses past tense, rather
than the term did.

did

So, for example, you can add a should close handler to a window object. When the handler is called, it
can determine whether the user has performed some essential task—if not, it can return false and refuse
to allow the window to close. A will close handler cannot cancel the close operation, but it can perform
any necessary tasks to prepare for closing. Finally, a closed handler can perform any tasks required after
closing.

See AppleScript Studio Terminology Reference for detailed descriptions of the event handlers and other
terminology that is available in AppleScript Studio.

Accessing Code From AppleScript Studio Scripts

AppleScript Studio provides the call method command for calling methods of Objective-C objects in an
AppleScript Studio application.

The call method command provides the ability to:

 ■ target user interface objects

 ■ target the application object or its delegate

 ■ specify as many parameters as needed

 ■ receive a return value; the return value can be another object, from which you can extract more
information

Because you can access other languages from Objective-C, the call method command also allows you to:

 ■ access code written in C, C++, Objective-C++, and Java (both directly and through the Java bridge—a
Mac OS X mechanism for communicating between Objective-C and Java)

 ■ access legacy code written in one of these languages

 ■ access Mac OS X frameworks, such as the Core Foundation and Carbon frameworks

64 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

The Multi-Language application, distributed starting with AppleScript Studio 1.1, demonstrates how to call
other languages from an AppleScript Studio application.

Figure 3-1 shows the syntax for the call method command.

Figure 3-1 Syntax for the call method command

call method
Invokes the command, with reference specifying the method to call.

with parameter
This optional parameter allows you to pass a value to a method that takes a single parameter. You
can use the parameter to pass an object or a simple value such as an integer. You can also pass a
single list, which can contain multiple items, but only if the called method expects a single parameter
that encompasses multiple values, such as an array or dictionary.

of class
This optional parameter allows you to specify the Objective-C class whose method is called.

of object
This optional parameter allows you to specify the object whose method is called.

You never use both of object and of class. If you don’t specify either, the call goes to a method
of the application’s delegate object or, if the delegate doesn’t support it, to the application object
itself.

The application object is described in “Cocoa Framework Overview” (page 57). For information on
class methods, delegates, and other Cocoa topics, see the documentation described in “See Also” (page
15).

with parameters
This optional parameter is intended for use with methods that have more than one parameter, though
you can also use it for a method with a single parameter. You specify a list with one item for each
parameter of the specified method. An item within the list of parameters can be a list, if the called
method expects a single parameter that encompasses multiple values in that position.

You never use both with parameter and with parameters. If you don’t use either, it is assumed
the method has no parameters.

Note: If a parameter name is the same as an AppleScript keyword, you can enclose it between vertical bar
characters (for example, |Set|) to prevent AppleScript from evaluating it and potentially changing the case
during compilation.

It is useful to note that Objective-C associates a colon with each parameter of a method. For example, the
following is a method declaration from Cocoa’s NSDocument class:

- (BOOL) readFromFile: (NSString *) fileName ofType: (NSString *) docType

Additional Information on AppleScript Studio 65
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

This method has two parameters, so to call it with call method, you use the with parameters option, as
shown in listing Listing 3-2:

Listing 3-2 Calling a document method with two parameters

call method "readFromFile:ofType:" of object (document 1 of window 1)
 with parameters {myFilenameString, myDocTypeString}

In Listing 3-2, the list consists of the two string variables (whose values are set prior to the call) enclosed in
curly brackets: {myFilenameString, myDocTypeString}.

For a method with one parameter (and one colon), you use with parameter. The example in Listing 3-3
calls the performClick: method of a button object, passing as a parameter another button object.

Listing 3-3 Calling a method of a button

call method "performClick:" of object (button 1 of window 1)
 with parameter (button 2 of window 2)

The single parameter in Listing 3-3 is enclosed in parentheses because it is a multi-term reference: (button
2 of window 2). You could optionally use with parameters and pass a one-item list: {button 2 of
window 2}.

Listing 3-4 shows an example that calls a class method of NSNumber to get back a number object initialized
with an integer value. It passes a single value (the number 10) for its one parameter. In this case, the parameter
is unambiguous, and does not require parentheses.

Listing 3-4 Calling a class method

set theResult to call method "numberWithInt:" of class "NSNumber"
 with parameter 10

Listing 3-5 shows a hypothetical example that has no parameters. Because it doesn’t specify a class or object,
call method will attempt to execute the countMyCustomers method of the application object, returning
the customer count. It’s your obligation to make sure the method you call actually exists!

Listing 3-5 Calling a method of the application

set customerCount to call method "countMyCustomers"

The call method command can accept and return the types NSRect, NSPoint, NSSize, and NSRange, in
addition to primitive types such as int, double, char *, and so on. For example, to call the NSView method
- (void) setFrame: (NSRect) frameRect, you use a script statement similar to the following:

call method "setFrame:" of object (view 1 of window 1)
 with parameter {20, 20, 120, 120}

In this case, the single parameter is a 4-item list that is passed to setFrame as a type NSRect.

Table 3-2 lists Cocoa types you typically use with the call method command and their AppleScript
equivalents.

66 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Table 3-2 Cocoa types and their AppleScript equivalents

AppleScript equivalentCocoa type

listNSArray

dateNSDate

recordNSDictionary

list of two numbers:

{x, y}

NSPoint

list of two numbers:

{begin offset, end offset}

NSRange

list of four numbers:

{left, bottom, right, top}

NSRect

list of two numbers:

{width, height}

NSSize

stringNSString

To see script statements that invoke the call method command in a working project, see the Archive Maker
or Drawer sample projects, described in “AppleScript Studio Sample Applications” (page 35).

Persistent Script Properties

In AppleScript Studio, script properties are not saved back into the application as they currently are in
AppleScript script applications created with Script Editor or other script editing applications. Therefore the
values of script properties do not persist between launches of an AppleScript Studio application.

If you want persistent storage of values, you can write them to a preferences file before your application
quits and read them back when it is launched. Starting in version 1.1, AppleScript Studio also provides a
mechanism for conveniently saving and restoring values from scripts using the user defaults system available
in Mac OS X. This mechanism is described inAppleScript StudioTerminologyReference—see the user-defaults
class and the default entry class.

Accessing Script Globals

In AppleScript Studio, global variables declared in one script are not accessible from another script without
doing an explicit load script command. (See the Unit Converter sample application for an example of
how to load a script.) Even when you load a script, you’re getting a snapshot of the current values of the
variables, not access to one variable that can be referenced (and updated) by each script.

If you need to keep one set of values that can be accessed and updated from multiple scripts, use one of the
mechanisms described in “Persistent Script Properties” (page 67).

Additional Information on AppleScript Studio 67
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Overridden Scripting Additions

AppleScript Studio overrides the display dialog command to provide its own version, which can be
displayed as a sheet (a dialog attached to a window).

Note: The display dialog command is part of AppleScript’s Standard Additions scripting addition, located
in /System/Library/ScriptingAdditions.

When specifying a display dialog command, you use a term similar to the following to display the dialog
as a sheet with the specified window:

display dialog ... [other terms] ... attached to window "Window Name"

Important: When you work with a dialog displayed as a sheet, you must supply a dialog ended handler
to continue processing when the user dismisses the sheet. For details, see the Discussion session for display
dialog command, in the “Panel Suite” section of AppleScript Studio Terminology Reference.

For a detailed example of how to use AppleScript Studio’s version of display dialog, see the Display
Dialog sample application (distributed with AppleScript Studio). The following call to the display dialog
command is from that application. Many of the parameters are variables, set before making the call.

display dialog dialogText buttons
 {dialogButton1, dialogButton2, dialogButton3}
 default button dialogDefaultButton
 giving up after dialogGivingUpAfter
 with icon dialogIcon attached to window "main"

If you pass a string for the with icon parameter, the command will look for a .tiff resource with that
name.

Important: The with icon parameter will accept a number, with 0, 1, and 2 corresponding to the stop,
note, and caution icons, respectively. However, use of these icons is no longer recommended. In addition,
the AppleScript constants stop, note, and caution do not work.

The display dialog command generates a “user canceled” error when the cancel button is pressed only
if the dialog is not attached to a window. If the dialog is attached, cancel is treated like any other button,
and you must check for it in your dialog ended handler. The Display Dialog sample application demonstrates
how to display dialogs, both as a plain dialog or as a sheet attached to a window.

For more information on display dialog, see the “Panel Suite” section in AppleScript Studio Terminology
Reference.

How Xcode Formats Scripts

When you check the syntax for a script, Xcode reformats it according to your formatting preferences. Xcode’s
editor window currently uses the same formatting (font, style, and color) you have specified in the Script
Editor application (located in /Applications/AppleScript). To change settings in the version of Script
Editor released with Mac OS X version 10.3, follow these steps:

68 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

1. Quit Xcode.

2. Open the Script Editor application (located in /Applications/AppleScript).

3. Choose Preferences… from the Application menu.

4. Click the Formatting button.

5. Choose the fonts and styles you prefer. (Or click the Use Defaults button to go back to the default values.)

6. Click the Apply button, then quit Script Editor.

7. Open Xcode. Your formatting changes are now in effect.

Because of differences in Script Editor and Xcode, the same font may be rendered differently in the two
applications. For an example of script formatting, see Figure 2-4 (page 49). In that script, AppleScript keywords
are shown in blue (on, end) and application keywords in red (clicked, display dialog).

Note: When you first install AppleScript Studio, editor windows in Xcode may not reflect settings from Script
Editor’s AppleScript Formatting menu until after you’ve made some change to those settings and restarted
Xcode.

Most scripters are familiar with AppleScript's line-continuation character, "¬", used for dealing with long lines.
When a line ends with that character, AppleScript treats the following line as part of the previous line. Long
lines are common with some of the user interface terminology in AppleScript Studio. However, Xcode’s ability
to wrap lines provides an elegant way to deal with long lines without using continuation characters. You can
also set tab widths to improve control script formatting.

To adjust line wrap and tab settings, choose Preferences in Xcode’s application menu, then click the button
for the Text Editing pane, shown in Figure 3-2. To choose settings that work well for AppleScript Studio
projects:

 ■ select the checkbox for “Wrap lines”

 ■ select the checkbox for “Indent wrapped lines by:” and enter a value of 4

 ■ select the checkbox for “Editor uses tabs”

 ■ enter a value of 4 for “Tab width:” and “Indent width:”

Additional Information on AppleScript Studio 69
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Figure 3-2 Setting Text Editing preferences in Xcode

Switching Between AppleScript Studio and Script Editor

If you copy text from an AppleScript Studio script file to a Script Editor window on a version of Mac OS X
prior to version 10.3, you may see the script displayed with many “garbage” characters. The strange characters
are probably there because Script Editor can not deal effectively with UNIX-style line endings, while that is
the default line-ending style for Project Builder editor windows. You can change the default setting in Project
Builder by displaying the script file in an editor window, clicking in the script, then choosing Use Mac Line
Endings (CR) from the Line Endings submenu of the Format menu.

Even if you do not experience the line endings problem (or you are using Mac OS X version 10.3 or later),
you may still be unable to compile the script. A likely cause is that Script Editor doesn’t know where to find
AppleScript Studio terminology you use in the script. You can tell Script Editor about AppleScript Studio’s
terminology by enclosing the copied script statements in a Using Terms From block. The block can specify
any AppleScript Studio application, such as any of the sample applications you’ve built. Listing 3-6 shows
how to do this by getting terminology from the Drawer application (shown in Figure 1-1 (page 18)).

Listing 3-6 Telling Script Editor where to look for AppleScript Studio terminology

using terms from "Drawer"
 (* Insert script statements from your AppleScript Studio
 script file here. *)
end using terms from

For more information on working with Xcode’s source code editor, see “Source Code Editor” (page 48).

70 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Scripting AppleScript Studio Applications

AppleScript Studio applications use scripts to respond to user actions and perform operations, but are they
themselves scriptable applications? The answer is yes, but perhaps not as fully as you might expect.

In script files in the sample applications distributed with AppleScript Studio, you will see many examples of
statements that operate on user interface objects, particularly by comparing or setting properties of the
objects. For example, the Drawer application gets the state of the “Drawer” button and obtains the “Open
drawer on” value (Left, Right, Top, or Bottom) from the matrix of radio buttons, then opens or closes the
drawer in the specified location.

You can script similar operations on the running Drawer application from a separate script executed, for
example, in Script Editor. The script shown in Listing 3-7 sets a local variable to the current text from the
“Date” text field on the application’s drawer. To identify the field, it uses a statement similar to ones in the
Drawer application script file Content Controller.applescript:

Listing 3-7 Setting text in the Drawer application from an external script

tell application "Drawer"
 set theText to contents of text field "Date Field" of drawer
 "Drawer" of window "Main"
end tell

Note: The line beginning with “set theText” and the following line are all one script statement. As described
in “How Xcode Formats Scripts” (page 68), you can wrap text in an Xcode editor window without use of the
AppleScript continuation character (¬).

However, there are limitations to this approach. AppleScript Studio makes an application’s user interface
scriptable—it doesn’t make the underlying object model scriptable. For example, if an application window
isn’t currently open, a script won’t be able to access user interface objects in that window. Thus scripts that
“script the UI” suffer from the inherent problems of knowing what user interface objects are available when
the script runs, as well as how to identify the desired object.

Because of these limitations, turning your Cocoa application into an AppleScript Studio application will not
automatically allow robust scripting of the application’s features. So using AppleScript Studio for QA testing,
for example, is likely to be of most value in simple cases, or for Cocoa applications that already support
scripting of their object model.

For related information, see “Performing User Interface Actions” (page 83), “Experiment With Script Editor
to Find Terminology” (page 79), and “Adding AppleScript Studio Support to Your Cocoa Application” (page
84).

Using Script Editor to Test AppleScript Studio Terminology

You can use Script Editor (or a third party script editor) to test the terminology you’ll need to access an object
in your running AppleScript Studio application. That is, you can target the application, write a statement that
gets an object such as the front window, write another statement that gets an object in the front window,
and so on. As you execute each script statement to get an object, you can examine the result in the Script
Editor’s Result pane. By repeating this process, you can identify terminology that will work in your AppleScript
Studio script.

Additional Information on AppleScript Studio 71
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Listing 3-8 shows script statements for obtaining a value from a text field in the Drawer sample application.
Before using these statements, build and run the Drawer application. Then open a script window in Script
Editor (located in /Applications/AppleScript) and show the result by clicking the Result tab at the
bottom of the window.

Listing 3-8 Scripting the Drawer application from Script Editor

tell application "Drawer"
 set theWindow to the front window
 (*if that works, then add the next line *)
 set theTextField to text field "content width" of theWindow
 (* and so on, depending on your object hierarchy *)
 set theText to contents of text field "content width" of theWindow
 display dialog (theText)
 (* and so on *)
end tell

To work through this example, start with an empty Tell block:

tell application "Drawer"

end tell

You can then insert each statement in turn, execute the script, and examine the result. For example, adding
the first statement, set theWindow to the front window gives you a result something like (window
id 1 of application "Drawer") in the Result window. You can then keep adding statements and
checking the results until you’ve figured out how to specify the object, property, or element you’re interested
in.

In Listing 3-8, the display dialog statement merely displays the text extracted from the text field. Starting
with AppleScript Studio 1.1, you can obtain a similar result within an AppleScript Studio application script
with the log command, using statements such as log theWindow.

Note: You cannot currently ask for the contents of a reference to a text field—you have to access the text
field directly. So replacing the sixth line in Listing 3-8 with set theText to contents of theTextField
will result in an error.

Listing 3-9 shows a script you can run in Script Editor that obtains a list of all the views in the front window
of an AppleScript Studio application named “applicationName”. The script logs each view and its class.

Listing 3-9 Examining the views of an AppleScript Studio application

tell application "applicationName"
 set viewList to (views of window 1)
 repeat with aView in viewList
 log aView
 log class of aView
 end repeat
end tell

If you run this script for the Currency Converter sample application distributed with AppleScript studio
(starting with version 1.1), you will get output something like the following in Script Editor’s the Event Log
pane:

 (*view id 2*)

72 Additional Information on AppleScript Studio
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

 (*text field*)
 (*view id 3*)
 (*text field*)
 (*view id 4*)
 (*text field*)
 (*view id 5*)
 (*text field*)
 (*view id 6*)
 (*text field*)
 (*view id 7*)
 (*text field*)
 (*view id 8*)
 (*box*)
 (*view id 9*)
 (*button*)

AppleScript Studio Terminology

The primary documentation for AppleScript Studio terminology is AppleScript Studio Terminology Reference.
It provides a complete reference to the available terminology, including classes, events, commands, and
enumerations.

The following sections describe AppleScript Studio terminology and how it is used:

“Overview” (page 73)
“General Sources of Scripting Terminology” (page 74)
“Terminology From the AppleScriptKit Framework” (page 74)
“Finding Terminology Information” (page 77)

Overview

AppleScript allows you to write scripts that control multiple applications, including many parts of the Mac
OS itself. The power in your scripts comes primarily from the scripting terminology provided by the applications
and the operating system, not from the relatively small number of terms that are native to AppleScript itself.
Scripting additions from Apple and from third parties provide additional terms. (A scripting addition is code,
stored in Mac OS X in /System/Library/SystemAdditions, that makes additional commands or coercions
available to scripts on the same computer.)

To take full advantage of the capabilities available, you need to know what terminology you can use in your
scripts. Scripts in AppleScript Studio applications have access to the basic terminology that is available to all
scripts, as well as to additional terminology that is available to Cocoa applications and, finally, to terminology
defined by AppleScript Studio itself. Each of these sources of terminology can include class definitions (which
include elements and properties), event and command definitions (which have an associated syntax), and
enumerations (or predefined constants).

AppleScript Studio Terminology 73
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Note: AppleScript Studio draws a distinction between a command, which is a word or phrase you can use
in a script to request an action, and an event, which is an action an object can respond to. That is, scripts can
send commands to objects, while events, often the result of user actions, generate calls to event handlers in
scripts.

When you examine the terminology for an AppleScript Studio application, you’ll see both commands and
events listed together in the “Commands” section. For more information, see “Terminology Browser” (page
50).

General Sources of Scripting Terminology

Sources of terminology that are not unique to AppleScript Studio include:

 ■ terminology provided by AppleScript

 ■ terminology from scriptable parts of the Mac OS

 ■ terminology from available Apple and third party scripting additions

 ■ terminology from available scriptable applications (whether Carbon or Cocoa applications)

 ❏ Cocoa applications store scripting terminology in a script suite, described in “Terminology From
the AppleScriptKit Framework” (page 74).

 ❏ Carbon applications store scripting terminology in an 'aete' resource, described in the AppleScript
documentation listed in “See Also” (page 15).

 ❏ You can examine the terminology for either type of application, as described in “Terminology
Browser” (page 50).

Note: The name spaces of these various terminologies sometimes conflict, which can result in confusing
scripting errors.

Cocoa applications have access to scripting information derived from the script suites of the application itself
(including Cocoa’s default suites), any scriptable frameworks the application uses, and any scriptable bundles
it loads. An AppleScript Studio application has access to the default terminology that is available to it as a
Cocoa application, as well as to terminology it defines in its own framework, which gives the application the
ability to script Cocoa user interface objects.

Terminology From the AppleScriptKit Framework

AppleScript Studio applications are built with the Cocoa application framework and provide terminology to
allow scripters to make use of Cocoa application, document, user interface, and other objects. That terminology
comes from two sources: terms that are available to all Cocoa applications that support scripting, and terms
defined by AppleScript Studio’s AppleScriptKit framework.

74 AppleScript Studio Terminology
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Terms From Cocoa’s Built-in Suites

Cocoa frameworks and applications provide scripting information in the form of one or more script suites.
A script suite consists of at least one suite definition and one suite terminology, contained in external files.
A suite definition describes scriptable objects in terms of their attributes, relationships, and supported
commands. This information is stored as key-value pairs (where each pair has an identifying key and a
corresponding value) in a property list. A property list is a structured, textual representation of data, commonly
stored in Extensible Markup Language (XML) format.

A suite terminology provides corresponding AppleScript terminology—the English-like words and phrases
you can use in a script—for the class and command descriptions in a suite definition. Suite terminologies
are also stored as property lists. Frameworks and applications typically place terminology files in a localized
resource directory named English.lproj. (English is currently the only supported dialect in AppleScript.)

AppleScript Studio applications can take advantage of the built-in Cocoa terminology found in two default
suites, the Standard and Text suites.

 ■ The Standard suite:

 ❏ Defines the Abstract Object class. This class serves as a parent class for all other classes. It has just
one property, the Class of the object.

 ❏ Defines basic classes, including Application, Document, and Window (though you’ll see in the next
section that AppleScript Studio defines its own version of these classes in its Application and
Document suites).

 ❏ Defines terminology for basic events, including Get, Set, Count, Delete, Print, Quit, and others. In
Cocoa applications that turn on scripting support (as previously described in “Terms from The
AppleScriptKit Framework” (page 75)), objects can support certain key events, such as Get and Set,
with little or no extra code.

 ■ The Text suite defines classes for working with text, such as Character, Paragraph, Word, and Text.

For more information on Cocoa’s built-in scripting support, see the documentation described in “See
Also” (page 15).

Terms from The AppleScriptKit Framework

AppleScript Studio adds to the two default suites defined by Cocoa so that it can provide additional
terminology for scripting Cocoa’s many user interface objects. This terminology is defined in several suite
terminology files in AppleScript Studio’s own framework, the AppleScriptKit framework. For detailed
information on the classes and events in these suites, see “Finding Terminology Information” (page 77).

The Application suite defines its own version of some common classes that are defined in the Standard suite
(described previously), including Application and Window classes. It also defines the Item class, which has
Name and ID properties, and the Responder class, which inherits from the Item class and serves as a superclass
for the Window, View, and Control classes. These and other classes that inherit from Responder can respond
to user actions.

AppleScript Studio Terminology 75
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Note: In AppleScript Studio 1.2, the document class is described in a separate Document suite and a Drag
and Drop suite has been added.

To work with the many high-level classes it contains, the Application suite defines a large number of events
for working with the application, windows, mouse and keyboard events, and so on. Prior to AppleScript
Studio 1.2, the Application suite defined the Document class. That class is now defined in its own suite.

The Container View suite defines the View class, as well as additional classes whose primary purpose is to
contain other views. These include Box, Clip View, Drawer, Scroll View, Split View, Tab View, and Tab View
Item. Except for Tab View Item, all of the classes in the Container View suite inherit from Responder, either
directly or through the View class. The Container View suite also defines events for working with container
views and the views they contain.

The Control View suite defines a number of classes for implementing or working with controls, including
Button, Cell, Color Well, Control, Image View, Movie View, Popup Button, Progress Indicator, Slider, and Text
Field. Controls are graphic objects that cause instant actions or visible results when the user manipulates
them with the mouse. The Cell class inherits from the Abstract Object class (described in “Terms From Cocoa’s
Built-in Suites” (page 75)), while other classes in this suite inherit from the View class, either directly or
through the Control class.

The Control View suite defines many events for working with user actions involving controls.

The Data View suite defines classes whose primary purpose is to display rows and columns of data. These
include Browser, Browser Cell, Data Cell, Data Column, Data Row, Data Source, Outline View, Table Column,
Table Header Cell, Table Header View, and Table View. You’ve worked with several of these classes in building
the Mail Search application. The classes in the Data View suite generally inherit from either the View class,
the Cell class, or the Abstract Object class (described in “Terms From Cocoa’s Built-in Suites” (page 75)).

The Data View suite defines events for working with the items, cells, rows, and columns found in table and
outline views.

The Document suite defines AppleScript Studio’s version of the document class defined in the Standard
suite (described previously). This suite defines terminology you can use to work with documents in any
AppleScript Studio application, but which is most important to document-based applications. The Document
suite first became available in AppleScript Studio 1.2. In prior versions, a smaller Document class was defined
as part of the Application suite.

The Drag and Drop suite defines terms for working with drag and drop, including the drag info class to
provide information about a drag, and events to drag, track, prepare for a drop, and conclude a drop. The
Drag and Drop suite first became available in AppleScript Studio 1.2.

The Menu suite is a small suite that defines just two classes and two events for working with menus. The
classes are Menu and Menu Item, which both inherit from the Abstract Object class (described in “Terms
From Cocoa’s Built-in Suites” (page 75)). The events are Choose Menu Item and Update Menu Item.

The Panel suite defines classes and events for dealing with dialogs, alerts, and panels. The classes include
Alert Reply, Color Panel, Dialog Reply, Font Panel, Open Panel, Panel, and Save Panel. The two reply classes
inherit from the Abstract Object class (described in “Terms From Cocoa’s Built-in Suites” (page 75)), while
the other classes inherit from Window, either directly or through the Panel class.

76 AppleScript Studio Terminology
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

The Plugin suite defines terms for working with application plug-ins. Starting in AppleScript Studio version
1.3, first distributed with Mac OS X version 10.3, Xcode provides a new template for creating AppleScript
plug-ins for Xcode. That is, you can use AppleScript Studio to create a plug-in that adds features to Xcode
itself. The Plugin suite provides terminology to use with plug-ins of this type. For more information, see
“AppleScript Studio Xcode Plug-in Template” (page 43).

The Text View suite defines two classes for displaying and manipulating text: Text and Text View. Text inherits
from View and Text View inherits from Text.

Finding Terminology Information

The primary documentation for AppleScript Studio terminology is AppleScript Studio Terminology Reference,
available in the AppleScript Documentation area. This section describes several additional ways to obtain
information about the scripting terminology available to AppleScript Studio applications.

Examine Scripting Dictionaries

You can get detailed information about the currently available terminology by examining AppleScript Studio’s
scripting terminology in a dictionary viewer, as described in “Terminology Browser” (page 50). You can open
any of the AppleScript Studio sample projects in Xcode and select AppleScriptKit.asdictionary in the
Files list of the Groups & Files list. It provides a link to a scripting terminology file in the AppleScriptKit
framework. By displaying this file in a dictionary viewer (also known as a terminology browser), you can
examine the terms that are available to all Cocoa applications that support scripting (in the Standard and
Text suites) and those that are specific to AppleScript Studio applications (the Application, Container View,
Control View, Data View, Document, Drag and Drop, Menu, Panel, and Text View suites).

Figure 3-3 shows the open dictionary in an Xcode window; the classes in the Data View suite are visible, with
the Data Source object selected.

Figure 3-3 The AppleScript Studio scripting dictionary in Xcode

AppleScript Studio Terminology 77
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Each class description in the dictionary shows the plural form for the class (if applicable), its elements (if any),
and its properties (if any). Every class except the Abstract object class (described in “Terms From Cocoa’s
Built-in Suites” (page 75)) has an inheritance property, and through it inherits the properties of its superclasses.
A property is labeled “[r/o]” if it is read only (you can’t set its value).

Each command description in the dictionary shows the syntax for invoking the command. Parameters enclosed
in brackets, such as [on], are optional.

Investigate the Sample Applications

The sample applications distributed with AppleScript Studio provide valuable examples of the terminology
for working with objects based on most AppleScript Studio classes. Each of the sample applications
demonstrates a small number of features, so that you can more easily focus on the details. These applications
are described in “AppleScript Studio Sample Applications” (page 35).

Table 3-3 lists some of the sample applications and the key objects used in each application. You can examine
the application script files to find examples of terminology for working with these types of objects.

Table 3-3 AppleScript Studio sample applications and the objects they use

Objects usedApplication

button, checkbox, custom view, panel, progress indicator, text field, text
view; uses call method command to call Objective-C methods; uses do
shell script command

Archive Maker

box, button, image view, tab view, text fieldAssistant

browser, browser cell, column, Finder items, browser rowBrowser

box, button, label text, number formatter, text fieldCurrency Converter

alert, button, checkbox, matrix (radio buttons), text field, windowDisplay Alert

dialog, button, checkbox, text field, windowDisplay Dialog

dialog, button, checkbox, matrix (radio buttons), panel, text field, windowDisplay Panel

button, dialog, progress indicator, slider, text field, windowDrag Race

button, drawer, matrix (radio buttons), panel, text field, steppers, window;
uses call method command to call Objective-C methods

Drawer

image, image viewImage

box, button, popup button (pop-up menu), progress indicator, slider, split
view, text field, window; makes SOAP calls

Language Translator

button, outline view, progress indicator, scroller, split view, table view,
window

Mail Search (formerly Watson)

button, menu, menu item, text field, windowMulti-Language

button, open-panel, text field, windowOpen Panel

78 AppleScript Studio Terminology
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

Objects usedApplication

child, Finder items, outline view, row, table columnOutline

button, save-panel, text field, windowSave Panel

text field, text view, window; uses do shell script commandSimple Shell

button, progress indicator, scroll view, text field, window; makes SOAP
calls

SOAP Talk

button, column, data cell, data source, row, table view, text fieldTable

bundle, frame, menu item, movie, movie view, windowTalking Head

box, button, popup button (pop-up menu), text field, window; uses load
script command

Unit Converter

Experiment With Script Editor to Find Terminology

To determine script terminology by targeting an AppleScript Studio application from Script Editor, see “Using
Script Editor to Test AppleScript Studio Terminology” (page 71).

Programming Tips

The following sections provide information that may be useful as you build applications with AppleScript
Studio:

 ■ “Targeting an AppleScript Studio Application” (page 79)

 ■ “Using Make, Not Create, to Create New Objects in Scripts” (page 79)

 ■ “Using the Log Command to Track Your Scripts” (page 80)

 ■ “Basic Tips and Reminders” (page 80)

Targeting an AppleScript Studio Application

You do not have to use a tell application statement in an AppleScript Studio application script because
scripts implicitly target the application itself.

Using Make, Not Create, to Create New Objects in Scripts

Scripters are familiar with using AppleScript’s make command to create new objects. To make a new object,
you specify the class to make, the location, and optionally the properties and data for the object. For example,
to make a new “name” data column in a table view, the Table sample application uses the following statement:

make new data column at the end of the data columns with properties {name:"name"}

Programming Tips 79
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

For more information on tables and data columns, see the Table application, or see “Controller Script Properties
and Initialization” (page 190) in the Mail Search tutorial. For more information on the make command, see
AppleScript Language Guide.

Using the Log Command to Track Your Scripts

During development, you can insert log statements in your AppleScript Studio scripts to help keep track of
what’s going on. The log command outputs a value to the console view of Xcode’s "Run" pane if you run
the application from Xcode, or to the Console application (located in /Applications/Utilities) if you
run the application from the Finder.

You can log references to objects or strings or variables. The following examples show log statements and
their results:

log "Testing" -- "Testing"
log theObject -- "view id 23 of view id 10 of window id 1"

Basic Tips and Reminders

This section provides a number of tips and reminders that may improve your experience in working with
AppleScript Studio.

Comment AppleScript Studio Handlers

Comments are generally a good thing, and in AppleScript Studio it’s particularly useful to comment event
handlers. For example, Listing 3-10 shows the code AppleScript Studio inserts in your script when you attach
a clicked handler to a button (assuming you haven’t already created a clicked handler in the same script).

Listing 3-10 A new clicked handler

on clicked theObject
 (* Add your script here. *)
end clicked

There are several things you might do to help make this code more self-explanatory:

 ■ If the handler is called for one of several types of control objects, you can add a comment to that effect:

on clicked theObject
 (* This handler handles controls on the Search Parameters pane. *)
 -- Your script statements here
end clicked

 ■ If you know the clicked handler will only be called for one object (say a “Search” button), you can
change the name of the theObject parameter accordingly (to, for example, theSearchButton).
Changing the name has no effect on how the handler operates.

 ■ If the handler may called for one of several objects (say a series of buttons), you can both change the
parameter name and add a comment:

on clicked importButton
 (* This handler handles buttons on the Import pane. *)

80 Programming Tips
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/index.html

 -- Your script statements here
end clicked

For an example that shows how to distinguish between multiple named buttons in a handler, see Listing
3-1 (page 62).

Save Your Work

Some things are obvious but still need repeating. Any time you’ve done significant work on the code or
interface for your AppleScript Studio application, save your work. Even though Mac OS X is very robust. Even
if you have an interruptible power supply. And while you’re at it, occasionally save your entire project to
another drive. (Pardon the lecture.)

Occasionally Do a Clean Rebuild

You should occasionally use Xcode’s “Clean active target” button (or the Clean or Clean All Targets items in
the Build menu) to do a full rebuild of your application. Cleaning removes all derived products and files (such
as .o files). Doing a clean build can sometimes eliminate odd results when running or debugging the
application.

Give All Important Objects an AppleScript Name

When you’re adding objects to your nib file in Interface Builder, consider giving an AppleScript name to any
objects you may want to script in the future, even if you don’t currently plan to script them. That way you’re
prepared when you’re working on a handler and you realize you need to access a particular object.

You can enhance the benefits of this approach by using a consistent naming convention. For example, you
can always name your main window “main” and come up with a standard way of naming buttons, text fields,
and so on. Then when you need to access one of those items in a script, it will be easy to remember their
names. It may also help eliminate a common bug—spelling an AppleScript name differently in a script than
in Interface Builder.

Troubleshooting

This following sections provide tips that may be useful in troubleshooting your AppleScript Studio applications.

 ■ “My Script Statements Aren’t Working” (page 81)

 ■ “Several Windows in My Application Have ID 0” (page 82)

 ■ “I Can’t Script My UI to Do QA Testing” (page 82)

My Script Statements Aren’t Working

If your script compiles but doesn’t work in the running application, there are several options for determining
the problem:

Troubleshooting 81
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

 ■ The runtime error message may point you at the problem. Some runtime messages are notoriously
unhelpful—efforts are being made to improve them.

 ■ You can use Script Editor (or a third-party script editor) to test the terminology you’re using in your
scripts. For details, see “Using Script Editor to Test AppleScript Studio Terminology” (page 71).

 ■ You can use the log command to get more information, as described in “Using the Log Command to
Track Your Scripts” (page 80).

 ■ You can use the standard basic debugging tactics of inserting beep or display dialog commands in
your scripts.

 ■ You may be able to use powerful third-party debuggers with AppleScript Studio. Details will be provided
as soon as they are available.

Several Windows in My Application Have ID 0

When you add new windows to a nib file in Interface Builder, they all have ID 0. Interface Builder doesn’t
attempt to assign serial index numbers to windows (though it does for buttons or other items you place in
a window).

If you so desire, you will still be able to access windows by index in your application, with statements such
as

set myButton to the first button of the second window

I Can’t Script My UI to Do QA Testing

This topic is described in “Scripting AppleScript Studio Applications” (page 71).

82 Troubleshooting
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Programming With AppleScript Studio

This chapter provides step-by-step instructions for performing common AppleScript Studio tasks, in the
following sections:

 ■ “Performing User Interface Actions” (page 83)

 ■ “Specifying Minimum Requirements for an Application” (page 84)

 ■ “Adding AppleScript Studio Support to Your Cocoa Application” (page 84)

 ■ “Setting the Keyboard Focus” (page 85)

 ■ “Obtaining the Path to the Current Application” (page 85)

Performing User Interface Actions

AppleScript Studio provides the ability to perform user interface actions directly in scripts, using the perform
action command (defined in the Control View suite). For example, you can tell an interface object, such as
a button, to perform its clicked handler, thus providing a way to directly script the user interface (subject
to limitations described in “Scripting AppleScript Studio Applications” (page 71)). Note, however, that calling
the clicked handler will not provide the visual feedback a user would see if they actually clicked the button.

Listing 4-1 shows a script that tells the “Drawer” button in the Drawer application to perform its clicked
handler, which will either open or close the drawer, depending on its current state.

Listing 4-1 Manipulating a button in the Drawer application from an external script

tell application "Drawer"
 set theButton to button "Drawer" of window "Main"
 tell theButton to perform action
end tell

The perform action command does nothing unless the specified object has an action handler—a handler
such as a clicked or double-clicked handler in the Action group in the Interface Builder Info window
for the object. For example, see the Info window in Figure 1-15 (page 32).

To use the perform action command with menus, you can use syntax like the following:

tell menu item 1 of menu 1 of main menu to perform action

You can also call application methods directly, as described in “Scripting AppleScript Studio Applications” (page
71).

Performing User Interface Actions 83
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AppleScript Studio Cookbook

Specifying Minimum Requirements for an Application

To run AppleScript Studio applications, the target machine must include the AppleScript Studio runtime
required for the application. The runtime is available if AppleScriptKit.framework is present in
/System/Library/Frameworks.

For example, an application built with AppleScript Studio 1.2 that uses features added in version 1.2 requires
the 1.2 runtime. However, a similar application that doesn’t use any features from AppleScript Studio 1.2 can
run with the 1.1 runtime. Note that all 1.1 applications can run with the 1.0 runtime distributed with Mac OS
X version 10.1.2. For more information on versions and runtimes, see “AppleScript Studio System Requirements
and Version Information” (page 217).

You can install a will finish launching handler for your application to check the version. “Connect the
Application Object” (page 167) shows how to add a will finish launching handler.

Listing 4-2 shows a simple example of how the will finish launching handler might check for the
application’s required version of AppleScript Studio. In this case, the application quits if the required version
isn’t available. Note that the handler doesn’t check AppleScript Studio’s version number directly. Instead, it
checks for the corresponding AppleScript version, as shown in Table A-1 (page 217).

Listing 4-2 will finish launching handler that checks for required version of AppleScript Studio

on will finish launching theObject
 considering numeric strings
 if AppleScript's version as string is less than "1.10.1" then
 display dialog "This application requires AppleScript Studio 1.4 or later."
 quit
 end if
 end considering
end will finish launching

Adding AppleScript Studio Support to Your Cocoa Application

You can use the following steps to add AppleScript Studio support to your existing Cocoa application:

1. Add the AppleScriptKit framework to your project. You can do so by navigating to
/System/Library/Frameworks/AppleScriptKit.framework and dragging the framework into
the Frameworks group in the Xcode project for your application.

In the dialog that appears, do not select the checkbox to copy items, but do check the radio button to
recursively create groups. If you have more than one target, you’ll have to select any targets the framework
should be added to.

2. Add an AppleScript Studio build phase to the application. To do this, first click the Targets tab, then
double-click the desired Target. You should see a pane showing the Files & Build Phases tab.

Click the section labeled Bundle Resources. You should be able to select the whole section.

Choose Project > New Build Phase > New AppleScript Build Phase (from the Projects menu).

84 Specifying Minimum Requirements for an Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AppleScript Studio Cookbook

3. If you’ve already added any .applescript files to your application, they’ll be in the Bundle Resources
phase, and you’ll have to drag them to the new AppleScript phase you just created.

4. If your application is not already scriptable, make the following modification to its Info.plist file to
make it scriptable:

In the Application Settings pane (after clicking the Expert button), add a new string entry to the property
list that sets NSAppleScriptEnabled to “YES”. You can add an entry by clicking the New Sibling button.
You can double-click any of the entries in the sibling to edit it.

5. If your application has a .scriptsuite file, for every class in that file whose superclass belongs to the
core suite (NSCoreSuite), change the suite to ASKApplicationSuite. For example, change

"Superclass" = "NSCoreSuite.NSApplication"

to

"Superclass" = "ASKApplicationSuite.NSApplication"

Setting the Keyboard Focus

To make a user interface object, such as a text field, have the keyboard focus, set its window’s first
responder property. For example, the following Tell statement causes a text field to become active and be
first in line to respond to keyboard events:

tell window "user information"
 set first responder to text field "user name"
end tell

Note that without the Tell statement, you would have to specify the window twice:

set first responder of window "user information"
 to text field "user name" of window "user information"

In many cases, you will not have to set keyboard focus, because it is set automatically as a user tabs between
fields, clicks on a text field, and so on.

Obtaining the Path to the Current Application

To obtain the path to the current (running) AppleScript Studio application, you use the standard scripting
addition command path to. For example:

set myPath to (path to me)
display dialog (myPath as string)
-- result, if inserted in on opened handler in Drawer sample application:
-- MacOSX:Developer:Examples:AppleScript Studio:Drawer:build:Drawer.app

The Standard Additions are automatically installed with Mac OS X.

Setting the Keyboard Focus 85
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AppleScript Studio Cookbook

86 Obtaining the Path to the Current Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AppleScript Studio Cookbook

In this chapter, you’ll create a simple AppleScript Studio application that converts a dollar amount to an
amount in another currency. The Currency Converter tutorial describes a number of tasks that are common
to most AppleScript Studio applications, including:

 ■ creating a project with Xcode

 ■ building an interface with Interface Builder, including

 ❏ inserting and initializing user interface objects

 ❏ adjusting the interface to comply with the Aqua guidelines

 ❏ connecting the interface to an event handler in a script

 ❏ using common shortcuts

 ■ writing an event handler

 ■ building and running the application

You can also find a plain Cocoa version of the Currency Converter Tutorial in the Objective-C Language
Documentation area of the Cocoa Documentation. That tutorial provides some information you won’t need
in this chapter, such as a discussion of object-oriented design, steps for creating custom object classes, and
steps for hooking up user actions to class methods. In the AppleScript Studio version of Currency Converter,
you’ll handle user actions in a scripting event handler, rather than with custom classes and methods. That
makes your task quite a bit simpler. However, you may want to consult the Cocoa tutorial before designing
more complex AppleScript Studio applications, such as the one described in “Mail Search Tutorial: Design
the Application” (page 117).

To build the Currency Converter application, you’ll perform these steps:

1. “Design the Application” (page 88)

2. “Create a Project” (page 88).

3. “Build the Interface” (page 89).

4. “Connect the Interface” (page 110)

5. “Write Event Handlers” (page 113)

6. “Build and Run the Application” (page 115)

This chapter assumes you have completed the Hello World tutorial in “Creating a Hello World
Application” (page 27) and read “AppleScript Studio Components” (page 39) as well.

After completing the Currency Converter tutorial, see “Where To Go From Here” (page 115) for suggestions
on how to learn more about AppleScript Studio.

87
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Design the Application

The Currency Converter application is simple enough that it doesn’t require a complicated design process.
The application should enable a user to type in a conversion rate and a dollar amount, then click a button
to see the result—how much the dollars are worth in the new currency. The application requires only one
window, which can be configured as shown in Figure 5-1.

Figure 5-1 The Currency Converter window

A user enters values in the first two fields, then clicks the button to get the answer in the third field. A
horizontal separator divides the input and display fields from the Convert button.

Create a Project

Use Xcode to create a new AppleScript Studio project, as described in “Creating a Hello World
Application” (page 27), typing “Currency Converter” for the project name.

Figure 5-2 shows the new project after opening several groups in the Files list in the Groups & Files pane.
You can save the project by typing Command-S or by choosing the Save command from the File menu. Use
your typical level of care in periodically saving and backing up your work.

88 Design the Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Figure 5-2 The project after opening several groups

Build and Run

At this point, you can build the project and create a working application, with a window that can be expanded,
minimized, and closed. The application can display an About window and respond to a number of menu
choices. These features are provided by the Cocoa application framework (described in “Cocoa Framework
Overview” (page 57)), without further work on your part. Of course you’ve got some work to do before the
application can perform its custom operation of converting currencies.

To build and run the application, do one of the following:

 ■ type Command-R

 ■ choose Build and Run from the Build menu

 ■ click the Build and Run button shown in Figure 5-2

When you are ready to continue with the tutorial, quit the application.

It usually makes sense to build an application periodically to make sure you haven’t introduced errors.
However, the Currency Converter application is fairly simple, and it won’t have any additional functionality
until you’ve written an event handler, so you might want to wait until later in this tutorial.

Build the Interface

Before working on this section, you should be familiar with the information in “Interface Builder Features for
AppleScript Studio” (page 53), which describes, among other things, the nib files Interface Builder uses to
store interface definitions.

To build the interface for Currency Converter, you perform these steps:

Build the Interface 89
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

1. “Launch Interface Builder” (page 90)

2. “Adjust the Title, Size, and Other Attributes of the Currency Converter Window” (page 90)

3. “Add Text Input Fields and Labels” (page 96)

4. “Add a Result Field and Label” (page 103)

5. “Add Number Formatters to the Input and Result Fields” (page 105)

6. “Add a Convert Button” (page 108)

7. “Add a Horizontal Separator” (page 109)

8. “Finalize the Layout” (page 110)

Launch Interface Builder

When you create a project with Xcode, the project automatically contains a default nib file named
MainMenu.nib. The icon for this nib file is visible in Figure 5-2 (page 89). To launch Interface Builder,
double-click the icon. You should see the same four windows shown in Figure 2-7 (page 54).

Adjust the Title, Size, and Other Attributes of the Currency Converter
Window

In this section you’ll make changes to the default window to set its title and adjust its size and other attributes.
To modify the default window, perform these steps:

1. In Interface Builder’s MainMenu.nib window, double-click the text “Window” in the title of the Window
instance. The result is shown in Figure 5-3.

Figure 5-3 Selected text for Window instance in MainMenu.nib window

90 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

2. Type “Currency Converter” (without the quotes) as the new instance name. This step changes only the
instance name, not the window title, but it’s a good habit to always name window instances so you can
easily identify them.

3. Figure 5-4 shows the default window for the Currency Converter instance. Note “Window” is still the
window title.

Figure 5-4 The default window in the Currency Converter project

Click once in this window, then choose Show Info from the Tools menu or type Command-Shift-I to open
the Info window. The resulting Info window, with the Attribute pane visible, is shown in Figure 5-5.

The Info window displays information about the currently selected object. The Info window displays the
Attributes pane by default, or whichever pane was visible the last time the window was open. If the
Attributes pane is not visible, use the pop-up menu at the top of the Info window or type Command-1
to display it.

Build the Interface 91
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

You can tell the Info window is displaying information for a window object because its title is “NSWindow
Info” (the window object is an instance of Cocoa’s NSWindow class). If the Info window has some other
title when you open it, click either the window instance shown in Figure 5-3 or the window object shown
in Figure 5-4 to display window information in the Info window.

Figure 5-5 The Attributes pane of the Info window for a window object

92 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

4. To retitle the window, simply type “Currency Converter” in the Window Title field, as shown in Figure
5-6.

Figure 5-6 The Info window after retitling the Currency Converter window

5. In the Controls section, deselect the Resize checkbox—you won’t allow a user to resize Currency
Converter’s window. Later you’ll add a handler to quit the application when a user closes the window.

Build the Interface 93
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Note: Even though you disable resizing of the window, the Currency Converter window in Interface
Builder still has a resize control so you can resize it while working on your interface. When you build and
run the application, the window will not have a resize control.

You don’t need to change the default settings for any other attributes. The final settings are shown in
Figure 5-7. For information on the other attributes, see “AppleScript Studio Terminology” (page 73), as
well as Interface Builder Help or the Cocoa documentation for the NSWindow class.

Figure 5-7 The final Attributes settings for the Currency Converter window

6. To resize the Currency Converter window, drag the resize control in the lower-right corner. The resized
window should look similar to the one shown in Figure 5-1 (page 88).

94 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Instead of dragging, you can set the window to a specific pixel size. Use the pop-up menu or type
Command-3 to display the Size pane in the Info window. The result is shown in Figure 5-8.

Figure 5-8 The Size pane of the Currency Converter window

To change the size, enter new width and height values in the text fields below the Width/Height pop-up
menu. For the window shown in Figure 5-1 (page 88), the width is about 320 pixels and the height about
180 pixels.

The Bottom/Left pop-up menu determines the window’s onscreen position when a user runs the
application. You can either drag the window to the desired position or modify the values in the Size
pane.

There are several items in the Size pane whose default values don’t need to be changed for Currency
Converter. For example, the spring images control resizing, but you’ve already turned off resizing for
the Currency Converter window.

After all the changes you’ve made in this section, the Currency Converter window should look like Figure
5-9.

Build the Interface 95
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Figure 5-9 The modified Currency Converter window

Add Text Input Fields and Labels

In this section you’ll perform steps that are common to nearly all AppleScript Studio application development,
including:

 ■ dragging user interface objects into your application window

 ■ positioning and resizing objects to support the Aqua user interface guidelines

 ■ using Interface Builder’s Info window to set attributes and prepare objects for scripting

Currency Converter needs text fields for entering the exchange rate per dollar and the number of dollars to
convert. Each of these input fields needs a label.

To add text input fields and labels to Currency Converter’s main window, perform these steps:

1. Click the Cocoa-Text button in the Palette window toolbar. The Cocoa-Text palette is shown in Figure
5-10.

To display a help tag describing a button (and the palette it selects), position the cursor over an item in
the Palette window’s toolbar for a few seconds.

Similarly, position the cursor over a user interface object in a palette to display the object’s Cocoa class
(such as NSButton or NSTextField).

You can see that the palette provides several kinds of text elements. Each text element has a distinct
appearance based on its function and role in an application—you can see a search field, a pop-up menu,
a wrapping text field, and more.

96 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Note: You can modify the Palette window toolbar in Interface Builder by choosing
Tools>Palettes>Customize Toolbar. If, for example, you do not see the AppleScript button (the rightmost
button in Figure 5-10) in the toolbar, you can add it by customizing the toolbar.

Figure 5-10 The Cocoa-Text palette of Interface Builder’s Palette window

2. Drag a text field object from the Palette window to the Currency Converter window. Position the text
field in the upper-right corner, using Interface Builder’s feedback to help you align the text field according
to the Aqua guidelines, as shown in Figure 5-11. This is the exchange rate input field.

Figure 5-11 Positioning a text input field for the exchange rate

Build the Interface 97
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

3. Select the text field, then drag the middle selection handle on the left side to resize the field, as shown
in Figure 5-12. (If you use the upper or lower handle, it’s harder to maintain the same vertical height as
you resize the field.) For now, don’t worry about making the field any specific width—you can adjust it
later if necessary.

Figure 5-12 Resizing the exchange rate input field

4. With the exchange rate field selected, open the Info window to the Attribute pane. The result is shown
in Figure 5-13.

Figure 5-13 The Attributes pane of the Info window for the exchange rate field

98 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

5. In the alignment section, click the middle button, to right-align text in the field.

There are several attributes whose default values don’t need to be changed for Currency Converter. For
example, Editable and Enabled are already selected in the Options section. For information on other
attributes, see Interface Builder Help or the Cocoa documentation for the NSTextField class.

6. To provide an AppleScript name for the exchange rate input field (so you can access it in scripts), display
the AppleScript pane in the Info window, then type “rate” in the Name field. Figure 5-14 shows the result.

Figure 5-14 The Info window, after supplying an AppleScript name for the exchange rate field

If it makes sense, you can use the same AppleScript name for objects of different types in the same
window (such as a button and a text field), or for objects of the same type (such as buttons) in different
windows. However, if you name two text fields in the same window “rate,” you won’t be able to
differentiate between them by name in an application script.

Build the Interface 99
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Note: The first time you make a change in the AppleScript pane, Interface Builder adds a new instance
named AppleScript Info to the nib window. This instance is shown in Figure 5-15. For more information
about this object, see “Add the Message Window to the Nib File” (page 137).

Figure 5-15 The MainMenu.nib window showing an AppleScript Info object (not selected)

Outline view
icon

Note: Figure 5-15 shows the Instances pane of the MainMenu.nib window in icon view. You can instead
view it in outline view, by clicking the small outline view icon on the right-hand side of the view. An
example of outline view is shown in Figure 8-12 (page 180).

Outline view is convenient for displaying view hierarchies and connections, and for selecting deeply
nested objects. Later in this tutorial, you may want to use outline view to examine Currency Converter’s
object hierarchy after inserting number formatters (see “Add Number Formatters to the Input and Result
Fields” (page 105)).

7. To add a label for the exchange rate input field, drag the label text field object with the text “System
Font Text” (shown in Figure 5-10 (page 97)) from the Palette window to the Currency Converter window.
Use the automatic feedback to position the label field to the left of the exchange rate input field, as
shown in Figure 5-16.

Figure 5-16 Positioning a label field for the exchange rate

100 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

8. As in a previous step, select the label field and drag the middle selection handle on the left side to resize
the field, as shown in Figure 5-17.

Figure 5-17 Resizing the label field for the exchange rate

9. With the label field selected, open the Info window and display the Attributes pane. Now make these
adjustments:

a. Type “Exchange Rate per $1:” in the Title field. This is the label text. If any of the text is not visible,
it may have scrolled out of view. If so, widen the label field until all the text is visible. You may need
to resize the exchange rate input field as well.

b. In the Alignment section, click the middle button, to right-align the label text.

Build the Interface 101
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Figure 5-18 shows the resulting Info window; Figure 5-19 shows the text label field. Note that a label
field, like an input field, is based on the NSTextField class.

Figure 5-18 The Info window, after setting text and attributes for the exchange rate label

Figure 5-19 The exchange rate label field (selected)

10. Save all the changes you’ve made in Interface Builder—they’re saved to the MainMenu.nib file. You’ll
also be given a chance to save your changes if you quit Interface Builder.

11. To add the text input and label fields for “Dollars to Convert,” you can repeat your previous steps:

102 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

a. Drag a text field into the Currency Converter window, aligning it below the exchange rate text field.

b. Resize the field.

c. Set its attributes.

d. Give it the AppleScript name “amount”.

e. Add a label field, aligning it below the previous label field.

f. Label the field “Dollars to Convert:” and right-align it.

Or, you can use Interface Builder’s Duplicate command to duplicate the two already-created text fields,
then supply them with new label text and new AppleScript names:

a. Shift-click or drag to select the two fields you’ve already entered, then choose Duplicate from the
File menu or type Command-D.

b. Drag the duplicated fields, using the automatic guides to align them below the original fields.

c. Select the new label field and in the Attributes pane of the Info window, type “Dollars to Convert:”
in the Title field.

d. To provide an AppleScript name for the text input field, select the field, open the Info window to
the AppleScript pane, and type “amount” in the Name field.

Figure 5-20 shows the results of adding the two new text fields.

Figure 5-20 The Currency Converter window with input fields and labels

Add a Result Field and Label

In this section you’ll add a text field to display the computed total in the new currency. You’ll also add a label
field for the conversion result. You’ll get additional tips on aligning fields in “Finalize the Layout” (page 110).

1. To add a text field and label for “Amount in Other Currency,” perform these steps:

Build the Interface 103
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

a. Shift-click or drag to select the exchange rate label and text input fields, then choose Duplicate from
the File menu or type Command-D.

b. Drag the duplicated fields and align them below the original fields using the guides.

c. Select the new label field and type “Amount in Other Currency:” in the Title field in the Attributes
pane of the Info window.

d. Select the text input field and type “total” in the Name field in the AppleScript pane of the Info
window.

Figure 5-21 shows the results of adding the additional text fields. The window now contains its final
collection of text fields and labels.

Figure 5-21 The Currency Converter window with all text fields and labels

104 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

2. You don’t want a user to be able to enter text in the “Amount in Other Currency” input field, so you’ll
need to disable editing. Select the field, display the Attributes pane in the Info window, and deselect
the Editable checkbox in the Options section. Figure 5-22 shows the result.

Figure 5-22 The Info window, after disabling editing for the amount in other currency field

Save your work before moving on to the next section.

Add Number Formatters to the Input and Result Fields

Currency Converter should allow users to input only meaningful values, and it should display a properly
formatted result:

 ■ the exchange rate input field should accept and display decimal numbers such as 1.55 or 10.24

 ■ the dollars to convert input field should display valid dollar amounts, such as $125.20

 ■ the amount in other currency field should display the computed total in the appropriate currency to the
current locale, such as dollars ($600.10) or yen (¥1700.00)

To format the text in a text field, Interface Builder provides number formatters (based on the Cocoa
NSNumberFormatter class). In the Cocoa-Text palette in Figure 5-10 (page 97), the number formatter is
represented by a dollar sign superimposed on the number 1.99.

Build the Interface 105
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Important: When a number formatter is attached to a text field, the contents must be explicitly a number,
as shown in Listing 5-2 (page 114), and not as text.

To provide number formatters for Currency Converter’s text fields, perform these steps

1. Select the exchange rate input field in the Currency Converter window.

2. Open the Info window to the Attributes pane.

3. Display the Cocoa-Text palette in Interface Builder’s Palette window.

4. Drag a number formatter from the palette and drop it on the input field, as shown in Figure 5-23.

Figure 5-23 Adding a number formatter to the exchange rate input field

Figure 5-24 shows Info window for the number formatter. The formatter pane should open automatically
when you insert a number formatter into a text field. You can also select the pane from the pop-up
menu.

106 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

The default formatter settings are correct for the exchange rate input field, so you don’t need to make
any changes.

Figure 5-24 The Formatter pane for the exchange rate input field

Note: See the Note with Figure 5-15 (page 100) for information on viewing Currency Converter’s
MainMenu.nib window in outline view. In outline view, you can examine the application’s object hierarchy,
and see each number formatter object and the text field it is associated with.

5. Repeat the previous steps to add a number formatter to the dollars to convert input field. The Info
window should again look as in Figure 5-24.

6. Select the second row in the formatter, so that the field includes a dollar sign.

7. Repeat the previous steps to add a number formatter to the amount in other currency field. The Info
window should again look as in Figure 5-24. Again, select the first format row that includes a dollar sign.

Build the Interface 107
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

8. Because the amount in other currency is likely not to be in dollars, select the Localize checkbox in the
Options section. Figure 5-25 shows the result.

Figure 5-25 The Formatter pane for the amount in other currency field

For more information on number formatters, see Interface Builder Help or the Cocoa documentation for the
NSNumberFormatter class.

Add a Convert Button

To add a Convert button to Currency Converter, perform the following steps:

1. Drag a button object from the Cocoa-Controls palette in the Palette window to the bottom right corner
of the Currency Converter window. Use the automatic feedback to align the right edge of the button
with the right edge of the text field above it.

108 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

2. Double-click the button to select its text, then type “Convert”. Figure 5-26 shows the result.

Figure 5-26 The Currency Converter window with a “Convert” button

Add a Horizontal Separator

To add a horizontal separator to Currency Converter, perform the following steps:

1. Drag a box object from the Cocoa-Controls palette in the Palette window to the Currency Converter
window. The box object looks like a horizontal line. (If you let the cursor rest over the line in the Palette
window, Interface Builder displays “NSBox”.)

Position the box in the lower right of the window, between the convert button and the text field above
it, with the right edge near the right edge of the window. Use the automatic feedback to align it.

2. Drag the left selection handle to resize the separator, using the automatic feedback to stretch it until it
almost reaches the left side of the window. Figure 5-27 shows the result.

Figure 5-27 The Currency Converter window with a horizontal separator

Build the Interface 109
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

Finalize the Layout

In this tutorial, you have generally positioned user interface objects so that they are aligned with other objects
and in accord with the Aqua interface guidelines. However, now that all the user interface objects are in
place, you can check the alignment and perform other layout operations.

1. Click and shift-click to select all three of the label fields.

2. To resize the fields to their minimum sizes, choose Size to Fit from the Layout menu.

3. To right align the labels, choose Align Right Edges under Alignment in the Layout menu.

4. Similarly, select all three non-label text fields.

5. To make them the same size, choose Same Size from the Layout menu.

6. To align their left edges, choose Align Left Edges under Alignment in the Layout menu.

7. To make sure they’re still aligned according to the Aqua guidelines, use the automatic feedback as you
drag them to the right edge of the window.

See Interface Builder Help for information on other options in the Layout menu. And remember, you can use
these layout options at any time that makes sense.

Connect the Interface

The Currency Converter application needs a connection so that when a user clicks the Convert button (or
presses the Return key), the application calls a handler in an application script. It also needs a connection so
that when a user closes the window, the application quits (the application can’t do anything useful without
a window).

To set up connections for Currency Converter, perform these steps in Interface Builder:

1. Select the Convert button, then display the Attributes pane in the Info window. Figure 5-28 shows the
row in the middle of the Attributes pane that you use to select a key equivalent for the button.

Figure 5-28 Fields from the Info window for setting keystroke equivalent

In the pop-up that says <no key>, choose Return. This causes the Convert button’s action handler (the
clicked handler you’ll connect next) to be called when a user presses the Return key. Figure 5-29 shows
the result.

Figure 5-29 Fields from the Info window for setting keystroke equivalent

110 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

When you choose the Return key as the keystroke equivalent for a button, you’ve designated that button
as the default button in the window. Cocoa automatically colors the button aqua to show it is the default
button.

You can use the checkboxes to the right of the pop-up to include the Option and Command keys as part
of the keystroke equivalent, but that isn’t necessary for Currency Converter.

2. With the Convert button still selected, display the AppleScript pane in the Info window.

3. Type “convert” for the AppleScript name for the button.

4. Click the disclosure triangle next to the Action checkbox and select the “clicked” checkbox to indicate
the application should have a clicked event handler, called when a user clicks the button.

5. Check the file Currency Converter.applescript in the Script list to connect the handler. Figure
5-30 shows the Info window after this step.

Figure 5-30 The Info window after connecting a clicked handler to the Convert button

Connect the Interface 111
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

6. Save your results. That causes Interface Builder to insert an empty clicked handler in the selected script
file. If you click the Edit Script button, Interface Builder also opens the file in an Xcode editor window.
You’ll see the code for the clicked handler in the next section. But for now, just save your results and
stay in Interface Builder so you can add another handler.

7. To quit the application when a user closes the Currency Converter window, you’ll need to connect a
special handler to the application. Figure 5-3 (page 90) shows the MainMenu.nib window. The File’s
Owner instance in that window represents NSApp, a global constant for the application object that
serves as the master controller for the application. (The icons in the Instances pane are described in
“Interface Creation” (page 53).)

Select the File’s Owner in the nib window and open the Info window to display the AppleScript pane.

8. Click the disclosure triangle next to the Application checkbox and select the “should quit after last window
closed” checkbox. Clicking this checkbox indicates the application should have a corresponding event
handler, called when a user closes the last window (the Currency Converter’s only window).

The dash in the Application checkbox indicates that at least one handler in the group is checked, but
not all are.

112 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

9. Select the file Currency Converter.applescript in the Script list to connect the handler. Figure
5-31 shows the Info window after this step.

Figure 5-31 The Info window after connecting a handler to the application object

Write Event Handlers

When you connect a handler in Interface Builder and save your changes, Interface Builder inserts a skeleton
handler into the specified script in your Xcode project. Listing 5-1 shows the skeleton clicked handler in
the file Currency Converter.applescript. The application calls this handler when a user clicks the
Convert button. The parameter theObject is a reference to the button object itself.

Listing 5-1 The empty clicked handler

on clicked theObject
 (* Add your script here. *)
end clicked

Write Event Handlers 113
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

In the clicked handler, the Currency Converter application needs to get the exchange rate and the number
of dollars to convert, multiply them to determine the total in the new currency, and display that value. It
should behave gracefully if the value for either the exchange rate or the number of dollars is missing. (The
number formatters you added to the input fields prevent a user from saving erroneous values, such as
alphabetic characters.)

Listing 5-2 shows the completed clicked handler.

Important: You do not have to use a tell application "Currency Converter" statement in an
application script because scripts implicitly target the application itself. For that reason, the clicked handler
in Listing 5-2 contains no tell application statement, though it does use a tell window statement to
target the window on which it accesses various text fields.

Listing 5-2 The complete clicked handler

on clicked theObject
 tell window of theObject
 try
 set theRate to contents of text field "rate" as number
 set theAmount to contents of text field "amount" as number
 set contents of text field "total" to theRate * theAmount
 on error
 set contents of text field "total" to 0
 end try
 end tell
end clicked

The key points of this handler are:

 ■ the theObject parameter is a reference to the clicked button object

 ■ a button, like other controls, is a view, and a script can get the window of a view

 ■ a script can get a reference to any named AppleScript object within a window (it can also refer to items
by number—for example, the first text field— or ID, but names are easy to specify,
self-documenting, and won’t change dynamically)

 ■ the handler shows the syntax for getting and setting the content of text fields; when a number formatter
is attached to a text field, the contents must be set explicitly as number, as shown in Listing 5-2, and not
as text

 ■ the actual work performed by the Currency Converter application is quite simple

 ■ the handler uses a try, on error block to set the contents of the result field to 0 if an error occurs in
calculating the converted value; this protects the user from receiving a possibly confusing error message
if they attempt to convert without supplying both an exchange rate and an amount to convert

When you connect a handler in Interface Builder and click the Edit Script button, Interface Builder inserts a
skeleton handler into the specified script and opens the script in Xcode. Listing 5-3 shows the completed
should quit after last window closed handler in the file Currency Converter.applescript.
This handler is called when a user closes the Currency Converter window. Its one line, supplied by you, returns
the value true, indicating the application should, indeed, quit when the last window is closed.

Listing 5-3 The should quit after last widow closed handler

on should quit after last window closed theObject

114 Write Event Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

 return true
end should quit after last window closed

Build and Run the Application

The Currency Converter application should now be ready to perform conversions, so it’s time to build it again.
Use any of the mechanisms described previously to build and run the application:

 ■ type Command-R

 ■ choose Build and Run from the Build menu

 ■ click the Build and Run button (a combined monitor and hammer)

Figure 5-32 shows the application after computing a currency conversion. Because the test computer was
set up for U.S. English, the converted amount is shown in dollars, but for another locale it might show yen
or pounds.

Figure 5-32 The Currency Converter application in action

For a detailed discussion of building and checking for syntax errors, see “Mail Search Tutorial: Build and Test
the Application” (page 203).

Where To Go From Here

Once you have completed the Currency Converter tutorial, you have several options for learning more about
AppleScript Studio:

 ■ If you haven’t already done so, build and experiment with some of the sample applications described
in “AppleScript Studio Sample Applications” (page 35).

 ■ If you’re ready for a more challenging tutorial, go right to the chapter “Mail Search Tutorial: Design the
Application” (page 117).

Build and Run the Application 115
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

 ■ If you want to take it a little slower, try using the information in Chapter 12, “Mail Search Tutorial:
Customize the Application”, (page 207) to customize the Currency Converter application. Although the
customizing chapter refers frequently to Mail Search, the customization steps can be applied to any
application.

116 Where To Go From Here
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Currency Converter Tutorial

In this chapter you’ll use AppleScript Studio to design a fairly complex AppleScript Studio application called
Mail Search. Mail Search searches for text in messages in the Mac OS X Mail application. You’ll design Mail
Search by performing the steps described in the following sections:

Note: The Mail Search sample application distributed with AppleScript Studio was formerly known as
“Watson”.

1. “Identify a Goal for the Application” (page 118).

2. “Examine Mail’s Scripting Dictionary” (page 118).

3. “Specify Operations for Mail Search” (page 120).

4. “Design the Interface” (page 121).

5. “Plan the Code” (page 125).

You’ll complete the Mail Search application in the following chapters:

“Mail Search Tutorial: Create the Interface” (page 131)
“Mail Search Tutorial: Connect the Interface” (page 167)
“Mail Search Tutorial: Write the Code” (page 185)
“Mail Search Tutorial: Build and Test the Application” (page 203)
“Mail Search Tutorial: Customize the Application” (page 207)

This organization demonstrates a design decision to use separate steps to create the interface, connect it,
and write scripts to perform operations. Working in this manner is appropriate for a tutorial, where the
outcome is known in advance, but once you’re familiar with AppleScript Studio, it may not be the most
convenient way to design your own applications. Instead, you may choose to work more incrementally,
adding part of the interface, connecting it to a handler, and testing (even if only with diagnostic statements
to show that program flow is working properly). This tutorial points out places where you might choose to
build and test the application in the normal course of development.

Before You Start This Tutorial

Before starting the Mail Search tutorial, it is recommended that you complete the “Currency Converter
Tutorial” (page 87), read “AppleScript Studio Components” (page 39), and experiment with some of the
sample applications described in “AppleScript Studio Sample Applications” (page 35). In particular, the Table
and Outline sample applications demonstrate how to work with table view and outline view objects.

Before You Start This Tutorial 117
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Identify a Goal for the Application

If you’re a regular user of the Mac OS X Mail application, you may know that it has a convenient feature for
finding specified text in the messages within a mailbox, but prior to Mac OS X version 10.2, it could only
search one mailbox at a time. Suppose you recently got mail from a friend and couldn’t remember if you
filed it in Personal Mail, To Do List, Read Later, or some other mailbox. You could look for the message in any
single mailbox by searching for your friend’s name, or for a word or phrase you remember from the message.
You could specify what part of the message to search—Subject, To, From, or Entire message text—but there
was no option to search more than one mailbox at a time.

Well, many users had to wait for Mac OS X version 10.2 to be able to search across mailboxes. But AppleScript
Studio supplied this feature in Mac OS X version 10.1, through the Mail Search application, one of the sample
applications distributed with AppleScript Studio. And though this feature is now built in to Mail, the Mail
Search application still provides a useful introduction to a full-featured AppleScript Studio application.

In this tutorial, you’ll perform all the steps required to design and build the Mail Search application. In the
process, you’ll gain experience with many AppleScript Studio features, including

 ■ working with document-based applications

 ■ creating and connecting complex user interface objects, using multiple nib files

 ■ writing scripts to control outline and table views, progress bars, and other interface objects

 ■ incorporating script objects in an application

 ■ building AppleScript Studio applications

While designing and building the Mail Search application may prove a challenging task, by the time you
complete the tutorial you should have a good grasp of many of the key tools and concepts needed to build
AppleScript Studio applications. And even if you don’t work through every step of the tutorial, you can browse
it to find tips for performing specific tasks.

Examine Mail’s Scripting Dictionary

Before you can design an AppleScript Studio application to script the Mail application, you need to know
what scripting terminology Mail supports. To examine Mail’s scripting dictionary, do the following:

1. Open Xcode.

2. Choose Open Dictionary from the File menu.

3. Choose the Mail application. If it doesn’t show up among the available scriptable applications, you can
navigate to it by clicking the Browse button. The application itself is located in /Applications.

You’ll find more information on examining scripting dictionaries in “Terminology Browser” (page 50). Figure
6-1 shows Mail’s scripting dictionary in an Xcode pane. (You can also open dictionaries in the Script Editor
application. Both applications provide the same information.)

118 Identify a Goal for the Application
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Figure 6-1 The Mail application’s scripting dictionary in an Xcode window

Note: The scripting terminology for the Mail application changed with Mac OS X version 10.2. The scripts
and examples created prior to that version differ from their counterparts today. The listings shown in this
document reflect terminology revisions through Mac OS X version 10.3.

Figure 6-1 shows several terminology suites, or collections of related classes and events. The Standard Suite
and Text Suite are default suites that all Cocoa applications get just by turning on scripting (as described in
“Cocoa Scripting Support” (page 58)). The Mail and Message suites are specific to Mail. Take some time to
examine the classes and events available in each suite. Mail Search is likely to require scripting terms from
the Mail and Message suites, as well as terms from the Standard suite, such as get and set.

For example, to search through messages in all mailboxes, Mail Search has to access:

 ■ accounts (elements of the application class in the Mail suite)

 ■ the mailboxes they contain (elements of the account class)

 ■ the messages (elements of the mailbox class) in those mailboxes

Look for other classes whose properties and elements Mail Search might need, as well as for events that may
be useful. As it turns out, Mail Search doesn’t require any events from the Message or Mail suites, but does
use events from the Standard Suite (which includes such built-in AppleScript commands as get and set).
In fact, Mail Search uses the get command extensively to get accounts, mailboxes, and messages.

Examine Mail’s Scripting Dictionary 119
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Note: See “Terminology Browser” (page 50) for a description of how AppleScript Studio distinguishes
between events and commands.

Specify Operations for Mail Search

The goal of the Mail Search application is to search multiple Mail application mailboxes for specified text. A
Mail user can have multiple mail accounts—for example, an IMAP account for work-related email, a POP
account from an Internet service provider, and perhaps additional accounts as well. Each account can have
multiple mailboxes, including mailboxes within other mailboxes.

A user should be able to search all or a selected group of mailboxes and to specify which part of the messages
to search: Subject, To, From, or Contents (in Mail, the equivalent of Contents is “Entire message text”). For
lengthy operations, Mail Search should display a progress bar. On completion of a search, Mail Search should
display a list of messages that contain the specified text. Columns in the list should display the From and
Subject fields, as well as the name of the mailbox the message is in.

Finally, a user must be able to read individual messages that contain the search text. Because Mail’s scripting
support doesn't currently support opening an individual message in a Mail window, Mail Search can instead
display a message in a separate window it creates.

Based on this analysis, Mail Search’s requirements can be summarized as follows:

 ■ Mail Search can obtain and display a list of all mailboxes from all accounts.

 ■ A user can specify which mailboxes to search, by specifying one or more of the available mailboxes.

 ■ A user can specify text to search for.

 ■ A user can specify where to search from the following choices:

 ❏ Subject field

 ❏ To field

 ❏ From field

 ❏ Contents of message

 ■ Mail Search can find and display all messages containing the specified text. The result list includes

 ❏ From

 ❏ Subject

 ❏ Mailbox name

 ■ A user can double-click a message in the result list to open it in a separate window.

 ■ During long operations, such as searching through multiple mailboxes and potentially thousands of
messages, Mail Search can provide feedback on its progress.

As you’ll see in later sections, the Cocoa application framework and the Cocoa user interface objects you use
to implement Mail Search have many built-in features. As a result, Mail Search automatically gains many
capabilities not listed here.

120 Specify Operations for Mail Search
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Design the Interface

One way to design an interface is to perform these simple steps:

1. Figure out what the application does so that you can describe what information and user actions the
interface must be able to handle.

This step has already been completed, in “Specify Operations for Mail Search” (page 120).

2. Identify the kinds of user interface widgets you might use to implement the interface.

AppleScript Studio supplies plenty of widgets—namely all of Cocoa’s user interface objects. This step is
described in “Identify Objects for the User Interface” (page 121).

3. Arrange the widgets in a pleasing format. This step is described in “Arrange the User Interface” (page
122).

Identify Objects for the User Interface

Before specifying requirements for Mail Search, which works closely with the Mail application, you investigated
the scriptable features supported by Mail. Similarly, before designing Mail Search’s interface, you should
investigate the user interface objects available to AppleScript Studio applications. “Cocoa User Interface
Objects” (page 58) describes how to view user interface objects in the Palettes window in Interface Builder.
You can also take a look various sample applications distributed with AppleScript Studio, including Browser
and Outline, which demonstrate the use of column and outline views that imitate the Finder’s column and
list views. For more information on the sample applications, see “AppleScript Studio Sample Applications” (page
35).

To help narrow the search for objects, here are Mail Search’s requirements from a previous section, along
with recommended user interface objects, as well as the script suite to which each object class belongs
(where you can examine the scripting terminology for that object):

 ■ Mail Search can obtain and display a list of all mailboxes from all accounts.

To display a list of mailboxes, consider using an outline view (from the Data View suite). An outline view
can display hierarchical data, similar to the way the Finder displays folders and files in a list view. You
can build the Outline sample application to see an outline view in action.

To avoid unnecessary complexity in this tutorial, Mail Search only uses one layer of nesting in the outline
view.

 ■ A user can specify which mailboxes to search, including a single mailbox, a subset, or all mailboxes.

An outline view, as a subclass of the table view class (both belong to the Data View suite), automatically
supports row selection.

 ■ A user can specify text to search for.

A text field (from the Control View suite) is the obvious choice for obtaining text from a user.

In addition, Mail Search can use a button (also from the Control View suite) to initiate the search.

 ■ A user can specify where to search:

 ❏ Subject field

Design the Interface 121
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

 ❏ To field

 ❏ From field

 ❏ Contents of message

A good way to choose one item from a small number of items is a pop-up menu, which is supported by
the popup button class (from the Control View suite). By using a pop-up menu, Mail Search mimics Mail’s
implementation of this feature.

 ■ Mail Search can find and display all messages containing the specified text.

There are several aspects of a found message that a user might like to see, including who it’s from, the
subject, and the mailbox where it is stored. In fact, the interface for displaying messages should look
similar to the ones that display mail in Mail and similar applications.

A table view (from the Data View suite) is a good choice for displaying rows and columns of data. You
can build the Tables sample application (distributed with AppleScript Studio) to see a table view in
action. The Tables application demonstrates two ways to work with table views: using a data source
object to supply table data (the approach Mail Search uses), and operating without a data source
(supplying the data directly from a script).

A data source object is a special object supplied by AppleScript Studio to supply row and column data
to a table or outline view. Data source objects are available from the AppleScript pane of Interface
Builder’s Palette window.

 ■ A user can double-click a message in the result list to open it in a separate window.

As a simple solution for displaying text in a separate window, you can use a window object containing
a text view (from the Text View suite). Though it is easy to implement, a text view supports many
operations on the displayed messages, including Cut, Paste, and even Undo.

 ■ During long operations, such as searching through multiple mailboxes and potentially thousands of
messages, Mail Search should provide feedback on its progress.

A progress bar (from the Control View suite) provides a standard mechanism for user feedback. Combined
with a text field, it can provide both determinate (the total time is known and the bar moves from left
to right proportional to the percentage of the task completed) and indeterminate (the total time is not
known, and a striped cylinder spins continually) progress bars, as well as text messages.

Note: The AppleScript Studio terminology for a progress bar is progress indicator; that term is
used in Mail Search’s script file.

You’ve now got a good start on the objects you’ll use for Mail Search’s user interface. In later sections, you’ll
read about a few additional objects you’ll need that work together with those described here.

Arrange the User Interface

There are any number of ways to sketch out a user interface, from the legendary napkin sketch to laying out
actual interface objects in a tool such as Interface Builder. This section presents Interface Builder snapshots
of the prospective Mail Search interface. Keep in mind that these illustrations represent just one solution for
the specified requirements. Other solutions are certainly possible; feel free to look for changes and
improvements as you work through this tutorial and gain knowledge of the interface objects available in
AppleScript Studio.

122 Design the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Figure 6-2 shows the Interface Builder definition for Mail Search’s main window, the search window. It contains
a pop-up menu to specify where to search, a text field to specify the text to search for, a button to start the
search, an outline view to show the available mailboxes, and a table view to display the messages found by
the search. The outline view and table view contain sample entries inserted by Interface Builder to help
display the views’ rows and columns. This data is not displayed in the application.

You’ll learn how to create each of the interface objects shown in the search window in “Create the Search
Window” (page 150). The search window also contains the standard close, minimize, and zoom buttons. This
set of buttons is just one of the many features you'll get automatically in an AppleScript Studio application.

Figure 6-2 Mail Search’s search window in Interface Builder

Figure 6-3 shows the status dialog that Mail Search displays during lengthy operations, such as gathering a
list of mailboxes or searching through a large number of messages. Mail Search displays the status dialog as
a sheet attached to the main window, not as a separate window. You’ll learn how to create each of the
interface objects shown in the status dialog in “Create the Search Window” (page 150).

Design the Interface 123
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Note: You’ll have to get use to a bit of naming inconsistency when working with the status dialog. The Mail
Search application often refers to the status dialog as a status panel because you use an object that Interface
Builder calls a Panel to create the status dialog. Whether you see status dialog or status panel, you’ll know it
refers to the same object.

Figure 6-3 A status dialog in Interface Builder

Figure 6-4 shows the MainMenu instance from Mail Search’s MainMenu.nib file as it appears in Interface
Builder. The application menu is open, showing the items in that menu. Mail Search uses the default menu
nib created for an AppleScript Studio application, changing only the names of certain menu items shown in
Figure 6-4. You’ll learn how to create this nib in “Create the Message Window” (page 135) and how to modify
it in “Customize Menus” (page 207).

Figure 6-4 Mail Search’s menu nib in Interface Builder, showing the application menu

Figure 6-5 shows a Mail Search message window as it appears in Interface Builder. When a user double-clicks
a message in Mail Search’s search window, Mail Search opens a message window to display the message
text. You will learn how to create this window in “Create the Message Window” (page 135).

124 Design the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Figure 6-5 A Mail Search message window in Interface Builder

The interface items shown in this section form the basic user interface for the Mail Search application.

Plan the Code

Although you won’t write scripts and handlers for Mail Search until you’ve completed several additional
tasks, it makes sense to spend a little time now thinking about the application’s code. A look at dependencies
between the code and the interface provides useful background for building the interface and connecting
it to handlers in application script files.

Note: Mail Search has a tiny dab of Objective-C code in its main routine, and there is a lot of Cocoa code
working behind the scenes to implement user interface objects and application operations. But the code
you’ll design for Mail Search consists of only handlers and script objects, and the script statements they
contain.

Because every AppleScript Studio application is built on the Cocoa application architecture, Mail Search can
perform many operations automatically, without any additional effort on your part. For example, users can
open multiple windows, resize and minimize windows, enter text, and even shuffle the position of the From,
Subject, and Mailbox columns in the list of found messages. To experiment with the features you get in the
simplest document-based AppleScript Studio application, even before adding any of Mail Search’s user
interface, follow the steps in “Create a Project” (page 131).

Plan the Code 125
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

AppleScript Studio applications also have the ability to connect user actions and other events in the application
to handlers in scripts. As you saw in “Terminology Browser” (page 50), user interface objects in AppleScript
Studio applications can respond to a variety of events and contain many scriptable elements and properties.
In planning the code for Mail Search, you’ll need to identify the events that Mail Search responds to.

To summarize Mail Search briefly, it opens a search window, connects to the Mail application (opening it if
necessary), obtains a list of available mailboxes, and displays them. At that point, it waits for user input and
responds accordingly, by opening new search windows, selecting mailboxes to search, initiating a search,
displaying results, and so on.

To perform these operations, Mail Search needs two kinds of handlers:

 ■ Handlers that respond directly to user actions (such as the opening or closing of a window) or changes
of state in the application (such as completion of application launch). These handlers, called event
handlers (as defined in “Connecting Actions to Scripts” (page 22)), are identified in “Event Handlers in
Mail Search” (page 126).

 ■ Handlers that are not necessarily called to respond to an event, but rather perform basic tasks in the
application, such as obtaining a list of available mailboxes, displaying a status dialog, and so on. These
handlers are typically called from event handlers. These handlers are identified in “Additional Handlers
and Scripts in Mail Search” (page 127).

Because AppleScript Studio provides so much built-in support, Mail Search won’t require as much code as
you might expect. For a full listing of Mail Search’s script file, Mail Search.applescript, see “Mail Search
Tutorial: Write the Code” (page 185).

Important: Before implementing any of the handlers or other script statements shown in the Mail Search
tutorial chapters, you should read the section “Obtaining the Code for the Mail Search Tutorial” (page 185).

Event Handlers in Mail Search

Most interaction with user interface items takes place in the search window, and you’ve already identified
the objects for that window in “Identify Objects for the User Interface” (page 121). Working from those objects,
you can identify events the objects must handle and the event handlers for those events:

 ■ The search window: Mail Search needs to know when a window is opened, when it is activated, and
when it is closed. The corresponding event handlers are:

 ❏ will open: This event handler is called after a window is instantiated from a nib file and before it
is opened. Mail Search can use this handler to perform any initialization associated with the search
window that can’t be stored with the nib file.

 ❏ became main: This event handler is called when a window becomes the main window (the front
window and principal focus of user action), such as when a window is first opened or when a user
switches back to the application. The main window is typically (but not always) also the key window
(or first recipient for keystrokes). Mail Search can use this handler to perform any required tasks prior
to the search window becoming main, such as checking whether the available mailboxes have been
loaded.

 ❏ will close: This event handler is called before a window is closed. Mail Search can use it to perform
any cleanup when a search window is closed.

126 Plan the Code
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

 ■ The search text field: Mail Search needs to know when a user presses the Return key so it can initiate
a search. It can do so by implementing an action event handler.

 ■ The find button: Mail Search also needs to know when a user clicks the find button so it can initiate a
search. It can do so by implementing a clicked event handler.

 ■ The search results table view: Mail Search should open a message window when a user double-clicks
on a message. It can handle this event by implementing a double-clicked event handler.

 ■ The application object: Mail Search needs to perform certain initialization tasks after the application
has unarchived its user interface objects from the nib file but before it enters its main routine. It can
achieve this goal by implementing a will finish launching event handler.

You’ll connect objects to these event handlers in “Connect the Interface” (page 167) and write the handlers
in “Write Event Handlers for the Interface” (page 186).

Additional Handlers and Scripts in Mail Search

A script object is a user-defined object, combining data (in the form of properties) and handlers, that can
be used in a script. A script object definition is a compound statement that can contain collections of
properties, handlers, and other AppleScript script statements. A script object definition is similar to an
object-oriented class definition—you can instantiate multiple instances of the script object, each containing
data and handlers to operate on that data. You can even extend or modify the behavior of a handler in one
script object when calling it from another script object.

Most event handlers in Mail Search are associated with the search window. These event handlers need to
call other handlers to perform searches and display results. One convenient way to organize these handlers
is to create a script object for each search window that implements all the necessary handlers related to
searching and displaying results. In response to user actions, Mail Search’s event handlers call the script
object’s handlers, which in turn call other handlers in the script object as needed. Mail Search can also use
a script object to encapsulate operations involving the status dialog. In Mail Search, neither of these script
objects require the use of inheritance to modify contained handlers.

In the next sections, you’ll specify script and handlers for Mail Search. You’ll write these handlers in “Write
Scripts and Additional Handlers” (page 190).

The Controller Script

Mail Search defines a script to handle operations for the search window. It calls this script a controller, in the
tradition of the model-view-controller (MVC) paradigm. In MVC, the view is responsible for what the user
sees, the model represents the application’s data and algorithms, and the controller interprets user input
and specifies changes to the model and the view. When a search window is about to open, Mail Search
creates a controller script object for it and stores it in a global list of controllers. When a window is activated,
Mail Search gets its controller and tells it to load all available mail- boxes from the Mail application.

Each open search window has an associated controller in Mail Search’s global list of controllers. When a user
performs an action in a window, such as clicking the find button, the application calls the appropriate event
handler (such as on clicked). That event handler typically gets the controller (a script object) for its window,
then calls the appropriate handler in the controller (such as the find handler) to perform the requested
action (to find matching messages).

The controller script object defines properties for things it needs to keep track of, including

Plan the Code 127
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

 ■ a reference to its window

 ■ a reference to a status panel (or dialog)

 ■ a list of found messages

 ■ a boolean for whether it has created a list of available mailboxes

The controller script object defines handlers for the searching-related tasks it performs:

 ■ initialize: performs any initialization needed for searching

 ■ loadMailboxes: loads mailboxes if they haven’t already been loaded; shows status dialog

 ■ find: if a valid search has been specified (there is text to search for and at least one selected mailbox
to search in), performs the search

In addition to these high-level handlers, the controller script object needs handlers to actually load the
mailboxes and search for and display messages. For example, to load mailboxes, Mail Search must search
each account. This leads to the following handlers:

 ■ addMailboxes: called by loadMailboxes; calls addAccount for each account

 ■ addAccount: called by addMailboxes; adds an account name to the mailboxes view; for each mailbox
in the account, calls addMailbox

 ■ addMailbox: called by addAccount; adds the mailbox to the mailboxes view

This should help you understand how the controller script might implement other tasks, such as adding
found messages to the messages view.

Finally, Mail Search needs several handlers that are not part of the controller script itself:

 ■ makeController: creates a controller script object for a window

 ■ addController: adds a controller to the global list of controllers

 ■ removeController: removes a controller from the global list of controllers

 ■ controllerForWindow: given a window, returns the controller for that window from the global list
of controllers

You’ll find more information about controller handlers in “Write Scripts and Additional Handlers” (page 190).
Of course you can always look ahead by examining Mail Search in “Mail Search Tutorial: Write the Code” (page
185), or by opening the Mail Search sample application in Xcode.

The Status Dialog Script

The status dialog provides both determinate (the bar moves from left to right) and indeterminate (a spinning
striped cylinder) progress bars, as well as text messages. Mail Search’s approach for handling a status dialog
is similar to its approach for handling search operations. That is, it defines a status dialog script and instantiates
a script object based on that script whenever it needs to display a status dialog. The status dialog script
defines properties for things it needs to keep track of, including

 ■ a reference to its window

 ■ a boolean for whether it has been initialized

128 Plan the Code
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

 ■ count variables used in showing progress

The status dialog script is fairly simple, and requires fewer handlers than the controller script. As you might
expect, its handlers are used for opening and closing the panel or adjusting its status:

 ■ openPanel: performs initialization and displays the status dialog

 ■ closePanel: closes the panel

 ■ changePanel: changes the progress display message

 ■ adjustPanel: adjusts the current state of the progress bar

 ■ incrementPanel: increments the progress bar display

These handlers aren’t shown in individual listings, but you can examine them in “Mail Search Tutorial: Write
the Code” (page 185) or in the Mail Search sample application.

Plan the Code 129
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

130 Plan the Code
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Mail Search Tutorial: Design the Application

Mail Search is a fairly complex AppleScript Studio application that searches for specified text in messages in
the Mac OS X Mail application. In this chapter you’ll create an AppleScript Studio project for Mail Search and
build the user interface. These tasks are described in the following sections:

1. “Create a Project” (page 131).

2. “Add an Image File to the Project” (page 133)

3. “Build the Interface” (page 134).

This chapter assumes you have completed “Mail Search Tutorial: Design the Application” (page 117) the
previous Mail Search tutorial chapter.

Create a Project

To create a new AppleScript Studio project for Mail Search, perform these steps:

1. Use Xcode to create a new AppleScript Studio project, as described in “Creating a Hello World
Application” (page 27), but choose the AppleScript Document-based Application for the project
template—you use this template for an application that creates and manages multiple documents—
and name the project “Mail Search”.

Create a Project 131
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. Open the groups in the Files list in the Groups & Files list to show their contents, as in Figure 7-1. Each
of the items is described in “Default Project Contents” (page 43).

Figure 7-1 Default contents of a document-based AppleScript Studio project

3. Document.applescript is the default document script file, which is created as an empty file. Mail
Search doesn’t use this file, so select the file and press the Delete key to remove it from the project. You’ll
then see the dialog shown in Figure 7-2.

Figure 7-2 Deleting a file from a project

Click the Delete References & Files button to delete the file on disk, as well as from the project.

4. Select the script file Application.applescript and choose Rename from the Project menu. Rename
the file Mail Search.applescript.

132 Create a Project
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

At this point you can build the project and create a working application that can create multiple document
windows, expand and minimize them, display an About window, and respond to a number of menu choices.
To build and run the application, do one of the following:

 ■ type Command-R

 ■ choose Build and Run from the Build menu

 ■ click the Build and Run button, which is represented by a hammer and green go button

Add an Image File to the Project

The Mail Search sample project included with AppleScript Studio includes an image of a magnifying glass
you’ll need for the search window. Open the folder for the Mail Search sample project and drag the file
find.tiff to the Files list in the Groups & Files list of your new Mail Search project. You can drag it directly
to the Resources group.

You can also add a file to the Mail Search project by choosing Add Files from the Project menu in Xcode,
then navigating to the file find.tiff in the directory for the Mail Search sample project. Select it and click
Open. Whichever approach you choose, you’ll get the dialog shown in Figure 7-3.

Figure 7-3 Adding a file to a project

Select the checkbox “Copy items into destination group’s folder (if needed),” then click Add to add the file
to your project. If you used the Add Files menu choice, drag the file find.tiff into the Resources group in
the Groups & Files list.

Add an Image File to the Project 133
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Build the Interface

You’ll build the interface for Mail Search with Interface Builder, a Mac OS X development tool located in
/Developer/Applications. You should be familiar with Interface Builder from reading about it in “Interface
Builder Features for AppleScript Studio” (page 53), and from completing the “Currency Converter
Tutorial” (page 87). In particular, you should be familiar with the nib files Interface Builder uses to store
interface definitions.

Each of the following sections provides instructions for building one of the interface items described in
“Design the Interface” (page 121). You’ll start with the simpler items and with nib files that are created
automatically as part of the project, then move to more complex interface items that require the creation of
new nib files.

As you work through the steps to create Mail Search’s interface, you can build and run the application at any
point. You won’t see much difference in the application’s interface until you’ve completed the section “Create
the Search Window” (page 150). That’s because except for the menus and the main search window, the
interface won’t become visible until after you connect it to event handlers and write the handlers in later
sections.

To Build the interface for Mail Search, you’ll work through these steps:

1. “Examine the Default Menus” (page 134)

2. “Create the Message Window” (page 135)

3. “Create a Status Dialog” (page 143)

4. “Create the Search Window” (page 150)

Examine the Default Menus

You won’t make any changes to Mail Search’s menus until “Customize Menus” (page 207). In this section you’ll
examine the menus in Interface Builder. To examine the default menus in a Document-based AppleScript
Studio project template, you do the following:

1. Open the Mail Search project in Xcode.

2. Open the MainMenu.nib file by double-clicking its icon in the Files list in Xcode’s Groups & Files list,
shown in Figure 7-1 (page 132).

Interface Builder opens, displaying the four windows shown and described in “Interface Creation” (page
53).

134 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Figure 7-4 Interface Builder windows after opening Mail Search’s MainMenu.nib file

Figure 7-4 shows just the MainMenu.nib window and the application’s menus. The four icons in the Instances
pane visible in Figure 7-4 are described in “Interface Creation” (page 53). The File’s Owner instance represents
NSApp, a global constant for the application object that serves as the master controller for the application.
You’ll use this instance in “Connect the Application Object” (page 167).

At this point, you can use any of Interface Builder’s capabilities for creating and modifying menus, such as
adding or deleting menus or menu items. You don’t need to do anything now to change the default menus.
But in “Customize Menus” (page 207), you’ll find steps for changing menu and menu item names so that they
match the menus shown in Figure 6-4 (page 124). When you are finished looking at the menus, close the nib
file window; otherwise, you’ll end up with a lot of open nib windows as you work through the tutorial.

Create the Message Window

Figure 6-5 (page 125) shows the design for a Mail Search message window as it appears in Interface Builder.
The message window is a simple window with one main view and no special features. To create the message
window, you need to:

1. Create a new nib file.

2. Add a window instance to the nib file.

3. Add interface objects (in this case, a single text view object, enclosed within a scroll view) to the window.

These steps are described in the following sections.

Create a Nib File

To create a new nib file, perform these steps:

1. Open the Mail Search project in Xcode.

Build the Interface 135
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. Double-click one of the nib file icons (such as MainMenu.nib) in the Files list in the Groups & Files list
to start Interface Builder.

3. In Interface Builder, choose New from the File menu. Interface Builder opens the dialog shown in Figure
7-5.

Figure 7-5 Creating a new nib file in Interface Builder

4. Select Empty in the Cocoa section and click New. The new nib file is shown in Figure 7-6. The icons in
the Instances pane visible in Figure 7-6 are described in “Interface Creation” (page 53).

Figure 7-6 A new nib file in Interface Builder

5. Choose Save As from the File menu and navigate to the English.lproj directory in your Mail Search
project. Save the file as Message.nib (you just type “Message” and Interface Builder adds the extension).
You will be prompted for a nib file format. Your three choices are:

136 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

 ■ Pre-10.2 format: Use this if you want your application to run in Mac OS X versions earlier than 10.2.

 ■ 10.2 and later format: Use this if you want your application to run in Mac OS X version 10.2 and later.

 ■ Both formats: Use this if you want to run your application in all versions of Mac OS X.

Select the option for 10.2 and later.

6. After saving the file, you should be prompted to add the file directly to the Mail Search project. Click
Add to add the nib file to the project.

If for any reason you don’t have the opportunity to automatically add the new nib file to the Mail Search
project, you can add it directly by opening the project in Xcode, and dragging it into the Resources
group in the Groups & Files list, which is shown in Figure 7-1 (page 132), or by choosing Add Files from
the Project menu, navigating to the Message.nib file, and choosing that file. If you use Add Files, you
should then drag the icon for the nib file to the Resources group.

Add the Message Window to the Nib File

To add a message window to the nib file, perform these steps:

1. In Interface Builder, click the Cocoa Windows button in the Palette window toolbar. The Palette window,
showing the Cocoa Windows palette, is shown in Figure 7-7.

Figure 7-7 The Cocoa-Windows palette of Interface Builder’s Palette window

Build the Interface 137
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. Drag an instance of Window from the Palette window to any convenient space on your desktop. You’ll
see a window that looks similar to the image you dragged from the Palette window. You’ll also see an
icon for the window added to the Message.nib window, as shown in Figure 7-8.

Figure 7-8 The Message.nib window, showing a window instance

3. Double-click the word “Window” in the window instance in the nib window and type “Message” to
change the instance name.

4. You need to provide an AppleScript name for the window too, so you can access it in scripts. To do so,
click in the nib window to select the Message window instance, then choose Show Info from the Tools
menu or type Command-Shift-I to open the Info window. Use the pop-up menu at the top of the window
to display the AppleScript pane. The result is shown in Figure 7-9.

138 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Note: You can use command shortcuts to choose the AppleScript pane or other panes, but the exact
shortcut can vary between releases of Interface Builder. For example, in Interface Builder version 2.4.2,
you can display the AppleScript pane by typing Command-8.

Figure 7-9 The AppleScript pane in the Info window for a window object

To name the window, simply type “message” in the Name field. Remember that this is the object’s
AppleScript name, which you can use in a script to identify the object. It is a different entity than the
name of the window object in the nib window, and is also different from the window’s title in the running
application.

Build the Interface 139
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Note: The first time you make a change in the AppleScript pane, Interface Builder adds a new instance
named AppleScript Info to the nib window. The type of this instance is ASKNibObjectInfoManager. An
example is visible in Figure 7-10.

The AppleScript Info object stores information the application needs at runtime, such as object names
and event handler connections. This information is saved with the nib file and retrieved when the
application’s objects are unarchived from the nib file at application launch.

You can delete the AppleScript Info instance if you want to remove all such information from your
application. If you do so, you will then have to reconnect your event handlers.

If it makes sense, you can use the same AppleScript name for objects of different types in the same
window (such as a button and a text field), or for objects of the same type (such as buttons) in different
windows. However, if you name two buttons in the same window “button,” you won’t be able to
differentiate between them by name in an application script.

Figure 7-10 The Message.nib window showing an AppleScript Info object (not selected)

5. Save the changes to the Message.nib file. You should save changes periodically as you work through
this tutorial.

When you are finished with a nib file, you should also close its window to avoid a clutter of nib-related
windows as you work through the tutorial.

Set Up Interface Objects in the Message Window

To set up interface objects in the message window (in this case, there is just one object, a text view), perform
these steps:

140 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

1. Click the Cocoa Text Views button in the Palette window toolbar. The Cocoa-Text palette is shown in
Figure 7-11.

Figure 7-11 The Cocoa-Text palette of Interface Builder’s Palette window

2. Drag a text view object (the item containing Latin text and one scroll bar) from the Palette window to
the message window you created previously. Drag it to the top-left corner of the window (below the
title bar). Interface Builder provides feedback to aid in alignment and resizing, as shown in Figure 7-12.
The text view is actually enclosed within a scroll view with one scroll bar.

Figure 7-12 Positioning a text view object

Build the Interface 141
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

3. Drag the bottom-right corner of the text view object to resize it until it fills the whole window. Again,
you get resizing feedback from Interface Builder. The result is shown in Figure 7-13. The small dots below
the title bar and just inside the other sides of the window indicate that the text view is still selected.

Figure 7-13 The finished message window

4. To provide an AppleScript name for the text view, open the Info window and display the AppleScript
pane. The result is similar to Figure 7-9 (page 139). Type “message” in the Name field.

5. To support Undo in the text view, you’ll have to modify its default attributes. While the Info window is
still open, use the pop-up menu at the top of the window (or type Command-1) to display the Attributes
pane.

142 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

6. In the Options section, select the “Undo allowed” checkbox. The result is shown in Figure 7-14.

Figure 7-14 Attributes pane in Info window for text vie

7. As always, save the nib file after completing your changes.

Create a Status Dialog

Figure 7-15 shows a status dialog as it appears in Interface Builder. Mail Search displays the status dialog as
a sheet on the search window during lengthy operations. The status dialog contains a progress bar and an
invisible text field in which Mail Search can write status messages.

Note: As mentioned in “Arrange the User Interface” (page 122) the Mail Search application often refers to
the status dialog as a status panel because you use an object that Interface Builder calls a Panel to create the
status dialog. Whether you see status dialog or status panel, you’ll know it refers to the same object.

To create the status dialog, you’ll perform steps very similar to those in “Create the Message Window” (page
135). You need to:

1. Create a new nib file. This process is described in “Create a Nib File” (page 135).

In this case, name the nib file StatusPanel.nib.

2. Use the same process described in “Add the Message Window to the Nib File” (page 137) to add a window
instance to the nib, but with these differences:

a. drag an instance of the user interface object labeled “Panel” from the Cocoa-Windows palette, rather
than the one labeled “Window”

Build the Interface 143
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

b. name the instance “Status”

c. type “status” in the Name field in the AppleScript pane of the Info window for the instance

3. Adjust its size and attributes for the status dialog.

4. Set up a progress bar in the window.

5. Set up a text field to display progress text.

Steps 3, 4, and 5 are described in the following sections.

Adjust the Size and Attributes of the Status Dialog

You need to change certain window attributes to use the window as a pane. You also need to reduce the
size of the status dialog so that it looks appropriate when it appears below the title bar of the search window.
The previously designed status dialog, shown again in Figure 7-15, is smaller than the minimum size for a
default window in Interface Builder, so you have to adjust the minimum size.

Figure 7-15 The status dialog as previously designed

To make these changes, perform the following steps:

1. Select the Status window instance in the StatusPanel.nib window, then display the Attributes pane in
the Info window.

144 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. In the Window Title field, change the title from Panel to Status. The result is shown in Figure 7-16.

Figure 7-16 The revised Attributes pane in the Info window for the status dialog

3. With the Info window still open, use the pop-up menu at the top of the window to display the Size pane.
The result is shown in Figure 7-17.

Figure 7-17 The Size pane in the Info window for the status dialog

Build the Interface 145
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

4. In the Min Size section, type 110 for the width and 50 for the height. (These values just have to be at
least as small as the values you’ll enter in the next step.)

5. In the Content Rect section, type 260 for the width and 75 for the height. The resized status dialog that
results from these changes is shown in Figure 7-18.

Figure 7-18 The resized status dialog

Set Up a Progress Bar

To set up a progress bar in the status dialog, do the following:

1. Click the Controls button in the Palette window toolbar. The Cocoa-Controls palette is shown in Figure
7-19.

Figure 7-19 The Cocoa-Controls palette of Interface Builder’s Palette window

146 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. Drag a progress bar object (the horizontal striped cylinder near the bottom of the window) from the
Palette window to the status dialog you just created and position it as shown in Figure 7-20.

Figure 7-20 Positioning the progress bar

3. Select the progress bar, then grab the lower-right corner and resize it. Use Interface Builder’s feedback
to help you resize the progress bar, as shown in Figure 7-21.

Figure 7-21 Resizing the progress bar

4. You need to provide an AppleScript name for the progress bar so you can access it in scripts. To do so,
select the progress bar, then open the Info window to the AppleScript pane. The result is similar to Figure
7-9 (page 139).

Note: As mentioned previously, the AppleScript Studio terminology for a progress bar is progress
indicator and you’ll see the class name “NSProgressIndicator” as part of the Info window title.

To name the progress bar, simply type “progress” in the Name field.

Set Up a Text Field

To set up a text field to display progress text in the status dialog, do the following:

Build the Interface 147
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

1. Drag a text field object (a rectangular, unlabeled field with a white background) from the Cocoa-Text
palette (shown in Figure 5-10 (page 97)) in the Palette window to the status dialog. Position the text
field above the progress bar you added in a previous step. Use Interface Builder’s feedback to help you
align the left side of the text field with the progress bar and just above it, as shown in Figure 7-22.

Figure 7-22 Positioning a status text field above the progress bar

2. Select the text field, then grab the middle selection handle on the right and resize the field, as shown
in Figure 7-23.

Figure 7-23 Resizing the status text field

148 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

3. You don’t want a user to enter text in the text field and you do want the field (though not the status
messages that get written to it) to be invisible. To choose the correct settings, select the text field and
open the Info window to the Attributes pane. The result is shown in Figure 7-24.

Figure 7-24 The Attributes pane in the Info window for the text field

Now make these adjustments, in the order shown:

a. Deselect the Editable checkbox.

b. Deselect the Selectable checkbox.

c. Select the Small option in the Size pop-up menu.

d. In the Border section, click the button on the left to select no border.

e. In the Backgrnd Color section, deselect the Draw checkbox.

f. In the Layout section, select the Wraps radio button. The resulting invisible text field is shown in
Figure 7-25.

Figure 7-25 The invisible status text field

Build the Interface 149
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

4. You need to provide an AppleScript name for the text field so you can access it in scripts. To do so,
display the AppleScript pane in the Info window, then type “statusmessage” in the Name field.

5. Save all the changes to the StatusPanel.nib file.

Create the Search Window

Now that you’ve used Interface Builder to create and modify several relatively simple nibs, you’ll get a chance
to work with a more interesting and challenging example, the nib for Mail Search’s search window. Figure
6-2 (page 123) shows the design for the search window. To put together a nib that implements that window
requires the following steps:

1. Open the nib file Document.nib.

The steps for opening a nib file are listed in “Examine the Default Menus” (page 134).

2. Rename the default window instance in the nib window.

Double-click the instance name “Window” and type “Mail Search” as the new name. The Mail Search
search window is a little larger than the default window size (with a width of about 525 and a height of
about 440). You can resize with the same steps you used in “Adjust the Size and Attributes of the Status
Dialog” (page 144), though in this case you won’t need to reset the minimum size for the window. The
resulting window is shown in Figure 7-26.

Figure 7-26 The resized, empty search window

You should also follow the same steps you used in “Add the Message Window to the Nib File” (page 137)
to display the AppleScript pane in the Info window, then type “mail search” in the Name field to supply
an AppleScript name for the window.

150 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

3. Set up a popup button for the search type.

4. Set up a text field for the search text.

5. Set up a button to initiate searches.

6. Set up an outline view to display the available mailboxes.

7. Set up a table view to display matching messages.

8. Group the outline and table views in a split view.

Steps 3 through 8 are described in the following sections.

Once you’ve completed these steps, you can build the application, view the search window, and perform
operations such as opening the pop-up menu, resizing the table and outline views, and rearranging the
columns in the search result table. You can also build the application periodically to view the search window
at various stages of completion. However, you won’t be able to do any searching until you connect scripts
to the user interface in later sections. To build and run the application, open the project in Xcode and type
Command-R, choose Build and Run from the Build menu, or click the Build and Run button.

Set Up a Popup Button

Mail Search uses a popup button to provide a pop-up menu of search locations (in the To, From, or Subject
fields of messages or in the message contents). To set up a popup button in the search window (the Mail
Search window instance in the Document nib), perform these steps:

1. With the search window still open as shown in Figure 7-26, drag a popup button from the Cocoa-Controls
palette in the Palette window (shown in Figure 7-19 (page 146)) to the search window. Use the automatic
feedback to position the button in the top left corner of the window. As the button nears the corner,
Interface Builder provides dashed feedback lines to help align the object according to the Aqua guidelines,
as shown in Figure 7-27.

Figure 7-27 Positioning a popup button in the search window

Build the Interface 151
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. You need to provide menu items in the popup button for the possible search locations: Contents, Subject,
To, and From. Double-click the button to reveal its default contents, as shown in Figure 7-28.

Figure 7-28 The default contents of a popup button

3. To add a fourth item, simply choose Copy from the Edit menu (copying the selected Item1) and then
Paste from the Edit menu. The result is shown in Figure 7-29.

Figure 7-29 A popup button with a new item

4. To rename the first item, double-click it, type “Contents” as the new text, then tab to the next field. The
result is shown in Figure 7-30.

Figure 7-30 A renamed popup button item

152 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

5. Rename the remaining three items as Subject, To, and From. Figure 7-31 shows the renamed items.

Figure 7-31 Popup button with renamed items

6. Open the Info window for the popup button to the Attributes pane and select the Small checkbox in
the Options section. The result is shown in Figure 7-32.

Figure 7-32 The popup button after checking the Small checkbox

7. Adjust the size of the button so that it is just large enough for the item with the longest name, Contents.
To do so, select the popup button, then drag the middle selection handle on the right side. As you resize,
Interface Builder again provides alignment guides, as shown in Figure 7-33.

Figure 7-33 Resizing the popup button

8. You should also follow the same steps you used in “Set Up a Progress Bar” (page 146) to display the
AppleScript pane in the Info window, then type “where” in the Name field to supply an AppleScript name
for the popup button.

Set Up a Text Field

Mail Search uses a text field to allow a user to provide text to search for. To set up a text field in the search
window, perform these steps:

Build the Interface 153
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

1. Drag a text field from the Cocoa-Text palette in the Palette window to the search window. Use the
automatic feedback to position the field in the top left corner of the window next to the previously
placed popup button, as shown in Figure 7-34.

Figure 7-34 Positioning a text field in the search window

2. To resize the text field, select it, then grab the middle selection handle on the right. Stretch the text field
across the window, leaving room on the right for the find button. The result is shown in Figure 7-35

Figure 7-35 Resized text field in the search window

3. While the text field is still selected, open the Info window to the Attributes pane. In the Send Action On
section, click the radio button for Enter only. With this setting, the Mail Search application begins searching
if a user types search text and presses the Return or Enter keys, in addition to when a user clicks the find
button. The keystrokes only initiate a search when the text field has the focus. (See “Setting the Keyboard
Focus” (page 85) for related information.)

4. In the same window, select the Small option in the Size pop-up menu, as you did previously for the
popup button.

5. While you still have the Info window open for the text field, display the AppleScript pane, then type
“what” in the Name field to supply an AppleScript name for the text field.

Set Up a Button

Mail Search uses a button to initiate a search. To set up a button in the search window, perform these steps:

154 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

1. Drag a round button from the Cocoa-Controls palette in the Palette window to the search window. Use
the automatic feedback to position the button in the top right corner of the window next to the previously
placed text field, as shown in Figure 7-36.

Figure 7-36 Positioning a button in the search window

2. Open the Info window for the button, display the AppleScript pane, then type “find” in the Name field
to supply an AppleScript name for the button.

3. In “Create a Project” (page 131), you added an image file named find.tiff to the Mail Search project.
That image file contains an image of a magnifying glass that you will now add to the button. With the
Info window still open from the previous step, display the Attributes pane, then type “find” (the name
of the image file, without the extension) into the “Icon:” field, as shown in Figure 7-37.

Figure 7-37 The Info window for the find button

Alternatively, you can simply drag the image from the Images pane in the nib window to the find button.

Build the Interface 155
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

To center the icon, click the middle button in the top row under “Icon Position” in the Info window shown
in Figure 7-37. The result is shown in Figure 7-38.

Figure 7-38 The button and magnifying glass

4. You have a couple of options for correctly positioning the button in relation to the right side of the
window. You can drag the button to the right and use Interface Builder’s alignment guides to align it
with the edge of the window, then expand the text field toward the button until it is also aligned. Or
you can resize the window itself, moving the right edge toward the button, again using Interface Builder’s
alignment guides to align the window edge. Figure 7-39 shows the latter process.

Figure 7-39 Aligning the right edge of the window with the button

156 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Set Up an Outline View

Mail Search uses an outline view to show the Mail folders that can be searched. It can be difficult to determine
in Interface Builder whether you have selected an outline view or the scroll view that contains it. Single-clicking
selects the containing scroll view, while double-clicking selects the outline view. The tutorial steps that follow
describe visual cues to determine which view is selected.

Note: If you have not already experimented with AppleScript Studio’s Outline sample application, you should
consider doing so before performing the steps in this section.

To be certain whether an outline view or the containing scroll view is selected, you can also open an Info
window to the AppleScript pane. When that pane is displayed, the window title for the Info window shows
the class of the selected item: either NSScrollView if the scroll view is selected, or NSOutlineView if the outline
view is selected (or NSTableView when a table view is selected).

As a final alternative, you can display the objects in a nib window in outline view (as described in “Examining
an Object Hierarchy in the Nib View” (page 179)), find the object (either an outline view, a scroll view, or any
other object) in the view hierarchy, and double-click the object to select it in its window and to display it in
the Info window.

To set up an outline view in the search window, perform these steps:

1. Drag an outline view from the Cocoa-Data palette in the Palette window to the search window. The
outline view is in the upper-left corner with “Name” and “Description” columns.

Use the automatic feedback to position the outline view in the top left corner of the search window,
below the previously placed popup button. Align it with the left side of the window, as shown in Figure
7-40.

When you release the outline view, it takes on a more generic format, as shown (after resizing) in Figure
7-41.

Figure 7-40 Inserting an outline view in the search window

2. To resize the outline view, click to select it, then drag the lower-right corner. The text field should stretch
all the way across the window and about half the way down (leaving room for a table view to display
the search results), as shown in Figure 7-41.

Build the Interface 157
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Note: The outline view text visible in Figure 7-41 (for colors and sizes) is simply filler text displayed by
Interface Builder to help you see the rows and columns in the outline view. It will not be visible when
you build the application.

Figure 7-41 Resizing the outline view in the search window

3. By default, a new outline view has two columns, but you only need one column to display mailboxes.
To change the number of columns, double-click the outline view. The result is shown in Figure 7-42.

158 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Important: If you single-click an outline view in Interface Builder, you will see the outline view object
name in the Info window, but you have only selected the scroll view that is part of the outline view. You
know the outline view is selected when it takes on the appearance shown in Figure 7-42, with the whole
view showing the selection color.

You must also double-click to select a table view or other data view object. See also the section “Examining
an Object Hierarchy in the Nib View” (page 179).

Figure 7-42 A selected outline view

Now open the Info window to the Attributes pane. The result is shown in Figure 7-43. Make the following
changes to the default settings:

a. In the Allow section, select the Multiple Selection checkbox.

b. In the Display section, deselect Horizontal Scroller.

c. In the Options section, select the “Autoresizes Columns to fit” checkbox; deselect the Allows
Reordering checkbox.

d. Set the row height to 14.

Build the Interface 159
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

e. Set the number of columns to 1.

Figure 7-43 The Info window for the outline view, after changes

4. While you still have the Info window open for the outline view, display the AppleScript pane, then type
“mailboxes” in the Name field to supply an AppleScript name for the outline view.

5. To add a column title to the outline view, double-click the view to select it, then double-click the title
row at the top. You can then type “Mailboxes” for the column title. The result is shown in Figure 7-44.

Figure 7-44 The outline view after naming the Mailboxes column

160 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

6. Mail Search also requires an AppleScript name for the scroll view that contains the outline view. To
provide this name, single-click the outline view, open the Info window (for the scroll view) to the
AppleScript pane, then type “mailboxes” in the Name field. The result is shown in Figure 7-45.

Figure 7-45 The Info window for the scroll view containing the outline view

7. If you haven’t saved the Document.nib file recently, do so now.

Set Up a Table View

Mail Search uses a table view to show search results—the messages that contain the search text.

Note: If you have not already experimented with AppleScript Studio’s Table sample application, you should
consider doing so before performing the steps in this section. The version that uses a data source object is
recommended.

To set up a table view in the search window, perform these steps:

1. Drag a table view from the Cocoa-Data palette in the Palette window to the search window. The table
view is in the lower-left corner with “Address” and “Name” columns.

Use the automatic feedback to position the table view below the previously placed outline view. Align
it with the left side of the window, as shown in Figure 7-46.

Build the Interface 161
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

When you release the table view, it takes on a more generic format.

Figure 7-46 Inserting a table view in the search window

2. To resize the table view, click to select it, then drag the lower-right corner. The text field should stretch
all the way across the window and all the way to the bottom.

3. By default, a new table view has two columns, but you need three columns (for From, Subject, and
Mailbox). Use the same steps described in “Set Up an Outline View” (page 157) to open the Info window
for the table view. Make the following changes to the default settings:

a. In the Display section, deselect the Horizontal Scroller checkbox.

b. In the lower options section, select the “Autoresizes Columns to fit” checkbox.

c. Set the row height to 14.

d. Set the number of columns to 3.

162 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

The resulting Info window is shown in Figure 7-47.

Figure 7-47 The Info window for the table view, after changes

4. While you still have the Info window open for the table view, display the AppleScript pane, then type
“messages” in the Name field to supply an AppleScript name for the table view.

5. To resize a column in the table view, double-click the view to select it, then position the cursor over the
column divider in the title row. The cursor changes to indicate when you can resize. Simply click and
drag to resize a column.

Start by moving the right-most column divider to the left, which reduces the size of the middle column.
Then move the left-most divider to the right, increasing the size of the left column. Adjust the column
sizes as needed so that the Subject and Mailbox columns are wider than the From column.

Build the Interface 163
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

6. To add column titles to the table view, use the same steps described in “Set Up an Outline View” (page
157). You can tab from column title to column title as you add titles. The result is shown in Figure 7-48.

Figure 7-48 The table view with titles

7. Mail Search also requires an AppleScript name for the scroll view that contains the table view. To name
the scroll view, follow the same steps you used in “Set Up an Outline View” (page 157):

a. Single-click the table view to select the scroll view that contains it.

b. In the AppleScript pane of the Info window for the scroll view, type “messages” in the Name field.

8. If you haven’t saved the Document.nib file recently, do so now.

Group the Outline View and Table View in a Split View

Mail Search uses a split view to combine the outline and table views you’ve previously installed. The split
view allows a user to adjust the size of either view, depending on how much space they want to devote to
the available mailboxes (in the outline view) and how much to the found messages (in the table view).

To group the outline view and table view in a split view, perform these steps:

1. In the search window you have been working on, click to select the table view. The view should have
selection handles (small dots) on all sides, and you should see “NSTableView Info” as the title of the Info
window. Shift-click to also select the outline view. The outline view should have selection handles and
the Info window should display “Multiple Selection” in the Attributes pane.

164 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

2. In the Layout menu, choose Split View in the “Make subviews of” submenu to make these two views
into subviews of a split view. The result is shown in Figure 7-49. The distinguishing feature of a split view
is the handle for modifying the relative sizes of the contained outline and table views.

Figure 7-49 The final search window, now containing a split view

3. Mail Search also requires an AppleScript name for the split view that contains the outline and table views.
To name the split view, you follow similar steps to those listed in “Set Up an Outline View” (page 157):

a. Single-click to select the split view. You may have to click on another object, then click the split view
to select it.

b. In the AppleScript pane of the Info window for the split view, type “splitter” in the Name field.

Important: Once you have grouped the outline and table views in a split view, it takes more effort to
select the table or outline view. For example, to select the Mailboxes outline view when the window is
currently selected, you click once to select the split view, double-click to select the scroll view that
contains the outline view (which causes it to have a thin black outline), and double-click again to select
the outline view (causing the whole view to take on the current selection color).

For more detail on selecting subviews, see “Examining an Object Hierarchy in the Nib View” (page 179).

4. Congratulations—you’ve completed Mail Search’s user interface. If you haven’t saved recently, do so
now.

Build the Interface 165
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

166 Build the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

Mail Search Tutorial: Create the Interface

Mail Search is a fairly complex AppleScript Studio application that searches for specified text in messages in
the Mac OS X Mail application. In previous chapters you’ve designed the application, created a project, and
built the user interface with the Interface Builder application. In this chapter, you connect objects in the
interface to handlers in the application’s script file.

This chapter assumes you have completed previous Mail Search tutorial chapters.

Connect the Interface

Now that you’ve built Mail Search’s interface, you need to perform additional steps in Interface Builder to
connect objects in the interface to event handlers in the project. In “Event Handlers in Mail Search” (page
126), you identified handlers that would be needed for various objects. You don’t need any handlers for the
status dialog or the message window, but you do need to make connections for Mail Search’s application
object and search window. For the search window, you also need to connect data source objects to provide
data to the search results and mailbox views. (A data source object, described in more detail below, is a
special object supplied by AppleScript Studio that provides row and column data to a table or outline view.)
The next sections describe how to make these connections.

Connect the Application Object

The application object in an AppleScript Studio application is represented by the File’s Owner object in the
Instances tab in the MainMenu.nib window. This object is described in “Interface Creation” (page 53) and
shown in Figure 8-1. Your application can use this object to connect handlers that are called at various
interesting times, such as when the application is launched or activated. For a look at the available handlers,
see Figure 8-2.

Connect the Interface 167
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Figure 8-1 The File’s Owner instance in the MainMenu.nib window

Mail Search uses thewill finish launchinghandler to perform necessary initialization after the application
has created its interface but has not yet completed launching. To connect this handler, perform the following
steps:

1. Select the File’s Owner object in the Instances tab in the MainMenu.nib window, as shown in Figure 8-1.

168 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

2. Choose Show Info from the Tools menu or type Command-Shift-I to open the Info window. Use the
pop-up menu at the top of the window to display the AppleScript pane. Then click the disclosure triangle
to reveal the handlers in the Application group. The result is shown in Figure 8-2.

Figure 8-2 The Info window for the File’s Owner instance

3. To connect the handler, perform the following steps:

a. Select the will finish launching checkbox.

b. Select the file Mail Search.applescript in the Script list.

c. Click the Edit Script button.

When you click the Edit Script button, Interface Builder inserts an empty will finish launching
handler in the script file and opens the file in an Xcode editor window. The handler is shown in Listing
8-1. You add statements to this handler in “Application Object Handler” (page 187).

Connect the Interface 169
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Note: All event handlers start with the keyword on. Handlers can have zero or more parameters. The
will finish launching handler has one parameter, theObject, which represents the user interface
object that received the clicked message. Most event handlers in AppleScript Studio have this same
parameter.

Listing 8-1 A new handler declaration for the will finish launching handler

on will finish launching theObject
 (*Add your script here.*)
end will finish launching

4. When you create a new event handler for an object, you should also insert a comment that specifies
which object initiates calls to the handler. In this case, you could add the line (* "Called from the
application object just prior to completion of launching." *). In some cases, more
than one object of the same type may be connected to the handler. This situation is described in “Deciding
How Many Script Files to Use” (page 62).

5. To verify that the handler is correctly connected, you can replace the comment (*Add your script
here.*) with display dialog "In the will finish launching handler."

You can build and run the application by typing Command-R, choosing Build and Run from the Build
menu, or clicking the Build and Run button. You should see the dialog after the application launches.

As you work through additional sections that connect handlers, you can use the same techniques to
verify that the handlers are working.

Important: After editing a script file in Xcode, you should always save it before returning to Interface
Builder to add more connections.

6. As always, save the nib file after completing your changes.

As noted in “Add the Message Window to the Nib File” (page 137), the first time you make a change in the
AppleScript pane, Interface Builder adds a new instance named AppleScript Info to the nib window.

Connect Interface Items in the Search Window

The search window is the main place where you connect Mail Search’s interface to event handlers. You also
need to connect data source objects to provide data to the search results and mailbox views. To make these
connections, perform these steps, which are described in detail in the sections that follow:

1. Connect event handlers to the search window.

2. Connect an event handler to the text field.

3. Connect an event handler to the find button.

4. Connect an event handler to the search results view.

5. Connect data source objects to the mailboxes view and the search results view.

170 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Connect the Search Window

As described in “Plan the Code” (page 125), Mail Search needs to know when a search window is opened,
activated, or closed. To add these handlers, perform the following steps:

1. If the Document.nib file is not already open in Interface Builder, open it.

2. Select the Mail Search instance in the nib window.

3. Choose Show Info from the Tools menu or type Command-Shift-I to open the Info window. Use the
pop-up menu at the top of the window to display the AppleScript pane. Then click the disclosure triangle
to reveal the handlers in the Window group. The result is shown in Figure 8-3.

Figure 8-3 The Info window for the Mail Search window instance

4. To connect the handlers, perform the following steps:

a. Select the checkboxes for became main, will close, and will open.

b. To connect the handlers, select the checkbox for the script file Mail Search.applescript in the
Script list.

c. Click the Edit Script button.

When you click the Edit Script button, Interface Builder inserts empty handlers for the three event handlers
in the script file and opens the file in an Xcode editor window. The handlers are shown in Listing 8-2.
You add statements to these handlers in “Search Window Handlers” (page 187).

Connect the Interface 171
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Listing 8-2 New handler declarations for several handlers

on became main theObject
 (*Add your script here.*)
end became main

on will close theObject
 (*Add your script here.*)
end will close

on will open theObject
 (*Add your script here.*)
end will open

5. To verify that the handlers are correctly connected, you can add display dialog statements, as
described in “Connect the Application Object” (page 167). You may also wish to add comments that the
theObject parameter will be a search window object.

Connect the Text Field

A user types text to search for in the text field in the search window. In this section, you connect an action
handler to the text field so that when a user presses the Enter key, Mail Search initiates a search. To add this
handler, perform the following steps:

1. In Interface Builder, open the Info window for the Mail Search window instance and display the AppleScript
pane, as described in “Connect the Application Object” (page 167).

2. Select the text field in the search window.

3. Click to open the Action group, then select the checkbox for the action handler. The result is shown
in Figure 8-4.

172 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Action handlers get their name from a Cocoa concept known as target-action. In this case, pressing the
return key can cause a text field object to send an action message to its target (in Cocoa, the target is a
method, but here it is a handler). Other examples of action events are clicked and double-clicked.

Figure 8-4 The Info window for the search text field

4. Connect the handler as in previous sections by selecting the file Mail Search.applescript in the
Script list, then click the Edit Script button to open the script in an Xcode editor window.

The resulting handler declaration is shown in Listing 8-3. You add statements to this handler in “Text
Field Handler” (page 188).

Listing 8-3 A new action handler for a text field

on action theObject
 (*Add your script here.*)
end action

5. To verify that the handler is correctly connected, you can add display dialog statements, as described
in “Connect the Application Object” (page 167). You may also wish to add a comment that the theObject
parameter will be a text view object.

Connect the Find Button

A user clicks the find button in Mail Search’s search window to initiate a search. To enable this behavior, you
connect a clicked handler for the find button. To do so, perform steps similar to those you’ve used in
previous sections:

Connect the Interface 173
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

 ■ select the find button

 ■ open the Info window

 ■ display the AppleScript pane

 ■ select the checkbox for the clicked handler

 ■ To connect the handlers, select the checkbox for the script file Mail Search.applescript; the result
is shown in Figure 8-5.

 ■ click the Edit Script button to insert a clicked handler declaration in the script file

You can examine the resulting handler declaration in Xcode. You add statements to the handler in “Find
Button Handler” (page 189).

Figure 8-5 The Info window for the find button

Connect the Search Results View

Mail Search uses a table view to show search results—the found messages that contain the search text. When
a user double-clicks a found message in the table view, Mail Search displays the message in a separate
window. To support this behavior, the table view object needs a double-clicked handler.

To connect a double-clicked handler for the table view in the search window, perform the same steps
you’ve used in previous sections:

 ■ click, then double-click (and double-click again if necessary) to select the table view

 ■ open the Info window

174 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

 ■ display the AppleScript pane

 ■ select the checkbox for the double-clicked handler

 ■ select the checkbox for the script file Mail Search.applescript

 ■ click the Edit Script button to insert a double-clicked handler declaration in the script file

The result before clicking the Edit Script button is shown in Figure 8-6.

In Figure 8-6, the Action group and clicked checkboxes have dashes while the double clicked checkbox has
a checkmark. A handler checkbox (such as the double clicked checkbox) can have one of three states:

 ■ Empty: Indicates there is no handler with that name in the currently selected script.

 ■ Dashed: Indicates that there is an event handler with that name in the currently selected script, but that
the current object isn’t connected to it (so presumably some other object is).

 ■ Checked: Indicates there is an event handler with that name in the currently selected script (or that such
a handler will be added when you edit the script), and it is (or will be) connected to the current object
in the Info window.

A group checkbox (such as the Action group checkbox) can have one of the same three states:

 ■ Empty: Indicates no event handler in that group is checked.

 ■ Dashed: Indicates at least one event handler in that group is checked.

 ■ Checked: Indicates every event handler in that group is checked.

Figure 8-6 The Info window for the search results table view

Connect the Interface 175
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

You can examine the resulting double-clicked handler declaration in Xcode. You add statements to the
handler in “Search Results Table View Handler” (page 189).

Provide a Data Source Object for the Mailboxes View

Mail Search uses an outline view to display a list of all mailboxes from all accounts. An outline view can display
hierarchical data, similarly to the way the Finder displays directories and files in a list view. The outline view
needs to be connected to a data source object—a special object supplied by AppleScript Studio that provides
row data (in this case, mailbox names) to a table or outline view.

Note: See the Older Release Notes in Xcode for information on how to create a data source and hook it up
with two lines in your script file, rather than following the steps listed here.

To create a data source object and connect it to the outline view in the search window, perform these steps
(assuming you still have the search window from the Document.nib file open in Interface Builder, along
with the Info window):

1. Click the AppleScript button in the Palette window toolbar to select the AppleScript pane. There currently
is a single image in that pane, representing a data source object.

2. Drag a data source object from the Palette window to the Document.nib window. The result is shown
in Figure 8-7. The letters “ASK” come from AppleScriptKit, the framework that defines this data source.

Figure 8-7 The Document.nib window with a data source object

3. Double-click the name (“ASKDataSource”) and change it to “Mailboxes”.

4. Double-click to select the outline view in the search window. Be sure the view appears as in Figure
7-42 (page 159), so that you know it’s selected.

176 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

5. Press and hold the Control key and drag from the outline view to the data source object in the
Document.nib window. This step is shown in Figure 8-8.

Figure 8-8 Connecting the outline view to the data source object

6. At this point, the Info window displays the Connections pane. Double-click the dataSource outlet. This
connects the outline view to the data source object. The result is shown in Figure 8-9.

Connect the Interface 177
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Even though you named the data source “Mailboxes,” the destination of the connection in Figure 8-9 is
still “ASKDataSource.”

Figure 8-9 The Info window for the outline view after connecting a data source outlet

7. Mail Search also needs an identifier for the column header (which has the column title Mailboxes) in the
outline view. Data source objects use identifiers specify columns and rows, since they can be shuffled.
To provide an identifier, perform these steps:

a. With the outline view still selected in the search window, click to select the column header.

b. Choose the Attributes pane in the Info window.

178 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

c. Type “mailboxes” in the Identifier text field. The result is shown in Figure 8-10.

Figure 8-10 The Info window after entering an outline column identifier

8. Don’t forget to periodically save the nib file.

Examining an Object Hierarchy in the Nib View

In “Group the Outline View and Table View in a Split View” (page 164), you saw that once you have a series
of deeply nested views, it can become difficult to select one of them. However, Interface Builder provides a
mechanism to make it easier to display view hierarchies and connections, and to select nested objects. That
mechanism consists of displaying the nib window in outline view. In this case, “outline view” refers to a mode
of window display, not an outline view object.

Figure 8-11 shows the Document.nib window after connecting a data source for the outline view object.

Connect the Interface 179
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Figure 8-11 The Document.nib window

By clicking the small outline view icon on the right-hand side of the view, you can display contents of the
window in outline view, as shown in Figure 8-12.

Figure 8-12 The Document.nib window in outline view

In this case, the window shows the expanded hierarchy for the search window. Instead of interface objects
(such as buttons), it shows the Cocoa classes for the objects (NSButton). You can view the hierarchy for any
object in the nib window. Double-clicking an object (such as NSOutlineView (Mailboxes)) in the Instances
tab selects the object in its window, providing a simple way to select a nested item such as an outline view
within a scroller within a split view. If the Info window is open, it also displays the object in the Info window.

To examine the connections for an object, you click the small triangles next to it in the right-hand column.
For example, Figure 8-13 shows the connections for the NSOutlineView object (the mailboxes outline view).

180 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

Figure 8-13 Connections for the NSOutlineView object

Provide a Data Source Object for the Search Results View

Mail Search uses a table view to display the messages found by a search. The table includes columns for the
message sender, the message subject, and the message mailbox. The table view needs to be connected to
a data source object that provides row data to the table view.

To create a data source object and connect it to the table view in the search window, perform the same series
of steps you used to connect a data source to the outline view in “Provide a Data Source Object for the
Mailboxes View” (page 176). Assuming you still have the search window from the Document.nib file open
in Interface Builder, along with the Info window, the steps include:

1. Drag a data source object from the AppleScript pane in the Palette window to the Document.nib window.

2. Change the name of the data source object from “ASKDataSource” to “Messages”.

3. Select the table view in the search window, then press and hold the Control key and drag from the table
view to the Messages data source object in the Document.nib window.

Connect the Interface 181
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

4. Double-click the dataSource outlet in the Connections pane of the Info window. to connect the table
view to the data source object. The result is shown in Figure 8-14.

Figure 8-14 The Info window for the table view after connecting a data source outlet

5. You also need to provide an identifier for each column header (the column headers are titled From,
Subject, and Mailbox) in the table view. To do so, perform these steps:

a. With the table view still selected in the search window, click to select the column header.

b. Choose the Attributes pane in the Info window.

182 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

c. Type the name (either “from,” “subject,” or “mailbox”) in the Identifier text field. Save your results
after typing each new identifier. The result for the From column header is shown in Figure 8-15.

Figure 8-15 The Info window after entering a table column identifier

6. As always, save the Document nib file after completing your changes.

You have now completed connecting the interface for the Mail Search application.

Connect the Interface 183
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

184 Connect the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Mail Search Tutorial: Connect the Interface

In this chapter you’ll write the scripts and handlers for Mail Search, an AppleScript Studio application that
searches for specified text in messages in the Mac OS X Mail application. You’ll also build and test the
completed application. To do this, you’ll perform the steps described in the following sections:

1. “Define Global Variables and Properties” (page 186).

2. “Write Event Handlers for the Interface” (page 186).

3. “Write Scripts and Additional Handlers” (page 190).

This chapter assumes you have completed previous Mail Search tutorial chapters.

Obtaining the Code for the Mail Search Tutorial

The Mail Search tutorial chapters in this document contain listings for most of the handlers and script objects
the application uses, and you can find a complete listing in Chapter 10 (page 185). However, both for
convenience and completeness, it is recommended that you obtain script statements by copying them from
the Mail Search sample application distributed with AppleScript Studio.

Note: The scripting terminology for the Mail application changed with Mac OS X version 10.2. The scripts
and examples created prior to that version differ from their counterparts today. The listings shown in this
document reflect all revisions through Mac OS X version 10.3.

Look for the file Mail Search.applescript in the Mail Search project folder. See “AppleScript Studio
Sample Applications” (page 35) for information on where to find the sample applications.

Note: If you double-click Mail Search.applescript in the Finder, the Finder will try to open it with the
Script Editor application. You can open the file from the Files list in the Groups & Files list in the Mail Search
sample application. Or, from your tutorial Mail Search project, you can choose Open from the File menu and
navigate to Mail Search.applescript in the Mail Search sample application folder.

When you open this file for the first time in the Mail Search application, it may launch the Mail application,
if it isn’t already running.

You should also read the section “Switching Between AppleScript Studio and Script Editor” (page 70) before
beginning this tutorial.

Obtaining the Code for the Mail Search Tutorial 185
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

Define Global Variables and Properties

In “Plan the Code” (page 125), you identified a handful of global variables and properties Mail Search makes
available to all its scripts and handlers. The one global variable is a global list to keep track of instances of
the controller script. Each controller script handles search operations for one search window. You define this
global variable as shown in Listing 9-1 and place it at the top of the script file Mail Search.applescript.

Listing 9-1 Global list variable to store instances of controller script

(*==== Globals ====*)

global controllers

Mail Search uses two global properties, a counter to keep track of the number of open windows and a boolean
to keep track of whether the status panel nib file has been opened. You define these properties as shown in
Listing 9-2 and place them at the top of the script file Mail Search.applescript, below the global variable
you just defined.

Listing 9-2 Properties used in Mail Search

(*==== Properties ====*)

property windowCount: 0
property statusPanelNibLoaded: false

Write Event Handlers for the Interface

In “Plan the Code” (page 125), you identified event handlers for objects in Mail Search’s interface that must
respond to user actions or changes in application state (pending or completed). For example, the search
window has three handlers: became main, called when the window becomes active; will open, called as
the window is about to open, and will close, called when the window is about to close. The find button
has one handler, clicked, called when a user clicks the button.

In “Connect the Interface” (page 167), you hooked up objects in the interface to the required handlers. As
part of that step, Interface Builder inserted event handler declarations in the file Mail Search.applescript.
In this section, you’ll write script statements for those handlers.

When planning the code, you also specified additional scripts and handlers to carry out operations such as
searching, displaying results, and displaying status. You’ll write those scripts and handlers in “Write Scripts
and Additional Handlers” (page 190). The handlers you’ll write in this section don’t do much except call other
handlers, so you won’t be able to build and run the application until you’ve completed both sections (though
you can compile Mail Search.applescript to check syntax).

While this approach may be suitable for simple applications—or for a tutorial, where the end result is already
known—it’s not recommended for complex, real-world applications. For those applications, you will most
likely work incrementally, adding parts of the interface, connecting them to event handlers, and testing
individual scripts and handlers as you create them.

186 Define Global Variables and Properties
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

As a workaround to allow you to continue to build the application, you can add empty versions of the handlers
you haven’t implemented yet to the script file. And as always, you can put display dialog statements in
the stubbed out handlers to show when they are called.

Position each of the event handlers described here at the beginning of the script file Mail
Search.applescript, just after the global variables and properties defined earlier.

Before working on this section, be sure you’ve read the section “Obtaining the Code for the Mail Search
Tutorial” (page 185).

Application Object Handler

You previously connected a will finish launching handler for the application object. That handler is
called after the application’s user interface has been unarchived from its nib files and just before the application
enters its main event loop. In that handler, Mail Search can do any additional initialization it requires before
a user performs any actions.

The only initialization Mail Search requires is to set the global controllers variable to an empty list, as
shown in Listing 9-3.

Listing 9-3 The will finish launching handler for the application object

on will finish launching theObject
 set controllers to {}
end will finish launching

Search Window Handlers

You previously connected three handlers for the application.search window: will open, became main,
and will close.

The will open handler is called after a window has been created from a nib file and before the window
opens. At this point, Mail Search can do any additional initialization for the window. The handler is shown
in Listing 9-4.

Listing 9-4 will open handler for search window

on will open theObject
 set theController to makeController(theObject)
 if theController is not equal to null then
 addController(theController)
 tell theController to initialize()
 end if
end will open

The will open handler performs these operations:

1. It calls makeController to create a controller for the window. The controller is a script that responds
to user actions in the window.

2. If makeController successfully returns a controller, the will open handler adds the controller to the
global list of controllers, then tells the controller to initialize itself.

Write Event Handlers for the Interface 187
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

The became main handler is called when a window becomes the current window. It’s similar to what you
might be familiar with as an activate event—an event a window receives when it needs to present itself as
the active window. The handler is shown in Listing 9-5.

Listing 9-5 The became main handler for the search window

on became main theObject
 set theController to controllerForWindow(theObject)
 if theController is not equal to null then
 tell theController to loadMailboxes()
 end if
end became main

The became main handler performs these operations:

1. It calls controllerForWindow to get the controller for the window. The controller should have been
created during a previous call to will open.

Note: The became main handler passes theObject when it calls controllerForWindow. It does not
have to pass (window of theObject), as action, clicked, and double clicked handlers do,
because became main is a handler for the window object and theObject is already a reference to the
window object.

2. If controllerForWindow successfully returns a controller, the became main handler calls the controller’s
loadMailboxes handler (shown in Listing 9-12 (page 192)) to search the Mail application for all available
mailboxes and display them in the Mailboxes outline view.

The will close handler is called before a window closes. At this point, Mail Search can do any cleanup for
the window. The only cleanup Mail Search requires is to remove window’s controller from the global list of
controllers, as shown in Listing 9-6.

Listing 9-6 The will close handler for the search window

on will close theObject
 removeController(theObject)
end will close

Text Field Handler

You previously connected an action handler for the search text field object. That handler is called when a
user presses the Return key. The handler is shown in Listing 9-7.

Listing 9-7 The action handler for the search text field

on action theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to find()
 end if
end action

The action handler performs these operations:

188 Write Event Handlers for the Interface
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

1. It calls controllerForWindow to get the controller for the window.

2. If controllerForWindow successfully returns a controller, the action handler calls the controller’s
find handler (shown in Listing 9-16 (page 194)) to search for the specified text in messages in the selected
mailboxes (and display any matching messages in the Messages table view).

Find Button Handler

You previously connected a clicked handler for the find button object. That handler is called when a user
clicks the find button. The handler is shown in Listing 9-8.

Listing 9-8 The clicked handler for the find button

on clicked theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to find()
 end if
end clicked

The clicked handler is virtually identical to the action handler described in “Text Field Handler” (page
188):

1. It calls controllerForWindow to get the controller for the window.

2. If controllerForWindow successfully returns a controller, the clicked handler calls the controller’s
find handler (shown in Listing 9-16 (page 194)) to search for the specified text in messages in the selected
mailboxes (and display any matching messages in the Messages table view).

Search Results Table View Handler

You previously connected a double clicked handler for the Messages table view object. That handler is
called when a user double-clicks a selected message in the table. The handler is shown in Listing 9-9.

Listing 9-9 The double clicked handler for the search results table view

on double clicked theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to openMessages()
 end if
end double clicked

The double clicked handler performs these operations:

1. It calls controllerForWindow to get the controller for the window.

2. If controllerForWindow successfully returns a controller, the double clicked handler calls the
controller’s openMessages handler (shown in Listing 9-18 (page 199)) to open the selected message (or
messages) in a separate window.

Write Event Handlers for the Interface 189
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

Write Scripts and Additional Handlers

In “Plan the Code” (page 125), you identified handlers for objects in Mail Search’s interface that must respond
to user actions or changes in application state (pending or completed). In “Connect the Interface” (page 167),
you hooked up objects in the interface to the required handlers. Then you wrote the event handlers, in “Write
Event Handlers for the Interface” (page 186).

When planning the code, you also specified additional scripts and handlers to carry out operations such as
searching, displaying results, and displaying status. In this section, you’ll write those scripts and handlers. As
mentioned previously, you won’t be able to build and run the application until you’ve completed this section,
though you can compile Mail Search.applescript to check syntax.

Before working on this section, be sure you’ve read the section “Obtaining the Code for the Mail Search
Tutorial” (page 185).

Write the Controller Script

Mail Search defines a controller script to perform tasks associated with the search window, including finding
and displaying mailboxes, and finding and displaying messages that match the current search criteria. You
specified the properties and handlers for this script in “The Controller Script” (page 127). In this section, you’ll
look at the actual script and the handlers it contains. The controller script is defined in the makeController
handler. All of the controller’s properties and handlers shown here are defined in that handler, which is listed
in full in Chapter 10 (page 185).

Controller Script Properties and Initialization

The controller script is defined in the makeController handler, which is described in “Write Handlers for
Working With Controllers” (page 200). The script defines and initializes properties for several things it needs
to keep track of:

 ■ theWindow: a reference to its window

 ■ theStatusPanel: a reference to a status panel

 ■ foundMessages: a list of found messages

 ■ mailboxesLoaded: a boolean for whether it has created a list of available mailboxes

Listing 9-10 shows the definitions for these properties.

Listing 9-10 Properties of the controller script

 property theWindow : forWindow
 property theStatusPanel : null
 property foundMessages : {}
 property mailboxesLoaded : false

The value for the theWindow property, forWindow, is passed to the makeController handler.

The controller script initialization handler sets up columns in the data handlers that provide data for the
mailboxes and messages views in the search window. This handler is shown in Listing 9-11.

190 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

Note: You’ll see the character ¬ (created by typing Option-l) in many of the listings in this chapter. That’s
the AppleScript continuation character. When a line ends with a continuation character, the next line is
considered to be part of that line. To accommodate long script statements, listings in this tutorial use
continuation characters that do not appear in Mail Search’s script file, and in fact, you should not need to
use them—see “How Xcode Formats Scripts” (page 68).

Listing 9-11 The controller script’s initialize handler

 on initialize()
 -- Add a column to the mailboxes data source
 tell scroll view "mailboxes" of split view 1 of theWindow
 make new data column at the end of the data columns of data source ¬
 of outline view "mailboxes" with properties {name:"mailboxes"}
 end tell

 -- Add the columns to the messages data source
 tell scroll view "messages" of split view 1 of theWindow
 make new data column at the end of the data columns of data source ¬
 of table view "messages" with properties {name:"from"}
 make new data column at the end of the data columns of data source ¬
 of table view "messages" with properties {name:"subject"}
 make new data column at the end of the data columns of data source ¬
 of table view "messages" with properties {name:"mailbox"}
 end tell

 set windowCount to windowCount + 1
 end initialize

The initialize handler performs the following steps:

1. It adds a mailboxes column with the name “mailboxes” to the data source of the Mailboxes outline view.
The data source supplies the outline view with the data to display (account and mailbox names).

2. Similarly, it adds columns for “from”, “subject”, and “mailbox” to the data source of the Messages table
view. The data source supplies the table view with the data to display (from names, subject lines, and
mailbox names).

Finding and Displaying Accounts and Mailboxes

This section describes the handlers in the controller script Mail Search uses to find and display mailboxes in
the search window. The jumping off point for displaying mailboxes is the loadMailboxes handler, shown
in Listing 9-12. It is called from the became main handler, shown in Listing 9-5 (page 188), to ensure that
whenever a window is activated it displays the available mailboxes. The loadMailboxes handler is responsible
for loading all available mailboxes from all available accounts, if they have not already been loaded, and for
showing the status dialog while loading.

The logic for the process of loading mailboxes is as follows:

1. loadMailboxes kicks off the process by calling addMailBoxes.

2. Mailboxes can reside in any account, so for each account, addMailBoxes calls addAccount.

3. For each mailbox the account contains, addAccount calls addMailbox.

Write Scripts and Additional Handlers 191
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

4. addAccount adds the mailbox to the outline view of mailboxes available to search.

Listing 9-12 The controller script’s loadMailboxes handler

 on loadMailboxes()
 if not mailboxesLoaded then
 -- Open the status panel
 set theStatusPanel to makeStatusPanel(theWindow)
 tell theStatusPanel to openPanel("Looking for Mailboxes...")

 -- Add the mailboxes
 addMailboxes()

 -- Close the status panel
 tell theStatusPanel to closePanel()

 set mailboxesLoaded to true
 end if
 end loadMailboxes

The loadMailboxes handler performs the following steps:

1. If the mailboxes have already been loaded, it does nothing. Otherwise it performs the following steps.

2. It calls the makeStatusPanel handler to create a status dialog script object, and stores a reference to
it in the theStatusPanel property. The makeStatusPanel handler is described in “Write Handlers for
Working With the Status Dialog” (page 201).

3. It calls the openPanel handler of the status dialog script object to start displaying the dialog, with the
message “Looking for Mailboxes...” The openPanel handler is described in “The Status Dialog Script” (page
128).

4. It calls the controller handler addMailboxes to get all available mailboxes in all available accounts.

5. On completion of the previous step, it closes the status dialog.

6. It sets the controller property mailboxesLoaded to true (so it won’t load the mailboxes if they’ve
already been loaded).

The addMailboxes handler is shown in Listing 9-13. It is called from the loadMailboxes handler, shown
in Listing 9-12. The addMailboxes handler is responsible for iterating over all available accounts to obtain
their mailboxes.

Listing 9-13 The controller script’s addMailboxes handler

 on addMailboxes()
 tell application "Mail"
 set accountIndex to 0
 repeat with a in (get accounts)
 try
 set accountIndex to accountIndex + 1
 my addAccount(a, accountIndex, account name of a)
 end try
 end repeat
 end tell

192 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

 end addMailboxes

The addMailboxes handler performs the following steps:

1. It targets the Mail application.

2. It gets a list of all accounts from the application.

3. It uses a repeat statement to iterate over the accounts.

4. For each account, it calls the controller handler addAccount (shown in Listing 9-14), passing among
other things the name of the account.

Within the tell application "Mail" statement block, the addMailboxes handler uses the term
my addAccount to specify that it is calling another handler in the controller script.

The addAccount handler (shown in Listing 9-14) is called from the addMailboxes handler (shown in Listing
9-13). The addAccount handler is responsible for getting all available mailboxes in the passed account and
adding them to the data source for the mailboxes view in the search window.

Listing 9-14 The controller script’s addAccounts handler

 on addAccount(a, accountIndex, accountName)
 -- Add a new item
 set accountItem to make new data item at the end of the data items ¬
 of data source of outline view "mailboxes" ¬
 of scroll view "mailboxes" of split view 1 of theWindow
 set name of data cell 1 of accountItem to "mailboxes"
 set contents of data cell 1 of accountItem to accountName
 set associated object of accountItem to accountIndex

 -- Add the mail boxes
 tell application "Mail"
 set mailboxIndex to 0
 repeat with m in (get mailboxes of a)
 try
 set mailboxIndex to mailboxIndex + 1
 my addMailbox(accountItem, accountName, mailboxIndex, ¬
 mailbox name of m)
 end try
 end repeat
 end tell
 end addAccount

The addAccount handler performs the following steps:

1. It adds an account item to the data source for the mailboxes view in the search window. It also sets
various information for the item, including its name (the name of the account).

2. It targets the Mail application.

3. It gets a list of all mailboxes in the account from the application.

4. It uses a repeat statement to iterate over the mailboxes.

Write Scripts and Additional Handlers 193
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

5. For each mailbox, it calls the controller handler addMailbox (shown in Listing 9-15), passing among
other things the name of the mailbox, to add the mailbox to the data source for the mailboxes view in
the search window.

The addMailbox handler is called from the addAccount handler, shown in Listing 9-14, to add a single
mailbox to the data source for the mailboxes view in the search window. The addMailbox handler is shown
in Listing 9-15.

Listing 9-15 The controller script’s addMailbox handler

 on addMailbox(accountItem, accountName, mailboxIndex, mailboxName)
 -- Add a new item
 set mailboxItem to make new data item at the end of the data items ¬
 of accountItem
 set name of data cell 1 of mailboxItem to "mailboxes"
 set contents of data cell 1 of mailboxItem to mailboxName
 set associated object of mailboxItem to mailboxIndex
 end addMailbox

The addMailboxes handler performs the following step:

1. It adds a mailbox item to the data source for the mailboxes view in the search window. It also sets various
information for the item, including its name (the name of the mailbox).

Finding and Displaying Messages

This section describes the handlers in the controller script Mail Search uses to find and display messages in
the search window. Only messages in the specified mailboxes that contain the specified text in the specified
part of the message are displayed.

The jumping off point for finding messages is the find handler. It is called from the clicked handler for
the find button, shown in Listing 9-8 (page 189) and the action handler for the search text field, shown in
Listing 9-7 (page 188). The find handler is responsible for gathering the search criteria, searching the selected
mailboxes for matching messages, and displaying any such messages that are found. It also displays various
status messages during the search. The find handler is shown in Listing 9-16

Listing 9-16 The controller script’s find handler

 on find()
 -- Get what and where to find
 set whatToFind to contents of text field "what" of theWindow
 set whereToFind to title of current menu item of popup button "where" ¬
 of theWindow

 -- Make sure that we have something to find
 if (count of whatToFind) is greater than 0 then
 -- Clear any previously found messages
 clearMessages()

 -- Setup a status panel
 set theStatusPanel to makeStatusPanel(theWindow)
 tell theStatusPanel to ¬
 openPanel("Determining the number of messages...")

194 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

 try
 -- Determine the mailboxes to search
 set mailboxesToSearch to selectedMailboxes()

 -- Determine the total number of messages to search
 set totalCount of theStatusPanel to ¬
 countMessages(mailboxesToSearch)

 -- Adjust the status panel
 tell theStatusPanel to adjustPanel()

 -- Find the messages
 set foundMessages to findMessages(mailboxesToSearch, ¬
 whereToFind, whatToFind)

 -- Change the status panel
 tell theStatusPanel to changePanel("Adding found messages...")

 -- Add the found messages to the result table
 addMessages(foundMessages)

 -- Close the status panel
 tell theStatusPanel to closePanel()
 on error errorText
 tell theStatusPanel to closePanel()
 display alert "AppleScript Error" as critical ¬
 attached to theWindow message errorText
 end try
 else
 display alert "Missing Value" as critical attached to theWindow ¬
 message "You need to enter a value to search for."
 end if
 end find

The find handler performs the following steps:

1. It gets the search criteria: the contents of the search text field (the “what” field) and the title of the
location pop-up (the “where” menu).

2. If there is no search text, it displays an error message “Missing Value”. Otherwise it performs the following
steps.

3. It calls the controller handler clearMessages to clear any previous found messages in the Messages
table view.

4. It calls the makeStatusPanel handler to create a status dialog script object, and stores a reference to
it in the theStatusPanel property. The makeStatusPanel handler is described in “Write Handlers for
Working With the Status Dialog” (page 201).

5. It calls the openPanel handler of the status dialog script object to start displaying the panel, with the
message “Determining the number of messages...” The openPanel handler is described in “The Status
Dialog Script” (page 128).

6. It sets up an error handler (a try…on error…end try statement) around the statements that search
for and display messages. If an error occurs, the on error clause closes the status dialog and displays
an error message. Within the handler, it performs these steps:

Write Scripts and Additional Handlers 195
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

a. It calls the controller handler selectedMailboxes to get the selected mailboxes.

b. It calls the controller handler countMessages to set the total count property of the status dialog
to the total number of messages to search.

c. It calls the adjustPanel handler of the status dialog script object to display the number of the
messages to be searched. The adjustPanel handler is described in “The Status Dialog Script” (page
128).

d. It calls the controller handler findMessages (shown in Listing 9-17), passing the mailboxes to
search, the search location, and the text to find.

e. It calls the changePanel handler of the status dialog script object to display the message “Adding
found messages...” The changePanel handler is described in “The Status Dialog Script” (page 128).

f. It calls the controller handler addMessages, to display the found messages in the search window’s
message view.

g. It closes the status dialog.

The findMessages handler is shown in Listing 9-17. It is called from the find handler, shown in Listing
9-16. The findMessages handler is responsible for iterating over the specified mailboxes and finding any
messages that contain the specified text in the specified location (From, To, or Contents of the message).

Listing 9-17 The controller script’s findMessages handler

on findMessages(mailboxesToSearch, whereToFind, whatToFind)
 -- Initialize the result
 set messagesFound to {}

 tell application "Mail"
 -- Search through each of the mail boxes
 repeat with b in (get mailboxesToSearch)
 try
 -- Search through each of the messages of the mail box
 repeat with m in (get messages of b)
 try
 if whereToFind is equal to "Subject" then
 if whatToFind is in the subject of m then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "From" then
 if whatToFind is in sender of m then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "To" then
 set foundRecipient to false

 -- Recipients
 repeat with r in (get recipients of m)
 if whatToFind is in address of r or whatToFind ¬
 is in display name of r then
 set foundRecipient to true
 end if
 end repeat

196 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

 -- To Recipients
 if not foundRecipient then
 repeat with r in (get to recipients of m)
 if whatToFind is in address of r or whatToFind ¬
 is in display name of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 -- cc Recipients
 if not foundRicipient then
 repeat with r in (get cc recipients of m)
 if whatToFind is in address of r or whatToFind ¬
 is in display name of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 -- bcc Recipients
 if not foundRicipient then
 repeat with r in (get bcc recipients of m)
 if whatToFind is in address of r or whatToFind ¬
 is in display name of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 if foundRecipient then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "Contents" then
 if whatToFind is in the content of m then
 copy m to end of messagesFound
 end if
 end if

 -- Update the status panel
 tell theStatusPanel to incrementPanel()
 end try
 end repeat
 end try
 end repeat
 end tell

 -- Return the result
 return messagesFound
end findMessages

The findMessages handler is similar in many ways to the find handler. It performs the following steps:

1. It gets the location criteria: the title of the current choice of the search location pop-up (the “where”
menu).

2. It targets the Mail application.

Write Scripts and Additional Handlers 197
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

3. It sets up a Repeat loop for each selected mailbox. The repeat loop contains a try…end try error handler
so that if any error occurs, the script doesn’t halt. Any error is displayed by the error handler in the calling
routine (find).

4. It sets up a Repeat loop for each message in the mailbox. This repeat loop also contains an error handler.

5. Within the inner repeat loop it does the following:

a. It calls on the Mail application to search for the specified text in the specified location.

b. If a message contains the specified text, it adds it to a list of found messages.

c. At the end of the loop, it calls the incrementPanel handler of the status dialog script object to
increment the count of the messages to be searched. The incrementPanel handler is described
in “Write Handlers for Working With Message Windows” (page 201).

6. It returns the list of found messages. The list may be empty.

The find handler (shown in Listing 9-16 (page 194)) also calls the following handlers. These handlers, which
perform simple operations, aren’t shown in individual listings, but you can examine them in Chapter 10 (page
185) or in the Mail Search sample application.

 ■ clearMessages: Tells the data source of the Messages table view of the controller script object’s search
window to delete every row, thus clearing the messages.

 ■ countMessages: Communicates with the Mail application to count the messages in each mailbox in
the passed list of mailboxes. Returns the total count.

 ■ addMessages: Turns off updating in the Message table view. For each message in the passed list of
messages, calls addMessage. Turns updating back on, so that the Messages table view displays the
added messages.

 ■ addMessage: (Not called directly by the find handler, but called by addMessages.) For the passed
message, adds a row to the data source for the Messages table view, then adds a cell for each column
in the row, so that the row displays the From, Subject, and Mailbox information for the message.

 ■ selectedMailboxes: Gets the currently selected mailboxes from the Mailboxes outline view. If any
accounts are selected, calls the mailboxesForIndex handler to get all corresponding mailboxes (both
from accounts and from individual selected mailboxes) from the Mail application. If only mailboxes are
selected, gets the mailboxes itself from the Mail Application. Returns the list of selected mailboxes (which
may be empty).

 ■ mailboxesForIndex: (Not called directly by the find handler, but called by selectedMailboxes.)
Communicates with the Mail application to obtain the actual mailboxes corresponding to the currently
selected mailboxes. Returns the list of selected mailboxes (which may be empty).

Opening Message Windows

Because the Mail application’s scripting support doesn’t currently allow you to open a message in a separate
window, Mail Search gets the message text and displays it in its own window. This section describes the
controller handlers Mail Search uses to do this.

198 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

The jumping off point for displaying messages is the openMessages handler. It is called from the double
clicked handler for the Messages view in the Search window (the handler is shown in Listing 9-9 (page
189)). The Messages view currently supports only selection of single messages, so the openMessages handler
merely calls the openMessageWindow handler to open the selected message. You could, however, modify
the Messages table view in Interface Builder to allow multiple selection (see the Attributes pane in the Info
window), then modify openMessages to iterate over the current selections, calling openMessageWindow
for each selection.

The openMessageWindow handler is shown in Listing 9-18

Listing 9-18 The controller script’s openMessageWindow handler

on openMessageWindow()
 set clickedRow to clicked row of table view "messages" ¬
 of scroll view "messages" of split view 1 of theWindow
 if clickedRow is greater than or equal to 0 then
 set theAccount to ""
 set theMailbox to ""
 set theSubject to ""
 set theDateReceived to ""
 set theContents to ""
 set theSender to ""
 set theRecipients to ""
 set theCCRecipients to ""
 set theReplyTo to ""

 tell application "Mail"
 set theMessage to Abstract object clickedRow of foundMessages

 set theAccount to account name of account of container of theMessage
 set theMailbox to mailbox name of container of theMessage
 set theSubject to subject of theMessage
 -- set theDateReceived to date received of theMessage
 set theContents to content of theMessage
 set theSender to sender of theMessage
 set theRecipients to address of every recipient of theMessage
 set theCCRecipients to address of every cc recipient of theMessage
 set theReplyTo to reply to of theMessage
 end tell

 set messageWindow to makeMessageWindow()
 tell messageWindow
 set messageContents to "Account: " & theAccount & return
 set messageContents to messageContents & "Mailbox: " & theMailbox & return
 if length of theSender > 0 then
 set messageContents to messageContents & "From: " & theSender & return
 end if
 if length of theDateReceived as string > 0 then
 set messageContents to messageContents & "Date: " ¬
 & (theDateReceived as string) & return
 end if
 if length of theRecipients > 0 then
 set messageContents to messageContents & "To: " ¬
 & theRecipients & return
 end if
 if length of theCCRecipients > 0 then
 set messageContents to messageContents & "Cc: " ¬

Write Scripts and Additional Handlers 199
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

 & theCCRecipients & return
 end if
 if length of theSubject > 0 then
 set messageContents to messageContents & "Subject: " ¬
 & theSubject & return
 end if
 if length of theReplyTo > 0 then
 set messageContents to messageContents & "Reply-To: " ¬
 & theReplyTo & return & return
 end if
 set messageContents to messageContents & theContents
 set contents of text view "message" of scroll view "message" ¬
 to messageContents
 set title to theSubject
 set visible to true
 end tell
 end if
end openMessageWindow

The openMessageWindow handler performs the following steps:

1. It gets the row number for the currently selected message from the Messages table view.

2. If there is no currently selected row (the row number is less than zero), it does nothing. Otherwise it
performs the following steps.

3. It initializes some local variables to store message information, such as the account, mailbox, subject,
and so on.

4. It calls on the Mail application to obtain an object representing the message at the selected row. The
term Abstract object is a Cocoa scripting term specifying an object that is the parent for all script
objects that have no other parent class.

5. Continuing to use the Mail application, it sets local variables to message information from the message
object returned in the previous step.

6. It calls the makeMessageWindow handler to create a new message window for displaying the message.
The makeMessageWindow handler is described in “Write Handlers for Working With Message
Windows” (page 201).

7. It sets another local variable to the message contents of the found message by concatenating the message
information previously stored in local variables, then sets the text contents of the new message window.

8. It sets the title of the new window to the subject of the found message.

9. It sets the visible property of the new window to display it to the user.

Write Handlers for Working With Controllers

Mail Search needs several handlers for working with controllers. These handlers are not part of the controller
script itself. They aren’t shown in individual listings, but you can examine them in Chapter 10 (page 185) or
in the Mail Search sample application.

200 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

 ■ makeController: This handler contains the entire controller script. You’ve examined most of the
handlers in this script in previous sections. The makeController handler is called by the will open
handler, shown in Listing 9-4 (page 187), to create a controller script object for a search window. Since
the script is the only content of the makeController handler, calling the handler effectively returns
the script object as a return result.

 ■ addController: This handler is also called by the will open handler, shown in Listing 9-4 (page 187).
It simply adds a controller to the global list of controllers.

 ■ removeController: This handler is also called by the will close handler, shown in Listing 9-6 (page
188). It simply removes a controller from the global list of controllers by calling the utility handler
deleteItemInList.

 ■ controllerForWindow: This handler is called whenever a handler needs to obtain the controller for
the current window. It returns the controller for the passed window from the global list of controllers.

Write Handlers for Working With the Status Dialog

Mail Search only needs one handler to work with the status dialog script, the makeStatusPanel handler,
which creates the status dialog script object. This handler is shown in full in Chapter 10 (page 185). The
handlers and properties it contains are described in “The Status Dialog Script” (page 128). Since the script is
the only content of the makeStatusPanel handler, calling the handler effectively returns the script object
as a return result.

Write Handlers for Working With Message Windows

Mail Search only needs one handler to work with the message window, the makeMessageWindow handler.
This handler, shown in Listing 9-19, is called from the openMessageWindow handler (shown in Listing 9-18.

Listing 9-19 The makeMessageWindow handler

on makeMessageWindow()
 load nib "Message"
 set windowCount to windowCount + 1
 set windowName to "message " & windowCount
 set name of window "message" to windowName
 return window windowName
end makeMessageWindow

The makeMessageWindow performs the following steps:

1. It loads an instance of the Message window from the Message nib.

2. It increments Mail Search’s global window count property.

3. It constructs a name for the window.

4. It returns the window name.

Write Scripts and Additional Handlers 201
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

Write Utility Handlers

Mail Search needs one utility handler, deleteItemInList, to remove an item from a list. This handler is
called by removeController, which in turn is called by the window’s will close handler to remove a
controller before the window closes. AppleScript doesn’t currently support deleting items from lists directly,
so scripters rely on a utility handler such as deleteItemInList, shown in Listing 9-20.

Listing 9-20 Utility function to delete an item from a list

on deleteItemInList(x, theList)
 (* To Be Provided *)
end deleteItemInList

202 Write Scripts and Additional Handlers
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

Mail Search Tutorial: Write the Code

In this chapter you’ll build and test Mail Search, an AppleScript Studio application that searches for specified
text in messages in the Mac OS X Mail application.

This chapter assumes you have completed previous Mail Search tutorial chapters. By now, you should have
completed constructing the application, including building the interface, connecting objects in the interface
to handlers in the application, and writing the handlers. Chances are you built the application several times
while creating the interface, and perhaps later as well.

You may have inserted handlers in Mail Search’s script file (Mail Search.applescript) as you worked on
the tutorial, or you may have chosen to copy in the whole body of the script, either from Appendix B (page
219) or by copying it (as recommended) from the Mail Search sample application distributed with AppleScript
Studio. You should now be ready to build the application and run it. These steps are described in the following
sections:

 ■ “Build and Run Mail Search” (page 203)

 ■ “Check for Syntax Errors” (page 204)

Build and Run Mail Search

To build and run the application, you follow the same steps described earlier in this tutorial:

1. Open your Mail Search project in Xcode.

2. Type Command-R, choose Build and Run from the Build menu, or click the Build and Run button.

Xcode has a number of menu commands, keystroke equivalents, and buttons you can use to perform different
kinds of build operations. You can display the help tag for any of the three build-related buttons visible in
Figure 10-1 by positioning the cursor over them. In addition, each of these three buttons can operate as a
pull-down menu.

 ■ the hammer: Builds the active target. Same as Command-B, or Build in the Build menu. Its pull-down
menu contains Clean and Clean All, used to clean the current target or the entire project of previously
built products and files.

 ■ the hammer and green button: Builds the active target and runs the executable product. Same as
Command-R, or Build and Run in the Build menu. Other options are available in its pull-down menu, but
Build and Run is the most important function.

 ■ the stop sign: Stops the current activity for a product. Same as Command-Option-R, or Stop in the Debug
menu. The pull-down menu lists all the currently active products, allowing you to select the one to stop.

Build and Run Mail Search 203
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Mail Search Tutorial: Build and Test the
Application

Note: The other three standard toolbar buttons are not build-related. See Xcode Help for more information
on these and other build options.

All uncompiled script files in the current target (in this case, there’s just one target and one script file, Mail
Search.applescript) are compiled automatically when you build the application. Building the application
also compiles the Cocoa code in the application’s main.m file (visible in Figure 1-10 (page 29)), prepares the
application’s resources, and links any designated frameworks (for Mail Search, that’s the frameworks in the
Linked Frameworks group within the Frameworks group in the Groups & Files list).

If the build succeeds, Mail Search opens, launches the Mail application if it isn’t already running, and loads
all available mailboxes. In the next sections, you’ll learn what to do if Mail Search doesn’t build correctly, or
if testing shows the application isn’t working properly.

Check for Syntax Errors

When you first enter text in an Xcode script editor window, it appears in the style specified in the Script Editor
application (located in /Applications/AppleScript) for new (uncompiled) text. For example, Figure 10-1
shows how the clicked handler might look when you first type or copy it into the script file (in this case,
with a minor spelling error you’ll fix in a minute).

Figure 10-1 An uncompiled handler

If you want to change the default format settings, use the steps described in “How Xcode Formats
Scripts” (page 68). You’ll have to quit and restart Xcode to pick up the new settings.

To check for syntax errors, perform these steps:

1. Open your Mail Search project in Xcode.

204 Check for Syntax Errors
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Mail Search Tutorial: Build and Test the Application

2. Open the Scripts group in the Files list in the Groups & Files list and select Mail Search.applescript.
Xcode knows that files that end in .applescript are script files, and displays the file in a script editor
window.

3. Select Build > Compile or press Command-K. Assuming your script file has the same spelling error shown
in Figure 10-1, you should see a result similar to Figure 10-2.

Figure 10-2 A syntax error in an Xcode script editor window

Because “tel” is misspelled (and looks like an identifier), it isn’t recognized as a keyword. As a result, the next
term, “theController”, is flagged as an error. That word is selected and an error message is displayed, as shown
in Figure 10-2.

Your job is to examine the offending line, correct whatever is wrong, and again click the checkmark to compile
it. You can also initiate a compile by pressing the Enter key, typing Command-K, or choosing Compile from
the Build menu. (As mentioned previously, uncompiled script files in the current target are also compiled
when you build the application.) When you successfully compile the script, you should see formatting similar
to that shown in Figure 10-3.

To help determine the correct terminology for a script, see “Finding Terminology Information” (page 77).

Check for Syntax Errors 205
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Mail Search Tutorial: Build and Test the Application

Figure 10-3 A compiled handler

To help in editing and compiling scripts, you can use the pop-up menu in the editor window to jump to any
property, script, or handler in the script file. Figure 10-4 shows how to select the action handler using the
pop-up menu. Once selected, the editor will jump to that handler.

Figure 10-4 Event handlers in an Xcode pop-up menu

206 Check for Syntax Errors
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

Mail Search Tutorial: Build and Test the Application

In this chapter you’ll customize Mail Search, an AppleScript Studio application that searches for specified
text in messages in the Mac OS X Mail application. You’ll learn how to perform basic customization that
should be useful for many applications.

To customize the Mail Search application, you’ll perform the steps described in the following sections:

“Customize Menus” (page 207)
“Customize the About Window” (page 210)
“Customize Version and Copyright Information” (page 211)
“Customize Icons” (page 212)

This chapter assumes you have completed previous Mail Search tutorial chapters.

Customize Menus

Figure 11-1 shows the MainMenu instance from Mail Search’s MainMenu.nib file as it appears in Interface
Builder. The application menu is open, showing the default items in that menu. You’ll need to change the
names of certain menu items so that they match the ones specified in “Design the Interface” (page 121).

To customize Mail Search’s menus, perform the steps described in the following sections:

1. Rename the Application menu to Mail Search and add Mail Search to several of its items.

2. Optionally set menu attributes, including key equivalents.

3. Optionally remove menus and menu items.

Rename Menus and Menu Items

To rename Mail Search menus and menu items, perform the following steps:

1. Open the project in Xcode.

2. Open the Resources group in the Files list in the Groups & Files list.

3. Double-click the icon for the file MainMenu.nib to open the file in Interface Builder. That should
automatically open the MainMenu instance, but if not, double-click it in the Instances pane.

Customize Menus 207
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the
Application

4. Click the Application menu in the menu bar. The result should look similar to Figure 11-1.

Figure 11-1 Mail Search’s menu nib in Interface Builder, showing the application menu

5. Double-click the About Application menu item and replace Application with Mail Search.

6. Do the same for the Hide Application and Quit Application menu items. You can tab between menu
items.

7. Double-click the Application item in the menu bar and change it to Mail Search. If you open the menu
again, it should now look similar to Figure 11-2

Figure 11-2 The revised Mail Search application menu

Set Menu Attributes

Mail Search doesn’t currently supply any menu items beyond the default items that come with any AppleScript
Studio document-based project. However, you may choose to modify Mail Search’s menus by adding keystroke
equivalents (including modifier keys) and setting the initial checked state. To do so, perform the following
steps:

208 Customize Menus
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

1. Open the MainMenu.nib file as described in “Rename Menus and Menu Items” (page 207).

2. Click a menu in the menu bar (in this case, choose the Mail Search menu). The result is shown in Figure
11-2.

3. Click to select the About Mail Search menu item, then type Command-Shift-I to open the Info window.
If necessary, use the pop-up menu to choose the Attributes pane. The result is shown in Figure 11-3

Figure 11-3 The Info window for the About Mail Search menu item

4. To specify a key equivalent, you can type any key not used by another Mail Search menu in the Key
Equivalent text field. Many keys have standard usages, so avoid overriding those keys.

5. To assign a modifier key or combination, you click to select any of the checkboxes in the Modifiers section.
The checkbox on the left represents the Shift key, the middle checkbox the Option key, and the last
checkbox the Control key.

6. You use the radio buttons in the State section to specify whether a menu item is initially checked.

As you can see in Figure 11-3, you can also change a menu item’s name in the Attributes pane by typing in
the Title field.

Remove Menus and Menu Items

You can modify Mail Search’s menus by removing menus or menu items. To do so, perform the following
steps:

1. Open the MainMenu.nib file in Interface Builder as described in “Rename Menus and Menu Items” (page
207)

Customize Menus 209
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

2. Click the any menu in the menu bar. To delete that whole menu, simply press the Delete key or choose
Delete from the Edit menu.

3. To delete a single item from a menu, open the menu as in previous sections, select the item, and press
the Delete key.

Don’t delete items from the Edit menu—items such as Cut and Paste are automatically supported when users
open a message window in Mail Search.

Customize the About Window

Customizing Mail Search’s About window requires several simple tasks. A document-based AppleScript Studio
project contains a file named Credits.rtf, described in “Document-based Application Template” (page
46). This rich text format file supplies the application description for the default About window. The current
default About window is shown in Figure 11-4.

Note: For a simple (non-document) AppleScript application project, by default the About box displays
information from the InfoPlist.strings file, located in the project’s Resources group.

Figure 11-4 AppleScript Studio’s default About window

To customize this text, you simply edit the file and supply your own information. You can open the file in
Xcode, or in another editor such as TextEdit (distributed with Mac OS X). Figure 11-5 shows the About window
after modifying the Credits.rtf file.

210 Customize the About Window
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

Figure 11-5 The About window after modifying the application description

You’ll make changes in later sections that will further customize the About window:

 ■ When you add customized information in “Customize Version and Copyright Information” (page 211),
the application name, version string, and copyright information are displayed in the About window.

 ■ When you add a custom icon in “Customize Icons” (page 212), the icon is displayed in the About window.

Customize Version and Copyright Information

An information property list is a special property list that contains predefined keys for application information
that may be used by the Finder, by other applications, and by the application itself. The file
InfoPlist.strings is a property list that contains application information that can be displayed to the
user in several places, including:

 ■ in Mail Search’s About window

 ■ an Info window in the Finder

 ■ by other applications that look for the information, such as the Apple System Profiler application (located
in /Applications/Utilities)

Listing 11-1 shows the default InfoPlist.strings file for an AppleScript Studio application. “Application”
would reflect your product’s name.

Listing 11-1 The default InfoPlist.strings file from an AppleScript Studio application

/* Localized versions of Info.plist keys */

CFBundleName = "Application";

Customize Version and Copyright Information 211
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

CFBundleShortVersionString = "Application version 0.1";
CFBundleGetInfoString = "Application version 0.1, Copyright 2003 __MyCompanyName__.";
NSHumanReadableCopyright = "Copyright 2003 __MyCompanyName__.";

The string associated with the CFBundleName key appears as the application name in the default About
window shown in Figure 11-4. The string associated with the CFBundleShortVersionString key appears
as the application version number, below the application name, and the string associated with
NSHumanReadableCopyright appears as the application copyright, below the application description
(described in “Customize the About Window” (page 210)).

To customize version and copyright information, you simply edit the InfoPlist.strings file in Xcode and
insert the information you want to display. Figure 11-6 shows the About window after modifying the version
and copyright information.

Figure 11-6 The About window after modifying version and copyright information

Customize Icons

Mac OS X supports the display of very large icons for the desktop, the Dock, and in various other locations.
The Finder uses a high-quality scaling algorithm to generate the variable-sized icons it needs. To help ensure
a pleasing result, applications should provide at least a thumbnail icon (a large, 128 x 128 image) as part of
an 'icns' resource (stored in an icon resource file with the extension “.icns”).

The Mail Search sample application provides customized icons in the file Mail Search.icns. Figure 11-7
shows this file as displayed by the Icon Composer application (which is located in
/Developer/Applications/Utilities/).

212 Customize Icons
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

Figure 11-7 Mail Search’s icons displayed in Icon Composer

To add custom icons to the Mail Search tutorial application requires the following steps:

1. Create the icon art.

2. Populate an icon resource file with the required icons (Figure 11-7 shows the contents of a fully-populated
Icon Composer icon resource template).

3. Add the icon resource file to the Mail Search application.

4. Register a unique creator code for the application so that the Finder can display the correct icons for
the application

The first two steps are not included here, but are described in other documentation. For example, Learning
Cocoa by O’Reilly & Associates describes how to create a simple icon resource file with Icon Composer. For
this tutorial, you can use the icon resource file provided by the Mail Search sample application.

Steps 3 and 4 are described in the following sections.

Add an Icon Resource File to the Project

To add an icon resource file to the Mail Search tutorial project, perform these steps:

1. Open the Mail Search project in Xcode.

Customize Icons 213
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

2. The Mail Search sample project included with AppleScript Studio includes an icon resource file that
contains customized icons. Open the folder for the Mail Search sample project and drag the file Mail
Search.icns to the Files list in the Groups & Files list of the Mail Search project. You can insert it directly
in the Resources group.

You can also add this file to the Mail Search project by choosing Add Files from the Project menu in
Xcode, as described in “Create a Project” (page 131). In either case, you’ll get the dialog shown in Figure
11-8.

Figure 11-8 Adding a file to a project

Select “Copy items into destination group’s folder (if needed),” then click Add to add the file to your
project. If you used the Add Files menu choice, drag the file Mail Search.icns into the Resources
group in the Groups & Files list.

214 Customize Icons
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

3. Double-click the Mail Search target in Xcode’s Targets group to open a window for the target. Use the
disclosure triangles in the column view on the left to display Simple View within the Info.plist Entries
section. Then click the Application Icon entry. The result is shown in Figure 11-9.

Figure 11-9 The Icon field in a target window for the Mail Search target

4. Type the name of the file “Mail Search” into the Icon file text field. Note you do not add the .icns suffix.

5. Build and run the Mail Search application. The new About window, now including the Mail Search icon,
is shown in Figure 11-10.

Figure 11-10 The About window after customizing icons

Customize Icons 215
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

6. You may need to quit Xcode and restart the Finder to make sure the Finder recognizes the new icons.

Figure 11-11 shows the Mail Search icon in the Finder, at maximum resolution. Note the version string you
added earlier shows up now in the Finder.

Figure 11-11 The Mail Search icon in the Finder

Supply a Creator Code

You should make sure your application has a unique creator code (or signature). The creator code identifies
the application to the Finder so that it can display the correct icons for the application. If you create an
AppleScript Studio application to distribute commercially, you should register your creator code with Apple
Developer Technical Support, which keeps a database of creator codes to avoid conflict between applications.

Creator codes consisting entirely of lower case letters are reserved for Apple, so use at least one upper case
letter in your code. You can make sure your creator code is unique (and also register it) at the following site:

http://developer.apple.com/datatype/

In Figure 11-9 (page 215), the Applications Settings pane shows the application type (APPL, or application)
and signature (????, the default value supplied by Xcode). If you look at the same pane for the Mail Search
sample project, you will see that it has the creator code “wats”.

To add your unique, four-character creator code, type it in the Signature field on the Application Settings
pane.

216 Customize Icons
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

Mail Search Tutorial: Customize the Application

http://developer.apple.com/datatype/

This appendix describes the system requirements for developing and running AppleScript Studio applications
and explains how to determine if AppleScript Studio is currently installed.

To build AppleScript Studio applications, you must install a version of the Mac OS X Developer Tools that
includes AppleScript Studio. To run an AppleScript Studio application, the target machine must have the
AppleScript Studio runtime required for the application. An AppleScript Studio runtime is available if
AppleScriptKit.framework is present in /System/Library/Frameworks.

AppleScript Studio attempts to maintain the following:

 ■ An application created and built with an older version of AppleScript Studio can run with a newer runtime.

 ■ An application created and built with a newer version of AppleScript Studio can run with an older runtime,
if it doesn’t use any features introduced after that runtime.

For example, an application built with AppleScript Studio version 1.1 that uses features added in version 1.1
requires the 1.1 runtime. However, a similar application that doesn’t use any features from AppleScript Studio
1.1 can run with the 1.0 runtime. And an application built with AppleScript Studio version 1.0 can run with
any runtime, through version 1.3.

Important: An application created with AppleScript Studio version 1.2 does not run with any earlier runtimes,
even if it does not use any new features of 1.2. This has been fixed in AppleScript Studio version 1.2.1.

Table A-1 lists AppleScript Studio versions, the development environment they are part of, and the system
software the corresponding runtime is installed with.

Table A-1 Availability for AppleScript Studio development environment and runtime

Runtime installed withDistributed with development
environment

AppleScript
Studio
Version

Developer Tools CD (with AppleScript 1.8.2), or Mac
OS X version 10.1.2 software update (with
AppleScript 1.8.3 or later)

December 2001 Developer Tools CD1.0

Developer Tools CD (with AppleScript 1.8.2 or later)April 2002 Developer Tools CD1.1

Mac OS X version 10.2, and later (with AppleScript
1.9.0 or later)

Mac OS X version 10.2 Developer
Tools CD

1.2

Developer Tools CD (with AppleScript 1.9.1), or Mac
OS X version 10.2.3 software update (with
AppleScript 1.9.1 or later)

December 2002 Developer Tools CD1.2.1

217
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

AppleScript Studio System Requirements and
Version Information

Runtime installed withDistributed with development
environment

AppleScript
Studio
Version

Mac OS X version 10.3, and later (with AppleScript
1.9.2 or later)

Mac OS X version 10.3 Xcode Tools1.3

Mac OS X version 10.4, and later (with AppleScript
1.10 or later)

Mac OS X version 10.4 Xcode Tools1.4

For an example of how your application can determine whether the required version of AppleScript Studio
is present, see the Examples section for the will finish launching event handler in the Application
Suite in AppleScript Studio Terminology Reference.

Starting with the version of Interface Builder released with Mac OS X version 10.2, there is a Nib File
Compatibility preference on the General pane of the Interface Builder Preferences window. You should select
a nib-file preference that suits your compatibility goals, from the following choices (and restart Interface
Builder for the changes to take affect):

 ■ Pre-10.2 format: applications will run with earlier versions of Mac OS X, but will not have access to new
features (such as the circular progress indicator or the brushed-metal, textured window appearance)

 ■ 10.2 and later format: provides access to all new features, but is not guaranteed to run in earlier versions
of Mac OS X

 ■ Both Formats: provides access to new features but will also run in earlier versions of Mac OS X (though
without the new features)

218
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

AppleScript Studio System Requirements and Version Information

The listings in this appendix provide the full source code for the Mail Search tutorial, from the script file Mail
Search.applescript, which you can also obtain as part of the Mail Search sample application.

Important: The scripting terminology for the Mail application changed with Mac OS X version 10.2, so there
are some differences between the Mail Search script file distributed with AppleScript Studio 1.2. and the
listings shown in this chapter. The Mail Search application distributed with AppleScript Studio 1.2 will work
with the newer version of Mail.

After installing AppleScript Studio, the sample applications are located in
/Developer/Examples/AppleScript Studio.

Note: In AppleScript Studio 1.0, the Mail Search sample application was known as “Watson”.

Listing B-1 Mail Search’s global variables and event handlers

(* Mail Search.applescript *)

(* ==== Globals ==== *)

global controllers

(* ==== Properties ==== *)

property windowCount : 0
property statusPanelNibLoaded : false

(* ==== Event Handlers ==== *)

on clicked theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to find()
 end if
end clicked

on double clicked theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to openMessages()
 end if
end double clicked

on action theObject
 set theController to controllerForWindow(window of theObject)
 if theController is not equal to null then
 tell theController to find()

219
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 end if
end action

on became main theObject
 set theController to controllerForWindow(theObject)
 if theController is not equal to null then
 tell theController to loadMailboxes()
 end if
end became main

on will open theObject
 set theController to makeController(theObject)
 if theController is not equal to null then
 addController(theController)
 tell theController to initialize()
 end if
end will open

on will close theObject
 removeController(theObject)
end will close

on will finish launching theObject
 set controllers to {}
end will finish launching

Listing B-2 The controller script definition

(* ==== Controller Handlers ==== *)

on makeController(forWindow)
 script
 property theWindow : forWindow
 property theStatusPanel : null
 property foundMessages : {}
 property mailboxesLoaded : false

 -- Handlers

 on initialize()
 -- Add a column to the mailboxes data source
 tell scroll view "mailboxes" of split view 1 of theWindow
 make new data column at the end of the data columns of data source¬
 of outline view "mailboxes" with properties {name:"mailboxes"}
 end tell

 -- Add the columns to the messages data source
 tell scroll view "messages" of split view 1 of theWindow
 make new data column at the end of the data columns of data source¬
 of table view "messages" with properties {name:"from"}
 make new data column at the end of the data columns of data source¬
 of table view "messages" with properties {name:"subject"}
 make new data column at the end of the data columns of data source¬
 of table view "messages" with properties {name:"mailbox"}
 end tell

 set windowCount to windowCount + 1
 end initialize

220
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 on loadMailboxes()
 if not mailboxesLoaded then
 -- Open the status panel
 set theStatusPanel to makeStatusPanel(theWindow)
 tell theStatusPanel to openPanel("Looking for Mailboxes...")

 -- Add the mailboxes
 addMailboxes()

 -- Close the status panel
 tell theStatusPanel to closePanel()

 set mailboxesLoaded to true
 end if
 end loadMailboxes

 on find()
 -- Get what and where to find
 set whatToFind to contents of text field "what" of theWindow
 set whereToFind to title of current menu item of popup button "where"¬
 of theWindow

 -- Make sure that we have something to find
 if (count of whatToFind) is greater than 0 then
 -- Clear any previously found messages
 clearMessages()

 -- Setup a status panel
 set theStatusPanel to makeStatusPanel(theWindow)
 tell theStatusPanel to openPanel("Determining the number¬
 of messages...")

 try
 -- Determine the mailboxes to search
 set mailboxesToSearch to selectedMailboxes()

 -- Determine the total number of messages to search
 set totalCount of theStatusPanel¬
 to countMessages(mailboxesToSearch)

 -- Adjust the status panel
 tell theStatusPanel to adjustPanel()

 -- Find the messages
 set foundMessages to findMessages(mailboxesToSearch,¬
 whereToFind, whatToFind)

 -- Change the status panel
 tell theStatusPanel to changePanel("Adding found messages...")

 -- Add the found messages to the result table
 addMessages(foundMessages)

 -- Close the status panel
 tell theStatusPanel to closePanel()
 on error errorText
 tell theStatusPanel to closePanel()

221
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 display alert "AppleScript Error" as critical attached¬
 to theWindow message errorText
 end try
 else
 display alert "Missing Value" as critical attached¬
 to theWindow message "You need to enter a value to search for."
 end if
 end find

 on addMailbox(accountItem, accountName, mailboxIndex, mailboxName)
 -- Add a new item
 set mailboxItem to make new data item at the end of the data items¬
 of accountItem
 set name of data cell 1 of mailboxItem to "mailboxes"
 set contents of data cell 1 of mailboxItem to mailboxName
 set associated object of mailboxItem to mailboxIndex
 end addMailbox

 on addAccount(a, accountIndex, accountName)
 -- Add a new item
 set accountItem to make new data item at the end of the data items¬
 of data source of outline view "mailboxes"¬
 of scroll view "mailboxes" of split view 1 of theWindow
 set name of data cell 1 of accountItem to "mailboxes"
 set contents of data cell 1 of accountItem to accountName
 set associated object of accountItem to accountIndex

 -- Add the mail boxes
 tell application "Mail"
 set mailboxIndex to 0
 repeat with m in (get mailboxes of a)
 try
 set mailboxIndex to mailboxIndex + 1
 my addMailbox(accountItem, accountName, mailboxIndex,¬
 mailbox name of m)
 end try
 end repeat
 end tell
 end addAccount

 on addMailboxes()
 tell application "Mail"
 set accountIndex to 0
 repeat with a in (get accounts)
 try
 set accountIndex to accountIndex + 1
 my addAccount(a, accountIndex, account name of a)
 end try
 end repeat
 end tell
 end addMailboxes

 on mailboxesForIndex(mailboxIndex)
 -- Initialize the result
 set theMailboxes to {}

 set theIndex to 0
 set theAccountIndex to 0

222
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 -- Determine if the selected item is an account or a mailbox
 tell outline view "mailboxes" of scroll view "mailboxes"¬
 of split view 1 of theWindow
 set theItem to item for row mailboxIndex
 set theName to contents of data cell 1 of theItem
 set theIndex to associated object of theItem
 if has parent data item of theItem then
 set theAccountIndex to the associated object¬
 of the parent data item of theItem
 end if
 end tell

 tell application "Mail"
 if theAccountIndex > 0 then
 set theMailboxes to {mailbox theIndex of account theAccountIndex}
 else
 set theMailboxes to theMailboxes & every mailbox¬
 of account theIndex
 end if
 end tell

 -- Return the result
 return theMailboxes
 end mailboxesForIndex

 on selectedMailboxes()
 -- Initialize the result
 set mailboxesSelected to {}

 -- Get the currently selected mailboxes in the outline view
 set mailboxIndicies to selected rows of outline view "mailboxes"¬
 of scroll view "mailboxes" of split view 1 of theWindow

 -- Get the actual mailboxes from Mail
 tell application "Mail"
 if (count of mailboxIndicies) is equal to 0 then
 repeat with a in (get accounts)
 set mailboxesSelected to mailboxesSelected &¬
 every mailbox of a
 end repeat
 else
 repeat with i in mailboxIndicies
 set mailboxesSelected to mailboxesSelected¬
 & my mailboxesForIndex(i)
 end repeat
 end if
 end tell

 -- Return the result
 return mailboxesSelected
 end selectedMailboxes

 on addMessage(messageFrom, messageSubject, messageMailbox)
 -- Add a new row
 set theRow to make new data row at the end of the data rows¬
 of data source of table view "messages" of scroll view "messages"¬
 of split view 1 of theWindow

223
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 -- Add "From" cell
 set name of data cell 1 of theRow to "from"
 set contents of data cell 1 of theRow to messageFrom

 -- Add "Subject" cell
 set name of data cell 2 of theRow to "subject"
 set contents of data cell 2 of theRow to messageSubject

 -- Add "Mailbox" cell
 set name of data cell 3 of theRow to "mailbox"
 set contents of data cell 3 of theRow to messageMailbox

 -- set the associated object of theRow to m
 end addMessage

 on addMessages(foundMessages)
 set update views of data source of table view "messages"¬
 of scroll view "messages" of split view 1 of theWindow to false

 tell application "Mail"
 repeat with m in foundMessages
 try
 set messageMailbox to account name of account 1
 of container of m & "/" & mailbox name of container of m¬
 my addMessage(sender of m, subject of m, messageMailbox)
 end try
 end repeat
 end tell

 set update views of data source of table view "messages"¬
 of scroll view "messages" of split view 1 of theWindow to true
 end addMessages

 on findMessages(mailboxesToSearch, whereToFind, whatToFind)
 -- Initialize the result
 set messagesFound to {}

 tell application "Mail"
 -- Search through each of the mail boxes
 repeat with b in (get mailboxesToSearch)
 try
 -- Search through each of the messages of the mail box
 repeat with m in (get messages of b)
 try
 if whereToFind is equal to "Subject" then
 if whatToFind is in the subject of m then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "From" then
 if whatToFind is in sender of m then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "To" then
 set foundRecipient to false

 -- Recipients
 repeat with r in (get recipients of m)

224
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 if whatToFind is in address of r¬
 or whatToFind is in display name of r then
 set foundRecipient to true
 end if
 end repeat

 -- To Recipients
 if not foundRecipient then
 repeat with r in (get to recipients of m)
 if whatToFind is in address of r¬
 or whatToFind is in display name¬
 of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 -- cc Recipients
 if not foundRicipient then
 repeat with r in (get cc recipients of m)
 if whatToFind is in address of r¬
 or whatToFind is in display name¬
 of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 -- bcc Recipients
 if not foundRicipient then
 repeat with r in (get bcc recipients of m)
 if whatToFind is in address of r¬
 or whatToFind is in display name of r then
 set foundRecipient to true
 end if
 end repeat
 end if

 if foundRecipient then
 copy m to end of messagesFound
 end if
 else if whereToFind is equal to "Contents" then
 if whatToFind is in the content of m then
 copy m to end of messagesFound
 end if
 end if

 -- Update the status panel
 tell theStatusPanel to incrementPanel()
 end try
 end repeat
 end try
 end repeat
 end tell

 -- Return the result
 return messagesFound
 end findMessages

225
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 on clearMessages()
 tell scroll view "messages" of split view 1 of theWindow
 tell data source of table view "messages" to delete every data row
 end tell
 end clearMessages

 on countMessages(mailboxesToSearch)
 set messageCount to 0

 tell application "Mail"
 repeat with b in (get mailboxesToSearch)
 try
 set messageCount to messageCount + (count of every message¬
 of b)
 end try
 end repeat
 end tell

 return messageCount
 end countMessages

 on openMessages()
 -- Since Mail.app currently can't open a selected message then we
 -- will just open it in our own window
 openMessageWindow()
 end openMessages

 on openMessageWindow()
 set clickedRow to clicked row of table view "messages"¬
 of scroll view "messages" of split view 1 of theWindow
 if clickedRow is greater than or equal to 0 then
 set theAccount to ""
 set theMailbox to ""
 set theSubject to ""
 set theDateReceived to ""
 set theContents to ""
 set theSender to ""
 set theRecipients to ""
 set theCCRecipients to ""
 set theReplyTo to ""

 tell application "Mail"
 set theMessage to Abstract object clickedRow of foundMessages

 set theAccount to account name of account of container¬
 of theMessage
 set theMailbox to mailbox name of container of theMessage
 set theSubject to subject of theMessage
 -- set theDateReceived to date received of theMessage
 set theContents to content of theMessage
 set theSender to sender of theMessage
 set theRecipients to address of every recipient of theMessage
 set theCCRecipients to address of every cc recipient of theMessage
 set theReplyTo to reply to of theMessage
 end tell

 set messageWindow to makeMessageWindow()

226
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 tell messageWindow
 set messageContents to "Account: " & theAccount & return
 set messageContents to messageContents & "Mailbox: "¬
 & theMailbox & return
 if length of theSender > 0 then
 set messageContents to messageContents & "From: "¬
 & theSender & return
 end if
 if length of theDateReceived as string > 0 then
 set messageContents to messageContents & "Date: "¬
 & (theDateReceived as string) & return
 end if
 if length of theRecipients > 0 then
 set messageContents to messageContents & "To: "¬
 & theRecipients & return
 end if
 if length of theCCRecipients > 0 then
 set messageContents to messageContents & "Cc: "¬
 & theCCRecipients & return
 end if
 if length of theSubject > 0 then
 set messageContents to messageContents & "Subject: "¬
 & theSubject & return
 end if
 if length of theReplyTo > 0 then
 set messageContents to messageContents & "Reply-To: "¬
 & theReplyTo & return & return
 end if
 set messageContents to messageContents & theContents
 set contents of text view "message" of scroll view "message"¬
 to messageContents
 set title to theSubject
 set visible to true
 end tell
 end if
 end openMessageWindow
 end script
end makeController

Listing B-3 Handlers for working with controller script objects

on addController(theController)
 set controllers to controllers & {theController}
end addController

on removeController(forWindow)
 set theController to controllerForWindow(forWindow)
 if theController is not equal to null then
 deleteItemInList(theController, controllers)
 end if
end removeController

on controllerForWindow(aWindow)
 repeat with c in controllers
 if theWindow of c is equal to aWindow then
 set theController to c
 end if
 end repeat

227
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 return theController
end controllerForWindow

Listing B-4 The message window handler

(* ==== Message Window Handlers ==== *)

on makeMessageWindow()
 load nib "Message"
 set windowCount to windowCount + 1
 set windowName to "message " & windowCount
 set name of window "message" to windowName
 return window windowName
end makeMessageWindow

Listing B-5 The status dialog script definition

(* ==== Status Panel Handlers ==== *)

on makeStatusPanel(forWindow)
 script
 property theWindow : forWindow
 property initialized : false
 property totalCount : 0
 property currentCount : 0

 -- Handlers
 on openPanel(statusMessage)
 if initialized is false then
 if not statusPanelNibLoaded then
 load nib "StatusPanel"
 set statusPanelNibLoaded to true
 end if
 tell window "status"
 set indeterminate of progress indicator "progress" to true
 tell progress indicator "progress" to start
 set contents of text field "statusMessage" to statusMessage
 end tell
 set initialized to true
 end if
 display panel window "status" attached to theWindow
 end openPanel

 on changePanel(statusMessage)
 tell window "status"
 set indeterminate of progress indicator "progress" to true
 tell progress indicator "progress" to start
 set contents of text field "statusMessage" to statusMessage
 end tell
 end changePanel

 on adjustPanel()
 tell progress indicator "progress" of window "status"
 set indeterminate to false
 set minimum value to currentCount
 set maximum value to totalCount
 set contents to 0
 end tell

228
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

 incrementPanel()
 end adjustPanel

 on incrementPanel()
 set currentCount to currentCount + 1
 if currentCount ≤ totalCount then
 tell window "status"
 tell progress indicator "progress" to increment by 1
 set contents of text field "statusMessage" to "Message "¬
 & currentCount & " of " & totalCount
 end tell
 end if
 end incrementPanel

 on closePanel()
 close panel window "status"
 end closePanel
 end script
end makeStatusPanel

Listing B-6 The delete items in list utility

(* To be provided *)

Mail Search Copyright Notice

(* © Copyright 2001, 2002 Apple Computer, Inc. All rights reserved. IMPORTANT: This Apple software is
supplied to you by Apple Computer, Inc. (“Apple”) in consideration of your agreement to the following terms,
and your use, installation, modification or redistribution of this Apple software constitutes acceptance of
these terms. If you do not agree with these terms, please do not use, install, modify or redistribute this Apple
software. In consideration of your agreement to abide by the following terms, and subject to these terms,
Apple grants you a personal, non-exclusive license, under Apple’s copyrights in this original Apple software
(the “Apple Software”), to use, reproduce, modify and redistribute the Apple Software, with or without
modifications, in source and/or binary forms; provided that if you redistribute the Apple Software in its
entirety and without modifications, you must retain this notice and the following text and disclaimers in all
such redistributions of the Apple Software. Neither the name, trademarks, service marks or logos of Apple
Computer, Inc. may be used to endorse or promote products derived from the Apple Software without
specific prior written permission from Apple. Except as expressly stated in this notice, no other rights or
licenses, express or implied, are granted by Apple herein, including but not limited to any patent rights that
may be infringed by your derivative works or by other works in which the Apple Software may be incorporated.
The Apple Software is provided by Apple on an "AS IS" basis. APPLE MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE APPLE SOFTWARE OR ITS
USE AND OPERATION ALONE OR IN COMBINATION WITH YOUR PRODUCTS. IN NO EVENT SHALL APPLE BE
LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR
DISTRIBUTION OF THE APPLE SOFTWARE, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT,
TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF APPLE HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. *)

Mail Search Copyright Notice 229
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

230 Mail Search Copyright Notice
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

Mail Search Tutorial, Full Script Listing

'aete' resource An Apple event terminology resource;
supplies scripting terminology for a Carbon
application. Compare script suite.

AppKit framework Defines classes to support a
graphical, event-driven user interface for applications.
See also Cocoa framework.

Apple Event Manager Provides an API for sending
and receiving Apple events and working with the
information they contain.

AppleScript A scripting system that allows users to
directly control Macintosh applications, including the
Mac OS itself, by creating sets of English-like
instructions, or scripts.

AppleScript component The scripting component
in Mac OS X that implements the AppleScript scripting
language. A scripting component provides services
for compiling and executing scripts (and relies on the
Open Scripting Architecture).

AppleScriptKit framework Supplies advanced Cocoa
scripting support and other features required by
AppleScript Studio.

AppleScript object A distinct object in an application
or its documents that can be specified in a script.

AppleScript object class A category for AppleScript
objects that share characteristics, such as properties
and elements.

AppleScript script file A file with the extension
“.applescript” that contains statements in the
AppleScript scripting language.

AppleScript source code editor an Xcode pane for
editing and compiling AppleScript script files (files
with the extension “.applescript”). The source editor
relies on the osacompile shell tool to compile scripts.

AppleScript Studio A development environment
and application framework that combines features
from AppleScript, Xcode, Interface Builder, and the
Cocoa application framework to provide a
sophisticated environment for creating AppleScript
Studio applications.

AppleScript Studio application A Mac OS X
application that combines AppleScript scripts and
Cocoa user-interface objects.

backtrace A list of the handlers that have been
invoked at any point in a script execution. Each
handler is listed as a call frame.

build directory The file system directory in which
built products are stored. This is usually the “build”
folder in the project folder.

build phase A step of the process of building a
target. Each build phase deals with one category of
source or resource files (e.g. Objective-C, AppleScript,
Bundle resources, shell scripts). The Jam system
automatically performs all necessary build phases in
reverse order of their dependency on each other.

build style A methodology of creating a product
from a target in Xcode. Development and Deployment
build styles use different methodologies.

call frame The information about a handler call,
including its calling parameters and local variables.

Cocoa framework An object-oriented application
framework, consisting of a collection of advanced
object-oriented APIs. The Cocoa framework is made
up of the AppKit and Foundation frameworks. Also
referred to simply as Cocoa.

231
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Glossary

Cocoa user interface class A class that supports a
user interface item. The Application Kit provides many
of these classes; for example, NSButton and
NSBrowser are Cocoa user interface classes provided
by the Application Kit.

Cocoa user interface object An instance of a Cocoa
user interface class.

command A word or phrase in a script that requests
an action. For example, a script can send a stop
command to a progress indicator object. Compare
event.

CVS The Concurrent Version System, a source-code
control system that Xcode can use to manage changes
in source code over time and across multiple
developers.

data source object An object supplied by
AppleScript Studio that supplies data to a table view
or other view with rows and columns.

deployment build style A methodology of creating
a product from a target that makes the product more
appropriate for distribution to users.

development build style A methodology of creating
a product from a target that makes the product more
appropriate for debugging and testing.

dictionary browser See terminology browser.

droplet A script application that launches when you
drag a file or folder icon in the Finder and “drop” it
on the droplet’s icon. A droplet receives a list of
descriptors for the folders or files dropped on it and
typically performs operations on each item in the list.

event An action an object can respond to. For
example, a button click is an event that may result in
execution of a clicked handler for the button that
was clicked. Compare command.

event handler A handler that responds to an action
in an AppleScript Studio application. Compare
handler.

executable An application that uses a project’s
product and can be launched in order to debug that
product. For AppleScript Studio, the executable is the
product.

Foundation framework Defines a layer of useful
primitive object classes, including support for Unicode
strings, allocation and deallocation of objects, arrays
and collections, dates, ports, and more. See also Cocoa
framework.

framework A type of bundle (or directory in the file
system) that packages software with the resources
that software requires, including its interface.

GDB or gdb The GNU debugger—an open-source
debugger, available with Mac OS X, for debugging
programs written in C, C++, and Objective-C.

handler A named series of one or more script
statements that are executed by calling its name.
Compare event handler.

information property list A special property list that
contains predefined keys for application information
that may be used by the Finder, by other applications,
and by the application itself. See also property list.

Info window An Interface Builder window for setting
both attributes and connections for the associated
user interface object.

Interface Builder A graphical user interface editor
for creating interfaces for Cocoa, Carbon, and
AppleScript Studio applications.

model-view-controller (MVC) A programming
paradigm in which the view is responsible for part of
the application visible on screen, the model represents
the application’s data and algorithms, and the
controller interprets user input and specifies changes
to the model and the view.

nib A resource that stores a collection of Cocoa user
interface objects, such as buttons, text fields, and
pop-up menus, as well as information about the
relationships between those objects and project code.

nib file A file that stores one or more nibs.

Open Scripting Architecture (OSA) An API for
compiling and executing scripts, and for creating
scripting components.

osacompile A shell tool for compiling script files.

232
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

Palette window An Interface Builder window that
provides a number of palettes (or panes), each of
which contains object instances you can add to an
application.

product An application or framework produced by
Xcode. AppleScript Studio projects create an
application as a product.

product directory The file system directory that
contains a project file, the project's source code and
resources, and the build directory.

Xcode An integrated development environment for
Mac OS X that supports building Cocoa, Carbon, and
AppleScript Studio applications (as well as bundles,
frameworks, plug-ins, and tools) with C, C++,
Objective-C, and Java.

project file A file created by Xcode that organizes
source code, resources, and settings used to build a
product.

property list A structured, textual representation of
data, commonly stored in Extensible Markup
Language (XML) format. Elements of a property list
represent data of certain types, such as arrays,
dictionaries, and strings.

Script Editor application An application distributed
with the Mac OS that provides a basic environment
for editing, compiling, and executing scripts.

scripting addition Code, stored in
/System/Library/SystemAdditions, that makes
additional commands or coercions available to scripts
on the same computer.

script object A user-defined object, combining data
(in the form of properties) and handlers, that can be
used in a script.

script object definition A compound statement that
can contain collections of properties, handlers, and
other AppleScript script statements.

script suite The combination of at least one suite
definition and one suite terminology that together
define the scripting capabilities and terminology for
Cocoa and AppleScript Studio applications.

SOAP (simple object access protocol) A remote
procedure call protocol designed for a distributed
environment, where a server may consist of a
hierarchy of objects whose methods can be called
over the Internet.

suite definition A property list that describes
scriptable objects in terms of their attributes,
relationships, and supported commands

suite terminology A property list that maps
AppleScript terminology—the English-like words and
phrases you can use in a script—to the class and
command descriptions in a suite definition.

target A subdivision of an Xcode project that is
responsible for building one product. AppleScript
Studio projects usually have only one target.

terminology browser A graphical tool for displaying
the scripting terminology for a scriptable application.
Also known as a dictionary browser.

XML-RPC A simple protocol for making remote
procedure requests to Internet-based servers.

233
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

234
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

This table describes the changes to AppleScript Studio Programming Guide.

NotesDate

Corrected sample script that checks for AppleScript Studio version and added
links between sections.

2006-04-04

Updated script in Listing 4-2 (page 84) to work with versions of AppleScript
greater than 1.9.

Made minor changes to first two chapters and minor corrections throughout.
Changed title from "Building Applications With AppleScript Studio."

2005-04-29

Added descriptions of Studio sample applications that became available in Mac
OS X version 10.4. See “AppleScript Studio Sample Applications” (page 35).

Minor corrections to Figure 1-15 (page 32) and Figure 1-17 (page 34) in
“Creating a Hello World Application” (page 27) and Figure 5-5 (page 92), Figure
5-6 (page 93), and Figure 5-7 (page 94) in “Build the Interface” (page 89).

In “Add an Icon Resource File to the Project” (page 213), replaced the illustration
in Figure 11-9 (page 215) and corrected the text in the step that refers to it.

2004-04-19

Replaced the illustrations in Figure 2-2 (page 47) and Figure 7-1 (page 132),
which showed a document-based project containing a Classes group (which is
no longer created automatically, starting with AppleScript Studio version 1.2).

In “Overridden Scripting Additions” (page 68), added note that usage of stop,
note, and caution icons is discouraged.

In “AppleScript Studio Xcode Plug-in Template” (page 43), elaborated on
information describing plug-in search locations.

Notes of this date are consolidated with revision notes from August 21, 2003 to
reflect changes for the final shipping version of AppleScript Studio version 1.3.

2003-09-16

Changed illustrations to reflect current user interface for Xcode and Interface
Builder, as well as Mac OS X version 10.3.

Changed descriptions of Script Editor, where necessary, to reflect changes in
new Script Editor released with Mac OS X version 10.3. For example, see “How
Xcode Formats Scripts” (page 68).

Added information on new feature added in AppleScript Studio version 1.3:
“AppleScript Studio Xcode Plug-in Template” (page 43)

Added Table 3-2 (page 67).

235
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Updated Table A-1 (page 217) for Mac OS X version 10.3 and AppleScript version
1.9.2.

Removed most documentation for line-by-line debugging with breakpoints,
pending completion of the feature.

Added descriptions for sample applications that were added in AppleScript
Studio 1.2.1.

Updated for latest publishing format.2003-02-01

Added capability to be linked from other documents.

Minor text corrections.

Converted Revision History appendix to standard format.

Preliminary draft of revised document.2002-06-01

Added descriptions for sample applications that are new in AppleScript Studio
1.2.

Converted “Watson” to “Mail Search” to coincide with renamed sample
application. Includes new screenshots for tutorial chapters and others.

Some new, revised, and reorganized programming tips and recipes.

Added some information about differences between AppleScript Studio versions.

Revised “AppleScript Studio System Requirements and Version
Information” (page 217) and added table with release information through
AppleScript Studio 1.2.

Preliminary draft of revised document, updated for AppleScript Studio 1.1.2002-03-01

Added chapter “Currency Converter Tutorial” (page 87). Moved some
introductory material there from Mail Search tutorial chapters.

Added chapter “AppleScript Studio Cookbook” (page 83), as a placeholder for
recipes for common tasks.

Created separate chapter “AppleScript Studio Components” (page 39) from
“Components” sections in previous “AppleScript In Detail” chapter.

Created separate chapter “Programming With AppleScript Studio” (page 61)
from “More On AppleScript Studio” section in previous “AppleScript In Detail”
chapter. Includes (not yet fully populated) sections on “Programming Tips” and
“Troubleshooting”.

Added material and corrections from previous Release Notes.

236
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Broke up Watson tutorial chapter “Creating and Connecting the Interface” into
two chapters. Note that for a future release, Watson will be renamed Mail Search
to match the sample application.

Broke up Mail Search tutorial chapter “Writing and Debugging the Code” into
two chapters.

Expanded descriptions in “AppleScript Studio Sample Applications” (page 35)
to include Archive Maker, Assistant, and Currency Converter applications.

Small additions and changes to address new or revised features in AppleScript
Studio 1.1.

Many small changes to address developer feedback.

First release.2001-12-01

237
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

238
2006-04-04 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	AppleScript Studio Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	About AppleScript Studio
	What Is AppleScript Studio?
	What Makes AppleScript Studio Special?
	AppleScript
	Integrated Development Environment
	Application Framework
	Strengths and Limitations

	How AppleScript Studio Works
	AppleScript Studio’s Components
	AppleScript Studio Applications
	Connecting Actions to Scripts
	Putting It All Together

	Creating a Hello World Application
	AppleScript Studio Sample Applications

	AppleScript Studio Components
	AppleScript Overview
	How AppleScript Is Implemented
	Scripting in AppleScript Studio
	Terms for Classes and Objects

	Xcode Features for AppleScript Studio
	AppleScript Studio Application Templates
	AppleScript Studio Xcode Plug-in Template
	Default Project Contents
	AppleScript Application Template
	Document-based Application Template
	AppleScript Droplet Template

	The Targets Group
	Source Code Editor
	Debugging Features
	Terminology Browser

	Interface Builder Features for AppleScript Studio
	Interface Creation
	Interface Connections

	Cocoa Framework Overview
	Cocoa Scripting Support
	Cocoa User Interface Objects
	Cocoa Application Framework

	AppleScriptKit Framework Overview

	Programming With AppleScript Studio
	Additional Information on AppleScript Studio
	Organizing an AppleScript Studio Project
	Deciding How Many Script Files to Use
	Deciding How Many Nib Files to Use

	Naming Conventions for Methods and Handlers
	Accessing Code From AppleScript Studio Scripts
	Persistent Script Properties
	Accessing Script Globals
	Overridden Scripting Additions
	How Xcode Formats Scripts
	Switching Between AppleScript Studio and Script Editor
	Scripting AppleScript Studio Applications
	Using Script Editor to Test AppleScript Studio Terminology

	AppleScript Studio Terminology
	Overview
	General Sources of Scripting Terminology
	Terminology From the AppleScriptKit Framework
	Terms From Cocoa’s Built-in Suites
	Terms from The AppleScriptKit Framework

	Finding Terminology Information
	Examine Scripting Dictionaries
	Investigate the Sample Applications
	Experiment With Script Editor to Find Terminology

	Programming Tips
	Targeting an AppleScript Studio Application
	Using Make, Not Create, to Create New Objects in Scripts
	Using the Log Command to Track Your Scripts
	Basic Tips and Reminders
	Comment AppleScript Studio Handlers
	Save Your Work
	Occasionally Do a Clean Rebuild
	Give All Important Objects an AppleScript Name

	Troubleshooting
	My Script Statements Aren’t Working
	Several Windows in My Application Have ID 0
	I Can’t Script My UI to Do QA Testing

	AppleScript Studio Cookbook
	Performing User Interface Actions
	Specifying Minimum Requirements for an Application
	Adding AppleScript Studio Support to Your Cocoa Application
	Setting the Keyboard Focus
	Obtaining the Path to the Current Application

	Currency Converter Tutorial
	Design the Application
	Create a Project
	Build the Interface
	Launch Interface Builder
	Adjust the Title, Size, and Other Attributes of the Currency Converter Window
	Add Text Input Fields and Labels
	Add a Result Field and Label
	Add Number Formatters to the Input and Result Fields
	Add a Convert Button
	Add a Horizontal Separator
	Finalize the Layout

	Connect the Interface
	Write Event Handlers
	Build and Run the Application
	Where To Go From Here

	Mail Search Tutorial: Design the Application
	Before You Start This Tutorial
	Identify a Goal for the Application
	Examine Mail’s Scripting Dictionary
	Specify Operations for Mail Search
	Design the Interface
	Identify Objects for the User Interface
	Arrange the User Interface

	Plan the Code
	Event Handlers in Mail Search
	Additional Handlers and Scripts in Mail Search
	The Controller Script
	The Status Dialog Script

	Mail Search Tutorial: Create the Interface
	Create a Project
	Add an Image File to the Project
	Build the Interface
	Examine the Default Menus
	Create the Message Window
	Create a Nib File
	Add the Message Window to the Nib File
	Set Up Interface Objects in the Message Window

	Create a Status Dialog
	Adjust the Size and Attributes of the Status Dialog
	Set Up a Progress Bar
	Set Up a Text Field

	Create the Search Window
	Set Up a Popup Button
	Set Up a Text Field
	Set Up a Button
	Set Up an Outline View
	Set Up a Table View
	Group the Outline View and Table View in a Split View

	Mail Search Tutorial: Connect the Interface
	Connect the Interface
	Connect the Application Object
	Connect Interface Items in the Search Window
	Connect the Search Window
	Connect the Text Field
	Connect the Find Button
	Connect the Search Results View
	Provide a Data Source Object for the Mailboxes View
	Examining an Object Hierarchy in the Nib View
	Provide a Data Source Object for the Search Results View

	Mail Search Tutorial: Write the Code
	Obtaining the Code for the Mail Search Tutorial
	Define Global Variables and Properties
	Write Event Handlers for the Interface
	Application Object Handler
	Search Window Handlers
	Text Field Handler
	Find Button Handler
	Search Results Table View Handler

	Write Scripts and Additional Handlers
	Write the Controller Script
	Controller Script Properties and Initialization
	Finding and Displaying Accounts and Mailboxes
	Finding and Displaying Messages
	Opening Message Windows

	Write Handlers for Working With Controllers
	Write Handlers for Working With the Status Dialog
	Write Handlers for Working With Message Windows
	Write Utility Handlers

	Mail Search Tutorial: Build and Test the Application
	Build and Run Mail Search
	Check for Syntax Errors

	Mail Search Tutorial: Customize the Application
	Customize Menus
	Rename Menus and Menu Items
	Set Menu Attributes
	Remove Menus and Menu Items

	Customize the About Window
	Customize Version and Copyright Information
	Customize Icons
	Add an Icon Resource File to the Project
	Supply a Creator Code

	Appendix A: AppleScript Studio System Requirements and Version Information
	Appendix B: Mail Search Tutorial, Full Script Listing
	Mail Search Copyright Notice

	Glossary
	Revision History

