
Application Services Framework Reference
Carbon

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleShare,
AppleTalk, Aqua, Carbon, Cocoa, ColorSync,
eMac, FireWire, FontSync, Geneva, iCal, iChat,
Inkwell, LaserWriter, LocalTalk, Logic, Mac, Mac
OS, Macintosh, Monaco, OpenDoc, Pages,
PowerBook, Quartz, QuickDraw, QuickTime,
Safari, SANE, Sherlock, and TrueType are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture, Finder, Numbers, Spotlight, and
Switcher are trademarks of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Mighty Mouse is a registered trademark of CBS
Opertaions, Inc.

NuBus is a trademark of Texas Instruments.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Trinitron is a trademark of Sony Corporation,
registered in the U.S. and other countries.

UNIX is a registered trademark of The Open
Group

VMS is a trademark of Digital Equipment
Corporation.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 17

Part I Opaque Types 21

Chapter 1 CGBitmapContext Reference 23

Overview 23
Functions by Task 23
Functions 24

Chapter 2 CGColor Reference 31

Overview 31
Functions by Task 31
Functions 32
Data Types 41
Constants 41

Chapter 3 CGColorSpace Reference 43

Overview 43
Functions by Task 44
Functions 45
Data Types 56
Constants 57

Chapter 4 CGContext Reference 61

Overview 61
Functions by Task 61
Functions 68
Data Types 137
Constants 137

Chapter 5 CGDataConsumer Reference 147

Overview 147
Functions by Task 147
Functions 148
Callbacks 151
Data Types 152

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 6 CGDataProvider Reference 155

Overview 155
Functions 155
Callbacks by Task 162
Callbacks 162
Data Types 170

Chapter 7 CGFont Reference 175

Overview 175
Functions by Task 175
Functions 177
Data Types 191
Constants 192

Chapter 8 CGFunction Reference 195

Overview 195
Functions by Task 195
Functions 196
Callbacks 198
Data Types 199

Chapter 9 CGGLContext Reference 201

Overview 201
Functions 201

Chapter 10 CGGradient Reference 203

Overview 203
Functions by Task 203
Functions 204
Data Types 207
Constants 207

Chapter 11 CGImage Reference 209

Overview 209
Functions by Task 209
Functions 211
Data Types 225
Constants 226

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 12 CGImageDestination Reference 231

Overview 231
Functions by Task 231
Functions 232
Data Types 237
Constants 237

Chapter 13 CGImageSource Reference 239

Overview 239
Functions by Task 239
Functions 240
Data Types 249
Constants 249

Chapter 14 CGLayer Reference 253

Overview 253
Functions by Task 253
Functions 254
Data Types 258

Chapter 15 CGPath Reference 261

Overview 261
Functions by Task 261
Functions 263
Callbacks 278
Data Types 278
Constants 279

Chapter 16 CGPattern Reference 283

Overview 283
Functions by Task 283
Functions 284
Callbacks 286
Data Types 288
Constants 289

Chapter 17 CGPDFArray Reference 291

Overview 291
Functions 291
Data Types 297

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 18 CGPDFContentStream Reference 299

Overview 299
Functions by Task 299
Functions 300
Data Types 303

Chapter 19 CGPDFContext Reference 305

Overview 305
Functions by Task 305
Functions 306
Constants 310

Chapter 20 CGPDFDictionary Reference 317

Overview 317
Functions by Task 317
Functions 318
Callbacks 324
Data Types 325

Chapter 21 CGPDFDocument Reference 327

Overview 327
Functions by Task 327
Functions 329
Data Types 340

Chapter 22 CGPDFObject Reference 343

Overview 343
Functions 343
Data Types 344
Constants 345

Chapter 23 CGPDFOperatorTable Reference 349

Overview 349
Functions by Task 349
Functions 350
Callbacks 351
Data Types 352

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 24 CGPDFPage Reference 353

Overview 353
Functions by Task 353
Functions 354
Data Types 358
Constants 359

Chapter 25 CGPDFScanner Reference 361

Overview 361
Functions by Task 361
Functions 362
Data Types 369

Chapter 26 CGPDFStream Reference 371

Overview 371
Functions 371
Data Types 372
Constants 372

Chapter 27 CGPDFString Reference 375

Overview 375
Functions by Task 375
Functions 376
Data Types 377

Chapter 28 CGPSConverter Reference 379

Overview 379
Functions 379
Callbacks by Task 382
Callbacks 382
Data Types 386

Chapter 29 CGShading Reference 389

Overview 389
Functions by Task 389
Functions 390
Data Types 393

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Part II Managers 395

Chapter 30 Apple Event Manager Reference 397

Overview 397
Functions by Task 398
Functions 408
Callbacks by Task 522
Callbacks 524
Data Types 545
Constants 563
Result Codes 636
Gestalt Constants 641

Chapter 31 Apple Type Services for Fonts Reference 643

Overview 643
Functions by Task 643
Functions 646
Callbacks by Task 681
Callbacks 682
Data Types 687
Constants 702
Result Codes 715

Chapter 32 ColorSync Manager Reference 717

Overview 717
Functions by Task 717
Functions 727
Callbacks 852
Data Types 875
Constants 946
Result Codes 1020

Chapter 33 Dictionary Manager Reference (Not Recommended) 1025

Overview 1025
Functions by Task 1025
Functions 1028
Callbacks 1063
Data Types 1064
Constants 1069
Result Codes 1080

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 34 Display Manager Reference (Not Recommended) 1083

Overview 1083
Functions by Task 1083
Functions 1088
Callbacks 1132
Data Types 1137
Constants 1148
Result Codes 1164
Gestalt Constants 1165

Chapter 35 Font Manager Reference 1167

Overview 1167
Functions by Task 1167
Functions 1171
Data Types 1207
Constants 1224
Result Codes 1230

Chapter 36 Icon Services and Utilities Reference 1231

Overview 1231
Functions by Task 1231
Functions 1238
Callbacks 1302
Data Types 1305
Constants 1307
Result Codes 1324
Gestalt Constants 1325

Chapter 37 Language Analysis Manager Reference 1327

Overview 1327
Functions by Task 1327
Functions 1328
Data Types 1343
Constants 1349
Result Codes 1354

Chapter 38 Palette Manager Reference (Not Recommended) 1357

Overview 1357
Functions by Task 1357
Functions 1360
Data Types 1387

9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 1388

Chapter 39 Pasteboard Manager Reference 1393

Overview 1393
Functions by Task 1393
Functions 1394
Callbacks 1403
Data Types 1404
Constants 1404
Result Codes 1407

Chapter 40 Picture Utilities Reference (Not Recommended) 1409

Overview 1409
Functions by Task 1409
Functions 1411
Callbacks 1426
Data Types 1432
Constants 1439
Result Codes 1441

Chapter 41 Process Manager Reference 1443

Overview 1443
Functions by Task 1443
Functions 1445
Data Types 1457
Constants 1463
Result Codes 1467

Chapter 42 Quartz Display Services Reference 1469

Overview 1469
Functions by Task 1470
Functions 1476
Callbacks 1540
Data Types 1544
Constants 1553
Result Codes 1564

Chapter 43 Quartz Event Services Reference 1567

Overview 1567
Functions by Task 1567
Functions 1571

10
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Callbacks 1604
Data Types 1605
Constants 1610

Chapter 44 Speech Synthesis Manager Reference 1629

Overview 1629
Functions by Task 1629
Functions 1632
Callbacks 1662
Data Types 1670
Constants 1680
Result Codes 1705
Gestalt Constants 1706

Chapter 45 Ticket Services Reference 1707

Overview 1707
Functions by Task 1707
Functions 1714
Data Types 1797
Constants 1802
Result Codes 1832

Part III Other References 1833

Chapter 46 ATSUI Reference 1835

Overview 1835
Functions by Task 1835
Functions 1844
Callbacks 1990
Data Types 2001
Constants 2030
Result Codes 2068
Gestalt Constants 2071

Chapter 47 Carbon Accessibility Reference 2073

Overview 2073
Functions 2074
Constants 2081
Result Codes 2121

11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 48 Core Printing Reference 2123

Overview 2123
Functions by Task 2123
Functions 2137
Callbacks 2273
Data Types 2274
Constants 2279
Result Codes 2298

Chapter 49 CGImageProperties Reference 2301

Overview 2301
Constants 2301

Chapter 50 CGAffineTransform Reference 2339

Overview 2339
Functions by Task 2339
Functions 2340
Data Types 2350
Constants 2351

Chapter 51 CGGeometry Reference 2353

Overview 2353
Functions by Task 2353
Functions 2355
Data Types 2373
Constants 2374

Chapter 52 Find By Content Reference (Not Recommended) 2379

Overview 2379
Functions by Task 2379
Functions 2383
Callbacks 2414
Data Types 2416
Constants 2418
Result Codes 2421

Chapter 53 FontSync Reference 2425

Overview 2425
Functions by Task 2425
Functions 2427

12
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Data Types 2456
Constants 2459
Result Codes 2462

Chapter 54 Internet Config Reference 2465

Overview 2465
Functions by Task 2466
Functions 2472
Data Types 2510
Constants 2517
Result Codes 2538

Chapter 55 QuickDraw Reference 2541

Overview 2541
Functions by Task 2541
Functions 2571
Callbacks 2834
Data Types 2845
Constants 2885
Result Codes 2904

Chapter 56 QuickDraw Text Reference (Not Recommended) 2907

Overview 2907
Functions by Task 2907
Functions 2910
Callbacks 2946
Data Types 2947
Constants 2948

Document Revision History 2955

Index 2957

13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

14
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 31 Apple Type Services for Fonts Reference 643

Table 31-1 The interaction of context and scope in a font family enumeration 657
Table 31-2 The interaction of context and scope in a font enumeration 672

Chapter 32 ColorSync Manager Reference 717

Table 32-1 Key-value pairs for “abstractLab” 785
Table 32-2 Key-value pairs for “displayRGB” 785
Table 32-3 Key-value pairs for “displayID” 786

Chapter 41 Process Manager Reference 1443

Table 41-1 Process information keys 1452
Table 41-2 Process information key constants 1453

Chapter 46 ATSUI Reference 1835

Figure 46-1 The main header for the ustl data structure 2016
Figure 46-2 Flattened text layout data 2018
Figure 46-3 Flattened style run data 2021
Figure 46-4 Flattened style list data 2022

Chapter 47 Carbon Accessibility Reference 2073

Table 47-1 Parameter names and types for accessibility event kinds 2084

Chapter 49 CGImageProperties Reference 2301

Table 49-1 2305

15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

16
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Framework /System/Library/Frameworks/ApplicationServices

Header file directories /System/Library/Frameworks/ApplicationServices.framework/Headers

Declared in AEDataModel.h
AEHelpers.h
AEInteraction.h
AEMach.h
AEObjects.h
AEPackObject.h
AERegistry.h
AEUserTermTypes.h
ATSFont.h
ATSLayoutTypes.h
ATSTypes.h
ATSUnicodeDirectAccess.h
ATSUnicodeDrawing.h
ATSUnicodeFlattening.h
ATSUnicodeFonts.h
ATSUnicodeGlyphs.h
ATSUnicodeObjects.h
ATSUnicodeTypes.h
AXActionConstants.h
AXAttributeConstants.h
AXNotificationConstants.h
AXRoleConstants.h
AXValueConstants.h
AppleEvents.h
CABase.h
CGAffineTransform.h
CGBitmapContext.h
CGColor.h
CGColorSpace.h
CGContext.h
CGDataConsumer.h
CGDataProvider.h
CGDirectDisplay.h
CGDirectPalette.h
CGDisplayConfiguration.h
CGDisplayFade.h
CGError.h
CGEvent.h
CGEventSource.h
CGEventTypes.h
CGFont.h
CGFunction.h
CGGLContext.h

17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

CGGeometry.h
CGGradient.h
CGImage.h
CGImageDestination.h
CGImageProperties.h
CGImageSource.h
CGLayer.h
CGPDFArray.h
CGPDFContentStream.h
CGPDFContext.h
CGPDFDictionary.h
CGPDFDocument.h
CGPDFObject.h
CGPDFOperatorTable.h
CGPDFPage.h
CGPDFScanner.h
CGPDFStream.h
CGPDFString.h
CGPSConverter.h
CGPath.h
CGPattern.h
CGRemoteOperation.h
CGSession.h
CGShading.h
CGWindowLevel.h
CMApplication.h
CMCalibrator.h
CMDeviceIntegration.h
CMICCProfile.h
CMMComponent.h
CMScriptingPlugin.h
CMTypes.h
CarbonEvents.h
Dictionary.h
Displays.h
FindByContent.h
FontSync.h
Fonts.h
HIAccessibility.h
IOMacOSTypes.h
Icons.h
IconsCore.h
ImageCompression.k.h
InternetConfig.h
LanguageAnalysis.h
MacTypes.h
PMCore.h
PMCoreDeprecated.h
PMDefinitions.h
PMDefinitionsDeprecated.h
PMTemplate.h
PMTicket.h
PMTicketDeprecated.h

18
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

Palettes.h
Pasteboard.h
PictUtils.h
Processes.h
QDOffscreen.h
QDPictToCGContext.h
QuickTimeComponents.k.h
Quickdraw.h
QuickdrawAPI.h
QuickdrawText.h
QuickdrawTypes.h
SpeechSynthesis.h
X.h

This collection of documents provides the API reference for the Application Services framework, which
includes several services—such as Quartz 2D and Mac OS X accessibility features—that are essential to Carbon
applications. (The Quartz 2D API is defined in the Core Graphics interfaces, which begin with the letters “CG.“)
The Application Services framework also includes support for a number of legacy technologies—such as
QuickDraw and the Font Manager—that have been superseded with newer technologies like Quartz 2D and
ATSUI.

19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

20
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

22
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CGContextRef (page 137)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGBitmapContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGBitmapContext header file defines functions that create and operate on a Quartz bitmap graphics
context. A bitmap graphics context is a type of CGContextRef (page 137) that you can use for drawing bits
to memory. The functions in this reference operate only on Quartz bitmap graphics contexts created using
the functionCGBitmapContextCreate (page 24).

The number of components for each pixel in a bitmap graphics context is specified by a color space (defined
by a CGColorSpaceRef (page 56), which includes RGB, grayscale, and CMYK, and which also may specify
a destination color profile). The bitmap graphics context specifies whether the bitmap should contain an
alpha channel, and how the bitmap is generated.

Functions by Task

Creating Bitmap Contexts

CGBitmapContextCreate (page 24)
Creates a bitmap graphics context.

CGBitmapContextCreateImage (page 25)
Creates and returns a Quartz image from the pixel data in a bitmap graphics context.

Getting Information About Bitmap Contexts
These functions return the values of attributes specified when a bitmap context is created.

CGBitmapContextGetBitmapInfo (page 26)
Obtains the bitmap information associated with a bitmap graphics context.

CGBitmapContextGetAlphaInfo (page 26)
Returns the alpha information associated with the context, which indicates how a bitmap context
handles the alpha component.

Overview 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGBitmapContextGetBitsPerComponent (page 27)
Returns the bits per component of a bitmap context.

CGBitmapContextGetBitsPerPixel (page 27)
Returns the bits per pixel of a bitmap context.

CGBitmapContextGetBytesPerRow (page 28)
Returns the bytes per row of a bitmap context.

CGBitmapContextGetColorSpace (page 28)
Returns the color space of a bitmap context.

CGBitmapContextGetData (page 28)
Returns a pointer to the image data associated with a bitmap context.

CGBitmapContextGetHeight (page 29)
Returns the height in pixels of a bitmap context.

CGBitmapContextGetWidth (page 29)
Returns the width in pixels of a bitmap context.

Functions

CGBitmapContextCreate
Creates a bitmap graphics context.

CGContextRef CGBitmapContextCreate (
 void *data,
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bytesPerRow,
 CGColorSpaceRef colorspace,
 CGBitmapInfo bitmapInfo
);

Parameters
data

A pointer to the destination in memory where the drawing is to be rendered. The size of this memory
block should be at least (bytesPerRow*height) bytes.

Starting in Mac OS X v10.3, you can pass NULL if you don’t care where the data is stored. This frees
you from managing your own memory, which reduces memory leak issues. Quartz has more flexibility
when it manages data storage for you. For example, it’s possible for Quartz to use OpenGL for rendering
if it takes care of the memory.

width
The width, in pixels, of the required bitmap.

height
The height, in pixels, of the required bitmap.

bitsPerComponent
The number of bits to use for each component of a pixel in memory. For example, for a 32-bit pixel
format and an RGB color space, you would specify a value of 8 bits per component. For more
information about supported pixel formats, see Quartz 2D Programming Guide.

24 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

bytesPerRow
The number of bytes of memory to use per row of the bitmap.

colorspace
The color space to use for the bitmap context. Note that indexed color spaces are not supported for
bitmap graphics contexts.

bitmapInfo
A CGBitmapInfo constant that specifies whether the bitmap should contain an alpha channel and
its relative location in a pixel, along with whether the components are floating-point or integer values.
(See CGImageReference for a description CGBitmapInfo constants.) In Quartz 2DProgrammingGuide,
see “Creating a Bitmap Graphics Context” (in the Graphics Contexts chapter) for the color space, bits
per pixel, bits per pixel component, and bitmap information constant combinations that you can use
when creating a bitmap context with CGBitmapContextCreate.

Return Value
A new bitmap context, or NULL if a context could not be created. You are responsible for releasing this object
using CGContextRelease (page 102).

Discussion
When you call this function, Quartz creates a bitmap drawing environment—that is, a bitmap context—to
your specifications. When you draw into this context, Quartz renders your drawing as bitmapped data in the
specified block of memory.

The pixel format for a new bitmap context is determined by three parameters—the number of bits per
component, the color space, and an alpha option (expressed as a CGBitmapInfo (page 227) constant). The
alpha value determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGBitmapContext.h

CGBitmapContextCreateImage
Creates and returns a Quartz image from the pixel data in a bitmap graphics context.

CGImageRef CGBitmapContextCreateImage (
 CGContextRef c
);

Parameters
c

A bitmap graphics context.

Return Value
A CGImage object that contains a snapshot of the bitmap graphics context or NULL if the image is not created.

Discussion
The CGImage object returned by this function is created by a copy operation. Subsequent changes to the
bitmap graphics context do not affect the contents of the returned image. In some cases the copy operation
actually follows copy-on-write semantics, so that the actual physical copy of the bits occur only if the underlying

Functions 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

data in the bitmap graphics context is modified. As a consequence, you may want to use the resulting image
and release it before you perform additional drawing into the bitmap graphics context. In this way, you can
avoid the actual physical copy of the data.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetAlphaInfo
Returns the alpha information associated with the context, which indicates how a bitmap context handles
the alpha component.

CGImageAlphaInfo CGBitmapContextGetAlphaInfo (
 CGContextRef c
);

Parameters
context

A bitmap context.

Return Value
A bitmap information constant. If the specified context is not a bitmap context, kCGImageAlphaNone (page
226) is returned. See CGImageAlphaInfo (renamed to CGBitmapInfo in Mac OS X v10.4) for more information
about values.

Discussion
Every bitmap context contains an attribute that specifies whether the bitmap contains an alpha component,
and how it is generated. The alpha component determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitmapInfo
Obtains the bitmap information associated with a bitmap graphics context.

CGBitmapInfo CGBitmapContextGetBitmapInfo (
 CGContextRef c
);

Parameters
c

A bitmap graphics context.

Return Value
The bitmap info of the bitmap graphics context or 0 if c is not a bitmap graphics context. See CGImage
Reference for a description of the CGBitmapInfo (page 227) constants that can be returned.

26 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

Discussion
The CGBitmapInfo data returned by the function specifies whether the bitmap contains an alpha channel
and how the alpha channel is generated, along with whether the components are floating-point or integer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitsPerComponent
Returns the bits per component of a bitmap context.

size_t CGBitmapContextGetBitsPerComponent (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The number of bits per component in the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetBitsPerPixel
Returns the bits per pixel of a bitmap context.

size_t CGBitmapContextGetBitsPerPixel (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The number of bits per pixel in the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

Functions 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

CGBitmapContextGetBytesPerRow
Returns the bytes per row of a bitmap context.

size_t CGBitmapContextGetBytesPerRow (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The number of bytes per row of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetColorSpace
Returns the color space of a bitmap context.

CGColorSpaceRef CGBitmapContextGetColorSpace (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The color space of the specified context, or NULL if the context is not a bitmap context. You are responsible
for retaining and releasing this object as necessary.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetData
Returns a pointer to the image data associated with a bitmap context.

void * CGBitmapContextGetData (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

28 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

Return Value
A pointer to the specified bitmap context’s image data, or NULL if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CarbonSketch

Declared In
CGBitmapContext.h

CGBitmapContextGetHeight
Returns the height in pixels of a bitmap context.

size_t CGBitmapContextGetHeight (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The height in pixels of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

CGBitmapContextGetWidth
Returns the width in pixels of a bitmap context.

size_t CGBitmapContextGetWidth (
 CGContextRef c
);

Parameters
context

The bitmap context to examine.

Return Value
The width in pixels of the specified context, or 0 if the context is not a bitmap context.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGBitmapContext.h

Functions 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

30 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CGBitmapContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGColor.h

Companion guide Quartz 2D Programming Guide

Overview

The CGColorRef opaque type contains a set of components (such as red, green, and blue) that uniquely
define a color, and a color space that specifies how those components should be interpreted. Quartz color
objects provide a fast and convenient way to manage and set colors, especially colors that are used repeatedly.
Quartz drawing operations use color objects for setting fill and stroke colors, managing alpha, and setting
color with a pattern.

See also these related references: CGContext Reference, CGColorSpace Reference, and CGPattern Reference.

Functions by Task

Getting a Constant Color

CGColorGetConstantColor (page 38)
Returns a color object that represents a constant color.

Retaining and Releasing Color Objects

CGColorRelease (page 40)
Decrements the retain count of a Quartz color.

CGColorRetain (page 40)
Increments the retain count of a Quartz color.

Creating Quartz Colors

CGColorCreate (page 32)
Creates a Quartz color using a list of intensity values (including alpha) and an associated color space.

Overview 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorCreateCopy (page 33)
Creates a copy of an existing Quartz color.

CGColorCreateGenericGray (page 35)
Creates a color in the Generic gray color space.

CGColorCreateGenericRGB (page 35)
Creates a color in the Generic RGB color space.

CGColorCreateGenericCMYK (page 34)
Creates a color in the Generic CMYK color space.

CGColorCreateCopyWithAlpha (page 33)
Creates a copy of an existing Quartz color, substituting a new alpha value.

CGColorCreateWithPattern (page 36)
Creates a Quartz color using a list of intensity values (including alpha), a pattern color space, and a
pattern.

Getting Information about Quartz Colors

CGColorEqualToColor (page 36)
Indicates whether two colors are equal.

CGColorGetAlpha (page 37)
Returns the value of the alpha component associated with a Quartz color.

CGColorGetColorSpace (page 37)
Returns the color space associated with a Quartz color.

CGColorGetComponents (page 38)
Returns the values of the color components (including alpha) associated with a Quartz color.

CGColorGetNumberOfComponents (page 38)
Returns the number of color components (including alpha) associated with a Quartz color.

CGColorGetPattern (page 39)
Returns the pattern associated with a Quartz color in a pattern color space.

CGColorGetTypeID (page 39)
Returns the Core Foundation type identifier for a Quartz color data type.

Functions

CGColorCreate
Creates a Quartz color using a list of intensity values (including alpha) and an associated color space.

32 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorRef CGColorCreate (
 CGColorSpaceRef colorspace,
 const CGFloat components[]
);

Parameters
colorspace

A color space for the new color. Quartz retains this object; upon return, you may safely release it.

components
An array of intensity values describing the color. The array should contain n+1 values that correspond
to the n color components in the specified color space, followed by the alpha component. Each
component value should be in the range appropriate for the color space. Values outside this range
will be clamped to the nearest correct value.

Return Value
A new Quartz color. You are responsible for releasing this object using CGColorRelease (page 40).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorCreateCopy
Creates a copy of an existing Quartz color.

CGColorRef CGColorCreateCopy (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
A copy of the specified color. You are responsible for releasing this object using CGColorRelease (page
40).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorCreateCopyWithAlpha
Creates a copy of an existing Quartz color, substituting a new alpha value.

Functions 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorRef CGColorCreateCopyWithAlpha (
 CGColorRef color,
 CGFloat alpha
);

Parameters
color

The Quartz color to copy.

alpha
A value that specifies the desired opacity of the copy. Values outside the range [0,1] are clamped
to 0 or 1.

Return Value
A copy of the specified color, using the specified alpha value. You are responsible for releasing this object
using CGColorRelease (page 40).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorCreateGenericCMYK
Creates a color in the Generic CMYK color space.

CGColorRef CGColorCreateGenericCMYK(
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
cyan

A cyan value (0.0 - 1.0).

magenta
A magenta value (0.0 - 1.0).

yellow
A yellow value (0.0 - 1.0).

black
A black value (0.0 - 1.0).

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

Availability
Available in Mac OS X v10.5 and later.

34 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Declared In
CGColor.h

CGColorCreateGenericGray
Creates a color in the Generic gray color space.

CGColorRef CGColorCreateGenericGray(
 CGFloat gray,
 CGFloat alpha
);

Parameters
gray

A grayscale value (0.0 - 1.0).

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColor.h

CGColorCreateGenericRGB
Creates a color in the Generic RGB color space.

CGColorRef CGColorCreateGenericRGB(
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
red

A red component value (0.0 - 1.0).

green
A green component value (0.0 - 1.0).

blue
A blue component value (0.0 - 1.0).

alpha
An alpha value (0.0 - 1.0).

Return Value
A color object.

Availability
Available in Mac OS X v10.5 and later.

Functions 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Related Sample Code
CALayerEssentials

Declared In
CGColor.h

CGColorCreateWithPattern
Creates a Quartz color using a list of intensity values (including alpha), a pattern color space, and a pattern.

CGColorRef CGColorCreateWithPattern (
 CGColorSpaceRef colorspace,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
colorspace

A pattern color space for the new color. Quartz retains the color space you pass in. On return, you
may safely release it.

pattern
A pattern for the new color object. Quartz retains the pattern you pass in. On return, you may safely
release it.

components
An array of intensity values describing the color. The array should contain n + 1 values that correspond
to the n color components in the specified color space, followed by the alpha component. Each
component value should be in the range appropriate for the color space. Values outside this range
will be clamped to the nearest correct value.

Return Value
A new Quartz color. You are responsible for releasing this object using CGColorRelease (page 40).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorEqualToColor
Indicates whether two colors are equal.

bool CGColorEqualToColor (
 CGColorRef color1,
 CGColorRef color2
);

Parameters
color1

The first Quartz color to compare.

color2
The second Quartz color to compare.

36 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Return Value
A Boolean value that, if true, indicates that the specified colors are equal. If the colors are not equal, the
value is false.

Discussion
Two colors are equal if they have equal color spaces and numerically equal color components.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetAlpha
Returns the value of the alpha component associated with a Quartz color.

CGFloat CGColorGetAlpha (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
An alpha intensity value in the range [0,1]. The value represents the opacity of the color.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetColorSpace
Returns the color space associated with a Quartz color.

CGColorSpaceRef CGColorGetColorSpace (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The Quartz color space for the specified color. You are responsible for retaining and releasing it as needed.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

Functions 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorGetComponents
Returns the values of the color components (including alpha) associated with a Quartz color.

const CGFloat * CGColorGetComponents (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
An array of intensity values for the color components (including alpha) associated with the specified color.
The size of the array is one more than the number of components of the color space for the color.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetConstantColor
Returns a color object that represents a constant color.

CGColorRef CGColorGetConstantColor(
 CFStringRef colorName
);

Parameters
colorName

A color name. You can pass any of the “Constant Colors” (page 41) constant.

Return Value
A color object.

Discussion
As CGColorGetConstantColor is not a “Copy” or “Create” function, it does not necessarily return a new
reference each time it's called. As a consequence, you should not release the returned value. However, colors
returned from CGColorGetConstantColor can be retained and released in a properly nested fashion, just
as any other Core Foundation type can.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColor.h

CGColorGetNumberOfComponents
Returns the number of color components (including alpha) associated with a Quartz color.

38 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

size_t CGColorGetNumberOfComponents (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The number of color components (including alpha) associated with the specified color. This number is one
more than the number of components of the color space for the color.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetPattern
Returns the pattern associated with a Quartz color in a pattern color space.

CGPatternRef CGColorGetPattern (
 CGColorRef color
);

Parameters
color

A Quartz color.

Return Value
The pattern for the specified color. You are responsible for retaining and releasing the pattern as needed.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

CGColorGetTypeID
Returns the Core Foundation type identifier for a Quartz color data type.

CFTypeID CGColorGetTypeID (
 void
);

Return Value
The Core Foundation type identifier for CGColorRef.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

Functions 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

CGColorRelease
Decrements the retain count of a Quartz color.

void CGColorRelease (
 CGColorRef color
);

Parameters
color

The Quartz color to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the color parameter is
NULL.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CALayerEssentials

Declared In
CGColor.h

CGColorRetain
Increments the retain count of a Quartz color.

CGColorRef CGColorRetain (
 CGColorRef color
);

Parameters
color

The Quartz color to retain.

Return Value
The same color you passed in as the color parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the color parameter is
NULL.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGColor.h

40 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Data Types

CGColorRef
An opaque type that represents a color used in Quartz 2D drawing.

typedef struct CGColor *CGColorRef;

Discussion
CGColorRef is the fundamental data type used internally by Quartz to represent colors. CGColor objects.
and the functions that operate on them, provide a fast and convenient way of managing and setting colors
directly, especially colors that are reused (such as black for text).

In Mac OS X version 10.3 and later, CGColorRef is derived from CFTypeRef and inherits the properties that
all Core Foundation types have in common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGColor.h

Constants

Constant Colors
Commonly used colors.

const CFStringRef kCGColorWhite;
const CFStringRef kCGColorBlack;
const CFStringRef kCGColorClear;

Constants
kCGColorWhite

The white color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

kCGColorBlack
The black color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

kCGColorClear
The clear color in the Generic gray color space.

Available in Mac OS X v10.5 and later.

Declared in CGColor.h.

Declared In
CGColor.h

Data Types 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

42 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CGColor Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGColorSpace.h

Companion guides Quartz 2D Programming Guide
CGColor Reference
CGContext Reference

Overview

The CGColorSpaceRef opaque type encapsulates color space information that is used to specify how Quartz
interprets color information. A color space specifies how color values are interpreted. A color space is
multi-dimensional, and each dimension represents a specific color component. For example, the colors in
an RGB color space have three dimensions or components—red, green, and blue. The intensity of each
component is represented by floating point values—their range and meaning depends on the color space
in question.

Different types of devices (scanners, monitors, printers) operate within different color spaces (RGB, CMYK,
grayscale). Additionally, two devices of the same type (for example, color displays from different manufacturers)
may operate within the same kind of color space, yet still produce a different range of colors, or gamut. Color
spaces that are correctly specified ensure that an image has a consistent appearance regardless of the output
device.

Quartz supports several kinds of color spaces:

 ■ Calibrated color spaces ensure that colors appear the same when displayed on different devices. The
visual appearance of the color is preserved, as far as the capabilities of the device allow.

 ■ Device-dependent color spaces are tied to the system of color representation of a particular device.
Device color spaces are not recommended when high-fidelity color preservation is important.

 ■ Special color spaces—indexed and pattern. An indexed color space contains a color table with up to
256 entries and a base color space to which the color table entries are mapped. Each entry in the color
table specifies one color in the base color space. A pattern color space is used when stroking or filling
with a pattern. Pattern color spaces are supported in Mac OS X version 10.1 and later.

Overview 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Functions by Task

Creating Device-Independent Color Spaces

CGColorSpaceCreateCalibratedGray (page 45)
Creates a calibrated grayscale color space.

CGColorSpaceCreateCalibratedRGB (page 46)
Creates a calibrated RGB color space.

CGColorSpaceCreateICCBased (page 49)
Creates a device-independent color space that is defined according to the ICC color profile specification.

CGColorSpaceCreateLab (page 50)
Creates a device-independent color space that is relative to human color perception, according to
the CIE L*a*b* standard.

Creating Generic or Device-Dependent Color Spaces
In Mac OS X v10.4 and later, the color space returned by each of these functions is no longer device-dependent
and is replaced by a generic counterpart.

CGColorSpaceCreateDeviceCMYK (page 47)
Creates a device-dependent CMYK color space.

CGColorSpaceCreateDeviceGray (page 48)
Creates a device-dependent grayscale color space.

CGColorSpaceCreateDeviceRGB (page 48)
Creates a device-dependent RGB color space.

CGColorSpaceCreateWithPlatformColorSpace (page 52)
Creates a platform-specific color space.

Creating Special Color Spaces

CGColorSpaceCreateIndexed (page 50)
Creates an indexed color space, consisting of colors specified by a color lookup table.

CGColorSpaceCreatePattern (page 51)
Creates a pattern color space.

CGColorSpaceCreateWithName (page 52)
Creates a specified type of Quartz color space.

Getting Information About Color Spaces

CGColorSpaceCopyICCProfile (page 45)
Returns a copy of the ICC profile of the provided color space.

CGColorSpaceGetNumberOfComponents (page 54)
Returns the number of color components in a color space.

44 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceGetTypeID (page 55)
Returns the Core Foundation type identifier for Quartz color spaces.

CGColorSpaceGetModel (page 54)
Returns the color space model of the provided color space.

CGColorSpaceGetBaseColorSpace (page 53)
Returns the base color space of a pattern or indexed color space.

CGColorSpaceGetColorTableCount (page 54)
Returns the number of entries in the color table of an indexed color space.

CGColorSpaceGetColorTable (page 53)
Copies the entries in the color table of an indexed color space.

Retaining and Releasing Color Spaces

CGColorSpaceRelease (page 55)
Decrements the retain count of a color space.

CGColorSpaceRetain (page 56)
Increments the retain count of a color space.

Functions

CGColorSpaceCopyICCProfile
Returns a copy of the ICC profile of the provided color space.

CFDataRef CGColorSpaceCopyICCProfile(
 CGColorSpaceRef space
);

Parameters
space

The color space whose ICC profile you want to obtain.

Return Value
The ICC profile or NULL if the color space does not have an ICC profile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateCalibratedGray
Creates a calibrated grayscale color space.

Functions 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceRef CGColorSpaceCreateCalibratedGray (
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 CGFloat gamma
);

Parameters
whitePoint

An array of 3 numbers specifying the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse white
point.

blackPoint
An array of 3 numbers specifying the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

gamma
The gamma value appropriate to the imaging device.

Return Value
A new calibrated gray color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
Creates a device-independent grayscale color space that represents colors relative to a reference white point.
This white point is based on the whitest light that can be generated by the output device. Colors in a
device-independent color space should appear the same when displayed on different devices, to the extent
that the capabilities of the device allow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateCalibratedRGB
Creates a calibrated RGB color space.

CGColorSpaceRef CGColorSpaceCreateCalibratedRGB (
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 const CGFloat gamma[3],
 const CGFloat matrix[9]
);

Parameters
whitePoint

An array of 3 numbers specifying the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse white
point.

blackPoint
An array of 3 numbers specifying the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

gamma
An array of 3 numbers specifying the gamma for the red, green, and blue components of the color
space.

46 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

matrix
An array of 9 numbers specifying the linear interpretation of the gamma-modified RGB values of the
color space with respect to the final XYZ representation.

Return Value
A new calibrated RGB color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
Creates a device-independent RGB color space that represents colors relative to a reference white point. This
white point is based on the whitest light that can be generated by the output device. Colors in a
device-independent color space should appear the same when displayed on different devices, to the extent
that the capabilities of the device allow.

For color spaces that require a detailed gamma, such as the piecewise transfer function used in sRGB or ITU-R
BT.709, you may want to use the function CGColorSpaceCreateICCBased (page 49) instead, because it
can accurately represent these gamma curves.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateDeviceCMYK
Creates a device-dependent CMYK color space.

CGColorSpaceRef CGColorSpaceCreateDeviceCMYK (
 void
);

Return Value
A device-dependent CMYK color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericCMYK—described in “Color Space Names” (page 57). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

Functions 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCreateDeviceGray
Creates a device-dependent grayscale color space.

CGColorSpaceRef CGColorSpaceCreateDeviceGray (
 void
);

Return Value
A device-dependent gray color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericGray—described in “Color Space Names” (page 57). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateDeviceRGB
Creates a device-dependent RGB color space.

CGColorSpaceRef CGColorSpaceCreateDeviceRGB (
 void
);

Return Value
A device-dependent RGB color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
In Mac OS X v10.4 and later, this color space is no longer device-dependent and is replaced by the generic
counterpart—kCGColorSpaceGenericRGB—described in “Color Space Names” (page 57). If you use
this function in Mac OS X v10.4 and later, colors are mapped to the generic color spaces. If you want to bypass
color matching, use the color space of the destination context.

Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.0 and later.

48 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Declared In
CGColorSpace.h

CGColorSpaceCreateICCBased
Creates a device-independent color space that is defined according to the ICC color profile specification.

CGColorSpaceRef CGColorSpaceCreateICCBased (
 size_t nComponents,
 const CGFloat *range,
 CGDataProviderRef profile,
 CGColorSpaceRef alternate
);

Parameters
nComponents

The number of color components in the color space defined by the ICC profile data. This must match
the number of components actually in the ICC profile and must equal 1, 3, or 4.

range
An array of numbers that specify the minimum and maximum valid values of the corresponding color
components. The size of the array is two times the number of components. If c[k] is the kth color
component, the valid range is range[2*k] ≤ c[k] ≤ range[2*k+1].

profile
A data provider that supplies the ICC profile.

alternateSpace
An alternate color space to use in case the ICC profile is not supported. The alternate color space must
have nComponents color components. You must supply an alternate color space. If this parameter
is NULL, then the function returns NULL.

Return Value
A new ICC-based color space object. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
This function creates an ICC-based color space from an ICC color profile, as defined by the International Color
Consortium. ICC profiles define the reproducible color gamut (the range of colors supported by a device)
and other characteristics of a particular output device, providing a way to accurately transform the color
space of one device to the color space of another. The ICC profile is usually provided by the manufacturer
of the device. Additionally, some color monitors and printers contain electronically embedded ICC profile
information, as do some bitmap formats such as TIFF. Colors in a device-independent color space should
appear the same when displayed on different devices, to the extent that the capabilities of the device allow.

You may want to use this function for a color space that requires a detailed gamma, such as the piecewise
transfer function used in sRGB or ITU-R BT.709, because this function can accurately represent these gamma
curves.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

Functions 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCreateIndexed
Creates an indexed color space, consisting of colors specified by a color lookup table.

CGColorSpaceRef CGColorSpaceCreateIndexed (
 CGColorSpaceRef baseSpace,
 size_t lastIndex,
 const unsigned char *colorTable
);

Parameters
baseSpace

The color space on which the color table is based.

lastIndex
The maximum valid index value for the color table. The value must be less than or equal to 255.

colorTable
An array of m*(lastIndex+1) bytes, where m is the number of color components in the base color
space. Each byte is an unsigned integer in the range 0 to 255 that is scaled to the range of the
corresponding color component in the base color space.

Return Value
A new indexed color space object. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
An indexed color space contains a color table with up to 255 entries, and a base color space to which the
color table entries are mapped. Each entry in the color table specifies one color in the base color space. A
value in an indexed color space is treated as an index into the color table of the color space. The data in the
table is in meshed format. (For example, for an RGB color space RGB, RGB, RGB, and so on.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateLab
Creates a device-independent color space that is relative to human color perception, according to the CIE
L*a*b* standard.

CGColorSpaceRef CGColorSpaceCreateLab (
 const CGFloat whitePoint[3],
 const CGFloat blackPoint[3],
 const CGFloat range[4]
);

Parameters
whitePoint

An array of 3 numbers that specify the tristimulus value, in the CIE 1931 XYZ-space, of the diffuse
white point.

blackPoint
An array of 3 numbers that specify the tristimulus value, in CIE 1931 XYZ-space, of the diffuse black
point.

50 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

range
An array of 4 numbers that specify the range of valid values for the a* and b* components of the color
space. The a* component represents values running from green to red, and the b* component
represents values running from blue to yellow.

Return Value
A new L*a*b* color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
The CIE L*a*b* space is a nonlinear transformation of the Munsell color notation system (a system which
specifies colors by hue, value, and saturation—or “chroma”—values), designed to match perceived color
difference with quantitative distance in color space. The L* component represents the lightness value, the
a* component represents values running from green to red, and the b* component represents values running
from blue to yellow. This roughly corresponds to the way the human brain is thought to decode colors. Colors
in a device-independent color space should appear the same when displayed on different devices, to the
extent that the capabilities of the device allow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreatePattern
Creates a pattern color space.

CGColorSpaceRef CGColorSpaceCreatePattern (
 CGColorSpaceRef baseSpace
);

Parameters
baseSpace

For masking patterns, the underlying color space that specifies the colors to be painted through the
mask. For colored patterns, you should pass NULL.

Return Value
A new pattern color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
For information on creating and using patterns, see Quartz 2D Programming Guide and CGPattern Reference.
Quartz retains the color space you pass in. Upon return, you may safely release it by calling
CGColorSpaceRelease (page 55).

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGColorSpace.h

Functions 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

CGColorSpaceCreateWithName
Creates a specified type of Quartz color space.

CGColorSpaceRef CGColorSpaceCreateWithName (
 CFStringRef name
);

Parameters
name

A color space name. See “Color Space Names” (page 57) for a list of the valid Quartz-defined
names.

Return Value
A new generic color space. You are responsible for releasing this object by calling
CGColorSpaceRelease (page 55). If unsuccessful, returns NULL.

Discussion
You can use this function to create a generic color space. For more information, see “Color Space
Names” (page 57).

Prior to Mac OS X v10.4, you could pass this function one of the constants defined in “Named Color Spaces
(Deprecated)” (page 60). As of Mac OS X v10.4, this function returns a generic color space even if you
pass is one of the deprecated named color spaces.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGColorSpace.h

CGColorSpaceCreateWithPlatformColorSpace
Creates a platform-specific color space.

CGColorSpaceRef CGColorSpaceCreateWithPlatformColorSpace (
 void *platformColorSpaceReference
);

Parameters
platformColorSpace

A generic pointer to a platform-specific color space. In Mac OS X, pass a CMProfileRef—a ColorSync
profile. Quartz uses this pointer (and the underlying information) only during the function call.

Return Value
A new color space. You are responsible for releasing this object by calling CGColorSpaceRelease (page
55). If unsuccessful, returns NULL.

Discussion
Colors in a device-dependent color space are not transformed or otherwise modified when displayed on an
output device—that is, there is no attempt to maintain the visual appearance of a color. As a consequence,
colors in a device color space often appear different when displayed on different output devices. For this
reason, device color spaces are not recommended when color preservation is important.

Availability
Available in Mac OS X v10.1 and later.

52 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Related Sample Code
CarbonSketch

Declared In
CGColorSpace.h

CGColorSpaceGetBaseColorSpace
Returns the base color space of a pattern or indexed color space.

CGColorSpace CGColorSpaceGetBaseColorSpace(
 CGColorSpaceRef space
);

Parameters
space

A color space object for a pattern or indexed color space.

Return Value
The base color space if the space parameter is a pattern or indexed color space; otherwise, NULL.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColorSpace.h

CGColorSpaceGetColorTable
Copies the entries in the color table of an indexed color space.

void CGColorSpaceGetColorTable(
 CGColorSpaceRef space,
 unsigned char *table);
);

Parameters
space

A color space object for an indexed color space.

table
The array pointed to by table should be at least as large as the number of entries in the color table.
On output, the array contains the table data in the same format as that passed to
CGColorSpaceCreateIndexed (page 50).

Discussion
This function does nothing if the color space is not an indexed color space. To determine whether a color
space is an indexed color space, call the function CGColorSpaceGetModel (page 54).

Availability
Available in Mac OS X v10.5 and later.

See Also
CGColorSpaceGetColorTableCount (page 54)

Functions 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Declared In
CGColorSpace.h

CGColorSpaceGetColorTableCount
Returns the number of entries in the color table of an indexed color space.

size_t CGColorSpaceGetColorTableCount(
 CGColorSpaceRef space
);

Parameters
space

A color space object for an indexed color space.

Return Value
The number of entries in the color table of the space parameter if the color space is an indexed color space;
otherwise, returns 0.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGColorSpaceGetColorTable (page 53)

Declared In
CGColorSpace.h

CGColorSpaceGetModel
Returns the color space model of the provided color space.

CGColorSpaceModel CGColorSpaceGetModel(
 CGColorSpaceRef space
);

Parameters
space

A color space object.

Return Value
One of the constants described in “Color Space Models” (page 57).

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGColorSpace.h

CGColorSpaceGetNumberOfComponents
Returns the number of color components in a color space.

54 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

size_t CGColorSpaceGetNumberOfComponents (
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to examine.

Return Value
The number of color components in the specified color space, not including the alpha value. For example,
for an RGB color space, CGColorSpaceGetNumberOfComponents returns a value of 3.

Discussion
A color space defines an n-dimensional space whose dimensions (or components) represent intensity values.
For example, you specify colors in RGB space as three intensity values: red, green, and blue. You can use the
CGColorSpaceGetNumberOfComponents function to obtain the number of components in a given color
space.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceGetTypeID
Returns the Core Foundation type identifier for Quartz color spaces.

CFTypeID CGColorSpaceGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGColorSpaceRef (page 56).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGColorSpace.h

CGColorSpaceRelease
Decrements the retain count of a color space.

void CGColorSpaceRelease (
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the cs parameter is NULL.

Functions 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

CGColorSpaceRetain
Increments the retain count of a color space.

CGColorSpaceRef CGColorSpaceRetain (
 CGColorSpaceRef cs
);

Parameters
cs

The Quartz color space to retain.

Return Value
The same color space you passed in as the cs parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the cs parameter is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

Data Types

CGColorSpaceRef
An opaque type that encapsulates color space information.

typedef struct CGColorSpace *CGColorSpaceRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGColorSpace.h

56 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Constants

Color Space Names
Convenience constants for commonly used color spaces.

CFStringRef kCGColorSpaceGenericGray
CFStringRef kCGColorSpaceGenericRGB
CFStringRef kCGColorSpaceGenericCMYK
CFStringRef kCGColorSpaceGenericRGBLinear
CFStringRef kCGColorSpaceAdobeRGB1998
CFStringRef kCGColorSpaceSRGB

Constants
kCGColorSpaceGenericGray

The name of the generic gray color space.

kCGColorSpaceGenericRGB
The name of the generic RGB color space.

kCGColorSpaceGenericCMYK
The name of the generic CMYK color space.

kCGColorSpaceGenericRGBLinear
The name of the generic linear RGB color space. This is the same as kCGColorSpaceGenericRGB (page
57), but with a gamma equal to 1.0.

kCGColorSpaceAdobeRGB1998
The name of the Adobe RGB (1998) color space. For more information, see "Adobe RGB (1998) Color
Image Encoding", Version 2005-05, Adobe Systems Inc. (http://www.adobe.com).

kCGColorSpaceSRGB
The name of the SRGB color space.

Discussion
A color space name constant can be passed as a parameter to the function
CGColorSpaceCreateWithName (page 52). These color spaces replace “Named Color Spaces
(Deprecated)” (page 60), which are deprecated in Mac OS X v10.4.

Declared In
CGColorSpace.h

Color Space Models
Models for color spaces.

Constants 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

http://www.adobe.com

enum CGColorSpaceModel {
 kCGColorSpaceModelUnknown = -1,
 kCGColorSpaceModelMonochrome,
 kCGColorSpaceModelRGB,
 kCGColorSpaceModelCMYK,
 kCGColorSpaceModelLab,
 kCGColorSpaceModelDeviceN,
 kCGColorSpaceModelIndexed,
 kCGColorSpaceModelPattern
};
typedef int32_t CGColorSpaceModel;

Constants
kCGColorSpaceModelUnknown

An unknown color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelMonochrome
A monochrome color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelRGB
An RGB color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelCMYK
A CMYK color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelLab
A Lab color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelDeviceN
A DeviceN color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelIndexed
An indexed color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

kCGColorSpaceModelPattern
A pattern color space model.

Available in Mac OS X v10.5 and later.

Declared in CGColorSpace.h.

58 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Declared In
CGColorSpace.h

Color Rendering Intents
Handling options for colors that are not located within the destination color space of a graphics context.

enum CGColorRenderingIntent {
 kCGRenderingIntentDefault,
 kCGRenderingIntentAbsoluteColorimetric,
 kCGRenderingIntentRelativeColorimetric,
 kCGRenderingIntentPerceptual,
 kCGRenderingIntentSaturation
};
typedef enum CGColorRenderingIntent CGColorRenderingIntent;

Constants
kCGRenderingIntentDefault

The default rendering intent for the graphics context.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentAbsoluteColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device. This can produce a clipping effect, where two different color values in the gamut
of the graphics context are mapped to the same color value in the output device’s gamut. Unlike the
relative colorimetric, absolute colorimetric does not modify colors inside the gamut of the output
device.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentRelativeColorimetric
Map colors outside of the gamut of the output device to the closest possible match inside the gamut
of the output device. This can produce a clipping effect, where two different color values in the gamut
of the graphics context are mapped to the same color value in the output device’s gamut. The relative
colorimetric shifts all colors (including those within the gamut) to account for the difference between
the white point of the graphics context and the white point of the output device.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentPerceptual
Preserve the visual relationship between colors by compressing the gamut of the graphics context
to fit inside the gamut of the output device. Perceptual intent is good for photographs and other
complex, detailed images.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

kCGRenderingIntentSaturation
Preserve the relative saturation value of the colors when converting into the gamut of the output
device. The result is an image with bright, saturated colors. Saturation intent is good for reproducing
images with low detail, such as presentation charts and graphs.

Available in Mac OS X v10.0 and later.

Declared in CGColorSpace.h.

Constants 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Discussion
The rendering intent specifies how Quartz should handle colors that are not located within the gamut of the
destination color space of a graphics context. It determines the exact method used to map colors from one
color space to another. If you do not explicitly set the rendering intent by calling the function
CGContextSetRenderingIntent (page 120), the graphics context uses the relative colorimetric rendering
intent, except when drawing sampled images.

Declared In
CGColorSpace.h

Named Color Spaces (Deprecated)
Color spaces used in the Preferences application.

#define kCGColorSpaceUserCMYK CFSTR("kCGColorSpaceUserCMYK")
#define kCGColorSpaceUserGray CFSTR("kCGColorSpaceUserGray")
#define kCGColorSpaceUserRGB CFSTR("kCGColorSpaceUserRGB")

Constants
kCGColorSpaceUserCMYK

A user-defined CMYK color space.

kCGColorSpaceUserGray
A user-defined gray color space.

kCGColorSpaceUserRGB
A user-defined RGB color space.

Discussion
These constants are deprecated in Mac OS X v10.4. Instead use “Color Space Names” (page 57).

The named color spaces are user-configurable in the “Default Profiles for Documents” pane, located in Mac
OS 10.2 in the ColorSync preference panel, and in Mac OS 10.3 in the Displays Color Preference panel. See
also CGColorSpaceCreateWithName (page 52).

Availability
Available in Mac OS X v10.2 and later but deprecated in Mac OS X v10.4.

Declared In
CGColorSpace.h

60 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CGColorSpace Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGContextRef opaque type represents a Quartz 2D drawing destination. A graphics context contains
drawing parameters and all device-specific information needed to render the paint on a page to the
destination, whether the destination is a window in an application, a bitmap image, a PDF document, or a
printer. You can obtain a graphics context by using Quartz graphics context creation functions or by using
higher-level functions provided in the Carbon, Cocoa, or Printing frameworks. Quartz provides creation
functions for various flavors of Quartz graphics contexts including bitmap images and PDF. The Carbon and
Cocoa frameworks provide functions for obtaining window graphics contexts. The Printing framework provides
functions that obtain a graphics context appropriate for the destination printer.

Functions by Task

Managing Graphics Contexts

CGContextFlush (page 95)
Forces all pending drawing operations in a window context to be rendered immediately to the
destination device.

CGContextGetTypeID (page 99)
Returns the type identifier for Quartz graphics contexts.

CGContextRelease (page 102)
Decrements the retain count of a graphics context.

CGContextRetain (page 103)
Increments the retain count of a graphics context.

CGContextSynchronize (page 136)
Marks a window context for update.

Overview 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Saving and Restoring the Current Graphics State

CGContextSaveGState (page 104)
Pushes a copy of the current graphics state onto the graphics state stack for the context.

CGContextRestoreGState (page 103)
Sets the current graphics state to the state most recently saved.

Getting and Setting Graphics State Parameters

CGContextGetInterpolationQuality (page 97)
Returns the current level of interpolation quality for a graphics context.

CGContextSetFlatness (page 113)
Sets the accuracy of curved paths in a graphics context.

CGContextSetInterpolationQuality (page 116)
Sets the level of interpolation quality for a graphics context.

CGContextSetLineCap (page 116)
Sets the style for the endpoints of lines drawn in a graphics context.

CGContextSetLineDash (page 117)
Sets the pattern for dashed lines in a graphics context.

CGContextSetLineJoin (page 118)
Sets the style for the joins of connected lines in a graphics context.

CGContextSetLineWidth (page 118)
Sets the line width for a graphics context.

CGContextSetMiterLimit (page 119)
Sets the miter limit for the joins of connected lines in a graphics context.

CGContextSetPatternPhase (page 119)
Sets the pattern phase of a context.

CGContextSetFillPattern (page 112)
Sets the fill pattern in the specified graphics context.

CGContextSetRenderingIntent (page 120)
Sets the rendering intent in the current graphics state.

CGContextSetShouldAntialias (page 124)
Sets anti-aliasing on or off for a graphics context.

CGContextSetShouldSmoothFonts (page 124)
Enables or disables font smoothing in a graphics context.

CGContextSetStrokePattern (page 126)
Sets the stroke pattern in the specified graphics context.

CGContextSetBlendMode (page 107)
Sets how Quartz composites sample values for a graphics context.

CGContextSetAllowsAntialiasing (page 106)
Sets whether or not to allow anti-aliasing for a graphics context.

62 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Constructing Paths
These functions are used to define the geometry of the current path.

CGContextAddArc (page 68)
Adds an arc of a circle to the current path, using a center point, radius, and end point.

CGContextAddArcToPoint (page 69)
Adds an arc of a circle to the current path, using a radius and tangent points.

CGContextAddCurveToPoint (page 70)
Appends a cubic Bézier curve from the current point, using the provided control points and end point
.

CGContextAddLines (page 72)
Adds a sequence of connected straight-line segments to the current path.

CGContextAddLineToPoint (page 73)
Appends a straight line segment from the current point to the provided point .

CGContextAddPath (page 73)
Adds a previously created Quartz path object to the current path in a graphics context.

CGContextAddQuadCurveToPoint (page 74)
Appends a quadratic Bézier curve from the current point, using a control point and an end point you
specify.

CGContextAddRect (page 75)
Adds a rectangular path to the current path.

CGContextAddRects (page 75)
Adds a set rectangular paths to the current path.

CGContextBeginPath (page 76)
Creates a new empty path in a graphics context.

CGContextClosePath (page 81)
Closes and terminates an open path.

CGContextMoveToPoint (page 100)
Begins a new path at the point you specify.

CGContextAddEllipseInRect (page 71)
Adds an ellipse that fits inside the specified rectangle.

Painting Paths
These functions are used to stroke along or fill in the current path.

CGContextClearRect (page 78)
Paints a transparent rectangle.

CGContextDrawPath (page 87)
Draws the current path using the provided drawing mode.

CGContextEOFillPath (page 93)
Paints the area within the current path, using the even-odd fill rule.

CGContextFillPath (page 94)
Paints the area within the current path, using the nonzero winding number rule.

Functions by Task 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextFillRect (page 94)
Paints the area contained within the provided rectangle, using the fill color in the current graphics
state.

CGContextFillRects (page 95)
Paints the areas contained within the provided rectangles, using the fill color in the current graphics
state.

CGContextFillEllipseInRect (page 93)
Paints the area of the ellipse that fits inside the provided rectangle, using the fill color in the current
graphics state.

CGContextStrokePath (page 134)
Paints a line along the current path.

CGContextStrokeRect (page 134)
Paints a rectangular path.

CGContextStrokeRectWithWidth (page 135)
Paints a rectangular path, using the specified line width.

CGContextReplacePathWithStrokedPath (page 102)
Replaces the path in the graphics context with the stroked version of the path.

CGContextStrokeEllipseInRect (page 133)
Strokes an ellipse that fits inside the specified rectangle.

CGContextStrokeLineSegments (page 133)
Strokes a sequence of line segments.

Getting Information About Paths

CGContextIsPathEmpty (page 100)
Indicates whether the current path contains any subpaths.

CGContextGetPathCurrentPoint (page 98)
Returns the current point in a non-empty path.

CGContextGetPathBoundingBox (page 97)
Returns the smallest rectangle that contains the current path.

CGContextPathContainsPoint (page 101)
Checks to see whether the specified point is contained in the current path.

Modifying Clipping Paths

CGContextClip (page 79)
Modifies the current clipping path, using the nonzero winding number rule.

CGContextEOClip (page 92)
Modifies the current clipping path, using the even-odd rule.

CGContextClipToRect (page 80)
Sets the clipping path to the intersection of the current clipping path with the area defined by the
specified rectangle.

64 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextClipToRects (page 81)
Sets the clipping path to the intersection of the current clipping path with the region defined by an
array of rectangles.

CGContextGetClipBoundingBox (page 96)
Returns the bounding box of a clipping path.

CGContextClipToMask (page 79)
Maps a mask into the specified rectangle and intersects it with the current clipping area of the graphics
context.

Setting Color, Color Space, and Shadow Values

CGContextSetAlpha (page 107)
Sets the opacity level for objects drawn in a graphics context.

CGContextSetCMYKFillColor (page 108)
Sets the current fill color to a value in the DeviceCMYK color space.

CGContextSetFillColor (page 111)
Sets the current fill color.

CGContextSetCMYKStrokeColor (page 110)
Sets the current stroke color to a value in the DeviceCMYK color space.

CGContextSetFillColorSpace (page 111)
Sets the fill color space in a graphics context.

CGContextSetFillColorWithColor (page 112)
Sets the current fill color in a graphics context, using a Quartz color.

CGContextSetGrayFillColor (page 114)
Sets the current fill color to a value in the DeviceGray color space.

CGContextSetGrayStrokeColor (page 115)
Sets the current stroke color to a value in the DeviceGray color space.

CGContextSetRGBFillColor (page 120)
Sets the current fill color to a value in the DeviceRGB color space.

CGContextSetRGBStrokeColor (page 121)
Sets the current stroke color to a value in the DeviceRGB color space.

CGContextSetShadow (page 122)
Enables shadowing in a graphics context.

CGContextSetShadowWithColor (page 123)
Enables shadowing with color a graphics context.

CGContextSetStrokeColor (page 125)
Sets the current stroke color.

CGContextSetStrokeColorSpace (page 125)
Sets the stroke color space in a graphics context.

CGContextSetStrokeColorWithColor (page 126)
Sets the current stroke color in a context, using a Quartz color.

Functions by Task 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Transforming User Space
These functions allow you to examine and change the current transformation matrix (CTM) in a graphics
context.

CGContextConcatCTM (page 82)
Transforms the user coordinate system in a context using a specified matrix.

CGContextGetCTM (page 96)
Returns the current transformation matrix.

CGContextRotateCTM (page 104)
Rotates the user coordinate system in a context.

CGContextScaleCTM (page 105)
Changes the scale of the user coordinate system in a context.

CGContextTranslateCTM (page 136)
Changes the origin of the user coordinate system in a context.

Using Transparency Layers

CGContextBeginTransparencyLayer (page 77)
Begins a transparency layer.

CGContextBeginTransparencyLayerWithRect (page 78)
Begins a transparency layer whose contents are bounded by the specified rectangle.

CGContextEndTransparencyLayer (page 92)
Ends a transparency layer.

Drawing an Image to a Graphics Context

CGContextDrawTiledImage (page 90)
Repeatedly draws an image, scaled to the provided rectangle, to fill the current clip region.

CGContextDrawImage (page 86)
Draws an image into a graphics context.

Drawing PDF Content to a Graphics Context

CGContextDrawPDFDocument (page 88)
Draws a page of a PDF document into a graphics context.

CGContextDrawPDFPage (page 88)
Draws a page in the current user space of a PDF context.

Drawing With a Gradient

CGContextDrawLinearGradient (page 86)
Paints a gradient fill that varies along the line defined by the provided starting and ending points.

66 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextDrawRadialGradient (page 89)
Paints a gradient fill that varies along the area defined by the provided starting and ending circles.

Drawing With a Shading

CGContextDrawShading (page 90)
Fills the clipping path of a context with the specified shading.

Setting Up a Page-Based Graphics Context

CGContextBeginPage (page 76)
Starts a new page in a page-based graphics context.

CGContextEndPage (page 91)
Ends the current page in a page-based graphics context.

Drawing Glyphs

CGContextShowGlyphs (page 129)
Displays an array of glyphs at the current text position.

CGContextShowGlyphsAtPoint (page 129)
Displays an array of glyphs at a position you specify.

CGContextShowGlyphsWithAdvances (page 130)
Draws an array of glyphs with varying offsets.

CGContextShowGlyphsAtPositions (page 130)
Draws glyphs at the provided position.

Drawing Text

CGContextGetTextMatrix (page 98)
Returns the current text matrix.

CGContextGetTextPosition (page 99)
Returns the location at which text is drawn.

CGContextSelectFont (page 106)
Sets the font and font size in a graphics context.

CGContextSetCharacterSpacing (page 108)
Sets the current character spacing.

CGContextSetFont (page 113)
Sets the platform font in a graphics context.

CGContextSetFontSize (page 114)
Sets the current font size.

CGContextSetTextDrawingMode (page 127)
Sets the current text drawing mode.

Functions by Task 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetTextMatrix (page 127)
Sets the current text matrix.

CGContextSetTextPosition (page 128)
Sets the location at which text is drawn.

CGContextShowText (page 131)
Displays a character array at the current text position, a point specified by the current text matrix.

CGContextShowTextAtPoint (page 132)
Displays a character string at a position you specify.

Converting Between Device Space and User Space

CGContextGetUserSpaceToDeviceSpaceTransform (page 100)
Returns an affine transform that maps user space coordinates to device space coordinates.

CGContextConvertPointToDeviceSpace (page 83)
Returns a point that is transformed from user space coordinates to device space coordinates.

CGContextConvertPointToUserSpace (page 83)
Returns a point that is transformed from device space coordinates to user space coordinates.

CGContextConvertSizeToDeviceSpace (page 85)
Returns a size that is transformed from user space coordinates to device space coordinates.

CGContextConvertSizeToUserSpace (page 85)
Returns a size that is transformed from device space coordinates to user space coordinates

CGContextConvertRectToDeviceSpace (page 84)
Returns a rectangle that is transformed from user space coordinate to device space coordinates.

CGContextConvertRectToUserSpace (page 84)
Returns a rectangle that is transformed from device space coordinate to user space coordinates.

Functions

CGContextAddArc
Adds an arc of a circle to the current path, using a center point, radius, and end point.

void CGContextAddArc (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 CGFloat radius,
 CGFloat startAngle,
 CGFloat endAngle,
 int clockwise
);

Parameters
context

A graphics context.

68 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

x
The x-value, in user space coordinates, for the center of the arc.

y
The y-value, in user space coordinates, for the center of the arc.

radius
The radius of the arc, in user space coordinates.

startAngle
The angle to the starting point of the arc, measured in radians from the positive x-axis.

endAngle
The angle to the end point of the arc, measured in radians from the positive x-axis.

clockwise
Pass 1 to draw the arc clockwise; 0 otherwise.

Discussion
When you call this function, Quartz builds an arc of a circle centered on the point you provide. The arc is of
the specified radius and extends between the start and end point. (You can also use CGContextAddArc as
a convenient way to draw a circle, by setting the start point to 0 and the end point to 2*Pi.)

If the current path already contains a subpath, Quartz additionally appends a straight line segment from the
current point to the starting point of the arc. If the current path is empty, Quartz creates a new subpath for
the arc and does not add the initial straight line segment.

After adding the arc, the current point is reset to the end point of arc (the second tangent point).

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddArcToPoint (page 69)

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextAddArcToPoint
Adds an arc of a circle to the current path, using a radius and tangent points.

void CGContextAddArcToPoint (
 CGContextRef c,
 CGFloat x1,
 CGFloat y1,
 CGFloat x2,
 CGFloat y2,
 CGFloat radius
);

Parameters
context

A graphics context whose current path is not empty.

Functions 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

x1
The x-value, in user space coordinates, for the end point of the first tangent line. The first tangent
line is drawn from the current point to (x1,y1).

y1
The y-value, in user space coordinates, for the end point of the first tangent line. The first tangent
line is drawn from the current point to (x1,y1).

x2
The x-value, in user space coordinates, for the end point of the second tangent line. The second
tangent line is drawn from (x1,y1) to (x2,y2).

y2
The y-value, in user space coordinates, for the end point of the second tangent line. The second
tangent line is drawn from (x1,y1) to (x2,y2).

radius
The radius of the arc, in user space coordinates.

Discussion
This function draws an arc that is tangent to the line from the current point to (x1,y1) and to the line from
(x1,y1) to (x2,y2). The start and end points of the arc are located on the first and second tangent lines,
respectively. The start and end points of the arc are also the “tangent points” of the lines.

If the current point and the first tangent point of the arc (the starting point) are not equal, Quartz appends
a straight line segment from the current point to the first tangent point. After adding the arc, the current
point is reset to the end point of arc (the second tangent point).

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddArc (page 68)
CGContextAddArcToPoint (page 69)

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextAddCurveToPoint
Appends a cubic Bézier curve from the current point, using the provided control points and end point .

70 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextAddCurveToPoint (
 CGContextRef c,
 CGFloat cp1x,
 CGFloat cp1y,
 CGFloat cp2x,
 CGFloat cp2y,
 CGFloat x,
 CGFloat y
);

Parameters
context

A graphics context whose current path is not empty.

cp1x
The x-value, in user space coordinates, for the first control point of the curve.

cp1y
The y-value, in user space coordinates, for the first control point of the curve.

cp2x
The x-value, in user space coordinates, for the second control point of the curve.

cp2y
The y-value, in user space coordinates, for the second control point of the curve.

x
The x-value, in user space coordinates, at which to end the curve.

y
The y-value, in user space coordinates, at which to end the curve.

Discussion
This function appends a cubic curve to the current path. After adding the segment, the current point is reset
from the beginning of the new segment to the end point of that segment.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddQuadCurveToPoint (page 74)
CGContextAddArcToPoint (page 69)

Declared In
CGContext.h

CGContextAddEllipseInRect
Adds an ellipse that fits inside the specified rectangle.

void CGContextAddEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

Functions 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

rect
A rectangle that defines the area for the ellipse to fit in.

Discussion
The ellipse is approximated by a sequence of Bézier curves. Its center is the midpoint of the rectangle defined
by the rect parameter. If the rectangle is square, then the ellipse is circular with a radius equal to one-half
the width (or height) of the rectangle. If the rect parameter specifies a rectangular shape, then the major
and minor axes of the ellipse are defined by the width and height of the rectangle.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextAddLines
Adds a sequence of connected straight-line segments to the current path.

void CGContextAddLines (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

Parameters
context

A graphics context .

points
An array of values that specify the start and end points of the line segments to draw. Each point in
the array specifies a position in user space. The first point is the array specifies the initial starting point.

count
The number of elements in the points array.

Discussion
This is a convenience function that adds a sequence of connected line segments to the current path in a
graphics context. Quartz connects each point in the array with the subsequent point in the array, using
straight line segments.

On return, the current point is the last point in the array. This function does not automatically close the path
created by the line segments. If you want to close the path, you must call CGContextClosePath (page 81).

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddLineToPoint (page 73)

Declared In
CGContext.h

72 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextAddLineToPoint
Appends a straight line segment from the current point to the provided point .

void CGContextAddLineToPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
context

A graphics context whose current path is not empty.

x
The x-value, in user space coordinates, for the end of the line segment.

y
The y-value, in user space coordinates, for the end of the line segment.

Discussion
After adding the line segment, the current point is reset from the beginning of the new line segment to the
endpoint of that line segment.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddLines (page 72)

Related Sample Code
CALayerEssentials
CarbonSketch
HID Calibrator
HID Explorer

Declared In
CGContext.h

CGContextAddPath
Adds a previously created Quartz path object to the current path in a graphics context.

void CGContextAddPath (
 CGContextRef context,
 CGPathRef path
);

Parameters
context

A graphics context .

path
A previously created Quartz path object. See CGPath Reference.

Functions 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
Quartz applies the current transformation matrix (CTM) to the points in the new path before they are added
to the current path in the graphics context.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Declared In
CGContext.h

CGContextAddQuadCurveToPoint
Appends a quadratic Bézier curve from the current point, using a control point and an end point you specify.

void CGContextAddQuadCurveToPoint (
 CGContextRef c,
 CGFloat cpx,
 CGFloat cpy,
 CGFloat x,
 CGFloat y
);

Parameters
context

A graphics context whose current path is not empty.

cpx
The x-coordinate of the user space for the control point of the curve.

cpy
The y-coordinate of the user space for the control point of the curve.

x
The x-coordinate of the user space at which to end the curve.

y
The y-coordinate of the user space at which to end the curve.

Discussion
This function appends a quadratic curve to the current subpath. After adding the segment, the current point
is reset from the beginning of the new segment to the end point of that segment.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddCurveToPoint (page 70)
CGContextAddArcToPoint (page 69)

Declared In
CGContext.h

74 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextAddRect
Adds a rectangular path to the current path.

void CGContextAddRect (
 CGContextRef c,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle, specified in user space coordinates.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddRects (page 75)

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextAddRects
Adds a set rectangular paths to the current path.

void CGContextAddRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
context

A graphics context.

rects
An array of rectangles, specified in user space coordinates.

count
The number of rectangles in the rects array.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddRect (page 75)

Declared In
CGContext.h

Functions 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextBeginPage
Starts a new page in a page-based graphics context.

void CGContextBeginPage (
 CGContextRef c,
 const CGRect *mediaBox
);

Parameters
context

A page-based graphics context such as a PDF context. If you specify a context that does not support
multiple pages, this function does nothing.

mediaBox
A Quartz rectangle defining the bounds of the new page, expressed in units of the default user space,
or NULL. These bounds supersede any supplied for the media box when you created the context. If
you pass NULL, Quartz uses the rectangle you supplied for the media box when the graphics context
was created.

Discussion
When using a graphics context that supports multiple pages, you should call this function together with
CGContextEndPage (page 91) to delineate the page boundaries in the output. In other words, each page
should be bracketed by calls to CGContextBeginPage and CGContextEndPage. Quartz ignores all drawing
operations performed outside a page boundary in a page-based context.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextBeginPath
Creates a new empty path in a graphics context.

void CGContextBeginPath (
 CGContextRef c
);

Parameters
context

A graphics context.

Discussion
A graphics context can have only a single path in use at any time. If the specified context already contains
a current path when you call this function, Quartz replaces the previous current path with the new path. In
this case, Quartz discards the old path and any data associated with it.

The current path is not part of the graphics state. Consequently, saving and restoring the graphics state has
no effect on the current path.

76 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextClosePath (page 81)

Related Sample Code
CarbonSketch
HID Calibrator
HID Explorer

Declared In
CGContext.h

CGContextBeginTransparencyLayer
Begins a transparency layer.

void CGContextBeginTransparencyLayer (
 CGContextRef context,
 CFDictionaryRef auxiliaryInfo
);

Parameters
context

A graphics context.

auxiliaryInfo
A dictionary that specifies any additional information, or NULL.

Discussion
Until a corresponding call to CGContextEndTransparencyLayer (page 92), all subsequent drawing
operations in the specified context are composited into a fully transparent backdrop (which is treated as a
separate destination buffer from the context).

After a call to CGContextEndTransparencyLayer, the result is composited into the context using the
global alpha and shadow state of the context. This operation respects the clipping region of the context.

After a call to this function, all of the parameters in the graphics state remain unchanged with the exception
of the following:

 ■ The global alpha is set to 1.

 ■ The shadow is turned off.

Ending the transparency layer restores these parameters to their previous values. Quartz maintains a
transparency layer stack for each context, and transparency layers may be nested.

Tip: For best performance, make sure that you set the smallest possible clipping area for the objects in the
transparency layer prior to calling CGContextBeginTransparencyLayer.

Availability
Available in Mac OS X version 10.3 and later.

Functions 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextBeginTransparencyLayerWithRect
Begins a transparency layer whose contents are bounded by the specified rectangle.

void CGContextBeginTransparencyLayerWithRect(CGContextRef context, CGRect rect,
CFDictionaryRef auxiliaryInfo);

Parameters
context

A graphics context.

rect
The rectangle, specified in user space, that bounds the transparency layer.

auxiliaryInfo
A dictionary that specifies any additional information, or NULL.

Discussion
This function is identical to CGContextBeginTransparencyLayer (page 77) except that the content of
the transparency layer is within the bounds of the provided rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextClearRect
Paints a transparent rectangle.

void CGContextClearRect (
 CGContextRef c,
 CGRect rect
);

Parameters
context

The graphics context in which to paint the rectangle.

rect
The rectangle, in user space coordinates.

Discussion
If the provided context is a window or bitmap context, Quartz effectively clears the rectangle. For other
context types, Quartz fills the rectangle in a device-dependent manner. However, you should not use this
function in contexts other than window or bitmap contexts.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

78 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextClip
Modifies the current clipping path, using the nonzero winding number rule.

void CGContextClip (
 CGContextRef c
);

Parameters
context

A graphics context that contains a path. If the context does not have a current path, the function
does nothing.

Discussion
The function uses the nonzero winding number rule to calculate the intersection of the current path with
the current clipping path. Quartz then uses the path resulting from the intersection as the new current
clipping path for subsequent painting operations.

Unlike the current path, the current clipping path is part of the graphics state. Therefore, to re-enlarge the
paintable area by restoring the clipping path to a prior state, you must save the graphics state before you
clip and restore the graphics state after you’ve completed any clipped drawing.

After determining the new clipping path, the function resets the context’s current path to an empty path.

See alsoCGContextEOClip (page 92)

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextClipToMask
Maps a mask into the specified rectangle and intersects it with the current clipping area of the graphics
context.

void CGContextClipToMask (
 CGContextRef c,
 CGRect rect,
 CGImageRef mask
);

Parameters
c

A graphics context.

rect
The rectangle to map the mask parameter to.

Functions 79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

mask
An image or an image mask. If mask is an image, then it must be in the DeviceGray color space, may
not have an alpha component, and may not be masked by an image mask or masking color.

Discussion
If the mask parameter is an image mask, then Quartz clips in a manner identical to the behavior seen with
the function CGContextDrawImage—the mask indicates an area to be left unchanged when drawing. The
source samples of the image mask determine which points of the clipping area are changed, acting as an
"inverse alpha" value. If the value of a source sample in the image mask is S, then the corresponding point
in the current clipping area is multiplied by an alpha value of (1–S). For example, if S is 1 then the point in
the clipping area becomes transparent. If S is 0, the point in the clipping area is unchanged.

If the mask parameter is an image, then mask acts like an alpha mask and is blended with the current clipping
area. The source samples of mask determine which points of the clipping area are changed. If the value of
the source sample in mask is S, then the corresponding point in the current clipping area is multiplied by an
alpha of S. For example, if S is 0, then the point in the clipping area becomes transparent. If S is 1, the point
in the clipping area is unchanged.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextClipToRect
Sets the clipping path to the intersection of the current clipping path with the area defined by the specified
rectangle.

void CGContextClipToRect (
 CGContextRef c,
 CGRect rect
);

Parameters
context

The graphics context for which to set the clipping path.

rect
A CGRect value that specifies, in the user space, the location and dimensions of the rectangle to be
used in determining the new clipping path.

Discussion
This function sets the specified graphics context’s clipping region to the area which intersects both the
current clipping path and the specified rectangle.

After determining the new clipping path, the CGContextClipToRect function resets the context’s current
path to an empty path.

See also CGContextClipToRects (page 81).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

80 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextClipToRects
Sets the clipping path to the intersection of the current clipping path with the region defined by an array of
rectangles.

void CGContextClipToRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
context

The graphics context for which to set the clipping path.

rects
An array of rectangles. The locations and dimensions of the rectangles are specified in the user space
coordinate system.

count
The total number of array entries in the rects parameter.

Discussion
This function sets the clipping path to the intersection of the current clipping path and the region within
the specified rectangles.

After determining the new clipping path, the function resets the context’s current path to an empty path.

See also CGContextClipToRect (page 80).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextClosePath
Closes and terminates an open path.

void CGContextClosePath (
 CGContextRef c
);

Parameters
context

A graphics context.

Functions 81
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
If a path is open, this function closes and terminate the path. Quartz closes a path by drawing a straight line
that connects the current point to the starting point. If the current point and the starting point are the same,
you must still call this function to close the path. After Quartz terminates the path, the current point is no
longer defined. If there is no open path, this function does nothing.

When you fill or clip an open path, Quartz implicitly closes the subpath for you.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextAddPath (page 73)

Related Sample Code
CALayerEssentials
CarbonSketch
HID Explorer

Declared In
CGContext.h

CGContextConcatCTM
Transforms the user coordinate system in a context using a specified matrix.

void CGContextConcatCTM (
 CGContextRef c,
 CGAffineTransform transform
);

Parameters
context

A graphics context.

transform
The transformation matrix to apply to the specified context’s current transformation matrix.

Discussion
When you call the function CGContextConcatCTM, it concatenates (that is, it combines) two matrices, by
multiplying them together. The order in which matrices are concatenated is important, as the operations are
not commutative. When you call CGContextConcatCTM, the resulting CTM in the context is: CTMnew =
transform * CTMcontext.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

82 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextConvertPointToDeviceSpace
Returns a point that is transformed from user space coordinates to device space coordinates.

CGPoint CGContextConvertPointToDeviceSpace (
 CGContextRef c,
 CGPoint point
);

Parameters
c

A graphics context.

point
The point, in user space coordinates, to transform.

Return Value
The coordinates of the point in device space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertPointToUserSpace (page 83)

Declared In
CGContext.h

CGContextConvertPointToUserSpace
Returns a point that is transformed from device space coordinates to user space coordinates.

CGPoint CGContextConvertPointToUserSpace (
 CGContextRef c,
 CGPoint point
);

Parameters
c

A graphics context.

point
The point, in device space coordinates, to transform.

Return Value
The coordinates of the point in user space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertPointToDeviceSpace (page 83)

Declared In
CGContext.h

Functions 83
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextConvertRectToDeviceSpace
Returns a rectangle that is transformed from user space coordinate to device space coordinates.

CGRect CGContextConvertRectToDeviceSpace (
 CGContextRef c,
 CGRect rect
);

Parameters
context

A graphics context.

rect
The rectangle, in user space coordinates, to transform.

Return Value
The rectangle in device space coordinates.

Discussion
In general affine transforms do not preserve rectangles. As a result, this function returns the smallest rectangle
that contains the transformed corner points of the rectangle.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertRectToUserSpace (page 84)

Declared In
CGContext.h

CGContextConvertRectToUserSpace
Returns a rectangle that is transformed from device space coordinate to user space coordinates.

CGRect CGContextConvertRectToUserSpace (
 CGContextRef c,
 CGRect rect
);

Parameters
context

A graphics context.

rect
The rectangle, in device space coordinates, to transform.

Return Value
The rectangle in user space coordinates.

Discussion
In general, affine transforms do not preserve rectangles. As a result, this function returns the smallest rectangle
that contains the transformed corner points of the rectangle.

Availability
Available in Mac OS X v10.4 and later.

84 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextConvertRectToDeviceSpace (page 84)

Declared In
CGContext.h

CGContextConvertSizeToDeviceSpace
Returns a size that is transformed from user space coordinates to device space coordinates.

CGSize CGContextConvertSizeToDeviceSpace (
 CGContextRef c,
 CGSize size
);

Parameters
c

A graphics context.

size
The size, in user space coordinates, to transform.

Return Value
The size in device space coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
CGContextConvertSizeToUserSpace (page 85)

Declared In
CGContext.h

CGContextConvertSizeToUserSpace
Returns a size that is transformed from device space coordinates to user space coordinates

CGSize CGContextConvertSizeToUserSpace (
 CGContextRef c,
 CGSize size
);

Parameters
context

A graphics context.

size
The size, in device space coordinates, to transform.

Return Value
The size in user space coordinates.

Availability
Available in Mac OS X v10.4 and later.

Functions 85
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextConvertSizeToDeviceSpace (page 85)

Declared In
CGContext.h

CGContextDrawImage
Draws an image into a graphics context.

void CGContextDrawImage (
 CGContextRef c,
 CGRect rect,
 CGImageRef image
);

Parameters
context

The graphics context in which to draw the image.

rect
The location and dimensions in user space of the bounding box in which to draw the image.

image
The image to draw.

Discussion
Quartz scales the image—disproportionately, if necessary—to fit the bounds specified by the rect parameter.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
WhackedTV

Declared In
CGContext.h

CGContextDrawLinearGradient
Paints a gradient fill that varies along the line defined by the provided starting and ending points.

void CGContextDrawLinearGradient(
 CGContextRef context,
 CGGradientRef gradient,
 CGPoint startPoint,
 CGPoint endPoint,
 CGGradientDrawingOptions options
);

Parameters
context

A Quartz graphics context.

86 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

gradient
A CGGradient object.

startPoint
The coordinate that defines the starting point of the gradient.

endPoint
The coordinate that defines the ending point of the gradient.

options
Option flags (kCGGradientDrawsBeforeStartLocation (page 207) or
kCGGradientDrawsAfterEndLocation (page 207)) that control whether the fill is extended beyond
the starting or ending point.

Discussion
The color at location 0 in the CGGradient object is mapped to the starting point. The color at location 1 in
the CGGradient object is mapped to the ending point. Colors are linearly interpolated between these two
points based on the location values of the gradient. The option flags control whether the gradient is drawn
before the start point or after the end point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextDrawPath
Draws the current path using the provided drawing mode.

void CGContextDrawPath (
 CGContextRef c,
 CGPathDrawingMode mode
);

Parameters
context

A graphics context that contains a path to paint.

mode
A path drawing mode constant—kCGPathFill, kCGPathEOFill, kCGPathStroke,
kCGPathFillStroke, or kCGPathEOFillStroke. For a discussion of these constants, see CGPath
Reference.

Discussion
This function draws the current path using the specified drawing mode. If the current path contains several
disjoint portions (or subpaths), Quartz fills each one independently. Any subpath that you did not explicitly
close by calling CGContextClosePath (page 81) is closed implicitly by the fill routines.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextFillPath (page 94)
CGContextEOFillPath (page 93)
CGContextStrokePath (page 134)

Functions 87
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextDrawPDFDocument
Draws a page of a PDF document into a graphics context.

void CGContextDrawPDFDocument (
 CGContextRef c,
 CGRect rect,
 CGPDFDocumentRef document,
 int page
);

Parameters
context

The graphics context in which to draw the PDF page.

rect
A CGRect value that specifies the dimensions and location of the area in which to draw the PDF page,
in units of the user space. When drawn, Quartz scales the media box of the page to fit the rectangle
you specify.

document
The PDF document to draw.

page
A value that specifies the PDF page number to draw. If the specified page does not exist, the function
does nothing.

Special Considerations

For applications running in Mac OS X version 10.3 and later, it is recommended that you replace this function
with CGContextDrawPDFPage (page 88). If you do so, and want to specify the drawing rectangle, you should
use CGPDFPageGetDrawingTransform (page 355) to get an appropriate transform, concatenate it with the
current transformation matrix, clip to the rectangle, and then call CGContextDrawPDFPage (page 88).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextDrawPDFPage
Draws a page in the current user space of a PDF context.

88 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextDrawPDFPage (
 CGContextRef c,
 CGPDFPageRef page
);

Parameters
context

The graphics context in which to draw the PDF page.

page
A Quartz PDF page.

Discussion
This function works in conjunction with the opaque type CGPDFPageRef to draw individual pages into a
PDF context.

For applications running in Mac OS X version 10.3 and later, this function is recommended as a replacement
for the older function CGContextDrawPDFDocument.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextDrawRadialGradient
Paints a gradient fill that varies along the area defined by the provided starting and ending circles.

void CGContextDrawRadialGradient(
 CGContextRef context,
 CGGradientRef gradient,
 CGPoint startCenter,
 CGFloat startRadius,
 CGPoint endCenter,
 CGFloat endRadius,
 CGGradientDrawingOptions options
);

Parameters
context

A Quartz graphics context.

gradient
A CGGradient object.

startCenter
The coordinate that defines the center of the starting circle.

startRadius
The radius of the starting circle.

endCenter
The coordinate that defines the center of the ending circle.

Functions 89
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

endRadius
The radius of the ending circle.

options
Option flags (kCGGradientDrawsBeforeStartLocation (page 207) or
kCGGradientDrawsAfterEndLocation (page 207)) that control whether the gradient is drawn
before the starting circle or after the ending circle.

Discussion
The color at location 0 in the CGGradient object is mapped to the circle defined by startCenter and
startRadius. The color at location 1 in the CGGradient object is mapped to the circle defined by endCenter
and endRadius. Colors are linearly interpolated between the starting and ending circles based on the location
values of the gradient. The option flags control whether the gradient is drawn before the start point or after
the end point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextDrawShading
Fills the clipping path of a context with the specified shading.

void CGContextDrawShading (
 CGContextRef c,
 CGShadingRef shading
);

Parameters
context

The graphics context in which to draw the shading.

shading
A Quartz shading. Quartz retains this object; upon return, you may safely release it.

Discussion
In Mac OS X v10.5 and later, the preferred way to draw gradients is to use a CGGradient object. See CGGradient
Reference.

Availability
Available in Mac OS X v10.2 and later.

See Also
CGContextDrawLinearGradient (page 86)
CGContextDrawRadialGradient (page 89)

Declared In
CGContext.h

CGContextDrawTiledImage
Repeatedly draws an image, scaled to the provided rectangle, to fill the current clip region.

90 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextDrawTiledImage(
 CGContextRef context,
 CGRect rect,
 CGImageRef image
);

Parameters
context

The graphics context in which to draw the image.

rect
A rectangle that specifies the tile size. Quartz scales the image—disproportionately, if necessary—to
fit the bounds specified by the rect parameter.

image
The image to draw.

Discussion
Quartz draws the scaled image starting at the origin of user space, then moves to a new point (horizontally
by the width of the tile and/or vertically by the height of the tile), draws the scaled image, moves again,
draws again, and so on, until the current clip region is tiled with copies of the image. Unlike patterns, the
image is tiled in user space, so transformations applied to the CTM affect the final result.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextEndPage
Ends the current page in a page-based graphics context.

void CGContextEndPage (
 CGContextRef c
);

Parameters
context

A page-based graphics context.

Discussion
When using a graphics context that supports multiple pages, you should call this function to terminate
drawing in the current page.

For more information, see CGContextBeginPage (page 76).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

Functions 91
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextEndTransparencyLayer
Ends a transparency layer.

void CGContextEndTransparencyLayer (
 CGContextRef context
);

Parameters
context

A graphics context.

Discussion
See the discussion for CGContextBeginTransparencyLayer (page 77).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGContext.h

CGContextEOClip
Modifies the current clipping path, using the even-odd rule.

void CGContextEOClip (
 CGContextRef c
);

Parameters
context

A graphics context containing a path. If the context does not have a current path, the function does
nothing.

Discussion
The function uses the even-odd rule to calculate the intersection of the current path with the current clipping
path. Quartz then uses the path resulting from the intersection as the new current clipping path for subsequent
painting operations.

Unlike the current path, the current clipping path is part of the graphics state. Therefore, to re-enlarge the
paintable area by restoring the clipping path to a prior state, you must save the graphics state before you
clip and restore the graphics state after you’ve completed any clipped drawing.

After determining the new clipping path, the function resets the context’s current path to an empty path.

See also CGContextClip (page 79).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

92 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextEOFillPath
Paints the area within the current path, using the even-odd fill rule.

void CGContextEOFillPath (
 CGContextRef c
);

Parameters
context

A graphics context that contains a path to fill.

Discussion
If the current path contains several disjoint portions (or subpaths), Quartz fills each one independently. Any
subpath that you did not explicitly close by calling CGContextClosePath (page 81) is closed implicitly by
the fill routines.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextFillPath (page 94)
CGContextStrokePath (page 134)
CGContextDrawPath (page 87)

Related Sample Code
CALayerEssentials

Declared In
CGContext.h

CGContextFillEllipseInRect
Paints the area of the ellipse that fits inside the provided rectangle, using the fill color in the current graphics
state.

void CGContextFillEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle that defines the area for the ellipse to fit in.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer

Functions 93
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextFillPath
Paints the area within the current path, using the nonzero winding number rule.

void CGContextFillPath (
 CGContextRef c
);

Parameters
context

A graphics context that contains a path to fill.

Discussion
If the current path contains several disjoint portions (or subpaths), Quartz fills each one independently. Any
subpath that you did not explicitly close by calling CGContextClosePath (page 81) is closed implicitly by
the fill routines.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextEOFillPath (page 93)
CGContextStrokePath (page 134)
CGContextDrawPath (page 87)

Declared In
CGContext.h

CGContextFillRect
Paints the area contained within the provided rectangle, using the fill color in the current graphics state.

void CGContextFillRect (
 CGContextRef c,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle, in user space coordinates.

Discussion
As a side effect when you call this function, Quartz clears the current path.

Availability
Available in Mac OS X version 10.0 and later.

94 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextFillRects (page 95)

Related Sample Code
CALayerEssentials
CarbonSketch
HID Calibrator
HID Explorer

Declared In
CGContext.h

CGContextFillRects
Paints the areas contained within the provided rectangles, using the fill color in the current graphics state.

void CGContextFillRects (
 CGContextRef c,
 const CGRect rects[],
 size_t count
);

Parameters
context

A graphics context .

rects
An array of rectangles, in user space coordinates.

count
The number rectangles in the rects array.

Discussion
As a side effect when you call this function, Quartz clears the current path.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextFillRect (page 94)

Declared In
CGContext.h

CGContextFlush
Forces all pending drawing operations in a window context to be rendered immediately to the destination
device.

Functions 95
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextFlush (
 CGContextRef c
);

Parameters
context

The window context to flush. If you pass a PDF context or a bitmap context, this function does nothing.

Discussion
When you call this function, Quartz immediately flushes the current drawing to the destination device (for
example, a screen). Because the system software flushes a context automatically at the appropriate times,
calling this function could have an adverse effect on performance. Under normal conditions, you do not need
to call this function.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetClipBoundingBox
Returns the bounding box of a clipping path.

CGRect CGContextGetClipBoundingBox (
 CGContextRef c
);

Parameters
context

The graphics context to modify.

Return Value
The bounding box of the clipping path, specified in user space.

Discussion
The bounding box is the smallest rectangle completely enclosing all points in the clipping path, including
control points for any Bezier curves in the path.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CALayerEssentials

Declared In
CGContext.h

CGContextGetCTM
Returns the current transformation matrix.

96 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGAffineTransform CGContextGetCTM (
 CGContextRef c
);

Parameters
context

A graphics context.

Return Value
The transformation matrix for the current graphics state of the specified context.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetInterpolationQuality
Returns the current level of interpolation quality for a graphics context.

CGInterpolationQuality CGContextGetInterpolationQuality (
 CGContextRef c
);

Parameters
context

The graphics context to examine.

Return Value
The current level of interpolation quality.

Discussion
Interpolation quality is a graphics state parameter that provides a hint for the level of quality to use for image
interpolation (for example, when scaling the image). Not all contexts support all interpolation quality levels.

Availability
Available in Mac OS X version 10.1 and later.

See Also
CGContextSetInterpolationQuality (page 116)

Declared In
CGContext.h

CGContextGetPathBoundingBox
Returns the smallest rectangle that contains the current path.

Functions 97
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGRect CGContextGetPathBoundingBox (
 CGContextRef c
);

Parameters
context

The graphics context, containing a path, to examine.

Return Value
A CGRect value that specifies the dimensions and location, in user space, of the bounding box of the path.
If there is no path, the function returns CGRectNull.

Discussion
The bounding box is the smallest rectangle completely enclosing all points in a path, including control points
for Bézier cubic and quadratic curves.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetPathCurrentPoint
Returns the current point in a non-empty path.

CGPoint CGContextGetPathCurrentPoint (
 CGContextRef c
);

Parameters
context

The graphics context containing the path to examine.

Return Value
A CGPoint value that specifies the location, in user space, of current point in the context’s path. If there is
no path, the function returns CGPointZero.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetTextMatrix
Returns the current text matrix.

98 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGAffineTransform CGContextGetTextMatrix (
 CGContextRef c
);

Parameters
context

The graphics context for which to obtain the text matrix.

Return Value
The current text matrix.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetTextPosition
Returns the location at which text is drawn.

CGPoint CGContextGetTextPosition (
 CGContextRef c
);

Parameters
context

The graphics context from which to obtain the current text position.

Return Value
Returns a CGPoint value that specifies the x and y values at which text is to be drawn, in user space
coordinates.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextGetTypeID
Returns the type identifier for Quartz graphics contexts.

CFTypeID CGContextGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGContextRef (page 137).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGContext.h

Functions 99
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextGetUserSpaceToDeviceSpaceTransform
Returns an affine transform that maps user space coordinates to device space coordinates.

CGAffineTransform CGContextGetUserSpaceToDeviceSpaceTransform (
 CGContextRef c
);

Parameters
c

A graphics context.

Return Value
The affine transforms that maps the user space of the graphics context to the device space.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextIsPathEmpty
Indicates whether the current path contains any subpaths.

bool CGContextIsPathEmpty (
 CGContextRef c
);

Parameters
context

The graphics context containing the path to examine.

Return Value
Returns 1 if the context’s path contains no subpaths, otherwise returns 0.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextMoveToPoint
Begins a new path at the point you specify.

void CGContextMoveToPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
context

A graphics context.

100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

x
The x-value, in user space coordinates, for the point.

y
The y-value, in user space coordinates, for the point.

Discussion
This point you specifies becomes the current point. It defines the starting point of the next line segment.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CALayerEssentials
CarbonSketch
HID Calibrator
HID Explorer

Declared In
CGContext.h

CGContextPathContainsPoint
Checks to see whether the specified point is contained in the current path.

bool CGContextPathContainsPoint (
 CGContextRef context,
 CGPoint point,
 CGPathDrawingMode mode
);

Parameters
context

A graphics context.

point
The point to check, specified in user space units.

mode
A path drawing mode—kCGPathFill, kCGPathEOFill, kCGPathStroke, kCGPathFillStroke,
or kCGPathEOFillStroke. See CGPathDrawingMode for more information on these modes.

Return Value
Returns true if point is inside the current path of the graphics context; false otherwise.

Discussion
A point is contained within the path of a graphics context if the point is inside the painted region when the
path is stroked or filled with opaque colors using the specified path drawing mode. A point can be inside a
path only if the path is explicitly closed by calling the function CGContextClosePath (page 81), for paths
drawn directly to the current context, or CGPathCloseSubpath (page 271), for paths first created as CGPath
objects and then drawn to the current context.

Availability
Available in Mac OS X v10.4 and later.

Functions 101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Declared In
CGContext.h

CGContextRelease
Decrements the retain count of a graphics context.

void CGContextRelease (
 CGContextRef c
);

Parameters
context

The graphics context to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the context parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextReplacePathWithStrokedPath
Replaces the path in the graphics context with the stroked version of the path.

void CGContextReplacePathWithStrokedPath (
 CGContextRef c
);

Parameters
c

A graphics context.

Discussion
Quartz creates a stroked path using the parameters of the current graphics context. You can use this path
in the same way you use the path of any context. For example, you can clip to the stroked version of a path
by calling this function followed by a call to the function CGContextClip (page 79).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextRestoreGState
Sets the current graphics state to the state most recently saved.

void CGContextRestoreGState (
 CGContextRef c
);

Parameters
context

The graphics context whose state you want to modify.

Discussion
Quartz removes the graphics state that is at the top of the stack so that the most recently saved state becomes
the current graphics state.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextSaveGState (page 104)

Related Sample Code
CarbonSketch
HID Calibrator

Declared In
CGContext.h

CGContextRetain
Increments the retain count of a graphics context.

CGContextRef CGContextRetain (
 CGContextRef c
);

Parameters
context

The graphics context to retain.

Return Value
The same graphics context you passed in as the context parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the context parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

Functions 103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextRotateCTM
Rotates the user coordinate system in a context.

void CGContextRotateCTM (
 CGContextRef c,
 CGFloat angle
);

Parameters
context

A graphics context.

angle
The angle, in radians, by which to rotate the coordinate space of the specified context. (Positive values
rotate counterclockwise.)

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSaveGState
Pushes a copy of the current graphics state onto the graphics state stack for the context.

void CGContextSaveGState (
 CGContextRef c
);

Parameters
context

The graphics context whose current graphics state you want to save.

Discussion
Each graphics context maintains a stack of graphics states. Note that not all aspects of the current drawing
environment are elements of the graphics state. For example, the current path is not considered part of the
graphics state and is therefore not saved when you call the CGContextSaveGState function. The graphics
state parameters that are saved are:

 ■ CTM (current transformation matrix)

 ■ clip region

 ■ image interpolation quality

 ■ line width

 ■ line join

 ■ miter limit

 ■ line cap

 ■ line dash

 ■ flatness

 ■ should anti-alias

104 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

 ■ rendering intent

 ■ fill color space

 ■ stroke color space

 ■ fill color

 ■ stroke color

 ■ alpha value

 ■ font

 ■ font size

 ■ character spacing

 ■ text drawing mode

 ■ shadow parameters

 ■ the pattern phase

 ■ the font smoothing parameter

 ■ blend mode

To restore your drawing environment to a previously saved state, you can use the function
CGContextRestoreGState (page 103).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator

Declared In
CGContext.h

CGContextScaleCTM
Changes the scale of the user coordinate system in a context.

void CGContextScaleCTM (
 CGContextRef c,
 CGFloat sx,
 CGFloat sy
);

Parameters
context

A graphics context.

sx
The factor by which to scale the x-axis of the coordinate space of the specified context.

sy
The factor by which to scale the y-axis of the coordinate space of the specified context.

Functions 105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSelectFont
Sets the font and font size in a graphics context.

void CGContextSelectFont (
 CGContextRef c,
 const char *name,
 CGFloat size,
 CGTextEncoding textEncoding
);

Parameters
context

The graphics context for which to set the font and font size.

name
A null-terminated string that contains the PostScript name of the font to set.

size
A value that specifies the font size to set, in text space units.

textEncoding
A CGTextEncoding value that specifies the encoding used for the font. For a description of the
available values, see “Text Encodings” (page 146).

Discussion
For information about when to use this function, see CGContextShowText (page 131) and
CGContextShowTextAtPoint (page 132).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator

Declared In
CGContext.h

CGContextSetAllowsAntialiasing
Sets whether or not to allow anti-aliasing for a graphics context.

106 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetAllowsAntialiasing (
 CGContextRef context,
 bool allowsAntialiasing
);

Parameters
context

A graphics context.

allowsAntialiasing
A Boolean value that specifies whether or not to allow antialiasing. Pass true to allow antialiasing;
false otherwise. This parameter is not part of the graphics state.

Discussion
Quartz performs antialiasing for a graphics context if both the allowsAntialiasing parameter and the
graphics state parameter shouldAntialias are true.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextSetAlpha
Sets the opacity level for objects drawn in a graphics context.

void CGContextSetAlpha (
 CGContextRef c,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current graphics state’s alpha value parameter.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
This function sets the alpha value parameter for the specified graphics context. To clear the contents of the
drawing canvas, you should use the function CGContextClearRect (page 78).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetBlendMode
Sets how Quartz composites sample values for a graphics context.

Functions 107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetBlendMode (
 CGContextRef context,
 CGBlendMode mode
);

Parameters
context

The graphics context to modify.

mode
A blend mode. See “Blend Modes” (page 137) for a list of the constants you can supply.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextSetCharacterSpacing
Sets the current character spacing.

void CGContextSetCharacterSpacing (
 CGContextRef c,
 CGFloat spacing
);

Parameters
context

The graphics context for which to set the character spacing.

spacing
A value that represents the amount of additional space to place between glyphs, in text space
coordinates.

Discussion
Quartz adds the additional space to the advance between the origin of one character and the origin of the
next character. For information about the text coordinate system, see CGContextSetTextMatrix (page
127).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetCMYKFillColor
Sets the current fill color to a value in the DeviceCMYK color space.

108 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetCMYKFillColor (
 CGContextRef c,
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current fill color.

cyan
The cyan intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

magenta
The magenta intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

yellow
The yellow intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

black
The black intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
Quartz provides convenience functions for each of the device color spaces that allow you to set the fill or
stroke color space and the fill or stroke color with one function call.

When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceCMYK.

 ■ Quartz sets the current fill color to the value specified by the cyan, magenta, yellow, black, and alpha
parameters.

See also CGContextSetCMYKStrokeColor (page 110).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

Functions 109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetCMYKStrokeColor
Sets the current stroke color to a value in the DeviceCMYK color space.

void CGContextSetCMYKStrokeColor (
 CGContextRef c,
 CGFloat cyan,
 CGFloat magenta,
 CGFloat yellow,
 CGFloat black,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current stroke color.

cyan
The cyan intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

magenta
The magenta intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

yellow
The yellow intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

black
The black intensity value for the color to set. The DeviceCMYK color space permits the specification
of a value ranging from 0.0 (does not absorb the secondary color) to 1.0 (fully absorbs the secondary
color).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceCMYK.

 ■ Quartz sets the current stroke color to the value specified by the cyan, magenta, yellow, black, and
alpha parameters.

See also CGContextSetCMYKFillColor (page 108).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

110 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextSetFillColor
Sets the current fill color.

void CGContextSetFillColor (
 CGContextRef c,
 const CGFloat components[]
);

Parameters
context

The graphics context for which to set the current fill color.

components
An array of intensity values describing the color to set. The number of array elements must equal the
number of components in the current fill color space, plus an additional component for the alpha
value.

Discussion
The current fill color space must not be a pattern color space. For information on setting the fill color when
using a pattern color space, see CGContextSetFillPattern (page 112). Note that the preferred API to use
is now CGContextSetFillColorWithColor (page 112).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetFillColorSpace
Sets the fill color space in a graphics context.

void CGContextSetFillColorSpace (
 CGContextRef c,
 CGColorSpaceRef colorspace
);

Parameters
context

The graphics context for which to set the fill color space.

colorspace
The new fill color space. Quartz retains this object; upon return, you may safely release it.

Discussion
As a side effect of this function, Quartz assigns an appropriate initial value to the fill color, based on the
specified color space. To change this value, call CGContextSetFillColor (page 111). Note that the preferred
API to use is now CGContextSetFillColorWithColor (page 112).

Availability
Available in Mac OS X version 10.0 and later.

Functions 111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetFillColorWithColor
Sets the current fill color in a graphics context, using a Quartz color.

void CGContextSetFillColorWithColor (
 CGContextRef c,
 CGColorRef color
);

Parameters
context

The graphics context for which to set the fill color.

color
The new fill color.

Discussion
See also CGContextSetFillColor (page 111).

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CALayerEssentials

Declared In
CGContext.h

CGContextSetFillPattern
Sets the fill pattern in the specified graphics context.

void CGContextSetFillPattern (
 CGContextRef c,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
context

The graphics context to modify.

pattern
A fill pattern. Quartz retains this object; upon return, you may safely release it.

112 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

components
If the pattern is an uncolored (or a masking) pattern, pass an array of intensity values that specify the
color to use when the pattern is painted. The number of array elements must equal the number of
components in the base space of the fill pattern color space, plus an additional component for the
alpha value.

If the pattern is a colored pattern, pass an alpha value.

Discussion
The current fill color space must be a pattern color space. Otherwise, the result of calling this function is
undefined. If you want to set a fill color, not a pattern, then call the function
CGContextSetFillColorWithColor (page 112).

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGContext.h

CGContextSetFlatness
Sets the accuracy of curved paths in a graphics context.

void CGContextSetFlatness (
 CGContextRef c,
 CGFloat flatness
);

Parameters
context

The graphics context to modify.

flatness
The largest permissible distance, measured in device pixels, between a point on the true curve and
a point on the approximated curve.

Discussion
This function controls how accurately curved paths are rendered. Setting the flatness value to less than 1.0
renders highly accurate curves, but lengthens rendering times.

In most cases, you should not change the flatness value. Customizing the flatness value for the capabilities
of a particular output device impairs the ability of your application to render to other devices.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetFont
Sets the platform font in a graphics context.

Functions 113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetFont (
 CGContextRef c,
 CGFontRef font
);

Parameters
context

The graphics context for which to set the font.

font
A Quartz font.

Discussion
For information about when to use this function, see CGFontCreateWithPlatformFont (page 183).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetFontSize
Sets the current font size.

void CGContextSetFontSize (
 CGContextRef c,
 CGFloat size
);

Parameters
context

A graphics context.

size
A font size, expressed in text space units.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetGrayFillColor
Sets the current fill color to a value in the DeviceGray color space.

114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetGrayFillColor (
 CGContextRef c,
 CGFloat gray,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current fill color.

gray
A value that specifies the desired gray level. The DeviceGray color space permits the specification of
a value ranging from 0.0 (absolute black) to 1.0 (absolute white). Values outside this range are
clamped to 0.0 or 1.0.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceGray.

 ■ Quartz sets the current fill color to the value you specify in the gray and alpha parameters.

See also CGContextSetGrayStrokeColor (page 115).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetGrayStrokeColor
Sets the current stroke color to a value in the DeviceGray color space.

void CGContextSetGrayStrokeColor (
 CGContextRef c,
 CGFloat gray,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current stroke color.

gray
A value that specifies the desired gray level. The DeviceGray color space permits the specification of
a value ranging from 0.0 (absolute black) to 1.0 (absolute white). Values outside this range are
clamped to 0.0 or 1.0.

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Functions 115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceGray. The DeviceGray color space is a single-dimension
space in which color values are specified solely by the intensity of a gray value (from absolute black to
absolute white).

 ■ Quartz sets the current stroke color to the value you specify in the gray and alpha parameters.

See also CGContextSetGrayFillColor (page 114).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetInterpolationQuality
Sets the level of interpolation quality for a graphics context.

void CGContextSetInterpolationQuality (
 CGContextRef c,
 CGInterpolationQuality quality
);

Parameters
context

The graphics context to modify.

quality
A CGInterpolationQuality constant that specifies the required level of interpolation quality. For
possible values, see “Interpolation Qualities” (page 142).

Discussion
Interpolation quality is merely a hint to the context—not all contexts support all interpolation quality levels.

Availability
Available in Mac OS X version 10.1 and later.

See Also
CGContextGetInterpolationQuality (page 97)

Declared In
CGContext.h

CGContextSetLineCap
Sets the style for the endpoints of lines drawn in a graphics context.

116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetLineCap (
 CGContextRef c,
 CGLineCap cap
);

Parameters
context

The graphics context to modify.

cap
A line cap style constant—kCGLineCapButt (page 143) (the default), kCGLineCapRound (page 143),
or kCGLineCapSquare (page 143). See “Line Cap Styles” (page 143).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetLineDash
Sets the pattern for dashed lines in a graphics context.

void CGContextSetLineDash (
 CGContextRef c,
 CGFloat phase,
 const CGFloat lengths[],
 size_t count
);

Parameters
context

The graphics context to modify.

phase
A value that specifies how far into the dash pattern the line starts, in units of the user space. For
example, passing a value of 3 means the line is drawn with the dash pattern starting at three units
from its beginning. Passing a value of 0 draws a line starting with the beginning of a dash pattern.

lengths
An array of values that specify the lengths of the painted segments and unpainted segments,
respectively, of the dash pattern—or NULL for no dash pattern.

For example, passing an array with the values [2,3] sets a dash pattern that alternates between a
2-user-space-unit-long painted segment and a 3-user-space-unit-long unpainted segment. Passing
the values [1,3,4,2] sets the pattern to a 1-unit painted segment, a 3-unit unpainted segment, a
4-unit painted segment, and a 2-unit unpainted segment.

count
If the lengths parameter specifies an array, pass the number of elements in the array. Otherwise,
pass 0.

Availability
Available in Mac OS X version 10.0 and later.

Functions 117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetLineJoin
Sets the style for the joins of connected lines in a graphics context.

void CGContextSetLineJoin (
 CGContextRef c,
 CGLineJoin join
);

Parameters
context

The graphics context to modify.

join
A line join value—kCGLineJoinMiter (page 144) (the default), kCGLineJoinRound (page 144), or
kCGLineJoinBevel (page 144). See “Line Joins” (page 144).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetLineWidth
Sets the line width for a graphics context.

void CGContextSetLineWidth (
 CGContextRef c,
 CGFloat width
);

Parameters
context

The graphics context to modify.

width
The new line width to use, in user space units. The value must be greater than 0.

Discussion
The default line width is 1 unit. When stroked, the line straddles the path, with half of the total width on
either side.

Availability
Available in Mac OS X version 10.0 and later.

118 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetMiterLimit
Sets the miter limit for the joins of connected lines in a graphics context.

void CGContextSetMiterLimit (
 CGContextRef c,
 CGFloat limit
);

Parameters
context

The graphics context to modify.

limit
The miter limit to use.

Discussion
If the current line join style is set to kCGLineJoinMiter (see CGContextSetLineJoin (page 118)), Quartz
uses the miter limit to determine whether the lines should be joined with a bevel instead of a miter. Quartz
divides the length of the miter by the line width. If the result is greater than the miter limit, Quartz converts
the style to a bevel.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetPatternPhase
Sets the pattern phase of a context.

void CGContextSetPatternPhase (
 CGContextRef c,
 CGSize phase
);

Parameters
context

The graphics context to modify.

phase
A pattern phase, specified in user space.

Functions 119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
The pattern phase is a translation that Quartz applies prior to drawing a pattern in the context. The pattern
phase is part of the graphics state of a context, and the default pattern phase is (0,0). Setting the pattern
phase has the effect of temporarily changing the pattern matrix of any pattern you draw. For example, setting
the context’s pattern phase to (2,3) has the effect of moving the start of pattern cell tiling to the point
(2,3) in default user space.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGContext.h

CGContextSetRenderingIntent
Sets the rendering intent in the current graphics state.

void CGContextSetRenderingIntent (
 CGContextRef c,
 CGColorRenderingIntent intent
);

Parameters
context

The graphics context to modify.

intent
A rendering intent constant—kCGRenderingIntentDefault (page 59),
kCGRenderingIntentAbsoluteColorimetric (page 59),
kCGRenderingIntentRelativeColorimetric (page 59),
kCGRenderingIntentPerceptual (page 59), or kCGRenderingIntentSaturation (page 59).
For a discussion of these constants, see CGColorSpace Reference.

Discussion
The rendering intent specifies how Quartz should handle colors that are not located within the gamut of the
destination color space of a graphics context. If you do not explicitly set the rendering intent, Quartz uses
perceptual rendering intent for drawing sampled images and relative colorimetric rendering intent for all
other drawing.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetRGBFillColor
Sets the current fill color to a value in the DeviceRGB color space.

120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetRGBFillColor (
 CGContextRef c,
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current fill color.

red
The red intensity value for the color to set. The DeviceRGB color space permits the specification of a
value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

green
The green intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

blue
The blue intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current fill color space to DeviceRGB.

 ■ Quartz sets the current fill color to the value specified by the red, green, blue, and alpha parameters.

See also CGContextSetRGBStrokeColor (page 121).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CALayerEssentials
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer

Declared In
CGContext.h

CGContextSetRGBStrokeColor
Sets the current stroke color to a value in the DeviceRGB color space.

Functions 121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetRGBStrokeColor (
 CGContextRef c,
 CGFloat red,
 CGFloat green,
 CGFloat blue,
 CGFloat alpha
);

Parameters
context

The graphics context for which to set the current stroke color.

red
The red intensity value for the color to set. The DeviceRGB color space permits the specification of a
value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

green
The green intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

blue
The blue intensity value for the color to set. The DeviceRGB color space permits the specification of
a value ranging from 0.0 (zero intensity) to 1.0 (full intensity).

alpha
A value that specifies the opacity level. Values can range from 0.0 (transparent) to 1.0 (opaque).
Values outside this range are clipped to 0.0 or 1.0.

Discussion
When you call this function, two things happen:

 ■ Quartz sets the current stroke color space to DeviceRGB.

 ■ Quartz sets the current stroke color to the value specified by the red, green, blue, and alpha parameters.

See also CGContextSetRGBFillColor (page 120).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer

Declared In
CGContext.h

CGContextSetShadow
Enables shadowing in a graphics context.

122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetShadow (
 CGContextRef context,
 CGSize offset,
 CGFloat blur
);

Parameters
context

A graphics context.

offset
Specifies a translation of the context’s coordinate system, to establish an offset for the shadow ({0,0}
specifies a light source immediately above the screen).

blur
A non-negative number specifying the amount of blur.

Discussion
Shadow parameters are part of the graphics state in a context. After shadowing is set, all objects drawn are
shadowed using a black color with 1/3 alpha (i.e., RGBA = {0, 0, 0, 1.0/3.0}) in the DeviceRGB color
space.

To turn off shadowing:

 ■ Use the standard save/restore mechanism for the graphics state.

 ■ Use CGContextSetShadowWithColor (page 123) to set the shadow color to a fully transparent color
(or pass NULL as the color).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGContext.h

CGContextSetShadowWithColor
Enables shadowing with color a graphics context.

void CGContextSetShadowWithColor (
 CGContextRef context,
 CGSize offset,
 CGFloat blur,
 CGColorRef color
);

Parameters
context

The graphics context to modify.

offset
Specifies a translation in base-space.

blur
A non-negative number specifying the amount of blur.

Functions 123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

color
Specifies the color of the shadow, which may contain a non-opaque alpha value. If NULL, then
shadowing is disabled.

Discussion
See also CGContextSetShadow (page 122).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGContext.h

CGContextSetShouldAntialias
Sets anti-aliasing on or off for a graphics context.

void CGContextSetShouldAntialias (
 CGContextRef c,
 bool shouldAntialias
);

Parameters
context

The graphics context to modify.

shouldAntialias
A Boolean value that specifies whether anti-aliasing should be turned on. Anti-aliasing is turned on
by default when a window or bitmap context is created. It is turned off for other types of contexts.

Discussion
Anti-aliasing is a graphics state parameter.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetShouldSmoothFonts
Enables or disables font smoothing in a graphics context.

void CGContextSetShouldSmoothFonts (
 CGContextRef c,
 bool shouldSmoothFonts
);

Parameters
context

The graphics context to modify.

shouldSmoothFonts
A Boolean value that specifies whether to enable font smoothing.

124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
There are cases, such as rendering to a bitmap, when font smoothing is not appropriate and should be
disabled. Note that some contexts (such as PostScript contexts) do not support font smoothing.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGContext.h

CGContextSetStrokeColor
Sets the current stroke color.

void CGContextSetStrokeColor (
 CGContextRef c,
 const CGFloat components[]
);

Parameters
context

The graphics context for which to set the current stroke color.

components
An array of intensity values describing the color to set. The number of array elements must equal the
number of components in the current stroke color space, plus an additional component for the alpha
value.

Discussion
The current stroke color space must not be a pattern color space. For information on setting the stroke color
when using a pattern color space, see CGContextSetStrokePattern (page 126). Note that the preferred
API is now CGContextSetStrokeColorWithColor (page 126).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetStrokeColorSpace
Sets the stroke color space in a graphics context.

void CGContextSetStrokeColorSpace (
 CGContextRef c,
 CGColorSpaceRef colorspace
);

Parameters
context

The graphics context for the new stroke color space.

Functions 125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

colorspace
The new stroke color space. Quartz retains this object; upon return, you may safely release it.

Discussion
As a side effect when you call this function, Quartz assigns an appropriate initial value to the stroke color,
based on the color space you specify. To change this value, call CGContextSetStrokeColor (page 125).
Note that the preferred API is now CGContextSetStrokeColorWithColor (page 126).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextSetStrokeColorWithColor
Sets the current stroke color in a context, using a Quartz color.

void CGContextSetStrokeColorWithColor (
 CGContextRef c,
 CGColorRef color
);

Parameters
context

The graphics context to modify.

color
The new stroke color.

Discussion
See also CGContextSetStrokeColor (page 125).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGContext.h

CGContextSetStrokePattern
Sets the stroke pattern in the specified graphics context.

void CGContextSetStrokePattern (
 CGContextRef c,
 CGPatternRef pattern,
 const CGFloat components[]
);

Parameters
context

The graphics context to modify.

126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

pattern
A pattern for stroking. Quartz retains this object; upon return, you may safely release it.

components
If the specified pattern is an uncolored (or masking) pattern, pass an array of intensity values that
specify the color to use when the pattern is painted. The number of array elements must equal the
number of components in the base space of the stroke pattern color space, plus an additional
component for the alpha value.

If the specified pattern is a colored pattern, pass an alpha value.

Discussion
The current stroke color space must be a pattern color space. Otherwise, the result of calling this function is
undefined. If you want to set a stroke color, not a stroke pattern, then call the function
CGContextSetStrokeColorWithColor (page 126).

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGContext.h

CGContextSetTextDrawingMode
Sets the current text drawing mode.

void CGContextSetTextDrawingMode (
 CGContextRef c,
 CGTextDrawingMode mode
);

Parameters
context

A graphics context.

mode
A text drawing mode (such as kCGTextFill (page 145) or kCGTextStroke (page 145)) that specifies
how Quartz renders individual glyphs in a graphics context. See “Text Drawing Modes” (page 144)
for a complete list.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextSetTextMatrix
Sets the current text matrix.

Functions 127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextSetTextMatrix (
 CGContextRef c,
 CGAffineTransform t
);

Parameters
context

A graphics context.

transform
The text matrix to set.

Discussion
The text matrix specifies the transform from text space to user space. To produce the final text rendering
matrix that is used to actually draw the text on the page, Quartz concatenates the text matrix with the current
transformation matrix and other parameters from the graphics state.

Note that the text matrix is not a part of the graphics state—saving or restoring the graphics state has no
effect on the text matrix. The text matrix is an attribute of the graphics context, not of the current font.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator

Declared In
CGContext.h

CGContextSetTextPosition
Sets the location at which text is drawn.

void CGContextSetTextPosition (
 CGContextRef c,
 CGFloat x,
 CGFloat y
);

Parameters
context

A graphics context.

x
A value for the x-coordinate at which to draw the text, in user space coordinates.

y
A value for the y-coordinate at which to draw the text.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

CGContextShowGlyphs
Displays an array of glyphs at the current text position.

void CGContextShowGlyphs (
 CGContextRef c,
 const CGGlyph g[],
 size_t count
);

Parameters
context

The graphics context in which to display the glyphs.

glyphs
An array of glyphs to display.

count
The total number of glyphs passed in the g parameter.

Discussion
This function displays an array of glyphs at the current text position, a point specified by the current text
matrix.

See also CGContextShowGlyphsAtPoint (page 129), CGContextShowText (page 131),
CGContextShowTextAtPoint (page 132), and CGContextShowGlyphsWithAdvances (page 130).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextShowGlyphsAtPoint
Displays an array of glyphs at a position you specify.

void CGContextShowGlyphsAtPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 const CGGlyph glyphs[],
 size_t count
);

Parameters
context

The graphics context in which to display the glyphs.

x
A value for the x-coordinate of the user space at which to display the glyphs.

y
A value for the y-coordinate of the user space at which to display the glyphs.

glyphs
An array of glyphs to display.

Functions 129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

count
The total number of glyphs passed in the glyphs parameter.

Discussion
This function displays an array of glyphs at the specified position in the text space.

See alsoCGContextShowText (page 131),CGContextShowGlyphs (page 129),CGContextShowGlyphs (page
129), and CGContextShowGlyphsWithAdvances (page 130).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGContext.h

CGContextShowGlyphsAtPositions
Draws glyphs at the provided position.

void CGContextShowGlyphsAtPositions(
 CGContextRef context,
 const CGGlyph glyphs[],
 const CGPoint positions[],
 size_t count
);

Parameters
context

The graphics context in which to display the glyphs.

glyphs
An array of Quartz glyphs.

positions
The positions for the glyphs. Each item in this array matches with the glyph at the corresponding
index in the glyphs array. The position of each glyph is specified in text space, and, as a consequence,
is transformed through the text matrix to user space.

count
The number of items in the glyphs array.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGContext.h

CGContextShowGlyphsWithAdvances
Draws an array of glyphs with varying offsets.

130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextShowGlyphsWithAdvances (
 CGContextRef c,
 const CGGlyph glyphs[],
 const CGSize advances[],
 size_t count
);

Parameters
context

The graphics context in which to display the glyphs.

glyphs
An array of Quartz glyphs.

advances
An array of offset values associated with each glyph in the array. Each value specifies the offset from
the previous glyph's origin to the origin of the corresponding glyph. Offsets are specified in user
space.

count
The number of glyphs in the specified array.

Discussion
This function draws an array of glyphs at the current point specified by the text matrix.

See also CGContextShowText (page 131), CGContextShowGlyphs (page 129), and
CGContextShowGlyphs (page 129), and CGContextShowGlyphsAtPoint (page 129).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGContext.h

CGContextShowText
Displays a character array at the current text position, a point specified by the current text matrix.

void CGContextShowText (
 CGContextRef c,
 const char *string,
 size_t length
);

Parameters
context

A graphics context.

string
An array of characters to draw.

length
The length of the array specified in the bytes parameter.

Functions 131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
Quartz uses font data provided by the system to map each byte of the array through the encoding vector of
the current font to obtain the glyph to display. Note that the font must have been set using
CGContextSelectFont (page 106). Don’t use CGContextShowTextAtPoint in conjunction with
CGContextSetFont (page 113).

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextShowTextAtPoint (page 132)
CGContextShowGlyphs (page 129)
CGContextShowGlyphsAtPoint (page 129)
CGContextShowGlyphsWithAdvances (page 130)

Declared In
CGContext.h

CGContextShowTextAtPoint
Displays a character string at a position you specify.

void CGContextShowTextAtPoint (
 CGContextRef c,
 CGFloat x,
 CGFloat y,
 const char *string,
 size_t length
);

Parameters
context

A graphics context .

x
A value for the x-coordinate of the text space at which to display the text.

y
A value for the y-coordinate of the text space at which to display the text.

string
An array of characters to draw.

length
The length of the array specified in the bytes parameter.

Discussion
Quartz uses font data provided by the system to map each byte of the array through the encoding vector of
the current font to obtain the glyph to display. Note that the font must have been set using
CGContextSelectFont (page 106). Don’t use CGContextShowTextAtPoint in conjunction with
CGContextSetFont (page 113).

Availability
Available in Mac OS X version 10.0 and later.

132 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextShowText (page 131)
CGContextShowGlyphs (page 129)
CGContextShowGlyphsAtPoint (page 129)
CGContextShowGlyphsWithAdvances (page 130)

Related Sample Code
HID Calibrator

Declared In
CGContext.h

CGContextStrokeEllipseInRect
Strokes an ellipse that fits inside the specified rectangle.

void CGContextStrokeEllipseInRect (
 CGContextRef context,
 CGRect rect
);

Parameters
context

A graphics context.

rect
A rectangle that defines the area for the ellipse to fit in.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextStrokeLineSegments
Strokes a sequence of line segments.

void CGContextStrokeLineSegments (
 CGContextRef c,
 const CGPoint points[],
 size_t count
);

Parameters
c

A graphics context.

points
An array of points, organized as pairs—the starting point of a line segment followed by the ending
point of a line segment. For example, the first point in the array specifies the starting position of the
first line, the second point specifies the ending position of the first line, the third point specifies the
starting position of the second line, and so forth.

Functions 133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

count
The number of points in the points array.

Discussion
This function is equivalent to the following code:

CGContextBeginPath (context);
for (k = 0; k < count; k += 2) {
 CGContextMoveToPoint(context, s[k].x, s[k].y);
 CGContextAddLineToPoint(context, s[k+1].x, s[k+1].y);
}
CGContextStrokePath(context);

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

CGContextStrokePath
Paints a line along the current path.

void CGContextStrokePath (
 CGContextRef c
);

Parameters
context

A graphics context.

Discussion
Quartz uses the line width and stroke color of the graphics state to paint the path. As a side effect when you
call this function, Quartz clears the current path.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextDrawPath (page 87)
CGContextFillPath (page 94)
CGContextEOFillPath (page 93)

Related Sample Code
CarbonSketch
HID Calibrator
HID Explorer

Declared In
CGContext.h

CGContextStrokeRect
Paints a rectangular path.

134 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

void CGContextStrokeRect (
 CGContextRef c,
 CGRect rect
);

Parameters
context

A graphics context .

rect
A rectangle, specified in user space coordinates.

Discussion
Quartz uses the line width and stroke color of the graphics state to paint the path.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextStrokeRectWithWidth (page 135)

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save

Declared In
CGContext.h

CGContextStrokeRectWithWidth
Paints a rectangular path, using the specified line width.

void CGContextStrokeRectWithWidth (
 CGContextRef c,
 CGRect rect,
 CGFloat width
);

Parameters
context

A graphics context.

rect
A rectangle, in user space coordinates.

width
A value, in user space units, that is greater than zero. This value does not affect the line width values
in the current graphics state.

Discussion
Aside from the line width value, Quartz uses the current attributes of the graphics state (such as stroke color)
to paint the line. The line straddles the path, with half of the total width on either side. As a side effect when
you call this function, Quartz clears the current path.

Availability
Available in Mac OS X version 10.0 and later.

Functions 135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

See Also
CGContextStrokeRect (page 134)

Declared In
CGContext.h

CGContextSynchronize
Marks a window context for update.

void CGContextSynchronize (
 CGContextRef c
);

Parameters
context

The window context to synchronize. If you pass a PDF context or a bitmap context, this function does
nothing.

Discussion
When you call this function, all drawing operations since the last update are flushed at the next regular
opportunity. Under normal conditions, you do not need to call this function.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

CGContextTranslateCTM
Changes the origin of the user coordinate system in a context.

void CGContextTranslateCTM (
 CGContextRef c,
 CGFloat tx,
 CGFloat ty
);

Parameters
context

A graphics context.

tx
The amount to displace the x-axis of the coordinate space, in units of the user space, of the specified
context.

ty
The amount to displace the y-axis of the coordinate space, in units of the user space, of the specified
context.

136 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGContext.h

Data Types

CGContextRef
An opaque type that represents a Quartz 2D drawing environment.

typedef struct CGContext * CGContextRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGContext.h

Constants

Blend Modes
Compositing operations for images.

Data Types 137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

enum CGBlendMode {
 kCGBlendModeNormal,
 kCGBlendModeMultiply,
 kCGBlendModeScreen,
 kCGBlendModeOverlay,
 kCGBlendModeDarken,
 kCGBlendModeLighten,
 kCGBlendModeColorDodge,
 kCGBlendModeColorBurn,
 kCGBlendModeSoftLight,
 kCGBlendModeHardLight,
 kCGBlendModeDifference,
 kCGBlendModeExclusion,
 kCGBlendModeHue,
 kCGBlendModeSaturation,
 kCGBlendModeColor,
 kCGBlendModeLuminosity,
 kCGBlendModeClear,
 kCGBlendModeCopy,
 kCGBlendModeSourceIn,
 kCGBlendModeSourceOut,
 kCGBlendModeSourceAtop,
 kCGBlendModeDestinationOver,
 kCGBlendModeDestinationIn,
 kCGBlendModeDestinationOut,
 kCGBlendModeDestinationAtop,
 kCGBlendModeXOR,
 kCGBlendModePlusDarker,
 kCGBlendModePlusLighter
};
typedef enum CGBlendMode CGBlendMode;

Constants
kCGBlendModeNormal

Paints the source image samples over the background image samples.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeMultiply
Multiplies the source image samples with the background image samples. This results in colors that
are at least as dark as either of the two contributing sample colors.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeScreen
Multiplies the inverse of the source image samples with the inverse of the background image samples.
This results in colors that are at least as light as either of the two contributing sample colors.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

138 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeOverlay
Either multiplies or screens the source image samples with the background image samples, depending
on the background color. The result is to overlay the existing image samples while preserving the
highlights and shadows of the background. The background color mixes with the source image to
reflect the lightness or darkness of the background.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeDarken
Creates the composite image samples by choosing the darker samples (either from the source image
or the background). The result is that the background image samples are replaced by any source
image samples that are darker. Otherwise, the background image samples are left unchanged.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeLighten
Creates the composite image samples by choosing the lighter samples (either from the source image
or the background). The result is that the background image samples are replaced by any source
image samples that are lighter. Otherwise, the background image samples are left unchanged.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeColorDodge
Brightens the background image samples to reflect the source image samples. Source image sample
values that specify black do not produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeColorBurn
Darkens the background image samples to reflect the source image samples. Source image sample
values that specify white do not produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeSoftLight
Either darkens or lightens colors, depending on the source image sample color. If the source image
sample color is lighter than 50% gray, the background is lightened, similar to dodging. If the source
image sample color is darker than 50% gray, the background is darkened, similar to burning. If the
source image sample color is equal to 50% gray, the background is not changed. Image samples that
are equal to pure black or pure white produce darker or lighter areas, but do not result in pure black
or white. The overall effect is similar to what you’d achieve by shining a diffuse spotlight on the source
image. Use this to add highlights to a scene.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

Constants 139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeHardLight
Either multiplies or screens colors, depending on the source image sample color. If the source image
sample color is lighter than 50% gray, the background is lightened, similar to screening. If the source
image sample color is darker than 50% gray, the background is darkened, similar to multiplying. If
the source image sample color is equal to 50% gray, the source image is not changed. Image samples
that are equal to pure black or pure white result in pure black or white. The overall effect is similar to
what you’d achieve by shining a harsh spotlight on the source image. Use this to add highlights to a
scene.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeDifference
Subtracts either the source image sample color from the background image sample color, or the
reverse, depending on which sample has the greater brightness value. Source image sample values
that are black produce no change; white inverts the background color values.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeExclusion
Produces an effect similar to that produced by kCGBlendModeDifference, but with lower contrast.
Source image sample values that are black don’t produce a change; white inverts the background
color values.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeHue
Uses the luminance and saturation values of the background with the hue of the source image.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeSaturation
Uses the luminance and hue values of the background with the saturation of the source image. Areas
of the background that have no saturation (that is, pure gray areas) don’t produce a change.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeColor
Uses the luminance values of the background with the hue and saturation values of the source image.
This mode preserves the gray levels in the image. You can use this mode to color monochrome images
or to tint color images.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

kCGBlendModeLuminosity
Uses the hue and saturation of the background with the luminance of the source image. This mode
creates an effect that is inverse to the effect created by kCGBlendModeColor.

Available in Mac OS X v10.4 and later.

Declared in CGContext.h.

140 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModeClear
R = 0

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeCopy
R = S

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceIn
R = S*Da

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceOut
R = S*(1 - Da)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeSourceAtop
R = S*Da + D*(1 - Sa)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationOver
R = S*(1 - Da) + D

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationIn
R = D*Sa

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationOut
R = D*(1 - Sa)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeDestinationAtop
R = S*(1 - Da) + D*Sa

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModeXOR
R = S*(1 - Da) + D*(1 - Sa). This XOR mode is only nominally related to the classical bitmap
XOR operation, which is not supported by Quartz 2D.

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

Constants 141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGBlendModePlusDarker
R = MAX(0, (1 - D) + (1 - S))

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

kCGBlendModePlusLighter
R = MIN(1, S + D)

Available in Mac OS X v10.5 and later.

Declared in CGContext.h.

Discussion
The blend mode constants introduced in Mac OS X v10.5 represent the Porter-Duff blend modes. The symbols
in the equations for these blend modes are:

 ■ R is the premultiplied result

 ■ S is the source color, and includes alpha

 ■ D is the destination color, and includes alpha

 ■ Ra, Sa, and Da are the alpha components of R, S, and D

You can find more information on blend modes, including examples of images produced using them, and
many mathematical descriptions of the modes, in PDF Reference, Fourth Edition, Version 1.5, Adobe Systems,
Inc. If you are a former QuickDraw developer, it may be helpful for you to think of blend modes as an alternative
to transfer modes

For examples of using blend modes see "Setting Blend Modes" and "Using Blend Modes With Images" in
Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGContext.h

Interpolation Qualities
Levels of interpolation quality for rendering an image.

enum CGInterpolationQuality {
 kCGInterpolationDefault,
 kCGInterpolationNone,
 kCGInterpolationLow,
 kCGInterpolationHigh
};
typedef enum CGInterpolationQuality CGInterpolationQuality;

Constants
kCGInterpolationDefault

The default level of quality.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

142 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

kCGInterpolationNone
No interpolation.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

kCGInterpolationLow
A low level of interpolation quality. This setting may speed up image rendering.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

kCGInterpolationHigh
A high level of interpolation quality. This setting may slow down image rendering.

Available in Mac OS X v10.1 and later.

Declared in CGContext.h.

Discussion
You use the function CGContextSetInterpolationQuality (page 116) to set the interpolation quality in
a graphics context.

Declared In
CGContext.h

Line Cap Styles
Styles for rendering the endpoint of a stroked line.

enum CGLineCap {
 kCGLineCapButt,
 kCGLineCapRound,
 kCGLineCapSquare
};
typedef enum CGLineCap CGLineCap;

Constants
kCGLineCapButt

A line with a squared-off end. Quartz draws the line to extend only to the exact endpoint of the path.
This is the default.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineCapRound
A line with a rounded end. Quartz draws the line to extend beyond the endpoint of the path. The line
ends with a semicircular arc with a radius of 1/2 the line’s width, centered on the endpoint.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineCapSquare
A line with a squared-off end. Quartz extends the line beyond the endpoint of the path for a distance
equal to half the line width.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Constants 143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
A line cap specifies the method used by CGContextStrokePath (page 134) to draw the endpoint of the
line. To change the line cap style in a graphics context, you use the function CGContextSetLineCap (page
116).

Declared In
CGContext.h

Line Joins
Junction types for stroked lines.

enum CGLineJoin {
 kCGLineJoinMiter,
 kCGLineJoinRound,
 kCGLineJoinBevel
};
typedef enum CGLineJoin CGLineJoin;

Constants
kCGLineJoinMiter

A join with a sharp (angled) corner. Quartz draws the outer sides of the lines beyond the endpoint of
the path, until they meet. If the length of the miter divided by the line width is greater than the miter
limit, a bevel join is used instead. This is the default. To set the miter limit, see
CGContextSetMiterLimit (page 119)

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineJoinRound
A join with a rounded end. Quartz draws the line to extend beyond the endpoint of the path. The
line ends with a semicircular arc with a radius of 1/2 the line’s width, centered on the endpoint.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGLineJoinBevel
A join with a squared-off end. Quartz draws the line to extend beyond the endpoint of the path, for
a distance of 1/2 the line’s width.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
A line join specifies how CGContextStrokePath (page 134) draws the junction between connected line
segments. To set the line join style in a graphics context, you use the function CGContextSetLineJoin (page
118).

Declared In
CGContext.h

Text Drawing Modes
Modes for rendering text.

144 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

enum CGTextDrawingMode {
 kCGTextFill,
 kCGTextStroke,
 kCGTextFillStroke,
 kCGTextInvisible,
 kCGTextFillClip,
 kCGTextStrokeClip,
 kCGTextFillStrokeClip,
 kCGTextClip
};
typedef enum CGTextDrawingMode CGTextDrawingMode;

Constants
kCGTextFill

Perform a fill operation on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextStroke
Perform a stroke operation on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillStroke
Perform fill, then stroke operations on the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextInvisible
Do not draw the text, but do update the text position.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillClip
Perform a fill operation, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextStrokeClip
Perform a stroke operation, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextFillStrokeClip
Perform fill then stroke operations, then intersect the text with the current clipping path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGTextClip
Specifies to intersect the text with the current clipping path. This mode does not paint the text.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Constants 145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Discussion
You provide a text drawing mode constant to the function CGContextSetTextDrawingMode (page 127) to
set the current text drawing mode for a graphics context. Text drawing modes determine how Quartz renders
individual glyphs onscreen. For example, you can set a text drawing mode to draw text filled in or outlined
(stroked) or both. You can also create special effects with the text clipping drawing modes, such as clipping
an image to a glyph shape.

Declared In
CGContext.h

Text Encodings
Text encodings for fonts.

enum CGTextEncoding {
 kCGEncodingFontSpecific,
 kCGEncodingMacRoman
};
typedef enum CGTextEncoding CGTextEncoding;

Constants
kCGEncodingFontSpecific

The built-in encoding of the font.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGEncodingMacRoman
The MacRoman encoding. MacRoman is an ASCII variant originally created for use in the Mac OS, in
which characters 127 and lower are ASCII, and characters 128 and higher are non-English characters
and symbols.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
For more information on setting the font in a graphics context, see CGContextSelectFont (page 106).

Declared In
CGContext.h

146 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CGContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGDataConsumer.h

Companion guide Quartz 2D Programming Guide

Overview

The CGDataConsumerRef opaque type abstracts the data-writing task and eliminates the need for applications
to manage data through a raw memory buffer. You can use data consumer objects to write image or PDF
data and all, except for CGDataConsumerCreateWithCFData (page 148), are available in Mac OS X v10.0
or later.

If your application runs in Mac OS X v10.4 or later, you should use CGImageDestination objects rather than
data consumers. See CGImageDestination Reference.

Functions by Task

Creating Data Consumers

CGDataConsumerCreate (page 148)
Creates a data consumer that uses callback functions to write data.

CGDataConsumerCreateWithURL (page 149)
Creates a data consumer that writes data to a location specified by a URL.

CGDataConsumerCreateWithCFData (page 148)
Creates a data consumer that writes to a CFData object.

Getting the CFType ID

CGDataConsumerGetTypeID (page 149)
Returns the Core Foundation type identifier for Quartz data consumers.

Overview 147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Retaining and Releasing Data Consumers

CGDataConsumerRelease (page 150)
Decrements the retain count of a data consumer.

CGDataConsumerRetain (page 150)
Increments the retain count of a data consumer.

Functions

CGDataConsumerCreate
Creates a data consumer that uses callback functions to write data.

CGDataConsumerRef CGDataConsumerCreate (
 void *info,
 const CGDataConsumerCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it passes this pointer as the info parameter.

callbacks
A pointer to a CGDataConsumerCallbacks structure that specifies the callback functions you
implement to copy data sent to the consumer and to handle the consumer’s basic memory
management. For a complete description, see CGDataConsumerCallbacks (page 152).

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 150).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGDataConsumer.h

CGDataConsumerCreateWithCFData
Creates a data consumer that writes to a CFData object.

148 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

CGDataConsumerRef CGDataConsumerCreateWithCFData (
 CFMutableDataRef data
);

Parameters
data

The CFData object to write to.

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 150).

Discussion
You can use this function when you need to represent Quartz data as a CFData type. For example, you might
create a CFData object that you then copy to the pasteboard.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

CGDataConsumerCreateWithURL
Creates a data consumer that writes data to a location specified by a URL.

CGDataConsumerRef CGDataConsumerCreateWithURL (
 CFURLRef url
);

Parameters
url

A CFURL object that specifies the data destination.

Return Value
A new data consumer object. You are responsible for releasing this object using
CGDataConsumerRelease (page 150).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGDataConsumer.h

CGDataConsumerGetTypeID
Returns the Core Foundation type identifier for Quartz data consumers.

CFTypeID CGDataConsumerGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGDataConsumerRef (page 153).

Functions 149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGDataConsumer.h

CGDataConsumerRelease
Decrements the retain count of a data consumer.

void CGDataConsumerRelease (
 CGDataConsumerRef consumer
);

Parameters
consumer

The data consumer to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the consumer parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGDataConsumer.h

CGDataConsumerRetain
Increments the retain count of a data consumer.

CGDataConsumerRef CGDataConsumerRetain (
 CGDataConsumerRef consumer
);

Parameters
consumer

The data consumer to retain.

Return Value
The same data consumer you passed in as the consumer parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the consumer parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Declared In
CGDataConsumer.h

Callbacks

CGDataConsumerPutBytesCallback
Copies data from a Quartz-supplied buffer into a data consumer.

size_t (*CGDataConsumerPutBytesCallback) (
 void *info,
 const void *buffer,
 size_t count
);

If you name your function MyConsumerPutBytes, you would declare it like this:

size_t MyConsumerPutBytes (
 void *info,
 const void *buffer,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the pointer supplied
to CGDataConsumerCreate (page 148).

buffer
The Quartz-supplied buffer from which you copy the specified number of bytes.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the consumer, you should return 0.

Discussion
When Quartz is ready to send data to the consumer, your function is called. It should copy the specified
number of bytes from buffer into some resource under your control—for example, a file.

For information on how to associate your callback function with a data consumer, see
CGDataConsumerCreate (page 148) and CGDataConsumerCallbacks (page 152).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

Callbacks 151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

CGDataConsumerReleaseInfoCallback
Releases any private data or resources associated with the data consumer.

void (*CGDataConsumerReleaseInfoCallback) (
 void *info
);

If you name your function MyConsumerReleaseInfo, you would declare it like this:

void MyConsumerReleaseInfo (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataConsumerCreate (page 148).

Discussion
When Quartz frees a data consumer that has an associated release function, the release function is called.

For information on how to associate your callback function with a data consumer, see
CGDataConsumerCreate (page 148) and CGDataConsumerCallbacks (page 152).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataConsumer.h

Data Types

CGDataConsumerCallbacks
A structure that contains pointers to callback functions that manage the copying of data for a data consumer.

struct CGDataConsumerCallbacks {
 CGDataConsumerPutBytesCallback putBytes;
 CGDataConsumerReleaseInfoCallback releaseConsumer;
};
typedef struct CGDataConsumerCallbacks CGDataConsumerCallbacks;

Fields
putBytes

A pointer to a function that copies data to the data consumer. For more information, see
CGDataConsumerPutBytesCallback (page 151).

releaseConsumer
A pointer to a function that handles clean-up for the data consumer, or NULL. For more information,
see CGDataConsumerReleaseInfoCallback (page 152)

152 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Discussion
The functions specified by the CGDataConsumerCallbacks structure are responsible for copying data that
Quartz sends to your consumer and for handling the consumer’s basic memory management. You supply a
CGDataConsumerCallbacks structure to the function CGDataConsumerCreate (page 148) to create a data
consumer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataConsumer.h

CGDataConsumerRef
An opaque type that handles the storage of data supplied by Quartz functions.

typedef struct CGDataConsumer *CGDataConsumerRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataConsumer.h

Data Types 153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

154 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CGDataConsumer Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGDataProvider.h

Overview

The CGDataProvider header file declares a data type that supplies Quartz functions with data. Data provider
objects abstract the data-access task and eliminate the need for applications to manage data through a raw
memory buffer.

For information on how to use CGDataProvider functions, see Quartz 2D Programming Guide Programming
Guide.

See also CGDataConsumer Reference.

Functions

CGDataProviderCopyData
Returns a copy of the provider’s data.

CFDataRef CGDataProviderCopyData(
 CGDataProviderRef provider
);

Parameters
provider

The data provider whose data you want to copy.

Return Value
A new data object containing a copy of the provider’s data. You are responsible for releasing this object.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

Overview 155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderCreate
Creates a Quartz sequential-access data provider. (Deprecated in Mac OS X v10.5.)

CGDataProviderRef CGDataProviderCreate (
 void *info,
 const CGDataProviderCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this data.

callbacks
A pointer to a CGDataProviderCallbacks structure that specifies the callback functions you
implement to handle the data provider’s basic memory management. For a complete description,
see CGDataProviderCallbacks (page 170).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You use this function to create a sequential-access data provider that uses callback functions to read data
from your program in a stream.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CGDataProvider.h

CGDataProviderCreateDirect
Creates a Quartz direct-access data provider.

CGDataProviderRef CGDataProviderCreateDirect (
 void *info,
 off_t size,
 const CGDataProviderDirectCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

size
The number of bytes of data to provide.

callbacks
A pointer to a CGDataProviderDirectCallbacks structure that specifies the callback functions
you implement to handle the data provider’s basic memory management.

156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program in a single block.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderCreateDirectAccess
Creates a Quartz direct-access data provider. (Deprecated in Mac OS X v10.5.)

CGDataProviderRef CGDataProviderCreateDirectAccess (
 void *info,
 size_t size,
 const CGDataProviderDirectAccessCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

size
A value that specifies the number of bytes that the data provider contains.

callbacks
A pointer to a CGDataProviderDirectAccessCallbacks structure that specifies the callback
functions you implement to handle the data provider’s basic memory management. For a complete
description, see CGDataProviderDirectAccessCallbacks (page 171).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program in a single block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CGDataProvider.h

CGDataProviderCreateSequential
Creates a Quartz sequential-access data provider.

Functions 157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderRef CGDataProviderCreateSequential (
 void *info,
 const CGDataProviderSequentialCallbacks *callbacks
);

Parameters
info

A pointer to data of any type or NULL. When Quartz calls the functions specified in the callbacks
parameter, it sends each of the functions this pointer.

callbacks
A pointer to a CGDataProviderSequentialCallbacks structure that specifies the callback functions
you implement to handle the data provider’s basic memory management.

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You use this function to create a sequential-access data provider that uses callback functions to read data
from your program in a single block.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderCreateWithCFData
Creates a Quartz data provider that reads from a CFData object.

CGDataProviderRef CGDataProviderCreateWithCFData (
 CFDataRef data
);

Parameters
data

The CFData object to read from.

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You can use this function when you need to represent Quartz data as a CFData type. For example, you might
create a CFData object when reading data from the pasteboard.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDataProvider.h

158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

CGDataProviderCreateWithData
Creates a Quartz direct-access data provider that uses data your program supplies.

CGDataProviderRef CGDataProviderCreateWithData (
 void *info,
 const void *data,
 size_t size,
 CGDataProviderReleaseDataCallback releaseData
);

Parameters
info

A pointer to data of any type, or NULL. When Quartz calls the function specified in the releaseData
parameter, Quartz sends it this pointer as its first argument.

data
A pointer to the array of data that the provider contains.

size
A value that specifies the number of bytes that the data provider contains.

releaseData
A pointer to a release callback for the data provider, or NULL. Your release function is called when
Quartz frees the data provider. For more information, see
CGDataProviderReleaseDataCallback (page 166).

Return Value
A new data provider. You are responsible for releasing this object using CGDataProviderRelease (page
161).

Discussion
You use this function to create a direct-access data provider that uses callback functions to read data from
your program an entire block at one time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGDataProvider.h

CGDataProviderCreateWithFilename
Creates a Quartz direct-access data provider that uses a file to supply data.

CGDataProviderRef CGDataProviderCreateWithFilename(
 const char *filename
);

Parameters
filename

The full or relative pathname to use for the data provider. When you supply Quartz data via the
provider, it reads the data from the specified file.

Functions 159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Return Value
A new data provider or NULL if the file could not be opened. You are responsible for releasing this object
using CGDataProviderRelease (page 161).

Discussion
You use this function to create a direct-access data provider that supplies data from a file. When you supply
Quartz with a direct-access data provider, Quartz obtains data from your program in a single block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderCreateWithURL
Creates a Quartz direct-access data provider that uses a URL to supply data.

CGDataProviderRef CGDataProviderCreateWithURL (
 CFURLRef url
);

Parameters
url

A CFURL object to use for the data provider. When you supply Quartz data via the provider, it reads
the data from the URL address.

Return Value
A new data provider or NULL if the data from the URL could not be accessed. You are responsible for releasing
this object using CGDataProviderRelease (page 161).

Discussion
You use this function to create a direct-access data provider that supplies data from a URL. When you supply
Quartz with a direct-access data provider, Quartz obtains data from your program in a single entire block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderGetTypeID
Returns the Core Foundation type identifier for Quartz data providers.

CFTypeID CGDataProviderGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGDataProviderRef (page 170).

Availability
Available in Mac OS X v10.2 and later.

160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Declared In
CGDataProvider.h

CGDataProviderRelease
Decrements the retain count of a data provider.

void CGDataProviderRelease (
 CGDataProviderRef provider
);

Parameters
provider

The data provider to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the provider parameter
is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderRetain
Increments the retain count of a data provider.

CGDataProviderRef CGDataProviderRetain (
 CGDataProviderRef provider
);

Parameters
provider

The data provider to retain.

Return Value
The same data provider you passed in as the provider parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the provider parameter
is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

Functions 161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Callbacks by Task

Sequential-Access Data Provider Callbacks

CGDataProviderGetBytesCallback (page 165)
A callback function that copies from a provider data stream into a Quartz-supplied buffer.

CGDataProviderReleaseInfoCallback (page 167)
A callback function that releases any private data or resources associated with the data provider.

CGDataProviderRewindCallback (page 168)
A callback function that moves the current position in the data stream back to the beginning.

CGDataProviderSkipBytesCallback (page 168)
A callback function that advances the current position in the data stream supplied by the provider.

CGDataProviderSkipForwardCallback (page 169)
A callback function that advances the current position in the data stream supplied by the provider.

Direct-Access Data Provider Callbacks

CGDataProviderGetBytePointerCallback (page 162)
A callback function that returns a generic pointer to the provider data.

CGDataProviderGetBytesAtOffsetCallback (page 163)
A callback function that copies data from the provider into a Quartz buffer.

CGDataProviderReleaseBytePointerCallback (page 166)
A callback function that releases the pointer Quartz obtained by calling
CGDataProviderGetBytePointerCallback (page 162).

CGDataProviderReleaseDataCallback (page 166)
A callback function that releases data you supply to the function
CGDataProviderCreateWithData (page 159).

CGDataProviderGetBytesAtPositionCallback (page 164)
A callback function that copies data from the provider into a Quartz buffer.

Callbacks

CGDataProviderGetBytePointerCallback
A callback function that returns a generic pointer to the provider data.

const void * (*CGDataProviderGetBytePointerCallback) (
 void *info
);

If you name your function MyProviderGetBytePointer, you would declare it like this:

void *MyProviderGetBytePointer (

162 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 157).

Return Value
A generic pointer to your provider data. By suppling this pointer, you are giving Quartz read-only access to
both the pointer and the underlying provider data. You must not move or modify the provider data until
Quartz calls your CGDataProviderReleaseBytePointerCallback (page 166) function.

Discussion
When Quartz needs direct access to your provider data, this function is called.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 157) andCGDataProviderDirectAccessCallbacks (page
171).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesAtOffsetCallback
A callback function that copies data from the provider into a Quartz buffer.

typedef size_t (*CGDataProviderGetBytesAtOffsetCallback) (
 void *info,
 void *buffer,
 size_t offset,
 size_t count
);

If you name your function MyProviderGetBytesWithOffset, you would declare it like this:

size_t MyProviderGetBytesWithOffset (
 void *info,
 void *buffer,
 size_t offset,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 157).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

Callbacks 163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

offset
Specifies the relative location in the data provider at which to begin copying data.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider, your function is called.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 157) andCGDataProviderDirectAccessCallbacks (page
171).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesAtPositionCallback
A callback function that copies data from the provider into a Quartz buffer.

typedef size_t (*CGDataProviderGetBytesAtPositionCallback) (
 void *info,
 void *buffer,
 off_t position,
 size_t count
);

If you name your function MyProviderGetBytesAtPosition, you would declare it like this:

size_t MyProviderGetBytesAtPosition (
 void *info,
 void *buffer,
 off_t position,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirect (page 156).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

position
Specifies the relative location in the data provider at which to begin copying data.

count
The number of bytes to copy.

164 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider, your function is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderGetBytesCallback
A callback function that copies from a provider data stream into a Quartz-supplied buffer.

size_t (*CGDataProviderGetBytesCallback) (
 void *info,
 void *buffer,
 size_t count
);

If you name your function MyProviderGetBytes, you would declare it like this:

size_t MyProviderGetBytes (
 void *info,
 void *buffer,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 156).

buffer
The Quartz-supplied buffer into which you copy the specified number of bytes.

count
The number of bytes to copy.

Return Value
The number of bytes copied. If no more data can be written to the buffer, you should return 0.

Discussion
When Quartz is ready to receive data from the provider data stream, your function is called. It should copy
the specified number of bytes into buffer.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 156) and CGDataProviderCallbacks (page 170).

Availability
Available in Mac OS X v10.3 and later.

Callbacks 165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Declared In
CGDataProvider.h

CGDataProviderReleaseBytePointerCallback
A callback function that releases the pointer Quartz obtained by calling
CGDataProviderGetBytePointerCallback (page 162).

typedef void (*CGDataProviderReleaseBytePointerCallback) (
 void *info,
 const void *pointer
);

If you name your function MyProviderReleaseBytePointer, you would declare it like this:

void MyProviderReleaseBytePointer (
 void *info,
 const void *pointer
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateDirectAccess (page 157).

pointer
A pointer to your provider data. This is the same pointer you returned in
CGDataProviderGetBytePointerCallback (page 162).

Discussion
When Quartz no longer needs direct access to your provider data, your function is called. You may safely
modify, move, or release your provider data at this time.

For information on how to associate your function with a direct-access data provider, see
CGDataProviderCreateDirectAccess (page 157) andCGDataProviderDirectAccessCallbacks (page
171).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderReleaseDataCallback
A callback function that releases data you supply to the function CGDataProviderCreateWithData (page
159).

166 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

typedef void (*CGDataProviderReleaseDataCallback) (
 void *info,
 const void *data
 size_t size
);

If you name your function MyProviderReleaseData, you would declare it like this:

void MyProviderReleaseData (
 void *info,
 const void *data
 size_t size
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreateWithData (page 159).

data
A pointer to your provider data.

size
The size of the data.

Discussion
When Quartz no longer needs direct access to your provider data, your function is called. You may safely
modify, move, or release your provider data at this time.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderReleaseInfoCallback
A callback function that releases any private data or resources associated with the data provider.

void (*CGDataProviderReleaseInfoCallback) (
 void *info
);

If you name your function MyProviderReleaseInfo, you would declare it like this:

void MyProviderReleaseInfo (
 void *info
);

Callbacks 167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Parameters
info

A generic pointer to private information shared among your callback functions. This is the same
pointer you supplied to CGDataProviderCreate (page 156).

Discussion
When Quartz frees a data provider that has an associated release function, the release function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 156) and CGDataProviderCallbacks (page 170).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderRewindCallback
A callback function that moves the current position in the data stream back to the beginning.

void (*CGDataProviderRewindCallback) (
 void *info
);

If you name your function MyProviderRewind, you would declare it like this:

void MyProviderRewind (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 156).

Discussion
When Quartz needs to read from the beginning of the provider’s data stream, your function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 156) and CGDataProviderCallbacks (page 170).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderSkipBytesCallback
A callback function that advances the current position in the data stream supplied by the provider.

168 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

void (*CGDataProviderSkipBytesCallback) (
 void *info,
 size_t count
);

If you name your function MyProviderSkipBytes, you would declare it like this:

void MyProviderSkipBytes (
 void *info,
 size_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 156).

count
The number of bytes to skip.

Discussion
When Quartz needs to advance forward in the provider’s data stream, your function is called.

For information on how to associate your callback function with a data provider, see
CGDataProviderCreate (page 156) and CGDataProviderCallbacks (page 170).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDataProvider.h

CGDataProviderSkipForwardCallback
A callback function that advances the current position in the data stream supplied by the provider.

off_t (*CGDataProviderSkipForwardCallback) (
 void *info,
 off_t count
);

If you name your function MyProviderSkipForwardBytes, you would declare it like this:

off_t MyProviderSkipForwardBytes (
 void *info,
 off_t count
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGDataProviderCreate (page 156).

Callbacks 169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

count
The number of bytes to skip.

Return Value
The number of bytes that were actually skipped.

Discussion
When Quartz needs to advance forward in the provider’s data stream, your function is called.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

Data Types

CGDataProviderRef
Defines an opaque type that supplies Quartz with data.

typedef struct CGDataProvider *CGDataProviderRef;

Discussion
Some Quartz routines supply blocks of data to your program. Rather than reading through a raw memory
buffer, data provider objects of type CGDataProviderRef allow you to supply Quartz functions with data.

In Mac OS X version 10.2 and later, CGDataProviderRef is derived from CFTypeRef and inherits the
properties that all Core Foundation types have in common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderCallbacks
Defines a structure containing pointers to client-defined callback functions that manage the sending of data
for a sequential-access data provider.

170 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

struct CGDataProviderCallbacks {
 CGDataProviderGetBytesCallback getBytes;
 CGDataProviderSkipBytesCallback skipBytes;
 CGDataProviderRewindCallback rewind;
 CGDataProviderReleaseInfoCallback releaseProvider;
};
typedef struct CGDataProviderCallbacks CGDataProviderCallbacks;

Fields
getBytes

A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesCallback (page 165).

skipBytes
A pointer to a function that Quartz calls to advance the stream of data supplied by the provider. For
more information, see CGDataProviderSkipBytesCallback (page 168).

rewind
A pointer to a function Quartz calls to return the provider to the beginning of the data stream. For
more information, see CGDataProviderRewindCallback (page 168).

releaseProvider
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 167).

Discussion
The functions specified by the CGDataProviderCallbacks structure are responsible for sequentially copying
data to a memory buffer for Quartz to use. The functions are also responsible for handling the data provider’s
basic memory management. You supply a CGDataProviderCallbacks structure to the function
CGDataProviderCreate (page 156) to create a sequential-access data provider.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderDirectAccessCallbacks
Defines pointers to client-defined callback functions that manage the sending of data for a direct-access data
provider.

struct CGDataProviderDirectAccessCallbacks {
 CGDataProviderGetBytePointerCallback getBytePointer;
 CGDataProviderReleaseBytePointerCallback releaseBytePointer;
 CGDataProviderGetBytesAtOffsetCallback getBytes;
 CGDataProviderReleaseInfoCallback releaseProvider;
};
typedef struct CGDataProviderDirectAccessCallbacks
CGDataProviderDirectAccessCallbacks;

Fields
getBytePointer

A pointer to a function that returns a pointer to the provider’s data. For more information, see
CGDataProviderGetBytePointerCallback (page 162).

Data Types 171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

releaseBytePointer
A pointer to a function that Quartz calls to release a pointer to the provider’s data. For more information,
see CGDataProviderReleaseBytePointerCallback (page 166).

getBytes
A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesAtOffsetCallback (page 163).

releaseProvider
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 167).

Discussion
You supply a CGDataProviderDirectAccessCallbacks structure to the function
CGDataProviderCreateDirectAccess (page 157) to create a data provider for direct access. The functions
specified by the CGDataProviderDirectAccessCallbacks structure are responsible for copying data a
block at a time to a memory buffer for Quartz to use. The functions are also responsible for handling the data
provider’s basic memory management. For the callback to work, one of the getBytePointer and getBytes
parameters must be non-NULL. If both are non-NULL, then getBytePointer is used to access the data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDataProvider.h

CGDataProviderDirectCallbacks
Defines pointers to client-defined callback functions that manage the sending of data for a direct-access data
provider.

struct CGDataProviderDirectCallbacks {
 unsigned int version;
 CGDataProviderGetBytePointerCallback getBytePointer;
 CGDataProviderReleaseBytePointerCallback releaseBytePointer;
 CGDataProviderGetBytesAtPositionCallback getBytesAtPosition;
 CGDataProviderReleaseInfoCallback releaseInfo;
};
typedef struct CGDataProviderDirectCallbacks CGDataProviderDirectCallbacks;

Fields
version

The version of this structure. It should be set to 0.

getBytePointer
A pointer to a function that returns a pointer to the provider’s data. For more information, see
CGDataProviderGetBytePointerCallback (page 162).

releaseBytePointer
A pointer to a function that Quartz calls to release a pointer to the provider’s data. For more information,
see CGDataProviderReleaseBytePointerCallback (page 166).

getBytesAtPosition
A pointer to a function that copies data from the provider.

172 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

releaseInfo
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 167).

Discussion
You supply a CGDataProviderDirectCallbacks structure to the function
CGDataProviderCreateDirect (page 156) to create a data provider for direct access. The functions specified
by the CGDataProviderDirectCallbacks structure are responsible for copying data a block at a time to
a memory buffer for Quartz to use. The functions are also responsible for handling the data provider’s basic
memory management. For the callback to work, one of the getBytePointer and getBytesAtPosition
parameters must be non-NULL. If both are non-NULL, then getBytePointer is used to access the data.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

CGDataProviderSequentialCallbacks
Defines a structure containing pointers to client-defined callback functions that manage the sending of data
for a sequential-access data provider.

struct CGDataProviderSequentialCallbacks {
 unsigned int version;
 CGDataProviderGetBytesCallback getBytes;
 CGDataProviderSkipForwardCallback skipForward;
 CGDataProviderRewindCallback rewind;
 CGDataProviderReleaseInfoCallback releaseInfo;
};
typedef struct CGDataProviderSequentialCallbacks CGDataProviderSequentialCallbacks;

Fields
version

The version of this structure. It should be set to 0.

getBytes
A pointer to a function that copies data from the provider. For more information, see
CGDataProviderGetBytesCallback (page 165).

skipForward
A pointer to a function that Quartz calls to advance the stream of data supplied by the provider.

rewind
A pointer to a function Quartz calls to return the provider to the beginning of the data stream. For
more information, see CGDataProviderRewindCallback (page 168).

releaseInfo
A pointer to a function that handles clean-up for the data provider, or NULL. For more information,
see CGDataProviderReleaseInfoCallback (page 167).

Discussion
The functions specified by the CGDataProviderSequentialCallbacks structure are responsible for
sequentially copying data to a memory buffer for Quartz to use. The functions are also responsible for handling
the data provider’s basic memory management. You supply a CGDataProviderCallbacks structure to the
function CGDataProviderCreateSequential (page 157) to create a sequential-access data provider.

Data Types 173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDataProvider.h

174 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CGDataProvider Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGFont.h

Companion guide Quartz 2D Programming Guide

Overview

The CGFontRef opaque type encapsulates font information. A font is a set of shapes or glyphs associated
with a character set. A glyph can represent a single character (such as ‘b’), more than one character (such as
the “fi” ligature), or a special character such as a space. Quartz retrieves the glyphs for the font from ATS
(Apple Type Services) and paints the glyphs based on the relevant parameters of the current graphics state.

Quartz provides a limited, low-level interface for drawing text. For information on text-drawing functions,
see CGContext Reference. For full Unicode and text-layout support, use the services provided by Core Text or
ATSUI).

Functions by Task

Retaining and Releasing a CGFont Object

CGFontRelease (page 190)
Decrements the retain count of a Quartz font.

CGFontRetain (page 191)
Increments the retain count of a Quartz font.

Creating a CGFont Object

CGFontCreateWithDataProvider (page 182)
Creates a font object from data supplied from a data provider.

CGFontCreateWithFontName (page 183)
Creates a font object corresponding to the font specified by a PostScript or full name.

CGFontCreateCopyWithVariations (page 181)
Creates a copy of a font using a variation specification dictionary.

Overview 175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontCreateWithPlatformFont (page 183)
Creates a font object from an Apple Type Services (ATS) font.

Working With PostScript Fonts

CGFontCopyPostScriptName (page 178)
Obtains the PostScript name of a font.

CGFontCanCreatePostScriptSubset (page 177)
Determines whether Quartz can create a subset of the font in PostScript format.

CGFontCreatePostScriptSubset (page 182)
Creates a subset of the font in the specified PostScript format.

CGFontCreatePostScriptEncoding (page 181)
Creates a PostScript encoding of a font.

Working With Font Tables

CGFontCopyTableTags (page 179)
Returns an array of tags that correspond to the font tables for a font.

CGFontCopyTableForTag (page 179)
Returns the font table that corresponds to the provided tag.

Getting Font Information

CGFontGetTypeID (page 189)
Returns the Core Foundation type identifier for Quartz fonts.

CGFontCopyVariationAxes (page 180)
Returns an array of the variation axis dictionaries for a font.

CGFontCopyVariations (page 180)
Returns the variation specification dictionary for a font.

CGFontCopyFullName (page 177)
Returns the full name associated with a font object.

CGFontGetAscent (page 184)
Returns the ascent of a font.

CGFontGetDescent (page 185)
Returns the descent of a font.

CGFontGetLeading (page 188)
Returns the leading of a font.

CGFontGetCapHeight (page 184)
Returns the cap height of a font.

CGFontGetXHeight (page 190)
Returns the x-height of a font.

CGFontGetFontBBox (page 185)
Returns the bounding box of a font.

176 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetItalicAngle (page 188)
Returns the italic angle of a font.

CGFontGetStemV (page 189)
Returns the thickness of the dominant vertical stems of glyphs in a font.

CGFontGetGlyphBBoxes (page 187)
Get the bounding box of each glyph in an array.

CGFontGetGlyphWithGlyphName (page 187)
Returns the glyph for the font name associated with the specified font object.

CGFontCopyGlyphNameForGlyph (page 178)
Returns the glyph name associated with a font object.

CGFontGetNumberOfGlyphs (page 188)
Returns the number of glyphs in a font.

CGFontGetGlyphAdvances (page 186)
Gets the bound box of each glyph in the provided array.

CGFontGetUnitsPerEm (page 190) Deprecated in Mac OS X v10.5
Returns the number of glyph space units per em for the provided font.

Functions

CGFontCanCreatePostScriptSubset
Determines whether Quartz can create a subset of the font in PostScript format.

bool CGFontCanCreatePostScriptSubset (
 CGFontRef font,
 CGFontPostScriptFormat format
);

Parameters
font

A font object.

Return Value
Returns true if a subset in the PostScript format can be created for the font; false otherwise.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCopyFullName
Returns the full name associated with a font object.

Functions 177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/

CFStringRef CGFontCopyFullName (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The full name associated with the font.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontCopyGlyphNameForGlyph
Returns the glyph name associated with a font object.

CFStringRef CGFontCopyGlyphNameForGlyph (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
A glyph name, or NULL if there isn’t a glyph associated with the font object.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontCopyPostScriptName
Obtains the PostScript name of a font.

CFStringRef CGFontCopyPostScriptName (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The PostScript name of the font.

178 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Discussion

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCopyTableForTag
Returns the font table that corresponds to the provided tag.

CFDataRef CGFontCopyTableForTag(
 CGFontRef font,
 uint32_t tag
);

Parameters
font

A font object.

tag
The tag for the table you want to obtain.

Return Value
The font table that corresponds to the tag, or NULL if no such table exists.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyTableTags
Returns an array of tags that correspond to the font tables for a font.

CFArrayRef CGFontCopyTableTags(
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
An array of font table tags.

Discussion
Each entry in the returned array is a four-byte value that represents a single TrueType or OpenType font table
tag. To obtain a tag at index k in a manner that is appropriate for 32-bit and 64-bit architectures, you need
to use code similar to the following:

tag = (uint32_t)(uintptr_t)CFArrayGetValue(table, k);

Functions 179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontCopyVariationAxes
Returns an array of the variation axis dictionaries for a font.

CFArrayRef CGFontCopyVariationAxes (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
An array of the variation axis dictionaries. Returns NULL if the font doesn't support variations.

Discussion
A variation axis is a range included in a font by the font designer that allows a font to produce different type
styles. Each variation axis dictionary contains key-value pairs that specify the variation axis name and the
minimum, maximum, and default values for that variation axis.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCopyVariations
Returns the variation specification dictionary for a font.

CFDictionaryRef CGFontCopyVariations (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The variation specification dictionary for the font. Returns NULL if the font doesn't support variations.

Discussion
The variation specification dictionary contains keys that correspond to the variation axis names of the font.
Each key is a variation axis name. The value for each key is the value specified for that particular variation
axis represented as a CFNumber object.

Availability
Available in Mac OS X v10.4 and later.

180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Declared In
CGFont.h

CGFontCreateCopyWithVariations
Creates a copy of a font using a variation specification dictionary.

CGFontRef CGFontCreateCopyWithVariations (
 CGFontRef font,
 CFDictionaryRef variations
);

Parameters
font

The Quartz font to copy.

variations
A variation specification dictionary that contains keys corresponding to the variation axis names of
the font. Each key in the dictionary is a variation axis name. The value for each key is the value specified
for that particular variation axis represented as a CFNumber object. If a variation axis name is not
specified in variations, then the current value from font is used.

Return Value
The font object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCreatePostScriptEncoding
Creates a PostScript encoding of a font.

CFDataRef CGFontCreatePostScriptEncoding (
 CGFontRef font,
 const CGGlyph encoding[256]
);

Parameters
font

A CGFont object.

encoding
The encoding to use.

Return Value
A PostScript encoding of the font that contains glyphs in the specified encoding.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

Functions 181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/

Declared In
CGFont.h

CGFontCreatePostScriptSubset
Creates a subset of the font in the specified PostScript format.

CFDataRef CGFontCreatePostScriptSubset (
 CGFontRef font,
 CFStringRef subsetName,
 CGFontPostScriptFormat format,
 const CGGlyph glyphs[],
 size_t count,
 const CGGlyph encoding[256]
);

Parameters
font

A font object.

subsetName
The name of the subset.

format
The PostScript format of the font.

glyphs
An array that contains the glyphs in the subset.

count
The number of glyphs specified by the glyphs array.

encoding
The default encoding for the subset. You can pass NULL if you do not want to specify an encoding.

Return Value
A subset of the font created from the supplied parameters.

Discussion
For more information on PostScript format, see Adobe Type 1 Font Format, which is available from
http://partners.adobe.com/.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

CGFontCreateWithDataProvider
Creates a font object from data supplied from a data provider.

182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/

CGFontRef CGFontCreateWithDataProvider (
 CGDataProviderRef provider
);

Parameters
provider

A data provider.

Return Value
The font object or NULL if the font can't be created. You are responsible for releasing this object using
CGFontRelease (page 190).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state by calling the
function CGContextSetFontSize (page 114).

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontCreateWithFontName
Creates a font object corresponding to the font specified by a PostScript or full name.

CGFontRef CGFontCreateWithFontName (
 CFStringRef name
);

Parameters
name

The PostScript or full name of a font.

Return Value
The font object or NULL if the font can't be created. You are responsible for releasing this object using
CGFontRelease (page 190).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state by calling the
function CGContextSetFont (page 113).

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontCreateWithPlatformFont
Creates a font object from an Apple Type Services (ATS) font.

Functions 183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontRef CGFontCreateWithPlatformFont (
 void *platformFontReference
);

Parameters
platformFontReference

A generic pointer to a font object. The font should be of a type appropriate to the platform on which
your program is running. For Mac OS X, you should pass a pointer to an ATS font.

Return Value
The font object, or NULL if the platform font could not be located. You are responsible for releasing this
object using CGFontRelease (page 190).

Discussion
Before drawing text in a Quartz context, you must set the font in the current graphics state. For ATS Fonts,
call this function to create a Quartz font, and pass it to CGContextSetFont (page 113).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGFont.h

CGFontGetAscent
Returns the ascent of a font.

int CGFontGetAscent (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The ascent of the font.

Discussion
The ascent is the maximum distance above the baseline of glyphs in a font. The value is specified in glyph
space units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetCapHeight
Returns the cap height of a font.

184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

int CGFontGetCapHeight (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The cap height of the font.

Discussion
The cap height is the distance above the baseline of the top of flat capital letters of glyphs in a font. The
value is specified in glyph space units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetDescent
Returns the descent of a font.

int CGFontGetDescent (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The descent of the font .

Discussion
The descent is the maximum distance below the baseline of glyphs in a font. The value is specified in glyph
space units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetFontBBox
Returns the bounding box of a font.

Functions 185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGRect CGFontGetFontBBox (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The bounding box of the font.

Discussion
The font bounding box is the union of all of the bounding boxes for all the glyphs in a font. The value is
specified in glyph space units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetGlyphAdvances
Gets the bound box of each glyph in the provided array.

bool CGFontGetGlyphAdvances (
 CGFontRef font,
 const CGGlyph glyphs[],
 size_t count,
 int advances[]
);

Parameters
font

The font object associated with the provided glyphs.

glyphs
An array of glyphs.

count
The number of glyphs in the array.

advances
On output, an array of of advances for the provided glyphs.

Return Value
TRUE unless the advances can’t be provided for some reason.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetGlyphBBoxes
Get the bounding box of each glyph in an array.

bool CGFontGetGlyphBBoxes (
 CGFontRef font,
 const CGGlyph glyphs[],
 size_t count,
 CGRect bboxes[]
);

Parameters
font

A font object.

glyphs
A array of glyphs.

count
The number of items in the glyphs array.

bboxes
On return, the bounding boxes for each glyph.

Return Value
false if bounding boxes can't be retrieved for any reason; true otherwise.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetGlyphWithGlyphName
Returns the glyph for the font name associated with the specified font object.

CGGlyph CGFontGetGlyphWithGlyphName (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
A glyph, or 0 if there isn’t a name associated with the font object.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

Functions 187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetItalicAngle
Returns the italic angle of a font.

CGFloat CGFontGetItalicAngle (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The italic angle of the font, measured in degrees counter-clockwise from the vertical.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetLeading
Returns the leading of a font.

int CGFontGetLeading (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The leading of the font.

Discussion
The leading is the spacing between consecutive lines of text in a font. The value is specified in glyph space
units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetNumberOfGlyphs
Returns the number of glyphs in a font.

188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

size_t CGFontGetNumberOfGlyphs (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
The number of glyphs in the provided font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetStemV
Returns the thickness of the dominant vertical stems of glyphs in a font.

CGFloat CGFontGetItalicAngle (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The thickness of the dominant vertical stems of glyphs in a font.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontGetTypeID
Returns the Core Foundation type identifier for Quartz fonts.

CFTypeID CGFontGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGFontRef (page 191).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFont.h

Functions 189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

CGFontGetUnitsPerEm
Returns the number of glyph space units per em for the provided font.

int CGFontGetUnitsPerEm (
 CGFontRef font
);

Parameters
font

A CGFont object.

Return Value
The number of glyph space units per em for the provided font.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGFont.h

CGFontGetXHeight
Returns the x-height of a font.

int CGFontGetXHeight (
 CGFontRef font
);

Parameters
font

A font object.

Return Value
The x-height of the font.

Discussion
The x-height is the distance above the baseline of the top of flat, non-ascending lowercase letters (such as
x) of glyphs in a font. The value is specified in glyph space units.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGFont.h

CGFontRelease
Decrements the retain count of a Quartz font.

190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

void CGFontRelease (
 CGFontRef font
);

Parameters
font

The Quartz font to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the font parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGFont.h

CGFontRetain
Increments the retain count of a Quartz font.

CGFontRef CGFontRetain (
 CGFontRef font
);

Parameters
font

The Quartz font to retain.

Return Value
The same font you specified in the font parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the font parameter is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGFont.h

Data Types

CGFontRef
An opaque type that encapsulates font information.

typedef struct CGFont *CGFontRef;

Availability
Available in Mac OS X v10.0 and later.

Data Types 191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Declared In
CGFont.h

CGFontIndex
An index into a font table.

typedef unsigned short CGFontIndex;

Discussion
This integer type provides an additional way to specify a glyph identifier. CGFontIndex is equivalent to
CGGlyph (page 192), and you can use constants of either type interchangeably.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFont.h

CGGlyph
An index into the internal glyph table of a font.

typedef unsigned short CGGlyph;

Discussion
When drawing text, you typically specify a sequence of characters. However, Quartz also allows you to use
CGGlyph values to specify glyphs. In either case, Quartz renders the text using font data provided by the
Apple Type Services (ATS) framework.

You provide CGGlyph values to the functions CGContextShowGlyphs (page 129) and
CGContextShowGlyphsAtPoint (page 129). These functions display an array of glyphs at the current text
position or at a position you specify, respectively.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGFont.h

Constants

CGFontPostScriptFormat
Possible formats for a PostScript font subset.

192 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

enum CGFontPostScriptFormat {
 kCGFontPostScriptFormatType1 = 1,
 kCGFontPostScriptFormatType3 = 3,
 kCGFontPostScriptFormatType42 = 42
};
typedef enum CGFontPostScriptFormat CGFontPostScriptFormat;

Constants
kCGFontPostScriptFormatType1

This is documented in Adobe Type 1 Font Format, which is available from http://partners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontPostScriptFormatType3
This is documented in PostScript Language Reference, 3rd edition, which is available from http://part-
ners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontPostScriptFormatType42
This is documented in Adobe Technical Note 5012, The Type 42 Font Format Specification, which is
available from http://partners.adobe.com/.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

Font Table Index Values
Possible values for an index into a font table.

enum {
 kCGFontIndexMax = ((1 << 16) - 2),
 kCGFontIndexInvalid = ((1 << 16) - 1),
 kCGGlyphMax = kCGFontIndexMax
};

Constants
kCGFontIndexMax

The maximum allowed value for CGFontIndex (page 192).

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

kCGFontIndexInvalid
An invalid font index (a value which never represents a valid glyph).

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

Constants 193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

http://partners.adobe.com/
http://partners.adobe.com/
http://partners.adobe.com/
http://partners.adobe.com/

kCGGlyphMax
The same as kCGFontIndexMax.

Available in Mac OS X v10.1 and later.

Declared in CGFont.h.

Discussion
See CGFontIndex (page 192).

Declared In
CGFont.h

Font Variation Axis Keys
Keys used for a font variation axis dictionary.

const CFStringRef kCGFontVariationAxisName
const CFStringRef kCGFontVariationAxisMinValue
const CFStringRef kCGFontVariationAxisMaxValue
const CFStringRef kCGFontVariationAxisDefaultValue

Constants
kCGFontVariationAxisName

The key used to obtain the variation axis name from a variation axis dictionary. The value obtained
with this key is a CFStringRef that specifies the name of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontVariationAxisMinValue
The key used to obtain the minimum variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the minimum value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontVariationAxisMaxValue
The key used to obtain the maximum variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the maximum value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

kCGFontVariationAxisDefaultValue
The key used to obtain the default variation axis value from a variation axis dictionary. The value
obtained with this key is a CFNumberRef that specifies the default value of the variation axis.

Available in Mac OS X v10.4 and later.

Declared in CGFont.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGFont.h

194 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CGFont Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGFunction.h

Companion guide Quartz 2D Programming Guide

Overview

The CGFunctionRef opaque type provides a general facility for defining and using callback functions. These
functions can take an arbitrary number of floating-point input values and pass back an arbitrary number of
floating-point output values.

Quartz uses CGFunction objects to implement shadings. CGShading Reference describes the parameters and
semantics required for the callbacks used by CGFunction objects.

Functions by Task

Creating a CGFunction Object

CGFunctionCreate (page 196)
Creates a Quartz function.

Retaining and Releasing CGFunction Objects

CGFunctionRelease (page 197)
Decrements the retain count of a function object.

CGFunctionRetain (page 197)
Increments the retain count of a function object.

Getting the CFType ID

CGFunctionGetTypeID (page 197)
Returns the type identifier for Quartz function objects.

Overview 195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Functions

CGFunctionCreate
Creates a Quartz function.

CGFunctionRef CGFunctionCreate (
 void *info,
 size_t domainDimension,
 const CGFloat *domain,
 size_t rangeDimension,
 const CGFloat *range,
 const CGFunctionCallbacks *callbacks
);

Parameters
info

A pointer to user-defined storage for data that you want to pass to your callbacks. You need to make
sure that the data persists for as long as it’s needed, which can be beyond the scope in which the
Quartz function is used.

domainDimension
The number of inputs.

domain
An array of (2*domainDimension) floats used to specify the valid intervals of input values. For each
k from 0 to (domainDimension - 1), domain[2*k]must be less than or equal to domain[2*k+1],
and the kth input value will be clipped to lie in the interval domain[2*k] ≤ input[k] ≤
domain[2*k+1]. If this parameter is NULL, then the input values are not clipped.

rangeDimension
The number of outputs.

range
An array of (2*rangeDimension) floats that specifies the valid intervals of output values. For each
k from 0 to (rangeDimension - 1), range[2*k] must be less than or equal to range[2*k+1],
and the kth output value will be clipped to lie in the interval range[2*k] ≤ output[k] ≤
range[2*k+1]. If this parameter is NULL, then the output values are not clipped.

callbacks
A pointer to a callback function table. This table should contain pointers to the callbacks you provide
to implement the semantics of this Quartz function. Quartz makes a copy of your table, so, for example,
you could safely pass in a pointer to a structure on the stack.

Return Value
The new Quartz function. You are responsible for releasing this object using CGFunctionRelease (page
197).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

CGFunctionGetTypeID
Returns the type identifier for Quartz function objects.

CFTypeID CGFunctionGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGFunctionRef (page 199).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

CGFunctionRelease
Decrements the retain count of a function object.

void CGFunctionRelease (
 CGFunctionRef function
);

Parameters
function

The function object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the function parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

CGFunctionRetain
Increments the retain count of a function object.

CGFunctionRef CGFunctionRetain (
 CGFunctionRef function
);

Parameters
function

The same function object you passed in as the function parameter.

Return Value
Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the function parameter
is NULL.

Functions 197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

Callbacks

CGFunctionEvaluateCallback
Performs custom operations on the supplied input data to produce output data.

typedef void (*CGFunctionEvaluateCallback) (
 void *info,
 const float *inData,
 float *outData
);

If you name your function MyCGFunctionEvaluate, you would declare it like this:

void MyCGFunctionEvaluate (
 void *info,
 const float *inData,
 float *outData
);

Parameters
info

The info parameter passed to CGFunctionCreate (page 196).

inData
An array of floats. The size of the array is that specified by the domainDimension parameter passed
to the CGFunctionCreate (page 196) function.

outData
An array of floats. The size of the array is that specified by the rangeDimension parameter passed
to the CGFunctionCreate (page 196) function.

Discussion
The callback you write is responsible for implementing the calculation of output values from the supplied
input values. For example, if you want to implement a simple "squaring" function of one input argument to
one output argument, your evaluation function might be:

void evaluateSquare(void *info, const float *inData, float *outData)
{
 outData[0] = inData[0] * inData[0];
}

Availability
Available in Mac OS X v10.2 and later.

198 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Declared In
CGFunction.h

CGFunctionReleaseInfoCallback
Performs custom clean-up tasks when Quartz deallocates a CGFunction object.

typedef void (*CGFunctionReleaseInfoCallback) (
 void *info
);

If you name your function MyCGFunctionReleaseInfo, you would declare it like this:

void MyCGFunctionReleaseInfo (
 void *info
);

Parameters
info

The info parameter passed to CGFunctionCreate (page 196).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFunction.h

Data Types

CGFunctionRef
An opaque type that represents a callback function.

typedef struct CGFunction *CGFunctionRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGFunction.h

CGFunctionCallbacks
A structure that contains callbacks needed by a CGFunction object.

Data Types 199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

struct CGFunctionCallbacks
{
 unsigned int version;
 CGFunctionEvaluateCallback evaluate;
 CGFunctionReleaseInfoCallback releaseInfo
};

typedef struct CGFunctionCallbacks CGFunctionCallbacks;

Fields
version

The structure version number. For this structure, the version should be 0.

evaluate
The callback that evaluates the function.

releaseInfo
If non-NULL, the callback used to release the info parameter passed to CGFunctionCreate (page
196).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGFunction.h

200 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

CGFunction Reference

Derived From: CGContextRef (page 137)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGLContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGGLContext header file defines functions that create and update a graphics context for OpenGL drawing.
A CGGLContext context is a type of CGContextRef (page 137) that is used for OpenGL content. However, its
use is not recommended.

Functions

CGGLContextCreate
Creates a Quartz graphics context from an OpenGL context.

CGContextRef CGGLContextCreate (
 void *glContext,
 CGSize size,
 CGColorSpaceRef colorspace
);

Parameters
glContext

The context that the OpenGL system uses to manage OpenGL drawing.

size
The dimensions of the OpenGL viewport rectangle.

colorspace
An RGB color space that serves as the destination space when rendering device-independent colors.
If NULL, Quartz uses the default RGB color space. Quartz retains the color space you pass in; on return,
you may safely release it.

Return Value
A new Quartz graphics context. You are responsible for releasing this object by calling
CGContextRelease (page 102).

Overview 201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CGGLContext Reference

Discussion
The use of this function is not recommended.

Creates a Quartz context from the OpenGL context glContext. The context establishes an OpenGL viewport
rectangle with dimensions specified by the size parameter by calling glViewport(3G). If non-NULL, the
colorspace parameter should be an RGB profile that specifies the destination space when rendering
device-independent colors.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGGLContext.h

CGGLContextUpdateViewportSize
Updates the size of the viewport associated with an OpenGL context.

void CGGLContextUpdateViewportSize (
 CGContextRef c,
 CGSize size
);

Parameters
context

A Quartz graphics context obtained by calling CGGLContextCreate (page 201).

size
The new dimensions of the OpenGL viewport.

Discussion
The use of this function is not recommended.

You should call this function whenever the size of the associated OpenGL context changes.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGGLContext.h

202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

CGGLContext Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGradient.h

Companion guide Quartz 2D Programming Guide

Overview

A gradient defines a smooth transition between colors across an area. The CGGradientRef opaque type,
and the functions that operate on it, make creating and using radial and axial gradient fills an easy task. A
CGGradient object has a color space, two or more colors, and a location for each color. The color space cannot
be a pattern or indexed color space, otherwise it can be any Quartz color space (CGColorSpaceRef (page
56)).

Colors can be provided as component values (such as red, green, blue) or as Quartz color objects
(CGColorRef (page 41)). In Quartz, component can vary from 0.0 to 1.0, designating the proportion of the
component present in the color.

A location is a normalized value. When it comes time to paint the gradient, Quartz maps the normalized
location values to the points in coordinate space that you provide.

If you want more precise control over gradients, or if your application runs in versions of Mac OS X that are
earlier than v10.5, see CGShading Reference.

Functions by Task

Creating a CGGradient Object

CGGradientCreateWithColorComponents (page 204)
Creates a CGGradient object from a color space and the provided color components and locations.

CGGradientCreateWithColors (page 205)
Creates a CGGradient object from a color space and the provided color objects and locations.

Overview 203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Retaining and Releasing a CGGradient Object

CGGradientRelease (page 206)
Decrements the retain count of a CGGradient object.

CGGradientRetain (page 206)
Increments the retain count of a CGGradient object.

Getting the Type ID for a CGGradient Object

CGGradientGetTypeID (page 206)
Returns the Core Foundation type identifier for CGGradient objects.

Functions

CGGradientCreateWithColorComponents
Creates a CGGradient object from a color space and the provided color components and locations.

CGGradientRef CGGradientCreateWithColorComponents(
 CGColorSpaceRef space,
 const CGFloat components[],
 const CGFloat locations[],
 size_t count
);

Parameters
space

The color space to use for the gradient. You cannot use a pattern or indexed color space.

components
The color components for each color that defines the gradient. The components should be in the
color space specified by space. If you are unsure of the number of components, you can call the
function CGColorSpaceGetNumberOfComponents (page 54).

The number of items in this array should be the product of count and the number of components
in the color space. For example, if the color space is an RGBA color space and you want to use two
colors in the gradient (one for a starting location and another for an ending location), then you need
to provide 8 values in components—red, green, blue, and alpha values for the first color, followed
by red, green, blue, and alpha values for the second color.

locations
The location for each color provided in components. Each location must be a CGFloat value in the
range of 0 to 1, inclusive. If 0 and 1 are not in the locations array, Quartz uses the colors provided
that are closest to 0 and 1 for those locations.

If locations is NULL, the first color in colors is assigned to location 0, the last color incolors is
assigned to location 1, and intervening colors are assigned locations that are at equal intervals in
between.

count
The number of locations provided in the locations parameters.

204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Return Value
A CGGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGContextDrawLinearGradient (page 86)
CGContextDrawRadialGradient (page 89)

Declared In
CGGradient.h

CGGradientCreateWithColors
Creates a CGGradient object from a color space and the provided color objects and locations.

CGGradientRef CGGradientCreateWithColors(
 CGColorSpaceRef space,
 CFArrayRef colors,
 const CGFloat locations[]
);

Parameters
space

The color space to use for the gradient. You cannot use a pattern or indexed color space.

colors
A non-empty array of CGColor objects that should be in the color space specified by space. If space
is not NULL, each color will be converted (if necessary) to that color space and the gradient will drawn
in that color space. Otherwise, each color will be converted to and drawn in the GenericRGB color
space.

locations
The location for each color provided in colors; each location must be a CGFloat value in the range
of 0 to 1, inclusive. If 0 and 1 are not in the locations array, Quartz uses the colors provided that
are closest to 0 and 1 for those locations.

If locations is NULL, the first color in colors is assigned to location 0, the last color incolors is
assigned to location 1, and intervening colors are assigned locations that are at equal intervals in
between.

The locations array should contain the same number of items as the colors array.

Return Value
A CGGradient object.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGContextDrawLinearGradient (page 86)
CGContextDrawRadialGradient (page 89)

Declared In
CGGradient.h

Functions 205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

CGGradientGetTypeID
Returns the Core Foundation type identifier for CGGradient objects.

CFTypeID CGGradientGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGGradientRef.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGGradient.h

CGGradientRelease
Decrements the retain count of a CGGradient object.

void CGGradientRelease (
 CGGradientRef gradient
);

Parameters
gradient

The gradient object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the gradient parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGGradient.h

CGGradientRetain
Increments the retain count of a CGGradient object.

CGGradientRef CGGradientRetain(
 CGGradientRef gradient
);

Parameters
gradient

The gradient object to retain.

Return Value
The same gradient object that you passed in as the gradient parameter.

206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the gradient parameter
is NULL.

Availability
Available in Mac OS X version 10.5 and later.

Declared In
CGGradient.h

Data Types

CGGradientRef
An opaque type that represents a Quartz gradient.

typedef struct CGGradient *CGGradientRef;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGradient.h

Constants

Gradient Drawing Options
Drawing locations for gradients.

enum {
 kCGGradientDrawsBeforeStartLocation = (1 << 0),
 kCGGradientDrawsAfterEndLocation = (1 << 1)
};
typedef enum CGGradientDrawingOptions CGGradientDrawingOptions;

Constants
kCGGradientDrawsBeforeStartLocation

The fill should extend beyond the starting location. The color that extends beyond the starting point
is the solid color defined by the CGGradient object to be at location 0.

Available in Mac OS X v10.5 and later.

Declared in CGGradient.h.

kCGGradientDrawsAfterEndLocation
The fill should extend beyond the ending location. The color that extends beyond the ending point
is the solid color defined by the CGGradient object to be at location 1.

Available in Mac OS X v10.5 and later.

Declared in CGGradient.h.

Data Types 207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Declared In
CGGradient.h

208 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

CGGradient Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGImage.h

Companion guide Quartz 2D Programming Guide

Overview

The CGImageRef opaque type represents bitmap images and bitmap image masks, based on sample data
that you supply. A bitmap (or sampled) image is a rectangular array of pixels, with each pixel representing
a single sample or data point in a source image.

Functions by Task

Creating Bitmap Images

CGImageCreate (page 211)
Creates a bitmap image from data supplied by a data provider.

CGImageCreateCopy (page 212)
Creates a copy of a bitmap image.

CGImageCreateCopyWithColorSpace (page 213)
Create a copy of a bitmap image, replacing its colorspace.

CGImageCreateWithJPEGDataProvider (page 214)
Creates a bitmap image using JPEG-encoded data supplied by a data provider.

CGImageCreateWithPNGDataProvider (page 216)
Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.

CGImageCreateWithImageInRect (page 213)
Creates a bitmap image using the data contained within a subregion of an existing bitmap image.

CGImageCreateWithMask (page 215)
Creates a bitmap image from an existing image and an image mask.

CGImageCreateWithMaskingColors (page 215)
Creates a bitmap image by masking an existing bitmap image with the provided color values.

Overview 209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Creating an Image Mask

CGImageMaskCreate (page 223)
Creates a bitmap image mask from data supplied by a data provider.

Retaining and Releasing Images

CGImageRetain (page 225)
Increments the retain count of a bitmap image.

CGImageRelease (page 224)
Decrements the retain count of a bitmap image.

Getting the CFType ID

CGImageGetTypeID (page 222)
Returns the type identifier for Quartz bitmap images.

Getting Information About an Image

CGImageGetAlphaInfo (page 217)
Returns the alpha channel information for a bitmap image.

CGImageGetBitmapInfo (page 217)
Returns the bitmap information for a bitmap image.

CGImageGetBitsPerComponent (page 218)
Returns the number of bits allocated for a single color component of a bitmap image.

CGImageGetBitsPerPixel (page 218)
Returns the number of bits allocated for a single pixel in a bitmap image.

CGImageGetBytesPerRow (page 219)
Returns the number of bytes allocated for a single row of a bitmap image.

CGImageGetColorSpace (page 219)
Return the color space for a bitmap image.

CGImageGetDataProvider (page 220)
Returns the data provider for a bitmap image.

CGImageGetDecode (page 220)
Returns the decode array for a bitmap image.

CGImageGetHeight (page 220)
Returns the height of a bitmap image.

CGImageGetShouldInterpolate (page 221)
Returns the interpolation setting for a bitmap image.

CGImageGetRenderingIntent (page 221)
Returns the rendering intent setting for a bitmap image.

CGImageGetWidth (page 222)
Returns the width of a bitmap image.

210 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageIsMask (page 223)
Returns whether a bitmap image is an image mask.

Functions

CGImageCreate
Creates a bitmap image from data supplied by a data provider.

CGImageRef CGImageCreate (
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bitsPerPixel,
 size_t bytesPerRow,
 CGColorSpaceRef colorspace,
 CGBitmapInfo bitmapInfo,
 CGDataProviderRef provider,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
width

The width, in pixels, of the required image.

height
The height, in pixels, of the required image

bitsPerComponent
The number of bits for each component in a source pixel. For example, if the source image uses the
RGBA-32 format, you would specify 8 bits per component.

bitsPerPixel
The total number of bits in a source pixel. This value must be at least bitsPerComponent times the
number of components per pixel.

bytesPerRow
The number of bytes of memory for each horizontal row of the bitmap.

colorspace
The color space for the image. Quartz retains the color space you pass in; on return, you may safely
release it.

bitmapInfo
A CGBitmapInfo constant that specifies whether the bitmap should contain an alpha channel and
its relative location in a pixel, along with whether the components are floating-point or integer values.

provider
The source of data for the bitmap. For information about supported data formats, see the discussion
below. Quartz retains this object; on return, you may safely release it.

Functions 211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

decode
The decode array for the image. If you do not want to allow remapping of the image’s color values,
pass NULL for the decode array. For each color component in the image’s color space, a decode array
provides a pair of values denoting the upper and lower limits of a range. For example, the decode
array for a source image in the RGB color space would contain six entries total, consisting of one pair
each for red, green, and blue. When the image is rendered, Quartz uses a linear transform to map the
original component value into a relative number within your designated range that is appropriate
for the destination color space.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image. Without interpolation, the
image may appear jagged or pixelated when drawn on an output device with higher resolution than
the image data.

intent
A rendering intent constant that specifies how Quartz should handle colors that are not located within
the gamut of the destination color space of a graphics context. The rendering intent determines the
exact method used to map colors from one color space to another. For descriptions of the defined
rendering-intent constants, see Color Rendering Intents (page 59).

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
224).

Discussion
The data provider should provide raw data that matches the format specified by the other input parameters.
To use encoded data (for example, from a file specified by a URL-based data provider), see
CGImageCreateWithJPEGDataProvider (page 214) and CGImageCreateWithPNGDataProvider (page
216). In Mac OS X version 10.3 and later, you can also use the QuickTime function
GraphicsImportCreateCGImage to decode an image file in any supported format and create a CGImage,
in a single operation.

For information on supported pixel formats, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageCreateCopy
Creates a copy of a bitmap image.

CGImageRef CGImageCreateCopy (
 CGImageRef image
);

Parameters
image

The image to copy.

Return Value
An copy of the image specified by the image parameter.

212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateCopyWithColorSpace
Create a copy of a bitmap image, replacing its colorspace.

CGImageRef CGImageCreateCopyWithColorSpace (
 CGImageRef image,
 CGColorSpaceRef colorspace
);

Parameters
image

The graphics image to copy.

colorspace
The destination color space. The number of components in this color space must be the same as the
number in the specified image.

Return Value
A new Quartz image that is a copy of the image passed as the image parameter but with its color space
replaced by that specified by the colorspace parameter. Returns NULL if image is an image mask, or if the
number of components of colorspace is not the same as the number of components of the colorspace of
image. You are responsible for releasing this object using CGImageRelease (page 224).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGImage.h

CGImageCreateWithImageInRect
Creates a bitmap image using the data contained within a subregion of an existing bitmap image.

CGImageRef CGImageCreateWithImageInRect (
 CGImageRef image,
 CGRect rect
);

Parameters
image

The image to extract the subimage from.

rect
A rectangle whose coordinates specify the area to create an image from.

Return Value
A CGImage object that specifies a subimage of the image. If the rect parameter defines an area that is not
in the image, returns NULL.

Functions 213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
Quartz performs these tasks to create the subimage:

 ■ Adjusts the area specified by the rect parameter to integral bounds by calling the function
CGRectIntegral.

 ■ Intersects the result with a rectangle whose origin is (0,0) and size is equal to the size of the image
specified by the image parameter.

 ■ References the pixels within the resulting rectangle, treating the first pixel within the rectangle as the
origin of the subimage.

If W and H are the width and height of image, respectively, then the point (0,0) corresponds to the first pixel
of the image data. The point (W–1, 0) is the last pixel of the first row of the image data while (0, H–1) is
the first pixel of the last row of the image data and (W–1, H–1) is the last pixel of the last row of the image
data.

The resulting image retains a reference to the original image, which means you may release the original
image after calling this function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithJPEGDataProvider
Creates a bitmap image using JPEG-encoded data supplied by a data provider.

CGImageRef CGImageCreateWithJPEGDataProvider (
 CGDataProviderRef source,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
source

A data provider supplying JPEG-encoded data.

decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
224).

214 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGImage.h

CGImageCreateWithMask
Creates a bitmap image from an existing image and an image mask.

CGImageRef CGImageCreateWithMask (
 CGImageRef image,
 CGImageRef mask
);

Parameters
image

The image to apply the mask parameter to. This image must not be an image mask and may not have
an image mask or masking color associated with it.

mask
A mask. If the mask is an image, it must be in the DeviceGray color space, must not have an alpha
component, and may not itself be masked by an image mask or a masking color. If the mask is not
the same size as the image specified by the image parameter, then Quartz scales the mask to fit the
image.

Return Value
An image created by masking image with mask. You are responsible for releasing this object by calling
CGImageRelease (page 224).

Discussion
The resulting image depends on whether the mask parameter is an image mask or an image. If the mask
parameter is an image mask, then the source samples of the image mask act as an inverse alpha value. That
is, if the value of a source sample in the image mask is S, then the corresponding region in image is blended
with the destination using an alpha value of (1-S). For example, if S is 1, then the region is not painted, while
if S is 0, the region is fully painted.

If the mask parameter is an image, then it serves as an alpha mask for blending the image onto the destination.
The source samples of mask' act as an alpha value. If the value of the source sample in mask is S, then the
corresponding region in image is blended with the destination with an alpha of S. For example, if S is 0, then
the region is not painted, while if S is 1, the region is fully painted.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithMaskingColors
Creates a bitmap image by masking an existing bitmap image with the provided color values.

Functions 215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageRef CGImageCreateWithMaskingColors (
 CGImageRef image,
 const CGFloat components[]
);

Parameters
image

The image to mask. This parameter may not be an image mask, may not already have an image mask
or masking color associated with it, and cannot have an alpha component.

components
An array of color components that specify a color or range of colors to mask the image with. The array
must contain 2N values { min[1], max[1], ... min[N], max[N] } where N is the number of components
in color space of image. Each value in components must be a valid image sample value. If image has
integer pixel components, then each value must be in the range [0 .. 2**bitsPerComponent - 1]
(where bitsPerComponent is the number of bits/component of image). If image has floating-point
pixel components, then each value may be any floating-point number which is a valid color component.

Return Value
An image created by masking image with the colors specified in the components array. You are responsible
for releasing this object by calling CGImageRelease (page 224).

Discussion
Any image sample with color value {c[1], ... c[N]} where min[i] <= c[i] <= max[i] for 1 <= i <= N is masked out
(that is, not painted). This means that anything underneath the unpainted samples, such as the current fill
color, shows through.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageCreateWithPNGDataProvider
Creates a Quartz bitmap image using PNG-encoded data supplied by a data provider.

CGImageRef CGImageCreateWithPNGDataProvider (
 CGDataProviderRef source,
 const CGFloat decode[],
 bool shouldInterpolate,
 CGColorRenderingIntent intent
);

Parameters
source

A data provider supplying PNG-encoded data.

decode
The decode array for the image. Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply a pixel-smoothing algorithm to the image.

216 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

intent
A CGColorRenderingIntent constant that specifies how Quartz should handle colors that are not
located within the gamut of the destination color space of a graphics context.

Return Value
A new Quartz bitmap image. You are responsible for releasing this object by calling CGImageRelease (page
224).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGImage.h

CGImageGetAlphaInfo
Returns the alpha channel information for a bitmap image.

CGImageAlphaInfo CGImageGetAlphaInfo (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
A CGImageAlphaInfo constant that specifies (1) whether the bitmap contains an alpha channel, (2) where
the alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. For possible
values, see “Constants” (page 226). The function returns kCGImageAlphaNone if the image parameter refers
to an image mask.

Discussion
The alpha value is what determines the opacity of a pixel when it is drawn.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitmapInfo
Returns the bitmap information for a bitmap image.

CGBitmapInfo CGImageGetBitmapInfo (
 CGImageRef image
);

Parameters
image

An image.

Return Value
The bitmap information associated with an image.

Functions 217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
This function returns a constant that specifies:

 ■ The type of bitmap data—floating point or integer. You use the constant kCGBitmapFloatComponents
to extract this information.

 ■ Whether an alpha channel is in the data, and if so, how the alpha data is stored. You use the constant
kCGBitmapAlphaInfoMask to extract the alpha information. Alpha information is specified as one of
the constants listed in “Alpha Information for Images” (page 226).

You can extract the alpha information

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

CGImageGetBitsPerComponent
Returns the number of bits allocated for a single color component of a bitmap image.

size_t CGImageGetBitsPerComponent (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The number of bits used in memory for each color component of the specified bitmap image (or image
mask). Possible values are 1, 2, 4, or 8. For example, for a 16-bit RGB(A) colorspace, the function would return
a value of 4 bits per color component.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBitsPerPixel
Returns the number of bits allocated for a single pixel in a bitmap image.

size_t CGImageGetBitsPerPixel (
 CGImageRef image
);

Parameters
image

The image to examine.

218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Return Value
The number of bits used in memory for each pixel of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetBytesPerRow
Returns the number of bytes allocated for a single row of a bitmap image.

size_t CGImageGetBytesPerRow (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The number of bytes used in memory for each row of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetColorSpace
Return the color space for a bitmap image.

CGColorSpaceRef CGImageGetColorSpace (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The source color space for the specified bitmap image, or NULL if the image is an image mask. You are
responsible for retaining and releasing the color space as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

Functions 219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageGetDataProvider
Returns the data provider for a bitmap image.

CGDataProviderRef CGImageGetDataProvider (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The data provider for the specified bitmap image (or image mask). You are responsible for retaining and
releasing the data provider as necessary.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetDecode
Returns the decode array for a bitmap image.

const CGFloat * CGImageGetDecode (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The decode array for a bitmap image (or image mask). See the discussion for a description of possible return
values.

Discussion
For a bitmap image or image mask, for each color component in the source color space, the decode array
contains a pair of values denoting the upper and lower limits of a range. When the image is rendered, Quartz
uses a linear transform to map the original component value into a relative number, within the designated
range, that is appropriate for the destination color space. If remapping of the image’s color values is not
allowed, the returned value will be NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetHeight
Returns the height of a bitmap image.

220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

size_t CGImageGetHeight (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The height in pixels of the bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImage.h

CGImageGetRenderingIntent
Returns the rendering intent setting for a bitmap image.

CGColorRenderingIntent CGImageGetRenderingIntent (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
Returns the CGColorRenderingIntent constant that specifies how Quartz should handle colors that are
not located within the gamut of the destination color space of a graphics context in which the image is
drawn. If the image is an image mask, this function returns kCGRenderingIntentDefault.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetShouldInterpolate
Returns the interpolation setting for a bitmap image.

bool CGImageGetShouldInterpolate (
 CGImageRef image
);

Parameters
image

The image to examine.

Functions 221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Return Value
Returns 1 if interpolation is enabled for the specified bitmap image (or image mask), otherwise, returns 0.

Discussion
The interpolation setting specifies whether Quartz should apply an edge-smoothing algorithm to the associated
image.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageGetTypeID
Returns the type identifier for Quartz bitmap images.

CFTypeID CGImageGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGImageRef (page 225).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGImage.h

CGImageGetWidth
Returns the width of a bitmap image.

size_t CGImageGetWidth (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
The width, in pixels, of the specified bitmap image (or image mask).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImage.h

222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

CGImageIsMask
Returns whether a bitmap image is an image mask.

bool CGImageIsMask (
 CGImageRef image
);

Parameters
image

The image to examine.

Return Value
A Boolean value that indicates whether the image passed in the image parameter is an image mask (true
indicates that the image is an image mask).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageMaskCreate
Creates a bitmap image mask from data supplied by a data provider.

CGImageRef CGImageMaskCreate (
 size_t width,
 size_t height,
 size_t bitsPerComponent,
 size_t bitsPerPixel,
 size_t bytesPerRow,
 CGDataProviderRef provider,
 const CGFloat decode[],
 bool shouldInterpolate
);

Parameters
width

The width, in pixels, of the required image mask.

height
The height, in pixels, of the required image mask.

bitsPerComponent
The number of significant masking bits in a source pixel. For example, if the source image is an 8-bit
mask, you specify 8 bits per component. Image masks must be 1, 2, 4, or 8 bits per component.

bitsPerPixel
The total number of bits in a source pixel.

bytesPerRow
The number of bytes to use for each horizontal row of the image mask.

provider
The data source for the image mask.

Functions 223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

decode
Typically a decode array is unnecessary, and you should pass NULL.

shouldInterpolate
A Boolean value that specifies whether interpolation should occur. The interpolation setting specifies
whether Quartz should apply an edge-smoothing algorithm to the image mask.

Return Value
A Quartz bitmap image mask. You are responsible for releasing this object by calling CGImageRelease (page
224).

Discussion
A Quartz bitmap image mask is used the same way an artist uses a silkscreen, or a sign painter uses a stencil.
The bitmap represents a mask through which a color is transferred. The bitmap itself does not have a color.
It gets its color from the fill color currently set in the graphics state.

When you draw into a context with a bitmap image mask, Quartz uses the mask to determine where and
how the current fill color is applied to the image rectangle. Each sample value in the mask specifies how
much of the current fill color is masked out at a specific location. Effectively, the sample value specifies the
opacity of the mask. Larger values represent greater opacity and hence less color applied to the page.

Image masks must be 1, 2, 4, or 8 bits per component. For a 1-bit mask, a sample value of 1 specifies sections
of the mask that are masked out; these sections block the current fill color. A sample value of 0 specifies
sections of the mask that are not masked out; these sections show the current fill color of the graphics state
when the mask is painted. You can think of the sample values as an inverse alpha. That is, a value of 1 is
transparent and 0 is opaque.

For image masks that are 2, 4, or 8 bits per component, each component is mapped to a range of 0 to 1 by
scaling using this formula:

1/(2^bits per component – 1)

For example, a 4-bit mask has values that range from 0 to 15. These values are scaled by 1/15 so that each
component ranges from 0 to 1. Component values that rescale to 0 or 1 behave the same way as they behave
for 1-bit image masks. Values that scale to between 0 and 1 act as an inverse alpha. That is, the fill color is
painted as if it has an alpha value of (1 – MaskSampleValue). For example, if the sample value of an 8-bit
mask scales to 0.8, the current fill color is painted as if it has an alpha value of 0.2, that is (1–0.8).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

CGImageRelease
Decrements the retain count of a bitmap image.

void CGImageRelease (
 CGImageRef image
);

Parameters
image

The image to release.

224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
WhackedTV

Declared In
CGImage.h

CGImageRetain
Increments the retain count of a bitmap image.

CGImageRef CGImageRetain (
 CGImageRef image
);

Parameters
image

The image to retain.

Return Value
The same image you passed in as the image parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the image parameter is
NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGImage.h

Data Types

CGImageRef
An opaque type that encapsulates bitmap image information.

typedef struct CGImage *CGImageRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGImage.h

Data Types 225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Constants

Alpha Information for Images
Storage options for alpha component data.

enum CGImageAlphaInfo {
 kCGImageAlphaNone,
 kCGImageAlphaPremultipliedLast,
 kCGImageAlphaPremultipliedFirst,
 kCGImageAlphaLast,
 kCGImageAlphaFirst,
 kCGImageAlphaNoneSkipLast,
 kCGImageAlphaNoneSkipFirst
};
typedef enum CGImageAlphaInfo CGImageAlphaInfo;

Constants
kCGImageAlphaFirst

The alpha component is stored in the most significant bits of each pixel. For example, non-premultiplied
ARGB.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaLast
The alpha component is stored in the least significant bits of each pixel. For example, non-premultiplied
RGBA.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaNone
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNoneSkipLast.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaNoneSkipFirst
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the most significant bits are ignored.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaOnly
There is no color data, only an alpha channel.

Available in Mac OS X v10.3 and later.

Declared in CGImage.h.

226 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

kCGImageAlphaNoneSkipLast
There is no alpha channel. If the total size of the pixel is greater than the space required for the number
of color components in the color space, the least significant bits are ignored. This value is equivalent
to kCGImageAlphaNone.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaPremultipliedFirst
The alpha component is stored in the most significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied ARGB.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

kCGImageAlphaPremultipliedLast
The alpha component is stored in the least significant bits of each pixel and the color components
have already been multiplied by this alpha value. For example, premultiplied RGBA.

Available in Mac OS X v10.0 and later.

Declared in CGImage.h.

Discussion
A CGImageAlphaInfo constant specifies (1) whether a bitmap contains an alpha channel, (2) where the
alpha bits are located in the image data, and (3) whether the alpha value is premultiplied. You can obtain a
CGImageAlphaInfo constant for an image by calling the function CGImageGetAlphaInfo (page 217). (You
provide a CGBitmapInfo constant to the function CGImageCreate (page 211), part of which is a
CGImageAlphaInfo constant.)

Quartz accomplishes alpha blending by combining the color components of the source image with the color
components of the destination image using the linear interpolation formula, where “source” is one color
component of one pixel of the new paint and “destination” is one color component of the background image.

Quartz supports premultiplied alpha only for images. You should not premultiply any other color values
specified in Quartz.

Declared In
CGImage.h

Image Bitmap Information
Component information for a bitmap image.

enum {
 kCGBitmapAlphaInfoMask = 0x1F,
 kCGBitmapFloatComponents = (1 << 8),

 kCGBitmapByteOrderMask = 0x7000,
 kCGBitmapByteOrderDefault = (0 << 12),
 kCGBitmapByteOrder16Little = (1 << 12),
 kCGBitmapByteOrder32Little = (2 << 12),
 kCGBitmapByteOrder16Big = (3 << 12),
 kCGBitmapByteOrder32Big = (4 << 12)
};
typedef uint32_t CGBitmapInfo;

Constants 227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

#ifdef __BIG_ENDIAN__
 kCGBitmapByteOrder16Host kCGBitmapByteOrder16Big
 kCGBitmapByteOrder32Host kCGBitmapByteOrder32Big
#else
 kCGBitmapByteOrder16Host kCGBitmapByteOrder16Little
 kCGBitmapByteOrder32Host kCGBitmapByteOrder32Little
#endif

Constants
kCGBitmapAlphaInfoMask

The alpha information mask. Use this to extract alpha information that specifies whether a bitmap
contains an alpha channel and how the alpha channel is generated.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapFloatComponents
The components of a bitmap are floating-point values.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrderMask
The byte ordering of pixel formats.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrderDefault
The default byte order.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder16Little
16-bit, little endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder32Little
32-bit, little endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder16Big
16-bit, big endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder32Big
32-bit, big endian format.

Available in Mac OS X v10.4 and later.

Declared in CGImage.h.

kCGBitmapByteOrder16Host
16-bit, host endian format.

kCGBitmapByteOrder32Host
32-bit, host endian format.

228 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Discussion
Applications that store pixel data in memory using ARGB format must take care in how they read data. If the
code is not written correctly, it’s possible to misread the data which leads to colors or alpha that appear
wrong. The Quartz byte order constants specify the byte ordering of pixel formats. To specify byte ordering
to Quartz use a bitwise OR operator to combine the appropriate constant with the bitmapInfo parameter.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImage.h

Constants 229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

230 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

CGImage Reference

Derived From: CFType

Framework: ApplicationServices/ImageIO

Declared in CGImageDestination.h

Companion guide Quartz 2D Programming Guide

Overview

CGImageDestination objects, available in Mac OS X v10.4 or later, abstract the data-writing task. An image
destination can represent a single image or multiple images. It can contain thumbnail images as well as
properties for each image.

The functions described in this reference can write data to three kinds of destinations: a URL, a CFData object,
and a data consumer. After creating a CGImageDestination object for the appropriate destination, you can
add image data and set image properties. When you are finished adding data, call the function
CGImageDestinationFinalize to write the image data and properties to the URL, CFData object, or data
consumer.

Functions by Task

Creating Image Destinations

CGImageDestinationCreateWithDataConsumer (page 234)
Creates an image destination that writes to the specified data consumer.

CGImageDestinationCreateWithData (page 234)
Creates an image destination that writes to a Core Foundation mutable data object.

CGImageDestinationCreateWithURL (page 235)
Creates an image destination that writes to a location specified by a URL.

Adding Images

CGImageDestinationAddImage (page 232)
Adds an image to an image destination.

CGImageDestinationAddImageFromSource (page 233)
Adds an image from an image source to an image destination.

Overview 231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Getting Type Identifiers

CGImageDestinationCopyTypeIdentifiers (page 233)
Returns an array of the uniform type identifiers (UTIs) that are supported for image destinations.

CGImageDestinationGetTypeID (page 236)
Returns the unique type identifier of an image destination opaque type.

Setting Properties

CGImageDestinationSetProperties (page 236)
Applies one or more properties to all images in an image destination.

Finalizing an Image Destination

CGImageDestinationFinalize (page 235)
Writes image data and properties to the data, URL, or data consumer associated with the image
destination.

Functions

CGImageDestinationAddImage
Adds an image to an image destination.

void CGImageDestinationAddImage (
 CGImageDestinationRef idst,
 CGImageRef image,
 CFDictionaryRef properties
);

Parameters
idst

An image destination

image
The image to add.

properties
An optional dictionary that specifies the properties of the added image. The dictionary can contain
any of the properties described in “Destination Properties” (page 237) or the image properties
described in CGImageProperties Reference.

Discussion
The function logs an error if you add more images than what you specified when you created the image
destination.

Availability
Available in Mac OS X version 10.4 and later.

232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Declared In
CGImageDestination.h

CGImageDestinationAddImageFromSource
Adds an image from an image source to an image destination.

void CGImageDestinationAddImageFromSource (
 CGImageDestinationRef idst,
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef properties
);

Parameters
idst

An image destination.

isrc
An image source.

index
An index that specifies the location of the image in the image source. The index is zero-based.

properties
A dictionary that specifies properties to overwrite or add to the source image properties. If a key in
properties has the value kCFNull, the corresponding property in the image destination is removed.
The dictionary can contain any of the properties described in “Destination Properties” (page
237) or the image properties described in CGImageProperties Reference.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCopyTypeIdentifiers
Returns an array of the uniform type identifiers (UTIs) that are supported for image destinations.

CFArrayRef CGImageDestinationCopyTypeIdentifiers (
 void
);

Return Value
Returns an array of the UTIs that are supported for image destinations. See Uniform Type Identifiers Overview
for a list of system-declared and third-party UTIs that can be returned.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

Functions 233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

CGImageDestinationCreateWithData
Creates an image destination that writes to a Core Foundation mutable data object.

CGImageDestinationRef CGImageDestinationCreateWithData (
 CFMutableDataRef data,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
data

The data object to write to. For more information on data objects, see CFData Reference and Data
Objects.

type
The uniform type identifier (UTI) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCreateWithDataConsumer
Creates an image destination that writes to the specified data consumer.

CGImageDestinationRef CGImageDestinationCreateWithDataConsumer (
 CGDataConsumerRef consumer,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
consumer

The data consumer to write to. For information on data consumers see CGDataConsumer Reference
and Quartz 2D Programming Guide.

type
The uniform type identifier (UTI) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

234 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationCreateWithURL
Creates an image destination that writes to a location specified by a URL.

CGImageDestinationRef CGImageDestinationCreateWithURL (
 CFURLRef url,
 CFStringRef type,
 size_t count,
 CFDictionaryRef options
);

Parameters
url

The URL to write to. If the URL already exists, the data at this location is overwritten.

type
The UTI (uniform type identifier) of the resulting image file. See Uniform Type Identifiers Overview for
a list of system-declared and third-party UTIs.

count
The number of images (not including thumbnail images) that the image file will contain.

options
Reserved for future use. Pass NULL.

Return Value
An image destination. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationFinalize
Writes image data and properties to the data, URL, or data consumer associated with the image destination.

Functions 235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

bool CGImageDestinationFinalize (
 CGImageDestinationRef idst
);

Parameters
idst

An image destination.

Return Value
Returns true if the image is successfully written; false otherwise.

Discussion
You must call this function or the output of the image destination will not be valid. After calling this function,
no additional data can be added to the image destination.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationGetTypeID
Returns the unique type identifier of an image destination opaque type.

CFTypeID CGImageDestinationGetTypeID (
 void
);

Return Value
Returns the Core Foundation type ID for an image destination.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

CGImageDestinationSetProperties
Applies one or more properties to all images in an image destination.

void CGImageDestinationSetProperties (
 CGImageDestinationRef idst,
 CFDictionaryRef properties
);

Parameters
idst

An image destination.

236 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

properties
A dictionary that contains the properties to apply. You can set any of the properties described in
“Destination Properties” (page 237) or the image properties described in CGImageProperties
Reference.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageDestination.h

Data Types

CGImageDestinationRef
An opaque type that represents an image destination.

typedef struct CGImageDestination *CGImageDestinationRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImageDestination.h

Constants

Destination Properties
Properties for a single image in an image destination.

const CFStringRef kCGImageDestinationLossyCompressionQuality
const CFStringRef kCGImageDestinationBackgroundColor

Constants
kCGImageDestinationLossyCompressionQuality

The desired compression quality to use when writing to an image destination. If present, the value
associated with this key must be a CFNumberRef data type in the range 0.0 to 1.0. A value of 1.0
specifies to use lossless compression if destination format supports it. A value of 0.0 implies to use
maximum compression.

Available in Mac OS X v10.4 and later.

Declared in CGImageDestination.h.

Data Types 237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

kCGImageDestinationBackgroundColor
The desired background color to composite against when writing an image that has an alpha
component to a destination format that does not support alpha. If present, the value associated with
this key must be a CGColorRef (page 41) data type without an alpha component of its own. If not
present, and if a background color is needed, a white color is used.

Available in Mac OS X v10.4 and later.

Declared in CGImageDestination.h.

Declared In
CGImageDestination.h

238 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

CGImageDestination Reference

Derived From: CFType

Framework: ApplicationServices/ImageIO

Declared in CGImageSource.h

Companion guides Quartz 2D Programming Guide
CGImage Reference

Overview

CGImageSource objects, available in Mac OS X v10.4 or later, abstract the data-reading task. An image source
can read image data from a URL, a CFData object, or a data consumer.

After creating a CGImageSource object for the appropriate source, you can obtain images, thumbnails, image
properties, and other image information using CGImageSource functions.

Functions by Task

Creating an Image Source

CGImageSourceCreateWithDataProvider (page 244)
Creates an image source that reads data from the specified data provider.

CGImageSourceCreateWithData (page 244)
Creates an image source that reads from a Core Foundation data object.

CGImageSourceCreateWithURL (page 245)
Creates an image source that reads from a location specified by a URL.

Creating Images From an Image Source

CGImageSourceCreateImageAtIndex (page 242)
Creates a CGImage object for the image data associated with the specified index in an image source.

CGImageSourceCreateThumbnailAtIndex (page 243)
Creates a thumbnail image of the image located at a specified location in an image source.

CGImageSourceCreateIncremental (page 242)
Create an incremental image source.

Overview 239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Updating an Image Source

CGImageSourceUpdateData (page 248)
Updates an incremental image source with new data.

CGImageSourceUpdateDataProvider (page 248)
Updates an incremental image source with a new data provider.

Getting Information From an Image Source

CGImageSourceGetTypeID (page 247)
Returns the unique type identifier of an image source opaque type.

CGImageSourceGetType (page 247)
Returns the uniform type identifier of the source container.

CGImageSourceCopyTypeIdentifiers (page 241)
Returns an array of uniform type identifiers (UTIs) that are supported for image sources.

CGImageSourceGetCount (page 245)
Returns the number of images (not including thumbnails) in the image source.

CGImageSourceCopyProperties (page 240)
Returns the properties of the image source.

CGImageSourceCopyPropertiesAtIndex (page 241)
Returns the properties of the image at a specified location in an image source.

CGImageSourceGetStatus (page 246)
Return the status of an image source.

CGImageSourceGetStatusAtIndex (page 246)
Returns the current status of an image that is at a specified location in an image source.

Functions

CGImageSourceCopyProperties
Returns the properties of the image source.

CFDictionaryRef CGImageSourceCopyProperties (
 CGImageSourceRef isrc,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

options
A dictionary you can use to request additional options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Return Value
A dictionary that contains the properties associated with the image source container. See CGImageProperties
Reference for a list of properties that can be in the dictionary.

Discussion
These properties apply to the container in general but not necessarily to any individual image contained in
the image source.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCopyPropertiesAtIndex
Returns the properties of the image at a specified location in an image source.

CFDictionaryRef CGImageSourceCopyPropertiesAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index of the image whose properties you want to obtain. The index is zero-based.

options
A dictionary you can use to request additional options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
A dictionary that contains the properties associated with the image. See CGImageProperties Reference for a
list of properties that can be in the dictionary.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCopyTypeIdentifiers
Returns an array of uniform type identifiers (UTIs) that are supported for image sources.

CFArrayRef CGImageSourceCopyTypeIdentifiers (
 void
);

Return Value
Returns an array of the UTIs that are supported for image sources.

Functions 241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Discussion
See Uniform Type Identifiers Overview for a list of system-declared and third-party UTIs.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImageSource.h

CGImageSourceCreateImageAtIndex
Creates a CGImage object for the image data associated with the specified index in an image source.

CGImageRef CGImageSourceCreateImageAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index that specifies the location of the image. The index is zero-based.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
Returns a CGImage object. You are responsible for releasing this object using CGImageRelease (page 224).

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImageSource.h

CGImageSourceCreateIncremental
Create an incremental image source.

242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

CGImageSourceRef CGImageSourceCreateIncremental (
 CFDictionaryRef options
);

Parameters
options

A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
Returns an image source object. You are responsible for releasing this object using CFRelease.

Discussion
The function CGImageSourceCreateIncremental creates an empty image source container to which you
can add data later by calling the functions CGImageSourceUpdateDataProvider or
CGImageSourceUpdateData. You don’t provide data when you call this function.

An incremental image is an image that is created in chunks, similar to the way large images viewed over the
web are loaded piece by piece.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateThumbnailAtIndex
Creates a thumbnail image of the image located at a specified location in an image source.

CGImageRef CGImageSourceCreateThumbnailAtIndex (
 CGImageSourceRef isrc,
 size_t index,
 CFDictionaryRef options
);

Parameters
isrc

An image source.

index
The index that specifies the location of the image. The index is zero-based.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
A CGImage object. You are responsible for releasing this object using CGImageRelease (page 224).

Discussion
If the image source is a PDF, this function creates a 72 dpi image of the PDF page specified by the index
that you pass. You must, however, pass an options dictionary that contains either the
kCGImageSourceCreateThumbnailFromImageIfAbsent
or kCGImageSourceCreateThumbnailFromImageAlways keys, with the value of the key set to TRUE.

Functions 243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateWithData
Creates an image source that reads from a Core Foundation data object.

CGImageSourceRef CGImageSourceCreateWithData (
 CFDataRef data,
 CFDictionaryRef options
);

Parameters
data

The data object to read from. For more information on data objects, see CFData Reference and Data
Objects.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateWithDataProvider
Creates an image source that reads data from the specified data provider.

CGImageSourceRef CGImageSourceCreateWithDataProvider (
 CGDataProviderRef provider,
 CFDictionaryRef options
);

Parameters
provider

The data provider to read from. For more information on data providers, see CGDataProvider Reference
and Quartz 2D Programming Guide.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

244 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceCreateWithURL
Creates an image source that reads from a location specified by a URL.

CGImageSourceRef CGImageSourceCreateWithURL (
 CFURLRef url,
 CFDictionaryRef options
);

Parameters
url

The URL to read from.

options
A dictionary that specifies additional creation options. See “Image Source Option Dictionary
Keys” (page 250) for the keys you can supply.

Return Value
An image source. You are responsible for releasing this object using CFRelease.

Availability
Available in Mac OS X version 10.4 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
CGImageSource.h

CGImageSourceGetCount
Returns the number of images (not including thumbnails) in the image source.

size_t CGImageSourceGetCount (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
The number of images. If the image source is a multilayered PSD file, the function returns 1.

Discussion
This function does not extract the layers of a PSD file.

Availability
Available in Mac OS X version 10.4 and later.

Functions 245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Declared In
CGImageSource.h

CGImageSourceGetStatus
Return the status of an image source.

CGImageSourceStatus CGImageSourceGetStatus (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
Returns the current status of the image source. See “Image Source Status” (page 249) for a list of possible
values.

Discussion
The status is particularly informative for incremental image sources, but may also be used by clients that
provide non-incremental data.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceGetStatusAtIndex
Returns the current status of an image that is at a specified location in an image source.

CGImageSourceStatus CGImageSourceGetStatusAtIndex (
 CGImageSourceRef isrc,
 size_t index
);

Parameters
isrc

An image source.

index
The index of the image whose status you want to obtain. The index is zero-based.

Return Value
Returns the current status of the image. See “Image Source Status” (page 249) for a list of possible values.

Discussion
The status is particularly informative for incremental image sources, but may also be used by clients that
provide non-incremental data.

Availability
Available in Mac OS X version 10.4 and later.

246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Declared In
CGImageSource.h

CGImageSourceGetType
Returns the uniform type identifier of the source container.

CFStringRef CGImageSourceGetType (
 CGImageSourceRef isrc
);

Parameters
isrc

An image source.

Return Value
The uniform type identifier of the image.

Discussion
The uniform type identifier (UTI) of the source container can be different from the type of the images in the
container. For example, the .icns format supports embedded JPEG2000. The type of the source container
is "com.apple.icns" but type of the images is JPEG2000.

See Uniform Type Identifier Concepts for a list of system-declared and third-party UTIs.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceGetTypeID
Returns the unique type identifier of an image source opaque type.

CFTypeID CGImageSourceGetTypeID (
 void
);

Return Value
Returns the Core Foundation type ID for an image source.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections. Note
that a CFType ID is different from a uniform type identifier (UTI).

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

Functions 247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

CGImageSourceUpdateData
Updates an incremental image source with new data.

void CGImageSourceUpdateData (
 CGImageSourceRef isrc,
 CFDataRef data,
 bool final
);

Parameters
isrc

An image source.

data
The data to add to the image source. Each time you call the function CGImageSourceUpdateData,
the data parameter must contain all of the image file data accumulated so far.

final
A value that specifies whether the data is the final set. Pass true if it is, false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

CGImageSourceUpdateDataProvider
Updates an incremental image source with a new data provider.

void CGImageSourceUpdateDataProvider (
 CGImageSourceRef isrc,
 CGDataProviderRef provider,
 bool final
);

Parameters
isrc

An image source.

provider
The new data provider. The new data provider must provide all the previous data supplied to the
image source plus any additional new data.

final
A value that specifies whether the data is the final set. Pass true if it is, false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGImageSource.h

248 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Data Types

CGImageSourceRef
An opaque type that represents an image source.

typedef struct CGImageSource *CGImageSourceRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGImageSource.h

Constants

Image Source Status
Status states for images and image sources.

enum CGImageSourceStatus {
 kCGImageStatusUnexpectedEOF = -5,
 kCGImageStatusInvalidData = -4,
 kCGImageStatusUnknownType = -3,
 kCGImageStatusReadingHeader = -2,
 kCGImageStatusIncomplete = -1,
 kCGImageStatusComplete = 0
};
typedef enum CGImageSourceStatus CGImageSourceStatus;

Constants
kCGImageStatusUnexpectedEOF

The end of the file was encountered unexpectedly.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusInvalidData
The data is not valid.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusUnknownType
The image is an unknown type.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Data Types 249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

kCGImageStatusReadingHeader
In the process of reading the header.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusIncomplete
The operation is not complete

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageStatusComplete
The operation is complete.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Discussion
These status values are returned by the functions CGImageSourceGetStatus (page 246) and
CGImageSourceGetStatusAtIndex (page 246).

Declared In
CGImageSource.h

Image Source Option Dictionary Keys
Keys that you can include in the options dictionary to create an image source.

CFStringRef kCGImageSourceTypeIdentifierHint;
CFStringRef kCGImageSourceShouldAllowFloat;
CFStringRef kCGImageSourceShouldCache;
CFStringRef kCGImageSourceCreateThumbnailFromImageIfAbsent;
CFStringRef kCGImageSourceCreateThumbnailFromImageAlways;
CFStringRef kCGImageSourceThumbnailMaxPixelSize;
CFStringRef kCGImageSourceCreateThumbnailWithTransform

Constants
kCGImageSourceTypeIdentifierHint

The best guess of the uniform type identifier (UTI) for the format of the image source file. If specified,
the value of this key must be a CFString object. This key can be provided in the options dictionary
when you create a CGImageSource object.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceShouldAllowFloat
Whether the image should be returned as a CGImage object that uses floating-point values, if supported
by the file format. CGImage objects that use extended-range floating-point values may require
additional processing to render in a pleasing manner. The value of this key must be a CFBoolean
value. The default value is kCFBooleanFalse.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

250 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

kCGImageSourceShouldCache
Whether the image should be cached in a decoded form. The value of this key must be a CFBoolean
value. The default value is kCFBooleanTrue. This key can be provided in the options dictionary that
you can pass to the functions CGImageSourceCopyPropertiesAtIndex (page 241) and
CGImageSourceCreateImageAtIndex (page 242).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailFromImageIfAbsent
Whether a thumbnail should be automatically created for an image if a thumbnail isn't present in the
image source file. The thumbnail is created from the full image, subject to the limit specified by
kCGImageSourceThumbnailMaxPixelSize. If a maximum pixel size isn't specified, then the
thumbnail is the size of the full image, which in most cases is not desirable. This key must be a
CFBoolean value. The default value is kCFBooleanFalse. This key can be provided in the options
dictionary that you pass to the function CGImageSourceCreateThumbnailAtIndex (page 243).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailFromImageAlways
Whether a thumbnail should be created from the full image even if a thumbnail is present in the
image source file. The thumbnail is created from the full image, subject to the limit specified by
kCGImageSourceThumbnailMaxPixelSize. If a maximum pixel size isn't specified, then the
thumbnail is the size of the full image, which probably isn't what you want. This key must be a
CFBoolean value. The default value is kCFBooleanFalse. This key can be provided in the options
dictionary that you can pass to the function CGImageSourceCreateThumbnailAtIndex (page 243).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceThumbnailMaxPixelSize
The maximum width and height in pixels of a thumbnail. If this key is not specified, the width and
height of a thumbnail is not limited and thumbnails may be as big as the image itself. If present, this
key must be a CFNumber value. This key can be provided in the options dictionary that you pass to
the function CGImageSourceCreateThumbnailAtIndex (page 243).

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

kCGImageSourceCreateThumbnailWithTransform
Whether the thumbnail should be rotated and scaled according to the orientation and pixel aspect
ratio of the full image. The value of this key must be a CFBoolean value. The default value is
kCFBooleanFalse.

Available in Mac OS X v10.4 and later.

Declared in CGImageSource.h.

Discussion
Except for kCGImageSourceTypeIdentifierHint, which you use when creating an image source, these
constants specify options that you can set when creating an image from image source. Each constant is a
key; you must supply the appropriate value when you add this option to the options dictionary.

Declared In
CGImageSource.h

Constants 251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

252 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

CGImageSource Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGLayer.h

Overview

CGLayer objects are useful for offscreen drawing and can be used in much the same way that a bitmap
context can be used. In fact, a CGLayer object is a much better representation than a bitmap context.

Using CGLayer objects can improve performance, particularly when you need to capture a piece of drawing
that you stamp repeatedly (using the same scale factor and orientation). Quartz can cache CGLayer objects
to the video card, making drawing a CGLayer to a destination much faster than rendering the equivalent
image constructed from a bitmap context.

A CGLayer object is created relative to a graphics context. Although layer uses this graphics context as a
reference for initialization, you are not restricted to drawing the layer to this graphics context. You can draw
the layer to other graphics contexts, although any limitations of the original context are imposed. For example,
if you create a CGLayer object using a bitmap context, the layer is rendered as a bitmap when drawn to any
other graphics context.

You can use a CGLayer when you want to apply a shadow to a group of objects (such as a group of circles)
rather than to individual objects.

Use these layers in your code whenever you can, especially when:

 ■ You need to reuse a filled or stroked shape.

 ■ You are building a scene and at least some of it can be reused. Put the reusable drawing in its own
CGLayer.

Any CG object that you draw repeatedly—including CGPath, CGShading, and CGPDFPage—benefit from
improved performance if you draw it to a CGLayer object.

Functions by Task

Creating Layer Objects

CGLayerCreateWithContext (page 255)
Creates a CGLayer object that is associated with a graphics context.

Overview 253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Drawing Layer Content

CGContextDrawLayerInRect (page 255)
Draws the contents of a CGLayer object into the specified rectangle.

CGContextDrawLayerAtPoint (page 254)
Draws the contents of a CGLayer object at the specified point.

Retaining and Releasing Layers

CGLayerRelease (page 257)
Decrements the retain count of a CGLayer object.

CGLayerRetain (page 258)
Increments the retain count of a CGLayer object.

Getting the CFType ID for a Layer

CGLayerGetTypeID (page 257)
Returns the unique type identifier used for CGLayer objects.

Getting Layer Information

CGLayerGetSize (page 257)
Returns the width and height of a CGLayer object.

CGLayerGetContext (page 256)
Returns the graphics context associated with a CGLayer object.

Functions

CGContextDrawLayerAtPoint
Draws the contents of a CGLayer object at the specified point.

void CGContextDrawLayerAtPoint (
 CGContextRef context,
 CGPoint point,
 CGLayerRef layer
);

Parameters
context

The graphics context associated with the layer.

point
The location, in current user space coordinates, to use as the origin for the drawing.

254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

layer
The layer whose contents you want to draw.

Discussion
Calling the function CGContextDrawLayerAtPoint is equivalent to calling the function
CGContextDrawLayerInRect with a rectangle that has its origin at point and its size equal to the size of
the layer.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGContextDrawLayerInRect
Draws the contents of a CGLayer object into the specified rectangle.

void CGContextDrawLayerInRect (
 CGContextRef context,
 CGRect rect,
 CGLayerRef layer
);

Parameters
context

The graphics context associated with the layer.

rect
The rectangle, in current user space coordinates, to draw to.

layer
The layer whose contents you want to draw.

Discussion
The contents are scaled, if necessary, to fit into the rectangle.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerCreateWithContext
Creates a CGLayer object that is associated with a graphics context.

Functions 255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

CGLayerRef CGLayerCreateWithContext (
 CGContextRef context,
 CGSize size,
 CFDictionaryRef auxiliaryInfo
);

Parameters
context

The graphics context you want to create the layer relative to. The layer uses this graphics context as
a reference for initialization.

size
The size, in default user space units, of the layer relative to the graphics context.

auxiliaryInfo
Reserved for future use. Pass NULL.

Return Value
A CGLayer object. You are responsible for releasing this object using the function CGLayerRelease (page
257) when you no longer need the layer.

Discussion
After you create a CGLayer object, you should reuse it whenever you can to facilitate the Quartz caching
strategy. Quartz caches any objects that are reused, including CGLayer objects. Objects that are reused
frequently remain in the cache. In contrast, objects that are used once in a while may be moved in and out
of the cache according to their frequency of use. If you don’t reuse CGLayer objects, Quartz won’t cache
them. This means that you lose an opportunity to improve the performance of your application.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerGetContext
Returns the graphics context associated with a CGLayer object.

CGContextRef CGLayerGetContext (
 CGLayerRef layer
);

Parameters
layer

The layer whose graphics context you want to obtain.

Return Value
The graphics context associated with the layer.

Discussion
The context that’s returned is the context for the layer itself, not the context that you specified when you
created the layer.

Availability
Available in Mac OS X version 10.4 and later.

256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Declared In
CGLayer.h

CGLayerGetSize
Returns the width and height of a CGLayer object.

CGSize CGLayerGetSize (
 CGLayerRef layer
);

Parameters
layer

The layer whose width and height you want to obtain.

Return Value
The width and height of the layer, in default user space coordinates.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerGetTypeID
Returns the unique type identifier used for CGLayer objects.

CFTypeID CGLayerGetTypeID (
 void
);

Return Value
The type identifier for CGLayer objects.

Discussion
A type identifier is an integer that identifies the opaque type to which a Core Foundation object belongs.
You use type IDs in various contexts, such as when you are operating on heterogeneous collections.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerRelease
Decrements the retain count of a CGLayer object.

Functions 257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

void CGLayerRelease (
 CGLayerRef layer
);

Parameters
layer

The layer to release.

Discussion
This function is equivalent to calling CFRelease (layer) except that it does not crash (as CFRetain does)
if the layer parameter is null.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

CGLayerRetain
Increments the retain count of a CGLayer object.

CGLayerRef CGLayerRetain (
 CGLayerRef layer
);

Parameters
layer

The layer to retain.

Return Value
The same layer you passed in as the layer parameter.

Discussion
This function is equivalent to calling CFRetain (layer) except that it does not crash (as CFRetain does)
if the layer parameter is null.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGLayer.h

Data Types

CGLayerRef
An opaque type used for offscreen drawing.

typedef struct CGLayer *CGLayerRef;

Availability
Available in Mac OS X v10.4 and later.

258 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Declared In
CGLayer.h

Data Types 259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

260 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

CGLayer Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPath.h

Companion guide Quartz 2D Programming Guide

Overview

A graphics path is a description of a 2D geometric scene using sequences of lines and Bézier curves.
CGPathRef defines an opaque type that represents an immutable graphics path. CGMutablePathRef defines
an opaque type that represents a mutable graphics path. To draw using a Quartz path, you need to add the
path to a graphics context—see CGContextAddPath (page 73).

Each figure in a scene may be described by a subpath. A subpath has an ordered set of path elements, that
represent single steps in the construction of a subpath. (For example, MoveToPoint (bottom left) and
AddLineToPoint (bottom right) are path elements.) A subpath also maintains state information,
including a starting point and a current point. When drawing a path, Quartz traverses each subpath using
its path elements and its state.

The lines and curves in a subpath are always connected, but they do not necessarily form a closed figure.
Furthermore, subpaths do not need to be connected to each other. For example, you could use a graphics
path to draw the outlines of a sequence of text characters.

Functions by Task

Creating and Managing Paths

CGPathCreateMutable (page 273)
Creates a mutable graphics path.

CGPathCreateMutableCopy (page 273)
Creates a mutable copy of an existing graphics path.

CGPathCreateCopy (page 272)
Creates an immutable copy of a graphics path.

CGPathRelease (page 277)
Decrements the retain count of a graphics path.

Overview 261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathRetain (page 277)
Increments the retain count of a graphics path.

Modifying Quartz Paths

CGPathAddArc (page 263)
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

CGPathAddArcToPoint (page 264)
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

CGPathAddCurveToPoint (page 265)
Appends a Bézier curve to a mutable graphics path.

CGPathAddLines (page 267)
Appends an array of new line segments to a mutable graphics path.

CGPathAddLineToPoint (page 267)
Appends a line segment to a mutable graphics path.

CGPathAddPath (page 268)
Appends a path to a mutable graphics path.

CGPathAddQuadCurveToPoint (page 268)
Appends a quadratic curve to a mutable graphics path.

CGPathAddRect (page 269)
Appends a rectangle to a mutable graphics path.

CGPathAddRects (page 270)
Appends an array of rectangles to a mutable graphics path.

CGPathApply (page 271)
For each element in a graphics path, calls a custom applier function.

CGPathMoveToPoint (page 276)
Starts a new subpath at a specified location in a mutable graphics path.

CGPathCloseSubpath (page 271)
Closes and completes a subpath in a mutable graphics path.

CGPathAddEllipseInRect (page 266)
Adds to a path an ellipse that fits inside a rectangle.

Getting Information about Quartz Paths

CGPathEqualToPath (page 274)
Indicates whether two graphics paths are equivalent.

CGPathGetBoundingBox (page 274)
Returns the bounding box of a graphics path.

CGPathGetCurrentPoint (page 274)
Returns the current point in a graphics path.

CGPathGetTypeID (page 275)
Returns the Core Foundation type identifier for Quartz graphics paths.

262 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathIsEmpty (page 275)
Indicates whether or not a graphics path is empty.

CGPathIsRect (page 276)
Indicates whether or not a graphics path represents a rectangle.

CGPathContainsPoint (page 272)
Checks whether a point is contained in a graphics path.

Functions

CGPathAddArc
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

void CGPathAddArc (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y,
 CGFloat radius,
 CGFloat startAngle,
 CGFloat endAngle,
 bool clockwise
);

Parameters
path

The mutable graphics path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the arc before it is added to the path.

x
The x-coordinate of the center point of the arc.

y
The y-coordinate of the center point of the arc.

r
The radius of the arc.

startAngle
The angle (in radians) from horizontal that determines the starting point of the arc.

endAngle
The angle (in radians) from horizontal that determines the ending point of the arc.

clockwise
A Boolean value that specifies whether or not to draw the arc in the clockwise direction; true specifies
clockwise.

Functions 263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Discussion
An arc is a segment of a circle with radius r centered at a point (x,y). When you call this function, you
provide the center point, radius, and two angles in radians. Quartz uses this information to determine the
end points of the arc, and then approximates the new arc using a sequence of cubic Bézier curves. The
clockwise parameter determines the direction in which the arc is drawn.

A transformation may be applied to the Bézier curves before they are added to the path. If no transform is
needed, the second argument should be NULL.

If the specified path already contains a subpath, Quartz implicitly adds a line connecting the current point
to the beginning of the arc. If the path is empty, Quartz creates a new subpath for the arc and does not add
the initial straight line segment.

The ending point of the arc becomes the new current point of the path.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddArcToPoint
Appends an arc to a mutable graphics path, possibly preceded by a straight line segment.

void CGPathAddArcToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x1,
 CGFloat y1,
 CGFloat x2,
 CGFloat y2,
 CGFloat radius
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the arc before it is added to the path.

x1
The x-coordinate of the user space for the end point of the first tangent line. The first tangent line is
drawn from the current point to (x1,y1).

y1
The y-coordinate of the user space for the end point of the first tangent line. The first tangent line is
drawn from the current point to (x1,y1).

x2
The x-coordinate of the user space for the end point of the second tangent line. The second tangent
line is drawn from (x1,y1) to (x2,y2).

264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

y2
The y-coordinate of the user space for the end point of the second tangent line. The second tangent
line is drawn from (x1,y1) to (x2,y2).

radius
The radius of the arc, in user space coordinates.

Discussion
This function uses a sequence of cubic Bézier curves to draw an arc that is tangent to the line from the current
point to (x1,y1) and to the line from (x1,y1) to (x2,y2). The start and end points of the arc are located on the
first and second tangent lines, respectively. The start and end points of the arc are also the “tangent points”
of the lines.

If the current point and the first tangent point of the arc (the starting point) are not equal, Quartz appends
a straight line segment from the current point to the first tangent point. After adding the arc, the current
point is reset to the end point of the arc (the second tangent point).

For another way to draw an arc in a path, see CGPathAddArc (page 263).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddCurveToPoint
Appends a Bézier curve to a mutable graphics path.

void CGPathAddCurveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat cp1x,
 CGFloat cp1y,
 CGFloat cp2x,
 CGFloat cp2y,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the curve before it is added to the path.

cx1
The x-coordinate of the first control point.

cy1
The y-coordinate of the first control point.

cx2
The x-coordinate of the second control point.

Functions 265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

cy2
The y-coordinate of the second control point.

x
The x-coordinate of the end point of the curve.

y
The y-coordinate of the end point of the curve.

Discussion
Appends a cubic Bézier curve from the current point in a path to the specified location using two control
points, after an optional transformation. Before returning, this function updates the current point to the
specified location (x,y).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddEllipseInRect
Adds to a path an ellipse that fits inside a rectangle.

void CGPathAddEllipseInRect (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGRect rect
);

Parameters
path

The path to modify.

m
An affine transform to apply to the ellipse, or NULL if you don’t want to transform the ellipse.

rect
A rectangle to enclose the ellipse.

Discussion
The ellipse is approximated by a sequence of Bézier curves. Its center is the midpoint of the rectangle defined
by the rect parameter. If the rectangle is square, then the ellipse is circular with a radius equal to one-half
the width (or height) of the rectangle. If the rect parameter specifies a rectangular shape, then the major
and minor axes of the ellipse are defined by the width and height of the rectangle.

The ellipse forms a complete subpath of the path—that is, the ellipse drawing starts with a move-to operation
and ends with a close-subpath operation, with all moves oriented in the clockwise direction. If you supply
an affine transform, then the constructed Bézier curves that define the ellipse are transformed before they
are added to the path.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPath.h

266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathAddLines
Appends an array of new line segments to a mutable graphics path.

void CGPathAddLines (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 const CGPoint points[],
 size_t count
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the lines before adding them to the path.

points
An array of points that specifies the line segments to add.

count
The number of elements in the array.

Discussion
This is a convenience function that adds a sequence of connected line segments to a path, using the following
operation:

CGPathMoveToPoint (path, m, points[0].x, points[0].y);
for (k = 1; k < count; k++) {
 CGPathAddLineToPoint (path, m, points[k].x, points[k].y);
}

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddLineToPoint
Appends a line segment to a mutable graphics path.

void CGPathAddLineToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the line before it is added to the path.

Functions 267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

x
The x-coordinate of the end point of the line.

y
The y-coordinate of the end point of the line.

Discussion
Before returning, this function updates the current point to the specified location (x,y).

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Declared In
CGPath.h

CGPathAddPath
Appends a path to a mutable graphics path.

void CGPathAddPath (
 CGMutablePathRef path1,
 const CGAffineTransform *m,
 CGPathRef path2
);

Parameters
path1

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to path2 before it is added to path1.

path2
The path to add.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddQuadCurveToPoint
Appends a quadratic curve to a mutable graphics path.

268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

void CGPathAddQuadCurveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat cpx,
 CGFloat cpy,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change. The path must not be empty.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the curve before adding it to the path.

cx
The x-coordinate of the control point.

cy
The y-coordinate of the control point.

x
The x-coordinate of the end point of the curve.

y
The y-coordinate of the end point of the curve.

Discussion
Before returning, this function updates the current point to the specified location (x, y).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddRect
Appends a rectangle to a mutable graphics path.

void CGPathAddRect (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGRect rect
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the rectangle before adding it to the path.

rect
The rectangle to add.

Functions 269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Discussion
This is a convenience function that adds a rectangle to a path, using the following sequence of operations:

// start at origin
CGPathMoveToPoint (path, m, CGRectGetMinX(rect), CGRectGetMinY(rect));

// add bottom edge
CGPathAddLineToPoint (path, m, CGRectGetMaxX(rect), CGRectGetMinY(rect));

// add right edge
CGPathAddLineToPoint (path, m, CGRectGetMaxX(rect), CGRectGetMaxY(rect);

// add top edge
CGPathAddLineToPoint (path, m, CGRectGetMinX(rect), CGRectGetMaxY(rect));

// add left edge and close
CGPathCloseSubpath (path);

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathAddRects
Appends an array of rectangles to a mutable graphics path.

void CGPathAddRects (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 const CGRect rects[],
 size_t count
);

Parameters
path

The mutable path to change.

m
An affine transformation matrix, or NULL if no transformation is needed. If specified, Quartz applies
the transformation to the rectangles before adding them to the path.

rects
The array of new rectangles to add.

count
The number of elements in the array.

Discussion
This is a convenience function that adds an array of rectangles to a path, using the following operation:

for (k = 0; k < count; k++) {
 CGPathAddRect (path, m, rects[k]);
}

Availability
Available in Mac OS X version 10.2 and later.

270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Declared In
CGPath.h

CGPathApply
For each element in a graphics path, calls a custom applier function.

void CGPathApply (
 CGPathRef path,
 void *info,
 CGPathApplierFunction function
);

Parameters
path

The path to which the function will be applied.

info
A pointer to the user data that Quartz will pass to the function being applied, or NULL.

function
A pointer to the function to apply. See CGPathApplierFunction (page 278) for more information.

Discussion
For each element in the specified path, Quartz calls the applier function, which can examine (but not modify)
the element.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathCloseSubpath
Closes and completes a subpath in a mutable graphics path.

void CGPathCloseSubpath (
 CGMutablePathRef path
);

Parameters
path

The path to change.

Discussion
Appends a line from the current point in a path to the starting point of the current subpath and ends the
subpath. On return, the current point is now the previous starting point.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Functions 271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Declared In
CGPath.h

CGPathContainsPoint
Checks whether a point is contained in a graphics path.

bool CGPathContainsPoint (
 CGPathRef path,
 const CGAffineTransform *m,
 CGPoint point,
 bool eoFill
);

Parameters
path

The path to evaluate the point against.

m
An affine transform. If m is not NULL then the point is transformed by this affine transform prior to
determining whether the path contains the point.

point
The point to check.

eoFill
A Boolean value that, if true, specifies to use the even-odd fill rule to evaluate the painted region of
the path. If false, the winding fill rule is used.

Return Value
Returns true if the point is contained in the path; false otherwise.

Discussion
A point is contained in a path if it is inside the painted region when the path is filled and the path is a closed
path. You can call the function CGPathCloseSubpath to ensure that a path is closed.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPath.h

CGPathCreateCopy
Creates an immutable copy of a graphics path.

CGPathRef CGPathCreateCopy (
 CGPathRef path
);

Parameters
path

The path to copy.

Return Value
A new, immutable copy of the specified path. You are responsible for releasing this object.

272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathCreateMutable
Creates a mutable graphics path.

CGMutablePathRef CGPathCreateMutable (
 void
);

Return Value
A new mutable path. You are responsible for releasing this object.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Declared In
CGPath.h

CGPathCreateMutableCopy
Creates a mutable copy of an existing graphics path.

CGMutablePathRef CGPathCreateMutableCopy (
 CGPathRef path
);

Parameters
path

The path to copy.

Return Value
A new, mutable, copy of the specified path. You are responsible for releasing this object.

Discussion
You can modify a mutable graphics path by calling the various CGPath geometry functions, such as
CGPathAddArc (page 263), CGPathAddLineToPoint (page 267), and CGPathMoveToPoint (page 276).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

Functions 273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPathEqualToPath
Indicates whether two graphics paths are equivalent.

bool CGPathEqualToPath (
 CGPathRef path1,
 CGPathRef path2
);

Parameters
path1

The first path being compared.

path2
The second path being compared.

Return Value
A Boolean value that indicates whether or not the two specified paths contain the same sequence of path
elements. If the paths are not the same, returns false.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathGetBoundingBox
Returns the bounding box of a graphics path.

CGRect CGPathGetBoundingBox (
 CGPathRef path
);

Parameters
path

The graphics path to evaluate.

Return Value
A rectangle that represents the bounding box of the specified path.

Discussion
The bounding box is the smallest rectangle completely enclosing all points in the path, including control
points for Bézier and quadratic curves.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathGetCurrentPoint
Returns the current point in a graphics path.

274 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

CGPoint CGPathGetCurrentPoint (
 CGPathRef path
);

Parameters
path

The path to evaluate.

Return Value
The current point in the specified path.

Discussion
If the path is empty—that is, if it has no elements—this function returns CGPointZero (see CGGeometry).
To determine whether a path is empty, use CGPathIsEmpty (page 275).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathGetTypeID
Returns the Core Foundation type identifier for Quartz graphics paths.

CFTypeID CGPathGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGPathRef (page 278).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathIsEmpty
Indicates whether or not a graphics path is empty.

bool CGPathIsEmpty (
 CGPathRef path
);

Parameters
path

The path to evaluate.

Return Value
A Boolean value that indicates whether the specified path is empty.

Discussion
An empty path contains no elements.

Functions 275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathIsRect
Indicates whether or not a graphics path represents a rectangle.

bool CGPathIsRect (
 CGPathRef path,
 CGRect *rect
);

Parameters
path

The path to evaluate.

rect
On input, a pointer to an uninitialized rectangle. If the specified path represents a rectangle, on return
contains a copy of the rectangle.

Return Value
A Boolean value that indicates whether the specified path represents a rectangle. If the path represents a
rectangle, returns true.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

CGPathMoveToPoint
Starts a new subpath at a specified location in a mutable graphics path.

void CGPathMoveToPoint (
 CGMutablePathRef path,
 const CGAffineTransform *m,
 CGFloat x,
 CGFloat y
);

Parameters
path

The mutable path to change.

m
A pointer to an affine transformation matrix, or NULL if no transformation is needed. If specified,
Quartz applies the transformation to the point before changing the path.

x
The x-coordinate of the new location.

276 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

y
The y-coordinate of the new location.

Discussion
This function initializes the starting point and the current point to the specified location (x,y) after an optional
transformation.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Declared In
CGPath.h

CGPathRelease
Decrements the retain count of a graphics path.

void CGPathRelease (
 CGPathRef path
);

Parameters
path

The graphics path to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the path parameter is
NULL.

Availability
Available in Mac OS X version 10.2 and later.

Related Sample Code
CALayerEssentials

Declared In
CGPath.h

CGPathRetain
Increments the retain count of a graphics path.

CGPathRef CGPathRetain (
 CGPathRef path
);

Parameters
path

The graphics path to retain.

Return Value
The same path you passed in as the path parameter.

Functions 277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the path parameter is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPath.h

Callbacks

CGPathApplierFunction
Defines a callback function that can view an element in a graphics path.

typedef void (*CGPathApplierFunction) (
 void *info,
 const CGPathElement *element
);

If you name your function MyCGPathApplierFunc, you would declare it like this:

void MyCGPathApplierFunc (
 void *info,
 const CGPathElement *element
);

Discussion
See also CGPathApply (page 271).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

Data Types

CGPathRef
An opaque type that represents an immutable graphics path.

typedef const struct CGPath *CGPathRef;

Availability
Available in Mac OS X v10.2 and later.

278 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Declared In
CGPath.h

CGMutablePathRef
An opaque type that represents a mutable graphics path.

typedef struct CGPath *CGMutablePathRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

CGPathElement
A data structure that provides information about a path element.

struct CGPathElement {
 CGPathElementType type;
 CGPoint * points;
};
typedef struct CGPathElement CGPathElement;

Fields
type

An element type (or operation).

points
An array of one or more points that serve as arguments.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPath.h

Constants

Path Drawing Modes
Options for rendering a path.

Constants 279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

enum CGPathDrawingMode {
 kCGPathFill,
 kCGPathEOFill,
 kCGPathStroke,
 kCGPathFillStroke,
 kCGPathEOFillStroke
};
typedef enum CGPathDrawingMode CGPathDrawingMode;

Constants
kCGPathFill

Render the area contained within the path using the non-zero winding number rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathEOFill
Render the area within the path using the even-odd rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathStroke
Render a line along the path.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathFillStroke
First fill and then stroke the path, using the nonzero winding number rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

kCGPathEOFillStroke
First fill and then stroke the path, using the even-odd rule.

Available in Mac OS X v10.0 and later.

Declared in CGContext.h.

Discussion
You can pass a path drawing mode constant to the function CGContextDrawPath (page 87) to specify how
Quartz should paint a graphics context’s current path.

Path Element Types
The type of element found in a path.

280 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

enum CGPathElementType {
 kCGPathElementMoveToPoint,
 kCGPathElementAddLineToPoint,
 kCGPathElementAddQuadCurveToPoint,
 kCGPathElementAddCurveToPoint,
 kCGPathElementCloseSubpath
};
typedef enum CGPathElementType CGPathElementType;

Constants
kCGPathElementMoveToPoint

The path element that starts a new subpath. See the function CGPathMoveToPoint (page 276).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddLineToPoint
The path element that adds a line from the current point to the specified point. See the function
CGPathAddLineToPoint (page 267).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddQuadCurveToPoint
The path element that adds a quadratic curve from the current point to the specified point. See the
function CGPathAddQuadCurveToPoint (page 268).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementAddCurveToPoint
The path element that adds a cubic curve from the current point to the specified point. See the
function CGPathAddCurveToPoint (page 265).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

kCGPathElementCloseSubpath
The path element that closes and completes a subpath. See the function CGPathCloseSubpath (page
271).

Available in Mac OS X v10.2 and later.

Declared in CGPath.h.

Discussion
For more information about paths, see CGPathRef (page 278).

Constants 281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

282 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

CGPath Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPattern.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPatternRef opaque type represents a pattern that you can use to stroke along or fill in a graphics
path. Quartz tiles the pattern cell for you, based on parameters you specify when you call
CGPatternCreate (page 284).

To create a dashed line, see CGContextSetLineDash (page 117) in CGContext Reference.

Functions by Task

Creating a Pattern

CGPatternCreate (page 284)
Creates a pattern object.

Getting the CFType ID

CGPatternGetTypeID (page 285)
Returns the type identifier for Quartz patterns.

Retaining and Releasing a Pattern

CGPatternRetain (page 286)
Increments the retain count of a Quartz pattern.

CGPatternRelease (page 285)
Decrements the retain count of a Quartz pattern.

Overview 283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Functions

CGPatternCreate
Creates a pattern object.

CGPatternRef CGPatternCreate (
 void *info,
 CGRect bounds,
 CGAffineTransform matrix,
 CGFloat xStep,
 CGFloat yStep,
 CGPatternTiling tiling,
 bool isColored,
 const CGPatternCallbacks *callbacks
);

Parameters
info

A pointer to private storage used by your pattern drawing function, or NULL. For more information,
see the discussion below.

bounds
The bounding box of the pattern cell, specified in pattern space. (Pattern space is an abstract space
that maps to the default user space by the transformation matrix you specify with the matrix
parameter.) The drawing done in your pattern drawing function is clipped to this rectangle.

matrix
A matrix that represents a transform from pattern space to the default user space of the context in
which the pattern is used. If no transform is needed, pass the identity matrix.

xStep
The horizontal displacement between cells, specified in pattern space. For no additional horizontal
space between cells (so that each pattern cells abuts the previous pattern cell in the horizontal
direction), pass the width of the pattern cell.

yStep
The vertical displacement between cells, specified in pattern space. For no additional vertical space
between cells (so that each pattern cells abuts the previous pattern cell in the vertical direction), pass
the height of the pattern cell.

tiling
A CGPatternTiling constant that specifies the desired tiling method. For more information about
tiling methods, see “Tiling Patterns” (page 289).

isColored
If you want to draw your pattern using its own intrinsic color, pass true. If you want to draw an
uncolored (or masking) pattern that uses the fill or stroke color in the graphics state, pass false.

callbacks
A pointer to a pattern callback function table—your pattern drawing function is an entry in this table.
See CGPatternCallbacks (page 288) for more information about callback function tables for patterns.

Return Value
A new Quartz pattern. You are responsible for releasing this object using CGPatternRelease (page 285).

284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Discussion
Quartz calls your drawing function at the appropriate time to draw the pattern cell. A pattern cell must be
invariant—that is, the pattern cell should be drawn exactly the same way each time the drawing function is
called.

The appearance of a pattern cell is unaffected by changes in the graphics state of the context in which the
pattern is used.

See CGPatternDrawPatternCallback (page 286) for more information about pattern drawing functions.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGPattern.h

CGPatternGetTypeID
Returns the type identifier for Quartz patterns.

CFTypeID CGPatternGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGPatternRef (page 288).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPattern.h

CGPatternRelease
Decrements the retain count of a Quartz pattern.

void CGPatternRelease (
 CGPatternRef pattern
);

Parameters
pattern

The pattern to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the pattern parameter
is NULL.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGPattern.h

Functions 285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

CGPatternRetain
Increments the retain count of a Quartz pattern.

CGPatternRef CGPatternRetain (
 CGPatternRef pattern
);

Parameters
pattern

The pattern to retain.

Return Value
The same pattern you passed in as the pattern parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the pattern parameter is
NULL.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CGPattern.h

Callbacks

CGPatternDrawPatternCallback
Draws a pattern cell.

typedef void (*CGPatternDrawPatternCallback) (
 void * info,
 CGContextRef context
);

If you name your function MyDrawPattern, you would declare it like this:

void MyDrawPattern (
 void * info,
 CGContextRef context
);

Parameters
info

A generic pointer to private data associated with the pattern. This is the same pointer you supplied
to CGPatternCreate (page 284).

context
The graphics context for drawing the pattern cell.

286 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Discussion
When a pattern is used to stroke or fill a graphics path, Quartz calls your custom drawing function at the
appropriate time to draw the pattern cell. The cell should be drawn exactly the same way each time the
drawing function is called.

In a drawing function associated with an uncolored pattern, you should not attempt to set a stroke or fill
color or color space—if you do so, the result is undefined.

To learn how to associate your drawing function with a Quartz pattern, see CGPatternCreate (page 284)
and CGPatternCallbacks (page 288).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPattern.h

CGPatternReleaseInfoCallback
Release private data or resources associated with the pattern.

typedef void (*CGPatternReleaseInfoCallback) (
 void * info
);

If you name your function MyCGPatternReleaseInfo, you would declare it like this:

void MyCGPatternReleaseInfo (
 void * info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPatternCreate (page 284).

Discussion
Quartz calls your release function when it frees your pattern object.

To learn how to associate your release function with a Quartz pattern, see CGPatternCreate (page 284) and
CGPatternCallbacks (page 288).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGPattern.h

Callbacks 287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Data Types

CGPatternRef
An opaque type that represents a pattern.

typedef struct CGPattern * CGPatternRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGPattern.h

CGPatternCallbacks
A structure that holds a version and two callback functions for drawing a custom pattern.

struct CGPatternCallbacks {
 unsigned int version;
 CGPatternDrawPatternCallback drawPattern;
 CGPatternReleaseInfoCallback releaseInfo;
};
typedef struct CGPatternCallbacks CGPatternCallbacks;

Fields
version

The version of the structure passed in as a parameter to the CGPatternCreate (page 284). For this
version of the structure, you should set this value to zero.

drawPattern
A pointer to a custom function that draws the pattern. For information about this callback function,
see CGPatternDrawPatternCallback (page 286).

releaseInfo
An optional pointer to a custom function that’s invoked when the pattern is released.
CGPatternReleaseInfoCallback (page 287).

Discussion
You supply a CGPatternCallbacks structure to the function CGPatternCreate (page 284) to create a
data provider for direct access. The functions specified by the CGPatternCallbacks structure are responsible
for drawing the pattern and for handling the pattern’s memory management.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGPattern.h

288 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Constants

Tiling Patterns
Different methods for rendering a tiled pattern.

enum CGPatternTiling {
 kCGPatternTilingNoDistortion,
 kCGPatternTilingConstantSpacingMinimalDistortion,
 kCGPatternTilingConstantSpacing
};
typedef enum CGPatternTiling CGPatternTiling;

Constants
kCGPatternTilingNoDistortion

The pattern cell is not distorted when painted. The spacing between pattern cells may vary by as
much as 1 device pixel.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

kCGPatternTilingConstantSpacingMinimalDistortion
Pattern cells are spaced consistently. The pattern cell may be distorted by as much as 1 device pixel
when the pattern is painted.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

kCGPatternTilingConstantSpacing
Pattern cells are spaced consistently, as with
kCGPatternTilingConstantSpacingMinimalDistortion. The pattern cell may be distorted
additionally to permit a more efficient implementation.

Available in Mac OS X v10.1 and later.

Declared in CGPattern.h.

Declared In
CGPattern.h

Constants 289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

290 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

CGPattern Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFArray.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFArray header file defines an opaque type that encapsulates a PDF array. A PDF array represents
an array structure in a PDF document. PDF arrays may be heterogeneous—that is, they may contain any
other PDF objects, including PDF strings, PDF dictionaries, and other PDF arrays.

Many CGPDFArray functions to retrieve values from a PDF array take the form:

bool CGPDFArrayGet<DataType> (
 CGPDFArrayRef array,
 size_t index,
 <DataType>Ref *value
);

These functions test the data type of the object at the specified index. If the object is not of the expected
type, the function returns false. If the object is of the expected type, the function returns true, and the
object is passed back in the value parameter.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFArray objects exist only as constituent parts of a CGPDFDocument object, and they are managed
by their container.

Functions

CGPDFArrayGetArray
Returns whether an object at a given index in a PDF array is another PDF array and, if so, retrieves that array.

Overview 291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

bool CGPDFArrayGetArray (
 CGPDFArrayRef array,
 size_t index,
 CGPDFArrayRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF array. If the value at the specified index is a PDF array, then on return
that array, otherwise the value is unspecified.

Return Value
Returns true if there is a PDF array at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetBoolean
Returns whether an object at a given index in a PDF array is a PDF Boolean and, if so, retrieves that Boolean.

bool CGPDFArrayGetBoolean (
 CGPDFArrayRef array,
 size_t index,
 CGPDFBoolean *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of array (0 to N-1, where
N is the count of array), the behavior is undefined.

value
On input, a pointer to a PDF Boolean. If the value at the specified index is a PDF Boolean, then on
return that Boolean, otherwise the value is undefined.

Return Value
Returns true if there is a PDF Boolean at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

CGPDFArrayGetCount
Returns the number of items in a PDF array.

size_t CGPDFArrayGetCount (
 CGPDFArrayRef array
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

Return Value
Returns the number of items in the array.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetDictionary
Returns whether an object at a given index in a PDF array is a PDF dictionary and, if so, retrieves that dictionary.

bool CGPDFArrayGetDictionary (
 CGPDFArrayRef array,
 size_t index,
 CGPDFDictionaryRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF dictionary. If the value at the specified index is a PDF dictionary, then on
return that dictionary, otherwise the value is undefined.

Return Value
Returns true if there is a PDF dictionary at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetInteger
Returns whether an object at a given index in a PDF array is a PDF integer and, if so, retrieves that object.

Functions 293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

bool CGPDFArrayGetInteger (
 CGPDFArrayRef array,
 size_t index,
 CGPDFInteger *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF integer. If the value at the specified index is a PDF integer value, then
on return contains that value, otherwise the value is undefined.

Return Value
Returns true if there is a PDF integer at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetName
Returns whether an object at a given index in a PDF array is a PDF name reference (represented as a constant
C string) and, if so, retrieves that name.

bool CGPDFArrayGetName (
 CGPDFArrayRef array,
 size_t index,
 const char **value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
An uninitialized pointer to a constant C string. If the value at the specified index is a reference to a
PDF name (represented by a constant C string) then upon return, contains that value; otherwise the
value is undefined.

Return Value
Returns true if there is an array of characters at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Declared In
CGPDFArray.h

CGPDFArrayGetNull
Returns whether an object at a given index in a Quartz PDF array is a PDF null.

bool CGPDFArrayGetNull (
 CGPDFArrayRef array,
 size_t index
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

Return Value
Returns true if there is a PDF null at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetNumber
Returns whether an object at a given index in a PDF array is a PDF number and, if so, retrieves that object.

bool CGPDFArrayGetNumber (
 CGPDFArrayRef array,
 size_t index,
 CGPDFReal *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF number. If the value at the specified index is a PDF number, then on
return contains that value, otherwise the value is undefined.

Return Value
Returns true if there is a PDF number at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Functions 295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Declared In
CGPDFArray.h

CGPDFArrayGetObject
Returns whether an object at a given index in a PDF array is a PDF object and, if so, retrieves that object.

bool CGPDFArrayGetObject (
 CGPDFArrayRef array,
 size_t index,
 CGPDFObjectRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF object. If the value at the specified index is a PDF object, then on return
contains that object, otherwise the value is undefined.

Return Value
Returns true if there is a PDF object at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetStream
Returns whether an object at a given index in a PDF array is a PDF stream and, if so, retrieves that stream.

bool CGPDFArrayGetStream (
 CGPDFArrayRef array,
 size_t index,
 CGPDFStreamRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF stream. If the value at the specified index is a PDF stream, then on return
that stream, otherwise the value is undefined.

296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Return Value
Returns true if there is a PDF stream at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

CGPDFArrayGetString
Returns whether an object at a given index in a PDF array is a PDF string and, if so, retrieves that string.

bool CGPDFArrayGetString (
 CGPDFArrayRef array,
 size_t index,
 CGPDFStringRef *value
);

Parameters
array

A PDF array. If this parameter is not a valid PDF array, the behavior is undefined.

index
The index of the value to retrieve. If the index is outside the index space of the array (0 to N-1, where
N is the count of the array), the behavior is undefined.

value
On input, a pointer to a PDF string. If the value at the specified index is a PDF string, then on return
that string, otherwise the value is undefined.

Return Value
Returns true if there is a PDF stream at the specified index, otherwise false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFArray.h

Data Types

CGPDFArrayRef
An opaque type that encapsulates a PDF array.

typedef struct CGPDFArray *CGPDFArrayRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFArray.h

Data Types 297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

298 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

CGPDFArray Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFContentStream.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFContentStreamRef opaque type provides access to the data that describes the appearance of
a PDF page. A CGPDFContentStream object represents one or more PDF content streams for a page and their
associated resource dictionaries. A PDF content stream is a sequential set of instructions that specifies how
to paint items on a PDF page. A resource dictionary contains information needed by the content stream in
order to decode the sequential instructions of the content stream.

CGPDFContentStream functions can retrieve both the content streams and the resource dictionaries associated
with a PDF page.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it.

Functions by Task

Creating a PDF Content Stream Object

CGPDFContentStreamCreateWithPage (page 300)
Creates a content stream object from a PDF page object.

CGPDFContentStreamCreateWithStream (page 300)
Creates a PDF content stream object from an existing PDF content stream object.

Getting Data from a PDF Content Stream Object

CGPDFContentStreamGetStreams (page 301)
Gets the array of PDF content streams contained in a PDF content stream object.

CGPDFContentStreamGetResource (page 301)
Gets the specified resource from a PDF content stream object.

Overview 299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Retaining and Releasing a PDF Content Stream Object

CGPDFContentStreamRetain (page 302)
Increments the retain count of a PDF content stream object.

CGPDFContentStreamRelease (page 302)
Decrements the retain count of a PDF content stream object.

Functions

CGPDFContentStreamCreateWithPage
Creates a content stream object from a PDF page object.

CGPDFContentStreamRef CGPDFContentStreamCreateWithPage (
 CGPDFPageRef page
);

Parameters
page

A PDF page object.

Return Value
A new CGPDFContentStream object. You are responsible for releasing this object by calling the function
CGPDFContentStreamRelease.

Discussion
A CGPDFContentStream object can contain more than one PDF content stream. To retrieve an array of the
PDF content streams in the object, call the function CGPDFContentStreamGetStreams (page 301). To obtain
the resources associated with a CGPDFContentStream object, call the function
CGPDFContentStreamGetResource (page 301).

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamCreateWithStream
Creates a PDF content stream object from an existing PDF content stream object.

CGPDFContentStreamRef CGPDFContentStreamCreateWithStream (
 CGPDFStreamRef stream,
 CGPDFDictionaryRef streamResources,
 CGPDFContentStreamRef parent
);

Parameters
stream

The PDF stream you want to create a content stream from.

300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

streamResources
A PDF dictionary that contains the resources associated with the stream you want to retrieve.

parent
The content stream of the page on which stream appears. Supply the parent parameter when you
create a content stream that’s used within a page.

Return Value
A CGPDFContentStream object created from the stream parameter. You are responsible for releasing this
object by calling the function CGPDFContentStreamRelease (page 302).

Discussion
You can use this function to get access to the contents of a form, pattern, Type3 font, or any PDF stream.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamGetResource
Gets the specified resource from a PDF content stream object.

CGPDFObjectRef CGPDFContentStreamGetResource (
 CGPDFContentStreamRef cs,
 const char *category,
 const char *name
);

Parameters
cs

A CGPDFContentStream object.

category
A string that specifies the category of the resource you want to obtain.

name
A string that specifies the name of the resource you want to obtain.

Return Value
The resource dictionary.

Discussion
You can use this function to obtain resources used by the content stream, such as forms, patterns, color
spaces, and fonts.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamGetStreams
Gets the array of PDF content streams contained in a PDF content stream object.

Functions 301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

CFArrayRef CGPDFContentStreamGetStreams (
 CGPDFContentStreamRef cs
);

Parameters
cs

A CGPDFContentStream object.

Return Value
The array of PDF content streams that make up the content stream object represented by the cs parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamRelease
Decrements the retain count of a PDF content stream object.

void CGPDFContentStreamRelease (
 CGPDFContentStreamRef cs
);

Parameters
cs

A PDF content stream.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

CGPDFContentStreamRetain
Increments the retain count of a PDF content stream object.

CGPDFContentStreamRef CGPDFContentStreamRetain (
 CGPDFContentStreamRef cs
);

Parameters
cs

A PDF content stream.

Return Value
The same PDF content stream you passed in as the cs parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFContentStream.h

302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Data Types

CGPDFContentStreamRef
An opaque type that provides access to the data that describes the appearance of a PDF page.

typedef struct CGPDFContentStream *CGPDFContentStreamRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContentStream.h

Data Types 303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

304 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

CGPDFContentStream Reference

Derived From: CGContextRef (page 137)

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFContext.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFContext header file defines functions that create and get information about a Quartz PDF context.
A CGPDFContext object is a type of CGContextRef (page 137) that is used for drawing PDF content. The
functions in this reference operate only on Quartz PDF graphics contexts created using the functions
CGPDFContextCreate (page 307) or CGPDFContextCreateWithURL (page 308).

When you draw to the PDF context using CGContext functions the drawing operations are recorded in PDF
format. The PDF commands that represent the drawing are written to the destination specified when you
create the PDF graphics context.

Functions by Task

Creating a Context

CGPDFContextCreate (page 307)
Creates a PDF graphics context.

CGPDFContextCreateWithURL (page 308)
Creates a URL-based PDF graphics context.

Beginning and Ending Pages

CGPDFContextBeginPage (page 306)
Begins a new page in a PDF graphics context.

CGPDFContextEndPage (page 309)
Ends the current page in the PDF graphics context.

Overview 305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Working with Destinations

CGPDFContextAddDestinationAtPoint (page 306)
Sets a destination to jump to when a point in the current page of a PDF graphics context is clicked.

CGPDFContextSetDestinationForRect (page 309)
Sets a destination to jump to when a rectangle in the current PDF page is clicked.

CGPDFContextSetURLForRect (page 310)
Sets the URL associated with a rectangle in a PDF graphics context.

Closing a PDF Context

CGPDFContextClose (page 307)
Closes a PDF document.

Functions

CGPDFContextAddDestinationAtPoint
Sets a destination to jump to when a point in the current page of a PDF graphics context is clicked.

void CGPDFContextAddDestinationAtPoint (
 CGContextRef context,
 CFStringRef name,
 CGPoint point
);

Parameters
context

A PDF graphics context.

name
A destination name.

point
A location in the current page of the PDF graphics context.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextBeginPage
Begins a new page in a PDF graphics context.

306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

void CGPDFContextBeginPage (
 CGContextRef context,
 CFDictionaryRef pageInfo
);

Parameters
context

A PDF graphics context.

pageInfo
A dictionary that contains key-value pairs that define the page properties.

Discussion
You must call the function CGPDFContextEndPage (page 309) to signal the end of the page.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextClose
Closes a PDF document.

void CGPDFContextClose(
 CGContextRef context
);

Parameters
context

A PDF graphics context.

Discussion
After closing the context, all pending data is written to the context destination, and the PDF file is completed.
No additional data can be written to the destination context after the PDF document is closed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGPDFContext.h

CGPDFContextCreate
Creates a PDF graphics context.

Functions 307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

CGContextRef CGPDFContextCreate (
 CGDataConsumerRef consumer,
 const CGRect *mediaBox,
 CFDictionaryRef auxiliaryInfo
);

Parameters
consumer

The data consumer to receive the PDF output data.

mediaBox
A pointer to a rectangle that defines the size and location of the PDF page, or NULL. The origin of the
rectangle should typically be (0,0). Quartz uses this rectangle as the default bounds of the page’s
media box. If you pass NULL, Quartz uses a default page size of 8.5 by 11 inches (612 by 792 points).

auxiliaryInfo
A dictionary that specifies any additional information to be used by the PDF context when generating
the PDF file, or NULL. The dictionary is retained by the new context, so on return you may safely
release it. See “Auxiliary Dictionary Keys” (page 310) for keys you can include in the dictionary.

Return Value
A new PDF context, or NULL if the context cannot be created. You are responsible for releasing this object
using CGContextRelease (page 102).

Discussion
This function creates a PDF drawing environment to your specifications. When you draw into the new context,
Quartz renders your drawing as a sequence of PDF drawing commands that are passed to the data consumer
object.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGPDFContext.h

CGPDFContextCreateWithURL
Creates a URL-based PDF graphics context.

CGContextRef CGPDFContextCreateWithURL (
 CFURLRef url,
 const CGRect *mediaBox,
 CFDictionaryRef auxiliaryInfo
);

Parameters
url

A Core Foundation URL that specifies where you want to place the resulting PDF file.

308 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

mediaBox
A rectangle that specifies the bounds of the PDF. The origin of the rectangle should typically be (0,0).
The CGPDFContextCreateWithURL function uses this rectangle as the default page media bounding
box. If you pass NULL, CGPDFContextCreateWithURL uses a default page size of 8.5 by 11 inches
(612 by 792 points).

auxiliaryInfo
A dictionary that specifies any additional information to be used by the PDF context when generating
the PDF file, or NULL. The dictionary is retained by the new context, so on return you may safely
release it.

Return Value
A new PDF context, or NULL if a context could not be created. You are responsible for releasing this object
using CGContextRelease (page 102).

Discussion
When you call this function, Quartz creates a PDF drawing environment—that is, a graphics context—to your
specifications. When you draw into the resulting context, Quartz renders your drawing as a series of PDF
drawing commands stored in the specified location.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGPDFContext.h

CGPDFContextEndPage
Ends the current page in the PDF graphics context.

void CGPDFContextEndPage (
 CGContextRef context
);

Parameters
context

A PDF graphics context.

Discussion
You can call CGPDFContextEndPage only after you call the function CGPDFContextBeginPage (page 306).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextSetDestinationForRect
Sets a destination to jump to when a rectangle in the current PDF page is clicked.

Functions 309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

void CGPDFContextSetDestinationForRect (
 CGContextRef context,
 CFStringRef name,
 CGRect rect
);

Parameters
context

A PDF graphics context.

name
A destination name.

rect
A rectangle that specifies an area of the current page of a PDF graphics context. The rectangle is
specified in default user space (not device space).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

CGPDFContextSetURLForRect
Sets the URL associated with a rectangle in a PDF graphics context.

void CGPDFContextSetURLForRect (
 CGContextRef context,
 CFURLRef url,
 CGRect rect
);

Parameters
context

A PDF graphics context.

url
A CFURL object that specifies the destination of the contents associated with the rectangle.

rect
A rectangle specified in default user space (not device space).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Constants

Auxiliary Dictionary Keys
Keys that used to set up a PDF context.

310 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

CFStringRef kCGPDFContextAuthor;
CFStringRef kCGPDFContextCreator;
CFStringRef kCGPDFContextTitle;
CFStringRef kCGPDFContextOwnerPassword;
CFStringRef kCGPDFContextUserPassword;
CFStringRef kCGPDFContextAllowsPrinting;
CFStringRef kCGPDFContextAllowsCopying;
CFStringRef kCGPDFContextOutputIntent;
CFStringRef kCGPDFContextOutputIntents;
CFStringRef kCGPDFContextSubject;
CFStringRef kCGPDFContextKeywords;
CFStringRef kCGPDFContextEncryptionKeyLength;

Constants
kCGPDFContextAuthor

The corresponding value is a string that represents the name of the person who created the document.
This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextCreator
The corresponding value is a string that represents the name of the application used to produce the
document. This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextTitle
The corresponding value is a string that represents the title of the document. This key is optional.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOwnerPassword
The owner password of the PDF document. If this key is specified, the document is encrypted using
the value as the owner password; otherwise, the document will not be encrypted. The value of this
key must be a CFString object that can be represented in ASCII encoding. Only the first 32 bytes are
used for the password. There is no default value for this key. If the value of this key cannot be
represented in ASCII, the document is not created and the creation function returns NULL.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextUserPassword
The user password of the PDF document. If the document is encrypted, then the value of this key will
be the user password for the document. If not specified, the user password is the empty string. The
value of this key must be a CFString object that can be represented in ASCII encoding; only the first
32 bytes will be used for the password. If the value of this key cannot be represented in ASCII, the
document is not created and the creation function returns NULL.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextAllowsPrinting
Whether the document allows printing when unlocked with the user password. The value of this key
must be a CFBoolean value. The default value of this key is kCFBooleanTrue.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Constants 311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFContextAllowsCopying
Whether the document allows copying when unlocked with the user password. The value of this key
must be a CFBoolean object. The default value of this key is kCFBooleanTrue.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOutputIntent
The output intent PDF/X. This key is optional. If present, the value of this key must be a CFDictionary
object. The dictionary is added to the /OutputIntents entry in the PDF file document catalog. The
keys and values contained in the dictionary must match those specified in section 9.10.4 of the PDF
1.4 specification, ISO/DIS 15930-3 document published by ISO/TC 130, and Adobe Technical Note
#5413.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextOutputIntents
Output intent dictionaries. This key is optional. If present, the value must be an array of one or more
kCGPDFContextOutputIntent dictionaries. The array is added to the PDF document in the
/OutputIntents entry in the PDF file's document catalog. Each dictionary in the array must be of
form specified for the kCGPDFContextOutputIntent key, except that only the first dictionary in
the array is required to contain the "S" key with a value of GTS_PDFX. If both the
kCGPDFContextOutputIntent and kCGPDFContextOutputIntents keys are specified, the former
is ignored.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextSubject
The subject of a document. Optional; if present, the value of this key must be a CFString object.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

kCGPDFContextKeywords
The keywords for this document. This key is optional. If the value of this key is a CFString object,
the /Keywords entry will be the specified string. If the value of this key is a CFArray object, then it
must be an array of CFString objects. The /Keywords entry will, in this case, be the concatenation
of the specified strings separated by commas (","). In addition, an entry with the key
"/AAPL:Keywords" is stored in the document information dictionary; its value is an array consisting
of each of the specified strings. The value of this key must be in one of the above forms; otherwise,
this key is ignored.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

kCGPDFContextEncryptionKeyLength
The encryption key length in bits; see Table 3.18 "Entries common to all encryption dictionaries", PDF
Reference: Adobe PDF version 1.5 (4th ed.) for more information. Optional; if present, the value of
this key must be a CFNumber object with value which is a multiple of 8 between 40 and 128, inclusive.
If this key is absent or invalid, the encryption key length defaults to 40 bits.

Declared in CGPDFContext.h.

Available in Mac OS X v10.5 and later.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 307) and
CGPDFContextCreateWithURL (page 308).

312 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Box Dictionary Keys
Keys that specify various PDF boxes.

CFStringRef kCGPDFContextMediaBox
CFStringRef kCGPDFContextCropBox
CFStringRef kCGPDFContextBleedBox
CFStringRef kCGPDFContextTrimBox
CFStringRef kCGPDFContextArtBox

Constants
kCGPDFContextMediaBox

The media box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextCropBox
The crop box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextBleedBox
The bleed box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextTrimBox
The trim box for the document or for a given page. This key is optional. If present, the value of this
key must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFContextArtBox
The art box for the document or for a given page. This key is optional. If present, the value of this key
must be a CFData object that contains a CGRect (stored by value, not by reference).

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 307) and
CGPDFContextCreateWithURL (page 308).

Availability
Available in Mac OS X v10.4 and later.

Constants 313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Declared In
CGPDFContext.h

Output Intent Dictionary Keys
Keys to specify output intent options.

CFStringRef kCGPDFXOutputIntentSubtype;
CFStringRef kCGPDFXOutputConditionIdentifier;
CFStringRef kCGPDFXOutputCondition;
CFStringRef kCGPDFXRegistryName;
CFStringRef kCGPDFXInfo;
CFStringRef kCGPDFXDestinationOutputProfile;

Constants
kCGPDFXOutputIntentSubtype

The output intent subtype. This key is required. The value of this key must be a CFString object equal
to "GTS_PDFX"; otherwise, the dictionary is ignored.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXOutputConditionIdentifier
A string identifying the intended output device or production condition in a human- or
machine-readable form. This key is required. The value of this key must be a CFString object. For best
results, the string should be restricted to characters in the ASCII character set.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXOutputCondition
A text string identifying the intended output device or production condition in a human- readable
form. This key is optional. If present, the value of this key must be a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXRegistryName
A string identifying the registry in which the condition designated by
kCGPDFXOutputConditionIdentifier is defined. This key is optional. If present, the value of this
key must be a CFString object. For best results, the string should be lossless in ASCII encoding.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

kCGPDFXInfo
A human-readable text string containing additional information or comments about the intended
target device or production condition. This key is required if the value of
kCGPDFXOutputConditionIdentifier does not specify a standard production condition. It is
optional otherwise. If present, the value of this key must be a CFString object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

314 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

kCGPDFXDestinationOutputProfile
An ICC profile stream defining the transformation from the PDF document's source colors to output
device colorants. This key is required if the value of kCGPDFXOutputConditionIdentifier does
not specify a standard production condition. It is optional otherwise. If present, the value of this key
must be an ICC-based color space specified as a CGColorSpace object.

Available in Mac OS X v10.4 and later.

Declared in CGPDFContext.h.

Discussion
For more information about using these keys in a PDF context, see CGPDFContextCreate (page 307) and
CGPDFContextCreateWithURL (page 308).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFContext.h

Constants 315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

316 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

CGPDFContext Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFDictionary.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFDictionaryRef opaque type encapsulates a PDF dictionary whose key-value pairs can specify
any kind of PDF object, including another dictionary. Dictionary objects are the main building blocks of a
PDF document. A key-value pair within a dictionary is called an entry. In a PDF dictionary, the key must be
an array of characters. Within a given dictionary, the keys are unique—that is, no two keys in a single dictionary
are equal (as determined by strcmp). The value associated with a key can be any kind of PDF object, including
another dictionary. Dictionary objects are the main building blocks of a PDF document.

Many functions that retrieve values from a PDF dictionary take the form:

bool CGPDFDictionaryGet<DataType> (
 CGPDFDictionaryRef dictionary,
 const char *key,
 <DataType>Ref *value
);

These functions test whether there is an object associated with the specified key. If there is an object associated
with the specified key, they test its data type. If there is no associated object, or if there is but it is not of the
expected type, the function returns false. If there is an object associated with the specified key and it is of
the expected type, the function returns true and the object is passed back in the value parameter.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFDictionary objects exist only as constituent parts of a CGPDFDocument object, and they are managed
by their container.

Functions by Task

Applying a Function to All Entries

CGPDFDictionaryApplyFunction (page 318)
Applies a function to each entry in a dictionary.

Overview 317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Getting Data from a Dictionary

CGPDFDictionaryGetArray (page 319)
Returns whether there is a PDF array associated with a specified key in a PDF dictionary and, if so,
retrieves that array.

CGPDFDictionaryGetBoolean (page 320)
Returns whether there is a PDF Boolean value associated with a specified key in a PDF dictionary and,
if so, retrieves the Boolean value.

CGPDFDictionaryGetCount (page 320)
Returns the number of entries in a PDF dictionary.

CGPDFDictionaryGetDictionary (page 320)
Returns whether there is another PDF dictionary associated with a specified key in a PDF dictionary
and, if so, retrieves that dictionary.

CGPDFDictionaryGetInteger (page 321)
Returns whether there is a PDF integer associated with a specified key in a PDF dictionary and, if so,
retrieves that integer.

CGPDFDictionaryGetName (page 322)
Returns whether an object with a specified key in a PDF dictionary is a PDF name reference (represented
as a constant C string) and, if so, retrieves that name.

CGPDFDictionaryGetNumber (page 322)
Returns whether there is a PDF number associated with a specified key in a PDF dictionary and, if so,
retrieves that number.

CGPDFDictionaryGetObject (page 323)
Returns whether there is a PDF object associated with a specified key in a PDF dictionary and, if so,
retrieves that object.

CGPDFDictionaryGetStream (page 323)
Returns whether there is a PDF stream associated with a specified key in a PDF dictionary and, if so,
retrieves that stream.

CGPDFDictionaryGetString (page 324)
Returns whether there is a PDF string associated with a specified key in a PDF dictionary and, if so,
retrieves that string.

Functions

CGPDFDictionaryApplyFunction
Applies a function to each entry in a dictionary.

318 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

void CGPDFDictionaryApplyFunction (
 CGPDFDictionaryRef dict,
 CGPDFDictionaryApplierFunction function,
 void *info
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

function
The function to apply to each entry in the dictionary.

info
A pointer to contextual information to pass to the function.

Discussion
This function enumerates all of the entries in the dictionary, calling the function once for each. The current
key, its associated value, and the contextual information are passed to the function (see also
CGPDFDictionaryApplierFunction (page 324)).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetArray
Returns whether there is a PDF array associated with a specified key in a PDF dictionary and, if so, retrieves
that array.

bool CGPDFDictionaryGetArray (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFArrayRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, an uninitialized pointer to a PDF array. If the value associated with the specified key is a
PDF array, then on return contains that array; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF array associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Functions 319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

CGPDFDictionaryGetBoolean
Returns whether there is a PDF Boolean value associated with a specified key in a PDF dictionary and, if so,
retrieves the Boolean value.

bool CGPDFDictionaryGetBoolean (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFBoolean *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF Boolean value. If the value associated with the specified key is a PDF
Boolean value, then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF Boolean value associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetCount
Returns the number of entries in a PDF dictionary.

size_t CGPDFDictionaryGetCount (
 CGPDFDictionaryRef dict
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

Return Value
Returns the number of entries in the dictionary.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetDictionary
Returns whether there is another PDF dictionary associated with a specified key in a PDF dictionary and, if
so, retrieves that dictionary.

320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

bool CGPDFDictionaryGetDictionary (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFDictionaryRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF dictionary. If the value associated with the specified key is a PDF dictionary,
then on return contains that dictionary; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF dictionary associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetInteger
Returns whether there is a PDF integer associated with a specified key in a PDF dictionary and, if so, retrieves
that integer.

bool CGPDFDictionaryGetInteger (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFInteger *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF integer. If the value associated with the specified key is a PDF integer,
then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF integer associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Functions 321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

CGPDFDictionaryGetName
Returns whether an object with a specified key in a PDF dictionary is a PDF name reference (represented as
a constant C string) and, if so, retrieves that name.

bool CGPDFDictionaryGetName (
 CGPDFDictionaryRef dict,
 const char *key,
 const char **value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF name reference, represented as a constant C string. If the value associated
with the specified key is a reference to a PDF name, then on return, the variable points to the name;
otherwise, the value is undefined.

Return Value
Returns true if there is a character array associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetNumber
Returns whether there is a PDF number associated with a specified key in a PDF dictionary and, if so, retrieves
that number.

bool CGPDFDictionaryGetNumber (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFReal *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF number. If the value associated with the specified key is a PDF number
(real or integer), then on return contains that value; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF number associated with the specified key; otherwise, false.

322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetObject
Returns whether there is a PDF object associated with a specified key in a PDF dictionary and, if so, retrieves
that object.

bool CGPDFDictionaryGetObject (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFObjectRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF object. If the value associated with the specified key is a PDF object, then
on return contains that object; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF object associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetStream
Returns whether there is a PDF stream associated with a specified key in a PDF dictionary and, if so, retrieves
that stream.

bool CGPDFDictionaryGetStream (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFStreamRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to be retrieved.

Functions 323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

value
On input, a pointer to a PDF stream. If the value associated with the specified key is a PDF stream,
then on return contains that stream; otherwise, the value is unspecified.

Return Value
Returns true if there is a PDF stream associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

CGPDFDictionaryGetString
Returns whether there is a PDF string associated with a specified key in a PDF dictionary and, if so, retrieves
that string.

bool CGPDFDictionaryGetString (
 CGPDFDictionaryRef dict,
 const char *key,
 CGPDFStringRef *value
);

Parameters
dictionary

A PDF dictionary. If this parameter is not a valid PDF dictionary, the behavior is undefined.

key
The key for the value to retrieve.

value
On input, a pointer to a PDF string. If the value associated with the specified key is a PDF string, then
on return contains that string; otherwise the value is unspecified.

Return Value
Returns true if there is a PDF string associated with the specified key; otherwise, false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDictionary.h

Callbacks

CGPDFDictionaryApplierFunction
Performs custom processing on a key-value pair from a PDF dictionary, using optional contextual information.

324 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

typedef void (*CGPDFDictionaryApplierFunction) (
 const char *key,
 CGPDFObjectRef value,
 void *info,
);

If you name your function MyFunction, you would declare it like this:

void MyFunction (
 const char *key,
 CGPDFObjectRef object,
 void *info
);

Parameters
key

The current key in the dictionary.

object
The value in the dictionary associated with the key.

info
The contextual information that your provided in the info parameter in
CGPDFDictionaryApplyFunction (page 318).

Discussion
CGPDFDictionaryApplierFunction defines the callback for CGPDFDictionaryApplyFunction, that
enumerates all of the entries in the dictionary, calling your custom applier function once for each entry. The
current key, its associated value, and the contextual information are passed to your applier function using
the key, value, and info parameters respectively.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFDictionary.h

Data Types

CGPDFDictionaryRef
An opaque type that encapsulates a PDF dictionary.

typedef struct CGPDFDictionary *CGPDFDictionaryRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFDictionary.h

Data Types 325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

326 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

CGPDFDictionary Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFDocument.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFDocumentRef opaque type encapsulates a document that contains PDF (Portable Document
Format) drawing information. PDF provides an efficient format for cross-platform exchange of documents
with rich content. PDF files can contain multiple pages of images and text. A PDF document object contains
all the information relating to a PDF document, including its catalog and contents.

Note that PDF documents may be encrypted, and that some operations may be restricted until a valid
password is supplied—see the functions listed in “Managing Encryption” (page 328). Quartz also supports
decrypting encrypted documents.

Quartz can both display and generate files that are compliant with the PDF standard. When imaging PDF
files, CGPDFDocumentRef is the basic type used to represent a PDF document.

Functions by Task

Creating PDF Document Objects

CGPDFDocumentCreateWithProvider (page 330)
Creates a Quartz PDF document using a data provider.

CGPDFDocumentCreateWithURL (page 330)
Creates a Quartz PDF document using data specified by a URL.

Retaining and Releasing PDF Documents

CGPDFDocumentRelease (page 339)
Decrements the retain count of a PDF document.

CGPDFDocumentRetain (page 339)
Increments the retain count of a Quartz PDF document.

Overview 327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Getting the CFType ID for a PDF Document Object

CGPDFDocumentGetTypeID (page 337)
Returns the type identifier for Quartz PDF documents.

Getting Information About Quartz PDF Documents

CGPDFDocumentGetCatalog (page 332)
Returns the document catalog of a Quartz PDF document.

CGPDFDocumentGetNumberOfPages (page 335)
Returns the number of pages in a PDF document.

CGPDFDocumentGetPage (page 335)
Returns a page from a Quartz PDF document.

CGPDFDocumentGetVersion (page 337)
Returns the major and minor version numbers of a Quartz PDF document.

CGPDFDocumentGetInfo (page 334)
Gets the information dictionary for a PDF document.

CGPDFDocumentGetID (page 333)
Gets the file identifier for a PDF document.

Managing Encryption

CGPDFDocumentAllowsCopying (page 329)
Returns whether the specified PDF document allows copying.

CGPDFDocumentAllowsPrinting (page 329)
Returns whether a PDF document allows printing.

CGPDFDocumentIsEncrypted (page 338)
Returns whether the specified PDF file is encrypted.

CGPDFDocumentIsUnlocked (page 338)
Returns whether the specified PDF document is currently unlocked.

CGPDFDocumentUnlockWithPassword (page 340)
Unlocks an encrypted PDF document, if a valid password is supplied.

Getting Page Information

CGPDFDocumentGetArtBox (page 331) Deprecated in Mac OS X version 10.3 and later
Returns the art box of a page in a PDF document.

CGPDFDocumentGetBleedBox (page 331) Deprecated in Mac OS X version 10.3 and later
Returns the bleed box of a page in a PDF document.

CGPDFDocumentGetCropBox (page 333) Deprecated in Mac OS X version 10.3 and later
Returns the crop box of a page in a PDF document.

CGPDFDocumentGetMediaBox (page 334) Deprecated in Mac OS X version 10.3 and later
Returns the media box of a page in a PDF document.

328 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGPDFDocumentGetRotationAngle (page 336) Deprecated in Mac OS X version 10.3 and later
Returns the rotation angle of a page in a PDF document.

CGPDFDocumentGetTrimBox (page 336) Deprecated in Mac OS X version 10.3 and later
Returns the trim box of a page in a PDF document.

Functions

CGPDFDocumentAllowsCopying
Returns whether the specified PDF document allows copying.

bool CGPDFDocumentAllowsCopying (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document allows copying. If the value is false, the document
does not allow copying.

Discussion
This function returns true if the specified PDF document allows copying. It returns false if the document
is encrypted and the current password doesn't grant permission to perform copying.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentAllowsPrinting
Returns whether a PDF document allows printing.

bool CGPDFDocumentAllowsPrinting (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document allows printing. If the value is false, the document
does not allow printing.

Discussion
This function returns true if the specified PDF document allows printing. It returns false if the document
is encrypted and the current password doesn't grant permission to perform printing.

Functions 329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentCreateWithProvider
Creates a Quartz PDF document using a data provider.

CGPDFDocumentRef CGPDFDocumentCreateWithProvider (
 CGDataProviderRef provider
);

Parameters
provider

A data provider that supplies the PDF document data.

Return Value
A new Quartz PDF document, or NULL if a document can not be created. You are responsible for releasing
the object using CGPDFDocumentRelease (page 339).

Discussion
Distributing individual pages of a PDF document to separate threads is not supported. If you want to use
threads, consider creating a separate document for each thread and operating on a block of pages per thread.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextDrawPDFDocument (page 88)

Related Sample Code
CarbonSketch

Declared In
CGPDFDocument.h

CGPDFDocumentCreateWithURL
Creates a Quartz PDF document using data specified by a URL.

CGPDFDocumentRef CGPDFDocumentCreateWithURL (
 CFURLRef url
);

Parameters
url

The URL address at which the PDF document data is located.

Return Value
A new Quartz PDF document, or NULL if a document could not be created. You are responsible for releasing
the object using CGPDFDocumentRelease (page 339).

330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Discussion
Distributing individual pages of a PDF document to separate threads is not supported. If you want to use
threads, consider creating a separate document for each thread and operating on a block of pages per thread.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGContextDrawPDFDocument (page 88)

Declared In
CGPDFDocument.h

CGPDFDocumentGetArtBox
Returns the art box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetArtBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the art box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The art box defines the extent of the page’s meaningful content (including potential white space) as intended
by the document creator. The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetBleedBox
Returns the bleed box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

Functions 331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGRect CGPDFDocumentGetBleedBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the bleed box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The bleed box defines the bounds to which the contents of the page should be clipped when output in a
production environment. The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetCatalog
Returns the document catalog of a Quartz PDF document.

CGPDFDictionaryRef CGPDFDocumentGetCatalog (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
The document catalog of the specified document.

Discussion
The entries in a PDF document catalog recursively describe the contents of the PDF document. You can
access the contents of a PDF document catalog by calling the function CGPDFDocumentGetCatalog. For
information on accessing PDF metadata, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

CGPDFDocumentGetCropBox
Returns the crop box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetCropBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the crop box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The crop box defines the region to which the contents of the page are to be clipped (or cropped) when
displayed or printed. Unlike the other boxes, the crop box has no defined meaning in terms of physical page
geometry or intended use—it merely suggests where the page should be clipped.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetID
Gets the file identifier for a PDF document.

CGPDFArrayRef CGPDFDocumentGetID (
 CGPDFDocumentRef document
);

Parameters
document

The document whose file identifier you want to obtain.

Return Value
Returns the file identifier for the document.

Discussion
A PDF file identifier is defined in the PDF specification as an array of two strings, the first of which is a
permanent identifier that doesn’t change even when the file is updated. The second string changes each
time the file is updated. For more information, see PDF Reference: Version 1.3 (Second Edition), Adobe Systems
Incorporated.

Functions 333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetInfo
Gets the information dictionary for a PDF document.

CGPDFDictionaryRef CGPDFDocumentGetInfo (
 CGPDFDocumentRef document
);

Parameters
document

The document whose dictionary you want to obtain.

Return Value
The information dictionary for the document.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetMediaBox
Returns the media box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetMediaBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
A rectangle that represents the media box for the specified page, expressed in default PDF user space units
(points).

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The media box defines the location and size of the physical medium on which the page is intended to be
displayed or printed. For example, if the page size is 8.5 by 11 inches, this function returns the coordinate
pairs (0,0) and (612,792).

334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetNumberOfPages
Returns the number of pages in a PDF document.

size_t CGPDFDocumentGetNumberOfPages (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to examine.

Return Value
The total number of pages in the PDF document.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetPage
Returns a page from a Quartz PDF document.

CGPDFPageRef CGPDFDocumentGetPage (
 CGPDFDocumentRef document,
 size_t pageNumber
);

Parameters
document

A PDF document.

pageNumber
The number of the page requested.

Return Value
Return the PDF page corresponding to the specified page number, or NULL if no such page exists in the
document. Pages are numbered starting at 1.

Availability
Available in Mac OS X version 10.3 and later.

Related Sample Code
CarbonSketch

Functions 335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Declared In
CGPDFDocument.h

CGPDFDocumentGetRotationAngle
Returns the rotation angle of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

int CGPDFDocumentGetRotationAngle (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
An integer that specifies the number of the page to examine.

Return Value
The rotation angle of the page, expressed in degrees. If the specified page does not exist, returns 0.

Discussion
The replacement function for this one isCGPDFPageGetRotationAngle. For more information seeCGPDFPage
Reference.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetTrimBox
Returns the trim box of a page in a PDF document. (Deprecated in Mac OS X version 10.3 and later.)

CGRect CGPDFDocumentGetTrimBox (
 CGPDFDocumentRef document,
 int page
);

Parameters
document

The PDF document to examine.

page
A value specifying the number of the page to examine.

Return Value
Returns a rectangle that represents the trim box for the specified page, expressed in default PDF user space
units (points).

336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Discussion
The replacement function for this one is CGPDFPageGetBoxRect, which gets the rectangle associated with
a type of box (art, media, crop, bleed trim) that represents a content region or page dimensions of a PDF
page. For more information see CGPDFPage Reference.

The trim box defines the intended dimensions of the finished page after trimming. It may be smaller than
the media box, to allow for production-related content such as printing instructions, cut marks, or color bars.
The default value is the page’s crop box.

Availability
Available in Mac OS X version 10.0 and later.
Deprecated in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetTypeID
Returns the type identifier for Quartz PDF documents.

CFTypeID CGPDFDocumentGetTypeID (
 void
);

Return Value
The identifier for the opaque type CGPDFDocumentRef (page 340).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentGetVersion
Returns the major and minor version numbers of a Quartz PDF document.

void CGPDFDocumentGetVersion (
 CGPDFDocumentRef document,
 int *majorVersion,
 int *minorVersion
);

Parameters
document

A PDF document.

majorVersion
On return, contains the major version number of the document.

minorVersion
On return, contains the minor version number of the document.

Functions 337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Return Value
On return, the values of the majorVersion and minorVersion parameters are set to the major and minor
version numbers of the document respectively.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentIsEncrypted
Returns whether the specified PDF file is encrypted.

bool CGPDFDocumentIsEncrypted (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document is encrypted. If the value is false, the document is not
encrypted.

Discussion
If the document is encrypted, a password must be supplied before certain operations are enabled. For more
information, see CGPDFDocumentUnlockWithPassword (page 340).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentIsUnlocked
Returns whether the specified PDF document is currently unlocked.

bool CGPDFDocumentIsUnlocked (
 CGPDFDocumentRef document
);

Parameters
document

A PDF document.

Return Value
A Boolean that, if true, indicates that the document is not locked. If the value is false, the document is
locked.

Discussion
There are two possible reasons why a PDF document is unlocked:

338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

 ■ The document is not encrypted.

 ■ The document is encrypted, and a valid password was previously specified using
CGPDFDocumentUnlockWithPassword (page 340).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentRelease
Decrements the retain count of a PDF document.

void CGPDFDocumentRelease (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the document parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGPDFDocument.h

CGPDFDocumentRetain
Increments the retain count of a Quartz PDF document.

CGPDFDocumentRef CGPDFDocumentRetain (
 CGPDFDocumentRef document
);

Parameters
document

The PDF document to retain.

Return Value
The same document you passed in as the document parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the document parameter
is NULL.

Availability
Available in Mac OS X version 10.0 and later.

Functions 339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Declared In
CGPDFDocument.h

CGPDFDocumentUnlockWithPassword
Unlocks an encrypted PDF document, if a valid password is supplied.

bool CGPDFDocumentUnlockWithPassword (
 CGPDFDocumentRef document,
 const char *password
);

Parameters
document

A PDF document.

password
A pointer to a string that contains the password.

Return Value
A Boolean that, if true, indicates that the document has been successfully unlocked. If the value is false,
the document has not been unlocked.

Discussion
Given an encrypted PDF document and a password, this function does the following:

 ■ Sets the lock state of the document, based on the validity of the password.

 ■ Returns true if the document is unlocked.

 ■ Returns false if the document cannot be unlocked with the specified password.

Unlocking a PDF document makes it possible to decrypt the document and perform other privileged
operations. Different passwords enable different operations.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGPDFDocument.h

Data Types

CGPDFDocumentRef
An opaque type that represents a PDF (Portable Document Format) document.

typedef struct CGPDFDocument * CGPDFDocumentRef;

Availability
Available in Mac OS X v10.0 and later.

340 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Declared In
CGPDFDocument.h

Data Types 341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

342 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

CGPDFDocument Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFObject.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFObjectRef opaque type represents PDF objects in a PDF document. PDF supports several basic
types of object: Boolean values, integer and real numbers, strings, names, arrays, dictionaries, and streams.
Most of these are represented in Quartz by corresponding specific types. A CGPDFObject can represent any
of these types. You use CGPDFObject functions to determine the type of the object, and retrieve the object
value if it is of an expected type.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFObject objects exist as constituent parts of a CGPDFDocument object, and are managed by their
container.

Functions

CGPDFObjectGetType
Returns the PDF type identifier of an object.

CGPDFObjectType CGPDFObjectGetType (
 CGPDFObjectRef object
);

Parameters
object

A PDF object. If the value if not a PDF object, the behavior is unspecified.

Return Value
Returns the type of the object parameter. See “Data Types” (page 344).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFObject.h

Overview 343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

CGPDFObjectGetValue
Returns whether an object is of a given type and if it is, retrieves its value.

bool CGPDFObjectGetValue (
 CGPDFObjectRef object,
 CGPDFObjectType type,
 void *value
);

Parameters
object

A PDF object.

type
A PDF object type.

value
If the object parameter is a PDF object of the specified type, then on return contains that object,
otherwise the value is unspecified.

Return Value
Returns true if the specified object is a PDF object of the specified type, otherwise false.

Discussion
The function gets the value of the object parameter. If the type of object is equal to the type specified,
then:

 ■ If the value parameter is not a null pointer, then the value of object is copied to value, and the
function returns true.

 ■ If the value parameter is a null pointer, then the function simply returns true. This allows you to test
whether object is of the type specified.

If the type of object is kCGPDFObjectTypeInteger and type is equal to kCGPDFObjectTypeReal, then
the value of object is converted to floating point, the result copied to value, and the function returns true.
If none of the preceding conditions is met, returns false.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFObject.h

Data Types

CGPDFObjectRef
An opaque type that contains information about a PDF object.

typedef union CGPDFObject *CGPDFObjectRef;

Availability
Available in Mac OS X v10.3 and later.

344 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

Declared In
CGPDFObject.h

CGPDFBoolean
A PDF Boolean value.

typedef unsigned char CGPDFBoolean;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

CGPDFInteger
A PDF integer value.

typedef long int CGPDFInteger;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

CGPDFReal
A PDF real value.

typedef CGFloat CGPDFReal;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFObject.h

Constants

PDF Object Types
Types of PDF object.

Constants 345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

enum CGPDFObjectType {
 kCGPDFObjectTypeNull = 1,
 kCGPDFObjectTypeBoolean,
 kCGPDFObjectTypeInteger,
 kCGPDFObjectTypeReal,
 kCGPDFObjectTypeName,
 kCGPDFObjectTypeString,
 kCGPDFObjectTypeArray,
 kCGPDFObjectTypeDictionary,
 kCGPDFObjectTypeStream
};typedef enum CGPDFObjectType CGPDFObjectType;

Constants
kCGPDFObjectTypeNull

The type for a PDF null.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeBoolean
The type for a PDF Boolean.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeInteger
The type for a PDF integer.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeReal
The type for a PDF real.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeName
Type for a PDF name.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeString
The type for a PDF string.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeArray
Type for a PDF array.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

kCGPDFObjectTypeDictionary
The type for a PDF dictionary.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

346 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

kCGPDFObjectTypeStream
The type for a PDF stream.

Available in Mac OS X v10.3 and later.

Declared in CGPDFObject.h.

Declared In
CGPDFObject.h

Constants 347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

348 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

CGPDFObject Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFOperatorTable.h

Overview

A CGPDFOperatorTable object stores callback functions for PDF operators. You pass an operator table and
a PDF content stream to a CGPDFScanner object. When the scanner parses a PDF operator, Quartz invokes
your callback for that operator. See also CGPDFScanner Reference and CGPDFContentStream Reference.

Note: This opaque type is not derived from CFType and therefore you can’t use the Core Foundation base
functions on it, such as CFRetain and CFRelease. Memory management is handled by the specific functions
CGPDFOperatorTableRetain (page 350) and CGPDFOperatorTableRelease (page 350).

For more about PDF operators, see the latest version of PDF Reference, Adobe Systems Incorporated.

Functions by Task

Creating a PDF Operator Table

CGPDFOperatorTableCreate (page 350)
Creates an empty PDF operator table.

Setting Callback Functions

CGPDFOperatorTableSetCallback (page 351)
Sets a callback function for a PDF operator.

Retaining and Releasing a PDF Operator Table

CGPDFOperatorTableRetain (page 350)
Increments the retain count of a CGPDFOperatorTable object.

Overview 349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

CGPDFOperatorTableRelease (page 350)
Decrements the retain count of a CGPDFOperatorTable object.

Functions

CGPDFOperatorTableCreate
Creates an empty PDF operator table.

CGPDFOperatorTableRef CGPDFOperatorTableCreate (
 void
);

Return Value
An empty PDF operator table. You are responsible for releasing this object by calling
CGPDFOperatorTableRelease (page 350).

Discussion
Call the function CGPDFOperatorTableSetCallback (page 351) to fill the operator table with callbacks.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableRelease
Decrements the retain count of a CGPDFOperatorTable object.

void CGPDFOperatorTableRelease (
 CGPDFOperatorTableRef table
);

Parameters
table

A PDF operator table.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableRetain
Increments the retain count of a CGPDFOperatorTable object.

350 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

CGPDFOperatorTableRef CGPDFOperatorTableRetain (
 CGPDFOperatorTableRef table
);

Parameters
table

A PDF operator table.

Return Value
The same PDF operator table you passed in as the table parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

CGPDFOperatorTableSetCallback
Sets a callback function for a PDF operator.

void CGPDFOperatorTableSetCallback (
 CGPDFOperatorTableRef table,
 const char *name,
 CGPDFOperatorCallback callback
);

Parameters
table

A PDF operator table.

name
The name of the PDF operator you want to set a callback for.

callback
The callback to invoke for the PDF operator specified by the name parameter.

Discussion
You call the function CGPDFOperatorTableSetCallback for each PDF operator for which you want to
provide a callback. See Appendix A in the PDF Reference, Second Edition, version 1.3, Adobe Systems
Incorporated for a summary of PDF operators.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFOperatorTable.h

Callbacks

CGPDFOperatorCallback
Performs custom processing for PDF operators.

Callbacks 351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

typedef void (*CGPDFOperatorCallback)(
 CGPDFScannerRef scanner,
 void *info
);

If you name your function MyCGPDFOperatorCallback, you would declare it like this:

void MyCGPDFOperatorCallback (
 CGPDFScannerRef scanner,
 void *info
);

Parameters
scanner

A CGPDFScanner object. Quartz passes the scanner to your callback function. The scanner contains
the PDF content stream that has the PDF operator that corresponds to this callback.

info
A pointer to data passed to the callback.

Discussion
Your callback function takes any action that’s appropriate for your application. For example, if you want to
count the number of inline images in a PDF but ignore the image data, you would set a callback for the EI
operator. In your callback you would increment a counter for each call.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFOperatorTable.h

Data Types

CGPDFOperatorTableRef
An opaque type that stores callback functions for PDF operators.

typedef struct CGPDFOperatorTable *CGPDFOperatorTableRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFOperatorTable.h

352 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

CGPDFOperatorTable Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFPage.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFPageRef opaque type represents a page in a PDF document.

Functions by Task

Retaining and Releasing a PDF Page

CGPDFPageRetain (page 358)
Increments the retain count of a PDF page.

CGPDFPageRelease (page 357)
Decrements the retain count of a PDF page.

Getting the CFType ID

CGPDFPageGetTypeID (page 357)
Returns the CFType ID for PDF page objects.

Getting Page Information

CGPDFPageGetBoxRect (page 354)
Returns the rectangle that represents a type of box for a content region or page dimensions of a PDF
page.

CGPDFPageGetDictionary (page 354)
Returns the dictionary of a PDF page.

CGPDFPageGetDocument (page 355)
Returns the document for a page.

Overview 353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

CGPDFPageGetDrawingTransform (page 355)
Returns the affine transform that maps a box to a given rectangle on a PDF page.

CGPDFPageGetPageNumber (page 356)
Returns the page number of the specified PDF page.

CGPDFPageGetRotationAngle (page 357)
Returns the rotation angle of a PDF page.

Functions

CGPDFPageGetBoxRect
Returns the rectangle that represents a type of box for a content region or page dimensions of a PDF page.

CGRect CGPDFPageGetBoxRect (
 CGPDFPageRef page,
 CGPDFBox box
);

Parameters
page

A PDF page.

box
A CGPDFBox constant that specifies the type of box. For possible values, see “PDF Boxes” (page
359).

Return Value
Returns the rectangle associated with the type of box specified by the box parameter in the specified page.

Discussion
Returns the rectangle associated with the specified box in the specified page. This is the value of the
corresponding entry (such as /MediaBox, /ArtBox, and so on) in the page’s dictionary.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
CGPDFPage.h

CGPDFPageGetDictionary
Returns the dictionary of a PDF page.

354 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

CGPDFDictionaryRef CGPDFPageGetDictionary (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
Returns the PDF dictionary for the specified page.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetDocument
Returns the document for a page.

CGPDFDocumentRef CGPDFPageGetDocument (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The PDF document with which the specified page is associated.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetDrawingTransform
Returns the affine transform that maps a box to a given rectangle on a PDF page.

CGAffineTransform CGPDFPageGetDrawingTransform (
 CGPDFPageRef page,
 CGPDFBox box,
 CGRect rect,
 int rotate,
 bool preserveAspectRatio
);

Parameters
page

A PDF page.

Functions 355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

box
A CGPDFBox constant that specifies the type of box. For possible values, see “PDF Boxes” (page
359).

rect
A Quartz rectangle.

rotate
An integer, that must be a multiple of 90, that specifies the angle by which the specified rectangle is
rotated clockwise.

preserveAspectRatio
A Boolean value that specifies whether or not the aspect ratio should be preserved. A value of true
specifies that the aspect ratio should be preserved.

Return Value
An affine transform that maps the box specified by the box parameter to the rectangle specified by the rect
parameter.

Discussion
Quartz constructs the affine transform as follows:

 ■ Computes the effective rectangle by intersecting the rectangle associated with box and the /MediaBox
entry of the specified page.

 ■ Rotates the effective rectangle according to the page’s /Rotate entry.

 ■ Centers the resulting rectangle on rect. If the value of the rotate parameter is non-zero, then the
rectangle is rotated clockwise by rotate degrees. The value of rotate must be a multiple of 90.

 ■ Scales the rectangle, if necessary, so that it coincides with the edges of rect. If the value of
preserveAspectRatio parameter is true, then the final rectangle coincides with the edges of rect
only in the more restrictive dimension.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetPageNumber
Returns the page number of the specified PDF page.

size_t CGPDFPageGetPageNumber (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
Returns the page number of the specified page.

Availability
Available in Mac OS X v10.3 and later.

356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Declared In
CGPDFPage.h

CGPDFPageGetRotationAngle
Returns the rotation angle of a PDF page.

int CGPDFPageGetRotationAngle (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The rotation angle (in degrees) of the specified page. This is the value of the /Rotate entry in the page’s
dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageGetTypeID
Returns the CFType ID for PDF page objects.

CFTypeID CGPDFPageGetTypeID (
 void
);

Return Value
Returns the Core Foundation type for a PDF page.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageRelease
Decrements the retain count of a PDF page.

void CGPDFPageRelease (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Functions 357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the page parameter is
NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

CGPDFPageRetain
Increments the retain count of a PDF page.

CGPDFPageRef CGPDFPageRetain (
 CGPDFPageRef page
);

Parameters
page

A PDF page.

Return Value
The same page you passed in as the page parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the page parameter is NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

Data Types

CGPDFPageRef
An opaque type that represents a page in a PDF document.

typedef struct CGPDFPage *CGPDFPageRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFPage.h

358 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Constants

PDF Boxes
Box types for a PDF page.

enum CGPDFBox {
 kCGPDFMediaBox = 0,
 kCGPDFCropBox = 1,
 kCGPDFBleedBox = 2,
 kCGPDFTrimBox = 3,
 kCGPDFArtBox = 4
};
typedef enum CGPDFBox CGPDFBox;

Constants
kCGPDFMediaBox

The page media box—a rectangle, expressed in default user space units, that defines the boundaries
of the physical medium on which the page is intended to be displayed or printed

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFCropBox
The page crop box—a rectangle, expressed in default user space units, that defines the visible region
of default user space. When the page is displayed or printed, its contents are to be clipped to this
rectangle.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFBleedBox
The page bleed box—a rectangle, expressed in default user space units, that defines the region to
which the contents of the page should be clipped when output in a production environment

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFTrimBox
The page trim box—a rectangle, expressed in default user space units, that defines the intended
dimensions of the finished page after trimming.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

kCGPDFArtBox
The page art box—a rectangle, expressed in default user space units, defining the extent of the page’s
meaningful content (including potential white space) as intended by the page’s creator.

Available in Mac OS X v10.3 and later.

Declared in CGPDFPage.h.

Declared In
CGPDFPage.h

Constants 359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

360 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

CGPDFPage Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFScanner.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFScannerRef opaque type is used to parse a PDF content stream. You can set up the PDF scanner
object to invoke callbacks when it encounters specific PDF operators in the stream.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it.

Functions by Task

Creating a PDF Scanner Object

CGPDFScannerCreate (page 362)
Creates a CGPDFScanner object.

Retaining and Releasing PDF Scanner Objects

CGPDFScannerRetain (page 368)
Increments the retain count of a scanner object.

CGPDFScannerRelease (page 367)
Decrements the retain count of a scanner object.

Parsing Content

CGPDFScannerScan (page 368)
Parses the content stream of a CGPDFScanner object.

CGPDFScannerGetContentStream (page 363)
Returns the content stream associated with a CGPDFScanner object.

Overview 361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Getting PDF Objects from the Scanner Stack

CGPDFScannerPopObject (page 366)
Retrieves an object from the scanner stack.

CGPDFScannerPopBoolean (page 364)
Retrieves a Boolean object from the scanner stack.

CGPDFScannerPopInteger (page 364)
Retrieves an integer object from the scanner stack.

CGPDFScannerPopNumber (page 365)
Retrieves a real value object from the scanner stack.

CGPDFScannerPopName (page 365)
Retrieves a character string from the scanner stack.

CGPDFScannerPopString (page 367)
Retrieves a string object from the scanner stack.

CGPDFScannerPopArray (page 363)
Retrieves an array object from the scanner stack.

CGPDFScannerPopDictionary (page 364)
Retrieves a PDF dictionary object from the scanner stack.

CGPDFScannerPopStream (page 366)
Retrieves a PDF stream object from the scanner stack.

Functions

CGPDFScannerCreate
Creates a CGPDFScanner object.

CGPDFScannerRef CGPDFScannerCreate (
 CGPDFContentStreamRef cs,
 CGPDFOperatorTableRef table,
 void *info
);

Parameters
cs

A CGPDFContentStream object. (See CGPDFContentStream Reference.)

table
A CGPDFOperatorTable object that contains callbacks for the PDF operators you want to handle.

info
A pointer to data you want passed to your CGPDFOperatorTable callback function. (See
CGPDFOperatorTable Reference.)

Return Value
A CGPDFScanner object. You are responsible for releasing this object by calling the function
CGPDFScannerRelease.

362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Discussion
When you want to parse the contents of the PDF stream, call the function CGPDFScannerScan (page 368).

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerGetContentStream
Returns the content stream associated with a CGPDFScanner object.

CGPDFContentStreamRef CGPDFScannerGetContentStream (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object whose content stream you want to obtain.

Return Value
Return the content stream associated with scanner.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopArray
Retrieves an array object from the scanner stack.

bool CGPDFScannerPopArray (
 CGPDFScannerRef scanner,
 CGPDFArrayRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFArray object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

Functions 363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

CGPDFScannerPopBoolean
Retrieves a Boolean object from the scanner stack.

bool CGPDFScannerPopBoolean (
 CGPDFScannerRef scanner,
 CGPDFBoolean *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFBoolean object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopDictionary
Retrieves a PDF dictionary object from the scanner stack.

bool CGPDFScannerPopDictionary (
 CGPDFScannerRef scanner,
 CGPDFDictionaryRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFDictionary object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopInteger
Retrieves an integer object from the scanner stack.

364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

bool CGPDFScannerPopInteger (
 CGPDFScannerRef scanner,
 CGPDFInteger *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFInteger object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopName
Retrieves a character string from the scanner stack.

bool CGPDFScannerPopName (
 CGPDFScannerRef scanner,
 const char **value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the character string popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopNumber
Retrieves a real value object from the scanner stack.

Functions 365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

bool CGPDFScannerPopNumber (
 CGPDFScannerRef scanner,
 CGPDFReal *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFReal object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Discussion
The number retrieved from the scanner can be a real value or an integer value. However, the result is always
converted to a CGPDFReal data type.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopObject
Retrieves an object from the scanner stack.

bool CGPDFScannerPopObject (
 CGPDFScannerRef scanner,
 CGPDFObjectRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopStream
Retrieves a PDF stream object from the scanner stack.

366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

bool CGPDFScannerPopStream (
 CGPDFScannerRef scanner,
 CGPDFStreamRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFStream object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerPopString
Retrieves a string object from the scanner stack.

bool CGPDFScannerPopString (
 CGPDFScannerRef scanner,
 CGPDFStringRef *value
);

Parameters
scanner

A valid scanner object.

value
On output, points to the CGPDFString object popped from the scanner stack.

Return Value
Returns true if value is retrieved successfully; false otherwise.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerRelease
Decrements the retain count of a scanner object.

Functions 367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

void CGPDFScannerRelease (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object to release.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerRetain
Increments the retain count of a scanner object.

CGPDFScannerRef CGPDFScannerRetain (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object to retain.

Return Value
The same scanner object passed to the function in the scanner parameter.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

CGPDFScannerScan
Parses the content stream of a CGPDFScanner object.

bool CGPDFScannerScan (
 CGPDFScannerRef scanner
);

Parameters
scanner

The scanner object whose content stream you want to parse.

Return Value
Returns true if the entire stream is parsed successfully; false if parsing fails (for example, if the stream data
is corrupted).

Discussion
The function CGPDFScannerScan parses the PDF content stream associated with the scanner. Each time
Quartz parses a PDF operator for which you register a callback, Quartz invokes your callback.

368 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFScanner.h

Data Types

CGPDFScannerRef
An opaque type used to parse a PDF content stream.

typedef struct CGPDFScanner *CGPDFScannerRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGPDFScanner.h

Data Types 369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

370 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

CGPDFScanner Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFStream.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFStreamRef opaque type represents a PDF stream. A PDF stream consists of a dictionary that
describes a sequence of bytes. Streams typically represent objects with potentially large amounts of data,
such as images and page descriptions.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it.

Functions

CGPDFStreamCopyData
Returns the data associated with a PDF stream.

CFDataRef CGPDFStreamCopyData (
 CGPDFStreamRef stream,
 CGPDFDataFormat *format
);

Parameters
stream

A PDF stream.

format
On return, contains a constant that specifies the format of the data
returned—CGPDFDataFormatRaw (page 373), CGPDFDataFormatJPEGEncoded (page 373), or
CGPDFDataFormatJPEG2000 (page 373).

Return Value
A CFData object that contains a copy of the stream data. You are responsible for releasing this object.

Availability
Available in Mac OS X version 10.3 and later.

Overview 371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

Declared In
CGPDFStream.h

CGPDFStreamGetDictionary
Returns the dictionary associated with a PDF stream.

CGPDFDictionaryRef CGPDFStreamGetDictionary (
 CGPDFStreamRef stream
);

Parameters
stream

A PDF stream.

Return Value
The PDF dictionary for the specified stream.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFStream.h

Data Types

CGPDFStream
An opaque type that represents a PDF stream.

typedef struct CGPDFStream *CGPDFStreamRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFStream.h

Constants

CGPDFDataFormat
The encoding format of PDF data.

372 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

enum CGPDFDataFormat {
 CGPDFDataFormatRaw,
 CGPDFDataFormatJPEGEncoded,
 CGPDFDataFormatJPEG2000
};
typedef enum CGPDFDataFormat CGPDFDataFormat;

Constants
CGPDFDataFormatRaw

The data stream is not encoded.

Available in Mac OS X v10.3 and later.

Declared in CGPDFStream.h.

CGPDFDataFormatJPEGEncoded
The data stream is encoded in JPEG format.

Available in Mac OS X v10.3 and later.

Declared in CGPDFStream.h.

CGPDFDataFormatJPEG2000
The data stream is encoded in JPEG-2000 format.

Available in Mac OS X v10.4 and later.

Declared in CGPDFStream.h.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFStream.h

Constants 373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

CGPDFStream Reference

Derived From: None

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPDFString.h

Companion guide Quartz 2D Programming Guide

Overview

The CGPDFStringRef opaque type represents a string in a PDF document A PDF string object of a series of
bytes—unsigned integer values in the range 0 to 255. The string elements are not integer objects, but are
stored in a more compact format. For more information on the representation of strings in PDF, see the latest
version of PDF Reference, Adobe Systems Incorporated.

This opaque type is not derived from CFType and therefore there are no functions for retaining and releasing
it. CGPDFString objects exist as constituent parts of a CGPDFDocument object, and are managed by their
container.

Functions by Task

Converting PDF Strings

CGPDFStringCopyTextString (page 376)
Returns a CFString object that represents a PDF string as a text string.

CGPDFStringCopyDate (page 376)
Converts a string to a date.

Getting PDF String Data

CGPDFStringGetBytePtr (page 376)
Returns a pointer to the bytes of a PDF string.

CGPDFStringGetLength (page 377)
Returns the number of bytes in a PDF string.

Overview 375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

Functions

CGPDFStringCopyDate
Converts a string to a date.

CFDateRef CGPDFStringCopyDate (
 CGPDFStringRef string
);

Parameters
string

The string to convert to a date.

Return Value
A CFDate object.

Discussion
The PDF specification defines a specific format for strings that represent dates. This function converts strings
in that form to CFDate objects.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CGPDFString.h

CGPDFStringCopyTextString
Returns a CFString object that represents a PDF string as a text string.

CFStringRef CGPDFStringCopyTextString (
 CGPDFStringRef string
);

Parameters
string

A PDF string. If this value is NULL, it will cause an error.

Return Value
Returns a CFString object that represents the specified PDF string as a text string. You are responsible for
releasing this object.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

CGPDFStringGetBytePtr
Returns a pointer to the bytes of a PDF string.

376 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

const unsigned char * CGPDFStringGetBytePtr (
 CGPDFStringRef string
);

Parameters
string

A PDF string.

Return Value
Returns a pointer to the bytes of the specified string. If the string is NULL, the function returns NULL.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

CGPDFStringGetLength
Returns the number of bytes in a PDF string.

size_t CGPDFStringGetLength (
 CGPDFStringRef string
);

Parameters
string

A PDF string.

Return Value
Returns the number of bytes referenced by the string, or 0 if the string is NULL.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPDFString.h

Data Types

CGPDFStringRef
An opaque data type that represents a string in a PDF document.

typedef struct CGPDFString *CGPDFStringRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPDFString.h

Data Types 377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

378 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

CGPDFString Reference

Derived From: CFType Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGPSConverter.h

Companion guide Quartz 2D Programming Guide

Overview

CGPSConverterRef is an opaque type used to convert PostScript data to PDF data. The PostScript data is
supplied by a data provider and written into a data consumer. When you create a PostScript converter object,
you can supply callback functions for Quartz to invoke at various stages of the conversion process,

Functions

CGPSConverterAbort
Tells a PostScript converter to abort a conversion at the next available opportunity.

bool CGPSConverterAbort (
 CGPSConverterRef converter
);

Parameters
converter

A PostScript converter.

Return Value
A Boolean value that indicates whether the converter is currently converting data (true if it is).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterConvert
Uses a PostScript converter to convert PostScript data to PDF data.

Overview 379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

bool CGPSConverterConvert (
 CGPSConverterRef converter,
 CGDataProviderRef provider,
 CGDataConsumerRef consumer,
 CFDictionaryRef options
);

Parameters
converter

A PostScript converter.

provider
A Quartz data provider that supplies PostScript data.

consumer
A Quartz data provider that will receive the resulting PDF data.

options
This parameter should be NULL; it is reserved for future expansion of the API.

Return Value
A Boolean value that indicates whether the PostScript conversion completed successfully (true if it did).

Discussion
The conversion is thread safe, however it is not possible to have more than one conversion job in process
within a given address space or process. If a given thread is running a conversion and another thread starts
a new conversion, the second conversion will block until the first conversion is complete.

Important: Although CGPSConverterConvert is thread safe (it uses locks to prevent more than one
conversion at a time in the same process), it is not thread safe with respect to the Resource Manager. If your
application uses the Resource Manager on a separate thread, you should either use locks to prevent
CGPSConverterConvert from executing during your usage of the Resource Manager or you should perform
your conversions using the Post Script converter in a separate process.

In general, you can avoid this issue by using nib files instead of Resource Manager resources.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterCreate
Creates a new PostScript converter.

CGPSConverterRef CGPSConverterCreate (
 void *info,
 const CGPSConverterCallbacks *callbacks,
 CFDictionaryRef options
);

Parameters
info

A pointer to the data that will be passed to the callbacks.

380 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

callbacks
A pointer to a PostScript converter callbacks structure that specifies the callbacks to be used during
a conversion process.

options
This parameter should be NULL; it is reserved for future expansion of the API.

Return Value
A new PostScript converter, or NULL if a converter could not be created. You are responsible for releasing
this object.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterGetTypeID
Returns the Core Foundation type identifier for PostScript converters.

CFTypeID CGPSConverterGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGPSConverterRef (page 386).

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterIsConverting
Checks whether the converter is currently converting data.

bool CGPSConverterIsConverting (
 CGPSConverterRef converter
);

Parameters
converter

A PostScript converter.

Return Value
Returns true that indicates if the conversion is in progress.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CGPSConverter.h

Functions 381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Callbacks by Task

Performing Custom Tasks at the Document Level

CGPSConverterBeginDocumentCallback (page 382)
Performs custom tasks at the beginning of a PostScript conversion process.

CGPSConverterEndDocumentCallback (page 383)
Performs custom tasks at the end of a PostScript conversion process.

Performing Custom Tasks at the Page Level

CGPSConverterBeginPageCallback (page 383)
Performs custom tasks at the beginning of each page in a PostScript conversion process.

CGPSConverterEndPageCallback (page 384)
Performs custom tasks at the end of each page of a PostScript conversion process.

Reporting Progress and Messages

CGPSConverterProgressCallback (page 385)
Reports progress periodically during a PostScript conversion process.

CGPSConverterMessageCallback (page 384)
Passes messages generated during a PostScript conversion process.

Performing Custom Clean-up Tasks

CGPSConverterReleaseInfoCallback (page 386)
Performs custom tasks when a PostScript converter is released.

Callbacks

CGPSConverterBeginDocumentCallback
Performs custom tasks at the beginning of a PostScript conversion process.

typedef void (*CGPSConverterBeginDocumentCallback)(void
*info);

If you name your function MyConverterBeginDocument, you would declare it like this:

size_t MyConverterBeginDocument (
 void *info
);

382 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterBeginPageCallback
Performs custom tasks at the beginning of each page in a PostScript conversion process.

typedef void (*CGPSConverterBeginPageCallback)(void
*info, size_t pageNumber, CFDictionaryRef pageInfo);

If you name your function MyConverterBeginDocument, you would declare it like this:

void MyConverterBeginPage (
 void *info,
 size_t pageNumber,
 CFDictionaryRef pageInfo
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

pageNumber
The current page number. Page numbers start at 1.

pageInfo
A dictionary that contains contextual information about the page. This parameter is reserved for
future API expansion, and is currently unused.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterEndDocumentCallback
Performs custom tasks at the end of a PostScript conversion process.

typedef void (*CGPSConverterEndDocumentCallback)(void
*info, bool success);

If you name your function MyConverterEndDocument, you would declare it like this:

void MyConverterEndDocument (
 void *info,

Callbacks 383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

 bool success
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

success
A Boolean value that indicates whether the PostScript conversion completed successfully (true if it
did).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterEndPageCallback
Performs custom tasks at the end of each page of a PostScript conversion process.

typedef void (*CGPSConverterEndPageCallback)(void
*info, size_t pageNumber, CFDictionaryRef pageInfo);

If you name your function MyConverterEndPage, you would declare it like this:

void MyConverterEndPage (
 void *info,
 size_t *pageNumber,
 CFDictionaryRef pageInfo
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

pageNumber
The current page number. Page numbers start at 1.

pageInfo
A dictionary that contains contextual information about the page. This parameter is reserved for
future API expansion, and is currently unused.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterMessageCallback
Passes messages generated during a PostScript conversion process.

384 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

typedef void (*CGPSConverterMessageCallback)(void
*info, CFStringRef message);

If you name your function MyConverterMessage, you would declare it like this:

void MyConverterMessage (
 void *info,
 CFStringRef message
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

message
A string containing the message from the PostScript conversion process.

Discussion
There are several kinds of message that might be sent during a conversion process. The most likely are font
substitution messages, and any messages that the PostScript code itself generates. Any PostScript messages
written to stdout are routed through this callback—typically these are debugging or status messages and,
although uncommon, can be useful in debugging. In addition, there may be error messages if the document
is malformed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterProgressCallback
Reports progress periodically during a PostScript conversion process.

typedef void (*CGPSConverterProgressCallback)(void
*info);

If you name your function MyConverterProgress, you would declare it like this:

void MyConverterProgress (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Callbacks 385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

CGPSConverterReleaseInfoCallback
Performs custom tasks when a PostScript converter is released.

typedef void (*CGPSConverterReleaseInfoCallback)(void
*info);

If you name your function MyConverterReleaseInfo, you would declare it like this:

void MyConverterReleaseInfo (
 void *info
);

Parameters
info

A generic pointer to private data shared among your callback functions. This is the same pointer you
supplied to CGPSConverterCreate (page 380).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Data Types

CGPSConverterRef
An opaque data type used to convert PostScript data to PDF data.

typedef struct CGPSConverter *CGPSConverterRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

CGPSConverterCallbacks
A structure for holding the callbacks provided when you create a PostScript converter object.

386 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

struct CGPSConverterCallbacks {
 unsigned int version;
 CGPSConverterBeginDocumentCallback beginDocument;
 CGPSConverterEndDocumentCallback endDocument;
 CGPSConverterBeginPageCallback beginPage;
 CGPSConverterEndPageCallback endPage;
 CGPSConverterProgressCallback noteProgress;
 CGPSConverterMessageCallback noteMessage;
 CGPSConverterReleaseInfoCallback releaseInfo;
};
typedef struct CGPSConverterCallbacks CGPSConverterCallbacks;

Fields
version

The version number of the structure passed in as a parameter to the converter creation functions.
The structure defined below is version 0.

beginDocument
The callback called at the beginning of the conversion of the PostScript document, or NULL.

endDocument
The callback called at the end of conversion of the PostScript document, or NULL.

beginPage
The callback called at the start of the conversion of each page in the PostScript document, or NULL.

endPage
The callback called at the end of the conversion of each page in the PostScript document, or NULL.

noteProgress
The callback called periodically during the conversion to indicate that conversion is proceeding, or
NULL.

noteMessage
The callback called to pass any messages that might result during the conversion, or NULL.

releaseInfo
The callback called when the converter is deallocated, or NULL.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGPSConverter.h

Data Types 387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

388 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

CGPSConverter Reference

Derived From: CFType

Framework: ApplicationServices/ApplicationServices.h

Declared in CGShading.h

Companion guide Quartz 2D Programming Guide

Overview

CGShadingRef is an opaque type used to define linear (axial) and radial gradient fills whose color transitions
are controlled by a function (CGFunctionRef (page 199)) that you provide. Shading means to fill using a
smooth transition between colors across an area. To paint with a Quartz shading, you call
CGContextDrawShading (page 90). This function fills the current clipping path using the specified color
gradient, calling your parametric function repeatedly as it draws

An alternative to using a CGShading object is to use the CGGradientRef (page 207) opaque type. For
applications that run in Mac OS X v10.5 and later, CGGradient objects are much simpler to use. (See CGGradient
Reference.)

Functions by Task

Creating Shading Objects

CGShadingCreateAxial (page 390)
Creates a shading object to use for axial shading.

CGShadingCreateRadial (page 391)
Creates a shading object to use for radial shading.

Retaining and Releasing Shading Objects

CGShadingRetain (page 392)
Increments the retain count of a shading object.

CGShadingRelease (page 392)
Decrements the retain count of a shading object.

Overview 389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

Getting the CFType ID

CGShadingGetTypeID (page 391)
Returns the Core Foundation type identifier for Quartz shading objects.

Functions

CGShadingCreateAxial
Creates a shading object to use for axial shading.

CGShadingRef CGShadingCreateAxial (
 CGColorSpaceRef colorspace,
 CGPoint start,
 CGPoint end,
 CGFunctionRef function,
 bool extendStart,
 bool extendEnd
);

Parameters
colorspace

The color space in which color values are expressed. Quartz retains this object; upon return, you may
safely release it.

start
The starting point of the axis, in the shading's target coordinate space.

end
The ending point of the axis, in the shading's target coordinate space.

function
A CGFunction object created by the function CGFunctionCreate. This object refers to your function
for creating an axial shading. Quartz retains this object; upon return, you may safely release it.

extendStart
A Boolean value that specifies whether to extend the shading beyond the starting point of the axis.

extendEnd
A Boolean value that specifies whether to extend the shading beyond the ending point of the axis.

Return Value
A new Quartz axial shading. You are responsible for releasing this object using CGShadingRelease (page
392).

Discussion
An axial shading is a color blend that varies along a linear axis between two endpoints and extends indefinitely
perpendicular to that axis. When you are ready to draw the shading, call the function
CGContextDrawShading (page 90).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

390 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

CGShadingCreateRadial
Creates a shading object to use for radial shading.

CGShadingRef CGShadingCreateRadial (
 CGColorSpaceRef colorspace,
 CGPoint start,
 CGFloat startRadius,
 CGPoint end,
 CGFloat endRadius,
 CGFunctionRef function,
 bool extendStart,
 bool extendEnd
);

Parameters
colorspace

The color space in which color values are expressed. Quartz retains this object; upon return, you may
safely release it.

start
The center of the starting circle, in the shading's target coordinate space.

startRadius
The radius of the starting circle, in the shading's target coordinate space.

end
The center of the ending circle, in the shading's target coordinate space.

endRadius
The radius of the ending circle, in the shading's target coordinate space.

function
A CGFunction object created by the function CGFunctionCreate. This object refers to your function
for creating a radial shading. Quartz retains this object; upon return, you may safely release it.

extendStart
A Boolean value that specifies whether to extend the shading beyond the starting circle.

extendEnd
A Boolean value that specifies whether to extend the shading beyond the ending circle.

Return Value
A new Quartz radial shading. You are responsible for releasing this object using CGShadingRelease (page
392).

Discussion
A radial shading is a color blend that varies between two circles. To draw the shading, call the function
CGContextDrawShading (page 90).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

CGShadingGetTypeID
Returns the Core Foundation type identifier for Quartz shading objects.

Functions 391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

CFTypeID CGShadingGetTypeID (
 void
);

Return Value
The Core Foundation identifier for the opaque type CGShadingRef (page 393).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

CGShadingRelease
Decrements the retain count of a shading object.

void CGShadingRelease (
 CGShadingRef shading
);

Parameters
shading

The shading object to release.

Discussion
This function is equivalent to CFRelease, except that it does not cause an error if the shading parameter
is NULL.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

CGShadingRetain
Increments the retain count of a shading object.

CGShadingRef CGShadingRetain (
 CGShadingRef shading
);

Parameters
shading

The shading object to retain.

Return Value
The same shading object you passed in as the shading parameter.

Discussion
This function is equivalent to CFRetain, except that it does not cause an error if the shading parameter is
NULL.

392 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CGShading.h

Data Types

CGShadingRef
An opaque type that represents a Quartz shading.

typedef struct CGShading *CGShadingRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGShading.h

Data Types 393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

394 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

CGShading Reference

395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

396
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in AEDataModel.h
AEHelpers.h
AEMach.h
AEObjects.h
AEPackObject.h
AERegistry.h
AEUserTermTypes.h
AppleEvents.h

Overview

The Apple Event Manager, a part of the Open Scripting Architecture (OSA), provides facilities for applications
to send and respond to Apple events and to make their operations and data available to AppleScript scripts.
For related API reference, see Open Scripting Architecture Reference.

An Apple event is a type of interprocess message that can specify complex operations and data. Apple events
provide a data transport and event dispatching mechanism that can be used within a single application,
between applications on the same computer, and between applications on different computers connected
to a network.

Applications typically use Apple events to request services and information from other applications or to
provide services and information in response to such requests. All applications that present a graphical
interface to the user through the Human Interface Toolbox (Carbon applications) or the Cocoa application
framework should be able to respond, if appropriate, to certain events sent by the Mac OS. These include
the open application (or launch), reopen, open documents, print documents, and quit events.

Some Apple Event Manager functions are marked as being thread safe—for all other functions, you should
call them only on the main thread.

For an overview of technologies that take advantage of the Apple Event Manager, see AppleScript Overview.

For information on working with Apple events, including events sent by the Mac OS, see “Responding to
Apple Events” in Apple Events Programming Guide. For information about individual four-character codes
used in Apple events, see AppleScript Terminology and Apple Event Codes Reference.

The Apple Event Manager is implemented by the AE framework, a subframework of the Core Services
framework. You don’t link directly with the AE framework—instead, you typically link with the Carbon
framework, which includes it. Some AppleEvent definitions are only available to clients of the Carbon
framework, which includes, for example, AEInteraction.h in the HIToolbox framework.

The AE framework does not force a connection to the window server. This allows daemons and startup items
that work with Apple events to continue working across log outs.

Overview 397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Functions by Task

Adding Items to Descriptor Lists

AEPutArray (page 459)
Inserts the data for an Apple event array into a descriptor list, replacing any previous descriptors in
the list.

AEPutDesc (page 461)
Adds a descriptor to any descriptor list, possibly replacing an existing descriptor in the list.

AEPutPtr (page 465)
Inserts data specified in a buffer into a descriptor list as a descriptor, possibly replacing an existing
descriptor in the list.

Adding Parameters and Attributes to Apple Events and Apple Event Records

AEPutAttributeDesc (page 460)
Adds a descriptor and a keyword to an Apple event as an attribute.

AEPutAttributePtr (page 461)
Adds a pointer to data, a descriptor type, and a keyword to an Apple event as an attribute.

AEPutKeyDesc (page 462)
Inserts a descriptor and a keyword into an Apple event record as an Apple event parameter.

AEPutKeyPtr (page 463)
Inserts data, a descriptor type, and a keyword into an Apple event record as an Apple event parameter.

AEPutParamDesc (page 464)
Inserts a descriptor and a keyword into an Apple event or Apple event record as an Apple event
parameter.

AEPutParamPtr (page 464)
Inserts data, a descriptor type, and a keyword into an Apple event or Apple event record as an Apple
event parameter.

Coercing Descriptor Types

AECoerceDesc (page 413)
Coerces the data in a descriptor to another descriptor type and creates a descriptor containing the
newly coerced data.

AECoercePtr (page 414)
Coerces data to a desired descriptor type and creates a descriptor containing the newly coerced data.

Counting the Items in Descriptor Lists

AECountItems (page 415)
Counts the number of descriptors in a descriptor list.

398 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Creating an Apple Event

AECreateAppleEvent (page 416)
Creates an Apple event with several important attributes but no parameters.

Creating and Duplicating Descriptors

AECreateDesc (page 417)
Creates a new descriptor that incorporates the specified data.

AECreateDescFromExternalPtr (page 418)
Creates a new descriptor that uses a memory buffer supplied by the caller.

AEDuplicateDesc (page 426)
Creates a copy of a descriptor.

Creating, Calling, and Deleting Universal Procedure Pointers

DisposeAECoerceDescUPP (page 503)
Disposes of a universal procedure pointer to a function that coerces data stored in a descriptor.

DisposeAECoercePtrUPP (page 503)
Disposes of a universal procedure pointer to a function that coerces data stored in a buffer.

DisposeAEDisposeExternalUPP (page 503)
Disposes of a universal procedure pointer to a function that disposes of data supplied to the
AECreateDescFromExternalPtr function.

DisposeAEEventHandlerUPP (page 504)
Disposes of a universal procedure pointer to an event handler function.

DisposeAEFilterUPP (page 504)
Disposes of a universal procedure pointer to an Apple event filter function.

DisposeAEIdleUPP (page 504)
Disposes of a universal procedure pointer to an Apple event idle function.

DisposeOSLAccessorUPP (page 504)
Disposes of a universal procedure pointer to an object accessor function.

DisposeOSLAdjustMarksUPP (page 505)
Disposes of a universal procedure pointer to an object callback adjust marks function.

DisposeOSLCompareUPP (page 505)
Disposes of a universal procedure pointer to an object callback comparison function.

DisposeOSLCountUPP (page 505)
Disposes of a universal procedure pointer to an object callback count function.

DisposeOSLDisposeTokenUPP (page 506)
Disposes of a universal procedure pointer to an object callback dispose token function.

DisposeOSLGetErrDescUPP (page 506)
Disposes of a universal procedure pointer to an object callback get error descriptor function.

DisposeOSLGetMarkTokenUPP (page 506)
Disposes of a universal procedure pointer to an object callback get mark function.

Functions by Task 399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DisposeOSLMarkUPP (page 507)
Disposes of a universal procedure pointer to an object callback mark function.

InvokeAECoerceDescUPP (page 507)
Calls a universal procedure pointer to a function that coerces data stored in a descriptor.

InvokeAECoercePtrUPP (page 508)
Calls a universal procedure pointer to a function that coerces data stored in a buffer.

InvokeAEDisposeExternalUPP (page 508)
Calls a dispose external universal procedure pointer.

InvokeAEEventHandlerUPP (page 509)
Calls an event handler universal procedure pointer.

InvokeAEFilterUPP (page 509)
Calls an Apple event filter universal procedure pointer.

InvokeAEIdleUPP (page 509)
Calls an Apple event idle universal procedure pointer.

InvokeOSLAccessorUPP (page 510)
Calls an object accessor universal procedure pointer.

InvokeOSLAdjustMarksUPP (page 510)
Calls an object callback adjust marks universal procedure pointer.

InvokeOSLCompareUPP (page 511)
Calls an object callback comparison universal procedure pointer.

InvokeOSLCountUPP (page 511)
Calls an object callback count universal procedure pointer.

InvokeOSLDisposeTokenUPP (page 512)
Calls an object callback dispose token universal procedure pointer.

InvokeOSLGetErrDescUPP (page 512)
Calls an object callback get error descriptor universal procedure pointer.

InvokeOSLGetMarkTokenUPP (page 513)
Calls an object callback get mark universal procedure pointer.

InvokeOSLMarkUPP (page 513)
Calls an object callback mark universal procedure pointer.

NewAECoerceDescUPP (page 514)
Creates a new universal procedure pointer to a function that coerces data stored in a descriptor.

NewAECoercePtrUPP (page 514)
Creates a new universal procedure pointer to a function that coerces data stored in a buffer.

NewAEDisposeExternalUPP (page 514)
Creates a new universal procedure pointer to a function that disposes of data stored in a buffer.

NewAEEventHandlerUPP (page 515)
Creates a new universal procedure pointer to an event handler function.

NewAEFilterUPP (page 515)
Creates a new universal procedure pointer to an Apple event filter function.

NewAEIdleUPP (page 515)
Creates a new universal procedure pointer to an Apple event idle function.

NewOSLAccessorUPP (page 516)
Creates a new universal procedure pointer to an object accessor function.

400 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

NewOSLAdjustMarksUPP (page 516)
Creates a new universal procedure pointer to an object callback adjust marks function.

NewOSLCompareUPP (page 517)
Creates a new universal procedure pointer to an object callback comparison function.

NewOSLCountUPP (page 517)
Creates a new universal procedure pointer to an object callback count function.

NewOSLDisposeTokenUPP (page 517)
Creates a new universal procedure pointer to an object callback dispose token function.

NewOSLGetErrDescUPP (page 518)
Creates a new universal procedure pointer to an object callback get error descriptor function.

NewOSLGetMarkTokenUPP (page 518)
Creates a new universal procedure pointer to an object callback get mark function.

NewOSLMarkUPP (page 518)
Creates a new universal procedure pointer to an object callback mark function.

Creating Descriptor Lists and Apple Event Records

AECreateList (page 419)
Creates an empty descriptor list or Apple event record.

Creating Object Specifiers

CreateCompDescriptor (page 498)
Creates a comparison descriptor that specifies how to compare one or more Apple event objects with
either another Apple event object or a descriptor.

CreateLogicalDescriptor (page 499)
Creates a logical descriptor that specifies a logical operator and one or more logical terms for the
Apple Event Manager to evaluate.

CreateObjSpecifier (page 500)
Assembles an object specifier that identifies one or more Apple event objects, from other descriptors.

CreateOffsetDescriptor (page 501)
Creates an offset descriptor that specifies the position of an element in relation to the beginning or
end of its container.

CreateRangeDescriptor (page 502)
Creates a range descriptor that specifies a series of consecutive elements in the same container.

Deallocating Memory for Descriptors

AEDisposeDesc (page 424)
Deallocates the memory used by a descriptor.

Functions by Task 401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Deallocating Memory for Tokens

AEDisposeToken (page 425)
Deallocates the memory used by a token.

Deleting Descriptors

AEDeleteItem (page 422)
Deletes a descriptor from a descriptor list, causing all subsequent descriptors to move up one place.

AEDeleteKeyDesc (page 423)
Deletes a keyword-specified parameter from an Apple event record.

AEDeleteParam (page 423)
Deletes a keyword-specified parameter from an Apple event record.

Dispatching Apple Events

AEProcessAppleEvent (page 457)
Calls the handler, if one exists, for a specified Apple event.

Getting, Calling, and Removing Object Accessor Functions

AECallObjectAccessor (page 412)
Invokes the appropriate object accessor function for a specific desired type and container type.

AEGetObjectAccessor (page 441)
Gets an object accessor function from an object accessor dispatch table.

AEInstallObjectAccessor (page 451)
Adds or replaces an entry for an object accessor function to an object accessor dispatch table.

AERemoveObjectAccessor (page 470)
Removes an object accessor function from an object accessor dispatch table.

Getting Data or Descriptors From Apple Events and Apple Event Records

AEGetAttributeDesc (page 429)
Gets a copy of the descriptor for a specified Apple event attribute from an Apple event; typically used
when your application needs to pass the descriptor on to another function.

AEGetAttributePtr (page 430)
Gets a copy of the data for a specified Apple event attribute from an Apple event; typically used when
your application needs to work with the data directly.

AEGetKeyDesc (page 436)
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event
record

AEGetKeyPtr (page 437)
Gets a copy of the data for a specified Apple event parameter from an Apple event record.

402 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEGetParamDesc (page 443)
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event or
an Apple event record.

AEGetParamPtr (page 444)
Gets a copy of the data for a specified Apple event parameter from an Apple event or an Apple event
record.

Getting Information About the Apple Event Manager

AEManagerInfo (page 454)
Provides information about the version of the Apple Event Manager currently available or the number
of processes that are currently recording Apple events.

Getting Items From Descriptor Lists

AEGetArray (page 428)
Extracts data from an Apple event array created with the AEPutArray function and stores it as a
standard array of fixed size items in the specified buffer.

AEGetNthDesc (page 439)
Copies a descriptor from a specified position in a descriptor list into a specified descriptor; typically
used when your application needs to pass the extracted data to another function as a descriptor.

AEGetNthPtr (page 440)
Gets a copy of the data from a descriptor at a specified position in a descriptor list; typically used
when your application needs to work with the extracted data directly.

Getting the Sizes and Descriptor Types of Descriptors

AESizeOfAttribute (page 482)
Gets the size and descriptor type of an Apple event attribute from a descriptor of type AppleEvent.

AESizeOfKeyDesc (page 483)
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord.

AESizeOfNthItem (page 484)
Gets the data size and descriptor type of the descriptor at a specified position in a descriptor list.

AESizeOfParam (page 485)
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord
or AppleEvent.

Initializing the Object Support Library

AEObjectInit (page 455)
Initializes the Object Support Library.

AESetObjectCallbacks (page 480)
Specifies the object callback functions for your application.

Functions by Task 403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Locating Processes on Remote Computers
Available starting in Mac OS X version v10.3, these functions allow you to locate processes on remote
computers (a task supported by the PPCToolbox in Mac OS 9).

AECreateRemoteProcessResolver (page 420)
Creates an object for resolving a list of remote processes.

AEDisposeRemoteProcessResolver (page 424)
Disposes of an AERemoteProcessResolverRef.

AERemoteProcessResolverGetProcesses (page 466)
Returns an array of objects containing information about processes running on a remote machine.

AERemoteProcessResolverScheduleWithRunLoop (page 467)
Schedules a resolver for execution on a given run loop in a given mode.

Managing Apple Event Dispatch Tables

AEGetEventHandler (page 435)
Gets an event handler from an Apple event dispatch table.

AEInstallEventHandler (page 449)
Adds an entry for an event handler to an Apple event dispatch table.

AERemoveEventHandler (page 469)
Removes an event handler entry from an Apple event dispatch table.

Managing Coercion Handler Dispatch Tables

AEGetCoercionHandler (page 431)
Gets the coercion handler for a specified descriptor type.

AEInstallCoercionHandler (page 448)
Installs a coercion handler in either the application or system coercion handler dispatch table.

AERemoveCoercionHandler (page 468)
Removes a coercion handler from a coercion handler dispatch table.

Managing Special Handler Dispatch Tables

AEGetSpecialHandler (page 446)
Gets a specified handler from a special handler dispatch table.

AEInstallSpecialHandler (page 452)
Installs a callback function in a special handler dispatch table.

AERemoveSpecialHandler (page 471)
Removes a handler from a special handler dispatch table.

404 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Operating On Descriptor Data

AEGetDescData (page 432)
Gets the data from the specified descriptor.

AEGetDescDataSize (page 434)
Gets the size, in bytes, of the data in the specified descriptor.

AEGetDescDataRange (page 433)
Retrieves a specified series of bytes from the specified descriptor.

AEReplaceDescData (page 472)
Copies the specified data into the specified descriptor, replacing any previous data.

Requesting More Time to Respond to Apple Events

AEResetTimer (page 472)
Resets the timeout value for an Apple event to its starting value.

Requesting User Interaction

AEGetInteractionAllowed (page 436)
Gets your application’s current user interaction preferences for responding to an Apple event as a
server application.

AEInteractWithUser (page 453)
Initiates interaction with the user when your application is a server application responding to an
Apple event.

AESetInteractionAllowed (page 479)
Specifies user interaction preferences for responding to an Apple event when your application is the
server application.

Resolving Object Specifiers

AEResolve (page 473)
Resolves an object specifier.

Sending an Apple Event

AESend (page 476)
Sends the specified Apple event.

Creating Apple Event Structures in Memory

AEBuildAppleEvent (page 408)
Constructs an entire Apple event in a single call.

Functions by Task 405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEBuildDesc (page 410)
Provides a facility for compiling AEBuild descriptor strings into Apple event descriptors (AEDesc).

AEBuildParameters (page 411)
Adds additional parameters or attributes to an existing Apple event.

AEPrintDescToHandle (page 456)
Provides a pretty printer facility for displaying the contents of Apple event descriptors.

vAEBuildAppleEvent (page 519)
Allows you to encapsulate calls to AEBuildAppleEvent in a wrapper routine.

vAEBuildDesc (page 520)
Allows you to encapsulate calls to AEBuildDesc in your own wrapper routines.

vAEBuildParameters (page 521)
Allows you to encapsulate calls to AEBuildParameters in your own stdarg-style wrapper routines,
using techniques similar to those allowed by vsprintf.

Creating Apple Event Structures Using Streams

AEStreamClose (page 485)
Closes and deallocates an AEStreamRef.

AEStreamCloseDesc (page 486)
Marks the end of a descriptor in an AEStreamRef.

AEStreamCloseList (page 486)
Marks the end of a list of descriptors in an AEStreamRef.

AEStreamCloseRecord (page 487)
Marks the end of a record in an AEStreamRef.

AEStreamCreateEvent (page 487)
Creates a new Apple event and opens a stream for writing data to it.

AEStreamOpen (page 489)
Opens a new AEStreamRef for use in building a descriptor.

AEStreamOpenDesc (page 489)
Marks the beginning of a descriptor in an AEStreamRef.

AEStreamOpenEvent (page 490)
Opens a stream for an existing Apple event.

AEStreamOpenKeyDesc (page 490)
Marks the beginning of a key descriptor in an AEStreamRef.

AEStreamOpenList (page 491)
Marks the beginning of a descriptor list in an AEStreamRef.

AEStreamOpenRecord (page 491)
Marks the beginning of an Apple event record in an AEStreamRef.

AEStreamOptionalParam (page 492)
Designates a parameter in an Apple event as optional.

AEStreamSetRecordType (page 493)
Sets the type of the most recently created record in an AEStreamRef.

AEStreamWriteAEDesc (page 493)
Copies an existing descriptor into an AEStreamRef.

406 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEStreamWriteData (page 494)
Appends data to the current descriptor in an AEStreamRef.

AEStreamWriteDesc (page 494)
Appends the data for a complete descriptor to an AEStreamRef.

AEStreamWriteKey (page 495)
Marks the beginning of a keyword/descriptor pair for a descriptor in an AEStreamRef.

AEStreamWriteKeyDesc (page 496)
Writes a complete keyword/descriptor pair to an AEStreamRef.

Working With Lower Level Apple Event Functions

AEGetRegisteredMachPort (page 445)
Returns the Mach port (in the form of a mach_port_t) that was registered with the bootstrap server
for this process.

AEDecodeMessage (page 421)
Decodes a Mach message and converts it into an Apple event and its related reply.

AESendMessage (page 478)
Sends an AppleEvent to a target process without some of the overhead required by AESend.

AEProcessMessage (page 458)
Decodes and dispatches a low level Mach message event to an event handler, including packaging
and returning the reply to the sender.

Serializing Apple Event Data

AESizeOfFlattenedDesc (page 483)
Returns the amount of buffer space needed to store the descriptor after flattening it.

AEFlattenDesc (page 426)
Flattens the specified descriptor and stores the data in the supplied buffer.

AEUnflattenDesc (page 498)
Unflattens the data in the passed buffer and creates a descriptor from it.

Suspending and Resuming Apple Event Handling

AEGetTheCurrentEvent (page 447)
Gets the Apple event that is currently being handled.

AEResumeTheCurrentEvent (page 474)
Informs the Apple Event Manager that your application wants to resume the handling of a previously
suspended Apple event or that it has completed the handling of the Apple event.

AESetTheCurrentEvent (page 481)
Specifies a current Apple event to take the place of the one your application has suspended.

AESuspendTheCurrentEvent (page 497)
Suspends the processing of the Apple event that is currently being handled.

Functions by Task 407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Miscellaneous

AECheckIsRecord (page 413)
Determines whether a descriptor is truly an AERecord.

AEInitializeDesc (page 448)
Initializes a new descriptor.

Functions

AEBuildAppleEvent
Constructs an entire Apple event in a single call.

OSStatus AEBuildAppleEvent (
 AEEventClass theClass,
 AEEventID theID,
 DescType addressType,
 const void *addressData,
 Size addressLength,
 SInt16 returnID,
 SInt32 transactionID,
 AppleEvent *result,
 AEBuildError *error,
 const char *paramsFmt,
 ...
);

Parameters
theClass

The event class for the resulting Apple event. See AEEventClass (page 555).

theID
The event id for the resulting Apple event. See AEEventID (page 556).

addressType
The address type for the addressing information described in the next two parameters: usually one
of typeApplSignature, typeProcessSerialNumber, or typeKernelProcessID. See
DescType (page 560).

addressData
A pointer to the address information.

addressLength
The number of bytes pointed to by the addressData parameter.

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID.

408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events.

result
A pointer to a descriptor where the resulting descriptor should be stored. See AppleEvent (page
559) for a description of the data type.

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 546) for a description of the data type.

paramsFmt
An AEBuild format string describing the AppleEvent record to be created. The format of these strings
is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends. That technote also describes
possible error return codes for syntax errors in the format string.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See “Apple
Event Manager Result Codes” (page 636).

Discussion
IMPORTANT: Following the parameters described above, the AEBuildAppleEvent function takes a variable
number of parameters as specified by the format string provided in the paramsFmt parameter.

This function and related “AEBuild” routines (including AEBuildDesc (page 410) and
AEBuildParameters (page 411), and the variable-argument versions, vAEBuildAppleEvent (page 519),
vAEBuildDesc (page 520), and vAEBuildParameters (page 521)) provide a very simple translation service
for converting specially formatted strings into complex Apple event descriptors. Normally, creating complex
Apple event descriptors requires a large number of calls to Apple event Manager routines to build up the
descriptor piece by piece. The AEBuildAppleEvent function and related routines allow you to consolidate
all of the calls required to construct a complex Apple event descriptor into a single system call that creates
the desired structure as directed by a format string that you provide.

In many ways, the AEBuild routines are very much like the standard C library's printf suite of routines. The
syntax for the format string that you provide is very simple and allows for the substitution of data items into
the Apple event descriptors being created.

The AEBuildAppleEvent function is similar to AECreateAppleEvent (page 416), but in addition to creating
the Apple event, it also constructs the parameters for the event from the last three arguments. You can use
AEBuildAppleEvent to build an entire Apple event, or AEBuildParameters (page 411) to add additional
parameters to an existing Apple event.

The syntax of the formatting string for an entire Apple event (as passed to AEBuildAppleEvent) is almost
identical to that used to represent the contents of an Apple event, without the curly braces. The event is
defined as a sequence of name-value pairs, with optional parameters preceded with a tilde (~) character.
The syntax is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends.

Functions 409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2045.html
http://developer.apple.com/technotes/tn/tn2045.html

It is important to note that the identifier for the direct parameter in an Apple event, specified by the constant
keyDirectObject, is four minus signs ('----'). The minus sign has special meaning in AEBuild strings,
and it should always be enclosed in single quotes when it is used to identify the direct parameter for an
Apple event in a descriptor string.

Version Notes
Prior to Mac OS X version 10.3, AEBuildAppleEvent would fail if you supplied a data parameter with size
greater than 32767 bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEBuildDesc
Provides a facility for compiling AEBuild descriptor strings into Apple event descriptors (AEDesc).

OSStatus AEBuildDesc (
 AEDesc *dst,
 AEBuildError *error,
 const char *src,
 ...
);

Parameters
dst

A pointer to a descriptor where the resulting descriptor should be stored. See AEDesc (page 546).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 546).

src
An AEBuild format string describing the descriptor to be created.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See also “Apple
Event Manager Result Codes” (page 636).

Discussion
This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The AEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

For additional information on using the AEBuild routines, see the descriptions for AEBuildAppleEvent (page
408) and AEBuildParameters (page 411).

410 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
Prior to Mac OS X version 10.3, AEBuildDesc would fail if you supplied a data parameter with size greater
than 32767 bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEBuildParameters
Adds additional parameters or attributes to an existing Apple event.

OSStatus AEBuildParameters (
 AppleEvent *event,
 AEBuildError *error,
 const char *format,
 ...
);

Parameters
event

The Apple event to which you are adding parameters. See AppleEvent (page 559).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 546).

format
An AEBuild format string describing the parameters to be created.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function can be called more than once to add any desired number of parameters or attributes to an
existing Apple event. The Apple event should already have been created through either a call to
AECreateAppleEvent (page 416) or AEBuildAppleEvent (page 408).

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The AEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

For additional information on using the AEBuild routines, see the descriptions for AEBuildAppleEvent (page
408) and AEBuildDesc (page 410).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Functions 411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AECallObjectAccessor
Invokes the appropriate object accessor function for a specific desired type and container type.

OSErr AECallObjectAccessor (
 DescType desiredClass,
 const AEDesc *containerToken,
 DescType containerClass,
 DescType keyForm,
 const AEDesc *keyData,
 AEDesc *token
);

Parameters
desiredClass

The type of the Apple event object requested. Some possible values are defined in “Object Class ID
Constants” (page 599). See DescType (page 560).

containerToken
A pointer to the token that identifies the container for the desired object. (Token is defined in
AEDisposeToken (page 425).) See AEDesc (page 546).

containerClass
The object class of the container for the desired objects. See DescType (page 560).

keyForm
The key form that specifies how to find the object within the container. Key form constants are
described in “Key Form and Descriptor Type Object Specifier Constants” (page 590). SeeDescType (page
560).

keyData
A pointer to the key data that identifies the object within the container. The type of this data is
form-specific. That is, formName typically has key data of type typeText. See AEDesc (page 546).

token
A pointer to a token. On return, a token specifying the desired object (or objects). Your application
should dispose of this token when it is through with it by calling AEDisposeToken (page 425). See
AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). AECallObjectAccessor returns any
result codes returned by the object accessor function it calls.

Discussion
If you want your application to do some of the Apple event object resolution normally performed by the
AEResolve (page 473) function, you can use AECallObjectAccessor to invoke an object accessor function.
This might be useful, for example, if you have installed an object accessor function using typeWildCard for
the AEInstallObjectAccessor function’s desiredClass parameter and typeAEList for the
containerType parameter. To return a list of tokens for a request like “line one of every window” the object
accessor function can create an empty list, then call AECallObjectAccessor for each requested element,
adding tokens for each element to the list one at a time.

The parameters of AECallObjectAccessor are identical to the parameters of an object accessor function,
as described in OSLAccessorProcPtr (page 533) with one exception—the Apple Event Manager adds a
reference constant parameter each time it calls the object accessor function.

412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

You can also call a specific object accessor function directly through its universal procedure pointer with one
of the invoke functions described in “Creating, Calling, and Deleting Universal Procedure Pointers” (page
399).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AECheckIsRecord
Determines whether a descriptor is truly an AERecord.

Boolean AECheckIsRecord (
 const AEDesc *theDesc
);

Parameters
theDesc

A pointer to the descriptor to check.

Return Value
Returns true if the descriptor is an AERecord or an AppleEvent, false otherwise.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoerceDesc
Coerces the data in a descriptor to another descriptor type and creates a descriptor containing the newly
coerced data.

OSErr AECoerceDesc (
 const AEDesc *theAEDesc,
 DescType toType,
 AEDesc *result
);

Parameters
theAEDesc

A pointer to the descriptor containing the data to coerce. See AEDesc (page 546).

Functions 413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

toType
The desired descriptor type of the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

result
A pointer to a descriptor. On successful return, a descriptor containing the coerced data and matching
the descriptor type specified in toType. On error, a null descriptor. If the function returns successfully,
your application should call the AEDisposeDesc (page 424) function to dispose of the resulting
descriptor after it has finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). If AECoerceDesc returns a nonzero result
code, it returns a null descriptor record (a descriptor record of type typeNull, which does not contain any
data) unless the Apple Event Manager is not available because of limited memory.

Version Notes
See the Version Notes section for the AECoercePtr (page 414) function for information on when to use
descriptor-based versus pointer-based coercion handlers starting in Mac OS X version 10.2.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
AEDataModel.h

AECoercePtr
Coerces data to a desired descriptor type and creates a descriptor containing the newly coerced data.

OSErr AECoercePtr (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 DescType toType,
 AEDesc *result
);

Parameters
typeCode

The descriptor type of the source data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data to coerce.

dataSize
The length, in bytes, of the data to coerce.

toType
The desired descriptor type of the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581).

414 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

result
A pointer to a descriptor. On successful return, a descriptor containing the coerced data and matching
the descriptor type specified in toType. On error, a null descriptor. If the function returns successfully,
your application should call the AEDisposeDesc (page 424) function to dispose of the resulting
descriptor after it has finished using it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Starting in Mac OS X version 10.2, pointer-based coercion handlers are not called if the input type is
“structured”—that is, if the type to be coerced is typeAEList, typeAERecord, or coerced typeAERecord.
If you want to add a coercion handler for one of these types, it must be a descriptor-based handler. This does
not mean you are required to use descriptor-based coercion handlers everywhere—for “flat” data types, such
as typeText, pointer-based handlers are still fine.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECountItems
Counts the number of descriptors in a descriptor list.

OSErr AECountItems (
 const AEDescList *theAEDescList,
 long *theCount
);

Parameters
theAEDescList

A pointer to the descriptor list to count. See AEDescList (page 553).

theCount
A pointer to a count variable. On return, the number of descriptors in the specified descriptor list,
which can be 0, if the list is empty.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Your application typically counts the descriptors in a descriptor list when it is extracting data from an Apple
event. You can use the functions in “Getting Items From Descriptor Lists” to get an individual item from a
descriptor list or to iterate through the items.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Functions 415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Related Sample Code
QTCarbonShell

Declared In
AEDataModel.h

AECreateAppleEvent
Creates an Apple event with several important attributes but no parameters.

OSErr AECreateAppleEvent (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc *target,
 AEReturnID returnID,
 AETransactionID transactionID,
 AppleEvent *result
);

Parameters
theAEEventClass

The event class of the Apple event to create. This parameter becomes accessible through the
keyEventClassAttr attribute of the Apple event. Some event classes are described in “Event Class
Constants” (page 585). See AEEventClass (page 555).

theAEEventID
The event ID of the Apple event to create. This parameter becomes accessible through the
keyEventIDAttr attribute of the Apple event. Some event IDs are described in “Event ID
Constants” (page 586). See AEEventID (page 556).

target
A pointer to an address descriptor. Before calling AECreateAppleEvent, you set the descriptor to
identify the target (or server) application for the Apple event. This parameter becomes accessible
through the keyAddressAttr attribute of the Apple event. See AEAddressDesc (page 551).

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID. This parameter
becomes accessible through the keyReturnIDAttr attribute of the Apple event. The return ID
constant is described in “ID Constants for the AECreateAppleEvent Function” (page 589). See
AEReturnID (page 558).

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events. This parameter becomes accessible through the keyTransactionIDAttr attribute
of the Apple event. This transaction ID constant is described in “ID Constants for the
AECreateAppleEvent Function” (page 589). See AETransactionID (page 559).

416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

result
A pointer to an Apple event. On successful return, the new Apple event. On error, a null descriptor
(one with descriptor type typeNull). If the function returns successfully, your application should call
the AEDisposeDesc (page 424) function to dispose of the resulting Apple event after it has finished
using it. See the AppleEvent (page 559) data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AECreateAppleEvent function creates an empty Apple event. You can add parameters to the Apple
event after you create it with the functions described in “Adding Parameters and Attributes to Apple Events
and Apple Event Records” (page 398).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateDesc
Creates a new descriptor that incorporates the specified data.

OSErr AECreateDesc (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 AEDesc *result
);

Parameters
typeCode

The descriptor type for the new descriptor. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data for the new descriptor. This data is copied into a newly-allocated block of memory
for the descriptor that is created. To minimize copying overhead, consider using
AECreateDescFromExternalPtr (page 418).

dataSize
The length, in bytes, of the data for the new descriptor.

result
A pointer to a descriptor. On successful return, a descriptor that incorporates the data specified by
the dataPtr parameter. On error, a null descriptor. If the function returns successfully, your application
should call the AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has
finished using it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
While it is possible to create an Apple event descriptor or a descriptor list or a descriptor with the
AECreateDesc function (assuming you have access to the raw data for an Apple event, list, or descriptor),
you typically create these structured objects with their specific creation routines—AECreateAppleEvent,
AECreateList, or AECreateDesc.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateDescFromExternalPtr
Creates a new descriptor that uses a memory buffer supplied by the caller.

OSStatus AECreateDescFromExternalPtr (
 OSType descriptorType,
 const void *dataPtr,
 Size dataLength,
 AEDisposeExternalUPP disposeCallback,
 SRefCon disposeRefcon,
 AEDesc *theDesc
);

Parameters
descriptorType

The descriptor type for the new descriptor.

dataPtr
A pointer to the data for the new descriptor. The memory that is pointed to cannot be a Handle
(which may move in memory), cannot be modified by the caller, and must be preserved in place (and
not freed), until the disposeCallback function is called.

If possible, the descriptor will be mapped into the address space of the recipient using shared memory,
avoiding an actual memory copy.

The pointer that is passed in does not need to be aligned to any particular boundary, but is optimized
to transfer data on a page boundary. You can get the current page size (4096 on all current Mac OS
X systems) with the getpagesize(3) call. (Type man 3 getpagesize in a Terminal window for
documentation.)

dataLength
The length, in bytes, of the data for the new descriptor.

disposeCallback
A universal procedure pointer to a dispose callback function of type
AEDisposeExternalProcPtr (page 527). Your callback function will be called when the block of
memory provided by dataPtr is no longer needed by the Apple Event Manager. The function can
be called at any time, including during creation of the descriptor.

418 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

disposeRefcon
A reference constant the Apple Event Manager passes to the disposeCallback function whenever
it calls the function. If your dispose function doesn’t require a reference constant, pass 0 for this
parameter.

theDesc
A pointer to a descriptor. On successful return, a descriptor that incorporates the data specified by
the dataPtr parameter. On error, a null descriptor. If the function returns successfully, your application
should call the AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has
finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is different than AECreateDesc (page 417), in that it creates a descriptor that uses the data
block provided by the caller “in place,” rather than allocate a block of memory and copy the data to it. This
function can provide dramatically improved performance if you’re working with large chunks of data. It
attempts to copy the descriptor to the address space of any recipient process using virtual memory APIs,
avoiding an actual memory copy. For example, you might want to use this function to pass a large image in
an Apple event.

You can use the AEGetDescDataRange (page 433) function to access a specific section of a large block of
data.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AECreateList
Creates an empty descriptor list or Apple event record.

OSErr AECreateList (
 const void *factoringPtr,
 Size factoredSize,
 Boolean isRecord,
 AEDescList *resultList
);

Parameters
factoringPtr

A pointer to the data at the beginning of each descriptor that is the same for all descriptors in the
list. If there is no common data, or if you decide not to isolate the common data, pass NULL as the
value of this parameter.

factoredSize
The size of the common data. If there is no common data, or if you decide not to isolate the common
data, pass 0 as the value of this parameter. (See the Discussion section for more information.)

Functions 419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

isRecord
A Boolean value that specifies the kind of list to create. Pass a value of TRUE to create an Apple event
record (a data structure of type AERecord (page 557)) or FALSE to create a descriptor list.

resultList
A pointer to a descriptor list variable. On successful return, the descriptor list or Apple event record
that the AECreateList function creates. On error, a null descriptor. See AEDescList (page 553).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AECreateList function creates an empty descriptor list or Apple event record. You can use the functions
described in “Adding Items to Descriptor Lists” to populate the list as part of creating an Apple event. After
sending the Apple event with the AESend (page 476) function, you should dispose of the descriptor list with
the AEDisposeDesc (page 424) function when you no longer need it.

If you intend to use a descriptor list for a factored Apple event array, you must provide, in the factoringPtr
parameter, a pointer to the data shared by all items in the array and, in the factoredSize parameter, the
size of the common data. The common data must be 4, 8, or more than 8 bytes in length because it always
consists of (a) the descriptor type (4 bytes) (b) the descriptor type (4 bytes) and the size of each item’s data
(4 bytes) or (c) the descriptor type (4 bytes), the size of each item’s data (4 bytes), and some portion of the
data itself (1 or more bytes).

For information about data types used with Apple event arrays, see “Apple Event Manager Data Types” (page
545).

Version Notes
The factoringPtr and factoredSize parameters are not supported in Mac OS X v10.2 and later. You
should pass NULL and zero, respectively, for these parameters.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateRemoteProcessResolver
Creates an object for resolving a list of remote processes.

AERemoteProcessResolverRef AECreateRemoteProcessResolver (
 CFAllocatorRef allocator,
 CFURLRef url
);

Parameters
allocator

An object that is used to allocates and deallocate any Core Foundation types created or returned by
this API. You can pass kCFAllocatorDefault to get the default allocation behavior. The allocator
is based on CFAllocatorRef, an opaque data type described in the Core Foundation Reference
Documentation.

420 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

url
A CFURL reference identifying the remote host and port on which to look for processes. See the Core
Foundation Reference Documentation for a description of the CFURLRef data type.

Return Value
An AERemoteProcessResolverRef (page 557), which must be disposed of with
AEDisposeRemoteProcessResolver (page 424). A resolver can only be used one time; once it has obtained
a list of remote processes from a server, or gotten an error, it can no longer be scheduled. To retrieve a new
list of processes, create a new instance of this object.

Discussion
You supply this function with the URL for a remote host and port; it returns a reference to a resolver object.
To obtain a list of remote processes from the resolver, you can query it synchronously with
AERemoteProcessResolverGetProcesses (page 466), which blocks until the request completes (either
successfully or with an error).

If asynchronous behavior is desired, you can optionally use
AERemoteProcessResolverScheduleWithRunLoop (page 467) to schedule the resolver asynchronously
on a run loop. If so, you supply a callback routine (see AERemoteProcessResolverCallback (page 532))
that is executed when the resolver completes. To obtain information about the remote processes, you will
again have to call AERemoteProcessResolverGetProcesses (page 466).

A resolver can only be used once; once it has fetched the data or gotten an error it can no longer be scheduled.
The data obtained by the resolver is a CFArrayRef of CFDictionaryRef objects. For information on the
format of the returned remote process information, see the description of the function result for the function
AERemoteProcessResolverGetProcesses (page 466), and also “Remote Process Dictionary Keys” (page
602).

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEDecodeMessage
Decodes a Mach message and converts it into an Apple event and its related reply.

OSStatus AEDecodeMessage (
 mach_msg_header_t *header,
 AppleEvent *event,
 AppleEvent *reply
);

Parameters
header

A pointer to a Mach message header for the event to be decoded.

Functions 421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

event
A pointer to a null Apple event descriptor (one with descriptor type typeNull). On successful
completion, contains the decoded Apple event. If the function returns successfully, your application
should call the AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has
finished using it.

reply
A pointer to a null Apple event descriptor. On successful completion, contains the reply event from
the decoded Apple event. To send the reply, you use the following:

AESendMessage(reply, NULL, kAENoReply, kAEDefaultTimeout);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The Apple Event Manager provides the following functions (on Mac OS X only) for working with Apple events
at a lower level: AEGetRegisteredMachPort (page 445), AEDecodeMessage, AESendMessage (page 478),
and AEProcessMessage (page 458). See the descriptions for those functions for more information on when
you might use them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEDeleteItem
Deletes a descriptor from a descriptor list, causing all subsequent descriptors to move up one place.

OSErr AEDeleteItem (
 AEDescList *theAEDescList,
 long index
);

Parameters
theAEDescList

A pointer to the descriptor list containing the descriptor to delete. See AEDescList (page 553).

index
A one-based positive integer indicating the position of the descriptor to delete. AEDeleteItem
returns an error if you pass zero, a negative number, or a value that is out of range.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEDeleteKeyDesc
Deletes a keyword-specified parameter from an Apple event record.

OSErr AEDeleteKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword
);

Parameters
theAERecord

A pointer to the Apple event record to delete the parameter from.

theAEKeyword
The keyword that specifies the parameter to delete. Some keyword constants are described in “Keyword
Parameter Constants” (page 595). See AEKeyword (page 556).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is declared as a macro that invokes AEDeleteParam (page 423), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEDeleteParam (page 423).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDeleteParam
Deletes a keyword-specified parameter from an Apple event record.

OSErr AEDeleteParam (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword
);

Parameters
theAppleEvent

A pointer to the Apple event or Apple event record to delete the parameter from. See
AppleEvent (page 559).

theAEKeyword
The keyword that specifies the parameter to delete. Some keyword constants are described in “Keyword
Parameter Constants” (page 595). See AEKeyword (page 556).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Functions 423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDisposeDesc
Deallocates the memory used by a descriptor.

OSErr AEDisposeDesc (
 AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to deallocate. On return, a null descriptor. If you pass a null descriptor in
this parameter, AEDisposeDesc returns noErr. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). As currently implemented, AEDisposeDesc
always returns noErr.

Discussion
The AEDisposeDesc function deallocates the memory used by a descriptor. After calling this method, the
descriptor becomes an empty descriptor with a type of typeNULL. Because all Apple event structures (except
for keyword-specified descriptors) are descriptors, you can use AEDisposeDesc for any of them.

Do not call AEDisposeDesc on a descriptor obtained from another Apple Event Manager function (such as
the reply event from a call to AESend (page 476)) unless that function returns successfully.

Special Considerations

If the AEDesc might contain an OSL token, dispose of it with AEDisposeToken (page 425).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AEDataModel.h

AEDisposeRemoteProcessResolver
Disposes of an AERemoteProcessResolverRef.

424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

void AEDisposeRemoteProcessResolver (
 AERemoteProcessResolverRef ref
);

Parameters
ref

The AERemoteProcessResolverRef (page 557) to dispose of. Acquired from a previous call to
AECreateRemoteProcessResolver (page 420).

Discussion
If this resolver is currently scheduled on a run loop, it is unscheduled, and the asynchronous callback is not
executed.

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEDisposeToken
Deallocates the memory used by a token.

OSErr AEDisposeToken (
 AEDesc *theToken
);

Parameters
theToken

A pointer to the token to dispose of. On successful return, the pointer is set to the null descriptor. See
AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Your application calls the AEResolve (page 473) function to resolve an object specifier, with the help of the
object accessor functions described in “Object Accessor Callbacks” and the application object callback
functions described in “Object Callback Functions”.

When AEResolve returns a final token to your event handler as the result of the resolution of an object
specifier, your application must deallocate the memory used by the token. When your application calls the
AEDisposeToken function, the Apple Event Manager first calls your application’s token disposal function,
if you have provided one. The token disposal function is described in OSLDisposeTokenProcPtr (page
539).

If you haven’t provided a token disposal function, or if your application’s token disposal function returns
errAEEventNotHandled as the function result, the Apple Event Manager calls the system token disposal
function if one is available. If there is no system token disposal function or the function returns
errAEEventNotHandled as the function result, the Apple Event Manager calls the AEDisposeDesc function
to dispose of the token.

Functions 425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEDuplicateDesc
Creates a copy of a descriptor.

OSErr AEDuplicateDesc (
 const AEDesc *theAEDesc,
 AEDesc *result
);

Parameters
theAEDesc

A pointer to the descriptor to duplicate. See AEDesc (page 546).

result
A pointer to a descriptor. On return, the descriptor contains a copy of the descriptor specified by the
theAEDesc parameter. If the function returns successfully, your application should call the
AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has finished using
it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
It is common for applications to send Apple events that have one or more attributes or parameters in common.
For example, if you send a series of Apple events to the same application, the address attribute is the same.
In these cases, the most efficient way to create the necessary Apple events is to make a template Apple event
that you can then copy—by calling the AEDuplicateDesc function—as needed. You then fill in or change
the remaining parameters and attributes of the copy, send the copy by calling the AESend (page 476) function
and, after AESend returns a result code, dispose of the copy by calling AEDisposeDesc (page 424). You can
use this approach to prepare structures of type AEDesc (page 546), AEDescList (page 553), AERecord (page
557), and AppleEvent (page 559).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFlattenDesc
Flattens the specified descriptor and stores the data in the supplied buffer.

426 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus AEFlattenDesc (
 const AEDesc *theAEDesc,
 Ptr buffer,
 Size bufferSize,
 Size *actualSize
);

Parameters
theAEDesc

A pointer to the descriptor to be flattened. See AEDesc (page 546).

buffer
A pointer to memory, allocated by the application, where the flattened data will be stored. See the
bufferSize parameter for information on how large a buffer you should allocate.

bufferSize
The size of the buffer pointed to by buffer. Prior to calling AEFlattenDesc, you call the
AESizeOfFlattenedDesc (page 483) function to determine the required size of the buffer for the
flatten operation.

If bufferSize is too small, AEFlattenDesc returns errAEBufferTooSmall and doesn’t store any
data in the buffer.

actualSize
A pointer to a size variable. On return, the variable contains the actual size of the flattened data. You
can specify NULL for this parameter if you do not care about the returned size.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Flattening a descriptor serializes the data it contains. That is, it reduces a complex, possibly deeply nested
structure to a series of bytes that can conveniently be stored. The descriptor can be reconstituted from the
stored bytes with the AEUnflattenDesc (page 498) function.

Applications can be scriptable and work with Apple events without needing to flatten and unflatten descriptors.
Flattening is a special-purpose capability that is useful in circumstances where it may be convenient to store
data by saving and restoring a descriptor, rather than having to manually extract the data from it, store the
data as a separate step, then manually recreate the descriptor (if necessary). For example, you might use
flattening to store a preference setting received through an Apple event.

Flattening and unflattening should work without loss of data on descriptors that represent AEDesc, AEList,
and AERecord structures. You can also use the process with AppleEvent descriptors. However, keep in
mind that Apple events may contain attributes that are relevant only to a running process, and these attributes
may not keep their meaning when the event is reconstituted.

Flattening and unflattening works across OS versions, including between Mac OS 9 and Mac OS X.

Flattening is endian-neutral. That is, you can save flattened data on a machine that is either big-endian or
little-endian, then retrieve and unflatten the data on either type of machine, without any special steps by
your application.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Functions 427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Declared In
AEDataModel.h

AEGetArray
Extracts data from an Apple event array created with the AEPutArray function and stores it as a standard
array of fixed size items in the specified buffer.

OSErr AEGetArray (
 const AEDescList *theAEDescList,
 AEArrayType arrayType,
 AEArrayDataPointer arrayPtr,
 Size maximumSize,
 DescType *itemType,
 Size *itemSize,
 long *itemCount
);

Parameters
theAEDescList

A pointer to the descriptor list to get the array from. If the array is of type kAEDataArray,
kAEPackedArray, or kAEHandleArray, the descriptor list must be factored. A factored descriptor
list is one in which the Apple Event Manager automatically isolates the data that is common to all the
elements of the list so that the common data only appears in the list once. To create a factored
descriptor list, you call the AECreateList (page 419) function and specify the data that is common
to all elements in the descriptor array. See the Discussion section for related information. See
AEDescList (page 553).

arrayType
The Apple event array type to convert. Pass one of the constants: described in “Data Array
Constants” (page 580). See AEArrayType (page 552).

arrayPtr
A pointer to a buffer, allocated and disposed of by your application, for storing the array. The size in
bytes must be at least as large as the value you pass in the maximumSize parameter. On return, the
buffer contains the array of fixed-size items. See AEArrayDataPointer (page 551).

maximumSize
The maximum length, in bytes, of the expected data. The AEGetArray function will not return more
data than you specify in this parameter.

itemType
A pointer to a descriptor type. On return, for arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the descriptor type of the items in the returned array. The AEGetArray function
doesn’t supply a value in itemType for arrays of type kAEDescArray and kAEKeyDescArray because
they may contain descriptors of different types. Possible descriptor types are listed in “Descriptor
Type Constants” (page 581). See DescType (page 560).

itemSize
A pointer to a size variable. On return, for arrays of type kAEDataArray or kAEPackedArray, the
size (in bytes) of each item in the returned array. You don’t get an item size for arrays of type
kAEDescArray, kAEKeyDescArray, or kAEHandleArray because descriptors and handles (though
not the data they point to) have a known size.

itemCount
A pointer to a size variable. On return, the number of items in the returned array.

428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AEGetArray function uses a buffer identified by the pointer in the arrayPtr parameter to store the
converted data for the Apple event array specified by the theAEDescList parameter. For example,
AEGetArray may convert an array of descriptors of type typeLongInteger into a simple array of integer
values or an array of descriptors of type typeFSS into an array of file specification records.

Even if the descriptor list that contains the array is factored, the converted data for each array item includes
the data common to all the descriptors in the list. The Apple Event Manager automatically reconstructs the
common data for each item when you call AEGetArray.

For information about creating and factoring descriptor lists for Apple event arrays, see AECreateList (page
419). For information about adding an Apple event array to a descriptor list, see AEPutArray (page 459).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetAttributeDesc
Gets a copy of the descriptor for a specified Apple event attribute from an Apple event; typically used when
your application needs to pass the descriptor on to another function.

OSErr AEGetAttributeDesc (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute descriptor from. See AppleEvent (page 559).

theAEKeyword
The keyword that specifies the desired attribute. Some keyword constants are described in “Keyword
Attribute Constants” (page 593). See AEKeyword (page 556).

result
A pointer to a descriptor. On successful return, a copy of the specified Apple event attribute, coerced,
if necessary, to the descriptor type specified in desiredType. On error, a null descriptor. If the function
returns successfully, your application should call the AEDisposeDesc (page 424) function to dispose
of the resulting descriptor after it has finished using it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
To get Apple event attribute data for your application to use directly, call AEGetAttributePtr (page 430).
To get a descriptor for an Apple event attribute to pass on to another Apple Event Manager routine, call
AEGetAttributeDesc.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetAttributePtr
Gets a copy of the data for a specified Apple event attribute from an Apple event; typically used when your
application needs to work with the data directly.

OSErr AEGetAttributePtr (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *typeCode,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute data from. See AppleEvent (page 559).

theAEKeyword
The keyword that specifies the desired attribute. Some keyword constants are described in “Keyword
Attribute Constants” (page 593). See AEKeyword (page 556).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581).

If the descriptor specified by the theAEKeyword parameter is not of the desired type,
AEGetAttributePtr attempts to coerce the data to this type. However, if you pass a value of
typeWildCard, no coercion is performed, and the descriptor type of the returned data is the same
as the descriptor type of the Apple event attribute.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

See DescType (page 560).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the attribute data pointed
to by dataPtr. The returned type is either the same as the type specified by the desiredType
parameter or, if the desired type was type wildcard, the true type of the descriptor. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 581). See
DescType (page 560).

430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

dataPtr
A pointer to a buffer, local variable, or other storage location, created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the attribute data.

maximumSize
The maximum length, in bytes, of the expected attribute data. The AEGetAttributePtr function
will not return more data than you specify in this parameter.

actualSize
A pointer to a size variable. On return, the length, in bytes, of the data for the specified Apple event
attribute. If this value is larger than the value you passed in the maximumSize parameter, the buffer
pointed to by dataPtr was not large enough to contain all of the data for the attribute, though
AEGetAttributePtr does not write beyond the end of the buffer. If the buffer was too small, you
can resize it and call AEGetAttributePtr again.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
To get Apple event attribute data for your application to use directly, call AEGetAttributePtr. To get a
descriptor for an Apple event attribute to pass on to another Apple Event Manager routine, call
AEGetAttributeDesc (page 429).

Before calling AEGetAttributePtr, you can call the AESizeOfAttribute (page 482) function to determine
a size for the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AEGetAttributePtr may coerce the data, which may cause the size of the data to change.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetCoercionHandler
Gets the coercion handler for a specified descriptor type.

OSErr AEGetCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP *handler,
 SRefCon *handlerRefcon,
 Boolean *fromTypeIsDesc,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

Functions 431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581).

handler
A universal procedure pointer. On return, a pointer to the specified handler, if a coercion table entry
exists that exactly matches the values supplied in the parameters fromType and toType. See
AECoercionHandlerUPP (page 552).

handlerRefcon
A pointer to a reference constant. On return, the reference constant from the coercion table entry for
the specified coercion handler. The Apple Event Manager passes this reference constant to the handler
each time it calls the handler. The reference constant may have a value of 0.

fromTypeIsDesc
A pointer to a Boolean value. The AEGetCoercionHandler function returns a value of TRUE in this
parameter if the coercion handler expects the data as a descriptor or FALSE, if the coercion handler
expects a pointer to the data.

isSysHandler
Specifies the coercion table to get the handler from. Pass TRUE to get the handler from the system
coercion table or FALSE to get the handler from your application’s coercion table. Use of the system
coercion table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a coercion handler in a system coercion handler dispatch table with the
goal that the handler will get called when other applications perform coercions—this won’t work in Mac OS
X. For more information, see “Writing and Installing Coercion Handlers” in Apple Events Programming Guide.

In Mac OS 7.1 through 9.x and Mac OS X version v10.2 and later, AEGetCoercionHandler returns
errAEHandlerNotInstalled when there’s not an exact match, even if a wildcard handler is installed that
could handle the coercion. Mac OS X version v10.0.x and v10.1.x will return the wildcard handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetDescData
Gets the data from the specified descriptor.

432 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEGetDescData (
 const AEDesc *theAEDesc,
 void *dataPtr,
 Size maximumSize
);

Parameters
theAEDesc

A pointer to the descriptor to get the data from. See AEDesc (page 546).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes should be the same as the value you pass in the maximumSize parameter.
On return, contains the data from the descriptor.

maximumSize
The length, in bytes, of the expected descriptor data. The AEGetDescData function will not return
more data than you specify in this parameter. You typically determine the maximum size by calling
AEGetDescDataSize (page 434).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Your application can call AEGetDescDataSize (page 434) to get the size, in bytes, of the data in a descriptor,
allocate a buffer or variable of that size, then call AEGetDescData to get the data.

This function works only with value descriptors created by AECreateDesc (page 417). You cannot get the
data of an AERecord (page 557) or AEDescList (page 553), for example.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AEDataModel.h

AEGetDescDataRange
Retrieves a specified series of bytes from the specified descriptor.

Functions 433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus AEGetDescDataRange (
 const AEDesc *dataDesc,
 void *buffer,
 Size offset,
 Size length
);

Parameters
dataDesc

A pointer to the descriptor to get the data from. See AEDesc (page 546).

buffer
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes should be at least as large as the value you pass in the length parameter.
On return, contains the specified data from the descriptor.

offset
The zero-based offset to the data to be retrieved from the descriptor.

length
The number of bytes of contiguous data to retrieve.

Return Value
A result code. If the requested offset and length are such that they do not fit entirely within the descriptor’s
data, AEGetDescDataRange returns errAEBufferTooSmall. See also “Apple Event Manager Result
Codes” (page 636).

Discussion
This function is valid only for value type descriptors (such astypeUTF8Text). You can use this function when
you know the precise location of a subset of data within the descriptor. For example, if the descriptor contains
a block of your private data, you might retrieve just a particular chunk you need at a known offset, representing
an image, a string, or some other data type. Or if a descriptor contains an RGB color, you can access just the
blue field.

When used in conjunction with AECreateDescFromExternalPtr (page 418), AEGetDescDataRange can
provide greatly improved performance, especially when working with large blocks of data.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEGetDescDataSize
Gets the size, in bytes, of the data in the specified descriptor.

Size AEGetDescDataSize (
 const AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to obtain the data size for. See AEDesc (page 546).

Return Value
Returns the size, in bytes, of the data in the specified descriptor.

434 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
This function works only with value descriptors created by AECreateDesc (page 417). You cannot get the
data size of an AERecord (page 557) or AEDescList (page 553), for example.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetEventHandler
Gets an event handler from an Apple event dispatch table.

OSErr AEGetEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP *handler,
 SRefCon *handlerRefcon,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the desired handler. See AEEventClass (page 555).

theAEEventID
The event ID for the desired handler. See AEEventID (page 556).

handler
A universal procedure pointer. On return, a pointer to the specified handler, if a dispatch table entry
exists that exactly matches the values supplied in the parameters theAEEventClass and
theAEEventID.

If you use the typeWildCard constant for either or both of these parameters, AEGetEventHandler
will return an error unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and the
theAEEventID parameter, the Apple Event Manager will not return the first handler for any event
class and event ID in the dispatch table; instead, it will only return a handler if an entry exists that
specifies type typeWildCard for both the event class and the event ID.

For an explanation of wildcard values, see the Discussion section for AEInstallEventHandler (page
449).

See AEEventHandlerUPP (page 555).

handlerRefcon
A pointer to a reference constant. On return, the reference constant from the dispatch table entry for
the specified handler. The reference constant may have a value of 0.

isSysHandler
Specifies the Apple event dispatch table to get the handler from. Pass TRUE to get the handler from
the system dispatch table or FALSE to get the handler from your application’s dispatch table. See
Version Notes for related information.

Functions 435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

In Mac OS 7.1 through 9.x and Mac OS X version v10.2 and later, AEGetEventHandler returns
errAEHandlerNotInstalled when there’s not an exact match, even if a wildcard handler is installed that
could handle the event. Mac OS X version v10.0.x and v10.1.x will return the wildcard handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEGetInteractionAllowed
Gets your application’s current user interaction preferences for responding to an Apple event as a server
application.

OSErr AEGetInteractionAllowed (
 AEInteractAllowed *level
);

Parameters
level

A pointer to an interaction level variable. On return, the variable specifies the current user interaction
level, matching one of the values described in “User Interaction Level Constants” (page 605).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The current user interaction preference for responding to an Apple event is set either by default (to
kAEInteractWithLocal) or by a previous call to AESetInteractionAllowed (page 479).

For additional information on interaction level, see AESend (page 476) and “AESendMode” (page 566).

See also AEInteractWithUser (page 453).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEGetKeyDesc
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event record

436 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEGetKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter descriptor from.

theAEKeyword
A keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 595). See AEKeyword (page 556).

desiredType
The descriptor type for the desired Apple event parameter. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 581).

If the requested Apple event parameter is not of the desired type, the Apple Event Manager attempts
to coerce it to the desired type. However, if you pass a value of typeWildCard, no coercion is
performed, and the descriptor type of the returned descriptor is the same as the descriptor type of
the Apple event parameter.

See DescType (page 560).

result
A pointer to a descriptor. On successful return, a copy of the descriptor for the specified Apple event
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has finished using
it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is declared as a macro that invokes AEGetParamDesc (page 443), which can operate on an
Apple event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEGetParamDesc (page 443).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetKeyPtr
Gets a copy of the data for a specified Apple event parameter from an Apple event record.

Functions 437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEGetKeyPtr (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *actualType,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter data from.

theAEKeyword
The keyword that specifies the desired Apple event record parameter. Some keyword constants are
described in “Keyword Parameter Constants” (page 595).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581).

If the descriptor specified by the theAEKeyword parameter is not of the desired type, AEGetKeyPtr
attempts to coerce the data to this type. However, if the desired type is typeWildCard, no coercion
is performed.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. The returned type is either the same as the type specified by the desiredType parameter
or, if the desired type was type wildcard, the true type of the descriptor. Specify NULL if you do not
care about this return value. For a list of AppleScript’s predefined descriptor types, see “Descriptor
Type Constants” (page 581).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the parameter data. Specify NULL if you do not care about this return
value.

maximumSize
The maximum length, in bytes, of the expected Apple event record parameter data. The AEGetKeyPtr
function will not return more data than you specify in this parameter.

actualSize
A pointer to a variable of type Size. On return, the length, in bytes, of the data for the specified Apple
event record parameter. If this value is larger than the value you passed in the maximumSize parameter,
the buffer pointed to by dataPtr was not large enough to contain all of the data for the parameter,
though AEGetKeyPtr does not write beyond the end of the buffer. If the buffer was too small, you
can resize it and call AEGetKeyPtr again. Specify NULL if you do not care about this return value.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is declared as a macro that invokes AEGetParamPtr (page 444), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

438 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
See AEGetParamPtr (page 444).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetNthDesc
Copies a descriptor from a specified position in a descriptor list into a specified descriptor; typically used
when your application needs to pass the extracted data to another function as a descriptor.

OSErr AEGetNthDesc (
 const AEDescList *theAEDescList,
 long index,
 DescType desiredType,
 AEKeyword *theAEKeyword,
 AEDesc *result
);

Parameters
theAEDescList

A pointer to the descriptor list to get the descriptor from. See AEDescList (page 553).

index
A one-based positive integer indicating the position of the descriptor to get. AEGetNthDesc returns
an error if you pass zero, a negative number, or a value that is out of range.

desiredType
The desired descriptor type for the descriptor to copy. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581).

If the descriptor specified by the index parameter is not of the desired type, AEGetNthDesc attempts
to coerce it to this type. However, if you pass a value of typeWildCard, no coercion is performed,
and the descriptor type of the copied descriptor is the same as the descriptor type of the original
descriptor.

See DescType (page 560).

theAEKeyword
A pointer to a keyword. On successful return, the keyword for the specified descriptor, if you are
getting data from a list of keyword-specified descriptors; otherwise, AEGetNthDesc returns the value
typeWildCard. Some keyword constants are described in “Keyword Attribute Constants” (page 593)
and “Keyword Parameter Constants” (page 595). See AEKeyword (page 556).

result
A pointer to a descriptor. On successful return, a copy of the descriptor specified by the index
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has finished using
it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
If the Nth descriptor in the list is itself an Apple event record and the desired type is not wildcard, record, or
list, AEGetNthDescwill fail with an errAECoercionFailed error. This behavior prevents coercion problems.

You may find the AEGetNthPtr (page 440) function convenient for retrieving data for direct use in your
application, as it includes automatic coercion.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetNthPtr
Gets a copy of the data from a descriptor at a specified position in a descriptor list; typically used when your
application needs to work with the extracted data directly.

OSErr AEGetNthPtr (
 const AEDescList *theAEDescList,
 long index,
 DescType desiredType,
 AEKeyword *theAEKeyword,
 DescType *typeCode,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAEDescList

A pointer to the descriptor list that contains the descriptor. See AEDescList (page 553).

index
A one-based positive integer indicating the position in the descriptor list of the descriptor to get the
data from. AEGetNthPtr returns an error if you pass zero, a negative number, or a value that is out
of range.

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581).

If the descriptor specified by the index parameter is not of the desired type, AEGetNthPtr attempts
to coerce the data to this type. If you pass a value of typeWildCard, no coercion is performed, and
the descriptor type of the copied data is the same as the descriptor type of the original descriptor.

See DescType (page 560).

theAEKeyword
A pointer to a keyword. On return, the keyword for the specified descriptor, if you are getting data
from a list of keyword-specified descriptors; otherwise, AEGetNthPtr returns the value typeWildCard.
Some keyword constants are described in “Keyword Attribute Constants” (page 593) and “Keyword
Parameter Constants” (page 595). See AEKeyword (page 556).

440 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page
581).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the data from the descriptor at the position in the descriptor list
specified by the index parameter.

maximumSize
The maximum length, in bytes, of the expected data. The AEGetNthPtr function will not return more
data than you specify in this parameter.

actualSize
A pointer to a size variable. On return, the length, in bytes, of the data for the specified descriptor. If
this value is larger than the value of the maximumSize parameter, the buffer pointed to by dataPtr
was not large enough to contain all of the data for the descriptor, though AEGetNthPtr does not
write beyond the end of the buffer. If the buffer was too small, you can resize it and call AEGetNthPtr
again.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AEGetNthPtr function uses a buffer to return the data for a specified descriptor from a specified
descriptor list. The function attempts to coerce the descriptor to the descriptor type specified by the
desiredType parameter.

Before calling AEGetNthPtr, you can call the AESizeOfNthItem (page 484) function to determine a size for
the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AESizeOfNthItem may coerce the data, which may cause the size of the data to change. If you are using
AEGetNthPtr to iterate through a list of descriptors of the same type with a fixed size, such as a list of
descriptors of type typeFSS, you can get the size once, allocate a buffer, and reuse it for each call.

The order of items in an Apple event record may change after an insertion or deletion. In addition, duplicating
an Apple event record is not guaranteed to preserve the item order.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
QTMetaData

Declared In
AEDataModel.h

AEGetObjectAccessor
Gets an object accessor function from an object accessor dispatch table.

Functions 441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEGetObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP *accessor,
 SRefCon *accessorRefcon,
 Boolean isSysHandler
);

Parameters
desiredClass

The object class of the Apple event objects located by the object accessor function to get. Pass the
value typeWildCard to get an object accessor function whose entry in an object accessor dispatch
table specifies typeWildCard as the object class. Pass the value cProperty to get an object accessor
function whose entry in an object accessor dispatch table specifies cProperty (a constant used to
specify a property of any object class). Some other possible values are defined in “Object Class ID
Constants” (page 599). See DescType (page 560).

containerType
The descriptor type of the token that identifies the container for the objects located by the requested
accessor function. (Token is defined in AEDisposeToken (page 425).) Pass the value typeWildCard
to get an object accessor function whose entry in an object accessor dispatch table specifies
typeWildCard as the descriptor type of the token used to specify the container type. See
DescType (page 560).

accessor
A universal procedure pointer. On return, a pointer to the requested object accessor function, if an
object accessor dispatch table entry exists that exactly matches the values supplied in the parameters
desiredClass and containerType. See OSLAccessorUPP (page 560).

accessorRefcon
A pointer to a reference constant. On return, points to the reference constant from the object accessor
dispatch table entry for the specified object accessor function. The reference constant may have a
value of 0.

isSysHandler
Specifies the object accessor dispatch table to get the object accessor function from. Pass TRUE to
get the object accessor function from the system object accessor dispatch table or FALSE to get the
object accessor function from your application’s object accessor dispatch table. Use of the system
object accessor dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Calling AEGetObjectAccessor does not remove the object accessor function from an object accessor
dispatch table.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

442 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEGetParamDesc
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event or an
Apple event record.

OSErr AEGetParamDesc (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter descriptor from.

theAEKeyword
A keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 595).

desiredType
The descriptor type for the desired Apple event parameter. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 581).

If the requested Apple event parameter is not of the desired type, the Apple Event Manager attempts
to coerce it to the desired type. However, if you pass a value of typeWildCard, no coercion is
performed, and the descriptor type of the returned descriptor is the same as the descriptor type of
the Apple event parameter.

result
A pointer to a descriptor. On successful return, a copy of the descriptor for the specified Apple event
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 424) function to dispose of the resulting descriptor after it has finished using
it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
You typically call AEGetParamDesc to get a descriptor for an Apple event parameter to pass on to another
Apple Event Manager routine. To get Apple event parameter data for your application to use directly, call
AEGetParamPtr (page 444).

If the actual parameter you are getting with AEGetParamDesc is a record, you can only request it as a
typeAERecord, typeAEList, or typeWildcard. For any other type, AEGetParamDesc will return
errAECoercionFail.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Functions 443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Declared In
AEDataModel.h

AEGetParamPtr
Gets a copy of the data for a specified Apple event parameter from an Apple event or an Apple event record.

OSErr AEGetParamPtr (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *actualType,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter data from.

theAEKeyword
The keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 595).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581).

If the descriptor specified by the theAEKeyword parameter is not of the desired type, AEGetParamPtr
attempts to coerce the data to this type. However, if the desired type is typeWildCard, no coercion
is performed.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. The returned type is either the same as the type specified by the desiredType parameter
or, if the desired type was type wildcard, the true type of the descriptor. Specify NULL if you do not
care about this return value. For a list of AppleScript’s predefined descriptor types, see “Descriptor
Type Constants” (page 581).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the parameter data. Specify NULL if you do not care about this return
value.

maximumSize
The maximum length, in bytes, of the expected Apple event parameter data. The AEGetParamPtr
function will not return more data than you specify in this parameter.

444 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

actualSize
A pointer to a variable of type Size. On return, the length, in bytes, of the data for the specified Apple
event parameter. If this value is larger than the value you passed in the maximumSize parameter, the
buffer pointed to by dataPtr was not large enough to contain all of the data for the parameter,
though AEGetParamPtr does not write beyond the end of the buffer. If the buffer was too small,
you can resize it and call AEGetParamPtr again. Specify NULL if you do not care about this return
value.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
You should use this function only to extract data from value descriptors such as typeUTF8Text.

Because this function allows you to specify a desired type, it can result in coercion. When used correctly, this
has the positive effect of returning the data in the desired format. However, it can have side effects you may
not be expecting, such as the overhead of calls to coercion handlers. See also the Version Notes section below
for possible problems with coercion.

To get Apple event parameter data for your application to use directly, call AEGetParamPtr. To get a
descriptor for an Apple event parameter to pass on to another Apple Event Manager routine, call
AEGetParamDesc (page 443).

Before calling AEGetParamPtr, you can call the AESizeOfParam (page 485) function to determine a size for
the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AEGetParamPtr may coerce the data, which may cause the size of the data to change.

In some cases, you may get improved efficiency extracting information from an Apple event with the
AEGetDescDataRange (page 433) function.

Version Notes
Thread safe starting in Mac OS X v10.2.

If the actual parameter you are getting with AEGetParamPtr is a record, AEGetParamPtr will erroneously
allow you to get the parameter as any type at all, when it really should allow only typeAERecord, typeAEList,
or typeWildcard. For other types, it will place raw record data into the designated buffer. With AppleScript
1.1.2, it would then return errAECoercionFail, as expected. With AppleScript 1.3 and later, however, it
returns noErr.

You can work around this problem by checking the returned parameter from any call to AEGetParamPtr.
If the source type is typeAERecord and the type you asked for was anything other than typeAERecord,
typeAEList, or typeWildcard, you should assume the coercion failed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetRegisteredMachPort
Returns the Mach port (in the form of a mach_port_t) that was registered with the bootstrap server for this
process.

Functions 445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

mach_port_t AEGetRegisteredMachPort (
 void
);

Return Value
Returns a Mach message port header.

Discussion
Apple events on Mac OS X are implemented in terms of Mach messages. If your application links with the
Carbon umbrella framework, it includes the HIToolbox framework, which initializes a Mach port and registers
it with the run loop for the application. That port is considered public, and is used for sending and receiving
Apple events.

Linking with the HIToolbox also requires that the application have a connection to the window server. To
facilitate writing server processes that can send and receive Apple events, the Apple Event Manager provides
the following functions (on Mac OS X only): AEGetRegisteredMachPort, AEDecodeMessage (page 421),
AESendMessage (page 478), and AEProcessMessage (page 458). Daemons and other processes with no user
interface can take advantage of these functions, while typical high-level applications will have no need for
them.

If your code doesn’t link with the HIToolbox or doesn’t have a run loop, it can call AEGetRegisteredMachPort
to register a port directly, then listen on that port for Apple events. It can use the other low-level functions
to process incoming Apple events on the port and to send Apple events through it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEGetSpecialHandler
Gets a specified handler from a special handler dispatch table.

OSErr AEGetSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP *handler,
 Boolean isSysHandler
);

Parameters
functionClass

The keyword for the special handler to get. You can specify any of the constants described in “Special
Handler Callback Constants” (page 603). See AEKeyword (page 556).

handler
A universal procedure pointer. On return, a pointer to the specified special handler, if one exists that
matches the value supplied in the functionClass parameter. See AEEventHandlerUPP (page 555).

isSysHandler
Specifies the special handler dispatch table to get the handler from. Pass TRUE to get the handler
from the system special handler dispatch table or FALSE to get the handler from your application’s
special handler dispatch table. Use of the system special handler dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
See also AEInstallSpecialHandler (page 452) and AERemoveSpecialHandler (page 471).

Version Notes
Thread safe starting in Mac OS X v10.2.

In Mac OS X, you should generally install all handlers in the application dispatch table. For Carbon applications
running in Mac OS 8 or Mac OS 9, a special handler in the system dispatch table could reside in the system
heap, where it would be available to other applications. However, this won’t work in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEGetTheCurrentEvent
Gets the Apple event that is currently being handled.

OSErr AEGetTheCurrentEvent (
 AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to an Apple event. On return, the Apple event that is currently being handled. If no Apple
event is currently being handled, AEGetTheCurrentEvent supplies a descriptor of descriptor type
typeNull, which does not contain any data. See AppleEvent (page 559).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
In many applications, the handling of an Apple event involves one or more long chains of calls to internal
functions. The AEGetTheCurrentEvent function makes it unnecessary for these calls to include the current
Apple event as a parameter; the functions can simply call AEGetTheCurrentEvent to get the current Apple
event when it is needed.

You can also use the AEGetTheCurrentEvent function to make sure that no Apple event is currently being
handled. For example, suppose your application always uses an application-defined function to delete a file.
That function can first call AEGetTheCurrentEvent and delete the file only if AEGetTheCurrentEvent
returns a null descriptor (that is, only if no Apple event is currently being handled).

Special Considerations

This function is not thread-safe and should only be called on the main thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

Functions 447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEInitializeDesc
Initializes a new descriptor.

void AEInitializeDesc (
 AEDesc *desc
);

Parameters
desc

A pointer to a new descriptor. See AEDesc (page 546).

Discussion
The function sets the type of the descriptor to typeNull and sets the data handle to NULL. If you need to
initialize a descriptor that already has some data in it, use AEDisposeDesc (page 424) to deallocate the
memory and initialize the descriptor.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEInstallCoercionHandler
Installs a coercion handler in either the application or system coercion handler dispatch table.

OSErr AEInstallCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP handler,
 SRefCon handlerRefcon,
 Boolean fromTypeIsDesc,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581).

If there was already an entry in the specified coercion handler table for the same source descriptor
type and result descriptor type, the existing entry is replaced. See DescType (page 560).

handler
A universal procedure pointer to the coercion handler function to install. See
AECoercionHandlerUPP (page 552).

448 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

handlerRefcon
A reference constant. The Apple Event Manager passes this value to the handler each time it calls it.
If your handler doesn’t require a reference constant, pass 0 for this parameter.

fromTypeIsDesc
Specifies the form of the data to coerce. Pass TRUE if the coercion handler expects the data as a
descriptor or FALSE if the coercion handler expects a pointer to the data. The Apple Event Manager
can provide a pointer to data more efficiently than it can provide a descriptor, so all coercion functions
should accept a pointer to data if possible.

isSysHandler
Specifies the coercion table to add the handler to. Pass TRUE to add the handler to the system coercion
table or FALSE to add the handler to your application’s coercion table. Use of the system coercion
table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Before using AEInstallCoercionHandler to install a handler for a particular descriptor type, you can use
the AEGetCoercionHandler (page 431) function to determine whether the table already contains a coercion
handler for that type.

Version Notes
See the Version Notes section for the AECoercePtr (page 414) function for information on when to use
descriptor-based versus pointer-based coercion handlers starting in Mac OS X version 10.2.

Thread safe starting in Mac OS X v10.2.

Your application should not install a coercion handler in a system coercion handler dispatch table with the
goal that the handler will get called when other applications perform coercions—this won’t work in Mac OS
X. For more information, see “Writing and Installing Coercion Handlers” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEInstallEventHandler
Adds an entry for an event handler to an Apple event dispatch table.

OSErr AEInstallEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP handler,
 SRefCon handlerRefcon,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the Apple event or events to dispatch to this event handler. The Discussion section
describes interactions between this parameter and the theAEEventID parameter. See
AEEventClass (page 555).

Functions 449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

theAEEventID
The event ID for the Apple event or events to dispatch to this event handler. The Discussion section
describes interactions between this parameter and the theAEEventClass parameter. See
AEEventID (page 556).

handler
A universal procedure pointer to the Apple event handler function to install. See
AEEventHandlerUPP (page 555).

handlerRefcon
A reference constant. The Apple Event Manager passes this value to the handler each time it calls it.
If your handler doesn’t require a reference constant, pass 0 for this parameter.

isSysHandler
Specifies the Apple event dispatch table to add the handler to. Pass TRUE to add the handler to the
system dispatch table or FALSE to add the handler to your application’s dispatch table. See Version
Notes for related information.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The parameters theAEEventClass and theAEEventID specify the event class and event ID of the Apple
events handled by the handler for this dispatch table entry. If there is already an entry in the specified dispatch
table for the same event class and event ID, it is replaced. For these parameters, you must provide one of
the following combinations:

 ■ the event class and event ID of a single Apple event to dispatch to the handler (for example, an event
class of kAECoreSuite and an event ID of kAEDelete so that a specific kind of delete event is
dispatched to the handler)

 ■ the typeWildCard constant for theAEEventClass and an event ID for theAEEventID, which indicates
that Apple events from all event classes whose event IDs match theAEEventID should be dispatched
to the handler (for example, an event class of typeWildCard and an event ID of kAEDelete so that
for all event classes, the delete event is dispatched to the handler)

 ■ an event class for theAEEventClass and the typeWildCard constant for theAEEventID, which
indicates that all events from the specified event class should be dispatched to the handler (for example,
an event class of kAECoreSuite and an event ID of typeWildCard so that all events for the core suite
are dispatched to the handler)

 ■ the typeWildCard constant for both the theAEEventClass and theAEEventID parameters, which
indicates that all Apple events should be dispatched to the handler

If you use the typeWildCard constant for either the theAEEventClass or the theAEEventID parameter
(or for both parameters), the corresponding handler must return the error errAEEventNotHandled if it
does not handle a particular event.

If an Apple event dispatch table contains one entry for an event class and a specific event ID, and also contains
another entry that is identical except that it specifies a wildcard value for either the event class or the event
ID, the Apple Event Manager dispatches the more specific entry. For example, if an Apple event dispatch
table includes one entry that specifies the event class as kAECoreSuite and the event ID as kAEDelete,
and another entry that specifies the event class as kAECoreSuite and the event ID as typeWildCard, the
Apple Event Manager dispatches the Apple event handler associated with the entry that specifies the event
ID as kAEDelete.

450 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

In addition to the Apple event handler dispatch tables, applications can add entries to special handler dispatch
tables, as described in “Managing Special Handler Dispatch Tables” (page 404).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AppleEvents.h

AEInstallObjectAccessor
Adds or replaces an entry for an object accessor function to an object accessor dispatch table.

OSErr AEInstallObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP theAccessor,
 SRefCon accessorRefcon,
 Boolean isSysHandler
);

Parameters
desiredClass

The object type of the Apple event objects located by this accessor. See DescType (page 560).

containerType
The type of the token whose objects are accessed by this accessor. (Token is defined in
AEDisposeToken (page 425).) The accessor function finds objects in containers specified by tokens
of this type. See DescType (page 560).

theAccessor
A universal procedure pointer to the object accessor function to install. See OSLAccessorUPP (page
560).

accessorRefcon
A reference constant the Apple Event Manager passes to the object accessor function whenever it
calls the function. If your object accessor function doesn’t require a reference constant, pass 0 for this
parameter. To change the value of the reference constant, you must call AEInstallObjectAccessor
again.

isSysHandler
Specifies the object accessor dispatch table to add the entry to. Pass TRUE to add the entry to the
system object accessor dispatch table or FALSE to add the entry to your application’s object accessor
dispatch table. Use of the system object accessor dispatch table is not recommended.

Functions 451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AEInstallObjectAccessor function adds or replaces an entry to either the application or system
object accessor dispatch table.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

If your Carbon application running in Mac OS 8 or OS 9 installs a system object accessor function in its
application heap, rather than in the system heap, you must call AERemoveObjectAccessor (page 470) to
remove the function before your application terminates.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEInstallSpecialHandler
Installs a callback function in a special handler dispatch table.

OSErr AEInstallSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
functionClass

A value that specifies the type of handler to install. You can use any of the constants defined in “Special
Handler Callback Constants” (page 603).

If there is already an entry in the specified special handler dispatch table for the value you specify in
this parameter, it is replaced.

See AEKeyword (page 556).

handler
A universal procedure pointer to the special handler to install. See AEEventHandlerUPP (page 555).

isSysHandler
Specifies the special handler dispatch table to add the handler to. Pass TRUE to add the handler to
the system special handler dispatch table or FALSE to add the handler to your application’s special
handler dispatch table. Use of the system special handler dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
An Apple event special handler dispatch table contains entries with a function class keyword, the address of
the handler function that handles the Apple events indicated by the keyword, and a reference constant.
Depending on which handlers you choose to install, a special handler dispatch table can have entries for any
of the following:

452 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 ■ a predispatch handler (an Apple event handler that the Apple Event Manager calls immediately before
it dispatches an Apple event)

 ■ up to one each of the callback functions described in “Object Callback Functions” (page 524) these
functions, such as an object comparison function and an object-counting function, can be installed with
AEInstallSpecialHandler or with the AEInstallObjectAccessor (page 451) function

See also AEGetSpecialHandler (page 446) and AERemoveSpecialHandler (page 471).

Version Notes
Thread safe starting in Mac OS X v10.2.

For Carbon applications running in Mac OS 8 or Mac OS 9, a handler in the system special handler dispatch
table should reside in the system heap, where it may be available to other applications. If you put your system
handler code in your application heap, be sure to use AERemoveSpecialHandler to remove the handler
when your application quits. Otherwise, your handler will still have an entry in the system dispatch table
with a pointer a handler that no longer exists. Another application may dispatch an Apple event that attempts
to call your handler, leading to a system crash.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEInteractWithUser
Initiates interaction with the user when your application is a server application responding to an Apple event.

OSErr AEInteractWithUser (
 SInt32 timeOutInTicks,
 NMRecPtr nmReqPtr,
 AEIdleUPP idleProc
);

Parameters
timeOutInTicks

The amount of time (in ticks) that your handler is willing to wait for a response from the user. You
can specify a number of ticks or use one of the constants defined in “Timeout Constants” (page 605).

nmReqPtr
A pointer to a Notification Manager record provided by your application. You can specify NULL for
this parameter to get the default notification handling provided by the Apple Event Manager. See
the Notification Manager documentation for a description of the NMRecPtr data type.

idleProc
A universal procedure pointer to your application’s idle function, which handles events while waiting
for the Apple Event Manager to return control. See AEIdleUPP (page 556).

Functions 453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). The AEInteractWithUser function
returns the errAENoUserInteraction result code if the user interaction preferences don’t allow user
interaction. If AEInteractWithUser returns the noErr result code, then your application is in the foreground
and is free to interact with the user.

Discussion
Your application should call the AEInteractWithUser function before displaying a dialog box or alert box
or otherwise interacting with the user in response to an Apple event. The AEInteractWithUser function
checks whether the client application set the kAENeverInteract flag for the current Apple event, if any,
and if so, returns an error. If not, then AEInteractWithUser checks the server application’s preference set
by the AESetInteractionAllowed (page 479) function and compares it against the source of the Apple
event—that is, whether it came from the same application, another process on the same computer, or a
process running on another computer.

If the user interaction preference settings permit the application to come to the foreground, this function
brings your application to the front, either directly or by posting a notification request.

Your application should normally pass a notification record in the nmReqPtr parameter rather than specifying
NULL for default notification handling. If you specify NULL, the Apple Event Manager looks for an application
icon with the ID specified by the application’s bundle ('BNDL') resource and the application’s file reference
('FREF') resource. The Apple Event Manager first looks for an 'SICN' resource with the specified ID if it
can’t find an 'SICN' resource, it looks for the 'ICN#' resource and compresses the icon to fit in the menu
bar. The Apple Event Manager won’t look for any members of an icon family other than the icon specified
in the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file reference resource,
the Apple Event Manager passes no icon to the Notification Manager, and no icon appears in the upper-right
corner of the screen. Therefore, if you want to display any icon other than those of type 'SICN' or 'ICN#',
you must specify a notification record as the second parameter to the AEInteractWithUser function.

If you want the Notification Manager to use a color icon when it posts a notification request, you should
provide a Notification Manager record that specifies a 'cicn' resource.

For additional information on interaction level, see AESend (page 476) and “AESendMode” (page 566).

See also AESetInteractionAllowed (page 479) and AEGetInteractionAllowed (page 436).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEManagerInfo
Provides information about the version of the Apple Event Manager currently available or the number of
processes that are currently recording Apple events.

454 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEManagerInfo (
 AEKeyword keyWord,
 long *result
);

Parameters
keyWord

A value that determines the kind of information the function supplies in the result parameter.

Pass the value keyAERecorderCount to obtain the number of processes that are currently recording
Apple events.

Pass the value keyAEVersion to obtain version information for the Apple Event Manager, in
NumVersion format.

Some keyword constants are defined in “Keyword Parameter Constants” (page 595).

See AEKeyword (page 556).

result
A pointer to a long value. On return, provides information that depends on what you pass in the
keyword parameter.

If you pass keyAERecorderCount, result specifies the number of processes that are currently
recording Apple events.

If you pass keyAEVersion, result supplies version information for the Apple Event Manager, in a
format that matches the 'vers' resource.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
For recordable applications, the information provided by AEManagerInfomay be useful when the application
is responding to Apple events that it sends to itself.

For information on determining whether the Apple Event Manager is available, see the Apple Event Manager
Gestalt Selector, described in Inside Mac OS X: Gestalt Manager Reference.

Version Notes
Thread safe starting in Mac OS X v10.2.

The AEManagerInfo function is available only in version 1.01 and later of the Apple Event Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEObjectInit
Initializes the Object Support Library.

Functions 455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEObjectInit (
 void
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
You must call this function before calling any of the Apple Event Manager functions that describe or manipulate
Apple event objects.

You should call the AEObjectInit function to initialize the Apple Event Manager functions that handle
object specifiers and Apple event objects.

Version Notes
To make these functions available to your application with version 1.01 and earlier versions of the Apple
Event Manager, you must also link the Apple Event Object Support Library with your application when you
build it. For more information, see the Version Notes section for the AppleScript Gestalt Selector described
in Inside Mac OS X: Gestalt Manager Reference and the function AERemoveSpecialHandler (page 471).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEPrintDescToHandle
Provides a pretty printer facility for displaying the contents of Apple event descriptors.

OSStatus AEPrintDescToHandle (
 const AEDesc *desc,
 Handle *result
);

Parameters
desc

A pointer to a descriptor containing the information to be printed. See AEDesc (page 546).

result
A pointer to a location for a new Handle data type. On return, contains a new handle allocated by
the Memory Manager.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The data handle returned in the result parameter contains a text string formatted using the “AEBuild”
syntax. This string is useful for looking at the contents of Apple events sent by other applications and for
debugging your own descriptors.

AEPrintDescToHandle prints the contents of AEDesc, AERecord, and AEDescList descriptors in a format
that is suitable for input to AEBuildDesc (page 410). AEPrintDescToHandle also attempts display coerced
Apple event records as the coerced record type instead of as the original type. Any data structures that cannot
be identified are displayed as hexadecimal data.

456 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEPrintDescToHandle prints the contents of Apple events in a slightly different format. For these events,
the event class and event ID appear at the beginning of the output string, followed by the contents of the
event enclosed in curly braces. In addition, each attribute is printed with its four-character identifier and
preceded by an ampersand character. You cannot use the output string to recreate the Apple event from
AEBuildAppleEvent (page 408).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEProcessAppleEvent
Calls the handler, if one exists, for a specified Apple event.

OSErr AEProcessAppleEvent (
 const EventRecord *theEventRecord
);

Parameters
theEventRecord

A pointer to the event record for the Apple event to process. See the Event Manager documentation
for a description of the EventRecord data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). This is the error result from the Apple
event handler (or errAEHandlerNotFound). In most cases your application should ignore this error because
it will be seen by the Apple event sender as the keyErrorNumber parameter in the reply.

Discussion
After receiving a high-level event (and optionally determining whether it is a type of high-level event other
than an Apple event that your application might support), your application typically calls the
AEProcessAppleEvent function to determine the type of Apple event received and call the corresponding
handler. Your application should always handle high-level events immediately, or the Apple Event Manager
may return the event to the sending application with the errAEEventNotHandled result code.

The AEProcessAppleEvent function looks first in the application’s special handler dispatch table for an
entry that was installed by the AEInstallSpecialHandler (page 452) function with the constant
keyPreDispatch. If the application’s special handler dispatch table does not include such a handler or if
the handler returns errAEEventNotHandled, AEProcessAppleEvent looks in the application’s Apple
event dispatch table for an entry that matches the event class and event ID of the specified Apple event. You
install handlers in the application’s dispatch table with the AEInstallEventHandler (page 449) function.

If the application’s Apple event dispatch table does not include such a handler or if the handler returns
errAEEventNotHandled, the AEProcessAppleEvent function looks in the system special handler dispatch
table for an entry that was installed with the constant keyPreDispatch. If the system special handler dispatch
table does not include such a handler or if the handler returns errAEEventNotHandled,
AEProcessAppleEvent looks in the system Apple event dispatch table for an entry that matches the event
class and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple Event Manager returns
the result code errAEEventNotHandled to the server (or target) application and, if the client application
is waiting for a reply, to the client application.

Functions 457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

If AEProcessAppleEvent finds an entry in one of the dispatch tables that matches the event class and
event ID of the specified Apple event, it calls the corresponding handler.

If an Apple event dispatch table contains one entry for an event class and a specific event ID, and also contains
another entry that specifies a wildcard value for either the event class or the event ID, the Apple Event
Manager uses the more specific entry. For example, if one entry specifies an event class of kAECoreSuite
and an event ID of kAEDelete and another entry specifies an event class of kAECoreSuite and an event
ID of typeWildCard, the Apple Event Manager will dispatch an Apple event with an event ID of kAEDelete
to the handler from the entry that specifies the event ID as kAEDelete.

Version Notes
Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
AEInteraction.h

AEProcessMessage
Decodes and dispatches a low level Mach message event to an event handler, including packaging and
returning the reply to the sender.

OSStatus AEProcessMessage (
 mach_msg_header_t *header
);

Parameters
header

A pointer to the received Mach message that should be processed. The contents of the message
header are invalid after calling this method.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The Apple Event Manager provides the following functions (on Mac OS X only) for working with Apple events
at a lower level: AEGetRegisteredMachPort (page 445), AEDecodeMessage (page 421),
AESendMessage (page 478), and AEProcessMessage. See the descriptions for those functions for more
information on when you might use them.

If your daemon or other code has initialized a Mach port and is listening on it for Apple events and other
messages, it can call AEProcessMessage to handle any incoming events it identifies as Apple events, while
handling other types of events itself. AEProcessMessage will dispatch the event to an event handler (by
calling AEDecodeMessage for you) and package and return the reply to the sender, simplifying handling for
your code.

The Apple Event Manager reserves Mach message IDs in the range 0 to 999 for its own use.
AEProcessMessage returns a paramErr result code if the Mach message did not contain an Apple event.

458 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEPutArray
Inserts the data for an Apple event array into a descriptor list, replacing any previous descriptors in the list.

OSErr AEPutArray (
 AEDescList *theAEDescList,
 AEArrayType arrayType,
 const AEArrayData *arrayPtr,
 DescType itemType,
 Size itemSize,
 long itemCount
);

Parameters
theAEDescList

A pointer to the descriptor list to put the Apple event array into. If there are any descriptors already
in the descriptor list, they are replaced. If the array type is kAEKeyDescArray, theAEDescListmust
point to an Apple event record; otherwise, it can point to either a descriptor list or an Apple event
record.

If you pass a pointer to a factored descriptor list, created by calling the AECreateList (page 419)
function, each array item in the array pointed to by the arrayPtr parameter must include the data
that is common to all the descriptors in the list. The Apple Event Manager automatically isolates the
common data you specified in the call to AECreateList. A factored descriptor list is described in
the Discussion section.

See AEDescList (page 553).

arrayType
The Apple event array type to create. Pass a value specified by one of the constants described in “Data
Array Constants” (page 580). See AEArrayType (page 552).

arrayPtr
A pointer to a buffer, local variable, or other storage location, created and disposed of by your
application, that contains the array to put into the descriptor list. See AEArrayData (page 545).

itemType
For arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray, the descriptor type of
the array items to create. Use one of the constants described in “Descriptor Type Constants” (page
581), such as typeLongInteger. You don’t need to specify an item type for arrays of type
kAEDescArray or kAEKeyDescArray because the data is already stored in descriptors which contain
a descriptor type. See DescType (page 560).

itemSize
For arrays of type kAEDataArray or kAEPackedArray, the size (in bytes) of the array items to create.
You don’t need to specify an item size for arrays of type kAEDescArray, kAEKeyDescArray, or
kAEHandleArray because their descriptors (though not the data they point to) have a known size.

itemCount
The number of elements in the array.

Functions 459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
A factored descriptor list is one in which the Apple Event Manager automatically isolates the data that is
common to all the elements of the list so that the common data only appears in the list once. To create a
factored descriptor list, you call the AECreateList (page 419) function and specify the data that is common
to all elements in the descriptor array.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutAttributeDesc
Adds a descriptor and a keyword to an Apple event as an attribute.

OSErr AEPutAttributeDesc (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAppleEvent

A pointer to the Apple event to add an attribute to. See the AppleEvent (page 559) data type.

theAEKeyword
The keyword for the attribute to add. If the Apple event already includes an attribute with this keyword,
the attribute is replaced.

Some keyword constants are described in “Keyword Attribute Constants” (page 593).

See AEKeyword (page 556).

theAEDesc
A pointer to the descriptor to assign to the attribute. The descriptor type of the specified descriptor
should match the defined descriptor type for that attribute. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AEPutAttributeDesc function takes a descriptor and a keyword and adds them to an Apple event as
an attribute. If the descriptor type required for the attribute is different from the descriptor type of the
descriptor, the Apple Event Manager attempts to coerce the descriptor into the required type, with one
exception: the Apple Event Manager does not attempt to coerce the data for an address attribute, thereby
allowing applications to use their own address types.

Version Notes
Thread safe starting in Mac OS X v10.2.

460 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutAttributePtr
Adds a pointer to data, a descriptor type, and a keyword to an Apple event as an attribute.

OSErr AEPutAttributePtr (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to add an attribute to. See the AppleEvent (page 559) data type.

theAEKeyword
The keyword for the attribute to add. If the Apple event already includes an attribute with this keyword,
the attribute is replaced.

Some keyword constants are described in “Keyword Attribute Constants” (page 593).

See AEKeyword (page 556).

typeCode
The descriptor type for the attribute to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data for the attribute to add.

dataSize
The length, in bytes, of the data for the attribute to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutDesc
Adds a descriptor to any descriptor list, possibly replacing an existing descriptor in the list.

Functions 461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEPutDesc (
 AEDescList *theAEDescList,
 long index,
 const AEDesc *theAEDesc
);

Parameters
theAEDescList

A pointer to the descriptor list to add a descriptor to. See AEDescList (page 553).

index
A one-based positive integer indicating the position to insert the descriptor at. If there is already a
descriptor in the specified position, it is replaced.

You can pass a value of zero or count + 1 to add the descriptor at the end of the list. AEPutDesc
returns an error (AEIllegalIndex) if you pass a negative number or a value that is out of range.

theAEDesc
A pointer to the descriptor to add to the list. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutKeyDesc
Inserts a descriptor and a keyword into an Apple event record as an Apple event parameter.

OSErr AEPutKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAERecord

A pointer to the Apple event record to add a parameter to.

theAEKeyword
The keyword specifying the parameter to add. If the Apple event record already has a parameter with
this keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 595).

See AEKeyword (page 556).

theAEDesc
A pointer to the descriptor for the parameter to add. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

462 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
This function is declared as a macro that invokes AEPutParamDesc (page 464), which can operate on an
Apple event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEPutParamDesc (page 464).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutKeyPtr
Inserts data, a descriptor type, and a keyword into an Apple event record as an Apple event parameter.

OSErr AEPutKeyPtr (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAERecord

A pointer to the Apple event record to add a parameter to.

theAEKeyword
The keyword for the parameter to add. If the Apple event record already includes a parameter with
this keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 595).

See AEKeyword (page 556).

typeCode
The descriptor type for the parameter to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data for the parameter to add.

dataSize
The length, in bytes, of the data for the parameter to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is declared as a macro that invokes AEPutParamPtr (page 464), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEPutParamPtr (page 464).

Availability
Available in Mac OS X v10.0 and later.

Functions 463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Declared In
AEDataModel.h

AEPutParamDesc
Inserts a descriptor and a keyword into an Apple event or Apple event record as an Apple event parameter.

OSErr AEPutParamDesc (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAppleEvent

A pointer to the Apple event to add a parameter to. See the AppleEvent (page 559) data type.

theAEKeyword
The keyword specifying the parameter to add. If the Apple event already has a parameter with this
keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 595).

See AEKeyword (page 556).

theAEDesc
A pointer to the descriptor for the parameter to add. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutParamPtr
Inserts data, a descriptor type, and a keyword into an Apple event or Apple event record as an Apple event
parameter.

OSErr AEPutParamPtr (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to add a parameter to. See the AppleEvent (page 559) data type.

464 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

theAEKeyword
The keyword for the parameter to add. If the Apple event already includes an parameter with this
keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 595).

See AEKeyword (page 556).

typeCode
The descriptor type for the parameter to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data for the parameter to add.

dataSize
The length, in bytes, of the data for the parameter to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutPtr
Inserts data specified in a buffer into a descriptor list as a descriptor, possibly replacing an existing descriptor
in the list.

OSErr AEPutPtr (
 AEDescList *theAEDescList,
 long index,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAEDescList

A pointer to the descriptor list to add a descriptor to. See AEDescList (page 553).

index
A one-based positive integer indicating the position to insert the descriptor at. If there is already a
descriptor in the specified position, it is replaced.

You can pass a value of zero or count + 1 to add the descriptor at the end of the list. AEPutPtr returns
an error (AEIllegalIndex) if you pass a negative number or a value that is out of range.

typeCode
The descriptor type for the descriptor to be put into the list. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

Functions 465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

dataPtr
A pointer to the data for the descriptor to add.

dataSize
The length, in bytes, of the data for the descriptor to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
AEDataModel.h

AERemoteProcessResolverGetProcesses
Returns an array of objects containing information about processes running on a remote machine.

CFArrayRef AERemoteProcessResolverGetProcesses (
 AERemoteProcessResolverRef ref,
 CFStreamError *outError
);

Parameters
ref

The AERemoteProcessResolverRef (page 557) to query. Acquired from a previous call to
AECreateRemoteProcessResolver (page 420).

outError
If the function result is NULL, outError contains information about the failure. See the Core Foundation
Reference Documentation for a description of the CFStreamError data type.

Return Value
In the case of an error, returns NULL, in which case the outError parameter provides error information. If
successful, returns a CFArrayRef of CFDictionaryRef objects containing information about the discovered
remote processes. Each dictionary contains the URL of a remote application and its human readable name;
it may also contain a CFNumberRef specifying a user ID for the application, if it has one; and it may also
contain a CFNumberRef specifying the process ID for the process. The array is owned by the resolver, so you
must retain it before disposing of the resolver object itself. For information on the keys for getting information
from the dictionary, see “Remote Process Dictionary Keys” (page 602).

Discussion
You first call AECreateRemoteProcessResolver (page 420) to obtain a reference to a resolver object you
can use to obtain a list of processes running on a specified remote machine. See the description for that
function for additional information. You then pass that reference to
AERemoteProcessResolverGetProcesses to get an array of objects containing information about the
discovered remote processes.

466 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

If the resolver was not previously scheduled for execution (by a call to the
AERemoteProcessResolverScheduleWithRunLoop (page 467) function),
AERemoteProcessResolverGetProcesseswill block until the resulting array is available or an error occurs.
If the resolver was previously scheduled but had not yet completed fetching the array, this call will block
until the resolver does complete.

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AERemoteProcessResolverScheduleWithRunLoop
Schedules a resolver for execution on a given run loop in a given mode.

void AERemoteProcessResolverScheduleWithRunLoop (
 AERemoteProcessResolverRef ref,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode,
 AERemoteProcessResolverCallback callback,
 const AERemoteProcessResolverContext *ctx
);

Parameters
ref

The AERemoteProcessResolverRef (page 557) to query. Acquired from a previous call to
AECreateRemoteProcessResolver (page 420).

runLoop
The run loop on which to schedule resolution of remote processes. For information on run loops, see
Introduction to Run Loops. See the Core Foundation Reference Documentation for a description of
the CFRunLoop data type.

runLoopMode
Specifies the run loop mode. See Input Modes for information on available modes. See the Core
Foundation Reference Documentation for a description of the CFStringRef data type.

callback
A callback function to be executed when the resolver completes. See
AERemoteProcessResolverCallback (page 532) for information on the callback definition.

ctx
Optionally supplies information of use while resolving remote processes. If this parameter is not NULL,
the info field of this structure is passed to the callback function (otherwise, the info parameter to the
callback function will explicitly be NULL). See AERemoteProcessResolverContext (page 547)
for a description of this data type.

Discussion
Schedules a resolver for execution on a given run loop in a given mode. The resolver will move through
various internal states as long as the specified run loop is run. When the resolver completes, either with
success or with an error condition, the callback is executed. There is no explicit unschedule of the resolver;
you must dispose of it to remove it from the run loop.

Functions 467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AERemoveCoercionHandler
Removes a coercion handler from a coercion handler dispatch table.

OSErr AERemoveCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581). See DescType (page 560).

handler
A universal procedure pointer to the coercion handler to remove. Although the parameters fromType
and toType are sufficient to identify the handler, you can identify the handler explicitly as a safeguard.
If you pass NULL for this parameter, the Apple Event Manager relies solely on the event class and
event ID to identify the handler. See AECoercionHandlerUPP (page 552).

isSysHandler
Specifies the coercion table to remove the handler from. Pass TRUE to remove the handler from the
system coercion table or FALSE to remove the handler from your application’s coercion table. Use of
the system coercion table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Use of system coercion tables is not recommended. For more information, see “Writing and Installing Coercion
Handlers” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

468 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AERemoveEventHandler
Removes an event handler entry from an Apple event dispatch table.

OSErr AERemoveEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the handler to remove. See AEEventClass (page 555).

theAEEventID
The event ID for the handler to remove. See AEEventID (page 556).

handler
A universal procedure pointer to the handler to remove. Although the parameters theAEEventClass
and theAEEventID are sufficient to identify the handler, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the event
class and event ID to identify the handler.

If you use the typeWildCard constant for either or both of the event class and event ID parameters,
AERemoveEventHandler will return an error unless an entry exists that specifies typeWildCard in
exactly the same way. For example, if you specify typeWildCard in both the theAEEventClass
parameter and the theAEEventID parameter, AERemoveEventHandler will not remove the first
handler for any event class and event ID in the dispatch table; instead, it will only remove a handler
if an entry exists that specifies type typeWildCard for both the event class and the event ID.

For an explanation of wildcard values, see the Discussion section for AEInstallEventHandler (page
449).

See AEEventHandlerUPP (page 555).

isSysHandler
Specifies the Apple event dispatch table to remove the handler from. Pass TRUE to remove the handler
from the system dispatch table or FALSE to remove the handler from your application’s dispatch
table. See Version Notes for related information.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

Functions 469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AERemoveObjectAccessor
Removes an object accessor function from an object accessor dispatch table.

OSErr AERemoveObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP theAccessor,
 Boolean isSysHandler
);

Parameters
desiredClass

The object class of the Apple event objects located by the object accessor function to remove. Pass
the value typeWildCard to remove an object accessor function whose entry in an object accessor
dispatch table specifies typeWildCard as the object class. Pass the value cProperty to remove an
object accessor function whose entry in an object accessor dispatch table specifies cProperty (a
constant used to specify a property of any object class). Some other possible values are defined in
“Object Class ID Constants” (page 599). See DescType (page 560).

containerType
The descriptor type of the token that identifies the container for the objects located by the object
accessor function to remove. (Token is defined in AEDisposeToken (page 425).) Pass the value
typeWildCard to remove an object accessor function whose entry in an object accessor dispatch
table specifies typeWildCard as the descriptor type of the token used to specify the container type.
See DescType (page 560).

theAccessor
A universal procedure pointer to the special handler to remove. Although the functionClass
parameter is sufficient to identify the handler to remove, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the function
class to identify the handler. A universal procedure pointer (UPP) to the object accessor function to
remove. Although the parameters desiredClass and containerType are sufficient to identify the
function to remove, you can identify the function explicitly by providing a UPP in this parameter. If
you pass NULL for this parameter, the Apple Event Manager relies solely on the desired class and
container type. See OSLAccessorUPP (page 560).

isSysHandler
Specifies the object accessor dispatch table to remove the object accessor function from. Pass TRUE
to remove the object accessor function from the system object accessor dispatch table or FALSE to
remove the object accessor function from your application’s object accessor dispatch table. Use of
the system object accessor dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

470 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AERemoveSpecialHandler
Removes a handler from a special handler dispatch table.

OSErr AERemoveSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
functionClass

The keyword for the special handler to remove. Pass one of the constants described in “Special Handler
Callback Constants” (page 603). See AEKeyword (page 556).

handler
A universal procedure pointer to the special handler to remove. Although the functionClass
parameter is sufficient to identify the handler to remove, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the function
class to identify the handler. See AEEventHandlerUPP (page 555).

isSysHandler
Specifies the special handler dispatch table to remove the handler from. Pass TRUE to remove the
handler from the system special handler dispatch table or FALSE to remove the handler from your
application’s special handler dispatch table. Use of the system special handler dispatch table is not
recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See also AEInstallSpecialHandler (page 452) and AEGetSpecialHandler (page 446).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a special handler in a system dispatch table with the goal that the handler
will get called when other applications receive events—this won’t work in Mac OS X.

In some previous versions of the Mac OS, applications might have reason to disable, within the application
only, all Apple Event Manager functions that support Apple event objects—that is, all the functions available
to an application as a result of linking the Object Support Library (OSL) and calling the AEObjectInit (page
455) function.

To disable the OSL, you should pass the keyword keySelectProc in the functionClass parameter, NULL
in the handler parameter, and FALSE in the isSysHandler parameter. An application that expects its copy
of the OSL to move after it is installed—for example, an application that keeps it in a stand-alone code
resource—would need to disable the OSL. When an application calls AEObjectInit to initialize the OSL,
the OSL installs the addresses of its functions as extensions to the pack. If those functions move, the addresses
become invalid.

Once you have called the AERemoveSpecialHandler function to disable the OSL, subsequent calls by your
application to any of the Apple Event Manager functions that support Apple event objects will return errors.
To initialize the OSL after disabling it with the AERemoveSpecialHandler function, your application must
call AEObjectInit again.

Functions 471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

If you expect to initialize the OSL and disable it several times, you should call AERemoveObjectAccessor
to remove your application’s object accessor functions from your application’s object accessor dispatch table
before you call AERemoveSpecialHandler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEReplaceDescData
Copies the specified data into the specified descriptor, replacing any previous data.

OSErr AEReplaceDescData (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 AEDesc *theAEDesc
);

Parameters
typeCode

Specifies the descriptor type of the data pointed to by dataPtr. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data to store in the specified descriptor.

dataSize
The size, in bytes, of the data pointed to by the dataSize parameter.

theAEDesc
A pointer to a descriptor. On return, contains the copied data. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEResetTimer
Resets the timeout value for an Apple event to its starting value.

472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr AEResetTimer (
 const AppleEvent *reply
);

Parameters
reply

A pointer to the default reply for an Apple event, provided by the Apple Event Manager. See
AppleEvent (page 559).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AEResetTimer function resets the timeout value for an Apple event to its starting value. A server
application can call this function when it knows it cannot fulfill a client application’s request (either by
returning a result or by sending back a reply Apple event) before the client application is due to time out.

When your application calls AEResetTimer, the Apple Event Manager for the server application uses the
default reply to send a Reset Timer event to the client application the Apple Event Manager for the client
application’s computer intercepts this Apple event and resets the client application’s timer for the Apple
event. (The Reset Timer event is never dispatched to a handler, so the client application does not need a
handler for it.)

Version Notes
Prior to Mac OS X version 10.3, calling AEResetTimer did not reset the timeout value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEResolve
Resolves an object specifier.

OSErr AEResolve (
 const AEDesc *objectSpecifier,
 short callbackFlags,
 AEDesc *theToken
);

Parameters
objectSpecifier

A pointer to the object specifier to resolve. See AEDesc (page 546).

callbackFlags
A value that determines what additional assistance, if any, your application can give the Apple Event
Manager when it parses the object specifier. The value is specified by adding the desired constants
described in “Callback Constants for the AEResolve Function” (page 571). Most applications use
kAEIDoMinimum.

Functions 473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

theToken
A pointer to a descriptor. On return, a token that identifies the Apple event objects specified by the
objectSpecifier parameter. (Token is defined in AEDisposeToken (page 425).)

Your object accessor functions may need to create many tokens to resolve a single object specifier;
this parameter contains only the final token that identifies the requested Apple event object.

Whenever the AEResolve function returns final token to your event handler as the result of the
resolving an object specifier passed to AEResolve, your application must deallocate the memory
used by the token. If your application uses complex tokens, it must dispose of the token by calling
AEDisposeToken (page 425). If your application uses simple tokens, you can use either
AEDisposeToken (page 425) or AEDisposeDesc (page 424). See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). The AEResolve function returns any
result code returned by one of your application’s object accessor functions or object callback functions. For
example, an object accessor function can return errAENoSuchObject (–1728) when it can’t find an Apple
event object, or it can return more specific result codes. If any object accessor function or object callback
function returns a result code other than noErr or errAEEventNotHandled, AEResolve immediately
disposes of any existing tokens and returns. The result code it returns in this case is the result code returned
by the object accessor function or the object callback function.

Discussion
If an Apple event parameter consists of an object specifier, your handler for the event typically calls the
AEResolve function to begin the process of resolving the object specifier.

The AEResolve function resolves the object specifier passed in the objectSpecifier parameter with the
help of your object accessor functions, described in “Object Accessor Callbacks” (page 523), and the object
callback functions, described in “Object Callback Functions” (page 524).

For information on how to receive error information from the AEResolve function, see
OSLGetErrDescProcPtr (page 541).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEResumeTheCurrentEvent
Informs the Apple Event Manager that your application wants to resume the handling of a previously
suspended Apple event or that it has completed the handling of the Apple event.

OSErr AEResumeTheCurrentEvent (
 const AppleEvent *theAppleEvent,
 const AppleEvent *reply,
 AEEventHandlerUPP dispatcher,
 SRefCon handlerRefcon
);

Parameters
theAppleEvent

A pointer to the Apple event to resume handling for. See AppleEvent (page 559).

474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

reply
A pointer to the default reply provided by the Apple Event Manager for the Apple event. See
AppleEvent (page 559).

dispatcher
One of the following:

 ■ a universal procedural pointer to a function that the Apple Event Manager calls to handle the
resumed event, or

 ■ the constant kAEUseStandardDispatch, which tells the Apple Event Manager to handle the
resumed event with its standard dispatching mechanism, or

 ■ the constant kAENoDispatch, which tells the Apple Event Manager the Apple event has been
completely processed and doesn’t need to be dispatched.

See the handlerRefcon parameter for more information.

The dispatch constants are described in “Resume Event Dispatch Constants” (page 603).

See AEEventHandlerUPP (page 555).

handlerRefcon
If the dispatcher parameter specifies a universal procedure pointer to your routine, the reference
constant is passed to your handler. If you pass the value kAEUseStandardDispatch or
kAENoDispatch for the dispatcher parameter, you must pass 0 for the handlerRefcon parameter.

If the value of dispatcher is kAEUseStandardDispatch, the Apple Event Manager ignores the
handlerRefcon parameter and instead passes the reference constant stored in the Apple event
dispatch table entry for the resumed Apple event.

If the value of dispatcher is any other value then it is a universal procedure pointer to an event
handler, and the Apple Event Manager passes the value from the handlerRefcon parameter as the
reference constant when it calls the handler.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). This is the error result from the Apple
event handler (or errAEHandlerNotFound). In most cases your application should ignore this error because
it will be seen by the Apple event sender as the keyErrorNumber parameter in the reply.

Discussion
Applications call AESuspendTheCurrentEvent (page 497) to suspend handling of an Apple event and
AEResumeTheCurrentEvent to resume it again. You typically call the AESuspendTheCurrentEvent
function when your application needs to do some lengthy processing before responding to the event.

When your application calls the AEResumeTheCurrentEvent function, the Apple Event Manager resumes
handling the specified Apple event using the handler specified in the dispatcher parameter, if any. If
kAENoDispatch is specified in the dispatcher parameter, AEResumeTheCurrentEvent simply informs
the Apple Event Manager that the specified event has been handled.

Special Considerations

This function is not thread-safe and, along with AESuspendTheCurrentEvent, should be called only on
the main thread.

When your application suspends an Apple event, it does not need to dispose of the Apple event or the reply
Apple event passed to the handler that suspends the event, whether or not the application eventually resumes
the event. However, if the application will later resume the event, the handler that suspends the event should
save a copy of the underlying data storage for the Apple event and the reply event. When resuming the
event, you pass those copies to AEResumeTheCurrentEvent, which uses the information they contain to
identify the original event and reply. For related information, see AESuspendTheCurrentEvent (page 497).

Functions 475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Make sure all processing involving the event or the reply has been completed before your application calls
AEResumeTheCurrentEvent. Do not call AEResumeTheCurrentEvent for an event that was not suspended.

An Apple event handler that suspends an event should not immediately call AEResumeTheCurrentEvent,
because the handler will generate an error. Instead, the handler should just return after suspending the event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESend
Sends the specified Apple event.

OSErr AESend (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 SInt32 timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc
);

Parameters
theAppleEvent

A pointer to the Apple event to send. See AppleEvent (page 559).

reply
A pointer to a reply Apple event. On return, contains the reply Apple event from the server application,
if you specified the kAEWaitReply flag in the sendMode parameter. If you specify the kAEQueueReply
flag in the sendMode parameter, you receive the reply Apple event in your event queue. If you specify
kAENoReply flag, the reply Apple event is a null descriptor (one with descriptor type typeNull). If
you specify kAEWaitReply in the sendMode parameter, and if the function returns successfully (see
function result below), your application is responsible for using the AEDisposeDesc (page 424)
function to dispose of the descriptor returned in the reply parameter.

sendMode
Specifies various options for how the server application should handle the Apple event. To obtain a
value for this parameter, you add together constants to set bits that specify the reply mode, the
interaction level, the application switch mode, the reconnection mode, and the return receipt mode.
For more information, see “AESendMode” (page 566).

sendPriority
See the Version Notes section below for important information. A value that specifies the priority for
processing the Apple event. You can specify normal or high priority, using the constants described
in “AESendMode” (page 566). See AESendPriority (page 558).

476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before timing out. Most applications
should use the kAEDefaultTimeout constant, which tells the Apple Event Manager to provide an
appropriate timeout duration. If the value of this parameter is kNoTimeOut, the Apple event never
times out. These constants are described in “Timeout Constants” (page 605).

idleProc
A universal procedure pointer to a function that handles events (such as update, operating-system,
activate, and null events) that your application receives while waiting for a reply. Your idle function
can also perform other tasks (such as displaying a wristwatch or spinning beach ball cursor) while
waiting for a reply or a return receipt.

If your application specifies the kAEWaitReply flag in the sendMode parameter and you wish your
application to get periodic time while waiting for the reply to return, you must provide an idle function.
Otherwise, you can pass a value of NULL for this parameter. For more information on the idle function,
see AEIdleProcPtr (page 531).

filterProc
A universal procedure pointer to a function that determines which incoming Apple events should be
received while the handler waits for a reply or a return receipt. If your application doesn’t need to
filter Apple events, you can pass a value of NULL for this parameter. If you do so, no application-oriented
Apple events are processed while waiting. For more information on the filter function, see
AEFilterProcPtr (page 530).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). The AESend function returns noErr if the
Event Manager successfully sends the Apple event—this value does not indicate that the Apple event was
handled successfully. If the handler returns a result code other than noErr, and if the client is waiting for a
reply, AESend returns the result code in the keyErrorNumber parameter of the reply Apple event. For a
result code other than noErr, you should not call the AEDisposeDesc (page 424) function to dispose of the
descriptor returned in the reply parameter, because the descriptor is invalid.

Discussion
You typically create an Apple event to send with the AECreateAppleEvent (page 416) function and add
information to it with the functions described in “Adding Parameters and Attributes to Apple Events and
Apple Event Records” (page 398).

If the Apple Event Manager cannot find a handler for the Apple event in the server application’s dispatch
table or in the system dispatch table, it returns the result code errAEEventNotHandled to the server
application (as the result of the AEProcessAppleEvent (page 457) function). If the client application is
waiting for a reply, the Apple Event Manager also returns this result code to the client in the keyErrorNumber
parameter of the reply event.

In addition to specifying the wait duration for replies, the timeOutInTicks parameter is used as a wait
value when queuing events for other applications. The Apple Event Manager waits for the specified duration
as it attempts to queue the event. If you specify kAEWaitReply and the target application quits or crashes
after the event is queued but before the reply is returned, the Apple Event Manager returns a
sessionClosedErr result code.

In some situations, there are advantages to sending Apple events with the AESendMessage (page 478)
function. That function requires less overhead than AESend and it allows you to send Apple events without
linking to the entire Carbon framework (and window server), as required by AESend. For more information
on sending Apple events, see “Sending an Apple Event” in Apple Events Programming Guide.

Functions 477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
In Mac OS 9 and earlier, you use the sendMode parameter to specify how the server should handle the Apple
event. “AESendMode” (page 566) provides a complete description of the constants you use with this parameter.
The sendPriority parameter is deprecated in Mac OS X and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESendMessage
Sends an AppleEvent to a target process without some of the overhead required by AESend.

OSStatus AESendMessage (
 const AppleEvent *event,
 AppleEvent *reply,
 AESendMode sendMode,
 long timeOutInTicks
);

Parameters
event

A pointer to the Apple event to send.

reply
A pointer to a reply Apple event. On return, contains the reply Apple event from the server application,
if you specified the kAEWaitReply flag in the sendMode parameter. If you specify the kAEQueueReply
flag in the sendMode parameter, you receive the reply Apple event in your event queue. If you specify
kAENoReply flag, the reply Apple event is a null descriptor (one with descriptor type typeNull). If
you specify kAEWaitReply in the sendMode parameter, and if the function returns successfully (see
function result below), your application is responsible for using the AEDisposeDesc (page 424)
function to dispose of the descriptor returned in the reply parameter.

sendMode
Specifies various options for how the server application should handle the Apple event. To obtain a
value for this parameter, you add together constants to set bits that specify the reply mode, the
interaction level, the application switch mode, the reconnection mode, and the return receipt mode.
For more information, see “AESendMode” (page 566).

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before timing out. Most applications
should use the kAEDefaultTimeout constant, which tells the Apple Event Manager to provide an
appropriate timeout duration. If the value of this parameter is kNoTimeOut, the Apple event never
times out. These constants are described in “Timeout Constants” (page 605).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The AESendMessage function allows you to send Apple events without linking to the entire Carbon framework,
as required by AESend (page 476). Linking with Carbon brings in the HIToolbox framework, which requires
that your application have a connection to the window server. Daemons and other applications that have

478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

no interface but wish to send and receive Apple events can use the following functions for working with
Apple events at a lower level: AESendMessage, AEGetRegisteredMachPort (page 445),
AEDecodeMessage (page 421), and AEProcessMessage (page 458). See the descriptions for those functions
for more information on when you might use them.

If the target of an event sent with AESendMessage is the current process (as specified by using
typeProcessSerialNumber of { 0, kCurrentProcess } in the Apple event being sent), the Apple
event is dispatched directly to the appropriate event handler in your process and not serialized.

Special Considerations

The AESendMessage function is both asynchronous and thread-safe, so you could, for example, set up a
thread to send an Apple event and wait for a reply. If you use threads, you must add a typeReplyPortAttr
attribute to your event that identifies the Mach port on which to receive the reply.

However, due to a bug that was present prior to Mac OS X version 10.5, you could not safely dispose of a
Mach port you created to use as the reply port. Disposing of the port could, rarely, lead to a crash, while
failing to dispose of if leaked resources. The sample code project AESendThreadSafe shows how to safely
work around the bug in earlier Mac OS versions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AESetInteractionAllowed
Specifies user interaction preferences for responding to an Apple event when your application is the server
application.

OSErr AESetInteractionAllowed (
 AEInteractAllowed level
);

Parameters
level

The desired user interaction level. Pass one of the values described in “User Interaction Level
Constants” (page 605).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
If you don’t set the user interaction level by calling AESetInteractionAllowed, the default level is
kAEInteractWithLocal (which indicates that your server application may interact with the user in response
to an Apple event only if the client application is on the same computer as the server application).

For additional information on interaction level, see AESend (page 476) and “AESendMode” (page 566).

See also AESetInteractionAllowed (page 479) and AEInteractWithUser (page 453).

Availability
Available in Mac OS X v10.0 and later.

Functions 479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Declared In
AEInteraction.h

AESetObjectCallbacks
Specifies the object callback functions for your application.

OSErr AESetObjectCallbacks (
 OSLCompareUPP myCompareProc,
 OSLCountUPP myCountProc,
 OSLDisposeTokenUPP myDisposeTokenProc,
 OSLGetMarkTokenUPP myGetMarkTokenProc,
 OSLMarkUPP myMarkProc,
 OSLAdjustMarksUPP myAdjustMarksProc,
 OSLGetErrDescUPP myGetErrDescProcPtr
);

Parameters
myCompareProc

Either a universal procedure pointer to the object comparison function provided by your application
or NULL if no function is provided. See OSLCompareUPP (page 561).

myCountProc
Either a universal procedure pointer to the object-counting function provided by your application or
NULL if no function is provided. See OSLCountUPP (page 561).

myDisposeTokenProc
Either a universal procedure pointer to the token disposal function provided by your application or
NULL if no function is provided. (Token is defined in AEDisposeToken (page 425). See
OSLDisposeTokenUPP (page 561).

myGetMarkTokenProc
Either a universal procedure pointer to the function for returning a mark token provided by your
application or NULL if no function is provided. See OSLGetMarkTokenUPP (page 562).

myMarkProc
Either a universal procedure pointer to the object-marking function provided by your application or
NULL if no function is provided. See OSLMarkUPP (page 562).

myAdjustMarksProc
Either a universal procedure pointer to the mark-adjusting function provided by your application or
NULL if no function is provided. See OSLAdjustMarksUPP (page 561).

myGetErrDescProcPtr
Either a universal procedure pointer to the error callback function provided by your application or
NULL if no function is provided. See OSLGetErrDescUPP (page 562).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This function is just a convenient wrapper for AEInstallSpecialHandler (page 452). You can manipulate
the special handler table with more control using the routines described in “Managing Special Handler
Dispatch Tables” (page 404).

Your application can provide only one each of the object callback functions specified by
AESetObjectCallbacks—one object comparison function, one object-counting function, and so on. As a
result, each of these callback functions must perform the requested task (comparing, counting, and so on)

480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

for all the object classes that your application supports. In contrast, your application may provide many
different object accessor functions if necessary, depending on the object classes and token types your
application supports. You install object accessor functions with AEInstallObjectAccessor (page 451).

To replace object callback functions that have been previously installed, you can call AESetObjectCallbacks
again. Each additional call to AESetObjectCallbacks replaces any object callback functions installed by
previous calls. Only those functions you specify are replaced; to avoid replacing existing callback functions,
specify a value of NULL for the functions you don’t want to replace.

You cannot use AESetObjectCallbacks to replace system object callback functions or object accessor
functions. To install system object callback functions, use the function AEInstallSpecialHandler (page
452).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AESetTheCurrentEvent
Specifies a current Apple event to take the place of the one your application has suspended.

OSErr AESetTheCurrentEvent (
 const AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to the Apple event to handle as the current event. See AppleEvent (page 559).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
There is usually no reason for your application to use the AESetTheCurrentEvent function. Instead of
calling this function, your application should let the Apple Event Manager set the current Apple event through
its standard dispatch mechanism.

If you need to avoid the dispatch mechanism, you must use the AESetTheCurrentEvent function only in
the following way:

1. Your application suspends handling of an Apple event by calling the AESuspendTheCurrentEvent (page
497) function.

2. Your application calls the AESetTheCurrentEvent function. This informs the Apple Event Manager
that your application is handling the suspended Apple event. In this way, any functions that call the
AEGetTheCurrentEvent (page 447) function can ascertain which event is currently being handled.

Functions 481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

3. When your application finishes handling the Apple event, it calls the AEResumeTheCurrentEvent (page
474) function with the value kAENoDispatch to tell the Apple Event Manager that the event has been
processed and need not be dispatched.

Special Considerations

This function is not thread-safe and should only be called on the main thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESizeOfAttribute
Gets the size and descriptor type of an Apple event attribute from a descriptor of type AppleEvent.

OSErr AESizeOfAttribute (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute data from. See AppleEvent (page 559).

theAEKeyword
The keyword that specifies the attribute. Some keyword constants are described in “Keyword Attribute
Constants” (page 593). See AEKeyword (page 556).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the attribute. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 581). Can be NULL.
See DescType (page 560).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the attribute. Can be NULL.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AESizeOfFlattenedDesc
Returns the amount of buffer space needed to store the descriptor after flattening it.

Size AESizeOfFlattenedDesc (
 const AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to be flattened. See AEDesc (page 546).

Return Value
The size, in bytes, required to store the flattened descriptor.

Discussion
You call this function before calling AEFlattenDesc (page 426) to determine the required size of the buffer
for the flatten operation.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESizeOfKeyDesc
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord.

OSErr AESizeOfKeyDesc (
 const AppleEvent *theAERecord,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter data from.

theAEKeyword
The keyword that specifies the desired parameter. Some keyword parameter constants are described
in “Keyword Parameter Constants” (page 595). See AEKeyword (page 556).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the Apple event parameter.
For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 581). See
DescType (page 560).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the Apple event parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
This function is declared as a macro that invokes AESizeOfParam (page 485), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AESizeOfParam (page 485).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESizeOfNthItem
Gets the data size and descriptor type of the descriptor at a specified position in a descriptor list.

OSErr AESizeOfNthItem (
 const AEDescList *theAEDescList,
 long index,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAEDescList

A pointer to the descriptor list containing the descriptor. See AEDescList (page 553).

index
A one-based positive integer indicating the position of the descriptor to get the data size for.
AESizeOfNthItem returns an error if you pass zero, a negative number, or a value that is out of
range.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the descriptor. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 581). See
DescType (page 560).

dataSize
A pointer to a size variable. On return, the length (in bytes) of the data in the descriptor.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AESizeOfParam
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord or
AppleEvent.

OSErr AESizeOfParam (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter data from. See AppleEvent (page 559).

theAEKeyword
The keyword that specifies the desired parameter. Some keyword parameter constants are described
in “Keyword Parameter Constants” (page 595). See AEKeyword (page 556).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the Apple event parameter.
For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 581). See
DescType (page 560).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the Apple event parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEStreamClose
Closes and deallocates an AEStreamRef.

OSStatus AEStreamClose (
 AEStreamRef ref,
 AEDesc *desc
);

Parameters
ref

An AEStreamRef (page 558)containing the stream data.

desc
A pointer to a descriptor for receiving a the stream data, or NULL if you want to discard the data. See
AEDesc (page 546).

Functions 485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Use this function to dispose of an AEStreamRef you created using AEStreamCreateEvent (page 487),
AEStreamOpen (page 489), or AEStreamOpenEvent (page 490). To retrieve the resulting descriptor from the
stream prior to disposal, pass in a pointer to an AEDesc structure in the desc parameter. If this parameter
exists, AEStreamClose fills in the descriptor with the stream data. If the stream contains invalid information,
possibly due to improperly balanced calls to “AEStream” functions, the returned descriptor type is set to
typeNull.

Regardless of any errors returned by this function, it is always safe to call AEDisposeDesc (page 424) on the
returned descriptor.

Specifying NULL for the desc parameter causes AEStreamClose to discard the stream data and dispose of
the AEStreamRef. When you call AEStreamClose in this way, you do not need to worry about balancing
nested calls to “AEStream” functions. This technique is particularly useful during error-handling situations
where you need to dispose of a stream but do not know its exact state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseDesc
Marks the end of a descriptor in an AEStreamRef.

OSStatus AEStreamCloseDesc (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 558)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Call this function to balance a preceding call to AEStreamOpenDesc (page 489) or
AEStreamOpenKeyDesc (page 490). This function completes the definition of the AEDesc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseList
Marks the end of a list of descriptors in an AEStreamRef.

486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus AEStreamCloseList (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 558)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Call this function to balance a preceding call to AEStreamOpenList (page 491). This function completes the
definition of the AEDescList.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseRecord
Marks the end of a record in an AEStreamRef.

OSStatus AEStreamCloseRecord (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 558)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Call this function to balance a preceding call to AEStreamOpenRecord (page 491). This function completes
the definition of the Apple event record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCreateEvent
Creates a new Apple event and opens a stream for writing data to it.

Functions 487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEStreamRef AEStreamCreateEvent (
 AEEventClass clazz,
 AEEventID id,
 DescType targetType,
 const void *targetData,
 Size targetLength,
 SInt16 returnID,
 SInt32 transactionID
);

Parameters
clazz

The event class of the Apple event. See AEEventClass (page 555).

id
The event ID of the Apple event. See AEEventID (page 556).

targetType
The address type for the addressing information in the next two parameters. Usually contains one of
the following values:typeApplSignature.typeKernelProcessID, ortypeProcessSerialNumber.
See DescType (page 560).

targetData
A pointer to the address information. The data in this pointer must match the data associated with
the specified targetType.

targetLength
The number of bytes pointed to by the targetData parameter.

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID. The return ID constant
is described in “ID Constants for the AECreateAppleEvent Function” (page 589). See AEReturnID (page
558).

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events. This transaction ID constant is described in “ID Constants for the AECreateAppleEvent
Function” (page 589). See AETransactionID (page 559).

Return Value
An AEStreamRef (page 558) associated with the new event.

Discussion
This routine effectively combines a call to AECreateAppleEvent (page 416) followed by a call to
AEStreamOpenEvent (page 490) to create a new Apple event in the stream. You can use the returned
AEStreamRef to add parameters to the new Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEStreamOpen
Opens a new AEStreamRef for use in building a descriptor.

AEStreamRef AEStreamOpen (
 void
);

Return Value
A new AEStreamRef (page 558) or NULL if the stream data structures cannot be allocated.

Discussion
This function creates a new stream for use in describing the contents of a descriptor, descriptor list, or Apple
event record (AEDesc, AEDescList, or AERecord).

You can use the returned AEStreamRef with other “AEStream” routines to build the contents of a descriptor.
When you are done building the descriptor, use AEStreamClose (page 485) to close the stream.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenDesc
Marks the beginning of a descriptor in an AEStreamRef.

OSStatus AEStreamOpenDesc (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

newType
A type code for the new AEDesc being added to the stream. See DescType (page 560).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Use this routine to mark the beginning of a descriptor definition in an AEDesc. After calling this routine, you
should call AEStreamWriteData (page 494) one or more times to write the descriptor data to the stream.
When you are done writing data, you must call AEStreamCloseDesc (page 486) to complete the descriptor
definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Functions 489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEStreamOpenEvent
Opens a stream for an existing Apple event.

AEStreamRef AEStreamOpenEvent (
 AppleEvent *event
);

Parameters
event

An existing Apple event. See AppleEvent (page 559).

Return Value
An AEStreamRef (page 558) for the Apple event or NULL if the stream data structures could not be allocated.

Discussion
Use this function to open a stream and add parameters to an existing Apple event. This function copies any
parameters already in the Apple event to the stream prior to returning the AEStreamRef. When you are
done adding parameters, use AEStreamClose (page 485) to save them to the Apple event and close the
stream.

If there is not enough available storage to complete the operation, AEStreamOpenEvent returns NULL and
leaves the Apple event unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenKeyDesc
Marks the beginning of a key descriptor in an AEStreamRef.

OSStatus AEStreamOpenKeyDesc (
 AEStreamRef ref,
 AEKeyword key,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
556).

newType
A type code for the new AEDesc being added to the stream. See DescType (page 560).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
Use this routine to mark the beginning of a keyword/descriptor definition in an Apple event record. After
calling this routine, you should call AEStreamWriteData (page 494) one or more times to write the record
data to the stream. When you are done writing data, you must call AEStreamCloseDesc (page 486) to
complete the record definition.

This routine must be called only as part of an Apple event record definition. You cannot use this routine to
write keyword/descriptor definitions to other descriptor types, such as an AEDesc or AEDescList, even if
those types are nested inside an Apple event record. In situations where you need to create nested records,
this routine opens a new keyword/descriptor definition in the Apple event record associated with the most
recent call to AEStreamOpenRecord (page 491).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenList
Marks the beginning of a descriptor list in an AEStreamRef.

OSStatus AEStreamOpenList (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This routine marks the beginning of a sequence of zero or more descriptor definitions that you use to build
an AEDescList structure. After calling this routine, you can write any number of AEDesc, AEDescList, or
AERecord structures to the stream as elements of the list. When you are done, you must call
AEStreamCloseList (page 486) to complete the AEDescList definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenRecord
Marks the beginning of an Apple event record in an AEStreamRef.

Functions 491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus AEStreamOpenRecord (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

newType
A type code for the new record you are adding to the stream. This value can be typeAERecord or
any other appropriate value. See DescType (page 560).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
This routine marks the beginning of a sequence of zero or more keyword/descriptor definitions that you use
to build an AERecord structure. You must balance each call to this method with a corresponding call to
AEStreamCloseRecord (page 487).

For information on adding keyword/descriptor data to the record, see the AEStreamOpenKeyDesc (page
490), AEStreamWriteKey (page 495), and AEStreamWriteKeyDesc (page 496) routines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOptionalParam
Designates a parameter in an Apple event as optional.

OSStatus AEStreamOptionalParam (
 AEStreamRef ref,
 AEKeyword key
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

key
The AEKeyword associated with any keyword/descriptor pair in an Apple event. See AEKeyword (page
556).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Calls to this routine must be preceded by a call to either AEStreamCreateEvent (page 487) or
AEStreamOpenEvent (page 490).

The descriptor associated with the specified key does not need to exist before you call this routine.

492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamSetRecordType
Sets the type of the most recently created record in an AEStreamRef.

OSStatus AEStreamSetRecordType (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

newType
The new type code for the AERecord being added to the stream. See DescType (page 560).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Use this routine to change the type of a record after it has been opened. You must call this routine between
calls to AEStreamOpenRecord (page 491) and AEStreamCloseRecord (page 487). The type you specify in
the newType parameter replaces the previous type specified by AEStreamOpenRecord (page 491).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteAEDesc
Copies an existing descriptor into an AEStreamRef.

OSStatus AEStreamWriteAEDesc (
 AEStreamRef ref,
 const AEDesc *desc
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

desc
A pointer to the descriptor you want to copy into the stream. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
You can use this routine to incorporate an existing descriptor into the stream. For example, you could use
this routine if you had a complex descriptor you wanted to add to multiple streams, but which would be
costly to create each time.

Do not use AEStreamOpenDesc (page 489) and AEStreamCloseDesc (page 486) with this routine to open
and close the descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteData
Appends data to the current descriptor in an AEStreamRef.

OSStatus AEStreamWriteData (
 AEStreamRef ref,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
You can call this routine any number of times to build up the data contents of the descriptor incrementally.
You must precede calls to this routine by a call to either AEStreamOpenDesc (page 489) or
AEStreamOpenKeyDesc (page 490). When you are done adding data to the descriptor, call
AEStreamCloseDesc (page 486) to complete the descriptor definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteDesc
Appends the data for a complete descriptor to an AEStreamRef.

494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus AEStreamWriteDesc (
 AEStreamRef ref,
 DescType newType,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

newType
A type code for the new AEDesc being added to the stream. See DescType (page 560).

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Use this routine to write the data for a descriptor to the stream. When using this routine, you must supply
all of the descriptor data at once.

Do not use AEStreamOpenDesc (page 489) and AEStreamCloseDesc (page 486) with this routine to open
and close the descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteKey
Marks the beginning of a keyword/descriptor pair for a descriptor in an AEStreamRef.

OSStatus AEStreamWriteKey (
 AEStreamRef ref,
 AEKeyword key
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
556).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Functions 495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
You must follow this call with a sequence of “AEStream” calls to specify exactly one descriptor that goes with
the keyword. The descriptor you create can be of type AEDesc, AEDescList, or AERecord.

If you are creating nested descriptors, this routine begins a new keyword/descriptor pair for the descriptor
most recently opened by a call to AEStreamWriteKey (page 495) or AEStreamOpenEvent (page 490). You
cannot use this routine to write parameters to any other types of descriptors, even if they are nested inside
of an AERecord.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteKeyDesc
Writes a complete keyword/descriptor pair to an AEStreamRef.

OSStatus AEStreamWriteKeyDesc (
 AEStreamRef ref,
 AEKeyword key,
 DescType newType,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 558) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
556).

newType
A type code for the new AEDesc being added to the stream. See DescType (page 560).

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Use this routine to add a descriptor to the currently open AERecord inside a stream. You cannot use this
routine to write parameters to any other types of descriptors, even if they are nested inside of an AERecord.
This routine can only be called in between calls to AEStreamOpenRecord (page 491) and
AEStreamCloseRecord (page 487).

This method is analogous to the Apple Event Manager routine AEPutParamPtr (page 464), except it is for
use with streams.

496 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AESuspendTheCurrentEvent
Suspends the processing of the Apple event that is currently being handled.

OSErr AESuspendTheCurrentEvent (
 const AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to the Apple event to suspend handling for. If the pointed-to Apple event is not the current
event, AESuspendTheCurrentEvent does nothing and returns noErr. See AppleEvent (page 559).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
You typically call the AESuspendTheCurrentEvent function from an Apple event handler function, such
as when your application needs to do some lengthy processing before responding to the event. After a
successful call to this function, you are not required to return a result or a reply for the Apple event that was
being handled. You can, however, return a result if you later call the AEResumeTheCurrentEvent (page
474) function to resume event processing.

Whether you will resume the suspended Apple event or not, you do not need to dispose of the Apple event
or the reply Apple event passed to your handler. However, if your handler will later resume the event, you
must save a copy of the underlying data storage for the Apple event and the reply event. When resuming
the event, you pass those copies to AEResumeTheCurrentEvent (page 474), which uses the information
they contain to identify the original event and reply.

You cannot merely save the pointers that are passed to your handler because they do not persist after your
handler returns (although the underlying Apple events do persist). Use a function such as
AEDuplicateDesc (page 426) to obtain copies of the Apple event and reply event. Later, after calling
AEResumeTheCurrentEvent to resume the event, call AEDisposeDesc (page 424) to dispose of the copies.

Special Considerations

This function is not thread-safe and, along with AEResumeTheCurrentEvent, should be called only on the
main thread.

If your application suspends handling of an Apple event it sends to itself, the Apple Event Manager immediately
returns from the AESend (page 476) call with the error code errAETimeout, regardless of the parameters
specified in the call to AESend. The function calling AESend should take the timeout error as confirmation
that the event was sent.

As with other calls to AESend that return a timeout error, the handler continues to process the event
nevertheless. The handler’s reply, if any, is provided in the reply event when the handling is completed. The
Apple Event Manager provides no notification that the reply is ready. If no data has yet been placed in the
reply event, the Apple Event Manager returns errAEReplyNotArrived when your application attempts to
extract data from the reply.

Functions 497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEUnflattenDesc
Unflattens the data in the passed buffer and creates a descriptor from it.

OSStatus AEUnflattenDesc (
 const void *buffer,
 AEDesc *result
);

Parameters
buffer

A pointer to memory, allocated by the application, that contains flattened data produced by a previous
call to AEFlattenDesc (page 426).

result
A null descriptor. On successful completion, points to a descriptor created from the flattened data.
The caller is responsible for disposing of the descriptor.

Return Value
A result code. Returns paramErr if the flattened data in buffer is found to be invalid. See “Apple Event
Manager Result Codes” (page 636) for other possible values.

Discussion
This function assumes the passed buffer contains valid flattened data, produced by a previous call to
AEFlattenDesc (page 426). See that function for a description of when you might want to flatten and
unflatten descriptors, and of possible limitations.

Flattening and unflattening works across OS versions, including between Mac OS 9 and Mac OS X.

Flattening is endian-neutral. That is, you can save flattened data on a machine that is either big-endian or
little-endian, then retrieve and unflatten the data on either type of machine, without any special steps by
your application.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

CreateCompDescriptor
Creates a comparison descriptor that specifies how to compare one or more Apple event objects with either
another Apple event object or a descriptor.

498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr CreateCompDescriptor (
 DescType comparisonOperator,
 AEDesc *operand1,
 AEDesc *operand2,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
comparisonOperator

The comparison operator for comparing the descriptors in the operand1 and operand2 parameters.
The standard comparison operators are defined in “Comparison Operator Constants” (page 574).

The actual comparison of the two operands is performed by the object comparison function provided
by the client application. The way a comparison operator is interpreted is up to each application.

See DescType (page 560).

operand1
A pointer to an object specifier. See AEDesc (page 546).

operand2
A pointer to a descriptor (which can be an object specifier or any other descriptor) whose value is
compared to the value of operand1. See AEDesc (page 546).

disposeInputs
A Boolean value. Pass TRUE if the function should automatically dispose of any descriptors you have
provided in the operand1 and operand2 parameters to the function. Pass FALSE if your application
will dispose of the descriptors itself. A value of FALSE may be more efficient for some applications
because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the comparison descriptor created by
CreateCompDescriptor. Your application must dispose of this descriptor after it has finished using
it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateLogicalDescriptor
Creates a logical descriptor that specifies a logical operator and one or more logical terms for the Apple Event
Manager to evaluate.

Functions 499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr CreateLogicalDescriptor (
 AEDescList *theLogicalTerms,
 DescType theLogicOperator,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
theLogicalTerms

A pointer to a list containing comparison descriptors (typeLogicalDescriptor), logical descriptors
(typeCompDescriptor), or both. If the value of the parameter theLogicOperator is kAEAND or
kAEOR, the list can contain any number of descriptors. If the value of the parameter
theLogicOperator is kAENOT, logically this list should contain a single descriptor. However, the
function will not return an error if the list contains more than one descriptor for a logical operator of
kAENOT. See AEDescList (page 553).

theLogicOperator
A logical operator represented by one of the constants described in “Constants for Object Specifiers,
Positions, and Logical and Comparison Operations” (page 575). What you pass for this parameter helps
determine what you pass for the theLogicalTerms parameter. See DescType (page 560).

disposeInputs
A Boolean value. Pass TRUE if the function should automatically dispose of the descriptors you have
provided in the theLogicalTerms parameter or (FALSE) if your application will. A value of FALSE
may be more efficient for some applications because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the logical descriptor created by
CreateLogicalDescriptor. Your application must dispose of this descriptor after it has finished
using it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
The CreateLogicalDescriptor function creates a logical descriptor, which specifies a logical operator
and one or more logical terms for the Apple Event Manager to evaluate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateObjSpecifier
Assembles an object specifier that identifies one or more Apple event objects, from other descriptors.

500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr CreateObjSpecifier (
 DescType desiredClass,
 AEDesc *theContainer,
 DescType keyForm,
 AEDesc *keyData,
 Boolean disposeInputs,
 AEDesc *objSpecifier
);

Parameters
desiredClass

The object class of the desired Apple event objects. See DescType (page 560).

theContainer
A pointer to a descriptor that describes the container for the requested object, usually in the form of
another object specifier. See AEDesc (page 546).

keyForm
The key form for the object specifier.

keyData
A pointer to a descriptor that supplies the key data for the object specifier.

disposeInputs
A Boolean value. Pass (TRUE) if the function should dispose of the descriptors for the theContainer
and keyData parameters or (FALSE) if your application will. A value of FALSE may be more efficient
for some applications because it allows them to reuse descriptors.

objSpecifier
On successful return, a pointer to the object specifier created by the CreateObjSpecifier function.
If the function returns successfully, your application should call the AEDisposeDesc (page 424)
function to dispose of this descriptor after it has finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateOffsetDescriptor
Creates an offset descriptor that specifies the position of an element in relation to the beginning or end of
its container.

OSErr CreateOffsetDescriptor (
 long theOffset,
 AEDesc *theDescriptor
);

Parameters
theOffset

A positive integer that specifies the offset from the beginning of the container (the first element has
an offset of 1), or a negative integer that specifies the offset from the end (the last element has an
offset of –1).

Functions 501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

theDescriptor
A pointer to a descriptor. On successful return, the offset descriptor created by
CreateOffsetDescriptor. On error, returns a null descriptor. Your application must dispose of the
descriptor after it has finished using it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateRangeDescriptor
Creates a range descriptor that specifies a series of consecutive elements in the same container.

OSErr CreateRangeDescriptor (
 AEDesc *rangeStart,
 AEDesc *rangeStop,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
rangeStart

A pointer to an object specifier that identifies the first Apple event object in the range. See
AEDesc (page 546).

rangeStop
A pointer to an object specifier that identifies the last Apple event object in the range. See
AEDesc (page 546).

disposeInputs
A Boolean value. Pass (TRUE) if the function should dispose of the descriptors for the rangeStart
and rangeStop parameters and set them to the null descriptor or (FALSE) if your application will. A
value of FALSEmay be more efficient for some applications because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the range descriptor created by
CreateRangeDescriptor. Your application must dispose of this descriptor after it has finished using
it. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Although the rangeStart and rangeStop parameters can be any object specifiers—including object
specifiers that specify more than one Apple event object—most applications expect these parameters to
specify single Apple event objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DisposeAECoerceDescUPP
Disposes of a universal procedure pointer to a function that coerces data stored in a descriptor.

void DisposeAECoerceDescUPP (
 AECoerceDescUPP userUPP
);

Discussion
See the AECoerceDescProcPtr (page 524) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAECoercePtrUPP
Disposes of a universal procedure pointer to a function that coerces data stored in a buffer.

void DisposeAECoercePtrUPP (
 AECoercePtrUPP userUPP
);

Discussion
See the AECoercePtrProcPtr (page 525) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAEDisposeExternalUPP
Disposes of a universal procedure pointer to a function that disposes of data supplied to the
AECreateDescFromExternalPtr function.

void DisposeAEDisposeExternalUPP (
 AEDisposeExternalUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to be disposed of. See AEDisposeExternalUPP (page 555).

Discussion
See the AECreateDescFromExternalPtr (page 418) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

Functions 503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DisposeAEEventHandlerUPP
Disposes of a universal procedure pointer to an event handler function.

void DisposeAEEventHandlerUPP (
 AEEventHandlerUPP userUPP
);

Discussion
See the AEEventHandlerProcPtr (page 528) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAEFilterUPP
Disposes of a universal procedure pointer to an Apple event filter function.

void DisposeAEFilterUPP (
 AEFilterUPP userUPP
);

Discussion
See the AEFilterProcPtr (page 530) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

DisposeAEIdleUPP
Disposes of a universal procedure pointer to an Apple event idle function.

void DisposeAEIdleUPP (
 AEIdleUPP userUPP
);

Discussion
See the AEIdleProcPtr (page 531) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

DisposeOSLAccessorUPP
Disposes of a universal procedure pointer to an object accessor function.

504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

void DisposeOSLAccessorUPP (
 OSLAccessorUPP userUPP
);

Discussion
See the OSLAccessorProcPtr (page 533) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLAdjustMarksUPP
Disposes of a universal procedure pointer to an object callback adjust marks function.

void DisposeOSLAdjustMarksUPP (
 OSLAdjustMarksUPP userUPP
);

Discussion
See the OSLAdjustMarksProcPtr (page 535) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLCompareUPP
Disposes of a universal procedure pointer to an object callback comparison function.

void DisposeOSLCompareUPP (
 OSLCompareUPP userUPP
);

Discussion
See the OSLCompareProcPtr (page 536) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLCountUPP
Disposes of a universal procedure pointer to an object callback count function.

Functions 505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

void DisposeOSLCountUPP (
 OSLCountUPP userUPP
);

Discussion
See the OSLCountProcPtr (page 538) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLDisposeTokenUPP
Disposes of a universal procedure pointer to an object callback dispose token function.

void DisposeOSLDisposeTokenUPP (
 OSLDisposeTokenUPP userUPP
);

Discussion
See the OSLDisposeTokenProcPtr (page 539) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLGetErrDescUPP
Disposes of a universal procedure pointer to an object callback get error descriptor function.

void DisposeOSLGetErrDescUPP (
 OSLGetErrDescUPP userUPP
);

Discussion
See the OSLGetErrDescProcPtr (page 541) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLGetMarkTokenUPP
Disposes of a universal procedure pointer to an object callback get mark function.

506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

void DisposeOSLGetMarkTokenUPP (
 OSLGetMarkTokenUPP userUPP
);

Discussion
See the OSLGetMarkTokenProcPtr (page 542) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLMarkUPP
Disposes of a universal procedure pointer to an object callback mark function.

void DisposeOSLMarkUPP (
 OSLMarkUPP userUPP
);

Discussion
See the OSLMarkProcPtr (page 544) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeAECoerceDescUPP
Calls a universal procedure pointer to a function that coerces data stored in a descriptor.

OSErr InvokeAECoerceDescUPP (
 const AEDesc *fromDesc,
 DescType toType,
 SRefCon handlerRefcon,
 AEDesc *toDesc,
 AECoerceDescUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the AECoerceDescProcPtr (page 524) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

Functions 507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

InvokeAECoercePtrUPP
Calls a universal procedure pointer to a function that coerces data stored in a buffer.

OSErr InvokeAECoercePtrUPP (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 DescType toType,
 SRefCon handlerRefcon,
 AEDesc *result,
 AECoercePtrUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the AECoercePtrProcPtr (page 525) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

InvokeAEDisposeExternalUPP
Calls a dispose external universal procedure pointer.

void InvokeAEDisposeExternalUPP (
 const void *dataPtr,
 Size dataLength,
 SRefCon refcon,
 AEDisposeExternalUPP userUPP
);

Parameters
dataPtr

A pointer to the data to be disposed of. The data must be immutable and must not be freed until this
UPP is called.

dataLength
The length, in bytes, of the data to be disposed of.

refcon
A reference constant, supplied by your application, that you can use in your dispose function.

Discussion
See the AEDisposeExternalProcPtr (page 527) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

508 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

InvokeAEEventHandlerUPP
Calls an event handler universal procedure pointer.

OSErr InvokeAEEventHandlerUPP (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 SRefCon handlerRefcon,
 AEEventHandlerUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the AEEventHandlerProcPtr (page 528) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

InvokeAEFilterUPP
Calls an Apple event filter universal procedure pointer.

Boolean InvokeAEFilterUPP (
 EventRecord *theEvent,
 SInt32 returnID,
 AETransactionID transactionID,
 const AEAddressDesc *sender,
 AEFilterUPP userUPP
);

Return Value
The return value of the callback function. The filter routine returns TRUE to accept the Apple event or FALSE
to filter it out.

Discussion
See the AEFilterProcPtr (page 530) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

InvokeAEIdleUPP
Calls an Apple event idle universal procedure pointer.

Functions 509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Boolean InvokeAEIdleUPP (
 EventRecord *theEvent,
 SInt32 *sleepTime,
 RgnHandle *mouseRgn,
 AEIdleUPP userUPP
);

Return Value
The return value of the callback function. The filter routine returns TRUE if your application is no longer willing
to wait for a reply from the server or for the user to bring the application to the front. It returns FALSE if your
application is still willing to wait.

Discussion
See the AEIdleProcPtr (page 531) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

InvokeOSLAccessorUPP
Calls an object accessor universal procedure pointer.

OSErr InvokeOSLAccessorUPP (
 DescType desiredClass,
 const AEDesc *container,
 DescType containerClass,
 DescType form,
 const AEDesc *selectionData,
 AEDesc *value,
 SRefCon accessorRefcon,
 OSLAccessorUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLAccessorProcPtr (page 533) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLAdjustMarksUPP
Calls an object callback adjust marks universal procedure pointer.

510 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr InvokeOSLAdjustMarksUPP (
 long newStart,
 long newStop,
 const AEDesc *markToken,
 OSLAdjustMarksUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLAdjustMarksProcPtr (page 535) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLCompareUPP
Calls an object callback comparison universal procedure pointer.

OSErr InvokeOSLCompareUPP (
 DescType oper,
 const AEDesc *obj1,
 const AEDesc *obj2,
 Boolean *result,
 OSLCompareUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLCompareProcPtr (page 536) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLCountUPP
Calls an object callback count universal procedure pointer.

Functions 511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr InvokeOSLCountUPP (
 DescType desiredType,
 DescType containerClass,
 const AEDesc *container,
 long *result,
 OSLCountUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLCountProcPtr (page 538) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLDisposeTokenUPP
Calls an object callback dispose token universal procedure pointer.

OSErr InvokeOSLDisposeTokenUPP (
 AEDesc *unneededToken,
 OSLDisposeTokenUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLDisposeTokenProcPtr (page 539) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLGetErrDescUPP
Calls an object callback get error descriptor universal procedure pointer.

OSErr InvokeOSLGetErrDescUPP (
 AEDesc **appDescPtr,
 OSLGetErrDescUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLGetErrDescProcPtr (page 541) callback function.

512 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLGetMarkTokenUPP
Calls an object callback get mark universal procedure pointer.

OSErr InvokeOSLGetMarkTokenUPP (
 const AEDesc *dContainerToken,
 DescType containerClass,
 AEDesc *result,
 OSLGetMarkTokenUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLGetMarkTokenProcPtr (page 542) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLMarkUPP
Calls an object callback mark universal procedure pointer.

OSErr InvokeOSLMarkUPP (
 const AEDesc *dToken,
 const AEDesc *markToken,
 long index,
 OSLMarkUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
See the OSLMarkProcPtr (page 544) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

Functions 513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

NewAECoerceDescUPP
Creates a new universal procedure pointer to a function that coerces data stored in a descriptor.

AECoerceDescUPP NewAECoerceDescUPP (
 AECoerceDescProcPtr userRoutine
);

Return Value
See AECoerceDescUPP (page 552).

Discussion
See the AECoerceDescProcPtr (page 524) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAECoercePtrUPP
Creates a new universal procedure pointer to a function that coerces data stored in a buffer.

AECoercePtrUPP NewAECoercePtrUPP (
 AECoercePtrProcPtr userRoutine
);

Return Value
See AECoercePtrUPP (page 552).

Discussion
See the AECoercePtrProcPtr (page 525) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAEDisposeExternalUPP
Creates a new universal procedure pointer to a function that disposes of data stored in a buffer.

AEDisposeExternalUPP NewAEDisposeExternalUPP (
 AEDisposeExternalProcPtr userRoutine
);

Return Value
See AEDisposeExternalUPP (page 555).

Discussion
See the AEDisposeExternalProcPtr (page 527) callback function.

514 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

NewAEEventHandlerUPP
Creates a new universal procedure pointer to an event handler function.

AEEventHandlerUPP NewAEEventHandlerUPP (
 AEEventHandlerProcPtr userRoutine
);

Return Value
See AEEventHandlerUPP (page 555).

Discussion
See the AEEventHandlerProcPtr (page 528) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAEFilterUPP
Creates a new universal procedure pointer to an Apple event filter function.

AEFilterUPP NewAEFilterUPP (
 AEFilterProcPtr userRoutine
);

Return Value
See AEFilterUPP (page 556).

Discussion
See the AEFilterProcPtr (page 530) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

NewAEIdleUPP
Creates a new universal procedure pointer to an Apple event idle function.

Functions 515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEIdleUPP NewAEIdleUPP (
 AEIdleProcPtr userRoutine
);

Return Value
See AEIdleUPP (page 556).

Discussion
See the AEIdleProcPtr (page 531) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

NewOSLAccessorUPP
Creates a new universal procedure pointer to an object accessor function.

OSLAccessorUPP NewOSLAccessorUPP (
 OSLAccessorProcPtr userRoutine
);

Return Value
See OSLAccessorUPP (page 560).

Discussion
See the OSLAccessorProcPtr (page 533) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLAdjustMarksUPP
Creates a new universal procedure pointer to an object callback adjust marks function.

OSLAdjustMarksUPP NewOSLAdjustMarksUPP (
 OSLAdjustMarksProcPtr userRoutine
);

Return Value
See OSLAdjustMarksUPP (page 561).

Discussion
See the OSLAdjustMarksProcPtr (page 535) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

516 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

NewOSLCompareUPP
Creates a new universal procedure pointer to an object callback comparison function.

OSLCompareUPP NewOSLCompareUPP (
 OSLCompareProcPtr userRoutine
);

Return Value
See OSLCompareUPP (page 561).

Discussion
See the OSLCompareProcPtr (page 536) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLCountUPP
Creates a new universal procedure pointer to an object callback count function.

OSLCountUPP NewOSLCountUPP (
 OSLCountProcPtr userRoutine
);

Return Value
See OSLCountUPP (page 561).

Discussion
See the OSLCountProcPtr (page 538) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLDisposeTokenUPP
Creates a new universal procedure pointer to an object callback dispose token function.

OSLDisposeTokenUPP NewOSLDisposeTokenUPP (
 OSLDisposeTokenProcPtr userRoutine
);

Return Value
See OSLDisposeTokenUPP (page 561).

Discussion
See the OSLDisposeTokenProcPtr (page 539) callback function.

Functions 517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLGetErrDescUPP
Creates a new universal procedure pointer to an object callback get error descriptor function.

OSLGetErrDescUPP NewOSLGetErrDescUPP (
 OSLGetErrDescProcPtr userRoutine
);

Return Value
See OSLGetErrDescUPP (page 562).

Discussion
See the OSLGetErrDescProcPtr (page 541) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLGetMarkTokenUPP
Creates a new universal procedure pointer to an object callback get mark function.

OSLGetMarkTokenUPP NewOSLGetMarkTokenUPP (
 OSLGetMarkTokenProcPtr userRoutine
);

Return Value
See OSLGetMarkTokenUPP (page 562).

Discussion
See the OSLGetMarkTokenProcPtr (page 542) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLMarkUPP
Creates a new universal procedure pointer to an object callback mark function.

518 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSLMarkUPP NewOSLMarkUPP (
 OSLMarkProcPtr userRoutine
);

Return Value
See OSLMarkUPP (page 562).

Discussion
See the OSLMarkProcPtr (page 544) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

vAEBuildAppleEvent
Allows you to encapsulate calls to AEBuildAppleEvent in a wrapper routine.

OSStatus vAEBuildAppleEvent (
 AEEventClass theClass,
 AEEventID theID,
 DescType addressType,
 const void *addressData,
 Size addressLength,
 SInt16 returnID,
 SInt32 transactionID,
 AppleEvent *resultEvt,
 AEBuildError *error,
 const char *paramsFmt,
 va_list args
);

Parameters
theClass

The event class for the resulting Apple event. See AEEventClass (page 555).

theID
The event id for the resulting Apple event. See AEEventID (page 556).

addressType
The address type for the addressing information described in the next two parameters: usually one
of typeApplSignature, typeProcessSerialNumber, or typeKernelProcessID. See
DescType (page 560).

addressData
A pointer to the address information.

addressLength
The number of bytes pointed to by the addressData parameter.

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID.

Functions 519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events.

result
A pointer to a descriptor where the resulting descriptor should be stored. See AppleEvent (page
559) for a description of the data type.

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See “AEBuild Error Codes” (page 563) for the syntax error codes that can be returned in this structure.

paramsFmt
An AEBuild format string describing the AppleEvent record to be created. The format of these strings
is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends.

args
A variable array of arguments to be substituted into the paramsFmt format string. See the ANSI C
Interfaces documentation for a description of the va_list data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Passing an argument list to vAEBuildAppleEvent corresponds to passing a series of individual parameters
to the AEBuildAppleEvent (page 408) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The vAEBuildAppleEvent function and related routines allow you to consolidate all of the calls required
to construct a complex Apple event descriptor into a single system call that creates the desired structure as
directed by a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

vAEBuildDesc
Allows you to encapsulate calls to AEBuildDesc in your own wrapper routines.

520 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2045.html

OSStatus vAEBuildDesc (
 AEDesc *dst,
 AEBuildError *error,
 const char *src,
 va_list args
);

Parameters
dst

A pointer to a descriptor where the resulting descriptor should be stored. See AEDesc (page 546).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 546).

src
An AEBuild format string describing the descriptor to be created.

args
A reference to a previously defined, variable argument parameter list to use with the descriptor-string.
The file <stdarg.h> defines macros for declaring and using the va_list data type.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See “Apple
Event Manager Result Codes” (page 636).

Discussion
Passing an argument list to vAEBuildDesc corresponds to passing a series of individual parameters to the
AEBuildDesc (page 410) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple Event Manager routines to build up the descriptor piece by piece.
The vAEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

vAEBuildParameters
Allows you to encapsulate calls to AEBuildParameters in your own stdarg-style wrapper routines, using
techniques similar to those allowed by vsprintf.

Functions 521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSStatus vAEBuildParameters (
 AppleEvent *event,
 AEBuildError *error,
 const char *format,
 va_list args
);

Parameters
event

The Apple event to which you are adding parameters. See AppleEvent (page 559).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 546).

format
An AEBuild format string describing the AEDesc parameters to be created.

args
A reference to a previously defined, variable argument parameter list to use with the descriptor-string.
The file <stdarg.h> defines macros for declaring and using the va_list data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636).

Discussion
Passing an argument list to vAEBuildParameters corresponds to passing a series of individual parameters
to the AEBuildParameters (page 411) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The vAEBuildParameters function and related routines allow you to consolidate all of the calls required
to construct a complex Apple event descriptor into a single system call that creates the desired structure as
directed by a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Callbacks by Task

Callbacks When Resolving Remote Processes

AERemoteProcessResolverCallback (page 532)
Defines a pointer to a function the Apple Event Manager calls when the asynchronous execution of
a remote process resolver completes, either due to success or failure, after a call to the
AERemoteProcessResolverScheduleWithRunLoop function. Your callback function can use the
reference passed to it to get the remote process information.

522 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Callbacks When Creating Apple Events

AEDisposeExternalProcPtr (page 527)
Defines a pointer to a function the Apple Event Manager calls to dispose of a descriptor created by
the AECreateDescFromExternalPtr function. Your callback function disposes of the buffer you
originally passed to that function.

Callbacks When Sending Apple Events

AEFilterProcPtr (page 530)
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply
to an Apple event. Your filter function determines which high-level events your application is willing
to handle.

AEIdleProcPtr (page 531)
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply
to an Apple event. Your idle function must handle update, null, operating-system, and activate events.

Coercing Apple Event Data Callbacks

AECoerceDescProcPtr (page 524)
Defines a pointer to a function that coerces data stored in a descriptor. Your descriptor coercion
callback function coerces the data from the passed descriptor to the specified type, returning the
coerced data in a second descriptor.

AECoercePtrProcPtr (page 525)
Defines a pointer to a function that coerces data stored in a buffer. Your pointer coercion callback
routine coerces the data from the passed buffer to the specified type, returning the coerced data in
a descriptor.

Handling Apple Events Callbacks

AEEventHandlerProcPtr (page 528)
Defines a pointer to a function that handles one or more Apple events. Your Apple event handler
function performs any action requested by the Apple event, adds parameters to the reply Apple event
if appropriate (possibly including error information), and returns a result code.

Object Accessor Callbacks

OSLAccessorProcPtr (page 533)
Your object accessor function either finds elements or properties of an Apple event object.

Callbacks by Task 523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Object Callback Functions

OSLAdjustMarksProcPtr (page 535)
Defines a pointer to an adjust marks callback function. Your adjust marks function unmarks objects
previously marked by a call to your marking function.

OSLCompareProcPtr (page 536)
Defines a pointer to an object comparison callback function. Your object comparison function compares
one Apple event object to another or to the data for a descriptor.

OSLCountProcPtr (page 538)
Defines a pointer to an object counting callback function. Your object counting function counts the
number of Apple event objects of a specified class in a specified container object.

OSLDisposeTokenProcPtr (page 539)
Defines a pointer to a dispose token callback function. Your dispose token function, required only if
you use a complex token format, disposes of the specified token.

OSLGetErrDescProcPtr (page 541)
Defines a pointer to an error descriptor callback function. Your error descriptor callback function
supplies a pointer to an address where the Apple Event Manager can store the current descriptor if
an error occurs during a call to the AEResolve function.

OSLGetMarkTokenProcPtr (page 542)
Defines a pointer to a mark token callback function. Your mark token function returns a mark token.

OSLMarkProcPtr (page 544)
Defines a pointer to an object marking callback function. Your object-marking function marks a specific
Apple event object.

Callbacks

AECoerceDescProcPtr
Defines a pointer to a function that coerces data stored in a descriptor. Your descriptor coercion callback
function coerces the data from the passed descriptor to the specified type, returning the coerced data in a
second descriptor.

typedef OSErr (*AECoerceDescProcPtr)
(
 const AEDesc * fromDesc,
 DescType toType,
 long handlerRefcon,
 AEDesc * toDesc
);

If you name your function MyAECoerceDescCallback, you would declare it like this:

OSErr MyAECoerceDescCallback (
 const AEDesc * fromDesc,
 DescType toType,
 long handlerRefcon,
 AEDesc * toDesc
);

524 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Parameters
fromDesc

A pointer to the descriptor that contains the data to coerce. See AEDesc (page 546).

toType
The desired descriptor type for the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for the handler. The Apple
Event Manager passes this value to the handler each time it calls it. The reference constant may have
a value of 0.

toDesc
A pointer to a descriptor where your coercion routine must store the descriptor that contains the
coerced data. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your handler should return noErr if it
successfully handled the coercion, errAECoercionFailed if it can’t handle the coercion and it wants the
Apple Event Manager to continue dispatching to other coercion handlers, or a nonzero result code otherwise.

Discussion
Your coercion handler should coerce the data to the desired descriptor type and return the resulting data in
the descriptor specified by the result parameter.

To provide a pointer to your descriptor coercion callback function, you create a universal procedure pointer
(UPP) of type AECoerceDescUPP (page 552), using the function NewAECoerceDescUPP (page 514). You can
do so with code like the following:

AECoerceDescUPP MyCoerceDescUPP;
MyCoerceDescUPP = NewAECoerceDescUPP (&MyCoerceDescCallback)

You can then pass the UPP MyCoerceDescUPP as a parameter to any function that installs or removes a
coercion handler, such as AEInstallCoercionHandler (page 448). If your application installs the same
coercion handler to coerce more than one type of data, you can use the same UPP to install the handler
multiple times.

If you wish to call your descriptor coercion callback function directly, you can use the
InvokeAECoerceDescUPP (page 507) function.

After you are finished with a descriptor coercion callback function, and have removed it with the
AERemoveCoercionHandler (page 468) function, you can dispose of the UPP with the
DisposeAECoerceDescUPP (page 503) function. However, don’t dispose of the UPP if any remaining coercion
handler uses it or if you plan to install the coercion handler again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercePtrProcPtr
Defines a pointer to a function that coerces data stored in a buffer. Your pointer coercion callback routine
coerces the data from the passed buffer to the specified type, returning the coerced data in a descriptor.

Callbacks 525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef OSErr (*AECoercePtrProcPtr) (
 DescType typeCode,
 const void * dataPtr,
 Size dataSize,
 DescType toType,
 long handlerRefcon,
 AEDesc * result
);

If you name your function MyAECoercePtrCallback, you would declare it like this:

OSErr MyAECoercePtrCallback (
 DescType typeCode,
 const void * dataPtr,
 Size dataSize,
 DescType toType,
 long handlerRefcon,
 AEDesc * result
);

Parameters
typeCode

The descriptor type of the original data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 581). See DescType (page 560).

dataPtr
A pointer to the data to coerce.

dataSize
The length, in bytes, of the data to coerce.

toType
The desired descriptor type for the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 581). See DescType (page 560).

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for the handler. The Apple
Event Manager passes this value to the handler each time it calls it. The reference constant may have
a value of NULL.

result
A pointer to a descriptor where your coercion routine must store the descriptor that contains the
coerced data. If your routine cannot coerce the data, return a null descriptor. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your handler should return noErr if it
successfully handled the coercion, errAECoercionFailed if it can’t handle the coercion and it wants the
Apple Event Manager to continue dispatching to other coercion handlers, or a nonzero result code otherwise.

Discussion
To provide a pointer to your coercion callback function, you create a universal procedure pointer (UPP) of
type AECoercePtrUPP (page 552), using the function NewAECoercePtrUPP (page 514). You can do so with
code like the following:

AECoercePtrUPP MyCoercePtrUPP;
MyCoercePtrUPP = NewAECoercePtrUPP (&MyCoercePtrCallback)

526 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

You can then pass the UPP MyCoercePtrUPP as a parameter to any function that installs or removes a
coercion handler, such as AEInstallCoercionHandler (page 448). If your application installs the same
coercion handler to coerce more than one type of data, you can use the same UPP to install the handler
multiple times.

If you wish to call your coercion callback function directly, you can use the InvokeAECoercePtrUPP (page
508) function.

After you are finished with a coercion callback function, and have removed it with the
AERemoveCoercionHandler (page 468) function, you can dispose of the UPP with the
DisposeAECoercePtrUPP (page 503) function. However, don’t dispose of the UPP if any remaining coercion
handler uses it or if you plan to install the coercion handler again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDisposeExternalProcPtr
Defines a pointer to a function the Apple Event Manager calls to dispose of a descriptor created by the
AECreateDescFromExternalPtr function. Your callback function disposes of the buffer you originally
passed to that function.

typedef (void, AEDisposeExternalProcPtr)(
 const void *dataPtr,
 Size dataLength,
 long refcon);

If you name your function MyAEDisposeExternalCallback, you would declare it like this:

void MyAEDisposeExternalCallback (
 const void *dataPtr,
 Size dataLength,
 long refcon);

Parameters
dataPtr

A pointer to the data to be disposed of. The data must be immutable and must not be freed until this
callback function is called.

dataLength
The length, in bytes, of the data in the dataPtr parameter.

refcon
A reference constant, supplied by your application in its original call to
AECreateDescFromExternalPtr (page 418). The Apple Event Manager passes this value to your
dispose function each time it calls it. The reference constant may have a value of 0.

Return Value
Your callback routine should not return a value.

Callbacks 527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
Your application must provide a universal procedure pointer to a dispose function as a parameter to the
AECreateDescFromExternalPtr (page 418) function.

To provide a pointer to your dispose callback function, you create a universal procedure pointer (UPP) of
type AEDisposeExternalProcPtr, using the function NewAEDisposeExternalUPP (page 514). You can
do so with code like the following:

AEDisposeExternalProcPtr MyDisposeCallbackUPP;
MyDisposeCallbackUPP = NewAEDisposeExternalUPP (&MyAEDisposeExternalCallback);

You can then pass the UPPMyDisposeCallbackUPP as a parameter to theAECreateDescFromExternalPtr
function.

If you wish to call your dispose callback function directly, you can use the
InvokeAEDisposeExternalUPP (page 508) function.

After you are finished with your dispose callback function, you can dispose of the UPP with the
DisposeAEDisposeExternalUPP (page 503) function. However, if you will use the same dispose function
in subsequent calls to AECreateDescFromExternalPtr, you can reuse the same UPP, rather than dispose
of it and later create a new UPP.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEEventHandlerProcPtr
Defines a pointer to a function that handles one or more Apple events. Your Apple event handler function
performs any action requested by the Apple event, adds parameters to the reply Apple event if appropriate
(possibly including error information), and returns a result code.

typedef OSErr (*AEEventHandlerProcPtr)
(
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 long handlerRefcon
);

If you name your function MyAEEventHandlerCallback, you would declare it like this:

OSErr MyAEEventHandlerCallback (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 long handlerRefcon
);

Parameters
theAppleEvent

A pointer to the Apple event to handle. See AppleEvent (page 559).

528 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

reply
A pointer to the default reply Apple event provided by the Apple Event Manager. See
AppleEvent (page 559). If no reply is expected, reply has descriptor type typeNull.

handlerRefcon
The reference constant stored in the Apple event dispatch table when you install the handler function
for the Apple event. You can store any 32-bit value in the dispatch table and use it any way you want
when the handler is called. The reference constant may have a value of NULL.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your handler should always return noErr
if it successfully handled the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. For more information, see the Discussion
section.

Discussion
An Apple event handler should extract any parameters and attributes from the Apple event, perform the
requested action, and add parameters to the reply Apple event if appropriate. You must provide an Apple
event handler for each Apple event your application supports. The AEProcessAppleEvent (page 457)
function calls one of your Apple event handlers when it processes an Apple event.

If an error occurs because your application cannot understand the event, return errAEEventNotHandled,
so that the Apple Event Manager may be able to find another handler to handle the event. If the error occurs
because the event is impossible to handle as specified, return the result code returned by whatever function
caused the failure, or whatever other result code is appropriate.

For example, suppose your application receives a kAEGetData event that requests the name of the current
printer, and your application cannot handle such an event. In this situation, you should return
errAEEventNotHandled so that another handler available to the Apple Event Manager can have a chance
to handle the event. This strategy allows users to take advantage of system capabilities from within your
application via system handlers.

If your Apple event handler calls the AEResolve (page 473) function and AEResolve calls an object accessor
function in the system object accessor dispatch table, your Apple event handler may not recognize the
descriptor type of the token returned by the function. In this case, your handler should return the result code
errAEUnknownObjectType. When your handler returns this result code, the Apple Event Manager attempts
to locate a system Apple event handler that can recognize the token.

For additional information on dealing with error conditions, see OSLGetErrDescProcPtr (page 541).

To provide a pointer to your event handler callback function, you create a universal procedure pointer (UPP)
of type AEEventHandlerUPP (page 555), using the function NewAEEventHandlerUPP (page 515). You can
do so with code like the following:

AEEventHandlerUPP MyEventHandlerUPP;
MyEventHandlerUPP = NewAEEventHandlerUPP (&MyEventHandlerCallback)

You can then pass the UPP MyEventHandlerUPP as a parameter to any function that installs or removes a
handler, such as AEInstallEventHandler (page 449). If your application installs the same event handler
to handle more than one kind of event (more than one pair of event class and event ID), you can use the
same UPP to install the handler multiple times.

If you wish to call your event handler callback function directly, you can use the
InvokeAEEventHandlerUPP (page 509) function.

Callbacks 529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

After you are finished with an event handler callback function, and have removed it with the
AERemoveEventHandler (page 469) function, you can dispose of the UPP with the
DisposeAEEventHandlerUPP (page 504) function. However, don’t dispose of the UPP if any remaining
handler uses it or if you plan to install the handler again.

Version Notes
Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive an Apple event—this won’t work in Mac OS X. For more information,
see “The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFilterProcPtr
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply to an
Apple event. Your filter function determines which high-level events your application is willing to handle.

typedef Boolean (*AEFilterProcPtr) (
 EventRecord * theEvent,
 long returnID,
 long transactionID,
 const AEAddressDesc * sender
);

If you name your function MyAEFilterCallback, you would declare it like this:

Boolean MyAEFilterCallback (
 EventRecord * theEvent,
 long returnID,
 long transactionID,
 const AEAddressDesc * sender
);

Parameters
theEvent

A pointer to the event record for a high-level event. The next three parameters contain valid information
only if the event is an Apple event. See the Event Manager documentation for a description of the
EventRecord data type.

returnID
Return ID for the Apple event.

transactionID
Transaction ID for the Apple event.

sender
A pointer to the address of the process that sent the Apple event. See AEAddressDesc (page 551).

Return Value
Your filter routine returns TRUE to accept the Apple event or FALSE to filter it out.

530 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
If your application provides a universal procedure pointer to a reply filter function as a parameter to the
AESend (page 476) function, the reply filter function can indicate any high-level events that it is willing to
handle while your application is waiting for a reply.

If your filter function returns true, the Apple Event Manager will dispatch the event through the standard
dispatch mechanism (equivalent to calling AEProcessAppleEvent (page 457)).

To provide a pointer to your reply filter callback function, you create a universal procedure pointer (UPP) of
type AEFilterUPP (page 556), using the function NewAEFilterUPP (page 515). You can do so with code
like the following:

AEFilterUPP MyReplyFilterUPP;
MyReplyFilterUPP = NewAEFilterUPP (&MyReplyFilterCallback)

You can then pass the UPP MyReplyFilterUPP as a parameter to the AESend function.

If you wish to call your filter callback function directly, you can use the InvokeAEFilterUPP (page 509)
function.

After you are finished with your filter callback function, you can dispose of the UPP with the
DisposeAEFilterUPP (page 504) function. However, if you will use the same filter function in subsequent
calls to AESend, you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEIdleProcPtr
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply to an
Apple event. Your idle function must handle update, null, operating-system, and activate events.

typedef Boolean (*AEIdleProcPtr) (
 EventRecord * theEvent,
 long * sleepTime,
 RgnHandle * mouseRgn
);

If you name your function MyAEIdleCallback, you would declare it like this:

Boolean MyAEIdleCallback (
 EventRecord * theEvent,
 long * sleepTime,
 RgnHandle * mouseRgn
);

Parameters
theEvent

A pointer to the event record of the event to process. See the Event Manager documentation for a
description of the EventRecord data type.

Callbacks 531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

sleepTime
A pointer to a value that specifies the amount of time (in ticks) your application is willing to relinquish
the processor if no events are pending.

mouseRgn
A pointer to a value that specifies a screen region that determines the conditions under which your
application is to receive notice of mouse-moved events. See the QuickDraw Manager documentation
for a description of the RgnHandle data type.

Return Value
Your idle routine returns TRUE if your application is no longer willing to wait for a reply from the server or
for the user to bring the application to the front. It returns FALSE if your application is still willing to wait.

Discussion
If your application provides a pointer to an idle function as a parameter to the AESend (page 476) function
or the AEInteractWithUser (page 453) function, the Apple Event Manager will call the idle function to
handle any update event, null event, operating-system event, or activate event received for your application
while it is waiting for a reply.

To provide a pointer to your idle callback function, you create a universal procedure pointer (UPP) of type
AEIdleUPP (page 556), using the function NewAEIdleUPP (page 515). You can do so with code like the
following:

AEIdleUPP MyIdleUPP;
MyIdleUPP = NewAEIdleUPP (&MyIdleCallback)

You can then pass the UPP MyIdleUPP as a parameter to either the AESend function or the
AEInteractWithUser function.

If you wish to call your idle callback function directly, you can use the InvokeAEIdleUPP (page 509) function.

After you are finished with your idle callback function, you can dispose of the UPP with the
DisposeAEIdleUPP (page 504) function. However, if you will use the same idle function in subsequent calls
to AESend or AEInteractWithUser, you can reuse the same UPP, rather than dispose of it and later create
a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AERemoteProcessResolverCallback
Defines a pointer to a function the Apple Event Manager calls when the asynchronous execution of a remote
process resolver completes, either due to success or failure, after a call to the
AERemoteProcessResolverScheduleWithRunLoop function. Your callback function can use the reference
passed to it to get the remote process information.

typedef (void, AERemoteProcessResolverCallback)(
 AERemoteProcessResolverRef ref,
 void *info);

If you name your function MyAERemoteProcessCallback, you would declare it like this:

void MyAERemoteProcessCallback (

532 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 AERemoteProcessResolverRef ref,
 void *info);

Parameters
ref

A reference of type AERemoteProcessResolverRef (page 557) you can query to obtain the remote
process information. Acquired from a previous call to AECreateRemoteProcessResolver (page
420).

info
An untyped pointer your application can use to pass information it needs when resolving remote
processes. The application originally supplies this pointer in the
AERemoteProcessResolverContext (page 547) structure in the ctx parameter) when it calls the
AERemoteProcessResolverScheduleWithRunLoop function.

Return Value
Your callback routine should not return a value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

OSLAccessorProcPtr
Your object accessor function either finds elements or properties of an Apple event object.

typedef OSErr (*OSLAccessorProcPtr) (
 DescType desiredClass,
 const AEDesc * container,
 DescType containerClass,
 DescType form,
 const AEDesc * selectionData,
 AEDesc * value,
 long accessorRefcon
);

If you name your function MyObjectAccessorCallback, you would declare it like this:

OSErr MyObjectAccessorCallback (
 DescType desiredClass,
 const AEDesc * container,
 DescType containerClass,
 DescType form,
 const AEDesc * selectionData,
 AEDesc * value,
 long accessorRefcon
);

Parameters
desiredClass

The object class of the desired Apple event object or objects. Constants for object class IDs are
described in “Object Class ID Constants” (page 599). See DescType (page 560).

Callbacks 533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

container
A pointer to a descriptor that specifies the container of the desired Apple event object or objects. See
AEDesc (page 546).

containerClass
The object class of the container. Constants for object class IDs are described in “Object Class ID
Constants” (page 599). See DescType (page 560).

form
The key form specified by the object specifier being resolved. Constants for key form are described
in “Key Form and Descriptor Type Object Specifier Constants” (page 590). See DescType (page 560).

selectionData
A pointer to a descriptor containing the key data specified by the object specifier being resolved. See
AEDesc (page 546).

value
A pointer to a descriptor where your object accessor routine stores a descriptor that identifies the
found object. See AEDesc (page 546).

accessorRefcon
A reference constant. The Apple Event Manager passes this value to your object accessor function
each time it calls it. The reference constant may have a value of 0.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your object accessor function should
return noErr if it successfully located the requested object and errAEEventNotHandled if it could not
locate the object. When the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object accessor function, it attempts to use other methods of locating the requested objects, such
as calling an equivalent system object accessor function.

Discussion
To resolve an object specifier, your application calls the AEResolve (page 473) function. AEResolve in turn
calls application-defined object accessor functions to locate specific Apple event objects and properties in
the application’s data structures. Your application provides one or more object accessor functions that can
locate all the element classes and properties it supports.

Each object accessor function provided by your application should either find elements or properties of an
Apple event object. The AEResolve function uses the object class ID of the specified Apple event object
and the descriptor type of the token that identifies the object’s container to determine which object accessor
function to call. To install an object accessor function, use the AEInstallObjectAccessor (page 451)
function.

To provide a pointer to your object accessor callback function, you create a universal procedure pointer (UPP)
of type OSLAccessorUPP (page 560), using the function NewOSLAccessorUPP (page 516). You can do so
with code like the following:

AEObjectAccessorUPP MyObjectAccessorUPP;
MyObjectAccessorUPP = NewAEObjectAccessorUPP (&MyObjectAccessorCallback)

You can then pass the UPP MyObjectAccessorUPP as a parameter to any function that installs or removes
an object accessor, such as AEInstallObjectAccessor (page 451). If your application installs the same
object accessor to handle more than one kind of object class or property of an Apple event, you can use the
same UPP to install the accessor multiple times.

If you wish to call your object accessor callback function directly, you can use the
InvokeOSLAccessorUPP (page 510) function.

534 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

After you are finished with an object accessor callback function, and have removed it with the
AERemoveObjectAccessor (page 470) function, you can dispose of the UPP with the
DisposeOSLAccessorUPP (page 504) function. However, don’t dispose of the UPP if any remaining accessor
function uses it or if you plan to install the accessor function again.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLAdjustMarksProcPtr
Defines a pointer to an adjust marks callback function. Your adjust marks function unmarks objects previously
marked by a call to your marking function.

typedef OSErr (*OSLAdjustMarksProcPtr)
(
 long newStart,
 long newStop,
 const AEDesc * markToken
);

If you name your function MyAdjustMarksCallback, you would declare it like this:

OSErr MyAdjustMarksCallback (
 long newStart,
 long newStop,
 const AEDesc * markToken
);

Parameters
newStart

The mark count value (provided when the MyAdjustMarksCallback callback function was called
to mark the object) for the first object in the new set of marked objects.

newStop
The mark count value (provided when the MyAdjustMarksCallback callback function was called
to mark the object) for the last object in the new set of marked objects.

markToken
A pointer to the mark token for the marked objects. (Token is defined in AEDisposeToken (page
425). See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your adjust marks function should return
noErr if it successfully adjusted the marks and errAEEventNotHandled if it could not locate the object.
When the Apple Event Manager gets an error result of errAEEventNotHandled, it attempts to adjust the
marks by calling the equivalent system mark-adjusting function.

Callbacks 535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
When the Apple Event Manager needs to identify either a range of elements or the absolute position of an
element in a group of Apple event objects that pass a test, it can use your application’s mark-adjusting
function to unmark objects previously marked by a call to your marking function.

For example, suppose an object specifier specifies any row in the table "MyCustomers" for which
the City column is "San Francisco". The Apple Event Manager first uses the appropriate object
accessor function to locate all the rows in the table for which the City column is "San Francisco" and calls
the application’s marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s mark-adjusting function
to unmark all the rows whose mark count does not match the randomly generated number. If the randomly
chosen row has a mark count value of 5, the Apple Event Manager passes the value 5 to the mark-adjusting
function in both the newStart parameter and the newStop parameter, and passes the current mark token
in the markToken parameter.

When the Apple Event Manager calls your MyAdjustMarksCallback function, your application must
dispose of any data structures that it created to mark the previously marked objects.

To provide a pointer to your adjust marks callback function, you create a universal procedure pointer (UPP)
of type OSLAdjustMarksUPP (page 561), using the function NewOSLAdjustMarksUPP (page 516). You can
do so with code like the following:

OSLAdjustMarksUPP MyAdjustMarksUPP;
MyAdjustMarksUPP = NewOSLAdjustMarksUPP (&MyAdjustMarksCallback)

You can then pass the UPP MyAdjustMarksUPP as a parameter to the AESetObjectCallbacks (page 480)
function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your adjust marks callback function directly, you can use the
InvokeOSLAdjustMarksUPP (page 510) function.

After you are finished with your adjust marks callback function, you can dispose of the UPP with the
DisposeOSLAdjustMarksUPP (page 505) function. However, if you will use the same adjust marks function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCompareProcPtr
Defines a pointer to an object comparison callback function. Your object comparison function compares one
Apple event object to another or to the data for a descriptor.

typedef OSErr (*OSLCompareProcPtr) (
 DescType oper,
 const AEDesc * obj1,
 const AEDesc * obj2,
 Boolean * result
);

If you name your function MyCompareObjectsCallback, you would declare it like this:

536 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSErr MyCompareObjectsCallback (
 DescType oper,
 const AEDesc * obj1,
 const AEDesc * obj2,
 Boolean * result
);

Parameters
oper

A comparison operator that specifies the type of comparison to perform. The available comparison
operators are described in “Comparison Operator Constants” (page 574). For related information, see
the function CreateCompDescriptor (page 498). See DescType (page 560).

obj1
A pointer to a token describing the first Apple event object to compare. (Token is defined in
AEDisposeToken (page 425). See AEDesc (page 546).

obj2
A pointer to a token or some other descriptor that specifies either an Apple event object or a value
to compare to the Apple event object specified by the obj1 parameter. See AEDesc (page 546).

result
A pointer to a Boolean value where your object comparison function stores a value indicating the
result of the comparison operation. You store TRUE if the values of the obj1 and obj2 parameters
have the relationship specified by the comparisonOperator parameter; otherwise, you store FALSE.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your object comparison function should
return noErr if it successfully compared the objects and errAEEventNotHandled if it can’t compare the
objects. When the Apple Event Manager gets an error result of errAEEventNotHandled, it attempts to use
other methods of comparing the specified objects, such as calling an equivalent system object comparison
function.

Discussion
The Apple Event Manager calls your object comparison function when, in the course of resolving an object
specifier, the manager needs to compare an Apple event object with another object or with a value in a
descriptor.

If you want the Apple Event Manager to help your application resolve object specifiers of key form formTest
(and if your application doesn’t specify kAEIDoWhose as described in “Callback Constants for the AEResolve
Function” (page 571)), you should provide an object-counting function, as described in
OSLCountProcPtr (page 538), and an object comparison function.

It is up to your application to interpret the comparison operators it receives. The meaning of comparison
operators differs according to the Apple event objects being compared, and not all comparison operators
apply to all object classes. The available comparison operators are described in “Comparison Operator
Constants” (page 574).

To provide a pointer to your object comparison callback function, you create a universal procedure pointer
(UPP) of type OSLCompareUPP (page 561), using the function NewOSLCompareUPP (page 517). You can do
so with code like the following:

OSLCompareObjectsUPP MyCompareObjectsUPP;
MyCompareObjectsUPP = NewOSLCompareObjectsUPP(&MyCompareObjectsCallback)

Callbacks 537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

You can then pass the UPP MyCompareObjectsUPP as a parameter to the AESetObjectCallbacks (page
480) function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your object comparison callback function directly, you can use the
InvokeOSLCompareUPP (page 511) function.

After you are finished with your object comparison callback function, you can dispose of the UPP with the
DisposeOSLCompareUPP (page 505) function. However, if you will use the same object comparison function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCountProcPtr
Defines a pointer to an object counting callback function. Your object counting function counts the number
of Apple event objects of a specified class in a specified container object.

typedef OSErr (*OSLCountProcPtr) (
 DescType desiredType,
 DescType containerClass,
 const AEDesc * container,
 long * result
);

If you name your function MyCountObjectsCallback, you would declare it like this:

OSErr MyCountObjectsCallback (
 DescType desiredType,
 DescType containerClass,
 const AEDesc * container,
 long * result
);

Parameters
desiredType

The object class of the Apple event objects to be counted. See DescType (page 560).

containerClass
The object class of the container for the Apple event objects to be counted. See DescType (page
560).

container
A pointer to a token that identifies the container for the Apple event objects to be counted. (Token
is defined in AEDisposeToken (page 425). See AEDesc (page 546).

538 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

result
A pointer to a variable where your object-counting function stores the number of Apple objects of
the specified class in the specified container.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your object counting function should
return noErr if it successfully counted the objects and errAEEventNotHandled if it can’t count the objects.
When the Apple Event Manager receives the result code errAEEventNotHandled after calling an object
counting function, it attempts to use other methods of counting the specified objects, such as calling an
equivalent system object counting function.

Discussion
If you want the Apple Event Manager to help your application resolve object specifiers of key form formTest
(and if your application doesn’t specify kAEIDoWhose as described in “Callback Constants for the AEResolve
Function” (page 571)), you should provide an object comparison function, as described in
OSLCompareProcPtr (page 536), and an object-counting function.

The Apple Event Manager calls your object-counting function when, in the course of resolving an object
specifier, the manager requires a count of the number of Apple event objects of a given class in a given
container.

To provide a pointer to your object counting callback function, you create a universal procedure pointer
(UPP) of type OSLCountUPP (page 561), using the function NewOSLCountUPP (page 517). You can do so with
code like the following:

OSLCountObjectsUPP MyCountObjectsUPP;
MyCountObjectsUPP = NewOSLCountObjectsUPP (&MyCountObjectsCallback)

You can then pass the UPP MyCountObjectsUPP as a parameter to the AESetObjectCallbacks (page
480) function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your object counting callback function directly, you can use the InvokeOSLCountUPP (page
511) function.

After you are finished with your object counting callback function, you can dispose of the UPP with the
DisposeOSLCountUPP (page 505) function. However, if you will use the same object counting function in
subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLDisposeTokenProcPtr
Defines a pointer to a dispose token callback function. Your dispose token function, required only if you use
a complex token format, disposes of the specified token.

Callbacks 539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef OSErr (*OSLDisposeTokenProcPtr)
(
 AEDesc * unneededToken
);

If you name your function MyDisposeTokenCallback, you would declare it like this:

OSErr MyDisposeTokenCallback (
 AEDesc * unneededToken
);

Parameters
unneededToken

A pointer to the token to dispose of. (Token is defined in AEDisposeToken (page 425).) On successful
return, your function must set this to the null descriptor. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your token disposal function should return
noErr if it successfully disposed of the token and errAEEventNotHandled if it can’t dispose of the token.
When the Apple Event Manager receives the result code errAEEventNotHandled after calling a token
disposal function, it attempts to use other methods of disposing of the specified token, such as calling an
equivalent system token disposal function if one is available or, if that fails, by calling AEDisposeDesc (page
424).

Discussion
The Apple Event Manager calls your token disposal function whenever it needs to dispose of a token. It also
calls your disposal function when your application calls the AEDisposeToken (page 425) function. If your
application does not provide a token disposal function, the Apple Event Manager calls AEDisposeDesc (page
424) instead.

Your token disposal function must be able to dispose of all of the token types used by your application.

If your application supports marking, a call to MyDisposeTokenCallback to dispose of a mark token lets
your application know that it can unmark the objects marked with that mark token, as described in the
Discussion section for OSLGetMarkTokenProcPtr (page 542).

To provide a pointer to your token disposal callback function, you create a universal procedure pointer (UPP)
of type OSLDisposeTokenUPP (page 561), using the function NewOSLDisposeTokenUPP (page 517). You
can do so with code like the following:

OSLDisposeTokenUPP MyDisposeTokenUPP;
MyDisposeTokenUPP = NewOSLDisposeTokenUPP (&MyDisposeTokenCallback)

You can then pass the UPP MyDisposeTokenUPP as a parameter to the AESetObjectCallbacks (page
480) function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your token disposal callback function directly, you can use the
InvokeOSLDisposeTokenUPP (page 512) function.

After you are finished with your token disposal callback function, you can dispose of the UPP with the
DisposeOSLDisposeTokenUPP (page 506) function. However, if you will use the same token disposal function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

540 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetErrDescProcPtr
Defines a pointer to an error descriptor callback function. Your error descriptor callback function supplies a
pointer to an address where the Apple Event Manager can store the current descriptor if an error occurs
during a call to the AEResolve function.

typedef OSErr (*OSLGetErrDescProcPtr)
(
 AEDesc ** appDescPtr
);

If you name your function MyGetErrorDescCallback, you would declare it like this:

OSErr MyGetErrorDescCallback (
 AEDesc ** appDescPtr
);

Parameters
appDescPtr

A pointer to a pointer to a descriptor address. Your error descriptor callback function supplies a pointer
to an address of a descriptor where the Apple Event Manager can store the current descriptor if an
error occurs. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your error descriptor function should
return noErr if it completes successfully and a nonzero error value if it is unsuccessful. If it returns a nonzero
value, the Apple Event Manager continues to resolve the object specifier as if it had never called the error
callback function.

Discussion
Your get error descriptor callback function simply supplies a pointer to an address. Shortly after your application
calls the AEResolve (page 473) function, the Apple Event Manager calls your get error descriptor callback
function and writes a null descriptor to the address supplied by your callback, overwriting whatever was
there previously.

If an error occurs during the resolution of the object specifier, the Apple Event Manager calls your get error
descriptor callback function again and writes the descriptor it is currently working with—often an object
specifier—to the address supplied by your callback. If AEResolve returns an error during the resolution of
an object specifier, this address contains the descriptor responsible for the error.

Callbacks 541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

You should always write a null descriptor at the address provided by your get error descriptor callback
function before calling AEResolve. When recovering from an error, the Apple Event Manager, never writes
to the address you provide unless it already contains a null descriptor. You may wish to maintain a single
global variable of type AEDesc and have your get error descriptor callback function always provide the
address of that variable.

After AEResolve returns, if your error descriptor is not the null descriptor, you are responsible for disposing
of it.

To provide a pointer to your get error descriptor callback function, you create a universal procedure pointer
(UPP) of type OSLGetErrDescUPP (page 562), using the function NewOSLGetErrDescUPP (page 518). You
can do so with code like the following:

OSLGetErrorDescUPP MyGetErrorDescUPP;
MyGetErrorDescUPP = NewOSLGetErrorDescUPP (&MyGetErrorDescCallback)

You can then pass the UPP MyGetErrorDescUPP as a parameter to the AESetObjectCallbacks (page
480) function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your get error descriptor callback function directly, you can use the
InvokeOSLGetErrDescUPP (page 512) function.

After you are finished with your get error descriptor callback function, you can dispose of the UPP with the
DisposeOSLGetErrDescUPP (page 506) function. However, if you will use the same get error descriptor
callback function in subsequent calls to the function AESetObjectCallbacks or the function
AEInstallSpecialHandler, you can reuse the same UPP, rather than dispose of it and later create a new
UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetMarkTokenProcPtr
Defines a pointer to a mark token callback function. Your mark token function returns a mark token.

typedef OSErr (*OSLGetMarkTokenProcPtr)
(
 const AEDesc * dContainerToken,
 DescType containerClass,
 AEDesc * result
);

If you name your function MyGetMarkTokenCallback, you would declare it like this:

OSErr MyGetMarkTokenCallback (
 const AEDesc * dContainerToken,
 DescType containerClass,
 AEDesc * result
);

542 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Parameters
dContainerToken

A pointer to the Apple event object that contains the elements to be marked with the mark token.
(Token is defined in AEDisposeToken (page 425). See AEDesc (page 546).

containerClass
The object class of the container that contains the objects to be marked. See DescType (page 560).

result
A pointer to a descriptor where your mark token function should return a mark token. If your function
can’t return a mark token, it should return a null descriptor. See AEDesc (page 546).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your mark token function should return
noErr if it successfully supplies a mark token and errAEEventNotHandled if it fails to supply a mark token.
When the Apple Event Manager gets an error result of errAEEventNotHandled after calling a mark token
function, it attempts to get a mark token by calling the equivalent system marking callback function.

Discussion
To get a mark token, the Apple Event Manager calls your mark token function. Like other tokens, the mark
token returned can be a descriptor of any type; however, unlike other tokens, a mark token identifies the
way your application will mark Apple event objects during the current session while resolving a single object
specifier that specifies the key form formTest.

A mark token is valid until the Apple Event Manager either disposes of it by calling AEDisposeToken (page
425) or returns it as the result of the AEResolve (page 473) function. If the final result of a call to AEResolve
is a mark token, the Apple event objects currently marked for that mark token are those specified by the
object specifier passed to AEResolve, and your application can proceed to do whatever the Apple event
has requested. Note that your application is responsible for disposing of a final mark token with a call to
AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function modeled after the token
disposal function described in OSLDisposeTokenProcPtr (page 539). When the Apple Event Manager calls
AEDisposeToken to dispose of a mark token that is not the final result of a call to AEResolve, the subsequent
call to your token disposal function lets you know that you can unmark the Apple event objects marked with
that mark token. A call to AEDisposeDesc to dispose of a mark token (which would occur if you did not
provide a token disposal function) would go unnoticed.

To provide a pointer to your mark token callback function, you create a universal procedure pointer (UPP)
of type OSLGetMarkTokenUPP (page 562), using the function NewOSLGetMarkTokenUPP (page 518). You
can do so with code like the following:

OSLGetMarkTokenUPP MyGetMarkTokenUPP;
MyGetMarkTokenUPP = NewOSLGetMarkTokenUPP (&MyGetMarkTokenCallback)

You can then pass the UPP MyGetMarkTokenUPP as a parameter to the AESetObjectCallbacks (page
480) function or the AEInstallSpecialHandler (page 452) function.

If you wish to call your mark token callback function directly, you can use the
InvokeOSLGetMarkTokenUPP (page 513) function.

After you are finished with your mark token callback function, you can dispose of the UPP with the
DisposeOSLGetMarkTokenUPP (page 506) function. However, if you will use the same mark token function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Callbacks 543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLMarkProcPtr
Defines a pointer to an object marking callback function. Your object-marking function marks a specific Apple
event object.

typedef OSErr (*OSLMarkProcPtr) (
 const AEDesc * dToken,
 const AEDesc * markToken,
 long index
);

If you name your function MyMarkCallback, you would declare it like this:

OSErr MyMarkCallback (
 const AEDesc * dToken,
 const AEDesc * markToken,
 long index
);

Parameters
dToken

A pointer to the token for the Apple event object to be marked. (Token is defined in
AEDisposeToken (page 425). See AEDesc (page 546).

markToken
A pointer to the mark token used to mark the Apple event object. See AEDesc (page 546).

index
The number of times your MyMarkCallback function has been called for the current mark token
(that is, the number of Apple event objects that have so far passed the test, including the element to
be marked).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 636). Your object marking function should
return noErr if it successfully marks the Apple event object and errAEEventNotHandled if it fails to mark
the object. When the Apple Event Manager gets an error result of errAEEventNotHandled after calling an
object marking function, it attempts to get mark the object by calling the equivalent system object marking
function.

Discussion
To mark an Apple event object using the current mark token, the Apple Event Manager calls the object-marking
function provided by your application. In addition to marking the specified object, your MyMarkCallback
function should record the mark count for each object that it marks. The mark count recorded for each marked
object allows your application to determine which of a set of marked tokens pass a test, as described in the
Discussion section for the OSLAdjustMarksProcPtr (page 535) function.

To provide a pointer to your mark callback function, you create a universal procedure pointer (UPP) of type
OSLMarkUPP (page 562), using the function NewOSLMarkUPP (page 518). You can do so with code like the
following:

544 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSLMarkUPP MyMarkUPP;
MyMarkUPP = NewOSLMarkUPP (&MyMarkCallback)

You can then pass the UPP MyMarkUPP as a parameter to the AESetObjectCallbacks (page 480) function
or the AEInstallSpecialHandler (page 452) function.

If you wish to call your mark callback function directly, you can use the InvokeOSLMarkUPP (page 513)
function.

After you are finished with your mark callback function, you can dispose of the UPP with the
DisposeOSLMarkUPP (page 507) function. However, if you will use the same mark function in subsequent
calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler, you can reuse
the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

Data Types

AEArrayData
Stores array information to be put into a descriptor list with the AEPutArray function or extracted from a
descriptor list with the AEGetArray function.

union AEArrayData {
 short kAEDataArray[1];
 char kAEPackedArray[1];
 Handle kAEHandleArray[1];
 AEDesc kAEDescArray[1];
 AEKeyDesc kAEKeyDescArray[1];
};
typedef union AEArrayData AEArrayData;

Discussion
When your application calls the AEPutArray (page 459) function to put information into a descriptor list or
the AEGetArray (page 428) function to get information from a descriptor list, it uses an to store the
information. The type of array depends on the data for the array, as specified by one of the constants described
in “Data Array Constants” (page 580).

Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray must be
factored—that is, contained in a factored descriptor list. Before adding array items to a factored descriptor
list, you should provide both a pointer to the data that is common to all array items and the size of that
common data when you first call AECreateList (page 419) to create a factored descriptor list. When you
call AEPutArray to add the array data to such a descriptor list, the Apple Event Manager automatically
isolates the common data you specified in the call to AECreateList.

When you call AEGetArray or AEPutArray, you specify a pointer of data type AEArrayDataPointer that
points to a buffer containing the data for the array.

Data Types 545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEBuildError
Defines a structure for storing additional error code information for “AEBuild” routines.

struct AEBuildError {
 AEBuildErrorCode fError;
 UInt32 fErrorPos;
};
typedef struct AEBuildError AEBuildError;

Fields
fError

The error code. See “AEBuild Error Codes” (page 563) for a list of errors.

fErrorPos
The character position where the parser detected the error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEDesc
Stores data and an accompanying descriptor type to form the basic building block of all Apple Events.

struct AEDesc {
 DescType descriptorType;
 AEDataStorage dataHandle;
};
typedef struct AEDesc AEDesc;

Fields
descriptorType

A four-character code of type DescType (page 560) that indicates the type of data in the structure.
See DescType (page 560).

dataHandle
An opaque storage type that points to the storage for the descriptor data. Your application doesn’t
access this data directly—rather, it calls one of the functions AEGetDescDataSize (page 434),
AEGetDescData (page 432), or AEReplaceDescData (page 472). See AEDataStorage (page 553).

Discussion
The Apple Event Manager uses one or more descriptors to construct Apple event attributes and parameters,
object specifiers, tokens, and many other types of data it works with. (Token is defined in
AEDisposeToken (page 425).) A descriptor consists of an opaque data storage container and a descriptor
type that identifies the type of the data stored in the descriptor.

546 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

The descriptor type is a structure of type DescType, which in turn is of data type ResType—that is, a
four-character code. “Descriptor Type Constants” (page 581) lists the constants for the basic descriptor types
used by the Apple Event Manager. For information about descriptor types used with object specifiers, see
“Key Form and Descriptor Type Object Specifier Constants” (page 590).

Version Notes
Prior to Carbon, the AEDataStorage (page 553) data type was defined as follows:

typedef Handle AEDataStorage;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEKeyDesc
Associates a keyword with a descriptor to form a keyword-specified descriptor.

struct AEKeyDesc {
 AEKeyword descKey;
 AEDesc descContent;
};
typedef struct AEKeyDesc AEKeyDesc;

Fields
descKey

A four-character code of type AEKeyword (page 556) that uniquely identifies the key that is associated
with the data in the structure. Some keyword constants are described in “Keyword Attribute
Constants” (page 593) and “Keyword Parameter Constants” (page 595). See AEKeyword (page 556).

descContent
A descriptor of type AEDesc (page 546) that stores the keyword descriptor data. See AEDesc (page
546).

Discussion
The Apple Event Manager uniquely identifies the various parts of an Apple event by means of keywords
associated with corresponding descriptors. A keyword is an arbitrary constant of type AEKeyword (page 556)
that represents a four-character code.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERemoteProcessResolverContext
Supplied as a parameter when performing asynchronous resolution of remote processes.

Data Types 547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

struct AERemoteProcessResolverContext {
 CFIndex version;
 void * info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct AERemoteProcessResolverContext AERemoteProcessResolverContext;

Fields
version

This should be set to zero (0).

info
A pointer to arbitrary information. The pointer is retained and passed to the callback, allowing you
to provide information to that routine.

retain
A prototype for a function callback that retains the specified data. Called on the info pointer. This
field may be NULL.

release
A prototype for a function callback that releases the specified data. Called on the info pointer. This
field may be NULL.

copyDescription
A prototype for a function callback that provides a description of the specified data. Called on the
info pointer. This field may be NULL.

Discussion
When you call AERemoteProcessResolverScheduleWithRunLoop (page 467) for asynchronous resolution,
you supply a reference to a structure of this type, along with a reference to a callback routine, defined by
AERemoteProcessResolverCallback (page 532). The context is copied and the info pointer retained.
When the callback is made, the info pointer is passed to the callback.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

ccntTokenRecord
Stores token information used by the AEResolve function while locating a range of objects.

struct ccntTokenRecord {
 DescType tokenClass;
 AEDesc token;
};
typedef struct ccntTokenRecord ccntTokenRecord;

Fields
tokenClass

The class ID of the container represented by the token parameter. See DescType (page 560).

token
A token for the current container. (Token is defined in AEDisposeToken (page 425). See AEDesc (page
546).

548 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
When the AEResolve (page 473) function calls an object accessor function to locate a range of objects, the
Apple Event Manager replaces the descriptor of type typeCurrentContainerwith a token for the container
of each boundary object. When using AEResolve to resolve the object specifier, your application doesn’t
need to examine the contents of this token, because the Apple Event Manager keeps track of it.

If your application attempts to resolve some or all of the object specifier without calling AEResolve, the
application may need to examine the token before it can locate the boundary objects. The token provided
by the Apple Event Manager for a boundary object’s container is a descriptor of type typeTokenwhose data
storage pointer refers to a structure of type ccntTokenRecord.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

IntlText
International text consists of an ordered series of bytes, beginning with a 4-byte language code and a 4-byte
script code that together determine the format of the bytes that follow. (Deprecated. Use Unicode text
instead.)

struct IntlText {
 ScriptCode theScriptCode;
 LangCode theLangCode;
 char theText[1];
};
typedef struct IntlText IntlText;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

OffsetArray
Specifies offsets of ranges of text. Not typically used by developers.

struct OffsetArray {
 sort fNumOfOffsets;
 long fOffset[1];
};
typedef struct OffsetArray OffsetArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

Data Types 549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

TextRange
Specifies a range of text. Not typically used by developers.

struct TextRange {
 long fStart;
 long fEnd;
 short fHiliteStyle;
};
typedef struct TextRange TextRange;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

TextRangeArray
Specifies an array of text ranges. Not typically used by developers.

struct TextRangeArray {
 short fNumOfRanges;
 TextRange fRange[1];
};
typedef struct TextRangeArray TextRangeArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

TScriptingSizeResource
Defines a data type to store stack and heap information. Not typically used by developers.

struct TScriptingSizeResource {
 short scriptingSizeFlags;
 unsigned long minStackSize;
 unsigned long preferredStackSize;
 unsigned long maxStackSize;
 unsigned long minHeapSize;
 unsigned long preferredHeapSize;
 unsigned long maxHeapSize;
};
typedef struct TScriptingSizeResource TScriptingSizeResource;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEUserTermTypes.h

550 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

WritingCode
struct WritingCode {
 ScriptCode theScriptCode;
 LangCode theLangCode;
};
typedef struct WritingCode WritingCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

AEAddressDesc
A descriptor that contains the address of an application. Typically used to describe the target application for
an Apple event.

typedef AEDesc AEAddressDesc;

Discussion
An address descriptor is identical to a descriptor of data type AEDesc (page 546); however, the data for an
address descriptor must always consist of the address of an application.

Every Apple event includes an attribute specifying the address of the target application. The address in an
address descriptor can be specified as one of these types (or as any other descriptor type you define that
can be coerced to one of these types): typeApplSignature, typeSessionID, or
typeProcessSerialNumber. These constants are described in “Descriptor Type Constants” (page 581). You
can also use “typeApplicationBundleID” (page 628).

If your application sends Apple events to itself using a typeProcessSerialNumber address descriptor with
the lowLongOfPSN field set to kCurrentProcess (and the highLongOfPSN field set to 0), the Apple Event
Manager jumps directly to the appropriate Apple event handler without going through the normal
event-processing sequence.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEArrayDataPointer
A pointer to a union of type AEArrayData.

typedef AEArrayData * AEArrayDataPointer

Discussion
This data type merely defines a pointer to an AEArrayData (page 545) union.

Data Types 551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEArrayType
Stores a value that specifies an array type.

typedef SInt8 AEArrayType;

Discussion
You use this data type with the AEGetArray (page 428) function and the AEPutArray (page 459) function
to specify an array type, using one of the constants from “Data Array Constants” (page 580).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoerceDescUPP
Defines a data type for the universal procedure pointer for the AECoerceDescProcPtr callback function
pointer.

typedef AECoerceDescProcPtr AECoerceDescUPP;

Discussion
For a description of a coerce descriptor callback function, see AECoerceDescProcPtr (page 524).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercePtrUPP
Defines a data type for the universal procedure pointer for the AECoercePtrProcPtr callback function
pointer.

typedef AECoercePtrProcPtr AECoercePtrUPP;

Discussion
For a description of a coerce pointer callback function, see AECoercePtrProcPtr (page 525).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercionHandlerUPP
Defines a data type for the universal procedure pointer for the AECoercionHandlerUPP callback function
pointer.

552 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef AECoerceDescUPP AECoercionHandlerUPP;

Discussion
For a description of a coercion handler callback function, see AECoercePtrProcPtr (page 525).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDataStorage
A pointer to an opaque data type that provides storage for an AEDesc descriptor.

typedef AEStorageDataType * AEDataStorage;

Discussion
The Apple Event Manager defines the AEDataStorage data type to serve as a data storage field in the
AEDesc (page 546) structure. Your application doesn’t access the data pointed to by a data storage pointer
directly. Rather, you work with the following functions:

 ■ AEGetDescDataSize (page 434)

 ■ AEGetDescData (page 432)

 ■ AEGetDescDataRange (page 433)

 ■ AEReplaceDescData (page 472)

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDataStorageType
An opaque data type used to store data in Apple event descriptors.

typedef struct OpaqueAEDataStorageType * AEDataStorageType;

Discussion
See AEDesc (page 546) for related information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDescList
A descriptor whose data consists of a list of one or more descriptors.

Data Types 553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef AEDesc AEDescList;

Discussion
A descriptor list is identical to a descriptor of data type AEDesc (page 546) —the only difference is that the
data in a descriptor list must always consist of a list of other descriptors.

Descriptor lists are a key building block of Apple events. Many Apple Event Manager functions take or return
lists of descriptors in descriptor lists. For example, see the functions described in “Counting the Items in
Descriptor Lists” (page 398) and “Getting Items From Descriptor Lists” (page 403).

The format of the data in the dataHandle of the descriptor is private. You can only operate on the contained
elements with Apple Event Manager functions, including those described in “Counting the Items in Descriptor
Lists” (page 398) and “Getting Items From Descriptor Lists” (page 403).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEEventSource
A data type for values that specify how an Apple event was delivered.

typedef SInt8 AEEventSource;

Discussion
“Event Source Constants” (page 588) lists the valid constant values for a variable or parameter of type
AEEventSource.

You might use a variable of this type, for example, to get the source type of an Apple event by calling the
function AEGetAttributePtr (page 430). You pass the keyEventSourceAttr constant as the value for
the theAEKeyWord parameter and you pass a pointer to a variable of type AEEventSource for the dataPtr
parameter. On return, the variable will contain one of the event source constant values described in “Event
Source Constants” (page 588). The complete call looks like the following:

AppleEvent theAppleEvent; // previously obtained Apple event
DescType returnedType;
AEEventSource sourceOfAE;
Size actualSize;
OSErr myErr;
myErr = AEGetAttributePtr(theAppleEvent,
 keyEventSourceAttr,
 typeShortInteger,
 &returnedType,
 (void *) &sourceOfAE,
 sizeof (sourceOfAE),
 &actualSize);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

554 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEDisposeExternalUPP
Defines a universal procedure pointer to a function the Apple Event Manager calls to dispose of a descriptor
created by the AECreateDescFromExternalPtr function.

typedef AEDisposeExternalProcPtr AEDisposeExternalUPP;

Discussion
See the AEDisposeExternalProcPtr (page 527) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEEventClass
Specifies the event class of an Apple event.

typedef FourCharCode AEEventClass;

Discussion
Apple events are identified by their event class and event ID attributes. The event class is the attribute that
identifies a group of related Apple events. When you call the AEProcessAppleEvent (page 457) function,
the Apple Event Manager uses these attributes to identify a handler for a specific Apple event.

For more information on Apple event classes, see “Event Class Constants” (page 585).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEEventHandlerUPP
Defines a data type for the universal procedure pointer for the AEEventHandlerUPP callback function
pointer.

typedef AEEventHandlerProcPtr AEEventHandlerUPP;

Discussion
For a description of an event handler callback function, see AEEventHandlerProcPtr (page 528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

Data Types 555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

AEEventID
Specifies the event ID of an Apple event.

typedef FourCharCode AEEventID;

Discussion
Apple events are identified by their event class and event ID attributes. The event ID is the attribute that
identifies a particular Apple event within its event class. In conjunction with the event class, the event ID
uniquely identifies the Apple event and communicates what action the Apple event should perform.

For more information on Apple event IDs, see “Event ID Constants” (page 586).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFilterUPP
Defines a data type for the universal procedure pointer for the AEFilterProcPtr callback function pointer.

typedef AEFilterProcPtr AEFilterUPP;

Discussion
For a description of a filter callback function, see AEFilterProcPtr (page 530).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEIdleUPP
Defines a data type for the universal procedure pointer for the AEIdleProcPtr callback function pointer.

typedef AEIdleProcPtr AEIdleUPP;

Discussion
For a description of an idle callback function, see AEIdleProcPtr (page 531).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEKeyword
A four-character code that uniquely identifies a descriptor in an Apple event record or an Apple event.

556 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef FourCharCode AEKeyword;

Discussion
The Apple Event Manager uniquely identifies the various parts of an Apple event by means of keywords
associated with corresponding descriptors. Keywords are arbitrary names, stored as four-character codes of
type AEKeyword. A keyword combined with a descriptor forms a keyword-specified descriptor, which is
defined by a data structure of type AERemoteProcessResolverContext (page 547).

The Apple Event Manager also uses keywords for Apple event attributes. Keyword constants used by the
Apple Event Manager are defined in “Keyword Attribute Constants” (page 593) and “Keyword Parameter
Constants” (page 595).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERecord
A descriptor whose data is a list of keyword-specified descriptors.

typedef AEDescList AERecord;

Discussion
The Apple Event Manager provides routines that allow your application to create Apple event records and
extract data from them when creating or responding to Apple events. You also work with Apple event records
if your application resolves or creates object specifiers. Functions that use Apple event records are described
in “Getting Data or Descriptors From Apple Events and Apple Event Records” (page 402) and “Adding
Parameters and Attributes to Apple Events and Apple Event Records” (page 398).

The descriptor list of keyword-specified descriptors in an Apple event record must specify Apple event
parameters—they cannot specify Apple event attributes. Only descriptor lists of type Apple event can contain
both attributes and parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERemoteProcessResolverRef
An opaque reference to an object that encapsulates the mechanism for obtaining a list of processes running
on a remote machine.

typedef AERemoteProcessResolver * AERemoteProcessResolverRef;

Discussion
You create an instance of AERemoteProcessResolverRef by calling
AECreateRemoteProcessResolver (page 420), and you must disposed of it by calling
AEDisposeRemoteProcessResolver (page 424). An instance of this type is not a CFType (the base type
used by all Core Foundation derived opaque types). For more information, see Core Foundation Reference
Documentation.

Data Types 557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEReturnID
Specifies a return ID for a created Apple event.

typedef SInt16 AEReturnID;

Discussion
When you call the AECreateAppleEvent (page 416) function, you pass a value of type AEReturnID for the
returnID parameter. “ID Constants for the AECreateAppleEvent Function” (page 589) lists the valid constant
values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESendOptions
This data type is not available. (Deprecated. Not available in Apple Event Manager API.)

typedef OptionBits AESendOptions;

AESendPriority
Specifies the processing priority for a sent Apple event.

typedef SInt16 AESendPriority;

Discussion
When you call the AESend (page 476) function, you pass a value of type AESendPriority for the
sendPriority parameter. “Priority Constants for the AESend Function (Deprecated in Mac OS X)” (page
601) lists the valid constant values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEStreamRef
An opaque data structure for storing stream-based descriptor data.

558 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef struct OpaqueAEStreamRef * AEStreamRef;

Discussion
You create AEStreamRef objects and manipulate their contents using the “AEStream” routines found in the
section “Creating Apple Event Structures Using Streams” (page 406)

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AETransactionID
Specifies a transaction ID.

typedef SInt32 AETransactionID;

Discussion
A transaction is a sequence of Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service. When you call the
AECreateAppleEvent (page 416) function, you pass a value of type AETransactionID for the
transactionID parameter. “ID Constants for the AECreateAppleEvent Function” (page 589) lists the valid
constant values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AppleEvent
A descriptor whose data is a list of descriptors containing both attributes and parameters that make up an
Apple event.

typedef AERecord AppleEvent;

Discussion
The Apple event data type describes a full-fledged Apple event. Like the data for an Apple event record (data
type AERecord (page 557)), the data for an Apple event consists of a list of keyword-specified descriptors.
Unlike an Apple event record, the data for an Apple event is conceptually divided into two parts, one for
attributes and one for parameters. This division within the Apple event allows the Apple Event Manager to
distinguish between an event’s attributes and its parameters.

For additional information on the structure of an Apple event and on how to build one, see “Building an
Apple Event” in Apple Events Programming Guide.

Many functions work with Apple events, including the functions described in “Getting Data or Descriptors
From Apple Events and Apple Event Records” (page 402), “Adding Parameters and Attributes to Apple Events
and Apple Event Records” (page 398), “Creating an Apple Event” (page 399), and “Sending an Apple Event” (page
405).

Data Types 559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DescType
Specifies the type of the data stored in an AEDesc descriptor.

typedef ResType DescType;

Discussion
A DescType data type is a four-character code that stores a value that identifies the data in an AEDesc (page
546) descriptor, the basic building block for all Apple events.

The descriptor type constants used by the Apple Event Manager are described in “Descriptor Type
Constants” (page 581) and “Key Form and Descriptor Type Object Specifier Constants” (page 590).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

OffsetArrayHandle
Defines a data type that points to an OffsetArray. Not typically used by developers.

typedef OffsetArrayPtr * OffsetArrayHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

OSLAccessorUPP
Defines a data type for the universal procedure pointer for the OSLAccessorProcPtr callback function
pointer.

typedef OSLAccessorProcPtr OSLAccessorUPP;

Discussion
For a description of an object accessor callback function, see OSLAccessorProcPtr (page 533).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

560 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

OSLAdjustMarksUPP
Defines a data type for the universal procedure pointer for the OSLAdjustMarksProcPtr callback function
pointer.

typedef OSLAdjustMarksProcPtr OSLAdjustMarksUPP;

Discussion
For a description of an adjust marks callback function, see OSLAdjustMarksProcPtr (page 535).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCompareUPP
Defines a data type for the universal procedure pointer for the OSLCompareProcPtr callback function
pointer.

typedef OSLCompareProcPtr OSLCompareUPP;

Discussion
For a description of a compare callback function, see OSLCompareProcPtr (page 536).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCountUPP
Defines a data type for the universal procedure pointer for the OSLCountProcPtr callback function pointer.

typedef OSLCountProcPtr OSLCountUPP;

Discussion
For a description of a count callback function, see OSLCountProcPtr (page 538).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLDisposeTokenUPP
Defines a data type for the universal procedure pointer for the OSLDisposeTokenProcPtr callback function
pointer.

Data Types 561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef OSLDisposeTokenProcPtr OSLDisposeTokenUPP;

Discussion
For a description of a dispose token callback function, see OSLDisposeTokenProcPtr (page 539).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetErrDescUPP
Defines a data type for the universal procedure pointer for the OSLGetErrDescProcPtr callback function
pointer.

typedef OSLGetErrDescProcPtr OSLGetErrDescUPP;

Discussion
For a description of a get error descriptor callback function, see OSLGetErrDescProcPtr (page 541).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetMarkTokenUPP
Defines a data type for the universal procedure pointer for the OSLGetMarkTokenProcPtr callback function
pointer.

typedef OSLGetMarkTokenProcPtr OSLGetMarkTokenUPP;

Discussion
For a description of a mark token callback function, see OSLGetMarkTokenProcPtr (page 542).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLMarkUPP
Defines a data type for the universal procedure pointer for the OSLMarkProcPtr callback function pointer.

typedef OSLMarkProcPtr OSLMarkUPP;

Discussion
For a description of a mark callback function, see OSLMarkProcPtr (page 544).

562 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEInteractAllowed
Specifies an interaction level.

typedef SInt8 AEInteractAllowed;

Discussion
When you call theAEGetInteractionAllowed (page 436) function or theAESetInteractionAllowed (page
479) function, you receive or pass a value of type AEInteractAllowed for the level parameter. Interaction
levels are described and the valid interaction level constants are listed in “User Interaction Level
Constants” (page 605).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

Constants

AEBuild Error Codes
Represents syntax errors found by an “AEBuild” routine.

Constants 563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typedef UInt32 AEBuildErrorCode;
enum {
aeBuildSyntaxNoErr = 0,
aeBuildSyntaxBadToken = 1,
aeBuildSyntaxBadEOF = 2,
aeBuildSyntaxNoEOF = 3,
aeBuildSyntaxBadNegative = 4,
aeBuildSyntaxMissingQuote = 5,
aeBuildSyntaxBadHex = 6,
aeBuildSyntaxOddHex = 7,
aeBuildSyntaxNoCloseHex = 8,
aeBuildSyntaxUncoercedHex = 9,
aeBuildSyntaxNoCloseString = 10,
aeBuildSyntaxBadDesc = 11,
aeBuildSyntaxBadData = 12,
aeBuildSyntaxNoCloseParen = 13,
aeBuildSyntaxNoCloseBracket = 14,
aeBuildSyntaxNoCloseBrace = 15,
aeBuildSyntaxNoKey = 16,
aeBuildSyntaxNoColon = 17,
aeBuildSyntaxCoercedList = 18,
aeBuildSyntaxUncoercedDoubleAt = 19
};

Constants
aeBuildSyntaxNoErr

No error.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadToken
An illegal character was specified.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadEOF
An unexpected end of format string was encountered.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoEOF
There were unexpected characters beyond the end of the format string.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadNegative
A minus sign “-” was not followed by digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxMissingQuote
A string was not terminated by a closing quotation mark.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

564 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

aeBuildSyntaxBadHex
A hex string contained characters other than hexadecimal digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxOddHex
A hex string contained an odd number of digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseHex
A hex string was missing a “$” or “»” character.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxUncoercedHex
A hex string must be coerced to a type.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseString
A string was missing a closing quote.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadDesc
An illegal descriptor was specified.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadData
Bad data was found inside a variable argument list.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseParen
A data value was missing a closing parenthesis.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseBracket
A comma or closing bracket “]” was expected.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseBrace
A comma or closing brace “}” was expected.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

Constants 565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

aeBuildSyntaxNoKey
A keyword was missing from a descriptor.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoColon
In a descriptor, one of the keywords was not followed by a colon.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxCoercedList
Cannot coerce a list.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxUncoercedDoubleAt
You must coerce a “@@” substitution.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

AESendMode
Specify send preferences to the AESend function.

typedef SInt32 AESendMode;
enum {
 kAENoReply = 0x00000001,
 kAEQueueReply = 0x00000002,
 kAEWaitReply = 0x00000003,
 kAEDontReconnect = 0x00000080,
 kAEWantReceipt = 0x00000200,
 kAENeverInteract = 0x00000010,
 kAECanInteract = 0x00000020,
 kAEAlwaysInteract = 0x00000030,
 kAECanSwitchLayer = 0x00000040,
 kAEDontRecord = 0x00001000,
 kAEDontExecute = 0x00002000,
 kAEProcessNonReplyEvents = 0x00008000
};

Constants
kAENoReply

The reply preference—your application does not want a reply Apple event. If you set the bit specified
by this constant, the server processes the Apple event as soon as it has the opportunity.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

566 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEQueueReply
The reply preference—your application wants a reply Apple event. If you set the bit specified by this
constant, the reply appears in your event queue as soon as the server has the opportunity to process
and respond to your Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEWaitReply
The reply preference—your application wants a reply Apple event and is willing to give up the
processor while waiting for the reply. For example, if the server application is on the same computer
as your application, your application yields the processor to allow the server to respond to your Apple
event.

If you set the bit specified by this constant, you must provide an idle function. This function should
process any update events, null events, operating-system events, or activate events that occur while
your application is waiting for a reply. For more information on idle routines, see
AEInteractWithUser (page 453).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontReconnect
Deprecated and unsupported in Mac OS X. The reconnection preference—the Apple Event Manager
must not automatically try to reconnect if it receives a sessClosedErr result code from the PPC
Toolbox. If you don’t set this flag, the Apple Event Manager automatically attempts to reconnect and
reestablish the session.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEWantReceipt
Deprecated and unsupported in Mac OS X. The return receipt preference—the sender wants to receive
a return receipt for this Apple event from the Event Manager. (A return receipt means only that the
receiving application accepted the Apple event the Apple event may or may not be handled successfully
after it is accepted.) If the receiving application does not send a return receipt before the request
times out, AESend returns errAETimeout as its function result.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAENeverInteract
The user interaction preference—the server application should never interact with the user in response
to the Apple event. If you set the bit specified by this constant, the AEInteractWithUser (page 453)
function (when called by the server) returns the errAENoUserInteraction result code. When you
send an Apple event to a remote application, the default is to set this bit.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAECanInteract
The user interaction preference—the server application can interact with the user in response to the
Apple event. By convention, you set the bit specified by this constant if the user needs to supply
information to the server. If you set the bit and the server allows interaction, the
AEInteractWithUser (page 453) function either brings the server application to the foreground or
posts a notification request. When you send an Apple event to a local application, the default is to
set this bit.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEAlwaysInteract
The user interaction preference—the server application should always interact with the user in
response to the Apple event. By convention, you set the bit specified by this constant whenever the
server application normally asks a user to confirm a decision or interact in any other way, even if no
additional information is needed from the user. If you set the bit specified by this constant, the
AEInteractWithUser (page 453) function either brings the server application to the foreground or
posts a notification request.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAECanSwitchLayer
The application switch preference—if both the client and server allow interaction, and if the client
application is the active application on the local computer and is waiting for a reply (that is, it has set
the kAEWaitReply flag), AEInteractWithUser brings the server directly to the foreground.
Otherwise, AEInteractWithUser uses the Notification Manager to request that the user bring the
server application to the foreground.

You should specify the kAECanSwitchLayer flag only when the client and server applications reside
on the same computer. In general, you should not set this flag if it would be confusing or inconvenient
to the user for the server application to come to the front unexpectedly. This flag is ignored if you
are sending an Apple event to a remote computer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontRecord
The recording preference—your application is sending an event to itself but does not want the event
recorded. When Apple event recording is on, the Apple Event Manager records a copy of every event
your application sends to itself except for those events for which this flag is set.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontExecute
The execution preference—your application is sending an Apple event to itself for recording purposes
only—that is, you want the Apple Event Manager to send a copy of the event to the recording process
but you do not want your application actually to receive the event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEProcessNonReplyEvents
Allow processing of non-reply Apple events while awaiting a synchronous Apple event reply (you
specified kAEWaitReply for the reply preference).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

568 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
You use these constants with the sendMode parameter to the AESend (page 476) function to specify how
the server application should handle the reply mode, the interaction level, the application switch mode, the
reconnection mode, the return receipt mode, the recording mode, and whether to process non-reply Apple
events. To obtain a value for this parameter, you add together constants to set the appropriate bits for the
Apple event you are about to send. The following paragraphs provide additional information about how you
use these constants.

You can set only one flag reply preference (kAENoReply, kAEQueueReply, or kAEWaitReply), one user
interaction preference (kAENeverInteract, kAECanInteract, or kAEAlwaysInteract), and one recording
and execution preference (kAEDontRecord or kAEDontExecute).

Before the Apple Event Manager sends a reply event back to the client application, the keyAddressAttr
attribute contains the address of the client application. After the client receives the reply event, the
keyAddressAttr attribute contains the address of the server application.

If you specify kAEWaitReply, the Apple Event Manager uses the Event Manager to send the event. The
Apple Event Manager then calls the WaitNextEvent function on behalf of your application, causing your
application to yield the processor and giving the server application a chance to receive and handle the Apple
event. Your application continues to yield the processor until the server handles the Apple event or the
request times out.

Specify the kAEWantReceipt flag if your application wants notification that the server application has
accepted the Apple event. If you specify this flag, your application receives a return receipt as a high-level
event.

If you specify the kAEWantReceipt flag and the server application does not accept the Apple event within
the time specified by the timeOutInTicks parameter to AESend, the AESend function returns a timeout
error. Note that AESend also returns a timeout error if your application sets the kAEWaitReply flag and
does not receive the reply Apple event within the time specified by the timeOutInTicks parameter.

You use one of the three flags—kAENeverInteract, kAECanInteract, and kAEAlwaysInteract—to
specify whether the server should interact with the user when handling the Apple event. Specify
kAENeverInteract if the server should not interact with the user when handling the Apple event. You
might specify this constant if you don’t want the user to be interrupted while the server is handling the Apple
event.

Use the kAECanInteract flag if the server should interact with the user when the user needs to supply
information to the server. Use the kAEAlwaysInteract flag if the server should interact with the user
whenever the server normally asks a user to confirm a decision or interact in any other way, even if no
additional information is needed from the user. Note that it is the responsibility of the server and client
applications to agree on how to interpret the kAEAlwaysInteract flag.

If the client application does not set any one of the user interaction flags, the Apple Event Manager sets a
default, depending on the location of the target of the Apple event. If the server application is on a remote
computer, the Apple Event Manager sets the kAENeverInteract flag as the default. If the target of the
Apple event is on the local computer, the Apple Event Manager sets the kAECanInteract flag as the default.

The server application should call AEInteractWithUser if it needs to interact with the user. If both the
client and the server allow user interaction, the Apple Event Manager attempts to bring the server to the
foreground if it is not already the foreground process. If both the kAECanSwitchLayer and the
kAEWaitReply flags are set, and if the client application is the active application on the local computer, the
Apple Event Manager brings the server application directly to the front. Otherwise, the Apple Event Manager

Constants 569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

posts a notification request asking the user to bring the server application to the front, regardless of whether
the kAECanSwitchLayer flag is set. This ensures that the user will not be interrupted by an unexpected
application switch.

Specify the kAEDontRecord flag if your application is sending an Apple event to itself that you don’t want
to be recorded. When Apple event recording has been turned on, every event that your application sends
to itself will be automatically recorded by the Apple Event Manager except those sent with the kAEDontRecord
flag set.

Specify the kAEDontExecute flag if your application is sending an Apple event to itself for recording purposes
only—that is, if you want the Apple Event Manager to send a copy of the event to the recording process but
you do not want your application actually to receive the event.

See also “Requesting User Interaction” (page 405).

Version Notes
The kAEDontReconnect and kAEWantReceipt constants are deprecated and unsupported in Mac OS X.

Declared In
AEDataModel.h

Apple Event Recording Event ID Constants
Specify event IDs for events that deal with Apple event recording.

enum {
 kAEStartRecording = 'reca',
 kAEStopRecording = 'recc',
 kAENotifyStartRecording = 'rec1',
 kAENotifyStopRecording = 'rec0',
 kAENotifyRecording = 'recr'
};

Constants
kAEStartRecording

Event ID for an event by a scripting component to the recording process (or to any running process
on the local computer), but handled by the Apple Event Manager. The Apple Event Manager responds
by turning on recording and sending a recording on event to all running processes on the local
computer.

If sent by process serial number (PSN), this event must be addressed using a real PSN; it should never
be sent to an address specified as kCurrentProcess.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEStopRecording
Event ID for an event sent by a scripting component to the recording process (or to any running
process on the local computer), but handled by the Apple Event Manager. The Apple Event Manager
responds by sending a recording off event to all running processes on the local computer.

If sent by a PSN, this event must be addressed using a real PSN; it should never be sent to an address
specified as kCurrentProcess.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

570 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAENotifyStartRecording
An event that notifies an application that recording has been turned on.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAENotifyStopRecording
An event that notifies an application that recording has been turned off.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAENotifyRecording
Wildcard event class and event ID handled by a recording process in order to receive and record
copies of recordable events sent to it by the Apple Event Manager. Scripting components install a
handler for this event on behalf of a recording process when recording is turned on and remove the
handler when recording is turned off.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Version Notes
These constants are available only in version 1.0.1 and later of the Apple Event Manager.

cAEList
enum {
 cAEList = 'list',
 cApplication = 'capp',
 cArc = 'carc',
 cBoolean = 'bool',
 cCell = 'ccel',
 cChar = 'cha ',
 cColorTable = 'clrt',
 cColumn = 'ccol',
 cDocument = 'docu',
 cDrawingArea = 'cdrw',
 cEnumeration = 'enum',
 cFile = 'file',
 cFixed = 'fixd',
 cFixedPoint = 'fpnt',
 cFixedRectangle = 'frct',
 cGraphicLine = 'glin',
 cGraphicObject = 'cgob',
 cGraphicShape = 'cgsh',
 cGraphicText = 'cgtx',
 cGroupedGraphic = 'cpic'
};

Callback Constants for the AEResolve Function
Specify supported callback features to the AEResolve function.

Constants 571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kAEIDoMinimum = 0x0000,
 kAEIDoWhose = 0x0001,
 kAEIDoMarking = 0x0004,
 kAEPassSubDescs = 0x0008,
 kAEResolveNestedLists = 0x0010,
 kAEHandleSimpleRanges = 0x0020,
 kAEUseRelativeIterators = 0x0040
};

Constants
kAEIDoMinimum

The application does not handle whose tests or provide marking callbacks.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEIDoWhose
The application supports whose tests (supports key form formWhose).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEIDoMarking
The application provides marking callback functions. Marking callback functions are described in
“Object Callback Functions” (page 524).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
You use these constants to supply a value for the callbackFlags parameter to the AEResolve (page 473)
function. This value specifies whether your application supports whose descriptors or provides marking
callback functions. To obtain a value for this parameter, you can add together constants to set the appropriate
bits, as shown in the following example (for an application that supports both whose tests and marking):

 AEDesc objectSpecifier; // Previously obtained object specifier. AEDesc
 resultToken;
 OSErr myErr;

 myErr = AEResolve (&objectSpecifier,
 kAEIDoWhose + kAEIDoMarking, &resultToken)

AppleScript generates whose clauses from script statements such as the following:

tell application "Finder"
 every file in control panels folder whose file type is "APPL"
end tell

572 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

cInsertionLoc
enum {
 cInsertionLoc = 'insl',
 cInsertionPoint = 'cins',
 cIntlText = 'itxt',
 cIntlWritingCode = 'intl',
 cItem = 'citm',
 cLine = 'clin',
 cLongDateTime = 'ldt ',
 cLongFixed = 'lfxd',
 cLongFixedPoint = 'lfpt',
 cLongFixedRectangle = 'lfrc',
 cLongInteger = 'long',
 cLongPoint = 'lpnt',
 cLongRectangle = 'lrct',
 cMachineLoc = 'mLoc',
 cMenu = 'cmnu',
 cMenuItem = 'cmen',
 cObject = 'cobj',
 cObjectSpecifier = 'obj ',
 cOpenableObject = 'coob',
 cOval = 'covl'
};

cKeystroke
enum {
 cKeystroke = 'kprs',
 pKeystrokeKey = 'kMsg',
 pModifiers = 'kMod',
 pKeyKind = 'kknd',
 eModifiers = 'eMds',
 eOptionDown = 'Kopt',
 eCommandDown = 'Kcmd',
 eControlDown = 'Kctl',
 eShiftDown = 'Ksft',
 eCapsLockDown = 'Kclk',
 eKeyKind = 'ekst',
 eEscapeKey = 0x6B733500,
 eDeleteKey = 0x6B733300,
 eTabKey = 0x6B733000,
 eReturnKey = 0x6B732400,
 eClearKey = 0x6B734700,
 eEnterKey = 0x6B734C00,
 eUpArrowKey = 0x6B737E00,
 eDownArrowKey = 0x6B737D00,
 eLeftArrowKey = 0x6B737B00,
 eRightArrowKey = 0x6B737C00,
 eHelpKey = 0x6B737200,
 eHomeKey = 0x6B737300,
 ePageUpKey = 0x6B737400,
 ePageDownKey = 0x6B737900,
 eForwardDelKey = 0x6B737500,
 eEndKey = 0x6B737700,
 eF1Key = 0x6B737A00,

Constants 573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 eF2Key = 0x6B737800,
 eF3Key = 0x6B736300,
 eF4Key = 0x6B737600,
 eF5Key = 0x6B736000,
 eF6Key = 0x6B736100,
 eF7Key = 0x6B736200,
 eF8Key = 0x6B736400,
 eF9Key = 0x6B736500,
 eF10Key = 0x6B736D00,
 eF11Key = 0x6B736700,
 eF12Key = 0x6B736F00,
 eF13Key = 0x6B736900,
 eF14Key = 0x6B736B00,
 eF15Key = 0x6B737100
};

Comparison Operator Constants
Specify a comparison operation to perform on two operands.

enum {
 kAEAsk = 'ask ',
 kAEBefore = 'befo',
 kAEBeginning = 'bgng',
 kAEBeginsWith = 'bgwt',
 kAEBeginTransaction = 'begi',
 kAEBold = 'bold',
 kAECaseSensEquals = 'cseq',
 kAECentered = 'cent',
 kAEChangeView = 'view',
 kAEClone = 'clon',
 kAEClose = 'clos',
 kAECondensed = 'cond',
 kAEContains = 'cont',
 kAECopy = 'copy',
 kAECoreSuite = 'core',
 kAECountElements = 'cnte',
 kAECreateElement = 'crel',
 kAECreatePublisher = 'cpub',
 kAECut = 'cut ',
 kAEDelete = 'delo'
};

Constants
kAEBeginsWith

The value of operand1 begins with the value of operand2 (for example, the string "operand" begins
with the string "opera").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEContains
The value of operand1 contains the value of operand2 (for example, the string "operand" contains
the string "era").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

574 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAECoreSuite
An Apple event in the Standard Suite.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Discussion
When you call the CreateCompDescriptor (page 498) function, you pass one of these comparison operators
in the comparisonOperator parameter. The CreateCompDescriptor function creates a comparison
descriptor that specifies how to compare one or more Apple event objects with either another Apple event
object or a descriptor.

The actual comparison of the two operands is performed by the object comparison function provided by
the client application—see OSLCompareProcPtr (page 536). The way a comparison operator is interpreted
is up to each application.

For related information, see “Constants for Object Specifiers, Positions, and Logical and Comparison
Operations” (page 575).

Constants for Object Specifiers, Positions, and Logical and Comparison
Operations
Specify the types of the four keyword-specified descriptors that make up the data in an object specifier, as
well as constants for position, logical operations, and comparison operations.

enum {
 kAEAND = 'AND ',
 kAEOR = 'OR ',
 kAENOT = 'NOT ',
 kAEFirst = 'firs',
 kAELast = 'last',
 kAEMiddle = 'midd',
 kAEAny = 'any ',
 kAEAll = 'all ',
 kAENext = 'next',
 kAEPrevious = 'prev',
 keyAECompOperator = 'relo',
 keyAELogicalTerms = 'term',
 keyAELogicalOperator = 'logc',
 keyAEObject1 = 'obj1',
 keyAEObject2 = 'obj2',
 keyAEDesiredClass = 'want',
 keyAEContainer = 'from',
 keyAEKeyForm = 'form',
 keyAEKeyData = 'seld'
};

Constants
kAEAND

Specifies a logical AND operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEOR
Specifies a logical OR operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAENOT
Specifies a logical NOT operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEFirst
The first element in the specified container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAELast
Specifies the last element in the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEMiddle
Specifies the middle element in the container. If an object specifier specifies kAEMiddle and the
number of elements in the container is even, the Apple Event Manager rounds down. For example,
in a range of four words the second word is the “middle” word.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEAny
Specifies a single element chosen at random from the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEAll
Specifies all the elements in the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAENext
Specifies the Apple event object after the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEPrevious
Specifies the Apple event object before the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECompOperator
Specifies a descriptor of typeType, whose data consists of one of the constant values described in
“Key Form and Descriptor Type Object Specifier Constants” (page 590).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

576 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyAELogicalTerms
Specifies a descriptor of type typeAEList containing one or more comparison or logical descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAELogicalOperator
Specifies a descriptor of type typeEnumerated whose data is one of the logical operators (such as
kAEAND) defined in “Key Form and Descriptor Type Object Specifier Constants” (page 590).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEObject1
Identifies a descriptor for the element that is currently being compared to the object or data specified
by the descriptor for the keyword keyAEObject2. Either object can be described by a descriptor of
type typeObjectSpecifier or typeObjectBeingExamined.

A descriptor of typeObjectBeingExamined acts as a placeholder for each of the successive elements
in a container when the Apple Event Manager tests those elements one at a time.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEObject2
Identifies a descriptor for the element that is currently being compared to the object or data specified
by the descriptor for the keyword keyAEObject1.

The keyword keyAEObject2 can also be used with a descriptor of any other descriptor type whose
data is to be compared to each element in a container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEDesiredClass
A four-character code that identifies the object class of the specified object or objects.

Constants for object class IDs are described in “Key Form and Descriptor Type Object Specifier
Constants” (page 590).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEContainer
Specifies the container for the requested object or objects. The data is an object specifier (or in some
cases a null descriptor).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEKeyForm
A four-character code that identifies the key form for the specified object or objects.

The constants for specifying the key form are described in “Key Form and Descriptor Type Object
Specifier Constants” (page 590).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyAEKeyData
Data or nested descriptors that specify a property, name, position, range, or test, depending on the
key form.

The descriptor types used in object specifiers are described in “Key Form and Descriptor Type Object
Specifier Constants” (page 590).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
When you call the CreateLogicalDescriptor (page 499) function to create a logical descriptor, you pass
one of the logical operators kAEAND, kAEOR, or kAENOT in the theLogicOperator parameter. The
CreateLogicalDescriptor function creates a logical descriptor that specifies a logical operation to perform
on one or more operands.

The constants kAEFirst, kAELast, kAEMiddle, kAEAny, and kAEAll provide the key data for a
keyword-specified descriptor of key form formAbsolutePosition and descriptor type
typeAbsoluteOrdinal.

The constants kAENext, and kAEPrevious provide the key data for a keyword-specified descriptor of key
form formRelativePosition.

Key form constants and descriptor type constants for object specifiers are defined in “Key Form and Descriptor
Type Object Specifier Constants” (page 590).

The constants keyAELogicalTerms and keyAELogicalOperator define the keyword descriptors for a
logical descriptor. A logical descriptor is a coerced Apple event record of type typeLogicalDescriptor
that specifies a logical expression—that is, an expression that the Apple Event Manager evaluates to either
TRUE or FALSE. You can create a logical descriptor with the CreateLogicalDescriptor (page 499) function.

The data for a logical descriptor consists of two keyword-specified descriptors: the first with descriptor type
keyAELogicalOperator, descriptor type typeEnumerated, and one of the logical operators defined in
“Constants for Object Specifiers, Positions, and Logical and Comparison Operations” (page 575) for its data;
and the second with descriptor type keyAELogicalTerms, descriptor type typeEnumerated, and one or
more comparison or logical descriptors for its data. Comparison constants are described in “Comparison
Operator Constants” (page 574).

The logical expression is constructed from a logical operator (one of the Boolean operators AND, OR, or NOT)
and a list of logical terms to which the operator is applied (where NOT can only be used where the list of
terms is a single-item list). Each logical term in the list can be either another logical descriptor or a comparison
descriptor (described in “Constants for Object Specifiers, Positions, and Logical and Comparison
Operations” (page 575)).

The Apple Event Manager short-circuits its evaluation of a logical expression as soon as one part of the
expression fails a test. For example, if while testing a logical expression such as A AND B AND C the Apple
Event Manager discovers that A AND B is not true, it will evaluate the expression to FALSE without testing C.

The constants keyAECompOperator, keyAEObject1, and keyAEObject2 define the keyword descriptors
for a comparison descriptor. A comparison descriptor is a coerced Apple event record of type
typeCompDescriptor that specifies an Apple event object and either another Apple event object or data
for the Apple Event Manager to compare to the first object. You can create a logical descriptor with the
CreateCompDescriptor (page 498) function.

578 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

The Apple Event Manager can also use the information in a comparison descriptor to compare elements in
a container, one at a time, either to an Apple event object or to data. The data for a comparison descriptor
consists of three keyword-specified descriptors:

 ■ A descriptor with keyword keyAECompOperator, descriptor type typeType, and one of the logical
operators defined in “Comparison Operator Constants” (page 574) for its data.

 ■ A descriptor with keyword keyAEObject1 and either

 ■ descriptor type typeObjectSpecifier and object specifier data to compare, or

 ■ descriptor type typeObjectBeingExamined and a data storage pointer of NULL.

 ■ A descriptor with keyword keyAEObject2 and either

 ■ descriptor type typeObjectSpecifier and object specifier data to compare, or

 ■ descriptor type typeObjectBeingExamined and a data storage pointer of NULL, or

 ■ any other descriptor type and the data to be compared for that descriptor type.

You don’t have to support all the available comparison operators for all Apple event objects for example,
the begins with operator probably doesn’t make sense for objects of type cRectangle. It is up to you to
decide which comparison operators are appropriate for your application to support, and how to interpret
them. If necessary, you can define your own custom comparison operators. If you think you need to do this,
check the Apple Events and Scripting header files to see if existing definitions of comparison operators can
be adapted to the needs of your application.

An object specifier is a coerced Apple event record of descriptor type typeObjectSpecifier whose data
contains consists of four keyword-specified descriptors. The constants keyAEDesiredClass,
keyAEContainer, keyAEKeyForm, and keyAEKeyData specify the keywords for the four descriptor types
that together identify the specified object or objects.

cURL
enum {
 cURL = 'url ',
 cInternetAddress = 'IPAD',
 cHTML = 'html',
 cFTPItem = 'ftp '
};

Constants
cURL

Specifies a Uniform Resource Locator or Uniform Resource ID (URI).

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cInternetAddress
Specifies an Internet or Intranet address for the TCP/IP protocol.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Constants 579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

cHTML
Specifies HTML (HyperText Markup Language) format.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cFTPItem
Specifies FTP (File Transfer Protocol) protocol.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cVersion
enum {
 cVersion = 'vers',
 cWindow = 'cwin',
 cWord = 'cwor',
 enumArrows = 'arro',
 enumJustification = 'just',
 enumKeyForm = 'kfrm',
 enumPosition = 'posi',
 enumProtection = 'prtn',
 enumQuality = 'qual',
 enumSaveOptions = 'savo',
 enumStyle = 'styl',
 enumTransferMode = 'tran',
 formUniqueID = 'ID ',
 kAEAbout = 'abou',
 kAEAfter = 'afte',
 kAEAliasSelection = 'sali',
 kAEAllCaps = 'alcp',
 kAEArrowAtEnd = 'aren',
 kAEArrowAtStart = 'arst',
 kAEArrowBothEnds = 'arbo'
};

Constants
formUniqueID

Specifies a value that uniquely identifies an object within its container or across an application.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Data Array Constants
Specify an array type for storing or extracting descriptor lists with the AEPutArray and AEGetArray functions.

580 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kAEDataArray = 0,
 kAEPackedArray = 1,
 kAEDescArray = 3,
 kAEKeyDescArray = 4
};

Constants
kAEDataArray

Array items consist of data of the same size and same type, and are aligned on word boundaries.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEPackedArray
Array items consist of data of the same size and same type, and are packed without regard for word
boundaries.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDescArray
Array items consist of descriptors of different descriptor types with data of variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEKeyDescArray
Array items consist of keyword-specified descriptors with different keywords, different descriptor
types, and data of variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
When your application calls the AEPutArray (page 459) function to put information into a descriptor list or
the AEGetArray (page 428) function to get information from a descriptor list, it uses an array to store the
information. The type of array depends on the data for the array, as specified by one of these constants.

Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray must be
factored—that is, contained in a factored descriptor list. For more information, see AEPutArray (page 459).

Descriptor Type Constants
Specify types for descriptors.

Constants 581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 typeAEList = 'list',
 typeAERecord = 'reco',
 typeAppleEvent = 'aevt',
 typeEventRecord = 'evrc',
 typeTrue = 'true',
 typeFalse = 'fals',
 typeAlias = 'alis',
 typeEnumerated = 'enum',
 typeType = 'type',
 typeAppParameters = 'appa',
 typeProperty = 'prop',
 typeFSS = 'fss ',
 typeFSRef = 'fsrf',
 typeFileURL = 'furl',
 typeKeyword = 'keyw',
 typeSectionH = 'sect',
 typeWildCard = '****',
 typeApplSignature = 'sign',
 typeQDRectangle = 'qdrt',
 typeFixed = 'fixd',
 typeProcessSerialNumber = 'psn ',
 typeApplicationURL = 'aprl',
 typeNull = 'null'
};

Constants
typeAEList

List of descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAERecord
List of keyword-specified descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAppleEvent
Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeTrue
TRUE Boolean value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFalse
FALSE Boolean value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

582 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeAlias
Alias.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeEnumerated
Enumerated data.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeType
Four-character code for event class or event ID

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAppParameters
Process Manager launch parameters.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeProperty
Apple event object property.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFSS
File system specification. Deprecated in Mac OS X. Use file system references (typeFSRef) instead.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeFSRef
File system reference. Use in preference to file system specifications (typeFSS).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFileURL
A file URL. That is, the associated data consists of the bytes of a UTF-8 encoded URL with a scheme
of "file". This type is appropriate for describing a file that may not yet exist—see Technical Note 2022
for more information.

You can translate between a descriptor of this type and an instance of CFURL by calling
CFURLCreateWithBytes and specifying kCFStringEncodingUTF8 for the encoding. Or, if you
have a CFURLRef, you can call CFURLCreateData to get the data as an instance of CFData (again
specifying an encoding of kCFStringEncodingUTF8), andCFDataGetBytes to get the actual bytes
to insert into a descriptor of this type.

Available in Mac OS X v10.1 and later.

Declared in AEDataModel.h.

typeKeyword
Apple event keyword.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2022.html

typeSectionH
Handle to a section record. (Deprecated.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeWildCard
Matches any type.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeApplSignature
Application signature.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeProcessSerialNumber
A process serial number. See also AEAddressDesc (page 551).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeApplicationURL
For specifying an application by URL. See Discussion section below for important information.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeNull
A null data storage pointer. When resolving an object specifier, an object with a null storage pointer
specifies the default container at the top of the container hierarchy.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of data stored in a
descriptor with that type.

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 546), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 560). AppleScript defines descriptor type constants for a wide variety of common data types.
For additional types, see “Numeric Descriptor Type Constants” (page 597) and “Other Descriptor Type
Constants” (page 601). For a complete listing, including data types such as units of length, weight, and volume,
see the Apple Event Manager and Open Scripting Architecture header files.

For the constant typeApplicationURL, the data that specifies the application URL takes the following
format:

eppc://[username[:password]@]host/AppName[[?uid=#]&[pid=#]]

As indicated by this format:

 ■ username is optional. If present, an '@' must appear before the host name. password is optional. If
present, username is not optional, and the password must be separated from the username by a ':'
and must precede the '@'. AppName is not optional; if it contains non-UTF-8 characters or white space,
it must be URL-encoded (for example, My%20Application).

584 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 ■ uid and pid are optional. If pid is present, uid and AppName are ignored and the event is delivered
only to applications with the given process id. If uid is present, events are directed to the application
name owned by the given user id.

The following are examples of valid URLs:

eppc://Steve%20Zellers:wombat@grrr.apple.com/Microsoft%20Word
eppc://Steve%20Zellers:wombat@grrr.apple.com/Microsoft%20Word?pid=1284

The availability of user identifiers provides enhanced Apple event support for Fast User Switching. Such
identifiers make it possible to send Apple events to applications running in any session, if the uids of the
processes match. 'root' (or uid 0) processes are allowed to send Apple events to any process in any
session. Non-root processes can only target applications that match their uid.

eScheme
enum {
 eScheme = 'esch',
 eurlHTTP = 'http',
 eurlHTTPS = 'htps',
 eurlFTP = 'ftp ',
 eurlMail = 'mail',
 eurlFile = 'file',
 eurlGopher = 'gphr',
 eurlTelnet = 'tlnt',
 eurlNews = 'news',
 eurlSNews = 'snws',
 eurlNNTP = 'nntp',
 eurlMessage = 'mess',
 eurlMailbox = 'mbox',
 eurlMulti = 'mult',
 eurlLaunch = 'laun',
 eurlAFP = 'afp ',
 eurlAT = 'at ',
 eurlEPPC = 'eppc',
 eurlRTSP = 'rtsp',
 eurlIMAP = 'imap',
 eurlNFS = 'unfs',
 eurlPOP = 'upop',
 eurlLDAP = 'uldp',
 eurlUnknown = 'url?'
};

Event Class Constants
Specify the event class for an Apple event.

Constants 585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kCoreEventClass = 'aevt'
};

Constants
kCoreEventClass

An Apple event sent by the Mac OS; applications that present a graphical interface to the user should
be able to any events sent by the Mac OS that apply to the application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
Apple events are identified by their event class and event ID attributes, each of which specifies an arbitrary
four-character code. The event class appears in the message field of the event record for an Apple event.
For example, certain Apple events that are sent by the Mac OS have the value 'aevt' in the message fields
of their event records. This value can be represented with the constant kCoreEventClass.

Groups of related Apple events are known as suites. For example, the common events that most applications
support are grouped in the Standard Suite. The Standard Suite includes the events of the Core suite (open
application , reopen, open contents, open documents, print documents, and quit), as well as
such events as count, delete, and make. Suites may use a common event class, but doing so is not required,
and does not result in any special treatment by AppleScript or the Apple Event Manager.

AppleScript defines suites that provide terminology for Text, Database, Macintosh Connectivity, and other
types of related operations. The terms defined in the AppleScript suite itself make up the largest suite. These
terms are global to AppleScript, and are available to your application, even if your 'aete' resource doesn’t
explicitly include them.

Event Handler Flags
enum {
 kAEDoNotIgnoreHandler = 0x00000000,
 kAEIgnoreAppPhacHandler = 0x00000001,
 kAEIgnoreAppEventHandler = 0x00000002,
 kAEIgnoreSysPhacHandler = 0x00000004,
 kAEIgnoreSysEventHandler = 0x00000008,
 kAEIngoreBuiltInEventHandler = 0x00000010,
 kAEDontDisposeOnResume = 0x80000000
};

Event ID Constants
Specify the event ID for an Apple event.

586 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kAEOpenApplication = 'oapp',
 kAEReopenApplication = 'rapp',
 kAEOpenDocuments = 'odoc',
 kAEPrintDocuments = 'pdoc',
 kAEOpenContents = 'ocon',
 kAEQuitApplication = 'quit',
 kAEAnswer = 'ansr',
 kAEApplicationDied = 'obit',
 kAEShowPreferences = 'pref'
};

Constants
kAEOpenApplication

Event that launches an application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEReopenApplication
Event that reopens an application. Sent, for example, when your application is running and a user
clicks your application icon in the Dock.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEOpenDocuments
Event that provides an application with a list of documents to open. Sent, for example, when a selects
one or more documents for your application in the Finder and double-clicks them.

See also the constant keyAESearchText in the enum “keyAEPropData” (page 619).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEPrintDocuments
Event that provides an application with a list of documents to print.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEOpenContents
Event that provides an application with dragged content, such as text or an image. Sent, for example,
when a user drags an image file onto your application’s icon in the Dock. The application can use the
content as desired—for example, if no document is currently open, it might open a new document
and insert the provided text or image.

For more information, see “Handling Apple Events Sent by the Mac OS” in “Responding to Apple
Events” in Apple Events Programming Guide.

Available in Mac OS X v10.4 and later.

Declared in AppleEvents.h.

kAEQuitApplication
Event that causes the application to quit.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Constants 587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEAnswer
Event that is a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEApplicationDied
Event sent by the Process Manager to an application that launched another application when the
launched application quits or terminates.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEShowPreferences
Event sent by the Mac OS X to a process when the user chooses the Preferences item for that process.

Carbon applications that handle the Preferences command can install an Apple event handler for this
event, but they more commonly install a Carbon event handler for kEventCommandProcess and
check for the kHICommandPreferences command ID.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
Apple events are identified by their event class and event ID attributes. The event ID is the attribute that
identifies the particular Apple event within its event class. In conjunction with the event class, the event ID
uniquely identifies the Apple event and communicates what action the Apple event should perform. The
event ID appears in the where field of the event record for an Apple event. For example, an event with ID
kAEOpenApplication and class kCoreEventClass is an event sent by the Mac OS that launches an
application.

Only a small number of event IDs are shown here. For a more complete listing, see the Apple Event Manager
and Open Scripting Architecture header files.

Event Source Constants
Identify how an Apple event was delivered.

enum {
 kAEUnknownSource = 0,
 kAEDirectCall = 1,
 kAESameProcess = 2,
 kAELocalProcess = 3,
 kAERemoteProcess = 4
};

Constants
kAEUnknownSource

The source of the Apple event is unknown.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEDirectCall
The source of the Apple event is a direct call that bypassed the PPC Toolbox.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

588 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAESameProcess
The source of the Apple event is the same application that received the event (the target application
and the source application are the same).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAELocalProcess
The source application is another process on the same computer as the target application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAERemoteProcess
The source application is a process on a remote computer on the network.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
For an example of how you might use these constants with the AEGetAttributePtr (page 430) function,
see the data type AEEventSource (page 554).

Declared In
AppleEvents.h

Factoring Constants
enum {
 kAEDescListFactorNone = 0,
 kAEDescListFactorType = 4,
 kAEDescListFactorTypeAndSize = 8
};

Discussion
These constants have no effect in Mac OS X v10.2 and later.

ID Constants for the AECreateAppleEvent Function
Specify values for the ID parameters of the AECreateAppleEvent function.

enum {
 kAutoGenerateReturnID = -1,
 kAnyTransactionID = 0
};

Constants
kAutoGenerateReturnID

If you pass this value for the returnID parameter of the AECreateAppleEvent (page 416) function,
the Apple Event Manager assigns to the created Apple event a return ID that is unique to the current
session.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAnyTransactionID
You pass this value for the transactionID parameter of the AECreateAppleEvent (page 416)
function if the Apple event is not one of a series of interdependent Apple events.

A transaction is a sequence of Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service. All Apple events that are part of
a transaction must have the same transaction ID.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You use these constants with the AECreateAppleEvent (page 416) function.

Key Form and Descriptor Type Object Specifier Constants
Specify possible values for the keyAEKeyForm field of an object specifier, as well as descriptor types used
in resolving object specifiers.

enum {
 formAbsolutePosition = 'indx',
 formRelativePosition = 'rele',
 formTest = 'test',
 formRange = 'rang',
 formPropertyID = 'prop',
 formName = 'name',
 typeObjectSpecifier = 'obj ',
 typeObjectBeingExamined = 'exmn',
 typeCurrentContainer = 'ccnt',
 typeToken = 'toke',
 typeRelativeDescriptor = 'rel ',
 typeAbsoluteOrdinal = 'abso',
 typeIndexDescriptor = 'inde',
 typeRangeDescriptor = 'rang',
 typeLogicalDescriptor = 'logi',
 typeCompDescriptor = 'cmpd',
 typeOSLTokenList = 'ostl'
};

Constants
formAbsolutePosition

An integer or other constant indicating the position of one or more elements in relation to the
beginning or end of their container. The key data consists of an integer that specifies either an offset
or an ordinal position.

For descriptor type typeAbsoluteOrdinal, the data consists of one of the constants kAEFirst,
kAEMiddle, kAELast, kAEAny, or kAEAll, which are described in AEDisposeToken (page 425).

For other descriptor types, the data can be coerced to either a positive integer, indicating the offset
of the requested element from the beginning of the container, or a negative integer, indicating its
offset from the end of the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

590 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

formRelativePosition
Specifies an element position either immediately before or immediately after a container, not inside
it. The key data is specified by a descriptor of type typeEnumerated whose data consists of one of
the constants kAENext and kAEPrevious, which are described in AEDisposeToken (page 425).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formTest
Specifies a test. The key data is specified by either a comparison descriptor or a logical descriptor.

The Apple Event Manager internally translates object specifiers of key form formTest into object
specifiers of key form formWhose to optimize resolution of object specifiers. This involves collapsing
the key form and key data from two object specifiers in a container hierarchy into one object specifier
with the key form formWhose.

See also AEDisposeToken (page 425), “Constants for Object Specifiers, Positions, and Logical and
Comparison Operations” (page 575), CreateCompDescriptor (page 498), and
CreateLogicalDescriptor (page 499).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formRange
Specifies a group of elements between two other elements. The key data is specified by a range
descriptor, which is a coerced Apple event record of type typeRangeDescriptor that identifies two
Apple event objects marking the beginning and end of a range of elements.

The data for a range descriptor consists of two keyword-specified descriptors with the keywords
keyAERangeStart and keyAERangeStop.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formPropertyID
Specifies the property ID for an element’s property.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formName
Specifies the Apple event object by name.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeObjectSpecifier
Specifies a descriptor used with the keyAEContainer keyword in a keyword-specified descriptor.
The key data for the descriptor is an object specifier.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeObjectBeingExamined
Specifies a descriptor that acts as a placeholder for each of the successive elements in a container
when the Apple Event Manager tests those elements one at a time. The descriptor has a null data
storage pointer. This descriptor type is used only with formTest.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeCurrentContainer
Specifies a container for an element that demarcates one boundary in a range. The descriptor has a
null data storage pointer. This descriptor type is used only with formRange.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeToken
Specifies a descriptor whose data storage pointer refers to a structure of type AEDisposeToken (page
425).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeRelativeDescriptor
Specifies a descriptor whose data consists of one of the constants kAENext or kAEPrevious, which
are described in AEDisposeToken (page 425). Used with formRelativePosition.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeAbsoluteOrdinal
Specifies a descriptor whose data consists of one of the constants kAEFirst, kAEMiddle, kAELast,
kAEAny, or kAEAll, which are described in AEDisposeToken (page 425). Used with
formAbsolutePosition.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeIndexDescriptor
Specifies a descriptor whose data indicates an indexed position within a range of values.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeRangeDescriptor
Specifies a range descriptor that identifies two Apple event objects marking the beginning and end
of a range of elements. The data for a range descriptor consists of two keyword-specified descriptors
with the keywords keyAERangeStart and keyAERangeStop, respectively, which specify the first
Apple event object in the desired range and the last Apple event object in the desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeLogicalDescriptor
Specifies a logical descriptor. Data is one of the constants described in AEDisposeToken (page 425).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeCompDescriptor
Specifies a comparison descriptor. Data is one of the constants described in AEDisposeToken (page
425).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

592 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeOSLTokenList
Specifies a descriptor whose data consists of a list of tokens. (Token is defined in
AEDisposeToken (page 425).)

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
The constants in this enum that begin with “form” specify the key form for an object specifier. The key form
indicates how key data should be interpreted. Key form is one of the keyword-specified descriptors described
in “Constants for Object Specifiers, Positions, and Logical and Comparison Operations” (page 575).

The constants in this enum that begin with “type” specify descriptor types used in resolving object specifiers.
An object specifier is a coerced Apple event record of descriptor type typeObjectSpecifier whose data
consists of the four keyword-specified descriptors described in “Constants for Object Specifiers, Positions,
and Logical and Comparison Operations” (page 575). One of those four keyword-specified descriptors has
the type keyAEKeyData. This descriptor can contain data or nested descriptors specified by any of the
descriptor type constants defined here (or by types defined by your application).

Keyword Attribute Constants
Specify keyword values for Apple event attributes.

enum {
 keyTransactionIDAttr = 'tran',
 keyReturnIDAttr = 'rtid',
 keyEventClassAttr = 'evcl',
 keyEventIDAttr = 'evid',
 keyAddressAttr = 'addr',
 keyOptionalKeywordAttr = 'optk',
 keyTimeoutAttr = 'timo',
 keyInteractLevelAttr = 'inte',
 keyEventSourceAttr = 'esrc',
 keyMissedKeywordAttr = 'miss',
 keyOriginalAddressAttr = 'from',
 keyAcceptTimeoutAttr = 'actm',
 keyReplyRequestedAttr = 'repq'
};

Constants
keyTransactionIDAttr

Transaction ID identifying a series of Apple events that are part of one transaction.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyReturnIDAttr
Return ID for a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyEventClassAttr
Event class of an Apple event. See AEAddressDesc (page 551).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyEventIDAttr
Event ID of an Apple event. See AEAddressDesc (page 551).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyAddressAttr
Address of a target or client application. See also AEAddressDesc (page 551).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyOptionalKeywordAttr
List of keywords for parameters of an Apple event that should be treated as optional by the target
application.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyTimeoutAttr
Length of time, in ticks, that the client will wait for a reply or a result from the server.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyInteractLevelAttr
Settings for when to allow the Apple Event Manager to bring a server application to the foreground,
if necessary, to interact with the user. See AEAddressDesc (page 551). (Read only.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyEventSourceAttr
Nature of the source application. (Read only.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyMissedKeywordAttr
Keyword for first required parameter remaining in an Apple event. (Read only.)

After extracting all known Apple event parameters from an event, your handler should check whether
the keyMissedKeywordAttr attribute exists. If so, your handler has not retrieved all the parameters
that the source application considered to be required, and it should return an error.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyOriginalAddressAttr
Address of original source of Apple event if the event has been forwarded (available only in version
1.01 or later versions of the Apple Event Manager). See also AEAddressDesc (page 551).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyReplyRequestedAttr
A Boolean value indicating whether the Apple event expects to be replied to.

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

594 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Discussion
These constants are keyword constants for Apple event attributes. An Apple event consists of attributes
(which identify the Apple event and denote its task) and, often, parameters (which contain information to
be used by the target application). An Apple event attribute is a descriptor that identifies the event class,
event ID, target application, or some other characteristic of the Apple event. Taken together, the attributes
of an Apple event denote the task to be performed on any data specified in the Apple event’s parameters.

Keywords are arbitrary names used by the Apple Event Manager to keep track of various descriptors. Your
application cannot examine the contents of an Apple event directly. Instead, you call Apple Event Manager
routines such as those described in “Getting Data or Descriptors From Apple Events and Apple Event
Records” (page 402) to request attributes and parameters by keyword.

See also “Keyword Parameter Constants” (page 595).

Version Notes
The constant keyReplyRequestedAttr was added in Mac OS X version 10.3.

Keyword Parameter Constants
Specify keyword values for Apple event parameters, as well as information for the AEManagerInfo function
to retrieve. Some common key word values are shown here.

enum {
 keyDirectObject = '----',
 keyErrorNumber = 'errn',
 keyErrorString = 'errs',
 keyProcessSerialNumber = 'psn ',
 keyPreDispatch = 'phac',
 keySelectProc = 'selh',
 keyAERecorderCount = 'recr',
 keyAEVersion = 'vers'
};

Constants
keyDirectObject

Direct parameter. Usually specifies the data to be acted upon by the target application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyErrorNumber
Error number. Often used to extract error information from a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyErrorString
Error string. Often used to extract error information from a reply Apple event to display to the user.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyProcessSerialNumber
Process serial number. See also AEManagerInfo (page 454).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Constants 595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyPreDispatch
A predispatch handler (an Apple event handler that the Apple Event Manager calls immediately before
it dispatches an Apple event). See also “Managing Special Handler Dispatch Tables” (page 404).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keySelectProc
You pass this value in the functionClass parameter of the AEManagerInfo (page 454) function to
disable the Object Support Library. Disabling the Object Support Library is not recommended.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyAERecorderCount
Used with the keyword parameter of the AEManagerInfo (page 454) function. If you pass this value,
on return, the result parameter supplies the number of processes that are currently recording Apple
events.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyAEVersion
Used with the keyword parameter of the AEManagerInfo (page 454) function. If you pass this value,
on return, the result parameter supplies version information for the Apple Event Manager, in
NumVersion format.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
These constants are keyword constants for Apple event parameters. An Apple event consists of attributes
(which identify the Apple event and denote its task) and, often, parameters (which contain information to
be used by the target application). Taken together, the attributes of an Apple event denote the task to be
performed on any data specified in the Apple event’s parameters.

Keywords are arbitrary names used by the Apple Event Manager to keep track of various descriptors. Your
application cannot examine the contents of an Apple event directly. Instead, you call Apple Event Manager
routines such as those described in “Getting Data or Descriptors From Apple Events and Apple Event
Records” (page 402) to request attributes and parameters by keyword.

See also “Keyword Attribute Constants” (page 593).

Launch Apple Event Constants
In a kAEOpenApplication event, specify information about how the receiving application was launched.

596 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 keyAELaunchedAsLogInItem = 'lgit',
 keyAELaunchedAsServiceItem = 'svit'
};

Constants
keyAELaunchedAsLogInItem

If present in a kAEOpenApplication event, the receiving application was launched as a login item
and should only perform actions suitable to that environment—for example, it probably shouldn't
open an untitled document.

Available in Mac OS X v10.5 and later.

Declared in AERegistry.h.

keyAELaunchedAsServiceItem
If present in a kAEOpenApplication event, the receiving application was launched as a service item
and should only perform actions suitable to that environment—for example, it probably shouldn't
open an untitled document.

Available in Mac OS X v10.5 and later.

Declared in AERegistry.h.

Special Considerations

Although these constants were not publicly defined in Mac OS X version 10.4, corresponding information
was provided in kAEOpenApplicationApple events sent by that version of the OS. Therefore your application,
running on Mac OS X version 10.4 or later, can examine the open application Apple event to determine if
the application was launched as a login item or a service item. However, for version 10.4, you will have to
define these constants in your own code file.

You check for a keyAEPropData parameter of the kAEOpenApplication Apple event, with a data value
that matches keyAELaunchedAsLogInItem or keyAELaunchedAsServiceItem.

Declared In
AERegistry.h

Numeric Descriptor Type Constants
Specify types for numeric descriptors.

Constants 597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 typeSInt16 = 'shor',
 typeUInt16 = 'ushr',
 typeSInt32 = 'long',
 typeUInt32 = 'magn',
 typeSInt64 = 'comp',
 typeUInt64 = 'ucom',
 typeIEEE32BitFloatingPoint = 'sing',
 typeIEEE64BitFloatingPoint = 'doub',
 type128BitFloatingPoint = 'ldbl',
 typeDecimalStruct = 'decm'
};

Constants
typeSInt16

16-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt16
16-bit unsigned integer.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeSInt32
32-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt32
32-bit unsigned integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeSInt64
64-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt64
64-bit unsigned integer.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeIEEE32BitFloatingPoint
32-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeIEEE64BitFloatingPoint
64-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

598 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

type128BitFloatingPoint
128-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeDecimalStruct
Decimal.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of numeric data stored
in a descriptor with that type. These constants are preferred over their older equivalents described in
“typeSMInt” (page 632).

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 546), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 560).

AppleScript defines descriptor type constants for a wide variety of common data types. For additional types,
see “Descriptor Type Constants” (page 581) and “Other Descriptor Type Constants” (page 601). For a complete
listing, including data types such as units of length, weight, and volume, see the Apple Event Manager and
Open Scripting Architecture header files.

Declared In
AEDataModel.h

Object Class ID Constants
Specify the object class for an Apple event object.

Constants 599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 cParagraph = 'cpar',
 cPICT = 'PICT',
 cPixel = 'cpxl',
 cPixelMap = 'cpix',
 cPolygon = 'cpgn',
 cProperty = 'prop',
 cQDPoint = 'QDpt',
 cQDRectangle = 'qdrt',
 cRectangle = 'crec',
 cRGBColor = 'cRGB',
 cRotation = 'trot',
 cRoundedRectangle = 'crrc',
 cRow = 'crow',
 cSelection = 'csel',
 cShortInteger = 'shor',
 cTable = 'ctbl',
 cText = 'ctxt',
 cTextFlow = 'cflo',
 cTextStyles = 'tsty',
 cType = 'type'
};

Constants
cParagraph

A paragraph of text.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cPICT
A PICT format figure.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cProperty
A property of any object class.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cRGBColor
An RGB color value.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Discussion
The object class of an Apple event object is identified by an object class ID. For example, the object class for
an object specifier that specifies an RGB color value is the four-character code 'cRGB', which can be
represented by the constant cRGBColor.

AppleScript defines constants for a wide variety of common object classes, though only a small number are
shown here. For a more complete listing, see the Apple Event Manager and Open Scripting Architecture
header files.

600 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Other Descriptor Type Constants
Specify types for Boolean and character descriptors.

enum {
 typeBoolean = 'bool',
 typeChar = 'TEXT'
};

Constants
typeBoolean

Boolean value—single byte with value 0 or 1.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeChar
Unterminated string of system script characters.

See the Version Notes section below for important information.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of data stored in a
descriptor with that type.

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 546), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 560).

AppleScript defines descriptor type constants for a wide variety of common data types. For additional types,
see “Descriptor Type Constants” (page 581) and “Numeric Descriptor Type Constants” (page 597). For a complete
listing, including data types such as units of length, weight, and volume, see the Apple Event Manager and
Open Scripting Architecture header files.

Version Notes
On Mac OS X typeChar type is deprecated in favor of typeUTF8Text or
typeUTF16ExternalRepresentation. For more information, see
typeUTF16ExternalRepresentation (page 635).

Priority Constants for the AESend Function (Deprecated in Mac OS X)
Specify a value for the sendPriority parameter of the AESend function. (Deprecated. Not used in Mac OS
X.)

Constants 601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kAENormalPriority = 0x00000000,
 kAEHighPriority = 0x00000001
};

Constants
kAENormalPriority

The Apple Event Manager posts the event at the end of the event queue of the server process and
the server processes the Apple event as soon as it has the opportunity.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEHighPriority
The Apple Event Manager posts the event at the beginning of the event queue of the server process.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
For related information, see the AESend (page 476) function and “AESendMode” (page 566).

Version Notes
The sendPriority parameter of the AESend function is deprecated in Mac OS X.

Remote Process Dictionary Keys
Used to extract information from dictionaries with entries that describe remote processes.

 extern const CFStringRef kAERemoteProcessURLKey;
 extern const CFStringRef kAERemoteProcessNameKey;
 extern const CFStringRef kAERemoteProcessUserIDKey;
 extern const CFStringRef kAERemoteProcessProcessIDKey;

Constants
kAERemoteProcessURLKey

Use this key to obtain the full URL to the remote process, as a CFURLRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

kAERemoteProcessNameKey
Use this key to obtain the visible name of the remote process, in the localization supplied by the
server, as a CFStringRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

kAERemoteProcessUserIDKey
Use this key to obtain the user ID of the remote process, if available; if so, returned as a CFNumberRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

602 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAERemoteProcessProcessIDKey
Use this key to obtain the process ID of the remote process, if available; if so, returned as a
CFNumberRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

Declared In
AppleEvents.h

Resume Event Dispatch Constants
Specify event dispatching information to the AEResumeTheCurrentEvent function.

enum {
 kAENoDispatch = 0,
 kAEUseStandardDispatch = 0xFFFFFFFF
};

Constants
kAENoDispatch

Tells the Apple Event Manager that the Apple event has been completely processed and need not
be dispatched.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEUseStandardDispatch
Tells the Apple Event Manager to dispatch the resumed event using the standard dispatching scheme
it uses for other Apple events.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

Discussion
You call the AEResumeTheCurrentEvent (page 474) function to inform the Apple Event Manager that your
application wants to resume the handling of a previously suspended Apple event or that it has completed
the handling of the Apple event. You pass one of the constants described here in the dispatcher parameter
to provide dispatching information to the Apple Event Manager. You can also pass a handler universal
procedure pointer.

Special Handler Callback Constants
Specify an object callback function to install, get, or remove from the special handler dispatch table.

Constants 603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 keyAERangeStart = 'star',
 keyAERangeStop = 'stop',
 keyDisposeTokenProc = 'xtok',
 keyAECompareProc = 'cmpr',
 keyAECountProc = 'cont',
 keyAEMarkTokenProc = 'mkid',
 keyAEMarkProc = 'mark',
 keyAEAdjustMarksProc = 'adjm',
 keyAEGetErrDescProc = 'indc'
};

Constants
keyAERangeStart

Specifies the first Apple event object in a desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAERangeStop
Specifies the last Apple event object in the desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyDisposeTokenProc
Token disposal function. See OSLDisposeTokenProcPtr (page 539).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECompareProc
Object-comparison function. See OSLCompareProcPtr (page 536).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECountProc
Object-counting function. See OSLCountProcPtr (page 538).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEMarkTokenProc
Mark token function. See OSLGetMarkTokenProcPtr (page 542).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEMarkProc
Object-marking function. See OSLMarkProcPtr (page 544).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEAdjustMarksProc
Mark-adjusting function. See OSLAdjustMarksProcPtr (page 535).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

604 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyAEGetErrDescProc
Get error descriptor callback function. See OSLGetErrDescProcPtr (page 541).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
You use these constants with the AEInstallSpecialHandler (page 452), AEGetSpecialHandler (page
446), or AERemoveSpecialHandler (page 471) functions.

Timeout Constants
Specify a timeout value.

enum {
 kAEDefaultTimeout = -1,
 kNoTimeOut = -2
};

Constants
kAEDefaultTimeout

The timeout value is determined by the Apple Event Manager. The default timeout value is about
one minute.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kNoTimeOut
Your application is willing to wait indefinitely. Most commonly, you instead provide a timeout value
(in ticks) that will provide a reasonable amount of time for the current operation.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
Your application can use these constants when it calls the AEInteractWithUser (page 453) function, or it
can supply the specific amount of time (in ticks) that your handler is willing to wait for a response from the
user. You can also use the constants with the AESend (page 476) function.

User Interaction Level Constants
Specify to the AESetInteractionAllowed function the conditions under which your application is willing
to interact with the user.

Constants 605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 kAEInteractWithSelf = 0,
 kAEInteractWithLocal = 1,
 kAEInteractWithAll = 2
};

Constants
kAEInteractWithSelf

Indicates that the server application may interact with the user in response to an Apple event only
when the client application and server application are the same—that is, only when your application
is sending the Apple event to itself.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEInteractWithLocal
Indicates that your server application may interact with the user in response to an Apple event only
if the client application is on the same computer as the server application. This is the default value if
your application has not called the AESetInteractionAllowed (page 479) function to set the
interaction level explicitly.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEInteractWithAll
Indicates that your server application may interact with the user in response to an Apple event sent
from any client application on any computer.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

Discussion
If your application does not set the user interaction level by calling the AESetInteractionAllowed (page
479) function, the Apple Event Manager uses kAEInteractWithLocal as the default value.

Declared In
AERegistry.h

606 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Whose Test Constants
enum {
 typeWhoseDescriptor = 'whos',
 formWhose = 'whos',
 typeWhoseRange = 'wrng',
 keyAEWhoseRangeStart = 'wstr',
 keyAEWhoseRangeStop = 'wstp',
 keyAEIndex = 'kidx',
 keyAETest = 'ktst'
};

Constants
formWhose

Specifies a container of one or more objects and a test to perform on the objects.

The key data for formWhose is specified by a whose descriptor, which is a coerced Apple event record
of descriptor type typeWhoseDescriptor. The data for a whose descriptor consists of two
keyword-specified descriptors with the keywords keyAEIndex and keyAETest.

See also the description for formTest.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEDoObjectsExist
enum {
 kAEDoObjectsExist = 'doex',
 kAEDoScript = 'dosc',
 kAEDrag = 'drag',
 kAEDuplicateSelection = 'sdup',
 kAEEditGraphic = 'edit',
 kAEEmptyTrash = 'empt',
 kAEEnd = 'end ',
 kAEEndsWith = 'ends',
 kAEEndTransaction = 'endt',
 kAEEquals = '= ',
 kAEExpanded = 'pexp',
 kAEFast = 'fast',
 kAEFinderEvents = 'FNDR',
 kAEFormulaProtect = 'fpro',
 kAEFullyJustified = 'full',
 kAEGetClassInfo = 'qobj',
 kAEGetData = 'getd',
 kAEGetDataSize = 'dsiz',
 kAEGetEventInfo = 'gtei',
 kAEGetInfoSelection = 'sinf'
};

Constants
kAEEndsWith

The value of operand1 ends with the value of operand2 (for example, the string "operand" ends
with the string "and").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Constants 607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEEquals
The value of operand1 is equal to the value of operand2

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEFinderEvents
An event that the Finder accepts.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEDebugPOSTHeader
enum {
 kAEDebugPOSTHeader = 0x01,
 kAEDebugReplyHeader = 0x02,
 kAEDebugXMLRequest = 0x04,
 kAEDebugXMLResponse = 0x08,
 kAEDebugXMLDebugAll = 0xFFFFFFFF
};

kAEGetPrivilegeSelection
enum {
 kAEGetPrivilegeSelection = 'sprv',
 kAEGetSuiteInfo = 'gtsi',
 kAEGreaterThan = '> ',
 kAEGreaterThanEquals = '>= ',
 kAEGrow = 'grow',
 kAEHidden = 'hidn',
 kAEHiQuality = 'hiqu',
 kAEImageGraphic = 'imgr',
 kAEIsUniform = 'isun',
 kAEItalic = 'ital',
 kAELeftJustified = 'left',
 kAELessThan = '< ',
 kAELessThanEquals = '<= ',
 kAELowercase = 'lowc',
 kAEMakeObjectsVisible = 'mvis',
 kAEMiscStandards = 'misc',
 kAEModifiable = 'modf',
 kAEMove = 'move',
 kAENo = 'no ',
 kAENoArrow = 'arno'
};

Constants
kAEGreaterThan

The value of operand1 is greater than the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

608 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEGreaterThanEquals
The value of operand1 is greater than or equal to the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAELessThanEquals
The value of operand1 is less than or equal to the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEHandleArray
enum {
 kAEHandleArray = 2
};

Constants
kAEHandleArray

Array items consist of handles to data of the same type and possibly variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEInfo
enum {
 kAEInfo = 11,
 kAEMain = 0,
 kAESharing = 13
};

kAEInternetSuite
enum {
 kAEInternetSuite = 'gurl',
 kAEISWebStarSuite = 'WWW'
};

kAEISGetURL
enum {
 kAEISGetURL = 'gurl',
 KAEISHandleCGI = 'sdoc'
};

kAEISHTTPSearchArgs
enum {
 kAEISHTTPSearchArgs = 'kfor',
 kAEISPostArgs = 'post',
 kAEISMethod = 'meth',
 kAEISClientAddress = 'addr',
 kAEISUserName = 'user',
 kAEISPassword = 'pass',
 kAEISFromUser = 'frmu',
 kAEISServerName = 'svnm',
 kAEISServerPort = 'svpt',
 kAEISScriptName = 'scnm',
 kAEISContentType = 'ctyp',
 kAEISReferrer = 'refr',
 kAEISUserAgent = 'Agnt',
 kAEISAction = 'Kact',
 kAEISActionPath = 'Kapt',
 kAEISClientIP = 'Kcip',
 kAEISFullRequest = 'Kfrq'
};

kAELogOut
enum {
 kAELogOut = 'logo',
 kAEReallyLogOut = 'rlgo',
 kAEShowRestartDialog = 'rrst',
 kAEShowShutdownDialog = 'rsdn'

610 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

};

kAEMenuClass
enum {
 kAEMenuClass = 'menu',
 kAEMenuSelect = 'mhit',
 kAEMouseDown = 'mdwn',
 kAEMouseDownInBack = 'mdbk',
 kAEKeyDown = 'kdwn',
 kAEResized = 'rsiz',
 kAEPromise = 'prom'
};

kAEMouseClass
enum {
 kAEMouseClass = 'mous',
 kAEDown = 'down',
 kAEUp = 'up ',
 kAEMoved = 'move',
 kAEStoppedMoving = 'stop',
 kAEWindowClass = 'wind',
 kAEUpdate = 'updt',
 kAEActivate = 'actv',
 kAEDeactivate = 'dact',
 kAECommandClass = 'cmnd',
 kAEKeyClass = 'keyc',
 kAERawKey = 'rkey',
 kAEVirtualKey = 'keyc',
 kAENavigationKey = 'nave',
 kAEAutoDown = 'auto',
 kAEApplicationClass = 'appl',
 kAESuspend = 'susp',
 kAEResume = 'rsme',
 kAEDiskEvent = 'disk',
 kAENullEvent = 'null',
 kAEWakeUpEvent = 'wake',
 kAEScrapEvent = 'scrp',
 kAEHighLevel = 'high'
};

kAENonmodifiable
enum {
 kAENonmodifiable = 'nmod',
 kAEOpen = 'odoc',
 kAEOpenSelection = 'sope',
 kAEOutline = 'outl',
 kAEPageSetup = 'pgsu',
 kAEPaste = 'past',
 kAEPlain = 'plan',
 kAEPrint = 'pdoc',

Constants 611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 kAEPrintSelection = 'spri',
 kAEPrintWindow = 'pwin',
 kAEPutAwaySelection = 'sput',
 kAEQDAddOver = 'addo',
 kAEQDAddPin = 'addp',
 kAEQDAdMax = 'admx',
 kAEQDAdMin = 'admn',
 kAEQDBic = 'bic ',
 kAEQDBlend = 'blnd',
 kAEQDCopy = 'cpy ',
 kAEQDNotBic = 'nbic',
 kAEQDNotCopy = 'ncpy'
};

kAEQDNotOr
enum {
 kAEQDNotOr = 'ntor',
 kAEQDNotXor = 'nxor',
 kAEQDOr = 'or ',
 kAEQDSubOver = 'subo',
 kAEQDSubPin = 'subp',
 kAEQDSupplementalSuite = 'qdsp',
 kAEQDXor = 'xor ',
 kAEQuickdrawSuite = 'qdrw',
 kAEQuitAll = 'quia',
 kAERedo = 'redo',
 kAERegular = 'regl',
 kAEReplace = 'rplc',
 kAERequiredSuite = 'reqd',
 kAERestart = 'rest',
 kAERevealSelection = 'srev',
 kAERevert = 'rvrt',
 kAERightJustified = 'rght',
 kAESave = 'save',
 kAESelect = 'slct',
 kAESetData = 'setd'
};

kAESetPosition
enum {
 kAESetPosition = 'posn',
 kAEShadow = 'shad',
 kAEShowClipboard = 'shcl',
 kAEShutDown = 'shut',
 kAESleep = 'slep',
 kAESmallCaps = 'smcp',
 kAESpecialClassProperties = 'c@#!',
 kAEStrikethrough = 'strk',
 kAESubscript = 'sbsc',
 kAESuperscript = 'spsc',
 kAETableSuite = 'tbls',
 kAETextSuite = 'TEXT',
 kAETransactionTerminated = 'ttrm',

612 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 kAEUnderline = 'undl',
 kAEUndo = 'undo',
 kAEWholeWordEquals = 'wweq',
 kAEYes = 'yes ',
 kAEZoom = 'zoom'
};

kAESocks4Protocol
enum {
 kAESocks4Protocol = 4,
 kAESocks5Protocol = 5
};

kAEUseHTTPProxyAttr
Web Services Proxy support—these constants should be added as attributes of the event that is being sent
(not as part of the direct object).

enum {
 kAEUseHTTPProxyAttr = 'xupr',
 kAEHTTPProxyPortAttr = 'xhtp',
 kAEHTTPProxyHostAttr = 'xhth'
};

Constants
kAEUseHTTPProxyAttr

A value of type typeBoolean. Specifies whether to manually specify the proxy host and port. Defaults
to true.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

kAEHTTPProxyPortAttr
A value of type typeSInt32.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

kAEHTTPProxyHostAttr
A value of type typeChar or typeUTF8Text.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

Constants 613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kAEUserTerminology
enum {
 kAEUserTerminology = 'aeut',
 kAETerminologyExtension = 'aete',
 kAEScriptingSizeResource = 'scsz',
 kAEOSAXSizeResource = 'osiz'
};

kAEUseSocksAttr
enum {
 kAEUseSocksAttr = 'xscs',
 kAESocksProxyAttr = 'xsok',
 kAESocksHostAttr = 'xshs',
 kAESocksPortAttr = 'xshp',
 kAESocksUserAttr = 'xshu',
 kAESocksPasswordAttr = 'xshw'
};

kAEUTHasReturningParam
enum {
 kAEUTHasReturningParam = 31,
 kAEUTOptional = 15,
 kAEUTlistOfItems = 14,
 kAEUTEnumerated = 13,
 kAEUTReadWrite = 12,
 kAEUTChangesState = 12,
 kAEUTTightBindingFunction = 12,
 kAEUTEnumsAreTypes = 11,
 kAEUTEnumListIsExclusive = 10,
 kAEUTReplyIsReference = 9,
 kAEUTDirectParamIsReference = 9,
 kAEUTParamIsReference = 9,
 kAEUTPropertyIsReference = 9,
 kAEUTNotDirectParamIsTarget = 8,
 kAEUTParamIsTarget = 8,
 kAEUTApostrophe = 3,
 kAEUTFeminine = 2,
 kAEUTMasculine = 1,
 kAEUTPlural = 0
};

kAEZoomIn
enum {
 kAEZoomIn = 7,
 kAEZoomOut = 8
};

614 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kBySmallIcon
enum {
 kBySmallIcon = 0,
 kByIconView = 1,
 kByNameView = 2,
 kByDateView = 3,
 kBySizeView = 4,
 kByKindView = 5,
 kByCommentView = 6,
 kByLabelView = 7,
 kByVersionView = 8
};

kCaretPosition
enum {
 kCaretPosition = 1,
 kRawText = 2,
 kSelectedRawText = 3,
 kConvertedText = 4,
 kSelectedConvertedText = 5,
 kBlockFillText = 6,
 kOutlineText = 7,
 kSelectedText = 8
};

Version Notes
Starting in Mac OS X v10.4, use the constants defined in “kTSMHiliteCaretPosition” (page 624) in place of these
constants.

Constants 615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kConnSuite
enum {
 kConnSuite = 'macc',
 cDevSpec = 'cdev',
 cAddressSpec = 'cadr',
 cADBAddress = 'cadb',
 cAppleTalkAddress = 'cat ',
 cBusAddress = 'cbus',
 cEthernetAddress = 'cen ',
 cFireWireAddress = 'cfw ',
 cIPAddress = 'cip ',
 cLocalTalkAddress = 'clt ',
 cSCSIAddress = 'cscs',
 cTokenRingAddress = 'ctok',
 cUSBAddress = 'cusb',
 pDeviceType = 'pdvt',
 pDeviceAddress = 'pdva',
 pConduit = 'pcon',
 pProtocol = 'pprt',
 pATMachine = 'patm',
 pATZone = 'patz',
 pATType = 'patt',
 pDottedDecimal = 'pipd',
 pDNS = 'pdns',
 pPort = 'ppor',
 pNetwork = 'pnet',
 pNode = 'pnod',
 pSocket = 'psoc',
 pSCSIBus = 'pscb',
 pSCSILUN = 'pslu',
 eDeviceType = 'edvt',
 eAddressSpec = 'eads',
 eConduit = 'econ',
 eProtocol = 'epro',
 eADB = 'eadb',
 eAnalogAudio = 'epau',
 eAppleTalk = 'epat',
 eAudioLineIn = 'ecai',
 eAudioLineOut = 'ecal',
 eAudioOut = 'ecao',
 eBus = 'ebus',
 eCDROM = 'ecd ',
 eCommSlot = 'eccm',
 eDigitalAudio = 'epda',
 eDisplay = 'edds',
 eDVD = 'edvd',
 eEthernet = 'ecen',
 eFireWire = 'ecfw',
 eFloppy = 'efd ',
 eHD = 'ehd ',
 eInfrared = 'ecir',
 eIP = 'epip',
 eIrDA = 'epir',
 eIRTalk = 'epit',
 eKeyboard = 'ekbd',
 eLCD = 'edlc',
 eLocalTalk = 'eclt',

616 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 eMacIP = 'epmi',
 eMacVideo = 'epmv',
 eMicrophone = 'ecmi',
 eModemPort = 'ecmp',
 eModemPrinterPort = 'empp',
 eModem = 'edmm',
 eMonitorOut = 'ecmn',
 eMouse = 'emou',
 eNuBusCard = 'ednb',
 eNuBus = 'enub',
 ePCcard = 'ecpc',
 ePCIbus = 'ecpi',
 ePCIcard = 'edpi',
 ePDSslot = 'ecpd',
 ePDScard = 'epds',
 ePointingDevice = 'edpd',
 ePostScript = 'epps',
 ePPP = 'eppp',
 ePrinterPort = 'ecpp',
 ePrinter = 'edpr',
 eSvideo = 'epsv',
 eSCSI = 'ecsc',
 eSerial = 'epsr',
 eSpeakers = 'edsp',
 eStorageDevice = 'edst',
 eSVGA = 'epsg',
 eTokenRing = 'etok',
 eTrackball = 'etrk',
 eTrackpad = 'edtp',
 eUSB = 'ecus',
 eVideoIn = 'ecvi',
 eVideoMonitor = 'edvm',
 eVideoOut = 'ecvo'
};

keyAEAngle
enum {
 keyAEAngle = 'kang',
 keyAEArcAngle = 'parc'
};

keyAEBaseAddr
enum {
 keyAEBaseAddr = 'badd',
 keyAEBestType = 'pbst',
 keyAEBgndColor = 'kbcl',
 keyAEBgndPattern = 'kbpt',
 keyAEBounds = 'pbnd',
 keyAECellList = 'kclt',
 keyAEClassID = 'clID',
 keyAEColor = 'colr',
 keyAEColorTable = 'cltb',
 keyAECurveHeight = 'kchd',

Constants 617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 keyAECurveWidth = 'kcwd',
 keyAEDashStyle = 'pdst',
 keyAEData = 'data',
 keyAEDefaultType = 'deft',
 keyAEDefinitionRect = 'pdrt',
 keyAEDescType = 'dstp',
 keyAEDestination = 'dest',
 keyAEDoAntiAlias = 'anta',
 keyAEDoDithered = 'gdit',
 keyAEDoRotate = 'kdrt'
};

keyAEDoScale
enum {
 keyAEDoScale = 'ksca',
 keyAEDoTranslate = 'ktra',
 keyAEEditionFileLoc = 'eloc',
 keyAEElements = 'elms',
 keyAEEndPoint = 'pend',
 keyAEEventClass = 'evcl',
 keyAEEventID = 'evti',
 keyAEFile = 'kfil',
 keyAEFileType = 'fltp',
 keyAEFillColor = 'flcl',
 keyAEFillPattern = 'flpt',
 keyAEFlipHorizontal = 'kfho',
 keyAEFlipVertical = 'kfvt',
 keyAEFont = 'font',
 keyAEFormula = 'pfor',
 keyAEGraphicObjects = 'gobs',
 keyAEID = 'ID ',
 keyAEImageQuality = 'gqua',
 keyAEInsertHere = 'insh',
 keyAEKeyForms = 'keyf'
};

keyAEHiliteRange
enum {
 keyAEHiliteRange = 'hrng',
 keyAEPinRange = 'pnrg',
 keyAEClauseOffsets = 'clau',
 keyAEOffset = 'ofst',
 keyAEPoint = 'gpos',
 keyAELeftSide = 'klef',
 keyAERegionClass = 'rgnc',
 keyAEDragging = 'bool'
};

keyAEKeyword
enum {

618 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 keyAEKeyword = 'kywd',
 keyAELevel = 'levl',
 keyAELineArrow = 'arro',
 keyAEName = 'pnam',
 keyAENewElementLoc = 'pnel',
 keyAEObject = 'kobj',
 keyAEObjectClass = 'kocl',
 keyAEOffStyles = 'ofst',
 keyAEOnStyles = 'onst',
 keyAEParameters = 'prms',
 keyAEParamFlags = 'pmfg',
 keyAEPenColor = 'ppcl',
 keyAEPenPattern = 'pppa',
 keyAEPenWidth = 'ppwd',
 keyAEPixelDepth = 'pdpt',
 keyAEPixMapMinus = 'kpmm',
 keyAEPMTable = 'kpmt',
 keyAEPointList = 'ptlt',
 keyAEPointSize = 'ptsz',
 keyAEPosition = 'kpos'
};

keyAELeadingEdge
enum {
 keyAELeadingEdge = 'klef'
};

keyAEPropData
enum {
 keyAEPropData = 'prdt',
 keyAEProperties = 'qpro',
 keyAEProperty = 'kprp',
 keyAEPropFlags = 'prfg',
 keyAEPropID = 'prop',
 keyAEProtection = 'ppro',
 keyAERenderAs = 'kren',
 keyAERequestedType = 'rtyp',
 keyAEResult = '----',
 keyAEResultInfo = 'rsin',
 keyAERotation = 'prot',
 keyAERotPoint = 'krtp',
 keyAERowList = 'krls',
 keyAESaveOptions = 'savo',
 keyAEScale = 'pscl',
 keyAEScriptTag = 'psct',
 keyAESearchText = 'stxt',
 keyAEShowWhere = 'show',
 keyAEStartAngle = 'pang',
 keyAEStartPoint = 'pstp',
 keyAEStyles = 'ksty'
};

Constants

Constants 619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyAESearchText
Identifies an optional parameter to the open documents Apple event, described in “Event ID
Constants” (page 586). The parameter contains the search text from the Spotlight search that identified
the documents to be opened. The application should make a reasonable effort to display an occurrence
of the search text in each opened document—for example by scrolling the text into view.

For more information, see “Handling Apple Events Sent by the Mac OS” in “Responding to Apple
Events” in Apple Events Programming Guide.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

Version Notes
The constant keyAESearchText is available starting in Mac OS X v10.4.

620 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

keyAESuiteID
enum {
 keyAESuiteID = 'suit',
 keyAEText = 'ktxt',
 keyAETextColor = 'ptxc',
 keyAETextFont = 'ptxf',
 keyAETextPointSize = 'ptps',
 keyAETextStyles = 'txst',
 keyAETextLineHeight = 'ktlh',
 keyAETextLineAscent = 'ktas',
 keyAETheText = 'thtx',
 keyAETransferMode = 'pptm',
 keyAETranslation = 'ptrs',
 keyAETryAsStructGraf = 'toog',
 keyAEUniformStyles = 'ustl',
 keyAEUpdateOn = 'pupd',
 keyAEUserTerm = 'utrm',
 keyAEWindow = 'wndw',
 keyAEWritingCode = 'wrcd'
};

keyMenuID
enum {
 keyMenuID = 'mid ',
 keyMenuItem = 'mitm',
 keyCloseAllWindows = 'caw ',
 keyOriginalBounds = 'obnd',
 keyNewBounds = 'nbnd',
 keyLocalWhere = 'lwhr'
};

keyMiscellaneous
enum {
 keyMiscellaneous = 'fmsc',
 keySelection = 'fsel',
 keyWindow = 'kwnd',
 keyWhen = 'when',
 keyWhere = 'wher',
 keyModifiers = 'mods',
 keyKey = 'key ',
 keyKeyCode = 'code',
 keyKeyboard = 'keyb',
 keyDriveNumber = 'drv#',
 keyErrorCode = 'err#',
 keyHighLevelClass = 'hcls',
 keyHighLevelID = 'hid '
};

keyReplyPortAttr

Constants 621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 keyReplyPortAttr = 'repp'
};

keySOAPStructureMetaData
enum {
 keySOAPStructureMetaData = '/smd',
 keySOAPSMDNamespace = 'ssns',
 keySOAPSMDNamespaceURI = 'ssnu',
 keySOAPSMDType = 'sstp'
};

keyUserNameAttr
enum {
 keyUserNameAttr = 'unam',
 keyUserPasswordAttr = 'pass',
 keyDisableAuthenticationAttr = 'auth',
 keyXMLDebuggingAttr = 'xdbg',
 kAERPCClass = 'rpc ',
 kAEXMLRPCScheme = 'RPC2',
 kAESOAPScheme = 'SOAP',
 kAESharedScriptHandler = 'wscp',
 keyRPCMethodName = 'meth',
 keyRPCMethodParam = 'parm',
 keyRPCMethodParamOrder = '/ord',
 keyAEPOSTHeaderData = 'phed',
 keyAEReplyHeaderData = 'rhed',
 keyAEXMLRequestData = 'xreq',
 keyAEXMLReplyData = 'xrep',
 keyAdditionalHTTPHeaders = 'ahed',
 keySOAPAction = 'sact',
 keySOAPMethodNameSpace = 'mspc',
 keySOAPMethodNameSpaceURI = 'mspu',
 keySOAPSchemaVersion = 'ssch'
};

kFAServerApp
enum {
 kFAServerApp = 'ssrv',
 kDoFolderActionEvent = 'fola',
 kFolderActionCode = 'actn',
 kFolderOpenedEvent = 'fopn',
 kFolderClosedEvent = 'fclo',
 kFolderWindowMovedEvent = 'fsiz',
 kFolderItemsAddedEvent = 'fget',
 kFolderItemsRemovedEvent = 'flos',
 kItemList = 'flst',
 kNewSizeParameter = 'fnsz',
 kFASuiteCode = 'faco',
 kFAAttachCommand = 'atfa',

622 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 kFARemoveCommand = 'rmfa',
 kFAEditCommand = 'edfa',
 kFAFileParam = 'faal',
 kFAIndexParam = 'indx'
};

kLaunchToGetTerminology
enum {
 kLaunchToGetTerminology = 0x8000,
 kDontFindAppBySignature = 0x4000,
 kAlwaysSendSubject = 0x2000
};

kNextBody
enum {
 kNextBody = 1,
 kPreviousBody = 2
};

kOSIZDontOpenResourceFile
enum {
 kOSIZDontOpenResourceFile = 15,
 kOSIZdontAcceptRemoteEvents = 14,
 kOSIZOpenWithReadPermission = 13,
 kOSIZCodeInSharedLibraries = 11
};

kReadExtensionTermsMask
enum {
 kReadExtensionTermsMask = 0x8000
};

kSOAP1999Schema
enum {
 kSOAP1999Schema = 'ss99',
 kSOAP2001Schema = 'ss01'
};

kTextServiceClass
enum {
 kTextServiceClass = 'tsvc',
 kUpdateActiveInputArea = 'updt',

Constants 623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 kShowHideInputWindow = 'shiw',
 kPos2Offset = 'p2st',
 kOffset2Pos = 'st2p',
 kUnicodeNotFromInputMethod = 'unim',
 kGetSelectedText = 'gtxt',
 keyAETSMDocumentRefcon = 'refc',
 keyAEServerInstance = 'srvi',
 keyAETheData = 'kdat',
 keyAEFixLength = 'fixl',
 keyAEUpdateRange = 'udng',
 keyAECurrentPoint = 'cpos',
 keyAEBufferSize = 'buff',
 keyAEMoveView = 'mvvw',
 keyAENextBody = 'nxbd',
 keyAETSMScriptTag = 'sclg',
 keyAETSMTextFont = 'ktxf',
 keyAETSMTextFMFont = 'ktxm',
 keyAETSMTextPointSize = 'ktps',
 keyAETSMEventRecord = 'tevt',
 keyAETSMEventRef = 'tevr',
 keyAETextServiceEncoding = 'tsen',
 keyAETextServiceMacEncoding = 'tmen',
 keyAETSMGlyphInfoArray = 'tgia',
 typeTextRange = 'txrn',
 typeComponentInstance = 'cmpi',
 typeOffsetArray = 'ofay',
 typeTextRangeArray = 'tray',
 typeLowLevelEventRecord = 'evtr',
 typeGlyphInfoArray = 'glia',
 typeEventRef = 'evrf',
 typeText = 'TEXT'
};

kTSMHiliteCaretPosition
Specify text highlighting information.

enum {
 kTSMHiliteCaretPosition = 1,
 kTSMHiliteRawText = 2,
 kTSMHiliteSelectedRawText = 3,
 kTSMHiliteConvertedText = 4,
 kTSMHiliteSelectedConvertedText = 5,
 kTSMHiliteBlockFillText = 6,
 kTSMHiliteOutlineText = 7,
 kTSMHiliteSelectedText = 8,
 kTSMHiliteNoHilite = 9
};

Constants
kTSMHiliteCaretPosition

Specifies caret position.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

624 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kTSMHiliteRawText
Specifies range of raw text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedRawText
Specifies range of selected raw text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteConvertedText
Specifies range of converted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedConvertedText
Specifies range of selected converted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteBlockFillText
Specifies block fill highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteOutlineText
Specifies outline highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedText
Specifies selected highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteNoHilite
Specifies range of non-highlighted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

Version Notes
This enumeration is available starting in Mac OS X v10.4. Use these constants in place of the constants defined
in “kCaretPosition” (page 615).

Constants 625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

kTSMOutsideOfBody
enum {
 kTSMOutsideOfBody = 1,
 kTSMInsideOfBody = 2,
 kTSMInsideOfActiveInputArea = 3
};

pArcAngle
enum {
 pArcAngle = 'parc',
 pBackgroundColor = 'pbcl',
 pBackgroundPattern = 'pbpt',
 pBestType = 'pbst',
 pBounds = 'pbnd',
 pClass = 'pcls',
 pClipboard = 'pcli',
 pColor = 'colr',
 pColorTable = 'cltb',
 pContents = 'pcnt',
 pCornerCurveHeight = 'pchd',
 pCornerCurveWidth = 'pcwd',
 pDashStyle = 'pdst',
 pDefaultType = 'deft',
 pDefinitionRect = 'pdrt',
 pEnabled = 'enbl',
 pEndPoint = 'pend',
 pFillColor = 'flcl',
 pFillPattern = 'flpt',
 pFont = 'font'
};

pFormula
enum {
 pFormula = 'pfor',
 pGraphicObjects = 'gobs',
 pHasCloseBox = 'hclb',
 pHasTitleBar = 'ptit',
 pID = 'ID ',
 pIndex = 'pidx',
 pInsertionLoc = 'pins',
 pIsFloating = 'isfl',
 pIsFrontProcess = 'pisf',
 pIsModal = 'pmod',
 pIsModified = 'imod',
 pIsResizable = 'prsz',
 pIsStationeryPad = 'pspd',
 pIsZoomable = 'iszm',
 pIsZoomed = 'pzum',
 pItemNumber = 'itmn',
 pJustification = 'pjst',
 pLineArrow = 'arro',
 pMenuID = 'mnid',

626 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

 pName = 'pnam'
};

pNewElementLoc
enum {
 pNewElementLoc = 'pnel',
 pPenColor = 'ppcl',
 pPenPattern = 'pppa',
 pPenWidth = 'ppwd',
 pPixelDepth = 'pdpt',
 pPointList = 'ptlt',
 pPointSize = 'ptsz',
 pProtection = 'ppro',
 pRotation = 'prot',
 pScale = 'pscl',
 pScript = 'scpt',
 pScriptTag = 'psct',
 pSelected = 'selc',
 pSelection = 'sele',
 pStartAngle = 'pang',
 pStartPoint = 'pstp',
 pTextColor = 'ptxc',
 pTextFont = 'ptxf',
 pTextItemDelimiters = 'txdl',
 pTextPointSize = 'ptps'
};

pScheme
enum {
 pScheme = 'pusc',
 pHost = 'HOST',
 pPath = 'FTPc',
 pUserName = 'RAun',
 pUserPassword = 'RApw',
 pDNSForm = 'pDNS',
 pURL = 'pURL',
 pTextEncoding = 'ptxe',
 pFTPKind = 'kind'
};

pTextStyles
enum {
 pTextStyles = 'txst',
 pTransferMode = 'pptm',
 pTranslation = 'ptrs',
 pUniformStyles = 'ustl',
 pUpdateOn = 'pupd',
 pUserSelection = 'pusl',
 pVersion = 'vers',
 pVisible = 'pvis'

Constants 627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

};

typeAEText
enum {
 typeAEText = 'tTXT',
 typeArc = 'carc',
 typeBest = 'best',
 typeCell = 'ccel',
 typeClassInfo = 'gcli',
 typeColorTable = 'clrt',
 typeColumn = 'ccol',
 typeDashStyle = 'tdas',
 typeData = 'tdta',
 typeDrawingArea = 'cdrw',
 typeElemInfo = 'elin',
 typeEnumeration = 'enum',
 typeEPS = 'EPS ',
 typeEventInfo = 'evin'
};

typeApplicationBundleID
For specifying a target application by bundle ID.

enum {
 typeApplicationBundleID = 'bund'
};

Constants
typeApplicationBundleID

Indicates a descriptor containing UTF-8 characters that specify the bundle ID of an application. Bundle
IDs should be constructed similarly to "com.company.directorylocation.ApplicationName".

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

Discussion
This address mode is preferred for targeting specific applications. For example, you should target the Finder
by sending an event whose target address descriptor uses the bundle ID "com.apple.finder" rather than
the application signature 'MACS'.

628 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeFinderWindow
enum {
 typeFinderWindow = 'fwin',
 typeFixedPoint = 'fpnt',
 typeFixedRectangle = 'frct',
 typeGraphicLine = 'glin',
 typeGraphicText = 'cgtx',
 typeGroupedGraphic = 'cpic',
 typeInsertionLoc = 'insl',
 typeIntlText = 'itxt',
 typeIntlWritingCode = 'intl',
 typeLongDateTime = 'ldt ',
 typeISO8601DateTime = 'isot',
 typeLongFixed = 'lfxd',
 typeLongFixedPoint = 'lfpt',
 typeLongFixedRectangle = 'lfrc',
 typeLongPoint = 'lpnt',
 typeLongRectangle = 'lrct',
 typeMachineLoc = 'mLoc',
 typeOval = 'covl',
 typeParamInfo = 'pmin',
 typePict = 'PICT'
};

Constants
typeIntlText

For important information, see the Version Notes section of the “typeUnicodeText” (page 635)
enum.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

typeHIMenu
enum {
 typeHIMenu = 'mobj',
 typeHIWindow = 'wobj'
};

typeKernelProcessID
For specifying an application by UNIX process ID.

Constants 629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 typeKernelProcessID = 'kpid'
};

Constants
typeKernelProcessID

Indicates a descriptor containing a UNIX process ID. A process ID is similar to a PSN (processor serial
number) but does not require a Process Manager connection. It is analogous to a 32-bit unsigned
integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You might use this constant in a situation where you have access to the PID for a process but don’t have a
Process Manager connection. Your code for creating the descriptor might look like the following:

pid_t pid = findTheAppPid(); // User supplied routine to get PID. // Now create
 a descriptor with it: AECreateDesc(typeKernelProcessID, &pid, sizeof(pid),
&desc);

typeMachPort
For specifying a Mach port.

enum {
 typeMachPort = 'port'
};

Constants
typeMachPort

Indicates a descriptor that specifies a Mach port.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You might use this constant as part of sending an Apple event to an arbitrary Mach port. Your code for
creating the descriptor might look like the following:

mach_port_t port = lookupPortForTarget(); // User routine to get port.
// Now create a descriptor with it:
AECreateDesc(typeMachPort, &port, sizeof(port), &desc);

Actually sending an Apple event to a Mach port is an advanced technique and is not documented here.

630 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeMeters
enum {
 typeMeters = 'metr',
 typeInches = 'inch',
 typeFeet = 'feet',
 typeYards = 'yard',
 typeMiles = 'mile',
 typeKilometers = 'kmtr',
 typeCentimeters = 'cmtr',
 typeSquareMeters = 'sqrm',
 typeSquareFeet = 'sqft',
 typeSquareYards = 'sqyd',
 typeSquareMiles = 'sqmi',
 typeSquareKilometers = 'sqkm',
 typeLiters = 'litr',
 typeQuarts = 'qrts',
 typeGallons = 'galn',
 typeCubicMeters = 'cmet',
 typeCubicFeet = 'cfet',
 typeCubicInches = 'cuin',
 typeCubicCentimeter = 'ccmt',
 typeCubicYards = 'cyrd',
 typeKilograms = 'kgrm',
 typeGrams = 'gram',
 typeOunces = 'ozs ',
 typePounds = 'lbs ',
 typeDegreesC = 'degc',
 typeDegreesF = 'degf',
 typeDegreesK = 'degk'
};

typePixelMap
enum {
 typePixelMap = 'cpix',
 typePixMapMinus = 'tpmm',
 typePolygon = 'cpgn',
 typePropInfo = 'pinf',
 typePtr = 'ptr ',
 typeQDPoint = 'QDpt',
 typeQDRegion = 'Qrgn',
 typeRectangle = 'crec',
 typeRGB16 = 'tr16',
 typeRGB96 = 'tr96',
 typeRGBColor = 'cRGB',
 typeRotation = 'trot',
 typeRoundedRectangle = 'crrc',
 typeRow = 'crow',
 typeScrapStyles = 'styl',
 typeScript = 'scpt',
 typeStyledText = 'STXT',
 typeSuiteInfo = 'suin',
 typeTable = 'ctbl',
 typeTextStyles = 'tsty'
};

Constants 631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Constants
typeStyledText

Text that includes style information.

Styled text is stored as a record, in which the styles have the key 'ksty' and the plain text is has the
key 'ktxt'. You can use this information to extract plain text from styled text without coercion.

However, getting rid of the style information, with or without coercion, may corrupt the text, since
the styles imply what encoding to use. In fact, use of typeText and typeStyledText are not
recommended, starting with Mac OS X, because they are not safe with international characters—you
should use one of the Unicode text types instead.

For important information, see the Version Notes section of the “typeUnicodeText” (page 635)
enum.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

typeReplyPortAttr
enum {
 typeReplyPortAttr = 'repp'
};

typeSessionID
enum {
 typeSessionID = 'ssid',
 typeTargetID = 'targ',
 typeDispatcherID = 'dspt'
};

Constants
typeSessionID

Session reference number.

typeTargetID
Target ID descriptor. Target IDs are not supported in Mac OS X.

typeSMInt
Where possible, you should use the constants defined in “Numeric Descriptor Type Constants” (page 597),
rather than those defined here.

632 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

enum {
 typeSMInt = 'shor',
 typeShortInteger = 'shor',
 typeInteger = 'long',
 typeLongInteger = 'long',
 typeMagnitude = 'magn',
 typeComp = 'comp',
 typeSMFloat = 'sing',
 typeShortFloat = 'sing',
 typeFloat = 'doub',
 typeLongFloat = 'doub',
 typeExtended = 'exte'
};

Constants
typeSMInt

16-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeShortInteger
16-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeInteger
32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeLongInteger
32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeMagnitude
Unsigned 32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeComp
Standard Apple Numerics Environment (SANE) comparison operator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

Constants 633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeSMFloat
SANE single.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeShortFloat
SANE single.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeFloat
SANE double.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeLongFloat
SANE double.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeExtended
SANE extended.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

634 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typeTIFF
enum {
 typeTIFF = 'TIFF',
 typeVersion = 'vers'
};

typeUnicodeText
enum {
 typeUTF16ExternalRepresentation = 'ut16',
 typeUnicodeText = 'utxt',
 typeStyledUnicodeText = 'sutx',
 typeUTF8Text = 'utf8',
 typeEncodedString = 'encs',
 typeCString = 'cstr',
 typePString = 'pstr'
};

Constants
typeUTF16ExternalRepresentation

Unicode text in 16-bit external representation with byte-order-mark (BOM).

Guarantees that either there is a BOM or the data is in UTF-16BE.

Available in Mac OS X v10.4 and later.

Declared in AEDataModel.h.

typeUnicodeText
Unicode text. Native byte ordering, optional BOM.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeStyledUnicodeText
Styled Unicode text. Not implemented.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUTF8Text
8-bit Unicode (UTF-8 encoding).

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

typeEncodedString
Styled Unicode text. Not implemented.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeCString
C string—Mac OS Roman characters followed by a NULL byte. Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

typePString
Pascal string—unsigned length byte followed by Mac OS Roman characters. Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Version Notes
In Mac OS X version 10.4, you should use typeUTF16ExternalRepresentation or typeUTF8Text to
represent text. In earlier versions of Mac OS X, the recommended text type is typeUnicodeText. All of the
other constants in this enum are deprecated due to their lack of explicit encoding or byte order definition.

The implicitly encoded text types, typeText, typeCString, and typePString, are all deprecated in Mac
OS X, because they are incapable of representing international characters and may be reinterpreted in
unpredictable ways. Additionally, typeCString and typePString do not support the full range of text
coercions, and will be removed entirely in a future release. typeStyledText and typeIntlText, while
they have explicit encodings, are not recommended, since they are incapable of representing Unicode-only
characters, such as Hungarian, Arabic, or Thai.

Result Codes

Because the Apple Event Manager uses the services of the Event Manager, the functions described in this
document may return Event Manager result codes in addition to the Apple Event Manager result codes listed
here. Less commonly, an Apple Event Manager function may return other result codes, including some of
those found in the CarbonCore header file MacErrors.h.

For result codes for the AEBuild-related functions, see “AEBuild Error Codes” (page 563).

DescriptionValueResult Code

Client hasn’t set 'SIZE' resource to indicate awareness
of high-level events

-903noPortErr

Available in Mac OS X v10.0 and later.

Server hasn’t set 'SIZE' resource to indicate awareness
of high-level events, or else is not present

-906destPortErr

Available in Mac OS X v10.0 and later.

The kAEDontReconnect flag in the sendMode
parameter was set and the server quit, then restarted

-917sessClosedErr

Available in Mac OS X v10.0 and later.

Data could not be coerced to the requested descriptor
type

-1700errAECoercionFail

Available in Mac OS X v10.0 and later.

Descriptor was not found-1701errAEDescNotFound

Available in Mac OS X v10.0 and later.

Data in an Apple event could not be read-1702errAECorruptData

Available in Mac OS X v10.0 and later.

636 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DescriptionValueResult Code

Wrong descriptor type-1703errAEWrongDataType

Available in Mac OS X v10.0 and later.

Not a valid descriptor-1704errAENotAEDesc

Available in Mac OS X v10.0 and later.

Operation involving a list item failed-1705errAEBadListItem

Available in Mac OS X v10.0 and later.

Need a newer version of the Apple Event Manager-1706errAENewerVersion

Available in Mac OS X v10.0 and later.

The event is not in AppleEvent format.-1707errAENotAppleEvent

Available in Mac OS X v10.0 and later.

Event wasn’t handled by an Apple event handler-1708errAEEventNotHandled

Available in Mac OS X v10.0 and later.

AEResetTimer was passed an invalid reply-1709errAEReplyNotValid

Available in Mac OS X v10.0 and later.

Invalid sending mode was passed-1710errAEUnknownSendMode

Available in Mac OS X v10.0 and later.

User canceled out of wait loop for reply or receipt-1711errAEWaitCanceled

Available in Mac OS X v10.0 and later.

Apple event timed out-1712errAETimeout

Available in Mac OS X v10.0 and later.

No user interaction allowed-1713errAENoUserInteraction

Available in Mac OS X v10.0 and later.

Wrong keyword for a special function-1714errAENotASpecialFunction

Available in Mac OS X v10.0 and later.

A required parameter was not accessed.-1715errAEParamMissed

Available in Mac OS X v10.0 and later.

Unknown Apple event address type-1716errAEUnknownAddressType

Available in Mac OS X v10.0 and later.

No handler found for an Apple event-1717errAEHandlerNotFound

Available in Mac OS X v10.0 and later.

Result Codes 637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DescriptionValueResult Code

Reply has not yet arrived-1718errAEReplyNotArrived

Available in Mac OS X v10.0 and later.

Not a valid list index-1719errAEIllegalIndex

Available in Mac OS X v10.0 and later.

The range is not valid because it is impossible for a range
to include the first and last objects that were specified;
an example is a range in which the offset of the first
object is greater than the offset of the last object

-1720errAEImpossibleRange

Available in Mac OS X v10.0 and later.

The number of operands provided for the kAENOT logical
operator is not 1

-1721errAEWrongNumberArgs

Available in Mac OS X v10.0 and later.

There is no object accessor function for the specified
object class and container type

-1723errAEAccessorNotFound

Available in Mac OS X v10.0 and later.

The logical operator in a logical descriptor is not kAEAND,
kAEOR, or kAENOT

-1725errAENoSuchLogical

Available in Mac OS X v10.0 and later.

The descriptor in a test key is neither a comparison
descriptor nor a logical descriptor

-1726errAEBadTestKey

Available in Mac OS X v10.0 and later.

The objSpecifier parameter of AEResolve is not an
object specifier

–1727errAENotAnObjectSpec

Runtime resolution of an object failed.-1728errAENoSuchObject

Available in Mac OS X v10.0 and later.

An object-counting function returned a negative result-1729errAENegativeCount

Available in Mac OS X v10.0 and later.

The container for an Apple event object is specified by
an empty list

-1730errAEEmptyListContainer

Available in Mac OS X v10.0 and later.

The object type isn’t recognized-1731errAEUnknownObjectType

Available in Mac OS X v10.0 and later.

Recording is already on-1732errAERecordingIsAlreadyOn

Available in Mac OS X v10.0 and later.

638 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DescriptionValueResult Code

Break out of all levels of AEReceive to the topmost (1.1
or greater)

-1733errAEReceiveTerminate

Available in Mac OS X v10.0 and later.

Break out of lowest level only of AEReceive (1.1 or
greater)

-1734errAEReceiveEscapeCurrent

Available in Mac OS X v10.0 and later.

Event has been filtered and should not be propagated
(1.1 or greater)

-1735errAEEventFiltered

Available in Mac OS X v10.0 and later.

Attempt to install handler in table for identical class and
ID (1.1 or greater)

-1736errAEDuplicateHandler

Available in Mac OS X v10.0 and later.

Nesting violation while streaming-1737errAEStreamBadNesting

Available in Mac OS X v10.0 and later.

Attempt to convert a stream that has already been
converted

-1738errAEStreamAlreadyConverted

Available in Mac OS X v10.0 and later.

Attempt to perform an invalid operation on a null
descriptor

-1739errAEDescIsNull

Available in Mac OS X v10.0 and later.

AEBuildDesc and related functions detected a syntax
error

-1740errAEBuildSyntaxError

Available in Mac OS X v10.0 and later.

Buffer for AEFlattenDesc too small-1741errAEBufferTooSmall

Available in Mac OS X v10.0 and later.

Can’t both consider and ignore <attribute>.-2720errASCantConsiderAndIgnore

Available in Mac OS X v10.0 and later.

Can’t perform operation on text longer than 32K bytes.-2721errASCantCompareMoreThan32k

Available in Mac OS X v10.0 and later.

Tell statements are nested too deeply.-2760errASTerminologyNestingTooDeep

Available in Mac OS X v10.0 and later.

<name> is illegal as a formal parameter.-2761errASIllegalFormalParameter

Available in Mac OS X v10.0 and later.

Result Codes 639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DescriptionValueResult Code

<name> is not a parameter name for the event <event>.-2762errASParameterNotForEvent

Available in Mac OS X v10.0 and later.

No result was returned for some argument of this
expression.

-2763errASNoResultReturned

Available in Mac OS X v10.0 and later.

Apple event handler failed.-10000errAEEventFailed

Available in Mac OS X v10.0 and later.

A descriptor type mismatch occurred.-10001errAETypeError

Available in Mac OS X v10.0 and later.

Invalid key form.-10002errAEBadKeyForm

Available in Mac OS X v10.0 and later.

Can't set <object or data> to <object or data>. Access
not allowed.

-10003errAENotModifiable

Available in Mac OS X v10.0 and later.

A privilege violation occurred.-10004errAEPrivilegeError

Available in Mac OS X v10.0 and later.

The read operation was not allowed.-10005errAEReadDenied

Available in Mac OS X v10.0 and later.

Can't set <object or data> to <object or data>.-10006errAEWriteDenied

Available in Mac OS X v10.0 and later.

The index of the event is too large to be valid.-10007errAEIndexTooLarge

Available in Mac OS X v10.0 and later.

The specified object is a property, not an element.-10008errAENotAnElement

Available in Mac OS X v10.0 and later.

Can’t supply the requested descriptor type for the data.-10009errAECantSupplyType

Available in Mac OS X v10.0 and later.

The Apple event handler can’t handle objects of this
class.

-10010errAECantHandleClass

Available in Mac OS X v10.0 and later.

Couldn’t handle this command because it wasn’t part
of the current transaction.

-10011errAEInTransaction

Available in Mac OS X v10.0 and later.

640 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

DescriptionValueResult Code

The transaction to which this command belonged isn’t
a valid transaction.

-10012errAENoSuchTransaction

Available in Mac OS X v10.0 and later.

There is no user selection.-10013errAENoUserSelection

Available in Mac OS X v10.0 and later.

Handler only handles single objects.-10014errAENotASingleObject

Available in Mac OS X v10.0 and later.

Can’t undo the previous Apple event or user action.-10015errAECantUndo

Available in Mac OS X v10.0 and later.

Enumerated value in SetData is not allowed for this
property

-10023errAENotAnEnumMember

Available in Mac OS X v10.0 and later.

In make new, duplicate, etc. class can't be an element
of container

-10024errAECantPutThatThere

Available in Mac OS X v10.0 and later.

Illegal combination of properties settings for SetData,
make new, or duplicate

-10025errAEPropertiesClash

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Apple Event Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

Gestalt Constants 641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

642 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Apple Event Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in ATSTypes.h
ATSFont.h

Overview

Apple Type Services for Fonts is a collection of functions and data types that you can use to access and
manage font data in Mac OS X. It is designed to handle a wide range of font technologies and data formats.
The programming interface is designed with performance, scalability, and consistency in mind, and is available
to Cocoa and Carbon applications through the Apple Type Services (ATS) and QuickDraw frameworks in Mac
OS X.

Carbon supports the Apple Type Services for Fonts.

Functions by Task

Activating and Deactivating Fonts

ATSFontActivateFromFileReference (page 647)
Activates one or more fonts from a file reference.

ATSFontActivateFromMemory (page 649)
Activates one or more fonts at the specified location in memory.

ATSFontDeactivate (page 651)
Deactivates one or more fonts.

ATSGetGeneration (page 678)
Obtains the generation of the font database.

ATSFontSetGlobalAutoActivationSetting (page 678)
Sets the user's global auto-activation setting.

ATSFontGetGlobalAutoActivationSetting (page 666)
Gets the user's global auto-activation setting.

ATSFontSetAutoActivationSettingForApplication (page 677)
Sets the auto-activation setting for the specified application bundle.

ATSFontGetAutoActivationSettingForApplication (page 661)
Gets the activation setting for the specified application.

Overview 643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontActivateFromFileSpecification (page 648) Deprecated in Mac OS X v10.5
Activates one or more fonts from a file specification. (Deprecated. Instead use
ATSFontActivateFromFileReference (page 647).)

Working With Font Families

ATSFontFamilyApplyFunction (page 652)
Applies your callback to a font family iteration.

ATSFontFamilyIteratorCreate (page 655)
Creates a font family iterator that your application can use to access font family objects.

ATSFontFamilyIteratorRelease (page 658)
Releases the memory associated with a font family iterator.

ATSFontFamilyIteratorReset (page 658)
Resets a font family iterator to the beginning of the iteration.

ATSFontFamilyIteratorNext (page 657)
Obtains the next font family reference.

ATSFontFamilyFindFromName (page 652)
Returns the font family reference associated with a font family name.

ATSFontFamilyFindFromQuickDrawName (page 653)
Returns the font family reference associated with a standard QuickDraw font name.

ATSFontFamilyGetGeneration (page 654)
Returns the generation count of a font family.

ATSFontFamilyGetName (page 654)
Obtains the font family name associated with a font family reference.

ATSFontFamilyGetQuickDrawName (page 655)
Obtains the standard QuickDraw font name associated with a font family reference.

ATSFontFamilyGetEncoding (page 653)
Returns the text encoding used by a font family.

Working With Fonts

ATSFontApplyFunction (page 650)
Applies your callback to a font iteration.

ATSFontIteratorCreate (page 671)
Creates a font iterator.

ATSFontIteratorRelease (page 673)
Releases a font iterator.

ATSFontIteratorReset (page 674)
Resets a font iterator to the beginning of the iteration.

ATSFontIteratorNext (page 672)
Obtains the next font reference.

ATSFontFindFromName (page 660)
Returns the font reference associated with a font name.

644 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontFindFromPostScriptName (page 661)
Returns the font reference associated with a PostScript font name.

ATSFontFindFromContainer (page 659)
Obtains the font references contained in a font container.

ATSFontGetGeneration (page 665)
Returns the generation count for a font.

ATSFontGetContainerFromFileReference (page 662)
Gets the font container reference associated with an activated file reference.

ATSFontGetContainer (page 662)
Gets the font container reference for a font.

ATSFontGetName (page 666)
Obtains the name of a font associated with a font reference.

ATSFontGetPostScriptName (page 667)
Obtains the PostScript name from a font reference.

ATSFontGetTableDirectory (page 669)
Obtains the table directory for a font.

ATSFontGetTable (page 668)
Obtains a font table.

ATSFontGetHorizontalMetrics (page 666)
Obtains the horizontal metrics for a font.

ATSFontGetVerticalMetrics (page 670)
Obtains the vertical metrics for a font.

ATSFontGetFileReference (page 663)
Obtains the file reference for a font.

ATSFontGetFontFamilyResource (page 664)
Obtains the font family resource for a font.

ATSFontSetEnabled (page 678)
Sets a font state to enabled or disabled.

ATSFontIsEnabled (page 671)
Returns true if the font is enabled.

ATSFontGetFileSpecification (page 663) Deprecated in Mac OS X v10.5
Obtains the file specification for a font. (Deprecated. Instead use ATSFontGetFileReference (page
663).)

Setting Up Notifications and Queries

ATSFontNotify (page 676)
Notifies Apple Type Services of an action taken by your application.

ATSFontNotificationSubscribe (page 675)
Signs up your application to receive notification of changes to fonts and font directories.

ATSFontNotificationUnsubscribe (page 676)
Unsubscribes your application from receiving notifications of changes to fonts and font directories.

ATSCreateFontQueryRunLoopSource (page 646)
Sets up your application to handle font queries.

Functions by Task 645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Creating, Calling, and Deleting Universal Procedure Pointers

NewFMFontCallbackFilterUPP (page 680)
Creates a new universal procedure pointer (UPP) to a filter callback function that uses your criteria
for filtering fonts.

DisposeFMFontCallbackFilterUPP (page 679)
Disposes of a universal procedure pointer to a customized filter function used for fonts.

InvokeFMFontCallbackFilterUPP (page 680)
Calls a customized filter function used for fonts.

NewFMFontFamilyCallbackFilterUPP (page 681)
Creates a new universal procedure pointer (UPP) to a filter callback function that uses your criteria
for filtering font families.

DisposeFMFontFamilyCallbackFilterUPP (page 679)
Disposes of a universal procedure pointer to a customized filter function used for font families.

InvokeFMFontFamilyCallbackFilterUPP (page 680)
Calls a customized filter function used for font families.

Functions

ATSCreateFontQueryRunLoopSource
Sets up your application to handle font queries.

CFRunLoopSourceRef ATSCreateFontQueryRunLoopSource (
 CFIndex queryOrder,
 CFIndex sourceOrder,
 ATSFontQueryCallback callout,
 const ATSFontQuerySourceContext *context
);

Parameters
queryOrder

A CFIndex value that specifies the priority of the query relative to other queries. ATS sends font
queries to each run loop in priority order, from highest to lowest, with normal priority equal to 0.

sourceOrder
A CFIndex value that specifies the order of the run loop source.

callout
A pointer to your callback for processing a font query. See ATSFontQueryCallback (page 683) for
more information on the callback you can supply.

context
A pointer to font query source context that ATS passes to your callback function. You can pass NULL
if your callback function does not need any data passed to it.

Return Value
A CFRunLoopSourceRef. When you want to stop receiving queries, you must invalidate this reference.

646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Discussion
When an application needs a font, ATS sends a query to those font utility applications who have signed up
to handle queries by calling the function ATSCreateFontQueryRunLoopSource. When a font utility
application receives a query, it iterates through its available fonts to look for the requested font. If the font
utility application finds the font, it obtains the file specification for the font and sends the file specification
to ATS. ATS activates the font and sends notification of the activation to each application who subscribes to
notifications.

The function ATSCreateFontQueryRunLoopSource creates a Core Foundation run loop source reference
(CFRunLoopSourceRef) to convey font queries from ATS to your font utility application. If your application
does not have a CFRunLoop (for example, a faceless server application), you must explicitly set up a CFRunLoop
before you can receive queries.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.2 and later.

Declared In
ATSFont.h

ATSFontActivateFromFileReference
Activates one or more fonts from a file reference.

OSStatus ATSFontActivateFromFileReference (
 const FSRef *iFile,
 ATSFontContext iContext,
 ATSFontFormat iFormat,
 void *iRefCon,
 ATSOptionFlags iOptions,
 ATSFontContainerRef *oContainer
);

Parameters
iFile

A pointer to the file reference that specifies the name and location of a file or directory that contains
the font data you want to activate.

iContext
A value that specifies the context of the activated font. If you want the activated font to be accessible
only from your application use the kATSFontContextLocal constant. If you want the activated font
to be accessible to all applications use the constant kATSFontContextGlobal. See “Context
Options” (page 703) for more information.

iFormat
A value that represents the format identifier of the font. Pass kATSFontFormatUnspecified as the
system automatically determines the format of the font. For more information on this constant, see
“Font Formats” (page 706).

iRefCon
This parameter is currently reserved for future use, so you should pass NULL.

Functions 647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
An options flag. Pass kATSOptionFlagsDefault unless the font’s data fork contains resource-fork
information, you need to activate a directory of font directories, or you plan to call this function a
number of time. If the font’s data fork contains resource-fork information, pass the option
kATSOptionFlagsUseDataForkAsResourceFork. If the you want to activate a font directory that
contains font directories, you must pass the option kATSOptionFlagsProcessSubdirectories.
If you plan to call this function a number of times, you can set the iOptions parameter to
kATSOptionFlagsDoNotNotify set. When you are done activating fonts you can call the function
ATSFontNotify (page 676) with the action parameter set to
kATSFontNotifyActionFontsChanged. Then ATS notifies all applications who subscribe to
notifications of the changes you made.

oContainer
On output, a reference to the font container that is activated from the file reference. You need this
reference when you deactivate the font by calling the function ATSFontDeactivate (page 651).

Return Value
If activated successfully, noErr.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontActivateFromFileSpecification
Activates one or more fonts from a file specification. (Deprecated in Mac OS X v10.5. Instead use
ATSFontActivateFromFileReference (page 647).)

OSStatus ATSFontActivateFromFileSpecification (
 const FSSpec *iFile,
 ATSFontContext iContext,
 ATSFontFormat iFormat,
 void *iReserved,
 ATSOptionFlags iOptions,
 ATSFontContainerRef *oContainer
);

Parameters
iFile

A pointer to the file specification that specifies the name and location of a file or directory that contains
the font data you want to activate.

iContext
A value that specifies the context of the activated font. If you want the activated font to be accessible
only from your application use the kATSFontContextLocal constant. If you want the activated font
to be accessible to all applications use the constant kATSFontContextGlobal. See “Context
Options” (page 703) for more information.

iFormat
A value that represents the format identifier of the font. Pass kATSFontFormatUnspecified as the
system automatically determines the format of the font. For more information on this constant, see
“Font Formats” (page 706).

648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iReserved
An arbitrary 32-bit value. This parameter is currently reserved for future use, so you should pass NULL.

iOptions
An options flag. Pass kATSOptionFlagsDefault unless the font’s data fork contains resource-fork
information, you need to activate a directory of font directories, or you plan to call this function a
number of time. If the font’s data fork contains resource-fork information, pass the option
kATSOptionFlagsUseDataForkAsResourceFork. If the you want to activate a font directory that
contains font directories, you must pass the option kATSOptionFlagsProcessSubdirectories.
If you plan to call this function a number of times, you can set the iOptions parameter to
kATSOptionFlagsDoNotNotify set. When you are done activating fonts you can call the function
ATSFontNotify (page 676) with the action parameter set to
kATSFontNotifyActionFontsChanged. Then ATS notifies all applications who subscribe to
notifications of the changes you made.

oContainer
On output, a reference to the font container that is activated from the file specification. You need this
reference when you deactivate the font by calling the function ATSFontDeactivate (page 651).

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
You can use the function ATSFontActivateFromFileSpecification to activate one font or more fonts.
Activating a font makes that font available for use either locally (available only to your application) or globally
(available to all applications on the system). A font’s availability—local or global—is referred to as its context.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
ATSFont.h

ATSFontActivateFromMemory
Activates one or more fonts at the specified location in memory.

OSStatus ATSFontActivateFromMemory (
 LogicalAddress iData,
 ByteCount iLength,
 ATSFontContext iContext,
 ATSFontFormat iFormat,
 void *iReserved,
 ATSOptionFlags iOptions,
 ATSFontContainerRef *oContainer
);

Parameters
iData

The logical address of the font you want to activate.

Functions 649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iLength
The length (in bytes) of the font data.

iContext
A value that specifies the context of the activated font. If you want the activated font to be accessible
only from your application use the kATSFontContextLocal constant. If you want the activated font
to be accessible to all applications use the constant kATSFontContextGlobal. See “Context
Options” (page 703) for more information.

iFormat
A value that represents the format identifier of the font. There is only one font format constant available
for you to pass—kATSFontFormatUnspecified. This constant specifies the default behavior, which
is to handle the data as raw TrueType font data. This is equivalent to the contents of an 'sfnt' font
resource or the data fork of a Windows TrueType .ttf or .ttc file. You can also activate the contents
of an OpenType TrueType .OTF file. See “Font Formats” (page 706) for more information.

iReserved
An arbitrary 32-bit value. This parameter is currently reserved for future use, so you should pass NULL.

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oContainer
On output, a pointer to a font container reference that refers to the file that contains the activated
font data.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
You use this function to activate a streamed font, such as a font contained in a PDF file. Your application
must first map the streamed font data to memory and then pass the address of the font data in memory to
the function ATSFontActivateFromMemory.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontApplyFunction
Applies your callback to a font iteration.

OSStatus ATSFontApplyFunction (
 ATSFontApplierFunction iFunction,
 void *iRefCon
);

Parameters
iFunction

The callback function you want applied to a font iteration. See ATSFontApplierFunction (page
682) for more information on the callback you need to supply.

650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iRefCon
An arbitrary 32-bit value specified by your application. This is passed to your callback.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The function ATSFontApplyFunction iterates through the default fonts, which include globally activated
fonts and fonts activated locally to your application. Calling this function is similar to creating an iterator that
operates on a local context with an unrestricted scope.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontDeactivate
Deactivates one or more fonts.

OSStatus ATSFontDeactivate (
 ATSFontContainerRef iContainer,
 void *iRefCon,
 ATSOptionFlags iOptions
);

Parameters
iContainer

A font container reference that refers to the file containing the activated font data. You obtain a font
container reference when you activate a font by calling the functions
ATSFontActivateFromFileSpecification (page 648) or ATSFontActivateFromMemory (page
649).

iRefCon
An arbitrary 32-bit value specified. This parameter is currently reserved for future use, so you should
pass NULL.

iOptions
An ATSOptionFlags value. You should pass kATSOptionFlagsDefault unless to plan to call this
function a number of times to deactivate many fonts. If you plan to call this function a number of
times, you can set the iOptions parameter to kATSOptionFlagsDoNotNotify set. When you are
done deactivating fonts you can call the function ATSFontNotify (page 676) with the action
parameter set to kATSFontNotifyActionFontsChanged. ATS notifies all applications who subscribe
to notifications of the changes you made.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
When you deactivate a font, you must supply the font container reference you obtained when you activated
the font. You can’t deactivate a font that you did not activate by calling the functions
ATSFontActivateFromFileSpecification (page 648) or ATSFontActivateFromMemory (page 649).

Functions 651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

You should use caution if you deactivate a font that is available globally, as its deactivation impacts any
application that uses that font.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyApplyFunction
Applies your callback to a font family iteration.

OSStatus ATSFontFamilyApplyFunction (
 ATSFontFamilyApplierFunction iFunction,
 void *iRefCon
);

Parameters
iFunction

The callback function you want applied to a font family iteration. See
ATSFontApplierFunction (page 682) for more information on the callback you need to supply.

iRefCon
An arbitrary 32-bit value specified by your application. This value is passed to your callback.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The function ATSFontFamilyApplyFunction iterates through the default font families, which include
globally activated font families and font families activated locally to your application. Calling this function is
similar to creating an iterator that operates on a local context with an unrestricted scope.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyFindFromName
Returns the font family reference associated with a font family name.

ATSFontFamilyRef ATSFontFamilyFindFromName (
 CFStringRef iName,
 ATSOptionFlags iOptions
);

Parameters
iName

A reference to a font family name, formatted as a CFString.

652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

Return Value
A reference to the font family specified by the iName parameter. See the description of the
ATSFontFamilyRef data type.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyFindFromQuickDrawName
Returns the font family reference associated with a standard QuickDraw font name.

ATSFontFamilyRef ATSFontFamilyFindFromQuickDrawName (
 ConstStr255Param iName
);

Parameters
iName

A QuickDraw font name.

Return Value
A reference to the font family associated with the font name specified by the iName parameter. See the
description of the ATSFontFamilyRef data type.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyGetEncoding
Returns the text encoding used by a font family.

TextEncoding ATSFontFamilyGetEncoding (
 ATSFontFamilyRef iFamily
);

Parameters
iFamily

A font family reference.

Return Value
On output, a pointer to the text encoding used by the font family associated with the font family reference.
See the Text Encoding Conversion Manager documentation for a description of the TextEncoding data
type.

Functions 653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Discussion
Once you have obtained the text encoding, you can use Text Encoding Converter Manager function
RevertTextEncodingToScriptInfo to extract the script as follows:

status = ATSFontFamilyGetEncoding (myFontFamily, &myTextEncoding)

status = RevertTextEncodingToScriptInfo (myTextEncoding, &myScriptCode);

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyGetGeneration
Returns the generation count of a font family.

ATSGeneration ATSFontFamilyGetGeneration (
 ATSFontFamilyRef iFamily
);

Parameters
iFamily

A font family reference.

Return Value
On output, the generation count for the font family associated with the font family reference. See the
description of the ATSGeneration data type.

Discussion
The generation of a font family changes any time part of a font family is removed or added.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyGetName
Obtains the font family name associated with a font family reference.

OSStatus ATSFontFamilyGetName (
 ATSFontFamilyRef iFamily,
 ATSOptionFlags iOptions,
 CFStringRef *oName
);

Parameters
iFamily

A font family reference.

654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oName
On output, a reference to the name associated with the font family reference, formatted as a CFString.
You are responsible for releasing the CFStringRef.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyGetQuickDrawName
Obtains the standard QuickDraw font name associated with a font family reference.

OSStatus ATSFontFamilyGetQuickDrawName (
 ATSFontFamilyRef iFamily,
 Str255 oName
);

Parameters
iName

A reference to the font family name whose QuickDraw name you want to obtain.

oName
On input, a Str255 value allocated by your application. On output, the QuickDraw name associated
with the font family reference.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
All font families are assigned a QuickDraw name by the system. The QuickDraw name is almost identical to
the font family name.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyIteratorCreate
Creates a font family iterator that your application can use to access font family objects.

Functions 655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

OSStatus ATSFontFamilyIteratorCreate (
 ATSFontContext iContext,
 const ATSFontFilter *iFilter,
 void *iRefCon,
 ATSOptionFlags iOptions,
 ATSFontFamilyIterator *ioIterator
);

Parameters
iContext

A value that specifies the context of the iterator. If you want to apply the font family iterator only to
the fonts accessible from your application use the kATSFontContextLocal constant. If you want
the to apply the font family iterator to all fonts registered with the system use the constant
kATSFontContextGlobal. See “Context Options” (page 703) for more information on the constants
you can supply. See the Discussion for information on the interaction between the iContext and
iOptions parameters.

iFilter
A pointer to a filter specification. Pass NULL if you do not want to apply a filter to this iteration.
Otherwise, you can use this parameter to restrict the iteration to the font families that match a
generation count or criteria you specify in a custom filter function. Pass the filter selector constant
kATSFontFilterSelectorGeneration to select a generation filter or the constant
kATSFontFilterSelectorFontApplierFunction to select a custom filter. See “Font Filter
Selectors” (page 705) for more information on the constants you can supply.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. Otherwise, pass NULL.

iOptions
A value that specifies the scope of the iterator. If you want to iterate through font families that can
be used only by your application, pass the constant kATSOptionFlagsRestrictedScope. If you
want to iterate through font families that can be used by all applications pass the constant
kATSOptionFlagsUnRestrictedScope. See “Scoping Options” (page 710) for more information
on the constants you can supply. See the Discussion for information on the interaction between the
iContext and iOptions parameters.

ioIterator
A pointer to a font family iterator. On output, points to an opaque font family iterator ready for you
to use. When you no longer need the font family iterator, you should call the function
ATSFontFamilyIteratorRelease (page 658) to release the auxiliary data and memory allocated
by the system.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
Your application can use a font family iterator to access font family objects. A font family iterator is an opaque
data structure used by ATS for Fonts to keep track of an iteration over currently active font families. When
the font family iterator is initialized, it does not yet reference a font family.

The context and scope you specify for the font family iterator interact as shown in Table 31-1 (page 657).

656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Table 31-1 The interaction of context and scope in a font family enumeration

Global contextLocal context

Only globally activated font familiesFont families activated locally to your
application

Restricted scope

All font families, which include globally
activated font families and all other font
families activated locally for an application.

Defaults font families, which include
globally activated font families and font
families activated locally to your application

Unrestricted
scope

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyIteratorNext
Obtains the next font family reference.

OSStatus ATSFontFamilyIteratorNext (
 ATSFontFamilyIterator iIterator,
 ATSFontFamilyRef *oFamily
);

Parameters
iIterator

A pointer to a font family iterator you created with the function
ATSFontFamilyIteratorCreate (page 655).

oFamily
A pointer to a font family reference. On output, points to the font family reference obtained by the
iterator. You are responsible for allocating memory for the font family reference.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
If any changes are made to the font database while you are using the font family iterator, the iterator is
invalidated and the function ATSFontFamilyIteratorNext returns the error
kATSIterationScopeModified. To remedy this error, your application must either restart or cancel the
enumeration by calling the ATSFontFamilyIteratorReset (page 658) or the
ATSFontFamilyIteratorRelease (page 658) functions.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

Functions 657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontFamilyIteratorRelease
Releases the memory associated with a font family iterator.

OSStatus ATSFontFamilyIteratorRelease (
 ATSFontFamilyIterator *ioIterator
);

Parameters
ioIterator

A pointer to a font family iterator you created with the function
ATSFontFamilyIteratorCreate (page 655). If you try to use the font family iterator after disposing
of its contents through this function, ATS for Fonts returns an error code to your application.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
If you plan to use the font family iterator again, you should consider calling the function
ATSFontFamilyIteratorReset rather than releasing the font family iterator and then creating it again.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyIteratorReset
Resets a font family iterator to the beginning of the iteration.

OSStatus ATSFontFamilyIteratorReset (
 ATSFontContext iContext,
 const ATSFontFilter *iFilter,
 void *iRefCon,
 ATSOptionFlags iOptions,
 ATSFontFamilyIterator *ioIterator
);

Parameters
iContext

A value that specifies the context of the iterator. If you want to apply the font family iterator only to
the fonts accessible from your application use the kATSFontContextLocal constant. If you want
the to apply the font family iterator to all fonts registered with the system use the constant
kATSFontContextGlobal. See “Context Options” (page 703) for more information.

iFilter
A pointer to a filter specification. Pass NULL if you do not want to apply a filter to this iteration.
Otherwise, you can use this parameter to restrict the iteration to the font families that match a
generation count or criteria you specify in a custom filter function. Pass the filter selector constant
kATSFontFilterSelectorGeneration to select a generation filter or the constant
kATSFontFilterSelectorFontApplierFunction to select a custom filter. See “Font Filter
Selectors” (page 705) for more information on these constants.

658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. If you are not using a custom filter
function, pass NULL.

iOptions
An value that specifies the scope of the iterator. If you want to iterate through font families that can
be used only by your application, pass the constant kATSOptionFlagsRestrictedScope. If you
want to iterate through font families that can be used by all applications pass the constant
kATSOptionFlagsUnRestrictedScope.

ioIterator
A pointer to a font family iterator you created with the function
ATSFontFamilyIteratorCreate (page 655). On output, the font family iterator is reset to the
beginning of the iteration.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
Once you have created a font family iterator, you can reuse it by calling the function
ATSFontFamilyIteratorReset. This function sets the parameters to the new values you specify, and
repositions the iterator so it is ready to get the first font family reference when you call the function
ATSFontFamilyIteratorNext (page 657).

During an iteration, if you obtain the result code kATSIterationScopeModified from the function
ATSFontFamilyIteratorNext (page 657), you can reset the iteration by calling the function
ATSFontFamilyIteratorReset. This assures that you obtain the most up-to-date information from the
iteration.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFindFromContainer
Obtains the font references contained in a font container.

OSStatus ATSFontFindFromContainer (
 ATSFontContainerRef iContainer,
 ATSOptionFlags iOptions,
 ItemCount iCount,
 ATSFontRef ioArray[],
 ItemCount *oCount
);

Parameters
iContainer

A reference to the font container whose fonts you want to obtain. You obtain a font container reference
when you activate a font by calling the functions ATSFontActivateFromFileSpecification (page
648) or ATSFontActivateFromMemory (page 649).

Functions 659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

iCount
The number of items in the ioArray array. If you are uncertain of how many items are in this array,
see the Discussion.

ioArray
A pointer to memory you have allocated for an array of font references. On return, the array contains
the font references in the font container specified by the iContainer parameter. If you are uncertain
of how much memory to allocate for this array, see the Discussion.

oCount
A pointer to an ItemCount value. On output, the value specifies the actual number of ATSFontRef
values in the font container.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The function ATSFontFindFromContainer operates on font containers that reference font files. It does
not work on font containers that reference font directories.

Typically you use the function ATSFindFontFromContainer by calling it twice, as follows:

1. Pass a reference to the font container to examine in the iContainer parameter, a valid pointer to an
ItemCount value in the oCount parameter, NULL for the ioArray parameter, and 0 for the iCount
parameter. ATSFindFontFromContainer returns the size of the array in the oCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSFindFontFromContainer
function again, passing a valid pointer in the ioArray parameter and the number of items in the array
in the iCount parameter. On return, the pointer refers to an array of the font references contained in
the font container.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFindFromName
Returns the font reference associated with a font name.

ATSFontRef ATSFontFindFromName (
 CFStringRef iName,
 ATSOptionFlags iOptions
);

Parameters
iName

A reference to a font name formatted as a CFString.

660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

Return Value
A reference to the font specified by the iName parameter. See the description of the ATSFontRef data type.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontFindFromPostScriptName
Returns the font reference associated with a PostScript font name.

ATSFontRef ATSFontFindFromPostScriptName (
 CFStringRef iName,
 ATSOptionFlags iOptions
);

Parameters
iName

A reference to the PostScript name for a font, formatted as a CFString.

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

Return Value
A reference to the font specified by the iName parameter. See the description of the ATSFontRef data type.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetAutoActivationSettingForApplication
Gets the activation setting for the specified application.

ATSFontAutoActivationSetting ATSFontGetAutoActivationSettingForApplication (
 CFURLRef iApplicationFileURL
);

Parameters
iApplicationFileURL

A valid file URL for an application. Pass NULL to specify the current process.

Return Value
The activation setting for the specified application.

Functions 661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontGetContainer
Gets the font container reference for a font.

OSStatus ATSFontGetContainer (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 ATSFontContainerRef *oContainer
);

Parameters
iFont

The font reference.

iOptions
An options flag.

oContainer
On output, a reference to the font container that was used to activate the font reference. On error
ATS sets this to kATSFontContainerRefUnspecified.

Return Value
If successful, noErr; if the container is invalid, kATSInvalidFontContainerAccess.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontGetContainerFromFileReference
Gets the font container reference associated with an activated file reference.

OSStatus ATSFontGetContainerFromFileReference (
 const FSRef *iFile,
 ATSFontContext iContext,
 ATSOptionFlags iOptions,
 ATSFontContainerRef *oContainer
);

Parameters
iFile

A pointer to the valid file reference that specifies the activated font file for which to get the container.

662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iContext
The context that the font file is accessible to. If you want the activated font to be accessible only from
your application pass kATSFontContextDefault or kATSFontContextLocal. If you want the
activated font to be accessible to all applications use the constant kATSFontContextGlobal. See
“Context Options” (page 703) for more information.

iOptions
An options flag.

oContainer
On output, a reference to the font container representing the file reference activated in the specified
context. On error or for a file that is not activated, ATS sets this to
kATSFontContainerRefUnspecified.

Return Value
noErr or paramErr if one or more parameters are invalid.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontGetFileReference
Obtains the file reference for a font.

OSStatus ATSFontGetFileReference (
 ATSFontRef iFont,
 FSRef *oFile
);

Parameters
iFont

A reference to the font whose file reference you want to obtain.

oFile
On output, points to the file reference that specifies the name and location of a file or directory that
contains the font data specified by the iFont parameter.

Return Value
If successful, noErr.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontGetFileSpecification
Obtains the file specification for a font. (Deprecated in Mac OS X v10.5. Instead use
ATSFontGetFileReference (page 663).)

Functions 663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

OSStatus ATSFontGetFileSpecification (
 ATSFontRef iFont,
 ATSFSSpec *oFile
);

Parameters
iFont

A reference to the font whose file specification you want to obtain.

oFile
On output, points to the file specification that specifies the name and location of a file or directory
that contains the font data specified by the iFont parameter.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The function ATSFontGetFileSpecification obtains the file specification for a font, not the font container.
You must call the functions ATSFontActivateFromFileSpecification (page 648) or
ATSFontActivateFromMemory (page 649) to obtain a font container reference.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
ATSFont.h

ATSFontGetFontFamilyResource
Obtains the font family resource for a font.

OSStatus ATSFontGetFontFamilyResource (
 ATSFontRef iFont,
 ByteCount iBufferSize,
 void *ioBuffer,
 ByteCount *oSize
);

Parameters
iFont

A font reference.

iBufferSize
The size of the buffer pointed to by the ioBuffer parameter. See the Discussion if you are unsure
of the size of this buffer.

ioBuffer
On input, a pointer to memory you allocated for the font family resource. On output, points to the
FOND resource for the font. Note that the FOND resource data is in big endian format, regardless of
the native endian format of the Macintosh computer on which you make the function call. If you are
uncertain of how much memory to allocate for this array, see the Discussion.

664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

oSize
On output, the actual size of the buffer.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The function ATSFontGetFontFamilyResource provides a compatibility path for font families that use
resources. Beginning with Mac OS X version 10.2, ATS for Fonts synthesizes FOND resources for OpenType
fonts.

Typically you use the function ATSFontGetFontFamilyResource by calling it twice, as follows:

1. Pass a reference to the font to examine in the iFont parameter, a valid pointer in the oSize parameter,
NULL for the ioBuffer parameter, and 0 for the iBufferSize parameter.
ATSFontGetFontFamilyResource returns the size of the buffer in the oSize parameter.

2. Allocate enough space for an array of the returned size, then call the ATSFontGetFontFamilyResource
function again, passing a valid pointer in the ioBuffer parameter, the size of the buffer in the
iBufferSize parameter, and the appropriate values in the other parameters. On return, the pointer
refers to an array of the font references contained in the font container.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetGeneration
Returns the generation count for a font.

ATSGeneration ATSFontGetGeneration (
 ATSFontRef iFont
);

Parameters
iFont

A font reference.

Return Value
A generation count. See the description of the ATSGeneration data type.

Discussion
ATS for Fonts increments the generation count for any changes to a font, including when the system
synthesizes data for the font.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

Functions 665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontGetGlobalAutoActivationSetting
Gets the user's global auto-activation setting.

ATSFontAutoActivationSetting ATSFontGetGlobalAutoActivationSetting (
 void
);

Return Value
The user's global auto-activation setting.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontGetHorizontalMetrics
Obtains the horizontal metrics for a font.

OSStatus ATSFontGetHorizontalMetrics (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 ATSFontMetrics *oMetrics
);

Parameters
iFont

A reference to the font whose horizontal metrics you want to obtain.

iOptions
An options flag. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oMetrics
On input, a valid pointer to an ATSFontMetrics (page 689) data structure. On output, the structure
contains the font’s horizontal metrics. If one or more measurements are not available for a font, then
the appropriate fields in the ATSFontMetrics data structure are set to 0.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetName
Obtains the name of a font associated with a font reference.

666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

OSStatus ATSFontGetName (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 CFStringRef *oName
);

Parameters
iFont

A font reference.

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oName
On output, a reference to the font name associated with the specified font reference, formatted as a
CFString. You are responsible for releasing the CFStringRef.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetPostScriptName
Obtains the PostScript name from a font reference.

OSStatus ATSFontGetPostScriptName (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 CFStringRef *oName
);

Parameters
iFont

A font reference.

iOptions
An ATSOptionFlags value. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oName
On output, a reference to the PostScript name for the font, formatted as a CFString. You are
responsible for releasing the CFStringRef.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The system automatically detects whether or not the font is composed PostScript. If the font is, ATS for Fonts
appends the CMAP name.

Functions 667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetTable
Obtains a font table.

OSStatus ATSFontGetTable (
 ATSFontRef iFont,
 FourCharCode iTag,
 ByteOffset iOffset,
 ByteCount iBufferSize,
 void *ioBuffer,
 ByteCount *oSize
);

Parameters
iFont

A reference to the font whose table you want to obtain.

iTag
A four-character code that specifies the font table you want to obtain.

iOffset
The offset to a font table. If you want to obtain all the font tables associated with a font, pass 0.

iBufferSize
The size of the buffer pointed to by the ioBuffer parameter. The size should be the actual size of
the buffer (oSize) minus the offset to the font table (iOffset) you want to obtain. See the Discussion
if you are unsure of value to supply.

ioBuffer
On input, a valid pointer. On output, a pointer to the font table. Note that the data returned in the
font table is in big endian format, regardless of the native endian format of the Macintosh computer
on which you make the function call. See the Discussion for information on allocating this buffer.

oSize
On output, the actual size of the buffer returned in the ioBuffer parameter.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
Synthetic font tables (entries with offset of 0) can only be accessed by calling the function ATSFontGetTable.

Typically you use the function ATSFontGetTable by calling it twice, as follows:

1. Pass a reference to the font whose table you want obtain in the iFont parameter, a four-character code
that specifies the font table you want to obtain in the iTag parameter, the appropriate offset to the font
table in the iOffset parameter, 0 for the iBufferSize parameter, NULL for the ioBuffer parameter,
and a valid pointer to a ByteCount value in the oSize parameter. ATSUFontGetTable returns the size
of the table in the oSize parameter.

668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

2. Allocate enough space for a buffer of the returned size, then call the ATSFontGetTable function again,
passing a valid pointer in the ioBuffer parameter, the size of the buffer in the iBufferSize parameter,
and the appropriate values in the other parameters. On return, the pointer refers to the table for the
font specified by the iFont parameter and the table specified by the iTag parameter.

You should use the function ATSFontGetTablewhen you need to obtain an entire font table. For performance
reasons, avoid using the function to check a single value in the table.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetTableDirectory
Obtains the table directory for a font.

OSStatus ATSFontGetTableDirectory (
 ATSFontRef iFont,
 ByteCount iBufferSize,
 void *ioBuffer,
 ByteCount *oSize
);

Parameters
iFont

The font reference whose table directory you want to obtain.

iBufferSize
The size of the buffer pointed to by the ioBuffer parameter. See the Discussion if you are unsure
of the size of this buffer.

ioBuffer
On input, a valid pointer. On output, points to the table directory for the font specified by the iFont
parameter. Note that the data returned in the table directory is in big endian format, regardless of
the native endian format of the Macintosh computer on which you make the function call. See the
Discussion for information on allocating this buffer.

oSize
On output, the actual size of the buffer returned in the ioBuffer parameter.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
If necessary, ATS for Fonts synthesizes font tables or data, replacing existing tables or data. ATS for Fonts
synthesizes data on an as needed basis; if data is synthesized, the generation count of the font increases.

Typically you use the function ATSFontGetTableDirectory by calling it twice, as follows:

Functions 669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

1. Pass a reference to the font whose table directory you want obtain in the iFont parameter, 0 for the
iBufferSize parameter, NULL for the ioBuffer parameter, and a valid pointer to a ByteCount value
in the oSize parameter. ATSFontGetTableDirectory returns the size of the table directory in the
oSize parameter.

2. Allocate enough space for a buffer of the returned size, then call the ATSFontGetTableDirectory
function again, passing a valid pointer in the ioBuffer parameter, and the size of the buffer in the
iBufferSize parameter. On return, the pointer refers to the table directory for the font specified by
the iFont parameter.

If you want to obtain a font table, call the function ATSFontGetTable (page 668).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontGetVerticalMetrics
Obtains the vertical metrics for a font.

OSStatus ATSFontGetVerticalMetrics (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 ATSFontMetrics *oMetrics
);

Parameters
iFont

A reference to the font whose vertical metrics you want to obtain.

iOptions
An options flag. This parameter is currently reserved for future use, so you should pass
kATSOptionFlagsDefault.

oMetrics
On input, a valid pointer to an ATSFontMetrics (page 689) data structure. On output, the structure
contains the font’s vertical metrics. If one or more measurements are not available for a font, then
the appropriate fields in the ATSFontMetrics data structure are set to 0.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontIsEnabled
Returns true if the font is enabled.

Boolean ATSFontIsEnabled (
 ATSFontRef iFont
);

Parameters
iFont

The font reference.

Return Value
true if the font is enabled.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontIteratorCreate
Creates a font iterator.

OSStatus ATSFontIteratorCreate (
 ATSFontContext iContext,
 const ATSFontFilter *iFilter,
 void *iRefCon,
 ATSOptionFlags iOptions,
 ATSFontIterator *ioIterator
);

Parameters
iContext

A value that specifies the context of the iterator. If you want to apply the font iterator only to the
fonts accessible from your application use the kATSFontContextLocal constant. If you want the
to apply the font iterator to all fonts registered with the system use the constant
kATSFontContextGlobal. See “Context Options” (page 703) for more information on the constants
you can supply. See the Discussion for information on the interaction between the iContext and
iOptions parameters.

iFilter
A pointer to a filter specification. Pass NULL if you do not want to apply a filter to this iteration.
Otherwise, you can use this parameter to restrict the iteration to the fonts that match a generation
count or criteria you specify in a custom filter function. Pass the filter selector constant
kATSFontFilterSelectorGeneration to select a generation filter or the constant
kATSFontFilterSelectorFontApplierFunction to select a custom filter. See “Font Filter
Selectors” (page 705) for more information on these constants.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. Otherwise, pass NULL.

Functions 671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iOptions
A value that specifies the scope of the iterator. If you want to iterate through fonts that can be used
only by your application, pass the constant kATSOptionFlagsRestrictedScope. If you want to
iterate through fonts that can be used by all applications pass the constant
kATSOptionFlagsUnRestrictedScope. See “Scoping Options” (page 710) for more information
on the constants you can supply. See the Discussion for information on the interaction between the
iContext and iOptions parameters.

ioIterator
A pointer to a font iterator. On input, pass a pointer to an uninitialized iterator. On output, the iterator’s
contents may have been changed and may include references to data structures allocated by the
system to maintain the iterator’s state. When you no longer need the font iterator, you should call
the functionATSFontIteratorRelease (page 673) to release the auxiliary data and memory allocated
by the system.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
Your application can use a font iterator to access font data. A font iterator is an opaque data structure used
by ATS for Fonts to keep track of an iteration over currently active fonts. When the font iterator is initialized,
it does not yet reference a font.

The context and scope you specify for the font iterator interact as shown in Table 31-2 (page 672).

Table 31-2 The interaction of context and scope in a font enumeration

Global contextLocal context

Only globally activated fontsFonts activated locally to your applicationRestricted scope

All fonts, which include globally activated
fonts and all other fonts activated locally
for an application.

Defaults fonts, which include globally
activated fonts and fonts activated locally
to your application

Unrestricted scope

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontIteratorNext
Obtains the next font reference.

672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

OSStatus ATSFontIteratorNext (
 ATSFontIterator iIterator,
 ATSFontRef *oFont
);

Parameters
iIterator

A pointer to a font iterator you created with the function ATSFontIteratorCreate (page 671). If
you try to use the font iterator after disposing of its contents through this function, ATS for Fonts
returns an error code to your application.

oFont
A pointer to a font reference. On output, points to the font reference obtained by the iterator. You
are responsible for allocating memory for the font reference.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
If any changes are made to the font database while you are using the font iterator, the iterator is invalidated
and the function ATSFontFamilyIteratorNext returns the error kATSIterationScopeModified. To
remedy this error, your application must either restart or cancel the enumeration by calling the
ATSFontFamilyIteratorReset (page 658) or the ATSFontIteratorRelease (page 673) functions.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontIteratorRelease
Releases a font iterator.

OSStatus ATSFontIteratorRelease (
 ATSFontIterator *ioIterator
);

Parameters
ioIterator

A pointer to a font iterator you created with the function ATSFontIteratorCreate (page 671). If
you try to use the font iterator after disposing of its contents through this function, ATS for Fonts
returns an error code to your application.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
If you plan to use the font iterator again, you should consider calling the function ATSFontIteratorReset
rather than releasing the font iterator and then creating it again.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Functions 673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Declared In
ATSFont.h

ATSFontIteratorReset
Resets a font iterator to the beginning of the iteration.

OSStatus ATSFontIteratorReset (
 ATSFontContext iContext,
 const ATSFontFilter *iFilter,
 void *iRefCon,
 ATSOptionFlags iOptions,
 ATSFontIterator *ioIterator
);

Parameters
iContext

A value that specifies the context of the iterator. If you want to apply the font iterator only to the
fonts accessible from your application use the kATSFontContextLocal constant. If you want the
to apply the font iterator to all fonts registered with the system use the constant
kATSFontContextGlobal. See “Context Options” (page 703) for more information.

iFilter
A pointer to a filter specification. Pass NULL if you do not want to apply a filter to this iteration.
Otherwise, you can use this parameter to restrict the iteration to the fonts that match a generation
count or criteria you specify in a custom filter function. Pass the filter selector constant
kATSFontFilterSelectorGeneration to select a generation filter or the constant
kATSFontFilterSelectorFontApplierFunction to select a custom filter. See “Font Filter
Selectors” (page 705) for more information on these constants.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. Otherwise, pass NULL.

iOptions
A value that specifies the scope of the iterator. If you want to iterate through fonts that can be used
only by your application, pass the constant kATSOptionFlagsRestrictedScope. If you want to
iterate through fonts that can be used by all applications pass the constant
kATSOptionFlagsUnRestrictedScope.

ioIterator
A pointer to a font iterator you created with the function ATSFontIteratorCreate (page 671). If
you try to use the font iterator after disposing of its contents through this function, ATS for Fonts
returns an error code to your application.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
Once you have created a font iterator, you can reuse it by calling the function ATSFontIteratorReset.
This function sets the parameters to the new values you specify, and repositions the iterator so it is ready to
get the first font reference when you call the function ATSFontIteratorNext (page 672).

During an iteration, if you obtain the result code kATSIterationScopeModified from the function
ATSFontIteratorNext (page 672), you can reset the iteration by calling the function
ATSFontIteratorReset. This assures that you obtain the most up-to-date information from the iteration.

674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

ATSFontNotificationSubscribe
Signs up your application to receive notification of changes to fonts and font directories.

OSStatus ATSFontNotificationSubscribe (
 ATSNotificationCallback callback,
 ATSFontNotifyOption options,
 void *iRefcon,
 ATSFontNotificationRef *oNotificationRef
);

Parameters
callback

The callback function you want ATS to invoke whenever the notification action specified in the
options parameter occurs. See ATSNotificationCallback (page 684) for more information on
the callback you can supply.

options
A notification option that specifies when you want ATS to respond to notification actions. If you want
to receive notifications when your application is in the foreground, pass the constant
kATSFontNotifyOptionDefault. If your application is a server process or a tool that performs font
management functions and requires immediate notification when fonts change, pass the constant
kATSFontNotifyOptionReceiveWhileSuspended. See “Notification Options” (page 709) for more
information.

iRefCon
An arbitrary 32-bit value specified by your application and which you want passed to your callback
function. You can pass NULL if your callback does not need any data.

oNotificationRef
On output, a notification reference. You need this reference when you call the function
ATSFontNotificationUnsubscribe (page 676). You can pass NULL if you do not want to obtain
the reference.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715). This function returns paramErr
the callback parameter is NULL and memFullErr if the function cannot allocate enough memory for
internal data structures.

Discussion
If your application uses Carbon events or the Application Kit, you can call the function
ATSFontNotificationSubscribe to receive notifications of changes to fonts and font directories. However,
if your application is of a type that does not use a CFRunLoop, it can’t receive notifications unless you explicitly
set up a run loop. For more information on run loops, see Overview of Programming Topic: Run Loops on the
Cocoa Developer Documentation website.

If you want to stop receiving notifications, call the function ATSFontNotificationUnsubscribe (page
676).

Functions 675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.2 and later.

Declared In
ATSFont.h

ATSFontNotificationUnsubscribe
Unsubscribes your application from receiving notifications of changes to fonts and font directories.

OSStatus ATSFontNotificationUnsubscribe (
 ATSFontNotificationRef notificationRef
);

Parameters
oNotificationRef

On input, the notification reference you obtained when you called the function
ATSFontNotificationSubscribe (page 675). On output, NULL.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715). Returns paramErr if you pass a
NULL or invalid notification reference in the oNotificationRef parameter.

Discussion
The function ATSFontNotificationUnsubscribe unsubscribes your application from receiving the
notification associated with the notification reference you pass to the function. You must call
ATSFontNotificationUnsubscribe for each notification for which you want to unsubscribe.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.2 and later.

Declared In
ATSFont.h

ATSFontNotify
Notifies Apple Type Services of an action taken by your application.

OSStatus ATSFontNotify (
 ATSFontNotifyAction action,
 void *info
);

Parameters
action

A notification action that specifies the action taken by your application. If your application activates
or deactivates fonts, you should pass kATSFontNotifyActionFontsChanged. If your application
makes changes to any of the font directories (System, local, user, or the Classic System folder), you
should pass the constant kATSFontNotifyActionDirectoriesChanged. See “Notification
Actions” (page 708) for more information on the constants you can supply.

676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

info
A pointer to the data you want ATS for Fonts to pass to the clients who subscribe to notifications.
You can pass NULL if there is no data associated with this action.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715). Returns paramErr if you pass an
invalid notification action in the action parameter.

Discussion
A notification is a mechanism by which your application can inform ATS for Fonts that you have changed a
font or font directory. Other applications can sign up to receive notifications of these changes by calling the
function ATSFontNotificationSubscribe (page 675). When you call the function ATSFontNotify, the
system passes the notification along with any data you provide to every client who is signed up to receive
notifications.

You can call the function ATSFontNotify after your application makes a batch of changes. For example, if
your application calls the functions ATSFontActivateFromFileSpecification (page 648) or
ATSFontDeactivate (page 651) multiple times to activate and deactivate fonts, you can set the iOptions
parameter in these functions to kATSOptionFlagsDoNotNotify set. When you are done activating and
deactivating fonts you can call the function ATSFontNotify with the action parameter set to
kATSFontNotifyActionFontsChanged. Then ATS notifies all applications who subscribe to notifications
of the changes you made.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.2 and later.

Declared In
ATSFont.h

ATSFontSetAutoActivationSettingForApplication
Sets the auto-activation setting for the specified application bundle.

OSStatus ATSFontSetAutoActivationSettingForApplication (
 ATSFontAutoActivationSetting iSetting,
 CFURLRef iApplicationFileURL
);

Parameters
iSetting

A font auto-activation setting. See “Automatic Activation Settings” (page 703).

iApplicationFileURL
A valid file URL for an application. Pass NULL to specify the current process.

Return Value
Returns noErr on success, and paramErr for any invalid input. May return memFullErr if unable to allocate
temporary structures.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

Functions 677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontSetEnabled
Sets a font state to enabled or disabled.

OSStatus ATSFontSetEnabled (
 ATSFontRef iFont,
 ATSOptionFlags iOptions,
 Boolean iEnabled
);

Parameters
iFont

The font reference.

iOptions
An options flag.

iEnabled
The state to set the font to. True for enabled, false for disabled.

Return Value
kATSInvalidFontAccess if the font reference is invalid in the current application context.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSFontSetGlobalAutoActivationSetting
Sets the user's global auto-activation setting.

OSStatus ATSFontSetGlobalAutoActivationSetting (
 ATSFontAutoActivationSetting iSetting
);

Parameters
iSetting

A font auto-activation setting. See “Automatic Activation Settings” (page 703).

Return Value
If successful, noErr; if invalid input, paramErr.

Availability
Available in Mac OS X v10.5 and later.

Declared In
ATSFont.h

ATSGetGeneration
Obtains the generation of the font database.

678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSGeneration ATSGetGeneration (
 void
);

Return Value
A value that specifies the generation count of the font database. See the description of the ATSGeneration
data type.

Discussion
Any operation that adds, deletes, or modifies one or more font families or fonts triggers an update of the
font database generation count. If you want to obtain the generation of a font family, call the function
ATSFontFamilyGetGeneration (page 654). If you want to obtain the generation of a font, call the function
ATSFontGetGeneration (page 665).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X 10.0 and later.

Declared In
ATSFont.h

DisposeFMFontCallbackFilterUPP
Disposes of a universal procedure pointer to a customized filter function used for fonts.

void DisposeFMFontCallbackFilterUPP (
 FMFontCallbackFilterUPP userUPP
);

Discussion
See the callback FMFontCallbackFilterProcPtr (page 685) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ATSTypes.h

DisposeFMFontFamilyCallbackFilterUPP
Disposes of a universal procedure pointer to a customized filter function used for font families.

void DisposeFMFontFamilyCallbackFilterUPP (
 FMFontFamilyCallbackFilterUPP userUPP
);

Discussion
See the callback FMFontFamilyCallbackFilterProcPtr (page 686) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Functions 679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Declared In
ATSTypes.h

InvokeFMFontCallbackFilterUPP
Calls a customized filter function used for fonts.

OSStatus InvokeFMFontCallbackFilterUPP (
 FMFont iFont,
 void *iRefCon,
 FMFontCallbackFilterUPP userUPP
);

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
This function is not recommended nor needed, as the system invokes your filter for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ATSTypes.h

InvokeFMFontFamilyCallbackFilterUPP
Calls a customized filter function used for font families.

OSStatus InvokeFMFontFamilyCallbackFilterUPP (
 FMFontFamily iFontFamily,
 void *iRefCon,
 FMFontFamilyCallbackFilterUPP userUPP
);

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
This function is not recommended nor needed, as the system invokes your filter for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ATSTypes.h

NewFMFontCallbackFilterUPP
Creates a new universal procedure pointer (UPP) to a filter callback function that uses your criteria for filtering
fonts.

680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

FMFontCallbackFilterUPP NewFMFontCallbackFilterUPP (
 FMFontCallbackFilterProcPtr userRoutine
);

Return Value
See the description of the FMFontCallbackFilterUPP data type.

Discussion
See the callback FMFontCallbackFilterProcPtr (page 685) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ATSTypes.h

NewFMFontFamilyCallbackFilterUPP
Creates a new universal procedure pointer (UPP) to a filter callback function that uses your criteria for filtering
font families.

FMFontFamilyCallbackFilterUPP NewFMFontFamilyCallbackFilterUPP (
 FMFontFamilyCallbackFilterProcPtr userRoutine
);

Return Value
See the description of the FMFontFamilyCallbackFilterUPP data type.

Discussion
See the callback FMFontFamilyCallbackFilterProcPtr (page 686) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ATSTypes.h

Callbacks by Task

ATS Callbacks
The callbacks in this section are used by ATS for Fonts.

ATSFontApplierFunction (page 682)
Defines a pointer to a customized function to be applied to a font iteration.

ATSFontFamilyApplierFunction (page 683)
Defines a pointer to a customized function to be applied to a font family iteration.

Callbacks by Task 681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSFontQueryCallback (page 683)
Defines a pointer to a customized function that handles font queries.

ATSNotificationCallback (page 684)
Defines a pointer to a customized function that handles notifications.

FM Callbacks
The callbacks in this section are used by the Font Manager.

FMFontCallbackFilterProcPtr (page 685)
Defines a pointer to a customized filter function to be used with a font iterator.

FMFontFamilyCallbackFilterProcPtr (page 686)
Defines a pointer to a customized filter function to be used with a font family iterator.

Callbacks

ATSFontApplierFunction
Defines a pointer to a customized function to be applied to a font iteration.

typedef OSStatus (*ATSFontApplierFunction) (
 ATSFontRef iFont,
 void * iRefCon
);

If you name your function MyATSFontApplierFunction, you would declare it like this:

OSStatus MyATSFontApplierFunction (
 ATSFontRef iFont,
 void * iRefCon
);

Parameters
iFont

A font reference. This is the font on which your callback operates.

iRefCon
An arbitrary 32-bit value specified by your application and that is passed to your callback.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
You provide a pointer to an ATSFontApplierFunction callback as a parameter to the function
ATSFontApplyFunction (page 650). You can also provide a pointer to an ATSFontApplierFunction
callback in the ATSFontFilter (page 688) data structure. This structure can be passed as a parameter to
the functions ATSFontIteratorCreate (page 671) and ATSFontIteratorReset (page 674).

Availability
Available in Mac OS X v10.0 and later.

682 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Declared In
ATSFont.h

ATSFontFamilyApplierFunction
Defines a pointer to a customized function to be applied to a font family iteration.

typedef OSStatus (*ATSFontFamilyApplierFunction) (
 ATSFontFamilyRef iFamily,
 void * iRefCon
);

If you name your function MyATSFontFamilyApplierFunction, you would declare it like this:

OSStatus MyATSFontFamilyApplierFunction (
 ATSFontFamilyRef iFamily,
 void * iRefCon
);

Parameters
iFamily

A font family reference. This is the font family on which your callback operates.

iRefCon
An arbitrary 32-bit value specified by your application and that is passed to your callback.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
You provide a pointer to an ATSFontFamilyApplierFunction callback as a parameter to the function
ATSFontFamilyApplyFunction (page 652). You can also provide a pointer to anATSFontApplierFunction
callback in the ATSFontFilter (page 688) data structure. This structure can be passed as a parameter to
the functions ATSFontFamilyIteratorCreate (page 655) and ATSFontFamilyIteratorReset (page
658).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSFont.h

ATSFontQueryCallback
Defines a pointer to a customized function that handles font queries.

typedef CFPropertyListRef (*ATSFontQueryCallback) (
 ATSFontQueryMessageID msgid,
 CFPropertyListRef data
 void * iRefCon
);

If you name your function MyATSFontQueryCallback, you would declare it like this:

Callbacks 683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

CFPropertyListRef MyATSFontQueryCallback (
 ATSFontQueryMessageID msgid,
 CFPropertyListRef data
 void * iRefCon
);

Parameters
msgid

An ATSFontQueryMessageID value that identifies the message type your application receives from
ATS. See “Font Query Message ID” (page 708) for the constants you can supply.

data
A CFPropertyListRef that represents the font query. The content of the CFPropertyList is
specific to the message type. The property list should contain data that specifies the font for which
the query is sent.

iRefCon
An arbitrary 32-bit value specified by your application and that is passed to your callback.

Return Value
A CFPropertyListRef that represents your application’s response to the query. The content of the
CFPropertyList is specific to the message type, and it may be NULL.

Discussion
ATS for Fonts calls your customized function each time ATS receives a font query from another application.
You provide a pointer to an ATSFontQueryCallback as a parameter to the function
ATSCreateFontQueryRunLoopSource (page 646).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSFont.h

ATSNotificationCallback
Defines a pointer to a customized function that handles notifications.

typedef void (*ATSNotificationCallback) (
 ATSFontNotificationInfoRef info,
 void * iRefCon
);

If you name your function MyATSNotificationCallback, you would declare it like this:

void MyATSNotificationCallback (
 ATSFontNotificationInfoRef info,
 void * iRefCon
);

Parameters
info

Reserved for future use. Currently, your callback is passed NULL.

684 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

iRefCon
An arbitrary 32-bit value specified by your application and that is passed to your callback.

Discussion
ATS for Fonts calls your customized function each time ATS receives a font notification from another
application. You provide a pointer to an ATSNotificationCallback callback function as a parameter to
the function ATSFontNotificationSubscribe (page 675).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSFont.h

FMFontCallbackFilterProcPtr
Defines a pointer to a customized filter function to be used with a font iterator.

typedef OSStatus (*FMFontCallbackFilterProcPtr) (
 FMFont iFont,
 void * iRefCon
);

If you name your function MyFMFontCallbackFilterProc, you would declare it like this:

OSStatus MyFMFontCallbackFilterProcPtr (
 FMFont iFont,
 void * iRefCon
);

Parameters
iFont

A font reference. This is the font on which your callback operates.

iRefCon
A pointer to arbitrary data that defines your custom filter.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The Font Manager calls your customized function each time it obtains a font in a font iteration. You can use
a custom filter function in any Font Manager function that has a parameter of type FMFilter. You provide
a universal procedure pointer to your filter callback function in the FMFilter data structure. First, you must
use the NewFMFontCallbackFilterUPP (page 680) function to create a universal procedure pointer (UPP)
of type FMFontCallbackFilterUPP. You can do so with code similar to the following:

FMFontCallbackFilterUPP MyFMFontFilterUPPMyFMFontFilterUPP =
NewFMFontCallbackFilterUPP (&MyFMFontCallbackFilterCallback)

Your application must specify the result code that should be returned by the Font Manager. Any value other
than noErr will cause the iterator to ignore a font.

Callbacks 685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

When you are finished with your filter callback function, you should use the
DisposeFMFontCallbackFilterUPP (page 679) function to dispose of the UPP associated with it. However,
if you plan to use the same filter callback function in subsequent calls, you can reuse the same UPP, rather
than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontFamilyCallbackFilterProcPtr
Defines a pointer to a customized filter function to be used with a font family iterator.

typedef OSStatus (*FMFontFamilyCallbackFilterProcPtr) (
 FMFontFamily iFontFamily,
 void * iRefCon
);

If you name your function MyFMFontFamilyCallbackFilterProc, you would declare it like this:

OSStatus MyFMFontFamilyCallbackFilterProcPtr (
 FMFontFamily iFontFamily,
 void * iRefCon
);

Parameters
iFontFamily

A font family reference. This is the font family on which your callback operates.

iRefCon
A pointer to arbitrary data that defines your custom filter.

Return Value
A result code. See “Apple Type Services for Fonts Result Codes” (page 715).

Discussion
The Font Manager calls your customized function each time it obtains a font family in a font family iteration.
You can use a custom filter function in any Font Manager function that has a parameter of type FMFilter.
You provide a universal procedure pointer to your filter callback function in the FMFilter data structure.
First, you must use the function NewFMFontFamilyCallbackFilterUPP (page 681) to create a universal
procedure pointer (UPP) of type FMFontFamilyCallbackFilterUPP. You can do so with code similar to
the following:

FMFontFamilyCallbackFilterUPP MyFMFontFamilyFilterUPPMyFMFontFamilyFilterUPP =
NewFMFontFamilyCallbackFilterUPP (&MyFMFontFamilyCallbackFilterCallback)

Your application must specify the result code that should be returned by the Font Manager. Any value other
than noErr will cause the iterator to ignore a font family.

When you are finished with your filter callback function, you should use the
DisposeFMFontFamilyCallbackFilterUPP (page 679) function to dispose of the UPP associated with it.
However, if you plan to use the same filter callback function in subsequent calls, you can reuse the same
UPP, rather than dispose of it and later create a new UPP.

686 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Data Types

ATS Data Types

The data types in this section are used by ATS for Fonts.

ATSFontContainerRef
An opaque data type that represents a reference to a font file or folder.

typedef UInt32 ATSFontContainerRef;

Discussion
A font container reference is an opaque type used as a parameter in the functions
ATSFontActivateFromFileSpecification (page 648) and ATSFontActivateFromMemory (page 649).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSFontFamilyIterator
An opaque data type that represents a font family iterator.

typedef struct ATSFontFamilyIterator_ * ATSFontFamilyIterator;

Discussion
You initialize a structure of type ATSFontFamilyIterator by calling the function
ATSFontFamilyIteratorCreate (page 655). You should not attempt to modify the contents of a font
family iterator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSFont.h

ATSFontFamilyRef
An opaque data type that represents a font family reference.

Data Types 687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef UInt32 ATSFontFamilyRef;

Discussion
Unlike font family and font names which are part of a font’s data, data types, such as ATSFontFamily
represent values that are arbitrarily assigned by ATS at system startup. These values can change when the
system is restarted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSFontFilter
Contains font filter information.

struct ATSFontFilter {
 UInt32 version
 ATSFontFilterSelector filterSelector
 union {
 ATSGeneration generationFilter;
 ATSFontFamilyRef fontFamilyFilter;
 ATSFontFamilyApplierFunction fontFamilyApplierFunctionFilter;
 ATSFontApplierFunction fontApplierFunctionFilter;
 } filter;
};
typedef struct ATSFontFilter ATSFontFilter;

Fields
version

The version of the filter.

filterSelector
A font filter selector. See “Font Filter Selectors” (page 705)for a list of the filter selectors you can specify.

filter
A union whose contents are specified by the filterSelector field.

generationFilter
An ATSGeneration value that specifies the generation to which you want to restrict an operation.

fontFamilyFilter
A font family reference that specifies the font family to which you want to restrict an operation.

fontFamilyApplierFunctionFilter
A pointer the callback you want applied to a font family iteration. See
ATSFontFamilyApplierFunction (page 683) for more information on the callback you can supply.

fontApplierFunctionFilter
A pointer the callback you want applied to a font iteration. See ATSFontApplierFunction (page
682) for more information on the callback you can supply.

Discussion
You can pass an ATSFontFilter structure to the functions ATSFontFamilyIteratorCreate (page 655),
ATSFontFamilyIteratorReset (page 658), ATSFontIteratorCreate (page 671), and
ATSFontIteratorReset (page 674).

688 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSFont.h

ATSFontIterator
An opaque data type that represents a font iterator.

typedef struct ATSFontIterator_ * ATSFontIterator;

Discussion
You initialize a structure of type ATSFontIterator by calling the function ATSFontIteratorCreate (page
671). You should not attempt to modify the contents of a font iterator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSFont.h

ATSFontMetrics
Contains metrics for a font.

struct ATSFontMetrics {
 UInt32 version;
 Float32 ascent;
 Float32 descent;
 Float32 leading;
 Float32 avgAdvanceWidth;
 Float32 maxAdvanceWidth;
 Float32 minLeftSideBearing;
 Float32 minRightSideBearing;
 Float32 stemWidth;
 Float32 stemHeight;
 Float32 capHeight;
 Float32 xHeight;
 Float32 italicAngle;
 Float32 underlinePosition;
 Float32 underlineThickness;
};
typedef struct ATSFontMetrics ATSFontMetrics;

Fields
version

The version of the font metrics structure.

ascent
The maximum height from the baseline to the ascent line of the glyphs in the font. For vertical text,
the maximum distance from the center line to the ascent line of the glyphs in the font.

Data Types 689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

descent
The maximum distance from the baseline to the descent line of the the glyphs in the font. For vertical
text, the maximum distance from center line to the descent line of the glyphs in the font.

leading
The spacing from the descent line to the ascent line below it. This defines the spacing between lines
of text

avgAdvanceWidth
The average advance width of the glyph in the font.

maxAdvanceWidth
The maximum advance width of the glyphs in the font.

minLeftSideBearing
The minimum left-side bearing value of the glyphs in the font. For vertical text, the minimum top-side
bearing value of the glyphs in the font.

minRightSideBearing
The minimum right-side bearing value of the glyphs in the font. For vertical text, the minimum bottom
side bearing of a glyphs in the font.

stemWidth
The width of the dominant vertical stems of the glyphs in the font.

stemHeight
The vertical width of the dominant horizontal stems of glyphs in the font.

capHeight
The height of a capital letter in the font from the baseline to the top of the letter.

xHeight
The height of lowercase characters in the font, specifically the letter x, excluding ascenders and
descenders.

italicAngle
The angle (in degrees counterclockwise) at which glyphs in the font slant when italicized.

underlinePosition
The position at which an underline stroke should be placed for the font.

underlineThickness
The thickness, in pixels, of the underscore character used to underline the glyphs in the font.

Discussion
This structure is passed as a parameter to the functions ATSFontGetHorizontalMetrics (page 666) and
ATSFontGetVerticalMetrics (page 670).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSFontNotificationInfoRef
An opaque data type that represents a font notification information structure.

690 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef struct ATSFontNotificationInfoRef_ * ATSFontNotificationInfoRef;

Discussion
This data type is used in the ATSNotificationCallback (page 684) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSFont.h

ATSFontNotificationRef
An opaque data type that represents a font notification structure.

typedef struct ATSFontNotificationRef_ * ATSFontNotificationRef;

Discussion
The ATSFontNotificationRef data type is returned by the function
ATSFontNotificationSubscribe (page 675) and passed as a parameter to the function
ATSFontNotificationUnsubscribe (page 676).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSFont.h

ATSFontQuerySourceContext
Contains font query information that is passed back to a font query callback.

struct ATSFontQuerySourceContext {
 UInt32 version;
 void * refCon;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
};
typedef struct ATSFontQuerySourceContext ATSFontQuerySourceContext;

Fields
version

A 32-bit unsigned integer that indicates the version of this data structure. You can set this value to
0.

refCon
An arbitrary 32-bit value specified in your font query callback function.

retain
A callback you supply for increasing the retention count associated with the refCon value. The
CFAllocatorRetainCallBack is defined in the header file CFBase.h. For more information on
Core Foundation allocators, see the Core Foundation Base Services Reference.

Data Types 691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

release
A callback you supply for decreasing the retention count associated with the refCon value. The
CFAllocatorReleaseCallBack is defined in the header file CFBase.h.

Discussion
You pass a ATSFontQuerySourceContext data structure to the function
ATSCreateFontQueryRunLoopSource (page 646).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSFont.h

ATSFontRef
An opaque data type that represents a font reference.

typedef UInt32 ATSFontRef;

Discussion
Unlike font names which are part of a font’s data, data types, such as ATSFontRef represent values that are
arbitrarily assigned by ATS at system startup. These values can change when the system is restarted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSFontSize
Represents a font size.

typedef Float32 ATSFontSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSGeneration
Represents a generation count.

typedef UInt32 ATSGeneration;

Discussion
The generation count data type is used by ATS for Fonts to keep track of the generation of the font database,
each font family, and each font. You can obtain a generation count from the functions
ATSGetGeneration (page 678), ATSFontFamilyGetGeneration (page 654), and
ATSFontGetGeneration (page 665).

692 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSOptionFlags
Represents options you can pass to various ATS functions.

typedef OptionBits ATSOptionFlags;

Discussion
There are a variety of options associated with this data type. See “Assorted Options” (page 702), “Scoping
Options” (page 710), and “Iteration Precedence Options” (page 708).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FM Data types

The data types in this section are used by the Font Manager.

FMFilter
Contains a filter format, a selector and filter information.

struct FMFilter {
 UInt32 format
 FMFilterSelector selector
 union {
 FourCharCode fontTechnologyFilter;
 FSSpec fontContainerFilter;
 FMGeneration generationFilter;
 FMFontFamilyCallbackFilterUPP fontFamilyCallbackFilter;
 FMFontCallbackFilterUPP fontCallbackFilter;
 FMFontDirectoryFilter fontDirectoryFilter;
 } filter;
};
typedef struct FMFilter FMFilter;

Fields
format

A filter format. For possible values, see FM Filter Format (page 711).

selector
A filter selector. The selector indicates the data contained in the union. For possible values, see “FM
Filter Selectors” (page 711).

Data Types 693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

filter
The filter you want to use to restrict an operation. The filter must correspond to the selector
parameter. If you are using a custom filter, you should provide a universal procedure pointer that is
either of type FMFontFamilyCallbackFilterUPP or FMFontCallBackFilterUPP.

fontTechnologyFilter
A FourCharCode value that specifies the font technology to which you want to restrict an operation.
See “FM Font Technologies” (page 712) for constants you can supply.

fontContainerFilter
A pointer to the file specification that specifies the name and location of a file or directory to which
you want to restrict an operation.

generationFilter
The generation count to which you want to restrict an operation.

fontFamilyCallbackFilter
The font family callback that you want to use to restrict an operation.

fontCallbackFilter
The font callback that you want to use to restrict an operation.

fontDirectoryFilter
The font directory filter that you want to use to restrict an operation.

Discussion
You use the FMFilter (page 693) data structure when you want to restrict the enumeration and activation
functions to the criteria specified by a filter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFont
An opaque data type that specifies a font registered with the font database.

typedef UInt32 FMFont;

Discussion
You should not modify this value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontCallbackFilterUPP
Defines a universal procedure pointer to a font filter callback.

694 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef FMFontCallbackFilterProcPtr FMFontCallbackFilter;

Discussion
For more information, see the description of the FMFontCallbackFilterProcPtr (page 685) callback
function.

FMFontDirectoryFilter
Contains font directory information used to restrict a font iteration.

struct FMFontDirectoryFilter {
 SInt16 fontFolderDomain;
 UInt32 reserved[2];
};
typedef struct FMFontDirectoryFilter FMFontDirectoryFilter;

Fields
fontFolderDomain

A signed 16-bit integer that specifies the directory to which you want to restrict the font iteration.

reserved
Reserved for future use.

Discussion
You supply the FMFontDirectoryFilter data structure as part of the FMFilter (page 693) data structure
when you want to restrict a font iteration to a font directory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontFamily
A reference to a collection of fonts with the same design characteristics.

typedef SInt16 FMFontFamily;

Discussion
The font family reference replaces the QuickDraw font ID and can be used with all QuickDraw functions
including GetFontName and TextFont. Unlike the QuickDraw font identifier, the font family reference cannot
be passed to the Resource Manager to access information from a 'FOND' resource. A font family reference
does not imply a script system, nor is the character encoding of a font family determined by an arithmetic
mapping of the font family reference.

The fonts associated with a font family consist of individual outline fonts that may be used with the font
access functions of the Font Manager and ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Data Types 695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

FMFontFamilyCallbackFilterUPP
Defines a universal procedure pointer to a font family filter callback.

typedef FMFontFamilyCallbackFilterProcPtr FMFontFamilyCallbackFilter;

Discussion
For more information, see the description of the FMFontFamilyCallbackFilterProcPtr (page 686)
callback function.

FMFontFamilyInstance
Contains a font family reference and a QuickDraw style.

struct FMFontFamilyInstance {
 FMFontFamily fontFamily;
 FMFontStyle fontStyle;
};
typedef struct FMFontFamilyInstance FMFontFamilyInstance;

Fields
fontFamily

A font family reference.

fontStyle
A QuickDraw font style.

Discussion
Each font object can map to one or more font family instance. This mapping is equivalent to the information
stored in the font association table of the 'FOND' resource, except the font family instance does not contain
a point size descriptor. Since a font object represents the entire array of point sizes for a given font, only the
font family reference and style are required to specify fully any given font object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontFamilyInstanceIterator
An opaque structure used to enumerate font family instances.

struct FMFontFamilyInstanceIterator {
 UInt32 reserved[16];
};
typedef struct FMFontFamilyInstanceIterator FMFontFamilyInstanceIterator;

Fields
reserved

Reserved for Apple’s use.

Discussion
You initialize a structure of type FMFontFamilyInstanceIterator by calling the function
FMCreateFontFamilyInstanceIterator. You should not attempt to modify the contents of a font family
instance iterator.

696 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontFamilyIterator
An opaque structure used to enumerate font families.

struct FMFontFamilyIterator {
 UInt32 reserved[16];
};
typedef struct FMFontFamilyIterator FMFontFamilyIterator;

Fields
reserved

Reserved for Apple’s use.

Discussion
You initialize a structure of type FMFontFamilyIterator by calling the function
FMCreateFontFamilyIterator. You should not attempt to modify the contents of a font family iterator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontIterator
An opaque structure used to enumerate fonts.

struct FMFontIterator {
 UInt32 reserved[16];
};
typedef struct FMFontIterator FMFontIterator;

Fields
reserved

Reserved for Apple’s use.

Discussion
You initialize a structure of type FMFontIterator by calling the function FMCreateFontIterator. You
should not attempt to modify the contents of a font iterator.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Data Types 697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

FMFontSize
Represents a font size.

typedef SInt16 FMFontSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMFontStyle
Represents a font style.

typedef SInt16 FMFontStyle;

Discussion
The low 8 bits of a Font Manager font style correspond to a QuickDraw style.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

FMGeneration
Keeps track of any operation that adds, deletes, or modifies one or more fonts or font family objects.

typedef UInt32 FMGeneration;

Discussion
Any operation that adds, deletes, or modifies one or more fonts or font family objects triggers an update of
a global generation seed value. Each font and font family modified during a transaction is tagged with a
copy of the generation seed.

You can use the function FMGetGeneration to get the current value of the generation seed. Then you can
use this information in conjunction with the functions FMGetFontGeneration and
FMGetFontFamilyGeneration to identify any changes in the font database.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSUI Data Types

The data types in this section are used by Apple Type Services for Unicode Imaging (ATSUI).

698 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSGlyph
Represents a glyph code.

typedef UInt16 ATSGlyph;

ATSGlyphIdealMetrics
Contains ideal (resolution-independent) metrics for a glyph.

struct ATSGlyphIdealMetrics {
 Float32Point advance;
 Float32Point sideBearing;
 Float32Point otherSideBearing;
};
typedef struct ATSGlyphIdealMetrics ATSGlyphIdealMetrics;

Fields
advance

The amount by which the pen is advanced after drawing the glyph.

sideBearing
The offset from the glyph origin to the beginning of the glyph image.

otherSideBearing
The offset from the end of the glyph image to the end of the glyph advance.

Discussion
This data structure is passed as a parameter to the ATSUI function ATSUGlyphGetIdealMetrics. For more
information, see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSGlyphRef
Represents a glyph reference.

typedef UInt16 ATSGlyphRef;

Discussion
This data type is used in the ATSUI data structure ATSLayoutRecord. For information, see Inside Mac OS X:
ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Data Types 699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSGlyphScreenMetrics
Contains device-adjusted font metric information for glyphs in a font.

struct ATSGlyphScreenMetrics {
 Float32Point deviceAdvance;
 Float32Point topLeft;
 UInt32 height;
 UInt32 width;
 Float32Point sideBearing;
 Float32Point otherSideBearing;
};
typedef struct ATSGlyphScreenMetrics ATSGlyphScreenMetrics;

Fields
deviceAdvance

The number of pixels of the advance for the glyph as actually drawn on the screen.

topLeft
The top-left point of the glyph in device coordinates.

height
The height of the glyph, in pixels. The glyph specified by this value may overlap with other glyphs
when drawn.

width
The width of the glyph, in pixels. The glyph specified by this value may overlap with other glyphs
when drawn.

sideBearing
The origin-side bearing, in pixels.

otherSideBearinge
The trailing-side bearing, in pixels.

Discussion
The ATSGlyphScreenMetrics data structure contains metrics for where glyphs should be drawn on the
screen. The metrics include any adjustments needed to display the glyphs properly on the current screen.
The structure is returned by the ATSUI function ATSUGlyphGetScreenMetrics. Many of the metrics in this
structure are Float32Point data types so the metrics can integrate with Quartz functions, which all require
Float32Point data types.

For information on the ATSUI function ATSUGlyphGetScreenMetrics, see InsideMacOS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSUCurvePath
Contains curve information for a glyph path.

700 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

struct ATSUCurvePath {
 UInt32 vectors;
 UInt32 controlBits[1];
 Float32Point vector[1];
};
typedef struct ATSUCurvePath ATSUCurvePath;

Fields
vectors

The number of values in each of the controlBits and vector arrays.

controlBits
An array of control bit values that, together with the values in the vector array, define one cubic
curve in a glyph.

vector
An array of vector values that, together with the values in the controlBits array, define one cubic
curve in a glyph.

Discussion
This data structure is used in the ATSUCurvePaths (page 701) data structure. The ATSUCurvePaths data
structure is passed as a parameter to the ATSUI function ATSUGlyphGetCurvePaths. For more information,
see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

ATSUCurvePaths
Contains curve information for an array of glyph paths.

struct ATSUCurvePaths {
 UInt32 contours;
 ATSUCurvePath contour[1];
};
typedef struct ATSUCurvePaths ATSUCurvePaths;

Fields
contours

The number of cubic curves contained in the contour array.

contour
An array of cubic curves that define the outline of a glyph.

Discussion
The ATSUCurvePaths data structure is passed as a parameter to the ATSUI function
ATSUGlyphGetCurvePaths. For more information, see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Data Types 701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

GlyphID
Represents a reference to a glyph.

typedef ATSGlyphRef GlyphID;

Discussion
The GlyphID data type is used by ATSUI. For more information, see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSTypes.h

Constants

ATS Constants

Assorted Options
Specify assorted options.

enum {
 kATSOptionFlagsDefault = kNilOptions,
 kATSOptionFlagsComposeFontPostScriptName = 1 << 0,
 kATSOptionFlagsUseDataForkAsResourceFork = 1 << 8,
 kATSOptionFlagsUseResourceFork = 2 << 8,
 kATSOptionFlagsUseDataFork = 3 << 8
};

Constants
kATSOptionFlagsDefault

Specifies to use the default setting.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSOptionFlagsComposeFontPostScriptName
Specifies the composed PostScript name of a font.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSOptionFlagsUseDataForkAsResourceFork
Specifies to use the data fork of a font as a resource fork. You can pass this option in the iOptions
parameter for the function ATSFontActivateFromFileSpecification (page 648).

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

702 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

kATSOptionFlagsUseResourceFork
Specifies to use the resource fork of a font.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSOptionFlagsUseDataFork
Specifies to use the data fork of a font.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

Automatic Activation Settings
Values for automatic activation settings.

enum {
 kATSFontAutoActivationDefault = 0,
 kATSFontAutoActivationDisabled = 1,
 kATSFontAutoActivationEnabled = 2,
 kATSFontAutoActivationAsk = 4
}
typedef UInt32 ATSFontAutoActivationSetting;

Constants
kATSFontAutoActivationDefault

Resets the setting the the default state. For application settings this clears the setting. For the global
setting, it reverts to the initial system setting, kATSFontAutoActivationEnabled.

Available in Mac OS X v10.5 and later.

Declared in ATSFont.h.

kATSFontAutoActivationAsk
Asks the user before automatically activating fonts requested by the application.

Available in Mac OS X v10.5 and later.

Declared in ATSFont.h.

kATSFontAutoActivationEnabled
Enables automatic activation of fonts.

Available in Mac OS X v10.5 and later.

Declared in ATSFont.h.

kATSFontAutoActivationDisabled
Disables automatic activation of fonts.

Available in Mac OS X v10.5 and later.

Declared in ATSFont.h.

Declared In
ATSFont.h

Context Options
Specify a context to use when enumerating, activating, or deactivating fonts and font families.

Constants 703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef UInt32 ATSFontContext;
enum {
 kATSFontContextUnspecified = 0,
 kATSFontContextGlobal = 1,
 kATSFontContextLocal = 2
};

Constants
kATSFontContextUnspecified

Indicates a context is not specified. This option has the same result as providing the option
kATSFontContextLocal.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSFontContextGlobal
Specifies to use a global context. Fonts with a global context are available to all applications on the
system.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSFontContextLocal
Specifies to use a local context. Fonts with a local context are available to your application.

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

Discussion
Context refers to the font’s availability and can be local or global. You provide a context as an option to such
functions asATSFontActivateFromFileSpecification (page 648),ATSFontActivateFromMemory (page
649), ATSFontFamilyIteratorCreate (page 655), ATSFontFamilyIteratorReset (page 658).
ATSFontIteratorCreate (page 671), and ATSFontIteratorReset (page 674).

Data Not Specified Constants
Indicate data that is not specified.

enum {
 kATSGenerationUnspecified = 0,
 kATSFontContainerRefUnspecified = 0,
 kATSFontFamilyRefUnspecified = 0,
 kATSFontRefUnspecified = 0
};

Constants
kATSGenerationUnspecified

Indicates the generation is not specified.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSFontContainerRefUnspecified
Indicates the font container reference is not specified.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

704 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

kATSFontFamilyRefUnspecified
Indicates the font family reference is not specified.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSFontRefUnspecified
Indicates the font reference is not specified.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
You can pass these constants to functions when you either don’t know the appropriate value or do not care
to obtain the associated information. These constants can also be returned to you to indicate an error.

Font Filter Selectors
Specify the type of criteria to use when limiting an iteration.

enum ATSFontFilterSelector {
 kATSFontFilterSelectorUnspecified = 0,
 kATSFontFilterSelectorGeneration = 3,
 kATSFontFilterSelectorFontFamily = 7,
 kATSFontFilterSelectorFontFamilyApplierFunction = 8,
 kATSFontFilterSelectorFontApplierFunction = 9
};
typedef enum ATSFontFilterSelector ATSFontFilterSelector;

Constants
kATSFontFilterSelectorUnspecified

Specifies to limit an iteration based on unspecified criteria. In this case, the default is used, which is
to iterate using a local context with an unrestricted scope.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSFontFilterSelectorGeneration
Specifies to limit an iteration based on generation criteria.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSFontFilterSelectorFontFamily
Specifies to limit an iteration based on font family criteria.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

kATSFontFilterSelectorFontFamilyApplierFunction
Specifies to limit an iteration based on criteria defined by a font family applier function.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

Constants 705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

kATSFontFilterSelectorFontApplierFunction
Specifies to limit an iteration based on criteria defined by a font applier function.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

Discussion
You use these constants in the data structure ATSFontFilter (page 688) to specify the type of data in the
filter union.

Font Filter Versions
Specify the version of a font filter.

typedef UInt32 ATSFontFormat;
enum {
 kATSFontFilterCurrentVersion = 0
};

Constants
kATSFontFilterCurrentVersion

Specifies to use the current version of a font filter.

Available in Mac OS X v10.0 and later.

Declared in ATSFont.h.

Discussion
There is currently only one constant in this enumeration. You can assign this constant to the version field
in the ATSFontFilter (page 688) data structure.

Font Formats
Specify a font format.

enum {
 kATSFontFormatUnspecified = 0
};

Constants
kATSFontFormatUnspecified

Indicates the font format is not specified. You can pass this in the iFormat parameter of the function
ATSFontActivateFromFileSpecification (page 648).

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
There are no other font formats currently defined for this enumeration.

Font Request Query Keys
Represent keys in a font request query dictionary.

706 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

#define kATSQueryClientPID CFSTR("ATS
 client
pid")
#define kATSQueryQDFamilyName CFSTR("font family
name")
#define kATSQueryFontName CFSTR("font name")
#define kATSQueryFontPostScriptName CFSTR("font PS name")
#define kATSQueryFontNameTableEntries CFSTR("font name table
entries")
#define kATSFontNameTableCode CFSTR("font name code")
#define kATSFontNameTablePlatform CFSTR("font platform
code")
#define kATSFontNameTableScript CFSTR("font script
code")
#define kATSFontNameTableLanguage CFSTR("font language
code")
#define kATSFontNameTableBytes
CFSTR("font
name table bytes")

Constants
kATSQueryClientPID

Specifies a process ID. The value associated with this key is a CFNumberRef value that refers to a the
process ID (pid_t) of the application making the query.

kATSQueryQDFamilyName
Specifies a QuickDraw family name. The value associated with this key is a CFStringRef value that
refers to the QuickDraw family name of the requested font. For example, the name passed to the
function GetFNum.

kATSQueryFontName
Specifies a font name. The value associated with this key is a CFStringRef value that refers to the
full name of the requested font. You can use this font name as an argument to the function
ATSFontFindFromName (page 660).

kATSQueryFontPostScriptName
Specifies the PostScript name of a font. The value associated with this key is a CFStringRef value
that refers to either the PostScript name derived from the font's FOND resource or from the font’s
'sfnt' name table, with preference given to the FOND PostScript name. You can use this font name
as an argument to the function ATSFontFindFromPostScriptName (page 661).

kATSQueryFontNameTableEntries
Specifies the descriptor for 'sfnt' name table entries. The value associated with this key an array
(CFArrayRef) of CFDictionaryRef values that describe entries in a name table. A font must have
all of the specified entries to be considered a match.

kATSFontNameTableCode
Specifies the font name's name code. The value associated with this key is a CFNumberRef. If no value
is specified, the value kFontNoNameCode is used.

kATSFontNameTablePlatform
Specifies the font name's platform code. The value associated with this key is a CFNumberRef. If no
value is specified, the value kFontNoPlatformCode is used.

kATSFontNameTableScript
Specifies the font name's script code. The value associated with this key is a CFNumberRef. If no value
is specified, the value kFontNoScriptCode is used.

Constants 707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

kATSFontNameTableLanguage
Specifies the font name's language code. The value associated with this key is a CFNumberRef. If no
value is specified, the value kFontNoLanguageCode is used.

kATSFontNameTableBytes
Specifies the raw bytes of the font name. The value associated with this key is a CFDataRef value
that refers to the raw name bytes for the font.

Discussion
Font request query keys appear in the dictionary passed to, and returned by, your
ATSFontQueryCallback (page 683) callback function. The keys comprise a property list (CFPropertyList)
that defines the query sent to your callback. On return, you supply a property list that specifies your response
to the query.

Font Query Message ID
Specifies a message ID for a font request query.

enum ATSFontQueryMessageID {
 kATSQueryActivateFontMessage = 'atsa'
};
typedef enum ATSFontQueryMessageID ATSFontQueryMessageID;

Constants
kATSQueryActivateFontMessage

Specifies to activate a font message. The data associated with this message ID is a flattened
CFDictionaryRef. The CFDictionary contains on or more of the keys described in “Font Request
Query Keys” (page 706).

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

Discussion
There is currently only one constant in this enumeration. You use a constant of this type when you create
an ATSFontQueryCallback (page 683) callback function.

Iteration Precedence Options
Specify the order of an iteration.

enum {
 kATSOptionFlagsIterateByPrecedenceMask = 0x00000001 << 5
};

Constants
kATSOptionFlagsIterateByPrecedenceMask

Specifies to iterate fonts in the order dictated by a precedence mask.

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

Notification Actions
Specify a notification action.

708 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

enum ATSFontNotifyAction {
 kATSFontNotifyActionFontsChanged = 1,
 kATSFontNotifyActionDirectoriesChanged = 2
};
typedef enum ATSFontNotifyAction ATSFontNotifyAction;

Constants
kATSFontNotifyActionFontsChanged

Specifies that your application has activated or deactivated fonts. Typically you call the functions
ATSFontActivateFromFileSpecification (page 648) orATSFontDeactivate (page 651) multiple
times to activate and deactivate fonts. In each call, you set the iOptions parameter to
kATSOptionFlagsDoNotNotify set. When you are done activating and deactivating fonts you can
call the function ATSFontNotify (page 676) with the action parameter set to
kATSFontNotifyActionFontsChanged. Then ATS notifies all applications who subscribe to
notifications of the changes you made.

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

kATSFontNotifyActionDirectoriesChanged
Specifies that your application has made changes to one or more of the font directories. When you
are making changes to font directories, you can call the function ATSFontNotify (page 676) with
the action parameter set to kATSFontNotifyActionDirectoriesChanged. Then ATS scans these
directories and notifies all applications who subscribe to notifications of the changes you made.

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

Discussion
You can use these options with the function ATSFontNotify (page 676).

Notification Options
Specify when ATS should notify your application of changes in the font database.

enum ATSFontNotifyOption {
 kATSFontNotifyOptionDefault = 0,
 kATSFontNotifyOptionReceiveWhileSuspended = 1L << 0
};
typedef enum ATSFontNotifyOption ATSFontNotifyOption;

Constants
kATSFontNotifyOptionDefault

Specifies to use the default behavior of the function ATSFontNotificationSubscribe (page 675).

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

kATSFontNotifyOptionReceiveWhileSuspended
Specifies to receive notifications even if the application is in the background. Setting this option can
degrade performance; you should set this option if your application is a faceless process or a tool that
performs font management functions and requires immediate notification when fonts change.

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

Constants 709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Discussion
You use notification options when you call the function ATSFontNotificationSubscribe (page 675). The
default behavior is for applications to receive ATS notifications only when the application runs in the
foreground. By default, if the application is suspended, the notification is delivered when the application
comes to the foreground.

Scoping Options
Specify the scope to which an operation should apply or a notification schedule.

enum {
 kATSOptionFlagsDoNotNotify = 0x00000001 << 8,
 kATSOptionFlagsIterationScopeMask = 0x00000007 << 12,
 kATSOptionFlagsDefaultScope = 0x00000000 << 12,
 kATSOptionFlagsUnRestrictedScope = 0x00000001 << 12,
 kATSOptionFlagsRestrictedScope = 0x00000002 << 12,
 kATSOptionFlagsProcessSubdirectories = 0x00000001 << 6
};

Constants
kATSOptionFlagsDoNotNotify

Specifies not to send a notification after a font is activated or deactivated globally. You can set the
iOptions parameter of the functions ATSFontActivateFromFileSpecification (page 648) or
ATSFontDeactivate (page 651) to this constant. When you are done activating and deactivating
fonts you can call the function ATSFontNotify (page 676) with the action parameter set to
kATSFontNotifyActionFontsChanged. Then ATS notifies all applications who subscribe to
notifications of the changes you made.

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

kATSOptionFlagsIterationScopeMask
Specifies mask option bits 12-14 for iteration scopes.

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

kATSOptionFlagsDefaultScope
Specifies to use the default scope, which is equivalent to kATSOptionFlagsUnRestrictedScope.
You can pass this as a parameter to the functions ATSFontFamilyIteratorCreate (page 655),
ATSFontFamilyIteratorReset (page 658), ATSFontIteratorCreate (page 671) and
ATSFontIteratorReset (page 674).

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

kATSOptionFlagsUnRestrictedScope
Specifies to use an unrestricted scope. You can pass this as a parameter to the functions
ATSFontFamilyIteratorCreate (page 655), ATSFontFamilyIteratorReset (page 658),
ATSFontIteratorCreate (page 671) and ATSFontIteratorReset (page 674).

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

710 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

kATSOptionFlagsRestrictedScope
Specifies to use a restricted scope. You can pass this as a parameter to the functions
ATSFontFamilyIteratorCreate (page 655), ATSFontFamilyIteratorReset (page 658),
ATSFontIteratorCreate (page 671) and ATSFontIteratorReset (page 674).

Available in Mac OS X v10.1 and later.

Declared in ATSFont.h.

kATSOptionFlagsProcessSubdirectories
Specifies to process the font directories within a font directory. You can pass this as a parameter to
the function ATSFontActivateFromFileSpecification (page 648).

Available in Mac OS X v10.2 and later.

Declared in ATSFont.h.

Discussion
Scope refers to whether a font’s use is restricted or unrestricted. Fonts with a restricted scope can be used
only by your application whereas fonts with an unrestricted scope cay be used by all applications.

Font Manager Constants

FM Filter Format
Specifies a filter format.

enum {
 kFMCurrentFilterFormat = 0
};

Constants
kFMCurrentFilterFormat

Specifies the current filter format. You can use this to set the format field when you initialize the
FMFilter data type for use in creating an iterator object with the functions
FMCreateFontFamilyIterator or FMCreateFontIterator. Currently, this is the only format you
can specify.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

FM Filter Selectors
Specifies a filter type.

Constants 711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef UInt32 FMFilterSelector;
enum {
 kFMFontTechnologyFilterSelector = 1,
 kFMFontContainerFilterSelector = 2,
 kFMGenerationFilterSelector = 3,
 kFMFontFamilyCallbackFilterSelector = 4,
 kFMFontCallbackFilterSelector = 5,
 kFMFontDirectoryFilterSelector = 6
};

Constants
kFMFontTechnologyFilterSelector

Selects font technology filter. You can use this filter only with a font iterator.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kFMFontContainerFilterSelector
Selects font container filter. You can use this filter only with a font iterator.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kFMGenerationFilterSelector
Selects generation filter. You can use this filter only with a font family iterator.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kFMFontFamilyCallbackFilterSelector
Indicates a custom filter to be used only with a font family iterator.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kFMFontCallbackFilterSelector
Indicates a custom filter to be used only with a font iterator.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
You use these constants to specify a filter type in the FMFilter (page 693) data structure used by many Font
Manager functions.

FM Font Technologies
Specify a font technology.

712 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

enum {
 kFMTrueTypeFontTechnology = 'true',
 kFMPostScriptFontTechnology = 'typ1'
};

Constants
kFMTrueTypeFontTechnology

Indicates True Type font technology.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kFMPostScriptFontTechnology
Indicates Post Script font technology.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Invalid Values
Specify an invalid value.

enum {
 kInvalidGeneration = 0,
 kInvalidFontFamily = -1,
 kInvalidFont = 0
};

Constants
kInvalidGeneration

Indicates an invalid generation value.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kInvalidFontFamily
Indicates the font family reference is invalid.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kInvalidFont
Indicates the font reference is invalid.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
The kInvalidGeneration, kInvalidFontFamily, and kInvalidFont constants may be used to indicate
invalid values for generation count, font family, and font data types.

Constants 713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

ATSUI Constants

Convenience Constants
Represent numerical values that are commonly used in font calculations.

enum {
 kATSItalicQDSkew = (1 << 16) / 4,
 kATSBoldQDStretch = (1 << 16) * 3 / 2,
 kATSRadiansFactor = 1144
};

Constants
kATSItalicQDSkew

A Fixed value of 0.25 that represents the skew used by QuickDraw to draw italicized glyphs.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSBoldQDStretch
A Fixed value that represents the stretch-factor used by QuickDraw to draw bold-faced glyphs.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSRadiansFactor
A Fixed value of approximately pi/180(0.0174560546875) that represents an angle of 1 radian.
This is a convenience constant you can use when you draw rotated text.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
These constants are provided for convenience. Your application can use them when it needs to perform font
calculations.

Version Notes
Available beginning with ATSUI 1.0.

Curve Types
Specify a curve type used to draw a font.

714 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

typedef UInt16 ATSCurveType;
enum {
 kATSCubicCurveType = 0x0001,
 kATSQuadCurveType = 0x0002,
 kATSOtherCurveType = 0x0003
};

Constants
kATSCubicCurveType

Specifies a cubic curve.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSQuadCurveType
Specifies a quadratic curve.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

kATSOtherCurveType
Specifies a curve other than cubic or quadratic.

Available in Mac OS X v10.0 and later.

Declared in ATSTypes.h.

Discussion
These are used in the ATSUI function ATSUGetNativeCurveType. See Inside Mac OS X: ATSUI Reference for
more information.

Deleted Glyph Code
Specifies that a glyph is deleted.

enum {
 kATSDeletedGlyphcode = 0xFFFF
};

Constants
kATSDeletedGlyphcode

Indicates that a glyph is deleted. That is, the glyph is set to no longer appear in a text layout.

Available in Mac OS X v10.2 and later.

Declared in ATSTypes.h.

Discussion
This constant is used by ATSUI. When a glyph is deleted, ATSUI sets the corresponding ATSGlyphRef (page
699) to kATSDeletedGlyphcode. For more information, see Inside Mac OS X: ATSUI Reference.

Result Codes

The most common result codes returned by Apple Type Services for Fonts are listed below.

Result Codes 715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

DescriptionValueResult Code

The iteration is complete.-980LkATSIterationCompleted

Available in Mac OS X v10.0 and later.

Your application tried to access an invalid font family.-981LkATSInvalidFontFamilyAccess

Available in Mac OS X v10.0 and later.

Your application tried to access an invalid font.-982LkATSInvalidFontAccess

Available in Mac OS X v10.0 and later.

The font database changed during an iteration.-983LkATSIterationScopeModified

Available in Mac OS X v10.0 and later.

Your application tried to access an invalid font table.-984LkATSInvalidFontTableAccess

Available in Mac OS X v10.0 and later.

Your application tried to access an invalid font container.-985LkATSInvalidFontContainerAccess

Available in Mac OS X v10.0 and later.

716 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

Apple Type Services for Fonts Reference

Framework: ApplicationServices/ApplicationServices.h, Carbon/Carbon.h

Declared in CMApplication.h
CMMComponent.h
CMTypes.h
CMCalibrator.h
CMScriptingPlugin.h
CMDeviceIntegration.h

Overview

The ColorSync Manager is the API for ColorSync, a platform-independent color management system from
Apple. ColorSync provides essential services for fast, consistent, and accurate color calibration, proofing, and
reproduction using input, output, and display devices. ColorSync also provides an interface to system-wide
color management settings that allows users to save color settings for specific jobs and switch between
settings.

You need this reference if your software product performs color drawing, printing, or calculation, or if your
peripheral device supports color. You also need this reference if you are creating a color management module
(CMM)—a component that implements color-matching, color-conversion, and gamut-checking services.

The Color Picker Manager, documented separately, provides a standard user interface for soliciting color
choices.

Carbon supports the majority of the ColorSync Manager programming interface. However, ColorSync 1.0
compatibility calls such as CWNewColorWorld, GetProfile, and SetProfile are not supported.

Nor does Carbon support ColorSync functions used for color management modules (CMMs). These functions
aren't supported because Mac OS X uses Bundle Services to implement CMMs.

Some applications use the Component Manager to determine what CMMs are available. You cannot use the
Component Manager for this purpose in Mac OS X. Apple has, however, provided a the function
CMIterateCMMInfo to query for available CMMs.

Functions by Task

Accessing Profiles

CMOpenProfile (page 790)
Opens the specified profile and returns a reference to the profile.

Overview 717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMValidateProfile (page 818)
Indicates whether the specified profile contains the minimum set of elements required by the current
color management module (CMM) for color matching or color checking.

CMCloseProfile (page 728)
Decrements the reference count for the specified profile reference and, if the reference count reaches
0, frees all private memory and other resources associated with the profile.

CMUpdateProfile (page 816)
Saves modifications to the specified profile.

CMCopyProfile (page 740)
Duplicates the specified existing profile.

CMProfileModified (page 795)
Indicates whether the specified profile has been modified since it was created or last updated.

CMGetProfileMD5 (page 771)
Gets the MD5 checksum from the profile header (message digest)

CMGetProfileHeader (page 769)
Obtains the profile header for the specified profile.

CMSetProfileHeader (page 813)
Sets the header for the specified profile.

NCMGetProfileLocation (page 841)
Obtains either a profile location structure for a specified profile or the size of the location structure
for the profile.

CMCloneProfileRef (page 727)
Increments the reference count for the specified profile reference.

CMGetProfileRefCount (page 772)
Obtains the current reference count for the specified profile.

CMFlattenProfile (page 748) Deprecated in Mac OS X v10.5
Transfers a profile stored in an independent disk file to an external profile format that can be embedded
in a graphics document.

CMGetProfileLocation (page 770) Deprecated in Mac OS X v10.5
Obtains the location of a profile based on the specified profile reference.

NCMUnflattenProfile (page 843) Deprecated in Mac OS X v10.5
Unflattens a previouslyflattened profile.

Iterating Installed Profiles

CMIterateColorSyncFolder (page 780)
Iterates over the available profiles.

CMGetColorSyncFolderSpec (page 749) Deprecated in Mac OS X v10.5
Obtains the volume reference number and the directory ID for a ColorSync Profiles folder.

Creating Profiles

CMNewProfile (page 788)
Creates a new profile and associated backing copy.

718 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

NCWNewLinkProfile (page 848)
Obtains a profile reference for the specified by the profile location.

CMMakeProfile (page 784)
Makes a display or abstract profile by modifying an existing one.

CWNewLinkProfile (page 830) Deprecated in Mac OS X v10.5
Creates a device link profile based on the specified set of profiles.

Accessing Special Profiles

CMGetSystemProfile (page 778)
Obtains a reference to the current system profile.

CMGetDefaultProfileBySpace (page 752)
Gets the default profile for the specified color space.

CMGetDefaultProfileByUse (page 753)
Obtains the users’ preferred device profile setting.

CMGetProfileByAVID (page 767)
Gets the current profile for a monitor.

CMSetProfileByAVID (page 808)
Sets the profile for the specified monitor, optionally setting video card gamma.

CMSetDefaultProfileBySpace (page 801) Deprecated in Mac OS X v10.5
Sets the default profile for the specified color space.

CMSetDefaultProfileByUse (page 801) Deprecated in Mac OS X v10.5
Sets values for device profile settings.

CMSetSystemProfile (page 814) Deprecated in Mac OS X v10.5
Sets the current system profile.

NCMSetSystemProfile (page 842) Deprecated in Mac OS X v10.5
Sets the location of a color profile.

Accessing Profile Elements

CMCountProfileElements (page 744)
Counts the number of elements in the specified profile.

CMProfileElementExists (page 792)
Tests whether the specified profile contains a specific element based on the element’s tag signature.

CMGetProfileElement (page 768)
Obtains element data from the specified profile based on the specified element tag signature.

CMSetProfileElement (page 810)
Sets or replaces the element data for a specific tag in the specified profile.

CMSetProfileElementSize (page 812)
Reserves the element data size for a specific tag in the specified profile before setting the element
data.

CMGetPartialProfileElement (page 765)
Obtains a portion of the element data from the specified profile based on the specified element tag
signature.

Functions by Task 719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSetPartialProfileElement (page 807)
Sets part of the element data for a specific tag in the specified profile.

CMGetIndProfileElementInfo (page 761)
Obtains the element tag and data size of an element by index from the specified profile.

CMGetIndProfileElement (page 760)
Obtains the element data corresponding to a particular index from the specified profile.

CMSetProfileElementReference (page 811)
Adds a tag to the specified profile to refer to data corresponding to a previously set element.

CMRemoveProfileElement (page 797)
Removes an element corresponding to a specific tag from the specified profile.

Accessing Profile Descriptions

CMCopyProfileDescriptionString (page 742)
Returns the name of a profile as a CFString.

CMCopyProfileLocalizedString (page 742)
Gets one specific string out of a profile

CMCopyProfileLocalizedStringDictionary (page 743)
Obtains a CFDictionary which contains the language locale and string for multiple localizations from
a given tag.

CMSetProfileLocalizedStringDictionary (page 813)
Writes a dictionary of localized strings to a given tag in a profile.

CMGetProfileDescriptions (page 767)
Obtains the description tag data for a specified profile.

CMSetProfileDescriptions (page 809)
Sets the description tag data for a specified profile.

CMGetScriptProfileDescription (page 777) Deprecated in Mac OS X v10.5
Obtains the internal name (or description) of a profile and the script code identifying the language
in which the profile name is specified from the specified profile.

Accessing Name-Class Profiles

CMGetNamedColorInfo (page 763)
Obtains information about a named color space from its profile reference.

CMGetNamedColorValue (page 764)
Obtains device and PCS color values for a specific color name from a named color space profile.

CMGetIndNamedColorValue (page 759)
Obtains device and PCS color values for a specific named color index from a named color space profile.

CMGetNamedColorIndex (page 762)
Obtains a named color index for a specific color name from a named color space profile.

CMGetNamedColorName (page 763)
Obtains a named color name for a specific named color index from a named color space profile.

720 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Working With ColorWorlds

NCWNewColorWorld (page 846)
Creates a color world for color matching based on the specified source and destination profiles.

CWConcatColorWorld (page 823)
Sets up a color world that includes a set of profiles for various color transformations among devices
in a sequence.

NCWConcatColorWorld (page 845)
Defines a color world for color transformations among a series of concatenated profiles.

CWDisposeColorWorld (page 825)
Releases the private storage associated with a color world when your application has finished using
the color world.

CWMatchColors (page 828)
Matches colors in a color list, using the specified color world.

CWCheckColors (page 821)
Tests a list of colors using a specified color world to see if they fall within the gamut of a destination
device.

CWMatchBitmap (page 826)
Matches the colors of a bitmap to the gamut of a destination device using the profiles specified by
a color world.

CWCheckBitmap (page 819)
Tests the colors of the pixel data of a bitmap to determine whether the colors map to the gamut of
the destination device.

CWFillLookupTexture (page 826)
Fills a 3-D lookup texture from a color world.

CMGetCWInfo (page 751) Deprecated in Mac OS X v10.5
Obtains information about the color management modules (CMMs) used for a specific color world.

Converting Colors

CMConvertFixedXYZToXYZ (page 730) Deprecated in Mac OS X v10.5
Converts colors specified in XYZ color space whose components are expressed as Fixed XYZ 32-bit
signed values of type CMFixedXYZColor to equivalent colors expressed as XYZ 16-bit unsigned
values of type CMXYZColor.

CMConvertHLSToRGB (page 730) Deprecated in Mac OS X v10.5
Converts colors specified in the HLS color space to equivalent colors defined in the RGB color space.

CMConvertHSVToRGB (page 731) Deprecated in Mac OS X v10.5
Converts colors specified in the HSV color space to equivalent colors defined in the RGB color space.

CMConvertLabToXYZ (page 732) Deprecated in Mac OS X v10.5
Converts colors specified in the L*a*b* color space to the XYZ color space.

CMConvertLuvToXYZ (page 733) Deprecated in Mac OS X v10.5
Converts colors specified in the L*u*v* color space to the XYZ color space.

CMConvertRGBToGray (page 733) Deprecated in Mac OS X v10.5
Converts colors specified in the RGB color space to equivalent colors defined in the Gray color space.

Functions by Task 721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConvertRGBToHLS (page 734) Deprecated in Mac OS X v10.5
Converts colors specified in the RGB color space to equivalent colors defined in the HLS color space.

CMConvertRGBToHSV (page 735) Deprecated in Mac OS X v10.5
Converts colors specified in the RGB color space to equivalent colors defined in the HSV color space
when the device types are the same.

CMConvertXYZToFixedXYZ (page 736) Deprecated in Mac OS X v10.5
Converts colors specified in the XYZ color space whose components are expressed as XYZ 16-bit
unsigned values of type CMXYZColor to equivalent colors expressed as 32-bit signed values of type
CMFixedXYZColor.

CMConvertXYZToLab (page 736) Deprecated in Mac OS X v10.5
Converts colors specified in the XYZ color space to the L*a*b* color space.

CMConvertXYZToLuv (page 737) Deprecated in Mac OS X v10.5
Converts colors specified in the XYZ color space to the L*u*v* color space.

CMConvertXYZToXYZ (page 738) Deprecated in Mac OS X v10.5
Converts a source color to a destination color using the specified chromatic adaptation method.

CMConvertXYZToYxy (page 739) Deprecated in Mac OS X v10.5
Converts colors specified in the XYZ color space to the Yxy color space.

CMConvertYxyToXYZ (page 739) Deprecated in Mac OS X v10.5
Converts colors specified in the Yxy color space to the XYZ color space.

Working With CMMs

CMIterateCMMInfo (page 779)
Iterates through the color management modules installed on the system.

CMGetPreferredCMM (page 766) Deprecated in Mac OS X v10.5
Identifies the preferred CMM specified by the ColorSync control panel.

Working With PostScript

CMGetPS2ColorSpace (page 776)
Obtains color space element data in text format usable as the parameter to the PostScript
setColorSpace operator, which characterizes the color space of subsequent graphics data.

CMGetPS2ColorRenderingIntent (page 774)
Obtains the rendering intent element data in text format usable as the parameter to the PostScript
findRenderingIntent operator, which specifies the color-matching option for subsequent graphics
data.

CMGetPS2ColorRendering (page 773)
Obtains the color rendering dictionary (CRD) element data usable as the parameter to the PostScript
setColorRendering operator, which specifies the PostScript color rendering dictionary to use for
the following graphics data.

CMGetPS2ColorRenderingVMSize (page 775)
Determines the virtual memory size of the color rendering dictionary (CRD) for a printer profile before
your application or driver obtains the CRD and sends it to the printer.

722 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Working With QuickDraw

CMEnableMatchingComment (page 746) Deprecated in Mac OS X v10.4
Inserts a comment into the currently open picture to turn matching on or off.

CMEndMatching (page 747) Deprecated in Mac OS X v10.4
Concludes a QuickDraw-specific ColorSync matching session initiated by a previous call to the
NCMBeginMatching function.

CWCheckPixMap (page 822) Deprecated in Mac OS X v10.4
Checks the colors of a pixel map using the profiles of a specified color world to determine whether
the colors are in the gamut of the destination device.

CWMatchPixMap (page 829) Deprecated in Mac OS X v10.4
Matches a pixel map in place based on a specified color world.

NCMBeginMatching (page 838) Deprecated in Mac OS X v10.4
Sets up a QuickDraw-specific ColorSync matching session, using the specified source and destination
profiles.

NCMDrawMatchedPicture (page 840) Deprecated in Mac OS X v10.4
Matches a picture’s colors to a destination device’s color gamut, as the picture is drawn, using the
specified destination profile.

NCMUseProfileComment (page 843) Deprecated in Mac OS X v10.4
Automatically embeds a profile or a profile identifier into an open picture.

Registering Devices

CMRegisterColorDevice (page 797)
Registers a device with ColorSync.

CMUnregisterColorDevice (page 815)
Unregisters a device.

Accessing Default Devices

CMGetDefaultDevice (page 752)
Gets the default device.

CMSetDefaultDevice (page 800)
Sets the default device.

Accessing Devices Profiles

CMGetDeviceFactoryProfiles (page 754)
Retrieves the original profiles for a given device.

CMSetDeviceFactoryProfiles (page 803)
Establishes the profiles used by a given device.

CMGetDeviceDefaultProfileID (page 754)
Gets the default profile ID for a given device.

Functions by Task 723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSetDeviceDefaultProfileID (page 802)
Sets the default profile ID for a given device.

CMSetDeviceProfile (page 803)
Change the profile used by a given device.

CMGetDeviceProfile (page 756)
Gets a profile used by a given device.

CMGetDeviceProfiles (page 756) Deprecated in Mac OS X v10.5
Gets the profiles used by a given device.

CMSetDeviceProfiles (page 804) Deprecated in Mac OS X v10.5
Changes the profiles used by a given device.

Accessing Device State and Information

CMGetDeviceState (page 757)
Gets the state of a device.

CMSetDeviceState (page 805)
Sets the state of a device.

CMGetDeviceInfo (page 755)
Gets information about a specified device.

Iterating Over Devices and Device Profiles

CMIterateColorDevices (page 780)
Iterates through the color devices available on the system, returning device information to a callback
you supply.

CMIterateDeviceProfiles (page 782)
Iterates through the device profiles available on the system and returns information about profiles
of the devices to a callback you supply.

Working With Image Files

CMCountImageProfiles (page 743) Deprecated in Mac OS X v10.5
Obtains a count of the number of embeded profiles for a given image.

CMEmbedImage (page 746) Deprecated in Mac OS X v10.5
Embeds an image with an ICC profile.

CMGetImageSpace (page 758) Deprecated in Mac OS X v10.5
Returns the signature of the data color space in which the color values of colors in an image are
expressed.

CMGetIndImageProfile (page 758) Deprecated in Mac OS X v10.5
Obtains a specific embeded profile for a given image.

CMLinkImage (page 783) Deprecated in Mac OS X v10.5
Matches an image file with a device link profile.

724 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMMatchImage (page 787) Deprecated in Mac OS X v10.5
Color matches an image file.

CMProofImage (page 796) Deprecated in Mac OS X v10.5
Proofs an image.

CMSetIndImageProfile (page 807) Deprecated in Mac OS X v10.5
Sets a specific embeded profile for a given image.

CMUnembedImage (page 814) Deprecated in Mac OS X v10.5
Removes any ICC profiles embeded in an image.

CMValidImage (page 819) Deprecated in Mac OS X v10.5
Validates the specified image file.

Working With Video Card Lookup Tables

CMGetGammaByAVID (page 757)
Obtains the gamma value for the specified display device.

CMSetGammaByAVID (page 806)
Sets the gamma for the specified display device.

Miscellaneous

CMGetColorSyncVersion (page 750)
Gets ColorSync version information.

CMLaunchControlPanel (page 783)
Launches the ColorSync preferences pane.

CMCalibrateDisplay (page 727)
Calibrates a display.

Working With Universal Procedure Pointers

DisposeCMBitmapCallBackUPP (page 832) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a bitmap callback.

DisposeCMConcatCallBackUPP (page 832) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a progress-monitoring callback.

DisposeCMFlattenUPP (page 833) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a data-flattening callback.

DisposeCMMIterateUPP (page 833) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a progress-monitoring callback for the
CMIterateCMMInfo function.

DisposeCMProfileAccessUPP (page 834) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a profile-access callback.

DisposeCMProfileFilterUPP (page 834) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a profile-filter callback.

Functions by Task 725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

DisposeCMProfileIterateUPP (page 834) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer (UPP) to a profile-iteration callback.

InvokeCMBitmapCallBackUPP (page 835) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a bitmap callback.

InvokeCMConcatCallBackUPP (page 835) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a progress-monitoring callback.

InvokeCMFlattenUPP (page 836) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a data-flattening callback.

InvokeCMMIterateUPP (page 836) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a a progress-monitoring callback for the
CMIterateCMMInfo function.

InvokeCMProfileAccessUPP (page 837) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a profile-access callback.

InvokeCMProfileFilterUPP (page 837) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a profile-filter callback.

InvokeCMProfileIterateUPP (page 837) Deprecated in Mac OS X v10.5
Invokes a universal procedure pointer (UPP) to a profile-iteration callback.

NewCMBitmapCallBackUPP (page 848) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a bitmap callback.

NewCMConcatCallBackUPP (page 849) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a progress-monitoring callback.

NewCMFlattenUPP (page 849) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a data-flattening callback.

NewCMMIterateUPP (page 850) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a progress-monitoring callback for the
CMIterateCMMInfo function.

NewCMProfileAccessUPP (page 850) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a profile-access callback.

NewCMProfileFilterUPP (page 851) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a profile-filter callback.

NewCMProfileIterateUPP (page 851) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a profile-iteration callback.

Not Recommended

CMCreateProfileIdentifier (page 745) Deprecated in Mac OS X v10.5
Creates a profile identifier for a specified profile.

CMDisposeProfileSearch (page 745) Deprecated in Mac OS X v10.5
Frees the private memory allocated for a profile search after your application has completed the
search.

CMNewProfileSearch (page 789) Deprecated in Mac OS X v10.5
Searches the ColorSync Profiles folder and returns a list of 2.x profiles that match the search
specification.

726 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProfileIdentifierFolderSearch (page 792) Deprecated in Mac OS X v10.5
Searches the ColorSync Profiles folder and returns a list of profile references, one for each profile that
matches the specified profile identifier.

CMProfileIdentifierListSearch (page 793) Deprecated in Mac OS X v10.5
Searches a list of profile references and returns a list of all references that match a specified profile
identifier.

CMSearchGetIndProfile (page 798) Deprecated in Mac OS X v10.5
Opens the profile corresponding to a specific index into a specific search result list and obtains a
reference to that profile.

CMSearchGetIndProfileFileSpec (page 799) Deprecated in Mac OS X v10.5
Obtains the file specification for the profile at a specific index into a search result.

CMUpdateProfileSearch (page 817) Deprecated in Mac OS X v10.5
Searches the ColorSync Profiles folder and updates an existing search result obtained originally from
the CMNewProfileSearch function.

Functions

CMCalibrateDisplay
Calibrates a display.

OSErr CMCalibrateDisplay (
 CalibratorInfo *theInfo
);

Parameters
theInfo

A pointer to a calibrator info data structure that contains the necessary data for calibrating a display.

Return Value
An OSErr value.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
CMCalibrator.h

CMCloneProfileRef
Increments the reference count for the specified profile reference.

Functions 727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMCloneProfileRef (
 CMProfileRef prof
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile whose reference count is
incremented.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The ColorSync Manager keeps an internal reference count for each profile reference returned from a call to
the CMOpenProfile, CMNewProfile, or CMCopyProfile functions. Calling the CMCloneProfileRef
function increments the count; calling the function CMCloseProfile (page 728) decrements it. The profile
remains open as long as the reference count is greater than 0, indicating that at least one routine retains a
reference to the profile. When the count reaches 0, the ColorSync Manager releases all private memory, files,
or resources allocated in association with that profile.

When your application creates a copy of an entire profile with CMCopyProfile, the copy has its own reference
count. The CMCloseProfile routine should be called for the copied profile, just as for the original. When
the reference count reaches 0, private resources associated with the copied profile are freed.

When your application merely duplicates a profile reference, as it may do to pass a profile reference to a
synchronous or an asynchronous task, it should call CMCloneProfileRef to increment the reference count.
Both the called task and the caller should call CMCloseProfile when finished with the profile reference.

In your application, you must make sure that CMCloseProfile is called once for each time a profile reference
is created or cloned. Otherwise, the memory and resources associated with the profile reference may not be
properly freed, or an application may attempt to use a profile reference that is no longer valid.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CMApplication.h

CMCloseProfile
Decrements the reference count for the specified profile reference and, if the reference count reaches 0, frees
all private memory and other resources associated with the profile.

728 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMCloseProfile (
 CMProfileRef prof
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) that identifies the profile that may need to be
closed.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The ColorSync Manager keeps an internal reference count for each profile reference returned from a call to
the CMOpenProfile (page 790), CMNewProfile (page 788), CMCopyProfile (page 740), or
CWNewLinkProfile (page 830) functions. Calling the function CMCloneProfileRef (page 727) increments
the count; calling the CMCloseProfile function decrements it. The profile remains open as long as the
reference count is greater than 0, indicating there is at least one remaining reference to the profile. When
the count reaches 0, the ColorSync Manager releases all private memory, files, or resources allocated in
association with that profile.

When the ColorSync Manager releases all private memory and resources associated with a profile, any
temporary changes your application made to the profile are not saved unless you first call the
CMUpdateProfile function to update the profile.

When your application passes a copy of a profile reference to an independent task, whether synchronous or
asynchronous, it should call the function CMCloneProfileRef (page 727) to increment the reference count.
Both the called task and the caller should call CMCloseProfile when finished with the profile reference.

You call CMCloneProfileRef after copying a profile reference, but not after duplicating an entire profile
(as with the CMCopyProfile function).

When your application passes a copy of a profile reference internally, it may not need to call
CMCloneProfileRef, as long as the application calls CMCloseProfile once for the profile.

In your application, make sure that CMCloseProfile is called once for each time a profile reference is created
or cloned. Otherwise, the private memory and resources associated with the profile reference may not be
properly freed, or an application may attempt to use a profile reference that is no longer valid.

If you create a new profile by calling the CMNewProfile function, the profile is saved to disk when you call
the CMCloseProfile function unless you specified NULL as the profile location when you created the profile.

To save changes to a profile before closing it, use the function CMUpdateProfile (page 816).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CMApplication.h

Functions 729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConvertFixedXYZToXYZ
Converts colors specified in XYZ color space whose components are expressed as Fixed XYZ 32-bit signed
values of type CMFixedXYZColor to equivalent colors expressed as XYZ 16-bit unsigned values of type
CMXYZColor. (Deprecated in Mac OS X v10.5.)

CMError CMConvertFixedXYZToXYZ (
 const CMFixedXYZColor *src,
 CMXYZColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of Fixed XYZ colors to convert to XYZ colors.

dst
A pointer to an array containing the list of colors resulting from the conversion specified as XYZ colors.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertFixedXYZToXYZ function converts one or more colors defined in the Fixed XYZ color space
to equivalent colors defined in the XYZ color space. The XYZ color space is device independent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertFixedXYZToXYZ function to
overwrite the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertHLSToRGB
Converts colors specified in the HLS color space to equivalent colors defined in the RGB color space.
(Deprecated in Mac OS X v10.5.)

CMError CMConvertHLSToRGB (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of HLS colors to convert to RGB colors.

730 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
RGB color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertHLSToRGB function converts one or more colors defined in the HLS color space to equivalent
colors defined in the RGB color space. Both color spaces are device dependent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertHLSToRGB function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertHSVToRGB
Converts colors specified in the HSV color space to equivalent colors defined in the RGB color space.
(Deprecated in Mac OS X v10.5.)

CMError CMConvertHSVToRGB (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of HSV colors to convert to RGB colors.

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
RGB color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertHSVToRGB function converts one or more colors defined in the HSV color space to equivalent
colors defined in the RGB color space. Both color spaces are device dependent.

Functions 731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertHSVToRGB function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertLabToXYZ
Converts colors specified in the L*a*b* color space to the XYZ color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertLabToXYZ (
 const CMColor *src,
 const CMXYZColor *white,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to a buffer containing the list of L*a*b* colors to convert to XYZ colors.

white
A pointer to a reference white point.

dst
A pointer to a buffer containing the list of colors as specified in the XYZ color space resulting from
the conversion.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertLabToXYZ function converts one or more colors defined in the L*a*b color space to equivalent
colors defined in the XYZ color space. Both color spaces are device independent.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConvertLuvToXYZ
Converts colors specified in the L*u*v* color space to the XYZ color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertLuvToXYZ (
 const CMColor *src,
 const CMXYZColor *white,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of L*u*v* colors to convert.

white
A pointer to a reference white point.

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
XYZ color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertLuvToXYZ function converts one or more colors defined in the L*u*v color space to equivalent
colors defined in the XYZ color space. Both color spaces are device independent.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertRGBToGray
Converts colors specified in the RGB color space to equivalent colors defined in the Gray color space.
(Deprecated in Mac OS X v10.5.)

CMError CMConvertRGBToGray (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of colors specified in RGB space to convert to colors specified
in Gray space.

Functions 733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
Gray color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertRGBToGray function converts one or more colors defined in the RGB color space to equivalent
colors defined in the Gray color space. Both color spaces are device dependent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertRGBToGray function to
overwrite the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertRGBToHLS
Converts colors specified in the RGB color space to equivalent colors defined in the HLS color space.
(Deprecated in Mac OS X v10.5.)

CMError CMConvertRGBToHLS (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of RGB colors to convert to HLS colors.

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
HLS color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertRGBToHLS function converts one or more colors defined in the RGB color space to equivalent
colors defined in the HLS color space. Both color spaces are device dependent.

734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertRGBToHLS function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertRGBToHSV
Converts colors specified in the RGB color space to equivalent colors defined in the HSV color space when
the device types are the same. (Deprecated in Mac OS X v10.5.)

CMError CMConvertRGBToHSV (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of RGB colors to convert to HSV colors.

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
HSV color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertRGBToHSV function converts one or more colors defined in the RGB color space to equivalent
colors defined in the HSV color space. Both color spaces are device dependent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertRGBToHSV function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

Functions 735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConvertXYZToFixedXYZ
Converts colors specified in the XYZ color space whose components are expressed as XYZ 16-bit unsigned
values of type CMXYZColor to equivalent colors expressed as 32-bit signed values of type CMFixedXYZColor.
(Deprecated in Mac OS X v10.5.)

CMError CMConvertXYZToFixedXYZ (
 const CMXYZColor *src,
 CMFixedXYZColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of XYZ colors to convert to Fixed XYZ colors.

dst
A pointer to an array containing the list of colors resulting from the conversion in which the colors
are specified as Fixed XYZ colors.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertXYZToFixedXYZ function converts one or more colors whose components are defined as
XYZ colors to equivalent colors whose components are defined as Fixed XYZ colors. Fixed XYZ colors allow
for 32-bit precision. The XYZ color space is device independent.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertXYZToLab
Converts colors specified in the XYZ color space to the L*a*b* color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertXYZToLab (
 const CMColor *src,
 const CMXYZColor *white,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of XYZ colors to convert to L*a*b* colors.

736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

white
A pointer to a reference white point.

dst
A pointer to an array containing the list of L*a*b* colors resulting from the conversion.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertXYZToLab function converts one or more colors defined in the XYZ color space to equivalent
colors defined in the L*a*b* color space. Both color spaces are device independent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertXYZToLab function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertXYZToLuv
Converts colors specified in the XYZ color space to the L*u*v* color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertXYZToLuv (
 const CMColor *src,
 const CMXYZColor *white,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of XYZ colors to convert to L*u*v* colors.

white
A pointer to a reference white point.

dst
A pointer to an array containing the list of colors represented in L*u*v* color space resulting from
the conversion.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
The CMConvertXYZToLuv function converts one or more colors defined in the XYZ color space to equivalent
colors defined in the L*u*v* color space. Both color spaces are device independent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertXYZToLuv function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertXYZToXYZ
Converts a source color to a destination color using the specified chromatic adaptation method. (Deprecated
in Mac OS X v10.5.)

CMError CMConvertXYZToXYZ (
 const CMColor *src,
 const CMXYZColor *srcIlluminant,
 CMColor *dst,
 const CMXYZColor *dstIlluminant,
 CMChromaticAdaptation method,
 size_t count
);

Parameters
src
srcIlluminant
dst
dstIlluminant
method
count

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConvertXYZToYxy
Converts colors specified in the XYZ color space to the Yxy color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertXYZToYxy (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of XYZ colors to convert to Yxy colors.

dst
A pointer to an array containing the list of colors resulting from the conversion represented in the
Yxy color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertXYZToYxy function converts one or more colors defined in the XYZ color space to equivalent
colors defined in the Yxy color space. Both color spaces are device independent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertXYZToYxy function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMConvertYxyToXYZ
Converts colors specified in the Yxy color space to the XYZ color space. (Deprecated in Mac OS X v10.5.)

CMError CMConvertYxyToXYZ (
 const CMColor *src,
 CMColor *dst,
 size_t count
);

Parameters
src

A pointer to an array containing the list of Yxy colors to convert.

Functions 739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

dst
A pointer to an array containing the list of colors, resulting from the conversion, as specified in the
XYZ color space.

count
The number of colors to convert.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMConvertYxyToXYZ function converts one or more colors defined in the Yxy color space to equivalent
colors defined in the XYZ color space. Both color spaces are device independent.

If your application does not require that you preserve the source color list, you can pass the pointer to the
same color list array as the src and dst parameters and allow the CMConvertYxyToXYZ function to overwrite
the source colors with the resulting converted color specifications.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMCopyProfile
Duplicates the specified existing profile.

CMError CMCopyProfile (
 CMProfileRef *targetProf,
 const CMProfileLocation *targetLocation,
 CMProfileRef srcProf
);

Parameters
targetProf

A pointer to a profile reference of type CMProfileRef (page 925). On return, points to the profile
copy that was created.

targetLocation
A pointer to a location specification that indicates the location, such as in memory or on disk, where
the ColorSync Manager is to create the copy of the profile. A profile is commonly disk-file based.
However, to accommodate special requirements, you can create a handle- or pointer-based profile,
you can create a profile that is accessed through a procedure provided by your application, or you
can create a temporary profile that is not saved after you call the CMCloseProfile function. To
create a temporary profile, you either specify cmNoProfileBase as the kind of profile in the profile
location structure or specify NULL for this parameter. To specify the location, you use the data type
CMProfileLocation (page 924).

srcProf
A profile reference to the profile to duplicate.

740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMCopyProfile function duplicates an entire open profile whose reference you specify. If you have
made temporary changes to the profile, which you have not saved by calling CMUpdateProfile, those
changes are included in the duplicated profile. They are not saved to the original profile unless you call
CMUpdateProfile for that profile.

The ColorSync Manager maintains a modified flag to track whether a profile has been modified. After copying
a profile, the CMCopyProfile function sets the value of the modified flag for that profile to false.

Unless you are copying a profile that you created, you should not infringe on copyright protection specified
by the profile creator. To obtain the copyright information, you call the function CMGetProfileElement (page
768), specifying thecmCopyrightTag tag signature for the copyright element (defined in theCMICCProfile.h
header file).

You should also check the flags field of the profile header structure CM2Header (page 875) for copyright
information. You can test the cmEmbeddedUseMask bit of the flags field to determine whether the profile
can be used independently. If the bit is set, you should use this profile as an embedded profile only and not
copy the profile for your own purposes. The cmEmbeddedUseMaskmask is described in “Flag Mask Definitions
for Version 2.x Profiles” (page 983). The following code snippet shows how you might perform a test using
the cmEmbeddedUseMask mask:

if (myCM2Header.flags & cmEmbeddedUseMask)
{
// profile should only be used as an embedded profile
}
else
{
// profile can be used independently
}

A calibration program, for example, might use the CMCopyProfile function to copy a device’s original
profile, then modify the copy to reflect the current state of the device. Or an application might want to copy
a profile after unflattening it.

To copy a profile, you must obtain a reference to that profile by either opening the profile or creating it. To
open a profile, use the function CMOpenProfile (page 790). To create a new profile, use the function
CMNewProfile (page 788). As an alternative to using the CMCopyProfile function to duplicate an entire
profile, you can use the same profile reference more than once. To do so, you call the function
CMCloneProfileRef (page 727) to increment the reference count for the reference each time you reuse it.
Calling the CMCloneProfileRef function increments the count; calling the function CMCloseProfile (page
728) decrements it. The profile remains open as long as the reference count is greater than 0, indicating at
least one routine retains a reference to the profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

Functions 741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMCopyProfileDescriptionString
Returns the name of a profile as a CFString.

CMError CMCopyProfileDescriptionString (
 CMProfileRef prof,
 CFStringRef *str
);

Parameters
prof

The profile to query.

str
On ouput, the name of the profile as a CFString.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
If the profile is localized, ColorSync obtains the best localized name for the current process.

Availability
Available in Mac OS X v. 10.3 and later.

Declared In
CMApplication.h

CMCopyProfileLocalizedString
Gets one specific string out of a profile

CMError CMCopyProfileLocalizedString (
 CMProfileRef prof,
 OSType tag,
 CFStringRef reqLocale,
 CFStringRef *locale,
 CFStringRef *str
);

Parameters
prof

The profile to query.

tag
The tag type of profile to query.

reqLocale
The requested locale (optional).

locale
On ouput, points to the locale (optional).

str
On output, points to the dictionary string (optional).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
For example, you pass in the optional tag 'dscm' plus "enUS" for the reqLocale parameter, to for a U.S.
Enlish string. If a U.S. English string is not found, ColorSync falls back to a reasonable default:

err = CMCopyProfileLocalizedString (prof, 'dscm',
 CFSTR("enUS"), nil, &theStr);

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMApplication.h

CMCopyProfileLocalizedStringDictionary
Obtains a CFDictionary which contains the language locale and string for multiple localizations from a given
tag.

CMError CMCopyProfileLocalizedStringDictionary (
 CMProfileRef prof,
 OSType tag,
 CFDictionaryRef *theDict
);

Parameters
prof

The profile to query

tag
The tag type of profile to query

theDict
On output, points to the dictionary .See the CFDictionary documentation for a description of the
CFDictionaryRef data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function allows you to get a CFDictionary which contains the language locale and string for multiple
localizations from a given tag.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMApplication.h

CMCountImageProfiles
Obtains a count of the number of embeded profiles for a given image. (Deprecated in Mac OS X v10.5.)

Functions 743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMCountImageProfiles (
 const FSSpec *spec,
 UInt32 *count
);

Parameters
spec

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

count
On output, a count of the embeded profiles for the image

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMCountProfileElements
Counts the number of elements in the specified profile.

CMError CMCountProfileElements (
 CMProfileRef prof,
 UInt32 *elementCount
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to examine.

elementCount
A pointer to an element count. On return, a one-based count of the number of elements.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Every element in the profile outside the header is counted. A profile may contain tags that are references to
other elements. These tags are included in the count.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMCreateProfileIdentifier
Creates a profile identifier for a specified profile. (Deprecated in Mac OS X v10.5.)

CMError CMCreateProfileIdentifier (
 CMProfileRef prof,
 CMProfileIdentifierPtr ident,
 UInt32 *size
);

Parameters
prof
ident
size

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMDisposeProfileSearch
Frees the private memory allocated for a profile search after your application has completed the search.
(Deprecated in Mac OS X v10.5.)

void CMDisposeProfileSearch (
 CMProfileSearchRef search
);

Parameters
search

A reference to the profile search result list whose private memory is to be released. For a description
of the CMProfileSearchRef private data type, see CMProfileSearchRef (page 927). See the
QuickDraw Reference for a description of the PixMap data type.

Discussion
To set up a search, use the function CMNewProfileSearch (page 789). To obtain a reference to a profile
corresponding to a specific index in the list, use the function CMSearchGetIndProfile (page 798). To obtain
the file specification for a profile corresponding to a specific index in the list, use the function
CMSearchGetIndProfileFileSpec (page 799). To update the search result list, use the function
CMUpdateProfileSearch (page 817).

Version Notes
This function is not recommended for use in ColorSync 2.5.

Starting with version 2.5, you should use the function CMIterateColorSyncFolder (page 780) for profile
searching.

Functions 745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMEmbedImage
Embeds an image with an ICC profile. (Deprecated in Mac OS X v10.5.)

CMError CMEmbedImage (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl,
 CMProfileRef embProf
);

Parameters
specFrom

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If this parameter
is not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
A Boolean value. If a file with the same name already exists, it will be replaced if this parameter is set
to true.

embProf
The profile to embed in the image.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMEnableMatchingComment
Inserts a comment into the currently open picture to turn matching on or off. (Deprecated in Mac OS X v10.4.)

746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

void CMEnableMatchingComment (
 Boolean enableIt
);

Parameters
enableIt

A flag that directs the ColorSync Manager to generate a cmEnableMatchingPicComment comment
if true, or a cmDisbleMatchingPicComment comment if false.

Discussion
If you call this function when no picture is open, it will have no effect.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CMEndMatching
Concludes a QuickDraw-specific ColorSync matching session initiated by a previous call to the
NCMBeginMatching function. (Deprecated in Mac OS X v10.4.)

void CMEndMatching (
 CMMatchRef myRef
);

Parameters
myRef

A reference to the matching session to end. This reference was previously created and returned by a
call to NCMBeginMatching function. See the QuickDraw Reference for a description of the PixMap
data type.

Discussion
The CMEndMatching function releases private memory allocated for the QuickDraw-specific matching session.

After you call the NCMBeginMatching function and before you call CMEndMatching to end the matching
session, embedded color-matching picture comments, such ascmEnableMatching andcmDisableMatching,
are not acknowledged.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMFlattenProfile
Transfers a profile stored in an independent disk file to an external profile format that can be embedded in
a graphics document. (Deprecated in Mac OS X v10.5.)

CMError CMFlattenProfile (
 CMProfileRef prof,
 UInt32 flags,
 CMFlattenUPP proc,
 void *refCon,
 Boolean *preferredCMMnotfound
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to flatten.

flags
Reserved for future use.

proc
A pointer to a function that you provide to perform the low-level data transfer. For more information,
see the function CMFlattenProcPtr (page 855).

refCon
A pointer to a reference constant for application data which the color management module (CMM)
passes to the CMFlattenProcPtr function each time it calls the function. For example, the reference
constant may point to a data structure that holds information required by the CMFlattenProcPtr
function to perform the data transfer, such as the reference number to a disk file in which the flattened
profile is to be stored.

Starting with ColorSync version 2.5, the ColorSync Manager calls your transfer function directly, without
going through the preferred, or any, CMM.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM specified by the profile was not available to perform flattening or does not support this function
and the default CMM was used. Has the value false if the profile’s preferred CMM is able to perform
flattening.

Starting with ColorSync 2.5, the ColorSync Manager calls your transfer function directly, without going
through the preferred, or any, CMM. On return, the value of preferredCMMnotfound is guaranteed
to be false.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The ColorSync Manager passes to the CMM the pointer to your profile-flattening function. The CMM calls
your function CMFlattenProcPtr (page 855) to perform the actual data transfer.

To unflatten a profile embedded in a graphics document to an independent disk file, use the function
“Accessing Profile Elements”.

Version Notes
Prior to version 2.5, the ColorSync Manager dispatches the CMFlattenProfile function to the CMM specified
by the profile whose reference you provide. If the preferred CMM is unavailable or it does not support this
function, then the default CMM is used.

748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Starting with ColorSync version 2.5, the ColorSync Manager calls your transfer function directly, without
going through the preferred, or any, CMM. As a result, the value returned in the preferredCMMnotfound
parameter is guaranteed to be false.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMGetColorSyncFolderSpec
Obtains the volume reference number and the directory ID for a ColorSync Profiles folder. (Deprecated in
Mac OS X v10.5.)

CMError CMGetColorSyncFolderSpec (
 short vRefNum,
 Boolean createFolder,
 short *foundVRefNum,
 long *foundDirID
);

Parameters
vRefNum

The location of the ColorSync profiles folder. In Mac OS X, pass a constant that specifies one of the
four possible locations for ColorSync profiles. Pass kSystemDomain for profiles located in:

/System/Library/ColorSync/Profiles

Pass kLocalDomain for profiles located in:

/Library/ColorSync/Profiles

Pass kNetworkDomain for profiles located in:

/Network/Library/ColorSync/Profiles

Pass kUserDomain for profiles located in:

~/Library/ColorSync/Profiles

In Mac OS 9, pass the reference number of the volume to examine. The volume must be mounted.
The constant kOnSystemDisk defined in the Folders header file (Folders.h) specifies the active
system volume.

createFolder
A flag you set to true to direct the ColorSync Manager to create the ColorSync Profiles folder, if it
does not exist. You can use the constants kCreateFolder and kDontCreateFolder, defined in the
Folders.h header file, to assign a value to the flag.

foundVRefNum
A pointer to a volume reference number. On return, the volume reference number for the volume on
which the ColorSync Profiles folder resides.

Functions 749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

foundDirID
A pointer to a directory ID. On return, the directory ID for the volume on which the ColorSync Profiles
folder resides.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
If the ColorSync Profiles folder does not already exist, you can use this function to create it.

Version Notes
Starting with version 2.5, the name and location of the profile folder changed.

Your application should use the function CMIterateColorSyncFolder (page 780), available starting in
ColorSync version 2.5, or one of the search functions described in “Searching for Profiles Prior to ColorSync
2.5”, to search for a profile file, even if it is only looking for one file. Do not search for a profile file by obtaining
the location of the profiles folder and searching for the file directly.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMGetColorSyncVersion
Gets ColorSync version information.

CMError CMGetColorSyncVersion (
 UInt32 *version
);

Parameters
version

On output, points to the version of ColorSync installed on the system.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
CMGetColorSyncVersion relieves you from having to call Gestalt to find out the version of ColorSync
installed on the system.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMGetCWInfo
Obtains information about the color management modules (CMMs) used for a specific color world. (Deprecated
in Mac OS X v10.5.)

CMError CMGetCWInfo (
 CMWorldRef cw,
 CMCWInfoRecord *info
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) about which you want information.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

info
A pointer to a color world information record of type CMCWInfoRecord (page 888) that your application
supplies. On return, the ColorSync Manager returns information in this structure describing the number
of CMMs involved in the matching session and the CMM type and version of each CMM used.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This discussion is accurate for versions of ColorSync prior to 2.5. See the version notes below for changes
starting with version 2.5.

To learn whether one or two CMMs are used for color matching and color checking in a given color world
and to obtain the CMM type and version number of each CMM used, your application must first obtain a
reference to the color world. To obtain a reference to a ColorSync color world, you (or some other process)
must have created the color world using the function NCWNewColorWorld (page 846) or the function
CWConcatColorWorld (page 823).

The source and destination profiles you specify when you create a color world identify their preferred CMMs,
and you explicitly identify the profile whose CMM is used for a device link profile or a concatenated color
world. However, you cannot be certain if the specified CMM will actually be used until the ColorSync Manager
determines internally if the CMM is available and able to perform the requested function. For example, when
the specified CMM is not available, the default CMM is used.

The CMGetCWInfo function identifies the CMM or CMMs to use. Your application must allocate a data structure
of type CMCWInfoRecord and pass a pointer to it in the info parameter. The CMGetCWInfo function returns
the color world information in this structure. The structure includes a cmmCount field identifying the number
of CMMs that will be used and an array of two members containing structures of type CMMInfoRecord (page
909). TheCMGetCWInfo function returns information in one or both of the CMM information records depending
on whether one or two CMMs are used.

Version Notes
Starting with ColorSync 2.5, a user can select a preferred CMM with the ColorSync control panel. If the user
has selected a preferred CMM, and if it is available, then it will be used for all color conversion and matching
operations.

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Not available to 64-bit applications.

Declared In
CMApplication.h

CMGetDefaultDevice
Gets the default device.

CMError CMGetDefaultDevice (
 CMDeviceClass deviceClass,
 CMDeviceID *deviceID
);

Parameters
deviceClass

The device class whose default device you want to get. See “Device Classes” (page 979) for a list of
the constants you can supply.

deviceID
On return, points to the device ID for the default device.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
For each class of device, a device management layer may establish which of the registered devices is the
default. This helps keep color management choices to a minimum and allows for some automatic features
to be enabled, such as the "Default printer" as an output profile selection.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMGetDefaultProfileBySpace
Gets the default profile for the specified color space.

CMError CMGetDefaultProfileBySpace (
 OSType dataColorSpace,
 CMProfileRef *prof
);

Parameters
dataColorSpace

A four-character identifier of type OSType. You pass a color space signature that identifies the color
space you wish to get the default profile for. The currently-supported values are cmRGBData,
cmCMYKData, cmLabData, and cmXYZData. These constants are a subset of the constants described
in “Color Space Signatures” (page 969). If you supply a value that is not supported, the
CMGetDefaultProfileBySpace function returns an error value of paramErr.

752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

prof
A pointer to a profile reference. On return, the reference specifies the current profile for the color
space specified by dataColorSpace. CMGetDefaultProfileBySpace currently supports only
file-based profiles.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetDefaultProfileBySpace function currently supports the RGB, CMYK, Lab, and XYZ color spaces.
The signature constants for these color spaces (shown above with thedataColorSpaceparameter description)
are described in “Color Space Signatures” (page 969). Support for additional color spaces may be provided
in the future. CMGetDefaultProfileBySpace returns an error value of paramErr if you pass a color space
constant it does not currently support.

The CMGetDefaultProfileBySpace function always attempts to return a file-based profile for a supported
color space. For example, if the user has not specified a default profile in the ColorSync control panel for the
specified color space, or if the profile is not found (the user may have deleted the profiles in the ColorSync
Profiles folder or even the folder itself), CMGetDefaultProfileBySpace creates a profile, stores it on disk,
and returns a reference to that profile. However, you should always check for an error return—for example,
a user may have booted from a CD, so that CMGetDefaultProfileBySpace cannot save a profile file to
disk.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetDefaultProfileByUse
Obtains the users’ preferred device profile setting.

CMError CMGetDefaultProfileByUse (
 OSType use,
 CMProfileRef *prof
);

Parameters
use

A value that specifies the device type for which to obtain the profile.

prof

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 3.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

Functions 753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMGetDeviceDefaultProfileID
Gets the default profile ID for a given device.

CMError CMGetDeviceDefaultProfileID (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceProfileID *defaultProfID
);

Parameters
deviceClass

The device class to query. See “Device Classes” (page 979) for a list of the constants you can supply.

deviceID
The device ID to query.

defaultID
On output, points to the id of the default profile for this device.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Device drivers and host software can set the default profile for a given device using the function
CMSetDeviceDefaultProfileID.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMGetDeviceFactoryProfiles
Retrieves the original profiles for a given device.

CMError CMGetDeviceFactoryProfiles (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceProfileID *defaultProfID,
 UInt32 *arraySize,
 CMDeviceProfileArray *deviceProfiles
);

Parameters
deviceClass

The device class to query. See “Device Classes” (page 979) for a list of the constants you can supply.

deviceID
The device ID to query.

defaultProfID
A pointer to the default profile for this device.

754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

arraySize
A pointer to the size of the array to be returned. You can first call this routine to get the size returned,
then call it again with the size of the buffer to receive the array.

deviceProfiles
On output, points to the profile array. You can first pass NULL in this parameter to receive the size of
the array in the arraySize parameter. Then, once the appropriate amount of storage has been
allocated, a pointer to it can be passed in this parameter to have the array copied to that storage.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function allows you to retrieve the original profiles for a given device. These may differ from the actual
profiles in use for that device, in the case where any factory profiles have been replaced (updated). To get
the actual profiles in use, call CMGetDeviceProfiles.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMGetDeviceInfo
Gets information about a specified device.

CMError CMGetDeviceInfo (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceInfo *deviceInfo
);

Parameters
deviceClass

A device class to query. See “Device Classes” (page 979) for a list of the constants you can supply.

deviceID
A device ID to query. You can pass cmDefaultDeviceID.

deviceInfo
On input, points to a device information dictionary On output, the dictionary is filled with device
information. If, on input, deviceInfo->deviceName is nil then the name is not returned. If you
wants the device name dictionary returned, you should provide in deviceInfo->deviceName the
address where this routine should store the CFDictionaryRef. The caller is responsible for disposing
of the name dictionary.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Functions 755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMDeviceIntegration.h

CMGetDeviceProfile
Gets a profile used by a given device.

CMError CMGetDeviceProfile (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceProfileID profileID,
 CMProfileLocation *profileLoc
);

Parameters
deviceClass

The device class for the device whose profile you want to get. See “Device Classes” (page 979) for a
list of the constants you can supply.

deviceID
The device ID for the device whose profile you want to get.

defaultID
The ID of the default profile for this device.

deviceProfLoc
On return, the location of the profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMGetDeviceProfiles
Gets the profiles used by a given device. (Deprecated in Mac OS X v10.5.)

CMError CMGetDeviceProfiles (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 UInt32 *arraySize,
 CMDeviceProfileArray *deviceProfiles
);

Parameters
deviceClass

The device class for the device whose profiles you want to get. See “Device Classes” (page 979) for a
list of the constants you can supply.

deviceID
The device ID for the device whose profiles you want to get.

756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

arraySize
A pointer to the size of the array to be returned. You can first call this routine to get the size returned,
then call it again with the size of the buffer to receive the array.

deviceProfiles
On output, an array of profiles used by the device. You can first pass NULL in this parameter to receive
the size of the array in the arraySize parameter. Then, once the appropriate amount of storage has
been allocated, a pointer to it can be passed in this parameter to have the array copied to that storage.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMDeviceIntegration.h

CMGetDeviceState
Gets the state of a device.

CMError CMGetDeviceState (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceState *deviceState
);

Parameters
deviceClass

A device class to query. See “Device Classes” (page 979) for a list of the constants you can supply.

deviceID
A device ID to query. You can pass cmDefaultDeviceID.

deviceState
On output, points to the device state. See “Device States” (page 980) for the values that can be returned.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMGetGammaByAVID
Obtains the gamma value for the specified display device.

Functions 757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMGetGammaByAVID (
 CMDisplayIDType theID,
 CMVideoCardGamma *gamma,
 UInt32 *size
);

Parameters
theID

A Display Manager ID value. You pass the ID value for the display device for which to set the gamma.

gamma
size

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 3.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetImageSpace
Returns the signature of the data color space in which the color values of colors in an image are expressed.
(Deprecated in Mac OS X v10.5.)

CMError CMGetImageSpace (
 const FSSpec *spec,
 OSType *space
);

Parameters
spec

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

space
The signature of the data color space of the color values of colors for the image file is returned here.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMGetIndImageProfile
Obtains a specific embeded profile for a given image. (Deprecated in Mac OS X v10.5.)

758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMGetIndImageProfile (
 const FSSpec *spec,
 UInt32 index,
 CMProfileRef *prof
);

Parameters
spec

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

index
The numeric index of the profile to return.

prof
On output, points to the profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMGetIndNamedColorValue
Obtains device and PCS color values for a specific named color index from a named color space profile.

CMError CMGetIndNamedColorValue (
 CMProfileRef prof,
 UInt32 index,
 CMColor *deviceColor,
 CMColor *PCSColor
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to a named color space profile to obtain color
values from.

index
A one-based index value for a named color.

deviceColor
A pointer to a device color. On return, a device color value in CMColor union format. If the profile
does not contain device values, deviceColor is undefined.

PCSColor
A pointer to a profile connection space color. On return, an interchange color value in CMColor union
format.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
Based on the passed named color index, the CMGetIndNamedColorValue function does a lookup into the
named color tag and returns device and PCS values. If the index is greater than the number of named colors,
CMGetIndNamedColorValue returns an error code.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetIndProfileElement
Obtains the element data corresponding to a particular index from the specified profile.

CMError CMGetIndProfileElement (
 CMProfileRef prof,
 UInt32 index,
 UInt32 *elementSize,
 void *elementData
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the element.

index
The index of the element whose data you want to obtain. This is a one-based element index within
the range returned as the elementCount parameter of the CMCountProfileElements function.

elementSize
A pointer to an element data size. On input, specify the size of the element data to copy (except when
elementData is set to NULL). Specify NULL to copy the entire element data. To obtain a portion of
the element data, specify the number of bytes to be copy.

On return, the size of the element data actually copied.

elementData
A pointer to memory for element data. On input, you allocate memory. On return, this buffer holds
the element data.

To obtain the element size in the elementSize parameter without copying the element data to this
buffer, specify NULL for this parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Before you call the CMGetIndProfileElement function to obtain the element data for an element at a
specific index, you first determine the size in bytes of the element data. To determine the data size, you can

 ■ call the function CMGetIndProfileElementInfo (page 761), passing the element’s index

 ■ call the CMGetIndProfileElement function itself, specifying a pointer to an unsigned long data type
in the elementSize field and a NULL value in the elementData field

760 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Once you have determined the size of the element data, you allocate a buffer to hold as much of the data
as you need. If you want all of the element data, you specify NULL in the elementSize parameter. If you
want only a portion of the element data, you specify the number of bytes you want in the elementSize
parameter. You supply a pointer to the data buffer in the elementData parameter. After calling
CMGetIndProfileElement, the elementSize parameter contains the size in bytes of the element data
actually copied.

Before calling this function, you should call the function CMCountProfileElements (page 744). It returns
the profile’s total element count in the elementCount parameter.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetIndProfileElementInfo
Obtains the element tag and data size of an element by index from the specified profile.

CMError CMGetIndProfileElementInfo (
 CMProfileRef prof,
 UInt32 index,
 OSType *tag,
 UInt32 *elementSize,
 Boolean *refs
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the element.

index
A one-based element index within the range returned by the elementCount parameter of the
CMCountProfileElements function.

tag
A pointer to an element signature. On return, the tag signature of the element corresponding to the
index.

elementSize
A pointer to an element size. On return, the size in bytes of the element data corresponding to the
tag.

refs
A pointer to a reference count flag. On return, set to true if more than one tag in the profile refers
to element data associated with the tag corresponding to the index.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The index order of elements is determined internally by the ColorSync Manager and is not publicly defined.

Functions 761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Before calling the CMGetIndProfileElementInfo function, you should call the function
CMCountProfileElements (page 744), which returns the total number of elements in the profile in the
elementCount parameter. The number you specify for the index parameter when calling
CMGetIndProfileElementInfo should be in the range of 1 to elementCount; otherwise the function will
return a result code of cmIndexRangeErr.

You might want to call this function, for example, to print out the contents of a profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetNamedColorIndex
Obtains a named color index for a specific color name from a named color space profile.

CMError CMGetNamedColorIndex (
 CMProfileRef prof,
 StringPtr name,
 UInt32 *index
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to a named color space profile to obtain a named
color index from.

name
A pointer to a Pascal string. You supply a color name string value for the color to obtain the color
index for.

index
A pointer to an index value. On return, an index value for a named color.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Based on the passed color name, the CMGetNamedColorIndex function does a lookup into the named color
tag and, if the name is found in the tag, returns the index. Otherwise, CMGetNamedColorIndex returns an
error code.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

762 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMGetNamedColorInfo
Obtains information about a named color space from its profile reference.

CMError CMGetNamedColorInfo (
 CMProfileRef prof,
 UInt32 *deviceChannels,
 OSType *deviceColorSpace,
 OSType *PCSColorSpace,
 UInt32 *count,
 StringPtr prefix,
 StringPtr suffix
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to a named color space profile to obtain named
color information from.

deviceChannels
A pointer to a count value. On return, the number of device channels in the color space for the profile.
It should agree with the “data color space” field in the profile header. For example, Pantone maps to
CMYK, a four-channel color space. A value of 0 indicates no device channels were available.

deviceColorSpace
A pointer to a device color space. On return, a device color space, such as CMYK.

PCSColorSpace
A pointer to a profile connection space color space. On return, an interchange color space, such as
Lab.

count
A pointer to a count value. On return, the number of named colors in the profile.

prefix
A pointer to a Pascal string. On return, the string contains a prefix, such as “Pantone”, for each color
name. The prefix identifies the named color system described by the profile.

suffix
A pointer to a Pascal string. On return, the string contains a suffix for each color name, such as “CVC”.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetNamedColorInfo function returns information about the named color space referred to by the
passed profile reference.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetNamedColorName
Obtains a named color name for a specific named color index from a named color space profile.

Functions 763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMGetNamedColorName (
 CMProfileRef prof,
 UInt32 index,
 StringPtr name
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to a named color space profile to obtain a named
color name from.

index
An index value for a named color to obtain the color name for.

name
A pointer to a Pascal string. On return, a color name string.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Based on the passed color name index, the CMGetNamedColorName function does a lookup into the named
color tag and returns the name. If the index is greater than the number of named colors,
CMGetNamedColorName returns an error code.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetNamedColorValue
Obtains device and PCS color values for a specific color name from a named color space profile.

CMError CMGetNamedColorValue (
 CMProfileRef prof,
 StringPtr name,
 CMColor *deviceColor,
 CMColor *PCSColor
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to a named color space profile to obtain color
values from.

name
A pointer to a Pascal string. You supply a color name string for the color to get information for.

deviceColor
A pointer to a device color. On return, a device color value in CMColor union format. If the profile
does not contain device values, deviceColor is undefined.

764 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

PCSColor
A pointer to a profile connection space color. On return, an interchange color value in CMColor union
format.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Based on the passed color name, the CMGetNamedColorValue function does a lookup into the named color
tag and, if the name is found in the tag, returns device and color PCS values. Otherwise,
CMGetNamedColorValue returns an error code.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetPartialProfileElement
Obtains a portion of the element data from the specified profile based on the specified element tag signature.

CMError CMGetPartialProfileElement (
 CMProfileRef prof,
 OSType tag,
 UInt32 offset,
 UInt32 *byteCount,
 void *elementData
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the target element.

tag
The tag signature for the element in question. For a complete list of the tag signatures a profile may
contain, including a description of each tag, refer to the International Color Consortium Profile Format
Specification. The signatures for profile tags are defined in the CMICCProfile.h header file.

offset
Beginning from the first byte of the element data, the offset from which to begin copying the element
data.

byteCount
A pointer to a data byte count. On input, the number of bytes of element data to copy, beginning
from the offset specified by the offset parameter. On return, the number of bytes actually copied.

elementData
A pointer to memory for element data. On input, you pass a pointer to allocated memory. On return,
this buffer holds the element data.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
The CMGetPartialProfileElement function allows you to copy any portion of the element data beginning
from any offset into the data. For the CMGetPartialProfileElement function to copy the element data
and return it to you, your application must allocate a buffer in memory to hold the data.

You cannot use this function to obtain a portion of the CM2Header profile header. Instead, you must call the
function CMGetProfileHeader (page 769) to get the entire profile header and read its contents.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetPreferredCMM
Identifies the preferred CMM specified by the ColorSync control panel. (Deprecated in Mac OS X v10.5.)

CMError CMGetPreferredCMM (
 OSType *cmmType,
 Boolean *prefCMMnotfound
);

Parameters
cmmType

A pointer to an OSType. On return, the component subtype for the preferred CMM. For example, the
subtype for ColorSync’s default CMM is 'appl' and the subtype for the Kodak CMM is 'KCMS'. A
return value of NULL indicates the preferred CMM in the ColorSync control panel is set to Automatic.

preferredCMMnotfound
A pointer to a Boolean flag for whether the preferred CMM was not found. On return, has the value
true if the CMM was not found, false if it was found.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetPreferredCMM function returns in the cmmType parameter a value that identifies the preferred
CMM the user last specified in the ColorSync control panel. CMGetPreferredCMM returns false in the
preferredCMMnotfound parameter if the preferred CMM is currently available and true if it is not. The
preferred CMM may not be available, for example, because a user specifies a preferred CMM in the ColorSync
control panel, then reboots with extensions off. ColorSync does not change the preferred CMM setting when
the preferred CMM is not available.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

766 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMGetProfileByAVID
Gets the current profile for a monitor.

CMError CMGetProfileByAVID (
 CMDisplayIDType theID,
 CMProfileRef *prof
);

Parameters
theAVID

A Display Manager ID value. You pass the ID value for the monitor for which to get the profile.

prof
A pointer to a profile reference. On return, a reference to the current profile for the monitor specified
by theAVID.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
If the Display Manager supports ColorSync, the CMGetProfileByAVID function calls on the Display Manager
to get the profile for the specified display. This is the case if the version of the Display Manager is 2.2.5 or
higher (if gestaltDisplayMgrAttr has the gestaltDisplayMgrColorSyncAware bit set).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetProfileDescriptions
Obtains the description tag data for a specified profile.

CMError CMGetProfileDescriptions (
 CMProfileRef prof,
 char *aName,
 UInt32 *aCount,
 Str255 mName,
 ScriptCode *mCode,
 UniChar *uName,
 UniCharCount *uCount
);

Parameters
prof

A reference to the profile from which to obtain the description info.

aName
On output, a pointer to the profile name as a 7-bit Roman ASCII string.

aCount
On output, a pointer to a count of the number of characters returned in the aName field.

Functions 767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

mName
On output, a pointer to the localized profile name string in Mac script-code format.

mCode
On output, a pointer the script code corresponding to the name string returned in the mName
parameter.

uName
On output, a pointer to localizedUnicode profile name string.

uCount
On output, a pointer to a count of the number of Unicode (2-byte) characters returned in the uName
parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Use this function to get the description tag data for a given profile. The ICC Profile Format Specification
(available at http://www.color.org) includes a description tag ('desc'), designed to provide more information
about a profile than can be contained in a file name. This is especially critical on file systems with 8.3 names.
The tag data can consist of up to three separate pieces (strings) of information for a profile. These different
strings are designed to allow for display in different languages or on different computer systems. Applications
typically use one of the strings to show profiles in a list or a pop-up menu.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetProfileElement
Obtains element data from the specified profile based on the specified element tag signature.

CMError CMGetProfileElement (
 CMProfileRef prof,
 OSType tag,
 UInt32 *elementSize,
 void *elementData
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the target element.

tag
The tag signature (for example, ‘A2B0’, or constant cmAToB0Tag) for the element in question. The
tag identifies the element. For a complete list of the public tag signatures a profile may contain,
including a description of each tag, refer to the International Color Consortium Profile Format
Specification. The signatures for profile tags are defined in the CMICCProfile.h header file.

768 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org

elementSize
A pointer to a size value. On input, you specify the size of the element data to copy. Specify NULL to
copy the entire element data. To obtain a portion of the element data, specify the number of bytes
to copy.

On return, the size of the data returned.

elementData
A pointer to memory for element data. On input, you allocate memory. On return, this buffer holds
the element data.

To obtain the element size in the elementSize parameter without copying the element data to this
buffer, specify NULL for this parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Before you call the CMGetProfileElement function to obtain the element data for a specific element, you
must know the size in bytes of the element data so you can allocate a buffer to hold the returned data.

The CMGetProfileElement function serves two purposes: to get an element’s size and to obtain an element’s
data. In both instances, you provide a reference to the profile containing the element in the prof parameter
and the tag signature of the element in the tag parameter.

To obtain the element data size, call the CMGetProfileElement function specifying a pointer to an unsigned
long data type in the elementSize field and a NULL value in the elementData field.

After you obtain the element size, you should allocate a buffer large enough to hold the returned element
data, then call the CMGetProfileElement function again, specifying NULL in the elementSize parameter
to copy the entire element data and a pointer to the data buffer in the elementData parameter.

To copy only a portion of the element data beginning from the first byte, allocate a buffer the size of the
number of bytes of element data you want to obtain and specify the number of bytes to copy in the
elementSize parameter. In this case, On return the elementSize parameter contains the size in bytes of
the element data actually returned.

You cannot use the CMGetProfileElement function to copy a portion of element data beginning from an
offset into the data. To copy a portion of the element data beginning from any offset, use the function
CMGetPartialProfileElement (page 765).

You cannot use this function to obtain a portion of the CM2Header profile header. Instead, you must call the
function CMGetProfileHeader (page 769) to copy the entire profile header and read its contents.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetProfileHeader
Obtains the profile header for the specified profile.

Functions 769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMGetProfileHeader (
 CMProfileRef prof,
 CMAppleProfileHeader *header
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile whose header is to be copied.

header
A pointer to a profile header. On input, depending on the profile version, you may allocate a ColorSync
2.x or 1.0 header. On return, contains the profile data. For information about the ColorSync 2.x profile
header structure, see CM2Header (page 875). For information about the ColorSync 1.0 header, see
CMHeader (page 898).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetProfileHeader function returns the header for a ColorSync 2.x or ColorSync 1.0 profile. To return
the header, the function uses a union of type CMAppleProfileHeader (page 881), with variants for version
1.0 and 2.x headers.

A 32-bit version value is located at the same offset in either header. For ColorSync 2.x profiles, this is the
profileVersion field. For ColorSync 1.0 profiles, this is the applProfileVersion field. You can inspect
the value at this offset to determine the profile version, and interpret the remaining header fields accordingly.

To copy a profile header to a profile after you modify the header’s contents, use the function
CMSetProfileHeader (page 813).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetProfileLocation
Obtains the location of a profile based on the specified profile reference. (Deprecated in Mac OS X v10.5.)

CMError CMGetProfileLocation (
 CMProfileRef prof,
 CMProfileLocation *location
);

Parameters
prof

A profile reference of type CMProfileRef (page 925). Before calling CMGetProfileLocation, you
set the reference to specify the profile you wish to obtain the location for.

theProfile
A pointer to a profile location structure of type CMProfileLocation (page 924). On return, specifies
the location of the profile. Commonly, a profile is disk-file based, but it may instead be temporary,
handle-based, pointer-based, or accessed through a procedure supplied by your application.

770 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When your application calls the CMValidateProfile function, the ColorSync Manager dispatches the
function to the CMM specified by the CMMType header field of the profile whose reference you specify. The
preferred CMM can support this function or not.

To open a profile and obtain a reference to it, use the function CMOpenProfile (page 790).

Version Notes
This function is not recommended for use in ColorSync 2.5.

Starting with ColorSync version 2.5, you should use the function NCMGetProfileLocation (page 841)
instead of CMGetProfileLocation.

As of version 2.5, if you call CMGetProfileLocation, it will just call NCMGetProfileLocation in turn,
passing the profile specified by prof, the profile location specified by theProfile, and a location size value
of cmOriginalProfileLocationSize.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMGetProfileMD5
Gets the MD5 checksum from the profile header (message digest)

CMError CMGetProfileMD5 (
 CMProfileRef prof,
 CMProfileMD5 digest
);

Parameters
prof
digest

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You can call this function to determine if two profiles are identical, or if a profile has changed over time. You
can access this new MD5 checksum directly in the profile header, or use the function CMGetProfileMD5.
This function has the advantage that it works with both ICC 4 profiles and earlier profiles.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Functions 771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

CMGetProfileRefCount
Obtains the current reference count for the specified profile.

CMError CMGetProfileRefCount (
 CMProfileRef prof,
 long *count
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile whose reference count is obtained.

count
A pointer to a reference count. On return, the reference count for the specified profile reference.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The ColorSync Manager keeps an internal reference count for each profile reference returned from calls such
asCMOpenProfile (page 790) orCMNewProfile (page 788). Calling the functionCMCloneProfileRef (page
727) increments the count; calling the function CMCloseProfile (page 728) decrements it. The profile remains
open as long as the reference count is greater than 0, indicating at least one routine retains a reference to
the profile. When the count reaches 0, the ColorSync Manager releases all memory, files, or resources allocated
in association with that profile.

An application that manages profiles closely can call the CMGetProfileRefCount function to obtain the
reference count for a profile reference, then perform special handling if necessary, based on the reference
count.

To copy a profile with the function CMCopyProfile (page 740), you must obtain a reference to that profile
by either opening the profile or creating it. To open a profile, use the function CMOpenProfile (page 790).
To create a new profile, use the function CMNewProfile (page 788). As an alternative to using the
CMCopyProfile function to duplicate an entire profile, you can use the same profile reference more than
once. To do so, you call the function CMCloneProfileRef (page 727) to increment the reference count for
the reference each time you reuse it. Calling the CMCloneProfileRef function increments the count; calling
the function CMCloseProfile (page 728) decrements it. The profile remains open as long as the reference
count is greater than 0, indicating at least one routine retains a reference to the profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMGetPS2ColorRendering
Obtains the color rendering dictionary (CRD) element data usable as the parameter to the PostScript
setColorRendering operator, which specifies the PostScript color rendering dictionary to use for the
following graphics data.

CMError CMGetPS2ColorRendering (
 CMProfileRef srcProf,
 CMProfileRef dstProf,
 UInt32 flags,
 CMFlattenUPP proc,
 void *refCon,
 Boolean *preferredCMMnotfound
);

Parameters
srcProf

A profile reference to a profile that supplies the rendering intent for the CRD.

dstProf
A profile reference to a profile from which to extract the CRD data.

flags
If the value of flags is equal to cmPS8bit, the generated PostScript will utilize 8-bit encoding
whenever possible to achieve higher data compaction. If the value of flags is not equal to cmPS8bit,
the generated data will be 7-bit safe, in either ASCII or ASCII base-85 encoding.

proc
A pointer to a callback flatten function to perform the data transfer. For information, see the function
CMFlattenProcPtr (page 855).

refCon
An untyped pointer to arbitrary data supplied by your application. CMGetPS2ColorSpace passes
this data in calls to your CMFlattenProcPtr (page 855) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM corresponding to profile was not available or if it was unable to perform the function and the
default CMM was used. Otherwise, has the value false.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetPS2ColorRendering function obtains CRD data from the profile specified by the dstProf
parameter. To be valid, the parameter must specify an output profile with at most four components. The
CMM uses the rendering intent from the profile specified by the srcProf parameter to determine which of
the PostScript tags (ps2CR0Tag, ps2CR1Tag, ps2CR2Tag, or ps2CR3Tag) to use in creating the CRD. If none
of these tags exists in the profile, the CMM creates the CRD from one of the multidimensional table tags
(cmAToB0, cmAToB1, or cmAToB2), again chosen according to the rendering intent of the profile specified
by the srcProf parameter.

This function is dispatched to the CMM component specified by the destination profile. If the designated
CMM is not available or the CMM does not implement this function, the ColorSync Manager dispatches this
function to the default CMM.

Functions 773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

The CMM obtains the PostScript data and passes it to your low-level data transfer procedure, specified by
the proc parameter. The CMM converts the data into a PostScript stream and calls your procedure as many
times as necessary to transfer the data to it. Typically, the low-level data transfer function returns this data
to the calling application or device driver to pass to a PostScript printer.

Before your application or device driver sends the CRD to the printer, it can call the function
CMGetPS2ColorRenderingVMSize (page 775) to determine the virtual memory size of the CRD.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetPS2ColorRenderingIntent
Obtains the rendering intent element data in text format usable as the parameter to the PostScript
findRenderingIntent operator, which specifies the color-matching option for subsequent graphics data.

CMError CMGetPS2ColorRenderingIntent (
 CMProfileRef srcProf,
 UInt32 flags,
 CMFlattenUPP proc,
 void *refCon,
 Boolean *preferredCMMnotfound
);

Parameters
srcProf

A profile reference to the source profile that defines the data color space and identifies the preferred
CMM.

flags
If the value of flags is equal to cmPS8bit, the generated PostScript will utilize 8-bit encoding
whenever possible to achieve higher data compaction. If the value of flags is not equal to cmPS8bit,
the generated data will be 7-bit safe, in either ASCII or ASCII base-85 encoding.

proc
A low-level data transfer function supplied by the calling application to receive the PostScript data
from the CMM. For more information, see the function CMFlattenProcPtr (page 855).

refCon
An untyped pointer to arbitrary data supplied by your application. CMGetPS2ColorSpace passes
this data in calls to your CMFlattenProcPtr (page 855) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM corresponding to profile was not available or if it was unable to perform the function and the
default CMM was used. Otherwise, has the value false.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
The CMGetPS2ColorRenderingIntent function obtains PostScript rendering intent information from the
header of the source profile. It returns data by calling your low-level data transfer procedure and passing the
PostScript data to it. Typically, your low-level data transfer function returns this data to the calling application
or device driver to pass to a PostScript printer.

The CMGetPS2ColorRenderingIntent function is dispatched to the CMM component specified by the
source profile. If the designated CMM is not available or the CMM does not implement this function, then
ColorSync dispatches the function to the default CMM.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetPS2ColorRenderingVMSize
Determines the virtual memory size of the color rendering dictionary (CRD) for a printer profile before your
application or driver obtains the CRD and sends it to the printer.

CMError CMGetPS2ColorRenderingVMSize (
 CMProfileRef srcProf,
 CMProfileRef dstProf,
 UInt32 *vmSize,
 Boolean *preferredCMMnotfound
);

Parameters
srcProf

A profile reference to a profile that supplies the rendering intent for the CRD.

dstProf
A profile reference to the destination printer profile.

vmSize
A pointer to a memory size. On return, the virtual memory size of the CRD.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM corresponding to profile was not available or if it was unable to perform the function and the
default CMM was used. Otherwise, has the value false.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Your application or device driver can call this function to determine if the virtual memory size of the color
rendering dictionary exceeds the printer’s capacity before sending the CRD to the printer. If the printer’s
profile contains the Apple-defined optional tag 'psvm' described in CMConcatProfileSet (page 887), then
the default CMM will return the data supplied by this tag specifying the CRD virtual memory size for the
rendering intent’s CRD. If the printer’s profile does not contain this tag, then the CMM uses an algorithm to
assess the VM size of the CRD, in which case the assessment can be larger than the actual maximum VM size.

The CMM uses the profile specified by the srcProf parameter to determine the rendering intent to use.

Functions 775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetPS2ColorSpace
Obtains color space element data in text format usable as the parameter to the PostScript setColorSpace
operator, which characterizes the color space of subsequent graphics data.

CMError CMGetPS2ColorSpace (
 CMProfileRef srcProf,
 UInt32 flags,
 CMFlattenUPP proc,
 void *refCon,
 Boolean *preferredCMMnotfound
);

Parameters
srcProf

A profile reference to the source profile that defines the data color space and identifies the preferred
CMM.

flags
If the value of flags is equal to cmPS8bit, the generated PostScript will utilize 8-bit encoding
whenever possible to achieve higher data compaction. If the value of flags is not equal to cmPS8bit,
the generated data will be 7-bit safe, in either ASCII or ASCII base-85 encoding.

proc
A pointer to a callback flatten function to receive the PostScript data from the CMM. For information,
see the function CMFlattenProcPtr (page 855).

refCon
An untyped pointer to arbitrary data supplied by your application. CMGetPS2ColorSpace passes
this data in calls to your CMFlattenProcPtr (page 855) function.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM corresponding to profile was not available or if it was unable to perform the function and the
default CMM was used. Otherwise, has the value false.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMGetPS2ColorSpace function obtains PostScript color space data from the source profile. The valid
profile classes for the CMGetPS2ColorSpace function are display, input, and output profiles with at most
four components.

To determine which profile elements to use to generate the PostScript color space data, the CMM:

 ■ uses the PostScript cmPS2CSATag, if it exists

 ■ otherwise, uses the multidimensional table tag (cmAToB0, cmAToB1, or cmAToB2), if it exists, for the
rendering intent currently specified by the profile

776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 ■ otherwise, uses the multidimensional table tag cmAToB0, if it exists

 ■ otherwise, for display profiles only, uses the tristimulus tags (cmRedColorantTag, cmGreenColorantTag,
cmBlueColorantTag) and the tonal curve tags (cmRedTRCTag, cmGreenTRCTag, and cmBlueTRCTag)

The CMM obtains the PostScript data from the profile and calls your low-level data transfer procedure passing
the PostScript data to it. The CMM converts the data into a PostScript stream and calls your procedure as
many times as necessary to transfer the data to it.

Typically, the low-level data transfer function returns this data to the calling application or device driver to
pass to a PostScript printer as an operand to the PostScript setcolorspace operator, which defines the
color space of graphics data to follow.

The CMGetPS2ColorSpace function is dispatched to the CMM component specified by the source profile.
If the designated CMM is not available or the CMM does not implement this function, then the ColorSync
Manager dispatches the function to the default CMM.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMGetScriptProfileDescription
Obtains the internal name (or description) of a profile and the script code identifying the language in which
the profile name is specified from the specified profile. (Deprecated in Mac OS X v10.5.)

CMError CMGetScriptProfileDescription (
 CMProfileRef prof,
 Str255 name,
 ScriptCode *code
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile whose profile name and script
code are obtained.

name
A pointer to a name string. On return, the profile name.

code
A pointer to a script code. On return, the script code.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The element data of the text description tag (which has the signature 'desc' or constant
cmSigProfileDescriptionType, defined in the CMICCProfile.h header file) specifies the profile name
and script code. The name parameter returns the profile name as a Pascal string. Use this function so that
your application does not need to obtain and parse the element data, which contains other information.

Functions 777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMGetSystemProfile
Obtains a reference to the current system profile.

CMError CMGetSystemProfile (
 CMProfileRef *prof
);

Parameters
prof

A pointer to a profile reference of type CMProfileRef (page 925). On return, a reference to the current
system profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The following functions allow you to pass NULL as a parameter value to specify the system profile as a source
or destination profile:

 ■ CMNewProfile (page 788)

 ■ NCWNewColorWorld (page 846)

 ■ NCMBeginMatching (page 838)

 ■ NCMDrawMatchedPicture (page 840)

Note that instead of passing NULL, you can pass a profile reference to a specific profile, including the system
profile.

If you want to specify the system profile for any other function that requires a profile reference, such as
CWConcatColorWorld (page 823) and CWNewLinkProfile (page 830), you must use an explicit reference.
You can obtain such a reference with the CMGetSystemProfile function.

There are other reasons you might need to obtain a reference to the current system profile. For example,
your application might need to display the name of the current system profile to a user.

To identify the location of the physical file, call the function CMGetProfileLocation (page 770).

When your application has finished using the current system profile, it must close the reference to the profile
by calling the function CMCloseProfile (page 728).

778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Version Notes
Starting with version 2.5, use of the system profile has changed. So rather than call CMGetSystemProfile
to obtain a reference to the system profile, you may be able to obtain a profile that is more appropriate for
the current operation by calling CMGetDefaultProfileBySpace (page 752) to get the default profile for a
color space or by calling CMGetProfileByAVID (page 767) to get the profile for a specific display.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMIterateCMMInfo
Iterates through the color management modules installed on the system.

CMError CMIterateCMMInfo (
 CMMIterateUPP proc,
 UInt32 *count,
 void *refCon
);

Parameters
proc

A calling-program-supplied callback function that allows your application to monitor progress or
abort the operation.

count
A pointer to the number of available CMMs.

refCon
A reference constant containing data specified by the calling application program.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMIterateCMMInfo function returns information for all CMMs installed on the system. The caller can
pass nil for the CMMIterateUPP param to simply get a count of CMMs. If a CMMIterateUPP proc is provided,
it is called once for each CMM installed - with the CMMInfo structure filled accordingly. The caller can pass
a data reference to CMIterateCMMInfo which will then be passed to the CMMIterateUPP. This might be
used to allow some of the information in the CMMInfo data structure to be put into a menu, for example, by
passing a menu reference as the refcon. Either the proc or the count parameter must be provided. The caller
will get a paramErr if both are nil.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

Functions 779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMIterateColorDevices
Iterates through the color devices available on the system, returning device information to a callback you
supply.

CMError CMIterateColorDevices (
 CMIterateDeviceInfoProcPtr proc,
 UInt32 *seed,
 UInt32 *count,
 void *refCon
);

Parameters
proc

A pointer to a function that iterates through device information available on the system. This is
optional, but allows you to obtain device information. If provided, your callback is invoked once for
each registered device.

seed
A pointer to a seed value. This is optional. If you pass a pointer to a seed value that is the same as the
current seed value, then the callback function specified by the proc parameter is not invoked.

count
On output, the number of color devices available on the system.

refCon
An optional value that passed to your callback.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This routine gets device information about all registered color devices. If provided, the supplied callback
functions is called once for each registered device, passing in the device info and the supplied refcon.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMIterateColorSyncFolder
Iterates over the available profiles.

780 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMIterateColorSyncFolder (
 CMProfileIterateUPP proc,
 UInt32 *seed,
 UInt32 *count,
 void *refCon
);

Parameters
proc

A universal procedure pointer of type CMProfileIterateUPP, which is described in
CMProfileIterateData (page 923). If you do not wish to receive callbacks, pass NULL for this
parameter. Otherwise, pass a pointer to your callback routine.

seed
A pointer to a value of type long. The first time you call CMIterateColorSyncFolder, you typically
set the value to 0. In subsequent calls, you set the value to the seed value obtained from the previous
call. ColorSync uses the value in determining whether to call your callback routine, as described in
the discussion for this function.

On return, the value is the current seed for the profile cache (unless you pass NULL, as described in
the discussion).

count
A pointer to a value of type long. On return, the value is the number of available profiles.
CMIterateColorSyncFolder provides the number of profiles even when no iteration occurs (unless
you pass NULL, as described in the discussion below). To determine the count alone, without iteration,
call CMIterateColorSyncFolder and pass a value of NULL for all parameters except count.

refCon
An untyped pointer to arbitrary data supplied by your application. CMIterateColorSyncFolder
passes this data to your callback routine. If you pass NULL for the refCon parameter,
CMIterateColorSyncFolder passes NULL to your callback routine.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Starting with ColorSync version 2.5, when your application needs information about the profiles currently
available in the ColorSync Profiles folder, it can call the CMIterateColorSyncFolder routine, which in turn
calls your callback routine once for each profile.

Even though there may be many profiles available, CMIterateColorSyncFolder can take advantage of
ColorSync’s profile cache to return profile information quickly, and (if the cache is valid) without having to
open any profiles. For each profile, CMIterateColorSyncFolder supplies your routine with the profile
header, script code, name, and location, in a structure of type CMProfileIterateData (page 923). As a
result, your routine may be able to perform its function, such as building a list of profiles to display in a
pop-up menu, without further effort (such as opening each file-based profile).

Only 2.x profiles are included in the profile search result.

Before calling CMIterateColorSyncFolder for the first time, you typically set seed to 0. ColorSync compares
0 to its current seed for the profile cache. It is not likely they will match—the odds are roughly one in two
billion against it. If the values do not match, the routine iterates through all the profiles in the cache, calling
your callback routine once for each profile. CMIterateColorSyncFolder then returns the actual seed value
in seed (unless you passed NULL for that parameter).

Functions 781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

If you pass the returned seed value in a subsequent call, and if there has been no change in the available
profiles, the passed seed will match the stored cache seed and no iteration will take place.

Note that you can pass a NULL pointer for the seed parameter without harm. The result is the same as if you
passed a pointer to 0, in that the function iterates through the available profiles, calling your callback routine
once for each profile. However, the function does not return a seed value, since you have not passed a valid
pointer.

You can force ColorSync to call your callback routine (if any profiles are available) by passing a NULL pointer
or by passing 0 for the seed value. But suppose you have an operation, such as building a pop-up menu, that
you only want to perform if the available profiles have changed. In that case, you pass the seed value from
a previous call to CMIterateColorSyncFolder. If the profile folder has not changed, ColorSync will not
call your callback routine.

Note that if there are no profiles available, ColorSync does not call your callback routine.

You can safely pass NULL for any or all of the parameters to the CMIterateColorSyncFolder function. If
you pass NULL for all of the parameters, calling the function merely forces rebuilding of the profile cache, if
necessary.

Version Notes
Starting with version 2.5, the name and location of the profile folder changed. In addition, the folder can
now contain profiles within nested folders, as well as aliases to profiles or aliases to folders containing profiles.
There are limits on the nesting of folders and aliases.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMIterateDeviceProfiles
Iterates through the device profiles available on the system and returns information about profiles of the
devices to a callback you supply.

CMError CMIterateDeviceProfiles (
 CMIterateDeviceProfileProcPtr proc,
 UInt32 *seed,
 UInt32 *count,
 UInt32 flags,
 void *refCon
);

Parameters
proc

A pointer to a function that iterates through device information available on the system. This is
optional, but allows you to obtain profile information for each device. If provided, your callback is
invoked once for each registered device.

seed
A pointer to a seed value. This is optional. If you pass a pointer to a seed value that is the same as the
current seed value, then the callback function specified by the proc parameter is not invoked.

782 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

count
On output, the number of color devices available on the system.

flags
A value that specifies which set of profiles you want to iterate through. It can have the following
values: cmIterateFactoryDeviceProfiles, cmIterateCustomDeviceProfiles,
cmIterateCurrentDeviceProfiles, cmIterateAllDeviceProfiles or 0. Supplying 0 is the
same as supplying cmIterateCurrentDeviceProfiles.

refCon
An optional value that passed to your callback.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMLaunchControlPanel
Launches the ColorSync preferences pane.

CMError CMLaunchControlPanel (
 UInt32 flags
);

Parameters
flags

A value that secifies how the preferences pane is launched. You currently must pass a vlaue of 0 for
this parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When your application calls the function CMLaunchControlPanel, any changes made by the user will not
be available (through calls such as CMGetDefaultProfileBySpace) until the user closes the ColorSync
preferences pane. There is currently no ColorSync function that determines if the ColorSync preferences pane
has been closed, but you can use the Process Manager API for this purpose.

Availability
Available in CarbonLib 1.0 and later when ColorSync 3.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMLinkImage
Matches an image file with a device link profile. (Deprecated in Mac OS X v10.5.)

Functions 783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMLinkImage (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef lnkProf,
 UInt32 lnkIntent
);

Parameters
specFrom

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If this parameter
is not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
If a file with the same name already exists, it will be replaced if this parameter is set to true.

qual
The optional quality for the match—normal, draft or best (cmNormalMode, cmDraftMode, or
cmBestMode).

lnkProf
The device link profile for the match.

lnkIntent
The rendering intent for the match—perceptual intent, relative colorimetric intent, saturation i ntent
, or absolute colorimetric intent (cmPerceptual, cmRelativecolorimetric, cmSaturation, or
cmAbsoluteColorimetric).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMMakeProfile
Makes a display or abstract profile by modifying an existing one.

784 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMMakeProfile (
 CMProfileRef prof,
 CFDictionaryRef spec
);

Parameters
prof

The profile to modify.

spec
A dictionary that specifies the modifications to make to the profile supplied in the prof parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The function CMMakeProfile adds appropriate tags to a profile to make a display or abstract profile based
on a specification dictionary you supply.

One key in the specification dictionary must be "profileType" with a CFString value of either
"abstractLab", "displayRGB" or "displayID".

The dictionary can optionally contain these keys-value pairs:

 ■ "description", with an associated CFString value

 ■ "copyright", with an associated CFString value

For a profileType key whose value is "abstractLab", the dictionary can also contain the keys-value pairs
listed in Table 32-1.

Table 32-1 Key-value pairs for “abstractLab”

CommentValueKey

RequiredA CFNumber (SInt32) that is an odd"gridPoints"

RequiredA CFNumber (SInt64) coerced from a LabToLabProcPtr data type"proc"

OptionalA CFNumber (SInt64) value coerced from a void* data type"refcon"

For a profileType key whose value is "displayRGB", the dictionary can also contain the keys-value pairs
listed in Table 32-2.

Table 32-2 Key-value pairs for “displayRGB”

CommentValueKey

OptionalA CFNumber (Float), for example, 1.8"targetGamma"

OptionalA CFNumber (SInt32), for example, 6500"targetWhite"

RequiredA CFNumber (Float), for example, 2.5"gammaR

RequiredA CFNumber (Float), for example, 2.5"gammaG"

Functions 785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CommentValueKey

RequiredA CFNumber (Float), for example, 2.5"gammaB"

OptionalA CFNumber (SInt32), for example, 1 or 3"tableChans"

OptionalA CFNumber (SInt32), for example, 16 or
255

"tableEntries"

OptionalA CFNumber (SInt32), for example,1 or 2"tableEntrySize"

OptionalA CFData (lut in RRRGGGBBB order)"tableData"

Only if not supplying the
phospherSet key.

A CFNumber (Float)"phosphorRx"

Only if not supplying the
phospherSet key.

A CFNumber (Float)phosphorRy"

Only if not supplying the
phospherSet key.

A CFNumber (Float)phosphorGx"

Only if not supplying the
phospherSet key.

A CFNumber (Float)"phosphorGy"

Only if not supplying the
phospherSet key.

A CFNumber (Float)"phosphorBx"

Only if not supplying the
phospherSet key.

A CFNumber (Float)"phosphorBy"

Only if not supplying the phospher R,
G, B keys

A CFString: "WideRGB", "700/525/450nm",
"P22-EBU", "HDTV", "CCIR709", "sRGB",
"AdobeRGB98" or "Trinitron"

"phosphorSet"

Only if not supplying a whiteTemp
key

A CFNumber (Float)"whitePointx"

Only if not supplying a whiteTemp
key

A CFNumber (Float)"whitePointy"

Only if not supplying whitePointx
and whitePointy keys

A CFNumber (SInt32), for example, 5000,
6500, or 9300

"whiteTemp"

For a profileType key whose value is "displayID", the dictionary can also contain the keys-value pairs
in Table 32-3

Table 32-3 Key-value pairs for “displayID”

CommentValueKey

OptionalA CFNumber (Float), for example, 1.8"targetGamma"

OptionalA CFNumber (SInt32), for example, 6500"targetWhite"

786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CommentValueKey

RequiredA CFNumber (SInt32)"displayID"

Optionally, the keys-value pairs s for a profileType key whose value is "displayRGB" can be provided to
override the values from the display.

Availability
Available in Mac OS X v. 10.3 and later.

Declared In
CMApplication.h

CMMatchImage
Color matches an image file. (Deprecated in Mac OS X v10.5.)

CMError CMMatchImage (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf
);

Parameters
specFrom

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If this parameter
is not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
A Boolean value. If a file with the same name already exists, it will be replaced if this parameter is set
to true.

qual
The optional quality for the match—normal, draft or best (cmNormalMode, cmDraftMode, or
cmBestMode).

srcProf
The optional source profile for the match.

srcIntent
The rendering intent for the match—perceptual intent, relative colorimetric intent, saturation i ntent
, or absolute colorimetric intent (cmPerceptual, cmRelativecolorimetric, cmSaturation, or
cmAbsoluteColorimetric).

dstProf
The destination profile for the match.

Functions 787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMNewProfile
Creates a new profile and associated backing copy.

CMError CMNewProfile (
 CMProfileRef *prof,
 const CMProfileLocation *theProfile
);

Parameters
prof

A pointer to a profile reference of type CMProfileRef (page 925). On return, a reference to the new
profile.

theProfile
A pointer of type CMProfileLocation (page 924) to the profile location where the new profile should
be created. A profile is commonly disk-file based—the disk file type for a profile is 'prof'. However,
to accommodate special requirements, you can create a handle- or pointer-based profile, you can
create a temporary profile that is not saved after you call the CMCloseProfile function, or you can
create a profile that is accessed through a procedure provided by your application. To create a
temporary profile, you either specify cmNoProfileBase as the kind of profile in the profile location
structure or specify NULL for this parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMNewProfile function creates a new profile and backing copy in the location you specify. After you
create the profile, you must fill in the profile header fields and populate the profile with tags and their element
data, and then call the function CMUpdateProfile (page 816) to save the element data to the profile file.
The default ColorSync profile contents include a profile header of type CM2Header (page 875) and an element
table.

To set profile elements outside the header, you use the function CMSetProfileElement (page 810), the
function CMSetProfileElementSize (page 812), and the function CMSetPartialProfileElement (page
807). You set these elements individually, identifying them by their tag names.

When you create a new profile, all fields of the CM2Header profile header are set to 0 except the size and
profileVersion fields. To set the header elements, you call the function CMGetProfileHeader (page
769) to get a copy of the header, assign values to the header fields, then call the function
CMSetProfileHeader (page 813) to write the new header to the profile.

788 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

For each profile class, such as a device profile, there is a specific set of elements and associated tags, defined
by the ICC, that a profile must contain to meet the baseline requirements. The ICC also defines optional tags
that a particular CMM might use to optimize or improve its processing. You can also define private tags,
whose tag signatures you register with the ICC, to provide a CMM with greater capability to refine its
processing.

After you fill in the profile with tags and their element data, you must call the CMUpdateProfile function
to write the new profile elements to the profile file.

This function is most commonly used by profile developers who create profiles for device manufacturers and
by calibration applications. In most cases, application developers use existing profiles.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMNewProfileSearch
Searches the ColorSync Profiles folder and returns a list of 2.x profiles that match the search specification.
(Deprecated in Mac OS X v10.5.)

CMError CMNewProfileSearch (
 CMSearchRecord *searchSpec,
 void *refCon,
 UInt32 *count,
 CMProfileSearchRef *searchResult
);

Parameters
searchSpec

A pointer to a search specification. For a description of the information you can provide in a search
record of type CMSearchRecord to define the search, see CMSearchRecord (page 932). See the
QuickDraw Reference for a description of the PixMap data type.

refCon
An untyped pointer to arbitrary data supplied by your application. CMNewProfileSearch passes
this data to your filter routine. For a description of the filter routine, see the function
CMProfileFilterProcPtr (page 864).

count
A pointer to a profile count. On return, a one-based count of profiles matching the search specification.

searchResult
A pointer to a search result reference. On return, a reference to the profile search result list. For a
description of the CMProfileSearchRef private data type, see CMProfileSearchRef (page 927).
See the QuickDraw Reference for a description of the PixMap data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
The CMNewProfileSearch function sets up and defines a new search identifying through the search record
the elements that a profile must contain to qualify for inclusion in the search result list. The function searches
the ColorSync profiles folder for version 2.x profiles that meet the criteria and returns a list of these profiles
in an internal private data structure whose reference is returned to you in the searchResult parameter.

You must provide a search record of type CMSearchRecord identifying the search criteria. You specify which
fields of the search record to use for any given search through a search bit mask whose value you set in the
search record’s searchMask field.

Among the information you can provide in the search record is a pointer to a filter function to use to eliminate
profiles from the search based on additional criteria not defined by the search record. The search result
reference is passed to the filter function after the search is performed. For a description of the filter function
and its prototype, see the function CMProfileFilterProcPtr (page 864).

Your application cannot directly access the search result list. Instead, you pass the returned search result list
reference to other search-related functions that allow you to use the result list.

When your application has completed its search, it should call the function CMDisposeProfileSearch (page
745) to free the private memory allocated for the search.

To obtain a reference to a profile corresponding to a specific index in the list, use the function
CMSearchGetIndProfile (page 798). To obtain the file specification for a profile corresponding to a specific
index in the list, use the function CMSearchGetIndProfileFileSpec (page 799). To update the search
result list, use the function CMUpdateProfileSearch (page 817). To free the private memory allocated for
a profile search after your application has completed the search, use the function
CMDisposeProfileSearch (page 745).

Version Notes
The CMNewProfileSearch function does not take full advantage of the optimized profile searching available
starting with ColorSync version 2.5. Use CMIterateColorSyncFolder (page 780) instead.

This function is not recommended for use in ColorSync 2.5.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMOpenProfile
Opens the specified profile and returns a reference to the profile.

790 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMOpenProfile (
 CMProfileRef *prof,
 const CMProfileLocation *theProfile
);

Parameters
prof

A pointer to a profile reference of type CMProfileRef (page 925). On return, the reference refers to
the opened profile.

theProfile
A pointer to a profile location of type CMProfileLocation (page 924) for the profile to open.
Commonly a profile is disk-file based, but it may instead be temporary, handle-based, pointer-based,
or accessed through a procedure supplied by your application.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
If the CMOpenProfile function executes successfully, the profile reference refers to the opened profile. Your
application uses this reference, for example, when it calls functions to color match, copy, and update a profile,
and validate its contents.

The ColorSync Manager maintains private storage for each request to open a profile, allowing more than
one application to use a profile concurrently.

When you create a new profile or modify the elements of an existing profile, the ColorSync Manager stores
the new or modified elements in the private storage it maintains for your application. Any new or changed
profile elements are not incorporated into the profile itself unless your application calls the function
CMUpdateProfile (page 816) to update the profile. If you call the function CMCopyProfile (page 740) to
create a copy of an existing profile under a new name, any changes you have made are incorporated in the
profile duplicate but the original profile remains unchanged.

Before you call the CMOpenProfile function, you must set the CMProfileLocation data structure to
identify the location of the profile to open. Most commonly, a profile is stored in a disk file. If the profile is
in a disk file, use the profile location data type to provide its file specification. If the profile is in memory, use
the profile location data type to specify a handle or pointer to the profile. If the profile is accessed through
a procedure provided by your application, use the profile location data type to supply a universal procedure
pointer to your procedure.

Your application must obtain a profile reference before you copy or validate a profile, and before you flatten
the profile to embed it.

For example, your application can:

 ■ open a profile

 ■ call the CMGetProfileHeader function to obtain the profile’s header to modify its values

 ■ set new values

 ■ call the CMSetProfileHeader function to replace the modified header

 ■ pass the profile reference to a function such as NCWNewColorWorld (page 846) as the source or destination
profile in a color world for a color-matching session

 ■ When you close your reference to the profile by calling the function CMCloseProfile (page 728), your
changes are discarded (unless you called the CMUpdateProfile function).

Functions 791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CMApplication.h

CMProfileElementExists
Tests whether the specified profile contains a specific element based on the element’s tag signature.

CMError CMProfileElementExists (
 CMProfileRef prof,
 OSType tag,
 Boolean *found
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) that specifies the profile to examine.

tag
The tag signature (for example, ‘A2B0’, or constant cmAToB0Tag) for the element in question. For a
complete list of the tag signatures a profile may contain, including a description of each tag, refer to
the International Color Consortium Profile Format Specification. The signatures for profile tags are
defined in the CMICCProfile.h header file.

found
A pointer to a flag for whether the element was found. On return, the flag has the value true if the
profile contains the element or false if it does not.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You cannot use this function to test whether certain data in the CM2Header profile header exists. Instead,
you must call the function CMGetProfileHeader (page 769) to copy the entire profile header and read its
contents.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMProfileIdentifierFolderSearch
Searches the ColorSync Profiles folder and returns a list of profile references, one for each profile that matches
the specified profile identifier. (Deprecated in Mac OS X v10.5.)

792 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMProfileIdentifierFolderSearch (
 CMProfileIdentifierPtr ident,
 UInt32 *matchedCount,
 CMProfileSearchRef *searchResult
);

Parameters
ident

A pointer to a profile identifier structure specifying the profile to search for.

matchedCount
A pointer to a value of type unsigned long. On return, the one-based count of profiles that match
the specified profile identifier. The count is typically 0 or 1, but can be higher.

searchResult
A pointer to a search result reference of type CMProfileSearchRef (page 927). On return, a reference
to the profile search result list. Only version 2.x profiles are included in the profile search result.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020). It is not an error condition if this function
finds no matching profiles. It returns an error only if a File Manager or other low-level system error occurs.

Discussion
When your application or device driver processes an image, it can keep a list of profile references for each
profile it encounters in the image. Each time it encounters an embedded profile identifier, your application
can call the function CMProfileIdentifierListSearch (page 793) to see if there is already a matching
profile reference in its list. If not, it can call the CMProfileIdentifierFolderSearch function to see if the
profile is located in the ColorSync Profiles folder.

Although there should typically be at most one profile in the ColorSync Profiles folder that matches the
profile identifier, two or more profiles with different filenames may qualify.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMProfileIdentifierListSearch
Searches a list of profile references and returns a list of all references that match a specified profile identifier.
(Deprecated in Mac OS X v10.5.)

Functions 793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMProfileIdentifierListSearch (
 CMProfileIdentifierPtr ident,
 CMProfileRef *profileList,
 UInt32 listSize,
 UInt32 *matchedCount,
 CMProfileRef *matchedList
);

Parameters
ident

A pointer to a profile identifier. The function looks for profile references in profileList that match
the profile described by this identifier. For information on how a profile identifier match is determined,
see CMProfileIdentifier (page 921).

profileList
A pointer to a list of profile references to search.

listSize
The number of profile references in profileList.

matchedCount
A pointer to a count of matching profile references. If you set matchedList to NULL, On return
matchedCount specifies the number of references in profileList that match ident. The count is
typically 0 or 1, but can be higher.

If you do not set matchedList to NULL, on input you set matchedCount to the maximum number
of matching references to be returned in matchedList. On return, the value of matchedCount
specifies the actual number of matching references returned, which is always equal to or less than
the number passed in.

matchedList
A pointer to a list of profile references. If you set matchedList to NULL on input, On return nothing
is returned in the parameter, and the actual number of matching references is returned in
matchedCount.

If you do not set matchedList to NULL on input, it is treated as a pointer to allocated memory. On
return, the allocated memory will contain a list, in no particular order, of profile references that match
ident. Only version 2.x profiles are included in the profile search result. The number of references in
the list is equal to or less than the value you pass in the matchedCount parameter. You must allocate
enough memory for matchedList to store the requested number of profile references.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020). It is not an error condition if the
CMProfileIdentifierListSearch function finds no matching profiles. The function returns an error only
if a Memory Manager or other low-level system error occurs.

Discussion
When your application or device driver processes an image, it can keep a list of profile references for each
unique profile or profile identifier it encounters in the image. Each time it encounters an embedded profile
identifier, your application can call the CMProfileIdentifierListSearch function to see if there is already
a matching profile reference in the list. Although your list of profile references would normally contain at
most one reference that matches the profile identifier, it is possible to have two or more matches. For
information on how a profile identifier match is determined, see CMProfileIdentifier (page 921).

If no matching profile is found in the list, your application can call the function
CMProfileIdentifierFolderSearch (page 792) to see if a matching profile can be found in the ColorSync
Profiles folder.

794 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

To determine the amount of memory needed for the list of profile references that match a profile identifier,
your application may want to call CMProfileIdentifierListSearch twice. The first time, on input you
set matchedList to NULL and ignore matchedCount. On return, matchedCount specifies the number of
matching profiles. You then allocate enough memory to hold that many profile references (or a smaller
number if you do not want all the references) and call CMProfileIdentifierListSearch again. This time
you set matchedList to a pointer to the allocated memory and set matchedCount to the number of
references you wish to obtain. To allocate memory, you use code such as the following:

myProfileRefListPtr = NewPtr(sizeof(CMProfileRef) * matchedCount);

If your application is interested in obtaining only the first profile that matches the specified profile, you need
call CMProfileIdentifierListSearch only once. To do so, you just allocate enough memory to store
one profile reference, set matchedList to point to that memory (or just set matchedList to point to a local
variable), and set matchedCount to 1. On return, if matchedCount still has the value 1, then
CMProfileIdentifierListSearch found a matching profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMProfileModified
Indicates whether the specified profile has been modified since it was created or last updated.

CMError CMProfileModified (
 CMProfileRef prof,
 Boolean *modified
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to examine.

modified
A pointer to a Boolean variable. On return, the value of modified is set to true if the profile has
been modified, false if it has not.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When a profile is first opened, its modified flag is set to false. On calls that add to, delete from, or set the
profile header or tags, the modified flag is set to true. After calling the function CMUpdateProfile (page
816), the modified flag is reset to false.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Functions 795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

CMProofImage
Proofs an image. (Deprecated in Mac OS X v10.5.)

CMError CMProofImage (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf,
 CMProfileRef prfProf
);

Parameters
specFrom

The destination profile for the match. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If this parameter
is not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
A Boolean value. If a file with the same name already exists, it will be replaced if this parameter is set
to true.

qual
The optional quality for the match—normal, draft or best (cmNormalMode, cmDraftMode, or
cmBestMode).

srcProf
The optional source profile for the match.

srcIntent
The rendering intent for the match—perceptual intent, relative colorimetric intent, saturation i ntent
, or absolute colorimetric intent (cmPerceptual, cmRelativecolorimetric, cmSaturation, or
cmAbsoluteColorimetric).

dstProf
The destination profile for the match.

prfProf
The proof profile for the match between the destination and proof profiles.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

796 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMScriptingPlugin.h

CMRegisterColorDevice
Registers a device with ColorSync.

CMError CMRegisterColorDevice (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CFDictionaryRef deviceName,
 const CMDeviceScope *deviceScope
);

Parameters
deviceSpec

The class of the device (e.g., 'scnr' ,'cmra' ,'prtr' ,'mntr').

deviceScope
The unique identifier of the class (Class + ID uniquely id's device).

deviceName
Name of the device. See the CFDictionary documentation for a description of the CFDictionaryRef
data type.

deviceScope
Structure defining the user and host scope this device pertains to.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
For a device to be recognized by ColorSync (and possibly other parts of Mac OS X) it needs to register itself
using this function. If the device has ColorSync profiles associated with it, it should identify those u after
registering with this function. Once a device is registered, it can appear as an input, output, or proofing
device in ColorSync controls, as long as it has profiles associated with it. Registration need only happen once,
when the device is installed. Device drivers need not register their device each time they are loaded.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMRemoveProfileElement
Removes an element corresponding to a specific tag from the specified profile.

Functions 797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMRemoveProfileElement (
 CMProfileRef prof,
 OSType tag
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the tag remove.

tag
The tag signature for the element to remove.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMRemoveProfileElement function deletes the tag as well as the element data from the profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSearchGetIndProfile
Opens the profile corresponding to a specific index into a specific search result list and obtains a reference
to that profile. (Deprecated in Mac OS X v10.5.)

CMError CMSearchGetIndProfile (
 CMProfileSearchRef search,
 UInt32 index,
 CMProfileRef *prof
);

Parameters
search

A reference to the profile search result list containing the profile whose reference you want to obtain.
For a description of the CMProfileSearchRef private data type, see CMProfileSearchRef (page
927). See the QuickDraw Reference for a description of the PixMap data type.

index
The position of the profile in the search result list. This value is specified as a one-based index into
the set of profiles of the search result. The index must be less than or equal to the value returned as
the count parameter of the CMNewProfileSearch function or the CMUpdateProfileSearch
function; otherwise CMSearchGetIndProfile returns a result code of cmIndexRangeErr.

prof
A pointer to a profile reference of type CMProfileRef (page 925). On return, the reference refers to
the profile associated with the specified index. See the QuickDraw Reference for a description of the
PixMap data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

798 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
Before your application can call the CMSearchGetIndProfile function, it must call the function
CMNewProfileSearch (page 789) to perform a profile search and produce a search result list. The search
result list is a private data structure maintained by the ColorSync Manager. After your application has finished
using the profile reference, it must close the reference by calling the function CMCloseProfile (page 728).

Version Notes
This function is not recommended for use in ColorSync 2.5.

Starting with version 2.5, you should use the function CMIterateColorSyncFolder (page 780) for profile
searching.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMSearchGetIndProfileFileSpec
Obtains the file specification for the profile at a specific index into a search result. (Deprecated in Mac OS X
v10.5.)

CMError CMSearchGetIndProfileFileSpec (
 CMProfileSearchRef search,
 UInt32 index,
 FSSpec *spec
);

Parameters
search

A reference to the profile search result containing the profile whose file specification you want to
obtain. For a description of the CMProfileSearchRef private data type, see
CMProfileSearchRef (page 927). See the QuickDraw Reference for a description of the PixMap data
type.

index
The index of the profile whose file specification you want to obtain. This is a one-based index into a
set of profiles in the search result list. The index must be less than or equal to the value returned as
the count parameter of the CMNewProfileSearch function or the CMUpdateProfileSearch
function; otherwise CMSearchGetIndProfile returns a result code of cmIndexRangeErr.

profileFile
A pointer to a file specification. On return, this parameter points to a file specification for the profile
at the location specified by index. See the QuickDraw Reference for a description of the PixMap data
type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
Before your application can call the CMSearchGetIndProfileFileSpec function, it must call the function
CMNewProfileSearch (page 789) to perform a profile search and produce a search result list. The search
result list is a private data structure maintained by ColorSync.

The CMSearchGetIndProfileFileSpec function obtains the Macintosh file system file specification for a
profile at a specific index in the search result list.

Version Notes
This function is not recommended for use in ColorSync 2.5.

Starting with version 2.5, you should use the function CMIterateColorSyncFolder (page 780) for profile
searching.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMSetDefaultDevice
Sets the default device.

CMError CMSetDefaultDevice (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID
);

Parameters
deviceClass

The class of the device (e.g., 'scnr' ,'cmra' ,'prtr' ,'mntr').

deviceID
The unique identifier of the class (Class + ID uniquely id's device).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
For each class of device, a device management layer may establish which of the registered devices is the
default. This helps keep color management choices to a minimum and allows for some "automatic" features
to be enabled, such as, "Default printer" as an output profile selection. If no such device (as specified by
deviceClass and deviceID) has been registered, an error is returned.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

800 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSetDefaultProfileBySpace
Sets the default profile for the specified color space. (Deprecated in Mac OS X v10.5.)

CMError CMSetDefaultProfileBySpace (
 OSType dataColorSpace,
 CMProfileRef prof
);

Parameters
dataColorSpace

A four-character identifier of type OSType. You pass a color space signature that identifies the color
space you wish to set the default profile for. The currently-supported values are cmRGBData,
cmCMYKData, cmLabData, and cmXYZData. These constants are a subset of the constants described
in “Color Space Signatures” (page 969). If you supply a value that is not supported, the
CMGetDefaultProfileBySpace function returns an error value of paramErr.

prof
A profile reference. Before calling CMSetDefaultProfileBySpace, set the reference to specify the
default profile for the color space. The profile must be file-based; otherwise, the function returns a
CMInvalidProfileLocation error.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMSetDefaultProfileBySpace function currently supports the RGB, CMYK, Lab, and XYZ color spaces.
The signature constants for these color spaces (shown above with thedataColorSpaceparameter description)
are described in “Color Space Signatures” (page 969). Support for additional color spaces may be provided
in the future. CMSetDefaultProfileBySpace returns a value of paramErr if you pass a color space constant
it does not currently support.

Note that a user can also use the ColorSync control panel to specify a default profile for the RGB and CMYK
color spaces.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMSetDefaultProfileByUse
Sets values for device profile settings. (Deprecated in Mac OS X v10.5.)

Functions 801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetDefaultProfileByUse (
 OSType use,
 CMProfileRef prof
);

Parameters
use

A value that specifies the device type for which to set the profile.

prof

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 3.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMSetDeviceDefaultProfileID
Sets the default profile ID for a given device.

CMError CMSetDeviceDefaultProfileID (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceProfileID defaultProfID
);

Parameters
deviceClass

The device class for the device whose default profile you want to set. See “Device Classes” (page 979)
for a list of the constants you can supply.

deviceID
The device ID for the device whose default profile you want to set.

defaultID
The ID of profile you want to set as the default.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The default profile ID for a given device is an important piece of information because of the function
CMGetProfileByUse. The function CMGetProfileByUse returns the default profile for devices depending
on the user's selection in the ColorSync preferences pane. Device drivers and host software can set the default
profile for a given device using the function CMSetDeviceDefaultProfileID.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

802 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMDeviceIntegration.h

CMSetDeviceFactoryProfiles
Establishes the profiles used by a given device.

CMError CMSetDeviceFactoryProfiles (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceProfileID defaultProfID,
 const CMDeviceProfileArray *deviceProfiles
);

Parameters
deviceClass

The device class for the device whose factory profiles you want to establish. See “Device Classes” (page
979) for a list of the constants you can supply.

deviceID
The device ID for the device whose factory profiles you want to establish.

defaultProfID
The ID of the default profile for this device.

deviceProfiles
On output, points to array that contains the factory device profiles.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function establishes the profiles used by a given device. It should be called after device registration to
notify ColorSync of the device's profiles. Note that factory device profiles and the current device profiles
might not be the same, since the latter may contain modifications to the factory set.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMSetDeviceProfile
Change the profile used by a given device.

Functions 803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetDeviceProfile (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 const CMDeviceProfileScope *profileScope,
 CMDeviceProfileID profileID,
 const CMProfileLocation *profileLoc
);

Parameters
deviceClass

The device class for the device whose profile you want to set. See “Device Classes” (page 979) for a
list of the constants you can supply.

deviceID
The device ID for the device whose profile you want to set.

profileScope
A pointer to the structure defining the scope this profile pertains to.

profileID
The ID of the default profile for this device.

deviceProfLoc
A pointer to the CMProfileLocation of the profile. Since this structure is a fixed length structure,
you can simply pass a pointer to a stack-based structure or memory allocated for it.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function provides a way to change a profile used by a given device by ID. It can be called after device
registration by calibration applications to reset a device's profile from factory defaults to calibrated profiles.
In order for this call to be made successfully, you must pass the CMDeviceClass and CMDeviceID of the
device being calibrated along with the CMDeviceProfileID of the profile to set. (Device selection and
identification can be facilitated using the function CMIterateColorDevices). If an invalid CMDeviceClass
or CMDeviceID is passed, an error (CMInvalidDeviceClass or CMInvalidDeviceID) is returned.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMSetDeviceProfiles
Changes the profiles used by a given device. (Deprecated in Mac OS X v10.5.)

804 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetDeviceProfiles (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 const CMDeviceProfileScope *profileScope,
 const CMDeviceProfileArray *deviceProfiles
);

Parameters
deviceClass

The device class for the device whose profiles you want to set. See “Device Classes” (page 979) for a
list of the constants you can supply.

deviceID
The device ID for the device whose profiles you want to set.

profileScope
A pointer to the structure defining the scope these profiles pertain to.

deviceProfiles
A pointer to the profile array that contains replacements for the factory profiles. You don’t have to
replace all the original profiles with this call. The array can contain as few as one profile or as many
profiles as there are in the original factory array. You supply only those profiles you want to replace.
Profiles are replaced by ID.

Return Value
A CMError value. If you pass a n invalid CMDeviceClass or CMDeviceID, the function returns
CMInvalidDeviceClass or CMInvalidDeviceID. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function provides a way to change the profiles used by a given device. It can be called after device
registration by calibration applications to reset a device's profiles from factory defaults to calibrated profiles.
In order for this call to be made successfully, the caller must pass the CMDeviceClass and CMDeviceID
device being calibrated. (You can call the function CMIterateColorDevices to find available device classes
and IDs.).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMDeviceIntegration.h

CMSetDeviceState
Sets the state of a device.

Functions 805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetDeviceState (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID,
 CMDeviceState deviceState
);

Parameters
deviceClass

The device class for the device whose state you want to set. See “Device Classes” (page 979) for a list
of the constants you can supply.

deviceID
The device ID for the device whose state you want to set.

deviceState
The device state to set. See “Device States” (page 980) for the values you can supply.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This routines provides access for the device management layer to update the state of a particular device. For
example, a device can be offline, busy, or calibrated. The state data passed in replaces the old state data with
the value you supply.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMSetGammaByAVID
Sets the gamma for the specified display device.

CMError CMSetGammaByAVID (
 CMDisplayIDType theID,
 CMVideoCardGamma *gamma
);

Parameters
theID

A Display Manager ID value. You pass the ID value for the display device for which to set the gamma.

gamma
A pointer to the gamma value to which you want to set the display device.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 3.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

806 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSetIndImageProfile
Sets a specific embeded profile for a given image. (Deprecated in Mac OS X v10.5.)

CMError CMSetIndImageProfile (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl,
 UInt32 index,
 CMProfileRef prof
);

Parameters
specFrom

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If this parameter
is not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
A Boolean value. If a file with the same name already exists, it will be replaced if this parameter is set
to true.

index
The numeric index of the profile to set.

prof
The profile to set at the index designated by the index parameter.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMSetPartialProfileElement
Sets part of the element data for a specific tag in the specified profile.

Functions 807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetPartialProfileElement (
 CMProfileRef prof,
 OSType tag,
 UInt32 offset,
 UInt32 byteCount,
 const void *elementData
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the tag for which the
element data is set.

tag
The tag signature for the element whose data is set. The tag identifies the element. For a complete
list of the tag signatures a profile may contain, including a description of each tag, refer to the
International Color Consortium Profile Format Specification. The signatures for profile tags are defined
in the CMICCProfile.h header file.

offset
The offset in the existing element data where data transfer should begin.

byteCount
The number of bytes of element data to transfer.

elementData
A pointer to the buffer containing the element data to transfer to the profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You can use the CMSetPartialProfileElement function to set the data for an element when the amount
of data is large and you need to copy it to the profile in segments.

After you set the element size, you can call this function repeatedly, as many times as necessary, each time
appending a segment of data to the end of the data already copied until all the element data is copied.

If you know the size of the element data, you should call the function CMSetProfileElementSize (page
812) to reserve it before you call CMSetPartialProfileElement to set element data in segments. Setting
the size first avoids the extensive overhead required to increase the size for the element data with each call
to append another segment of data.

To copy the entire data for an element as a single operation, when the amount of data is small enough to
allow this, call the function CMSetProfileElement (page 810).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileByAVID
Sets the profile for the specified monitor, optionally setting video card gamma.

808 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMSetProfileByAVID (
 CMDisplayIDType theID,
 CMProfileRef prof
);

Parameters
theAVID

A Display Manager ID value. You pass the ID value for the monitor for which to set the profile.

prof
A profile reference. Before calling CMSetProfileByAVID, set the reference to identify the profile for
the monitor specified by theAVID.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
If you specify a profile that contains the optional profile tag for video card gamma, CMSetProfileByAVID
extracts the tag and sets the video card based on the tag data. This is the only ColorSync function that sets
video card gamma. The tag constant cmVideoCardGammaTag is described in “Video Card Gamma Tags” (page
1019).

When a user sets a display profile using the Monitors & Sound control panel, the system profile is set to the
same profile. When you call CMSetProfileByAVID to set a profile for a monitor, you may also wish to make
that profile the system profile. If so, you must call CMSetSystemProfile (page 814) explicitly—calling
CMSetProfileByAVID alone has no affect on the system profile.

Note that if the Display Manager supports ColorSync, the CMSetProfileByAVID function calls on the Display
Manager to set the profile for the specified display. This is the case if the version of the Display Manager is
2.2.5 or higher (if gestaltDisplayMgrAttr has the gestaltDisplayMgrColorSyncAware bit set).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileDescriptions
Sets the description tag data for a specified profile.

CMError CMSetProfileDescriptions (
 CMProfileRef prof,
 const char *aName,
 UInt32 aCount,
 ConstStr255Param mName,
 ScriptCode mCode,
 const UniChar *uName,
 UniCharCount uCount
);

Parameters
prof

A reference to the profile into which to set the description tag data.

Functions 809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

aName
A pointer to a 7-bit Roman ASCII profile name string to be set for the profile. This string must be
null-terminated.

aCount
A count of the number of characters in the string specified in the aName parameter

mName
A pointer to the localized profile name string in Mac script-code format which is to be set for the
profile. This string must be null-terminated.

mCode
The script code corresponding to the string specified by the mName parameter.

uName
A pointer to the localized Unicode profile name string which is to be set for the profile. This string
must be null-terminated

uCount
A count of the number of Unicode characters in string specified by the uName parameter. Do not
confuse this with a byte count, because each Unicode character requires two bytes.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Use this function to set the description tag data for a given profile. The ICC Profile Format Specification
(available at http://www.color.org) includes a description tag ('desc'), designed to provide more
information about a profile than can be contained in a file name. This is especially critical on file systems
with 8.3 names. The tag data can consist of up to three separate pieces (strings) of information for a profile.
These different strings are designed to allow for display in different languages or on different computer
systems. Applications typically use one of the strings to show profiles in a list or a pop-up menu.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileElement
Sets or replaces the element data for a specific tag in the specified profile.

CMError CMSetProfileElement (
 CMProfileRef prof,
 OSType tag,
 UInt32 elementSize,
 const void *elementData
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile containing the tag for which the
element data is set.

810 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org

tag
The tag signature for the element whose data is set. For a complete list of the tag signatures a profile
may contain, including a description of each tag, refer to the International Color Consortium Profile
Format Specification. The signatures for profile tags are defined in the CMICCProfile.h header file.

elementSize
The size in bytes of the element data set.

elementData
A pointer to the buffer containing the element data to transfer to the profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMSetProfileElement function replaces existing element data if an element with the specified tag is
already present in the profile. Otherwise, it sets the element data for a new tag. Your application is responsible
for allocating memory for the buffer to hold the data to transfer.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileElementReference
Adds a tag to the specified profile to refer to data corresponding to a previously set element.

CMError CMSetProfileElementReference (
 CMProfileRef prof,
 OSType elementTag,
 OSType referenceTag
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to add the tag to.

elementTag
The original element’s signature tag corresponding to the element data to which the new tag will
refer.

referenceTag
The new tag signature to add to the profile to refer to the element data corresponding to elementTag.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
After the CMSetProfileElementReference function executes successfully, the specified profile will contain
more than one tag corresponding to a single piece of data. All of these tags are of equal importance. Your
application can set a reference to an element that was originally a reference itself without circularity.

Functions 811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

If you call the function CMSetProfileElement (page 810) subsequently for one of the tags acting as a
reference to another tag’s data, then the element data you provide is set for the tag and the tag is no longer
considered a reference. Instead, the tag corresponds to its own element data and not that of another tag.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileElementSize
Reserves the element data size for a specific tag in the specified profile before setting the element data.

CMError CMSetProfileElementSize (
 CMProfileRef prof,
 OSType tag,
 UInt32 elementSize
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile in which the element data size is
reserved.

tag
The tag signature for the element whose size is reserved. The tag identifies the element. For a complete
list of the tag signatures a profile may contain, including a description of each tag, refer to the
International Color Consortium Profile Format Specification. The signatures for profile tags are defined
in the CMICCProfile.h header file.

elementSize
The total size in bytes to reserve for the element data.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Your application can use the CMSetProfileElementSize function to reserve the size of element data for
a specific tag before you call the function CMGetPartialProfileElement (page 765) to set the element
data. The most efficient way to set a large amount of element data when you know the size of the data is to
first set the size, then call the CMSetPartialProfileElement function to set each of the data segments.
Calling the CMSetProfileElementSize function first eliminates the need for the ColorSync Manager to
repeatedly increase the size for the data each time you call the CMSetPartialProfileElement function.

In addition to reserving the element data size, the CMSetProfileElementSize function sets the element
tag, if it does not already exist.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

812 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSetProfileHeader
Sets the header for the specified profile.

CMError CMSetProfileHeader (
 CMProfileRef prof,
 const CMAppleProfileHeader *header
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile whose header is set.

header
A pointer to the new header to set for the profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You can use the CMSetProfileHeader function to set a header for a version 1.0 or a version 2.x profile.
Before you call this function, you must set the values for the header, depending on the version of the profile.
For a version 2.x profile, you use a data structure of type CM2Header (page 875). For a version 1.0 profile, you
use a data structure of type CMHeader (page 898). You pass the header you supply in the
CMAppleProfileHeader union, described in CMAppleProfileHeader (page 881).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMSetProfileLocalizedStringDictionary
Writes a dictionary of localized strings to a given tag in a profile.

CMError CMSetProfileLocalizedStringDictionary (
 CMProfileRef prof,
 OSType tag,
 CFDictionaryRef theDict
);

Parameters
prof

The profile to modify.

tag
The tag type of profile to modify.

theDict
The dictionary to modify. See the CFDictionary documentation for a description of the
CFDictionaryRef data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMApplication.h

CMSetSystemProfile
Sets the current system profile. (Deprecated in Mac OS X v10.5.)

CMError CMSetSystemProfile (
 const FSSpec *profileFileSpec
);

Parameters
profileFileSpec

A pointer to a file specification structure. Before calling CMSetSystemProfile, set the structure to
specify the desired system profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
By default, a standard RGB profile is configured as the system profile. By calling the CMSetSystemProfile
function, your application can specify a new system profile. You can configure only a display device profile
as the system profile.

Version Notes
Starting with version 2.5, use of the system profile has changed.

The function CMSetSystemProfile does not retrieve video card gamma data (introduced in ColorSync
version 2.5) to set the video card; use the function CMSetProfileByAVID (page 808) instead.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMUnembedImage
Removes any ICC profiles embeded in an image. (Deprecated in Mac OS X v10.5.)

814 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CMUnembedImage (
 const FSSpec *specFrom,
 const FSSpec *specInto,
 Boolean repl
);

Parameters
specFrom

A file specification for the image file. See the File Manager documentation for a description of the
FSSpec data type.

specInto
If this parameter is a file, it specifies the resulting image. If this parameter is a folder, it specifies the
location of the resulting image which will have the same name as the original file. If his parameter is
not provided, the original file is modified. See the File Manager documentation for a description of
the FSSpec data type.

repl
A Boolean value. If a file with the same name already exists, it will be replaced if this parameter is set
to true.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CMUnregisterColorDevice
Unregisters a device.

CMError CMUnregisterColorDevice (
 CMDeviceClass deviceClass,
 CMDeviceID deviceID
);

Parameters
deviceClass

The device class of the device you want to unregister. See “Device Classes” (page 979) for a list of the
constants you can supply.

deviceID
The device ID of the device you want to unregister.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When a device is no longer to be used on a system (as opposed to being offline), it should be unregistered.
If a device is temporarily shut down or disconnected, it does not to be unregistered unless either of the
following is true:

Functions 815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 ■ The device driver is being removed (uninstalled)

 ■ The device driver can’t access the device profiles without the device

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
CMDeviceIntegration.h

CMUpdateProfile
Saves modifications to the specified profile.

CMError CMUpdateProfile (
 CMProfileRef prof
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to update.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CMUpdateProfile function makes permanent any changes or additions your application has made to
the profile identified by the profile reference, if no other references to that profile exist.

The ColorSync Manager maintains a modified flag to track whether a profile has been modified. After updating
a profile, the CMUpdateProfile function sets the value of the modified flag for that profile to false.

Each time an application calls the function CMOpenProfile (page 790), the function creates a unique reference
to the profile. An application can also duplicate a profile reference by passing a copy to another task. You
cannot use the CMUpdateProfile function to update a profile if more than one reference to the profile
exists—attempting to do so will result in an error return. You can call the function
CMGetProfileRefCount (page 772) to determine the reference count for a profile reference.

You cannot use the CMUpdateProfile function to update a ColorSync 1.0 profile.

After you fill in tags and their data elements for a new profile created by calling the function
CMNewProfile (page 788), you must call the CMUpdateProfile function to write the element data to the
new profile.

If you modify an open profile, you must call CMUpdateProfile to save the changes to the profile file before
you call the function CMCloseProfile (page 728). Otherwise, the changes are discarded.

To modify a profile header, you use the function CMGetProfileHeader (page 769) and the function
CMSetProfileHeader (page 813).

To set profile elements outside the header, you use the function CMSetProfileElement (page 810), the
function CMSetProfileElementSize (page 812), and the function CMSetPartialProfileElement (page
807).

816 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMUpdateProfileSearch
Searches the ColorSync Profiles folder and updates an existing search result obtained originally from the
CMNewProfileSearch function. (Deprecated in Mac OS X v10.5.)

CMError CMUpdateProfileSearch (
 CMProfileSearchRef search,
 void *refCon,
 UInt32 *count
);

Parameters
search

A reference to a search result list returned to your application when you called the
CMNewProfileSearch function. For a description of the CMProfileSearchRef private data type,
see CMProfileSearchRef (page 927). See the QuickDraw Reference for a description of the PixMap
data type.

refCon
A pointer to a reference constant for application data passed as a parameter to calls to the filter
function specified by the original search specification. For a description of the filter function, see the
function CMProfileFilterProcPtr (page 864).

count
A pointer to a profile count. On return, if the function result is noErr, a one-based count of the number
of profiles matching the original search specification passed to the CMNewProfileSearch function.
Otherwise undefined.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
After a profile search has been set up and performed through a call to the CMNewProfileSearch function,
the CMUpdateProfileSearch function updates the existing search result. You must use this function if the
contents of the ColorSync Profiles folder have changed since the original search result was created.

The search update uses the original search specification, including the filter function indicated by the search
record. Data given in the CMUpdateProfileSearch function’s refCon parameter is passed to the filter
function each time it is called.

Sharing a disk over a network makes it possible for modification of the contents of the ColorSync Profiles
folder to occur at any time.

For a description of the function you call to begin a new search, see the function CMNewProfileSearch (page
789). That function specifies the filter function referred to in the description of the refCon parameter.

Functions 817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Version Notes
Starting with version 2.5, you should use the function CMIterateColorSyncFolder (page 780) for profile
searching.

This function is not recommended for use in ColorSync 2.5.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMValidateProfile
Indicates whether the specified profile contains the minimum set of elements required by the current color
management module (CMM) for color matching or color checking.

CMError CMValidateProfile (
 CMProfileRef prof,
 Boolean *valid,
 Boolean *preferredCMMnotfound
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to validate.

valid
A pointer to a valid profile flag. On return, has the value true if the profile contains the minimum set
of elements to be valid and false if it does not.

preferredCMMnotfound
A pointer to a flag for whether the preferred CMM was found. On return, has the value true if the
CMM specified by the profile was not available to perform validation or does not support this function
and the default CMM was used. Has the value false if the profile’s preferred CMM is able to perform
validation.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When your application calls the CMValidateProfile function, the ColorSync Manager dispatches the
function to the CMM specified by the CMMType header field of the profile whose reference you specify. The
preferred CMM can support this function or not.

If the preferred CMM supports this function, it determines if the profile contains the baseline elements for
the profile class, which the CMM requires to perform color matching or gamut checking. For each profile
class, such as a device profile, there is a specific set of required tagged elements defined by the ICC that the
profile must include. The ICC also defines optional tags, which may be included in a profile. A CMM might
use these optional elements to optimize or improve its processing. Additionally, a profile might include
private tags defined to provide a CMM with processing capability particular to the needs of that CMM. The

818 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

profile developer can define these private tags, register the tag signatures with the ICC, and include the tags
in a profile. The CMM checks only for the existence of profile elements it does not check the element’s content
and size.

If the preferred CMM does not support the CMValidateProfile function request, the ColorSync Manager
calls the default CMM to handle the validation request.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CMValidImage
Validates the specified image file. (Deprecated in Mac OS X v10.5.)

CMError CMValidImage (
 const FSSpec *spec
);

Parameters
spec

A file specification for the image file you want to validate. See the File Manager documentation for a
description of the FSSpec data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This function validates the specified image file. ColorSync checks with any installed scripting plug-ins to see
if they recognize the image's file format. If a scripting plug-in is found which recognizes the image's file
format, CMValidateImage returns noErr . If the image's file format is not recognized, CMValidateImage
returns the cmInvalidImageFile error.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMScriptingPlugin.h

CWCheckBitmap
Tests the colors of the pixel data of a bitmap to determine whether the colors map to the gamut of the
destination device.

Functions 819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CWCheckBitmap (
 CMWorldRef cw,
 const CMBitmap *bitmap,
 CMBitmapCallBackUPP progressProc,
 void *refCon,
 CMBitmap *resultBitmap
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) to use for the color check.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

bitmap
A pointer to a bitmap of type CMBitmap (page 882) whose colors are to be checked.

progressProc
A calling program–supplied callback function that allows your application to monitor progress or
abort the operation as the bitmap’s colors are checked against the gamut of the destination device.
The default CMM calls your function approximately every half-second unless color checking occurs
in less time this happens when there is a small amount of data to be checked. If the function returns
a result of true, the operation is aborted. Specify NULL for this parameter if your application will not
monitor the bitmap color checking. For information on the callback function and its type definition,
see the function CMBitmapCallBackProcPtr (page 852).

refCon
A pointer to a reference constant for application data passed as a parameter to calls to progressProc.

resultBitmap
A pointer to a bitmap. On return, contains the results of the color check. The bitmap must have bounds
equal to the parameter of the source bitmap pointed to by bitMap. You must allocate the pixel buffer
pointed to by the image field of the structure CMBitmap (page 882) and initialize the buffer to zeroes.
Pixels are set to 1 if the corresponding pixel of the source bitmap indicated by bitMap is out of gamut.
You must set the space field of the CMBitMap structure to cmGamutResult1Space color space
storage format, as described in “Abstract Color Space Constants” (page 946).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
When your application calls the CWCheckBitMap function, the ColorSync Manager dispatches the function
to the preferred CMM. The ColorSync Manager determines the preferred CMM based on the color world
configuration. If the color world you pass in was created by the CWConcatColorWorld function, then the
keyIndex field of the CMConcatProfileSet data structure identifies the preferred CMM. If the preferred
CMM is not available, the default CMM is used to perform the color matching.

For the CWCheckBitMap function to execute successfully, the source profile’s dataColorSpace field value
and the space field value of the source bitmap pointed to by the bitMap parameter must specify the same
data color space. CWCheckBitMap is not supported if the color world was initialized with a named color
space profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

820 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

CWCheckColors
Tests a list of colors using a specified color world to see if they fall within the gamut of a destination device.

CMError CWCheckColors (
 CMWorldRef cw,
 CMColor *myColors,
 size_t count,
 UInt8 *result
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) describing how the test is to occur.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

myColors
A pointer to an array containing a list of colors of type CMColor (page 884) to be checked.This function
assumes the color values are specified in the data color space of the source profile.

count
The number of colors in the array. This is a one-based count.

result
A pointer to a buffer of packed bits. On return, each bit value is interpreted as a bit field with each
bit representing a color in the array pointed to by myColors. You allocate enough memory to allow
for 1 bit to represent each color in the myColors array. Bits in the result field are set to 1 if the
corresponding color is out of gamut for the destination device. Ensure that the buffer you allocate is
zeroed out before you call this function.

To access the packed bit-array, use code similar to the following:

inline bool GetNthBit (UInt8* result, int n)
{
 return (0 != (result[n/8] & (128>>(n%8))));
}

The result bit array indicates whether the colors in the list are in or out of gamut for the destination
profile. If a bit is set, its corresponding color falls out of gamut for the destination device. The leftmost
bit in the field corresponds to the first color in the list.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The color test provides a preview of color matching using the specified color world.

All CMMs must support the CWCheckColors function.

If you have set a profile’s gamut-checking mask so that no gamut information is included—see “Flag Mask
Definitions for Version 2.x Profiles” (page 983) — CWCheckColors returns the cmCantGamutCheckError
error.

Functions 821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

The CWCheckColors function supports matching sessions set up with one of the multichannel color data
types. CWCheckColors is not supported if the color world was initialized with a named color space profile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CWCheckPixMap
Checks the colors of a pixel map using the profiles of a specified color world to determine whether the colors
are in the gamut of the destination device. (Deprecated in Mac OS X v10.4.)

CMError CWCheckPixMap (
 CMWorldRef cw,
 PixMap *myPixMap,
 CMBitmapCallBackUPP progressProc,
 void *refCon,
 BitMap *resultBitMap
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) in which color checking is to occur.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both return
color world references of type CMWorldRef (page 942).

See the QuickDraw Reference for a description of the PixMap data type.

myPixMap
A pointer to the pixel map to check colors for. A pixel map is a QuickDraw structure describing pixel
data. The pixel map must be nonrelocatable; to ensure this, you should lock the handle to the pixel
map. See the QuickDraw Reference for a description of the PixMap data type.

progressProc
A calling program–supplied callback function that allows your application to monitor progress or
abort the operation as the pixel map colors are checked against the gamut of the destination device.

The default CMM calls your function approximately every half-second unless color checking occurs
in less time; this happens when there is a small amount of data to be checked. If the function returns
a result of true, the operation is aborted. Specify NULL for this parameter if your application will not
monitor the pixel map color checking. For information on the callback function and its type definition,
see the function CMBitmapCallBackProcPtr (page 852).

See the QuickDraw Reference for a description of the PixMap data type.

refCon
A pointer to a reference constant for application data passed as a parameter to calls to your
CMBitmapCallBack function pointed to by progressProc.

resultBitMap
A pointer to a QuickDraw bitmap. On return, bits are set to 1 if the corresponding pixel of the pixel
map indicated by myPixMap is out of gamut. Boundaries of the bitmap indicated by resultBitMap
must equal the parameter of the pixel map indicated by the myPixMap. See the QuickDraw Reference
for a description of the PixMap data type.

822 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CWCheckPixMap function performs a gamut test of the pixel data of the myPixMappixel map to determine
if its colors are within the gamut of the destination device as specified by the destination profile. The gamut
test provides a preview of color matching using the specified color world.

The preferred CMM, as determined by the ColorSync Manager based on the profiles of the color world
configuration, is called to perform the color matching.

If the preferred CMM is not available, then the ColorSync Manager calls the default CMM to perform the
matching. If the preferred CMM is available but does not implement the CMCheckPixmap function, then the
ColorSync Manager unpacks the colors in the pixel map to create a color list and calls the preferred CMM’s
CMCheckColors function, passing to this function the list of colors to match. Every CMM must support the
CMCheckColors function.

For this function to execute successfully, the source and destination profiles’ data color spaces (
dataColorSpace field) must be RGB to match the data color space of the pixel map, which is implicitly RGB.

If you specify a pointer to a callback function in the progressProc parameter, the CMM performing the
color checking calls your function to monitor progress of the session. Each time the CMM calls your function,
it passes the function any data you specified in the CWCheckPixMap function’s refCon parameter.

You can use the reference constant to pass in any kind of data your callback function requires. For example,
if your application uses a dialog box with a progress bar to inform the user of the color-checking session’s
progress, you can use the reference constant to pass the dialog box’s window reference to the callback
routine. For information about the callback function, see the function CMBitmapCallBackProcPtr (page
852).

You should ensure that the buffer pointed to by the baseAddr field of the bitmap passed in the
resultBitMap parameter is zeroed out.

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CWConcatColorWorld
Sets up a color world that includes a set of profiles for various color transformations among devices in a
sequence.

Functions 823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CWConcatColorWorld (
 CMWorldRef *cw,
 CMConcatProfileSet *profileSet
);

Parameters
cw

A pointer to a color world. On return, a reference to a color world of type CMWorldRef (page 942).
You pass the returned reference to other functions that use the color world for color-matching and
color-checking sessions.

profileSet
A pointer of type CMConcatProfileSet (page 887) to an array of profiles describing the processing
to carry out. You create the array and initialize it in processing order—source through destination.

You set the keyIndex field of the CMConcatProfileSet data structure to specify the zero-based
index of the profile within the profile array whose specified CMM should be used for the entire
color-matching or color-checking session. The profile header’s CMMType field specifies the CMM. This
CMM will fetch the profile elements necessary for the session.

Note that starting with ColorSync 2.5, the user can set a preferred CMM with the ColorSync control
panel. If that CMM is available, ColorSync will use that CMM for all color conversion and matching
operations the CMM is capable of performing.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CWConcatColorWorld function sets up a session for color processing that includes a set of profiles. The
array of profiles is in processing order—source through destination. Your application passes the function a
pointer to a data structure of type CMConcatProfileSet to identify the profile array.

The quality flag setting—indicating normal mode, draft mode, or best mode—specified by the first profile
prevails for the entire session the quality flags of following profiles in the sequence are ignored. The quality
flag setting is stored in the flags field of the profile header. See CM2Header (page 875) and “Flag Mask
Definitions for Version 2.x Profiles” (page 983) for more information on the use of flags.

The rendering intent specified by the first profile is used to color match to the second profile, the rendering
intent for the second profile is used to color match to the third profile, and so on through the series of
concatenated profiles.

The following rules govern the profiles you can specify in the profile array pointed to by the profileSet
parameter for use with the CWConcatColorWorld function:

 ■ In the profile array, you can pass in one or more profiles, but you must specify at least one profile. If you
specify only one profile, it must be a device link profile. If you specify a device link profile, you cannot
specify any other profiles in the profiles array; a device link profile must be used alone.

 ■ In the profile array, you can specify an abstract profile anywhere in the sequence other than as the first
or last profile.

 ■ For the first and last profiles, you can specify device profiles or color space conversion profiles. However,
when you set up a color-matching session with a named color space profile and other profiles, the named
color profile must be first or the last profile in the color world—it cannot be in the middle.

 ■ You cannot specify NULL to indicate the system profile. Note that starting with version 2.5, use of the
system profile has changed.

 ■ If you specify a color space profile in the middle of the profile sequence, it is ignored by the default CMM.

824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 ■ If you specify a named color profile, it must be the first or the last profile. Otherwise,
CWConcatColorWorld returns the value cmCantConcatenateError.

A after executing the CWConcatColorWorld function, you should call the function CMCloseProfile (page
728) for each profile to dispose of its reference.

Instead of passing in an array of profiles, you can specify a device link profile. For information on how to
create a device link profile, see the CWNewLinkProfile function, which is described next.

Version Notes
The parameter description for profileSet includes changes in how this function is used starting with
ColorSync version 2.5.

Note also that starting with version 2.5, use of the system profile has changed.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

CWDisposeColorWorld
Releases the private storage associated with a color world when your application has finished using the color
world.

void CWDisposeColorWorld (
 CMWorldRef cw
);

Parameters
cw

A color world reference of type CMWorldRef (page 942).

The function NCWNewColorWorld (page 846) and the function CWConcatColorWorld (page 823)
both allocate color world references of type CMWorldRef (page 942).

Discussion
The following functions use color worlds. If you create a color world to pass to one of these functions, you
must dispose of the color world when your application is finished with it.

 ■ CWMatchColors (page 828)

 ■ CWCheckColors (page 821)

 ■ CWMatchBitmap (page 826)

 ■ CWCheckBitmap (page 819)

 ■ CWMatchPixMap (page 829)

 ■ CWCheckPixMap (page 822)

Functions 825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CWFillLookupTexture
Fills a 3-D lookup texture from a color world.

CMError CWFillLookupTexture (
 CMWorldRef cw,
 UInt32 gridPoints,
 UInt32 format,
 UInt32 dataSize,
 void *data
);

Parameters
cw

The color world to use.

gridPoints
The number of grid points per channel in the texture.

format
The format of pixels in texture; for example, cmTextureRGBtoRGBX8.

dataSize
The size in bytes of texture data to fill.

data
On output, points to the texture data to fill.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You can use the resulting table in OpenGL to accelerate color management in hardware.

Availability
Available in Mac OS X v. 10.3 and later.

Declared In
CMApplication.h

CWMatchBitmap
Matches the colors of a bitmap to the gamut of a destination device using the profiles specified by a color
world.

826 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CWMatchBitmap (
 CMWorldRef cw,
 CMBitmap *bitmap,
 CMBitmapCallBackUPP progressProc,
 void *refCon,
 CMBitmap *matchedBitmap
);

Parameters
cw

A reference to a color world of type CMWorldRef (page 942) in which matching is to occur.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

bitmap
A pointer to a bitmap of type CMBitmap (page 882) whose colors are to be matched.

progressProc
A calling program–supplied universal procedure pointer to a callback function that allows your
application to monitor progress or abort the operation as the bitmap colors are matched. The default
CMM calls your function approximately every half-second unless color matching occurs in less time
this happens when there is a small amount of data to be matched. If the function returns a result of
true, the operation is aborted. To match colors without monitoring the process, specify NULL for this
parameter. For a description of the function your application supplies, see the function
CMBitmapCallBackProcPtr (page 852).

refCon
A pointer to a reference constant for application data passed through as a parameter to calls to the
progressProc function.

matchedBitmap
A pointer to a bitmap. On return, contains the color-matched image. You must allocate the pixel
buffer pointed to by the image field of the structure CMBitmap (page 882). If you specify NULL for
matchedBitMap, then the source bitmap is matched in place.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CWMatchBitmap function matches a bitmap using the profiles specified by the given color world.

You should ensure that the buffer pointed to by the image field of the bitmap passed in the bitMap parameter
is zeroed out before you call this function.

The ColorSync Manager does not explicitly support a CMY color space. However, for printers that have a CMY
color space, you can use either of the following circumventions to make the adjustment:

 ■ You can use a CMY profile, which the ColorSync Manager does support, with a CMYK color space. If you
specify a CMYK color space in this case, the ColorSync Manager zeroes out the K channel to simulate a
CMY color space.

 ■ You can use an RGB color space and pass in the bitmap along with an RGB profile, then perform the
conversion from RGB to CMY yourself.

Functions 827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

For this function to execute successfully, the source profile’s dataColorSpace field value and the space
field value of the source bitmap pointed to by the bitMap parameter must specify the same data color space.
Additionally, the destination profile’s dataColorSpace field value and the space field value of the resulting
bitmap pointed to by the matchedBitMap parameter must specify the same data color space, unless the
destination profile is a named color space profile.

If you set matchedBitMap to NULL to specify in-place matching, you must be sure the space required by
the destination bitmap is less than or equal to the size of the source bitmap.

Version Notes
The color spaces currently supported for the CWMatchBitmap function are defined in “Color Space Constants
With Packing Formats” (page 962). Support for the following color space constants, was added with ColorSync
version 2.5:

 ■ cmGray16Space

 ■ cmGrayA32Space

 ■ cmRGB48Space.

 ■ cmCMYK64Space

 ■ cmLAB48Space

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CWMatchColors
Matches colors in a color list, using the specified color world.

CMError CWMatchColors (
 CMWorldRef cw,
 CMColor *myColors,
 size_t count
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) that describes how matching is to
occur in the color-matching session.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

myColors
A pointer to an array containing a list of colors of type CMColor (page 884). On input, contains the
list of colors to match. On return, contains the list of matched colors specified in the color data space
of the color world’s destination profile.

count
A one-based count of the number of colors in the color list of the myColors array.

828 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CWMatchColors function matches colors according to the profiles corresponding to the specified color
world. On input, the color values in the myColors array are assumed to be specified in the data color space
of the source profile. On return, the color values in the myColors array are transformed to the data color
space of the destination profile.

All color management modules (CMM)s must support this function.

This function supports color-matching sessions set up with one of the multichannel color data types.

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

CWMatchPixMap
Matches a pixel map in place based on a specified color world. (Deprecated in Mac OS X v10.4.)

CMError CWMatchPixMap (
 CMWorldRef cw,
 PixMap *myPixMap,
 CMBitmapCallBackUPP progressProc,
 void *refCon
);

Parameters
cw

A reference to the color world of type CMWorldRef (page 942) in which matching is to occur.

The functions NCWNewColorWorld (page 846) and CWConcatColorWorld (page 823) both allocate
color world references of type CMWorldRef (page 942).

myPixMap
A pointer to the pixel map to match. A pixel map is a QuickDraw structure describing pixel data. The
pixel map must be nonrelocatable; to ensure this, you should lock the handle to the pixel map before
you call this function. See the QuickDraw Reference for a description of the PixMap data type.

progressProc
A function supplied by your application to monitor progress or abort the operation as the pixel map
colors are matched. The default CMM calls your function approximately every half-second, unless
matching is completed in less time.

If the function returns a result of true, the operation is aborted. You specify NULL for this parameter
if your application will not monitor the pixel map color matching. For information on the callback
function and its type definition, refer to the function CMProfileFilterProcPtr (page 864).

refCon
A pointer to a reference constant for application data that is passed as a parameter to calls to
progressProc.

Functions 829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The CWMatchPixMap function matches a pixel map in place using the profiles specified by the given color
world. The preferred CMM, as determined by the ColorSync Manager based on the color world configuration,
is called to perform the color matching.

If the preferred CMM is not available, then the ColorSync Manager calls the default CMM to perform the
matching. If the preferred CMM is available but it does not implement the CMMatchPixMap function, then
the ColorSync Manager unpacks the colors in the pixel map to create a color list and calls the preferred CMM’s
CMMatchColors function, passing to this function the list of colors to match. Every CMM must support the
CMMatchColors function.

For this function to execute successfully, the source and destination profiles’ data color spaces (
dataColorSpace field) must be RGB to match the data color space of the pixel map, which is implicitly RGB.
For color spaces other than RGB, you should use the function CWMatchBitmap (page 826).

If you specify a pointer to a callback function in the progressProc parameter, the CMM performing the
color matching calls your function to monitor progress of the session. Each time the CMM calls your function,
it passes the function any data you specified in the CWMatchPixMap function’s refCon parameter. If the
ColorSync Manager performs the color matching, it calls your callback monitoring function once every scan
line during this process.

You can use the reference constant to pass in any kind of data your callback function requires. For example,
if your application uses a dialog box with a progress bar to inform the user of the color-matching session’s
progress, you can use the reference constant to pass the dialog box’s window reference to the callback
routine. For information about the callback function, see the function CMBitmapCallBackProcPtr (page
852).

Applications do not interact directly with the function CWMatchColors (page 828).

Availability
Available in CarbonLib 1.0 and later when ColorSync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CWNewLinkProfile
Creates a device link profile based on the specified set of profiles. (Deprecated in Mac OS X v10.5.)

830 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError CWNewLinkProfile (
 CMProfileRef *prof,
 const CMProfileLocation *targetLocation,
 CMConcatProfileSet *profileSet
);

Parameters
prof

A pointer to an uninitialized profile reference of type CMProfileRef (page 925). On return, points to
the new device link profile reference.

targetLocation
On return, a pointer to a location specification for the resulting profile. A device link profile cannot
be a temporary profile: that is, it cannot have a location type of cmNoProfileBase.

profileSet
On input, a pointer to an array of profiles describing the processing to carry out. The array is in
processing order—source through destination. For a description of the CMConcatProfileSet (page
887) data type, see CMHeader (page 898).

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
This discussion is accurate for versions of ColorSync prior to 2.5. See the version notes below for changes
starting with version 2.5.

You can use this function to create a new single profile containing a set of profiles and pass the device link
profile to the function CWConcatColorWorld (page 823) instead of specifying each profile in an array. A
device link profile provides a means of storing in concatenated format a series of device profiles and non-device
profiles that are used repeatedly in the same sequence.

The only way to use a device link profile is to pass it to the CWConcatColorWorld function as the sole profile
specified by the array passed in the profileSet parameter.

The zero-based keyIndex field of the CMConcatProfileSet data structure specifies the index of the profile
within the device link profile whose preferred CMM is used for the entire color-matching or color-checking
session. The profile header’s CMMType field specifies the preferred CMM for the specified profile. This CMM
will fetch the profile elements necessary for the session.

The quality flag setting—indicating normal mode, draft mode, or best mode—specified by the first profile
prevails for the entire session the quality flags of profiles that follow in the sequence are ignored. The quality
flag setting is stored in the flag field of the profile header. See CM2Header (page 875) for more information
on the use of flags.

The rendering intent specified by the first profile is used to color match to the second profile, the rendering
intent specified by the second profile is used to color match to the third profile, and so on through the series
of concatenated profiles.

The following rules govern the content and use of a device link profile:

 ■ The first and last profiles you specify in the profiles array for a device link profile must be device profiles.

 ■ You cannot specify a named color profile.

 ■ You cannot include another device link profile in the series of profiles you specify in the profiles array.

Functions 831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 ■ The only way to use a device link profile is to pass it to the CWConcatColorWorld function as the sole
profile specified by the array passed in the profileSet parameter.

 ■ You cannot embed a device link profile in an image.

 ■ You cannot specify NULL to indicate the system profile.

This function privately maintains all the profile information required by the color world for color-matching
and color-checking sessions. Therefore, after executing the CWNewLinkProfile function, you should call
the CMCloseProfile (page 728) function for each profile used to build a device link profile (to dispose of
each profile reference).

Version Notes
Note that starting with version 2.5, use of the system profile has changed.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

DisposeCMBitmapCallBackUPP
Disposes of a universal procedure pointer (UPP) to a bitmap callback. (Deprecated in Mac OS X v10.5.)

void DisposeCMBitmapCallBackUPP (
 CMBitmapCallBackUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

DisposeCMConcatCallBackUPP
Disposes of a universal procedure pointer (UPP) to a progress-monitoring callback. (Deprecated in Mac OS
X v10.5.)

832 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

void DisposeCMConcatCallBackUPP (
 CMConcatCallBackUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

DisposeCMFlattenUPP
Disposes of a universal procedure pointer (UPP) to a data-flattening callback. (Deprecated in Mac OS X v10.5.)

void DisposeCMFlattenUPP (
 CMFlattenUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

DisposeCMMIterateUPP
Disposes of a universal procedure pointer (UPP) to a progress-monitoring callback for the CMIterateCMMInfo
function. (Deprecated in Mac OS X v10.5.)

void DisposeCMMIterateUPP (
 CMMIterateUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

DisposeCMProfileAccessUPP
Disposes of a universal procedure pointer (UPP) to a profile-access callback. (Deprecated in Mac OS X v10.5.)

void DisposeCMProfileAccessUPP (
 CMProfileAccessUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

DisposeCMProfileFilterUPP
Disposes of a universal procedure pointer (UPP) to a profile-filter callback. (Deprecated in Mac OS X v10.5.)

void DisposeCMProfileFilterUPP (
 CMProfileFilterUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

DisposeCMProfileIterateUPP
Disposes of a universal procedure pointer (UPP) to a profile-iteration callback. (Deprecated in Mac OS X v10.5.)

834 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

void DisposeCMProfileIterateUPP (
 CMProfileIterateUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMApplication.h

InvokeCMBitmapCallBackUPP
Invokes a universal procedure pointer (UPP) to a bitmap callback. (Deprecated in Mac OS X v10.5.)

Boolean InvokeCMBitmapCallBackUPP (
 SInt32 progress,
 void *refCon,
 CMBitmapCallBackUPP userUPP
);

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMBitmapCallBackProcPtr” (page 852) callback for more information and for a description of the
parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

InvokeCMConcatCallBackUPP
Invokes a universal procedure pointer (UPP) to a progress-monitoring callback. (Deprecated in Mac OS X
v10.5.)

Boolean InvokeCMConcatCallBackUPP (
 SInt32 progress,
 void *refCon,
 CMConcatCallBackUPP userUPP
);

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMConcatCallBackProcPtr” (page 853) callback for more information and for a description of the
parameters.

Functions 835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

InvokeCMFlattenUPP
Invokes a universal procedure pointer (UPP) to a data-flattening callback. (Deprecated in Mac OS X v10.5.)

OSErr InvokeCMFlattenUPP (
 SInt32 command,
 long *size,
 void *data,
 void *refCon,
 CMFlattenUPP userUPP
);

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMFlattenProcPtr” (page 855) callback for more information and for a description of the parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

InvokeCMMIterateUPP
Invokes a universal procedure pointer (UPP) to a a progress-monitoring callback for the CMIterateCMMInfo
function. (Deprecated in Mac OS X v10.5.)

OSErr InvokeCMMIterateUPP (
 CMMInfo *iterateData,
 void *refCon,
 CMMIterateUPP userUPP
);

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMMIterateProcPtr” (page 862) callback for more information and for a description of the parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

836 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

InvokeCMProfileAccessUPP
Invokes a universal procedure pointer (UPP) to a profile-access callback. (Deprecated in Mac OS X v10.5.)

OSErr InvokeCMProfileAccessUPP (
 SInt32 command,
 SInt32 offset,
 SInt32 *size,
 void *data,
 void *refCon,
 CMProfileAccessUPP userUPP
);

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMProfileAccessProcPtr” (page 862) callback for more information and for a description of the parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

InvokeCMProfileFilterUPP
Invokes a universal procedure pointer (UPP) to a profile-filter callback. (Deprecated in Mac OS X v10.5.)

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMProfileFilterProcPtr” (page 864) callback for more information and for a description of the parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

InvokeCMProfileIterateUPP
Invokes a universal procedure pointer (UPP) to a profile-iteration callback. (Deprecated in Mac OS X v10.5.)

Functions 837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

OSErr InvokeCMProfileIterateUPP (
 CMProfileIterateData *iterateData,
 void *refCon,
 CMProfileIterateUPP userUPP
);

Parameters
Return Value
A result code. See “ColorSync Manager Result Codes” (page 1020).

Discussion
In most cases, you do not need to call this function as ColorSync Manager invokes your callback for you. See
the “CMProfileIterateProcPtr” (page 865) callback for more information and for a description of the parameters.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMApplication.h

NCMBeginMatching
Sets up a QuickDraw-specific ColorSync matching session, using the specified source and destination profiles.
(Deprecated in Mac OS X v10.4.)

CMError NCMBeginMatching (
 CMProfileRef src,
 CMProfileRef dst,
 CMMatchRef *myRef
);

Parameters
src

A profile reference of type CMProfileRef (page 925) that specifies the source profile for the matching
session. Starting with ColorSync version 2.5, you can call CMGetDefaultProfileBySpace (page 752)
to get the default profile for a specific color space or CMGetProfileByAVID (page 767) to get a profile
for a specific display.

With any version of ColorSync, you can specify a NULL value to indicate the ColorSync system profile.
Note, however, that starting with version 2.5, use of the system profile has changed.

See the QuickDraw Reference for a description of the PixMap data type.

dst
A profile reference of type CMProfileRef (page 925) that specifies the destination profile for the
matching session. Starting with ColorSync version 2.5, you can call
CMGetDefaultProfileBySpace (page 752) to get the default profile for a specific color space or
CMGetProfileByAVID (page 767) to get a profile for a specific display.

With any version of ColorSync, you can specify a NULL value to indicate the ColorSync system profile.
Note, however, that starting with version 2.5, use of the system profile has changed.See the QuickDraw
Reference for a description of the PixMap data type.

838 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

myRef
A pointer to a matching session. On return, it specifies the QuickDraw-specific matching session that
was set up. See the QuickDraw Reference for a description of the PixMap data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The NCMBeginMatching function sets up a QuickDraw-specific matching session, telling the ColorSync
Manager to match all colors drawn to the current graphics device using the specified source and destination
profiles.

The NCMBeginMatching function returns a reference to the color-matching session. You must later pass
this reference to the function CMEndMatching (page 747) to conclude the session.

The source and destination profiles define how the match is to occur. Passing NULL for either the source or
destination profile is equivalent to passing the system profile. If the current device is a screen device, matching
to all screen devices occurs.

The NCMBeginMatching and CMEndMatching functions can be nested. In such cases, the ColorSync Manager
matches to the most recently added profiles first. Therefore, if you want to use the NCMBeginMatching–
CMEndMatching pair to perform a page preview—which typically entails color matching from a source
device (scanner) to a destination device (printer) to a preview device (display)— you first call
NCMBeginMatching with the printer-to-display profiles, and then call NCMBeginMatching with the
scanner-to-printer profiles. The ColorSync Manager then matches all drawing from the scanner to the printer
and then back to the display. The print preview process entails multiprofile transformations. The ColorSync
Manager general purpose functions (which include the use of concatenated profiles well suited to print-preview
processing) offer an easier and faster way to do this. These functions are described in “Matching Colors Using
General Purpose Functions”.

If you call NCMBeginMatching before drawing to the screen’s graphics device (as opposed to an offscreen
device), you must call CMEndMatching to finish a matching session before calling WaitNextEvent or any
other routine (such as Window Manager routines) that could draw to the screen. Failing to do so will cause
unwanted matching to occur. Furthermore, if a device has color matching enabled, you cannot call the
CopyBits procedure to copy from it to itself unless the source and destination rectangles are the same.

Even if you call the NCMBeginMatching function before calling the QuickDraw DrawPicture function, the
ColorSync picture comments such as cmEnableMatching and cmDisableMatching are not acknowledged.
For the ColorSync Manager to recognize these comments and allow their use, you must call the function
NCMUseProfileComment (page 843) for color matching using picture comments.

This function causes matching for the specified devices rather than for the current color graphics port.

The NCMBeginMatching function uses QuickDraw and performs color matching in a manner acceptable to
most applications. However, if your application needs a finer level of control over color matching, it can use
the general purpose functions described in “Matching Colors Using General Purpose Functions”.

Version Notes
The parameter descriptions for src and dst describe changes in how this function is used starting with
ColorSync version 2.5.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NCMDrawMatchedPicture
Matches a picture’s colors to a destination device’s color gamut, as the picture is drawn, using the specified
destination profile. (Deprecated in Mac OS X v10.4.)

void NCMDrawMatchedPicture (
 PicHandle myPicture,
 CMProfileRef dst,
 Rect *myRect
);

Parameters
myPicture

The QuickDraw picture whose colors are to be matched. See the QuickDraw Reference for a description
of the PixMap data type.

dst
A profile reference of type CMProfileRef (page 925) to the profile of the destination device. Starting
with ColorSync version 2.5, if you know the destination display device, you can call
CMGetProfileByAVID (page 767) to get the specific profile for the display, or you can call
CMGetDefaultProfileBySpace (page 752) to get the default profile for the RGB color space,.

With any version of ColorSync, you can specify a NULL value to indicate the ColorSync system profile.
Note, however, that starting with version 2.5, use of the system profile has changed.

See the QuickDraw Reference for a description of the PixMap data type.

myRect
A pointer to a destination rectangle for rendering the picture specified by myPicture.

Return Value
This function does not return an error value. Instead, after calling NCMDrawMatchedPicture you call the
QDError routine to determine if an error has occurred.

Discussion
The NCMDrawMatchedPicture function operates in the context of the current color graphics port. This
function sets up and takes down a color-matching session. It automatically matches all colors in a picture to
the destination profile for a destination device as the picture is drawn. It uses the ColorSync system profile
as the initial source profile and any embedded profiles as they are encountered thereafter. (Because
color-matching picture comments embedded in the picture to be matched are recognized, embedded profiles
are used.)

The ColorSync Manager defines five picture comment kinds, as described in “Picture Comment Kinds” (page
995). For embedding to work correctly, each embedded profile that is used for matching must be terminated
by a picture comment of kind cmEndProfile. If a picture comment is not specified to end the profile after
drawing operations using that profile are performed, the profile will remain in effect until another embedded
profile is introduced that has a picture comment kind of cmBeginProfile. To avoid unexpected matching
effects, always pair use of the cmBeginProfile and cmEndProfile picture comments. When the ColorSync
Manager encounters a cmEndProfile picture comment, it restores use of the system profile for matching
until it encounters another cmBeginProfile picture comment.

840 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

The picture is drawn with matched colors to all screen graphics devices. If the current graphics device is not
a screen device, matching occurs for that graphics device only.

If the current port is not a color graphics port, then calling this function is equivalent to calling DrawPicture,
in which case no color matching occurs.

Version Notes
The parameter description for dst describes changes in how this function is used starting with ColorSync
version 2.5.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NCMGetProfileLocation
Obtains either a profile location structure for a specified profile or the size of the location structure for the
profile.

CMError NCMGetProfileLocation (
 CMProfileRef prof,
 CMProfileLocation *theProfile,
 UInt32 *locationSize
);

Parameters
prof

A profile reference of type CMProfileRef (page 925). Before calling NCMGetProfileLocation, you
set the reference to specify the profile for which you wish to obtain the location or location structure
size.

theProfile
A pointer to a profile location structure, as described in CMProfileLocation (page 924). If you pass
NULL, NCMGetProfileLocation returns the size of the profile location structure for the profile
specified by prof in the locationSize parameter. If you instead pass a pointer to memory you
have allocated for the structure, on return, the structure specifies the location of the profile specified
by prof.

locationSize
A pointer to a value of type long. If you pass NULL for the profLoc parameter, on return,
locationSize contains the size in bytes of the profile location structure for the profile specified by
prof. If you pass a pointer to a profile location structure in profLoc, set locationSize to the size
of the structure before calling NCMGetProfileLocation, using the constant
cmCurrentProfileLocationSize.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Functions 841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
The NCMGetProfileLocation function is available starting with ColorSync version 2.5. It differs from its
predecessor, CMGetProfileLocation (page 770), in that the newer version has a parameter for the size of
the location structure for the specified profile.

You should use NCMGetProfileLocation rather than CMGetProfileLocation for the following reasons:

 ■ Code using the older version (CMGetProfileLocation) may not be as easily ported to other platforms.

 ■ Specifying the size of the profile location structure ensures that it can grow, if necessary, in the future.

The best way to use NCMGetProfileLocation is to call it twice:

1. Pass a reference to the profile to locate in the prof parameter and NULL for the profLoc parameter.
NCMGetProfileLocation returns the size of the location structure in the locationSize parameter.

2. Allocate enough space for a structure of the returned size, then call the function again, passing a pointer
in the profLoc parameter; on return, the structure specifies the location of the profile.

It is possible to call NCMGetProfileLocation just once, using the constant
cmCurrentProfileLocationSize for the size of the allocated profile location structure and passing the
same constant for the locationSize parameter. The constant cmCurrentProfileLocationSize may
change in the future, but will be consistent within the set of headers you build your application with. However,
if the size of the CMProfileLocation structure changes in a future version of ColorSync (and the value of
cmCurrentProfileLocationSize as well) and you do not rebuild your application,
NCMGetProfileLocation may return an error.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

NCMSetSystemProfile
Sets the location of a color profile. (Deprecated in Mac OS X v10.5.)

CMError NCMSetSystemProfile (
 const CMProfileLocation *profLoc
);

Parameters
profLoc

The location of the profile. Commonly a profile is disk-file based. However, the profile may be a
file-based profile, a handle-based profile, or a pointer-based profile.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
Prior to ColorSync 2.6, the function for setting the system profile supported only the FSSpec file specification
type as a way of specifying a profile. This function allows for greater flexibility when specifying a system
profile.

842 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

NCMUnflattenProfile
Unflattens a previouslyflattened profile. (Deprecated in Mac OS X v10.5.)

CMError NCMUnflattenProfile (
 CMProfileLocation *targetLocation,
 CMFlattenUPP proc,
 void *refCon,
 Boolean *preferredCMMnotfound
);

Parameters
targetLocation

The location of the profile you want to unflatten. Commonly a profile is disk-file based. However, the
profile may be a file-based profile, a handle-based profile, or a pointer-based profile.

proc
A user-defined procedure which is called during the unflatten operation.

refCon
A reference constant containing data specified by the calling application program.

preferredCMMnotfound
A return value indicating whether or not the CMM specified in the profile was found.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMApplication.h

NCMUseProfileComment
Automatically embeds a profile or a profile identifier into an open picture. (Deprecated in Mac OS X v10.4.)

Functions 843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMError NCMUseProfileComment (
 CMProfileRef prof,
 UInt32 flags
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to embed. See the QuickDraw
Reference for a description of the PixMap data type.

flags
A flag value in which individual bits determine settings. “Embedded Profile Identifiers” (page 982)
describes constants for use with this parameter. For example, you pass cmEmbedWholeProfile to
embed a whole profile or cmEmbedProfileIdentifier to embed a profile identifier. No other
values are currently defined; all other bits are reserved for future use.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The NCMUseProfileComment function automatically generates the picture comments required to embed
the specified profile or profile identifier into the open picture.

To embed a profile, you use the constant cmEmbedWholeProfile to set the flags parameter before calling
NCMUseProfileComment. The NCMUseProfileComment function calls the QuickDraw PicComment function
with a picture comment kind value of cmComment and a 4-byte selector that describes the type of data in
the picture comment: cmBeginProfileSel to begin the profile, cmContinueProfileSel to continue,
and cmEndProfileSel to end the profile. These constants are described in “Picture Comment Selectors” (page
997).

If the size in bytes of the profile and the 4-byte selector together exceed 32 KB, this function segments the
profile data and embeds the multiple segments in consecutive order using selector cmContinueProfileSel
to embed each segment.

To embed a profile identifier of type CMProfileIdentifier (page 921) , you use the constant
cmEmbedProfileIdentifier to set the flags parameter before calling NCMUseProfileComment. The
function extracts the necessary information from the profile reference (prof) to embed a profile identifier
for the profile. The profile reference can refer to a previously embedded profile, or to a profile on disk in the
ColorSync Profiles folder.

You can use this function to embed most types of profiles in an image, including device link profiles, but not
abstract profiles. You cannot use this function to embed ColorSync 1.0 profiles in an image.

The NCMUseProfileComment function precedes the profile it embeds with a picture comment of kind
cmBeginProfile. For embedding to work correctly, the currently effective profile must be terminated by
a picture comment of kind cmEndProfile after drawing operations using that profile are performed. You
are responsible for adding the picture comment of kind cmEndProfile. If a picture comment was not
specified to end the profile following the drawing operations to which the profile applies, the profile will
remain in effect until the next embedded profile is introduced with a picture comment of kind
cmBeginProfile. However, use of the next profile might not be the intended action. Always pair use of the
cmBeginProfile and cmEndProfile picture comments. When the ColorSync Manager encounters a
cmEndProfile picture comment, it restores use of the system profile for matching until it encounters another
cmBeginProfile picture comment.

Version Notes
In ColorSync 2.0, the flags parameter was ignored and the routine always embedded the entire profile.

844 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

In ColorSync 2.0, if the prof parameter refers to a version 1.0 profile, the profile is not embedded into the
picture correctly. In ColorSync versions starting with 2.1, this bug has been fixed. One possible workaround
for this problem in ColorSync 2.0 is to call CMCopyProfile to copy the 1.0 profile reference into a handle.
The handle can then be embedded into the picture using CMUseProfileComment.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NCWConcatColorWorld
Defines a color world for color transformations among a series of concatenated profiles.

CMError NCWConcatColorWorld (
 CMWorldRef *cw,
 NCMConcatProfileSet *profileSet,
 CMConcatCallBackUPP proc,
 void *refCon
);

Parameters
cw

A reference to a color world that the ColorSync Manager returns if the function completes successfully.
You pass this reference to other functions that use the color world for color-matching and
color-checking sessions.

profileSet
An array of profiles describing the processing to be carried out. The array is in processing order source
through destination.

proc
A calling-program-supplied callback function that allows your application to monitor progress or
abort the operation.

refCon
A reference constant containing data specified by the calling application program.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The caller can override the color management module (CMM) that would normally be selected by ColorSync
by providing a CMM identifier in the NCMConcatProfileSet structure, or pass 0 to accept ColorSync's CMM
selection (note that this could either be the user's preferred CMM selection or the CMM called for in the
profile). The flags and k parameters are provided to allow easy customization of such attributes as quality
and gamut-checking, while preserving the other settings. Each profile in the set can be customized by
overriding the intent, and the selection of the transform tag. Together with other profiles, a custom-rendering
environment can be set up to transform to or from device-dependent spaces with a minimum of gamut
compression and/or unnecessary transformations to and from connection spaces. This flexibility comes at
the price of specific knowledge of the profile contents and how device gamuts overlap.

Functions 845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Note that for standard input and output device profiles, A2B and B2A tags represent transforms from data
space to connection space and from connection space to data space, respectively. Under these circumstances,
the caller would not normally be able to use the same transform tags (e.g., kUseAtoB) consecutively, since
a connection space would not be the same as the subsequent data space. If the spaces aren't the same, the
caller will get a cmCantConcatenateError error returned. For profiles of type cmLinkClass,
cmAbstractClass, cmColorSpaceClass , and cmNamedColorClass , these constants are not always
meaningful, and the caller is encouraged to think in terms of the actual tags present in the profiles (e.g., A2B0
or B2A0). Under these conditions, it may well be appropriate to specify two transform tags of the same type
consecutively, as long as the actual color spaces align in between tags. If this is not the case, a
cmCantConcatenateError error is returned.

The callback proc is provided as protection against the appearance of a stalled machine during lengthy color
world processing. If a CMM takes more than several seconds to process the information and create a color
world, it will call the callback proc, if one is provided, and pass it the refCon provided. This is also true for
NCWNewLinkProfile.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

NCWNewColorWorld
Creates a color world for color matching based on the specified source and destination profiles.

CMError NCWNewColorWorld (
 CMWorldRef *cw,
 CMProfileRef src,
 CMProfileRef dst
);

Parameters
cw

A pointer to a color world. On return, a reference to a matching session color world of type
CMWorldRef (page 942). You pass this reference to other functions that use the color world.

846 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

src
A profile reference of type CMProfileRef (page 925) that specifies the source profile for the
color-matching world. This profile’s dataColorSpace element corresponds to the source data type
for subsequent calls to functions that use this color world.

Starting with ColorSync version 2.5, you can call CMGetDefaultProfileBySpace (page 752) to get
the default profile for a specific color space or CMGetProfileByAVID (page 767) to get a profile for
a specific display.

With any version of ColorSync, you can specify a NULL value to indicate the ColorSync system profile.
Note, however, that starting with version 2.5, use of the system profile has changed.

dst
A profile reference of type CMProfileRef (page 925) that specifies the destination profile for the
color-matching world. This profile’s dataColorSpace element corresponds to the destination data
type for subsequent calls to functions using this color world.

Starting with ColorSync version 2.5, you can call CMGetDefaultProfileBySpace (page 752) to get
the default profile for a specific color space or CMGetProfileByAVID (page 767) to get a profile for
a specific display.

With any version of ColorSync, you can specify a NULL value to indicate the ColorSync system profile.
Note, however, that starting with version 2.5, use of the system profile has changed.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
You must set up a color world before your application can perform general purpose color-matching or
color-checking operations. To set up a color world for these operations, your application can call
NCWNewColorWorld after obtaining references to the profiles to use as the source and destination profiles
for the color world. The following rules govern the types of profiles allowed:

 ■ You can specify a device profile or a color space conversion profile for the source and destination profiles.

 ■ You can not specify a device link profile or an abstract profile for either the source profile or the destination
profile.

 ■ Only one profile can be a named color profile.

 ■ You can specify the system profile explicitly by reference or by giving NULL for either the source profile
or the destination profile.

You should call the function CMCloseProfile (page 728) for both the source and destination profiles to
dispose of their references after execution of the NCWNewColorWorld function.

The quality flag setting (indicating normal mode, draft mode, or best mode) specified by the source profile
prevails for the entire session. The quality flag setting is stored in the flags field of the profile header. See
CM2Header (page 875) and “Flag Mask Definitions for Version 2.x Profiles” (page 983) for more information
on the use of flags. The rendering intent specified by the source profile also prevails for the entire session.

The function CWConcatColorWorld (page 823) also allocates a color world reference of type
CMWorldRef (page 942).

Version Notes
The parameter descriptions for src and dst describe changes in how this functions is used starting with
ColorSync version 2.5.

Functions 847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

NCWNewLinkProfile
Obtains a profile reference for the specified by the profile location.

CMError NCWNewLinkProfile (
 CMProfileRef *prof,
 const CMProfileLocation *targetLocation,
 NCMConcatProfileSet *profileSet,
 CMConcatCallBackUPP proc,
 void *refCon
);

Parameters
prof

The returned profile reference.

targetLocation
The location of the profile. Commonly a profile is disk-file based. However, the profile may be a
file-based profile, a handle-based profile, or a pointer-based profile.

profileSet
A pointer to the profile set structure.

proc
A calling-program-supplied callback function that allows your application to monitor progress or
abort the operation.

refCon
A reference constant containing data specified by the calling application program.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Discussion
The same new flexibility in creating color worlds is extended to link profiles, which are not assumed to go
from input device color space to output device color space. The returned profile is open, and should be
closed when you are finished with it.

Availability
Available in CarbonLib 1.0 and later when ColorSync 2.6 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
CMApplication.h

NewCMBitmapCallBackUPP
Creates a new universal procedure pointer (UPP) to a bitmap callback. (Deprecated in Mac OS X v10.5.)

848 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMBitmapCallBackUPP NewCMBitmapCallBackUPP (
 CMBitmapCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your bitmap callback function.

Return Value
The universal procedure pointer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

NewCMConcatCallBackUPP
Creates a new universal procedure pointer (UPP) to a progress-monitoring callback. (Deprecated in Mac OS
X v10.5.)

CMConcatCallBackUPP NewCMConcatCallBackUPP (
 CMConcatCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your progress-monitoring callback function.

Return Value
The universal procedure pointer.

Discussion
The callback protects against the appearance of a stalled machine during lengthy color world processing. If
a CMM takes more than several seconds to process the information and create a color world, it will call the
callback, if one is provided, and pass it the refCon provided. Passed to the functions NCWNewLinkProfile
or NCWConcatColorWorld function .

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

NewCMFlattenUPP
Creates a new universal procedure pointer (UPP) to a data-flattening callback. (Deprecated in Mac OS X v10.5.)

Functions 849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMFlattenUPP NewCMFlattenUPP (
 CMFlattenProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your data-flattening callback function.

Return Value
The universal procedure pointer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMTypes.h

NewCMMIterateUPP
Creates a new universal procedure pointer (UPP) to a progress-monitoring callback for the CMIterateCMMInfo
function. (Deprecated in Mac OS X v10.5.)

CMMIterateUPP NewCMMIterateUPP (
 CMMIterateProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your progress-monitoring callback function.

Return Value
The universal procedure pointer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMApplication.h

NewCMProfileAccessUPP
Creates a new universal procedure pointer (UPP) to a profile-access callback. (Deprecated in Mac OS X v10.5.)

CMProfileAccessUPP NewCMProfileAccessUPP (
 CMProfileAccessProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your profile-access callback function.

850 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Return Value
The universal procedure pointer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

NewCMProfileFilterUPP
Creates a new universal procedure pointer (UPP) to a profile-filter callback. (Deprecated in Mac OS X v10.5.)

CMProfileFilterUPP NewCMProfileFilterUPP (
 CMProfileFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your profile-filter callback function.

Return Value
The universal procedure pointer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CMTypes.h

NewCMProfileIterateUPP
Creates a new universal procedure pointer (UPP) to a profile-iteration callback. (Deprecated in Mac OS X
v10.5.)

CMProfileIterateUPP NewCMProfileIterateUPP (
 CMProfileIterateProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your profile-iteration callback function.

Return Value
The universal procedure pointer.

Functions 851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
CMApplication.h

Callbacks

CMBitmapCallBackProcPtr
Defines a pointer to a bitmap callback function that function reports on the progress of a color-matching or
color-checking session being performed for a bitmap or a pixel map.

typedef Boolean (*MyCMBitmapCallBackProc)
(
 SInt16 progress,
 void * refCon
);
);

If you name your function MyCMBitmapCallBackProc, you would declare it like this:

Boolean MyCMBitmapCallBackProc (
 SInt16 progress,
 void * refCon
);

Parameters
progress

A byte count that begins at an arbitrary value when the function is first called. On each subsequent
call, the value is decremented by an amount that can vary from call to call, but that reflects how much
of the matching process has completed since the previous call. If the function is called at all, it will
be called a final time with a byte count of 0 when the matching is complete.

refCon
The pointer to a reference constant passed to your MyCMBitmapCallBack function each time the
color management module (CMM) calls your function.

Return Value
False indicates the color-matching or color-checking session should continue. True indicates the session
should be aborted—for example, the user may be holding down the Command–period keys.

Discussion
Your MyCMBitmapCallBack function allows your application to monitor the progress of a color-matching
or color-checking session for a bitmap or a pixel map. Your function can also terminate the matching or
checking operation.

852 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Your callback function is called by the CMM performing the matching or checking process if your application
passes a pointer to your callback function in the progressProc parameter when it calls one of the following
functions: CWCheckBitmap (page 819) , CWMatchBitmap (page 826) , CWCheckPixMap (page 822) , and
CWMatchPixMap (page 829). Note that your callback function may not be called at all if the operation completes
in a very short period.

The CMM used for the color-matching session calls your function at regular intervals. For example, the default
CMM calls your function approximately every half-second unless the color matching or checking occurs in
less time; this happens when there is a small amount of data to match or check.

Each time the ColorSync Manager calls your function, it passes to the function any data stored in the reference
constant. This is the data that your application specified in the refCon parameter when it called one of the
color-matching or checking functions.

For large bitmaps and pixel maps, your application can display a progress bar or other indicator to show how
much of the operation has been completed. You might, for example, use the reference constant to pass to
the callback function a window reference to a dialog box. You obtain information on how much of the
operation has completed from the progress parameter. The first time your callback is called, this parameter
contains an arbitrary byte count. On each subsequent call, the value is decremented by an amount that can
vary from call to call, but that reflects how much of the matching process has completed since the previous
call. Using the current value and the original value, you can determine the percentage that has completed.
If the callback function is called at all, it will be called a final time with a byte count of 0 when the matching
is complete.

To terminate the matching or checking operation, your function should return a value of true. Because
pixel-map matching is done in place, an application that allows the user to terminate the process should
revert to the prematched image to avoid partial mapping.

For bitmap matching, if the matchedBitMap parameter of the CWMatchBitmap function specifies NULL, to
indicate that the source bitmap is to be matched in place, and the application allows the user to abort the
process, you should also revert to the prematched bitmap if the user terminates the operation.

Each time the ColorSync Manager calls your progress function, it passes a byte count in the progress
parameter. The last time the ColorSync Manager calls your progress function, it passes a byte count of 0 to
indicate the completion of the matching or checking process. You should use the 0 byte count as a signal
to perform any cleanup operations your function requires, such as filling the progress bar to completion to
indicate to the user the end of the checking or matching session, and then removing the dialog box used
for the display.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMConcatCallBackProcPtr
Defines a pointer to a progress-monitoring function that the ColorSync Manager calls during lengthy color
world processing.

Callbacks 853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef Boolean (*CMConcatCallBackProcPtr)
(
 SInt32 progress,
 void *refCon
);

If you name your function MyCMConcatCallBackProc, you would declare it like this:

Boolean MyCMConcatCallBackProc (
 SInt32 progress,
 void *refCon
);

Parameters
progress
refCon

Discussion
If a CMM takes more than several seconds to process the information and create a color world, it will call the
Callback proc, if one is provided, and pass it the refCon provided

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMCountImageProfilesProcPtr
Defines a pointer to a function that obtains a count of the number of embeded profiles for a given image..

typedef CMError (*CMCountImageProfilesProcPtr)
(
 const FSSpec * spec,
 UInt32 * count
);

If you name your function MyCMCountImageProfilesProc, you would declare it like this:

CMError MyCMCountImageProfilesProc (
 const FSSpec * spec,
 UInt32 * count
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

count

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

854 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMScriptingPlugin.h

CMEmbedImageProcPtr
Defines a pointer to a function that embeds an image with an ICC profile..

typedef CMError (*CMEmbedImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 CMProfileRef embProf
);

If you name your function MyCMEmbedImageProc, you would declare it like this:

CMError MyCMEmbedImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 CMProfileRef embProf
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

repl
embProf

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMFlattenProcPtr
Defines a pointer to a data transfer callback function that transfers profile data from the format for embedded
profiles to disk file format or vice versa.

Callbacks 855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef OSErr (*CMFlattenProcPtr) (
 SInt32 command,
 SInt32 *size,
 void *data,
 void *refCon
);

If you name your function MyCMFlattenProc, you would declare it like this:

OSErr MyCMFlattenProc (
 SInt32 command,
 SInt32 *size,
 void *data,
 void *refCon
);

Parameters
command

The command with which the MyCMFlattenCallback function is called. This command specifies
the operation the function is to perform.

size
A pointer to a size value. On input, the size in bytes of the data to transfer. On return, the size of the
data actually transferred.

data
A pointer to the buffer supplied by the ColorSync Manager to use for the data transfer.

refCon
A pointer to a reference constant that holds the application data passed in from the functions
CMFlattenProfile (page 748), NCMUnflattenProfile (page 843),
CMGetPS2ColorRenderingVMSize (page 775), CMGetPS2ColorRenderingIntent (page 774), or
CMFlattenProfile (page 748). Each time the CMM calls your MyCMFlattenCallback function, it
passes this data to the function.

Starting in ColorSync version 2.5, the ColorSync Manager calls your function directly, without going
through the preferred, or any, CMM.

Return Value
A result code. See “ColorSync Manager Result Codes” (page 1020).

Discussion
IThis callback can be used, for example, by PostScript functions to transfer data from a profile to text format
usable by a PostScript driver. Starting in ColorSync version 2.5, the ColorSync Manager calls your data transfer
function directly, without going through the preferred, or any, CMM. So any references to the CMM in the
discussion that follows are applicable only to versions of ColorSync prior to version 2.5. Where the discussion
does not involve CMMs, it is applicable to all versions of ColorSync.

Your MyCMFlattenCallback function is called to flatten and unflatten profiles or to transfer PostScript-related
data from a profile to the PostScript format to send to an application or device driver.

The ColorSync Manager and the CMM communicate with the MyCMFlattenCallback function using the
command parameter to identify the operation to perform. To read and write profile data, your function must
support the following commands: cmOpenReadSpool, cmOpenWriteSpool, cmReadSpool, cmWriteSpool,
and cmCloseSpool.

856 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

You determine the behavior of your MyCMFlattenCallback function. The following sections describe how
your function might handle the flattening and unflattening processes.

Flattening a Profile:

The ColorSync Manager calls the specified profile’s preferred CMM when an application calls the
CMFlattenProfile function to transfer profile data embedded in a graphics document.

The ColorSync Manager determines if the CMM supports the CMFlattenProfile function. If so, the ColorSync
Manager dispatches the CMFlattenProfile function to the CMM. If not, ColorSync calls the default CMM,
dispatching the CMFlattenProfile function to it.

The CMM communicates with the MyCMFlattenCallback function using a command parameter to identify
the operation to perform. The CMM calls your function as often as necessary, passing to it on each call any
data transferred to the CMM from the CMFlattenProfile function’s refCon parameter.

The ColorSync Manager calls your function with the following sequence of commands: cmOpenWriteSpool,
cmWriteSpool, and cmCloseSpool. Here is how you should handle these commands:

 ■ When the CMM calls your function with the cmOpenWriteSpool command, you should perform any
initialization required to write profile data you receive from the CMM to a buffer or file.

 ■ The CMM will call your function with the cmWriteSpool command as many times as necessary to transfer
all the profile data to you. Each time you are called, you should receive the data and write it to your
buffer or file, returning in the size parameter the number of bytes of data you actually accepted.

 ■ When the CMM calls your function with the cmCloseSpool command, you should perform any required
cleanup processes.

As part of this process, your function can embed the profile data in a graphics document, for example, a PICT
file or a TIFF file. For example, your MyCMFlattenCallback function can call the QuickDraw PicComment
function to embed the flattened profile in a picture.

Unflattening a Profile:

When an application calls the CMUnflattenProfile function to transfer a profile that is embedded in a
graphics document to an independent disk file, the ColorSync Manager calls your MyCMFlattenCallback
function with the following sequence of commands: cmOpenReadSpool, cmReadSpool, cmCloseSpool.
Here is how you should handle these commands:

 ■ When the ColorSync Manager calls your function with the cmOpenReadSpool command, you should
perform any initialization required to read from the embedded profile format.

 ■ The ColorSync Manager calls your function with the cmReadSpool command as many times as necessary,
directing your function to extract the profile data from the embedded format in the image file and return
it to the ColorSync Manager in the data buffer. For each call, the ColorSync Manager specifies in the
size parameter the number of bytes of data you should return. Each time your function is called it
should read and return the requested data; it should also specify in the size parameter the actual
number of bytes of data it returns.

 ■ When the ColorSync Manager calls your function with the cmCloseSpool command, you should perform
any required cleanup processes.

Version Notes
Starting in ColorSync version 2.5, the ColorSync Manager calls your function directly, without going through
the preferred, or any, CMM.

Callbacks 857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMGetImageSpaceProcPtr
Defines a pointer to a function that obtains the signature of the data color space in which the color values
of colors in an image are expressed.

typedef CMError (*CMGetImageSpaceProcPtr)
(
 const FSSpec * spec,
 OSType * space
);

If you name your function MyCMGetImageSpaceProc, you would declare it like this:

CMError MyCMGetImageSpaceProc (
 const FSSpec * spec,
 OSType * space
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

space

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMGetIndImageProfileProcPtr
Defines a pointer to a function that obtains a specific embeded profile for a given image.

typedef CMError (*CMGetIndImageProfileProcPtr)
(
 const FSSpec * spec,
 UInt32 index,
 CMProfileRef * prof
);

If you name your function MyCMGetIndImageProfileProc, you would declare it like this:

CMError MyCMGetIndImageProfileProc (
 const FSSpec * spec,
 UInt32 index,

858 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 CMProfileRef * prof
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

index
prof

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMIterateDeviceInfoProcPtr
Defines a pointer to a function that iterates through device information available on the system.

typedef OSErr (*CMIterateDeviceInfoProcPtr)
(
 const CMDeviceInfo * deviceInfo,
 void * refCon
);

If you name your function MyCMIterateDeviceInfoProc, you would declare it like this:

OSErr MyCMIterateDeviceInfoProc (
 const CMDeviceInfo * deviceInfo,
 void * refCon
);

Parameters
deviceData
refCon

Return Value
An OSErr value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

CMIterateDeviceProfileProcPtr
Defines a pointer to a function that iterates through the device profiles available on the system.

Callbacks 859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef OSErr (*CMIterateDeviceProfileProcPtr)
(
 const CMDeviceInfo * deviceInfo,
 const NCMDeviceProfileInfo * profileInfo,
 void * refCon
);

If you name your function MyCMIterateDeviceProfileProc, you would declare it like this:

OSErr MyCMIterateDeviceProfileProc (
 const CMDeviceInfo * deviceInfo,
 const NCMDeviceProfileInfo * profileInfo,
 void * refCon
);

Parameters
deviceData
profileData
refCon

Return Value
An OSErr value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

CMLinkImageProcPtr
Defines a pointer to a function that matches an image file with a device link profile.

typedef CMError (*CMLinkImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef lnkProf,
 UInt32 lnkIntent
);

If you name your function MyCMLinkImageProc, you would declare it like this:

CMError MyCMLinkImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef lnkProf,
 UInt32 lnkIntent
);

860 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

repl
qual
lnkProf
lnkIntent

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMMatchImageProcPtr
Defines a pointer to a function that color matches an image file.

typedef CMError (*CMMatchImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf
);

If you name your function MyCMMatchImageProc, you would declare it like this:

CMError MyCMMatchImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

Callbacks 861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

repl
qual
srcProf
srcIntent
dstProf

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMMIterateProcPtr
Defines a pointer to a function that iterates through color management modules installed on the system.

typedef OSErr (*CMMIterateProcPtr) (
 CMMInfo * iterateData,
 void * refCon
);

If you name your function MyCMMIterateProc, you would declare it like this:

OSErr MyCMMIterateProc (
 CMMInfo * iterateData,
 void * refCon
);

Parameters
iterateData
refCon

Return Value
An OSErr value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMProfileAccessProcPtr
Defines a pointer to a profile access callback function that provides procedure-based access to a profile.

862 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef OSErr (*CMProfileAccessProcPtr)
(
 SInt32 command,
 SInt32 offset,
 SInt32 *size,
 void *data,
 void *refCon
);

If you name your function MyCMProfileAccessProc, you would declare it like this:

OSErr MyCMProfileAccessProc (
 SInt32 command,
 SInt32 offset,
 SInt32 *size,
 void *data,
 void *refCon
);

Parameters
command

A command value indicating the operation to perform. Operation constants are described in “Profile
Access Procedures” (page 998).

offset
For read and write operations, the offset from the beginning of the profile at which to read or write
data.

size
A pointer to a size value. On input, for the cmReadAccess and cmWriteAccess command constants,
a pointer to a value indicating the number of bytes to read or write; for the cmOpenWriteAccess
command, the total size of the profile. On return, after reading or writing, the actual number of bytes
read or written.

data
A pointer to a buffer containing data to read or write. On return, for a read operation, contains the
data that was read.

refCon
A reference constant pointer that can store private data for the CMProfileAccessCallback function.

Return Value
An OSErr value.

Discussion
When your application calls the CMOpenProfile, CMNewProfile, CMCopyProfile, or CMNewLinkProfile
functions, it may supply the ColorSync Manager with a profile location structure of type
CMProfileLocation (page 924) that specifies a procedure that provides access to a profile. In the structure,
you provide a universal procedure pointer to a profile access procedure supplied by you and, optionally, a
pointer to data your procedure can use. The ColorSync Manager calls your procedure when the profile is
created, initialized, opened, read, updated, or closed.

When the ColorSync Manager calls your profile access procedure, it passes a constant indicating the operation
to perform. The operations include creating a new profile, reading from the profile, writing the profile, and
so on. Operation constants are described in “Profile Access Procedures” (page 998). Your procedure must be
able to respond to each of these constants.

Callbacks 863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

CMProfileFilterProcPtr
Defines a pointer to a profile filter callback function that examines the profile whose reference you specify
and determines whether to include it in the profile search result list.

typedef Boolean (*CMProfileFilterProcPtr)
(
 CMProfileRef prof,
 void * refCon
);

If you name your function MyCMProfileFilterProc, you would declare it like this:

Boolean MyCMProfileFilterProc (
 CMProfileRef prof,
 void * refCon
);

Parameters
prof

A profile reference of type CMProfileRef (page 925) to the profile to test.

refCon
A pointer to a reference constant that holds data passed through from the CMNewProfileSearch
function or the CMUpdateProfileSearch function.

Return Value
A value of false indicates that the profile should be included; true indicates that the profile should be
filtered out.

Discussion
Your MyCMProfileFilterCallback function is called after the CMNewProfileSearch function searches
for profiles based on the search record’s contents as specified by the search bitmask.

When your application calls CMNewProfileSearch, it passes a reference to a search specification record of
type CMSearchRecord of type CMSearchRecord (page 932) that contains a filter field. If the filter field
contains a pointer to your MyCMProfileFilterCallback function, then your function is called to determine
whether to exclude a profile from the search result list. Your function should return true for a given profile
to exclude that profile from the search result list. If you do not want to filter profiles beyond the criteria in
the search record, specify a NULL value for the search record’s filter field.

After a profile has been included in the profile search result based on criteria specified in the search record,
your MyCMProfileFilterCallback function can further examine the profile. For example, you may wish
to include or exclude the profile based on criteria such as an element or elements not included in the
CMSearchRecord search record. Your MyCMProfileFilterCallback function can also perform searching
using AND or OR logic.

864 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

CMProfileIterateProcPtr
Defines a pointer to a profile iteration callback function that the ColorSync Manager calls for each found
profile file as it iterates over the available profiles.

typedef OSErr (*CMProfileIterateProcPtr)
(
 CMProfileIterateData * iterateData,
 void * refCon
);

If you name your function MyCMProfileIterateProc, you would declare it like this:

OSErr MyCMProfileIterateProc (
 CMProfileIterateData * iterateData,
 void * refCon
);

Parameters
iterateData

A pointer to a structure of type CMProfileIterateData (page 923). When the function
CMIterateColorSyncFolder (page 780) calls MyProfileIterateCallback, as it does once for
each found profile, the structure contains key information about the profile.

refCon
An untyped pointer to arbitrary data your application previously passed to the function
CMIterateColorSyncFolder (page 780).

Return Value
An OSErr value. If MyCMProfileIterateCallback returns an error, CMIterateColorSyncFolder stops
iterating and returns the error value to its caller (presumably your code).

Discussion
When your application needs information about the profiles currently available in the profiles folder, it calls
the function CMIterateColorSyncFolder (page 780) , which, depending on certain conditions, calls your
callback routine once for each profile. See the description of CMIterateColorSyncFolder for information
on when it calls the MyCMProfileIterateCallback function.

Your MyCMProfileIterateCallback function examines the structure pointed to by the iterateData
parameter to obtain information about the profile it describes. The function determines whether to do
anything with that profile, such as list its name in a pop-up menu of available profiles.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

Callbacks 865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProofImageProcPtr
Defines a pointer to a function that proofs an image.

typedef CMError (*CMProofImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf,
 CMProfileRef prfProf
);

If you name your function MyCMProofImageProc, you would declare it like this:

CMError MyCMProofImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 qual,
 CMProfileRef srcProf,
 UInt32 srcIntent,
 CMProfileRef dstProf,
 CMProfileRef prfProf
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

repl
qual
srcProf
srcIntent
dstProf
prfProf

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMSetIndImageProfileProcPtr
Defines a pointer to a function that sets a specific embeded profile for a given image.

866 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef CMError (*CMSetIndImageProfileProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 index,
 CMProfileRef prof
);

If you name your function MyCMSetIndImageProfileProc, you would declare it like this:

CMError MyCMSetIndImageProfileProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl,
 UInt32 index,
 CMProfileRef prof
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

repl
index
prof

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMUnembedImageProcPtr
Defines a pointer to a function that umembeds an ICC profile from an image.

typedef CMError (*CMUnembedImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl
);

If you name your function MyCMUnembedImageProc, you would declare it like this:

CMError MyCMUnembedImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 Boolean repl

Callbacks 867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

repl

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CMValidImageProcPtr
Defines a pointer to a function that validates a specified image file.

typedef CMError (*CMValidImageProcPtr)
(
 const FSSpec * spec
);

If you name your function MyCMValidImageProc, you would declare it like this:

CMError MyCMValidImageProc (
 const FSSpec * spec
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

CountImageProfilesProcPtr
Defines a pointer to a function that counts the number of embeded profiles for a given image.

868 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef CMError (*CountImageProfilesProcPtr)
(
 const FSSpec * spec,
 UInt32 * count
);

If you name your function MyCountImageProfilesProc, you would declare it like this:

CMError MyCountImageProfilesProc (
 const FSSpec * spec,
 UInt32 * count
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

count

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

EmbedImageProcPtr
Defines a pointer to an embed-image function.

typedef CMError (*EmbedImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 CMProfileRef embedProf,
 UInt32 embedFlags
);

If you name your function MyEmbedImageProc, you would declare it like this:

CMError MyEmbedImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 CMProfileRef embedProf,
 UInt32 embedFlags
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

Callbacks 869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

embedProf
embedFlags

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

GetImageSpaceProcPtr
Defines a pointer to a get-image-space function.

typedef CMError (*GetImageSpaceProcPtr)
(
 const FSSpec * spec,
 OSType * space
);

If you name your function MyGetImageSpaceProc, you would declare it like this:

CMError MyGetImageSpaceProc (
 const FSSpec * spec,
 OSType * space
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

space

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

GetIndImageProfileProcPtr
Defines a pointer to a function that obtains a color profile for an individual image..

870 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef CMError (*GetIndImageProfileProcPtr)
(
 const FSSpec * spec,
 UInt32 index,
 CMProfileRef * prof
);

If you name your function MyGetIndImageProfileProc, you would declare it like this:

CMError MyGetIndImageProfileProc (
 const FSSpec * spec,
 UInt32 index,
 CMProfileRef * prof
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

index
prof

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

MatchImageProcPtr
Defines a pointer to a match-image function.

typedef CMError (*MatchImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 UInt32 qual,
 UInt32 srcIntent,
 CMProfileRef srcProf,
 CMProfileRef dstProf,
 CMProfileRef prfProf,
 UInt32 matchFlags
);

If you name your function MyMatchImageProc, you would declare it like this:

CMError MyMatchImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 UInt32 qual,
 UInt32 srcIntent,
 CMProfileRef srcProf,
 CMProfileRef dstProf,

Callbacks 871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 CMProfileRef prfProf,
 UInt32 matchFlags
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

qual
srcIntent
srcProf
dstProf
prfProf
matchFlags

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

SetIndImageProfileProcPtr
Defines a pointer to a function that sets a color profile for an individual image.

typedef CMError (*SetIndImageProfileProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto,
 UInt32 index,
 CMProfileRef prof,
 UInt32 embedFlags
);

If you name your function MySetIndImageProfileProc, you would declare it like this:

CMError MySetIndImageProfileProc (
 const FSSpec * specFrom,
 const FSSpec * specInto,
 UInt32 index,
 CMProfileRef prof,
 UInt32 embedFlags
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

872 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

specInto
See the File Manager documentation for a description of the FSSpec data type.

index
prof
embedFlags

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

UnembedImageProcPtr
Defines a pointer to an umembed-image function.

typedef CMError (*UnembedImageProcPtr)
(
 const FSSpec * specFrom,
 const FSSpec * specInto
);

If you name your function MyUnembedImageProc, you would declare it like this:

CMError MyUnembedImageProc (
 const FSSpec * specFrom,
 const FSSpec * specInto
);

Parameters
specFrom

See the File Manager documentation for a description of the FSSpec data type.

specInto
See the File Manager documentation for a description of the FSSpec data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

ValidateImageProcPtr
Defines a pointer to a validate-image function.

Callbacks 873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef CMError (*ValidateImageProcPtr)
(
 const FSSpec * spec
);

If you name your function MyValidateImageProc, you would declare it like this:

CMError MyValidateImageProc (
 const FSSpec * spec
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

ValidateSpaceProcPtr
Defines a pointer to a validate-space function.

typedef CMError (*ValidateSpaceProcPtr)
(
 const FSSpec * spec,
 OSType * space
);

If you name your function MyValidateSpaceProc, you would declare it like this:

CMError MyValidateSpaceProc (
 const FSSpec * spec,
 OSType * space
);

Parameters
spec

See the File Manager documentation for a description of the FSSpec data type.

space

Return Value
A CMError value. See “ColorSync Manager Result Codes” (page 1020).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared In
CMScriptingPlugin.h

874 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Data Types

CalibratorInfo
Contains data used to calibrate a display.

struct CalibratorInfo {
 UInt32 dataSize;
 CMDisplayIDType displayID;
 UInt32 profileLocationSize;
 CMProfileLocation * profileLocationPtr;
 CalibrateEventUPP eventProc;
 Boolean isGood;
};
typedef struct CalibratorInfo CalibratorInfo;

Fields
dataSize
displayID
profileLocationSize
profileLocationPtr
eventProc
isGood

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMCalibrator.h

CM2Header
Contains information that supports the header format specified by the ICC format specification for version
2.x profiles.

Data Types 875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CM2Header {
 UInt32 size;
 OSType CMMType;
 UInt32 profileVersion;
 OSType profileClass;
 OSType dataColorSpace;
 OSType profileConnectionSpace;
 CMDateTime dateTime;
 OSType CS2profileSignature;
 OSType platform;
 UInt32 flags;
 OSType deviceManufacturer;
 UInt32 deviceModel;
 UInt32 deviceAttributes[2];
 UInt32 renderingIntent;
 CMFixedXYZColor white;
 OSType creator;
 char reserved[44];
};
typedef struct CM2Header CM2Header;

Fields
size

The total size in bytes of the profile.

CMMType
The signature of the preferred CMM for color-matching and color-checking sessions for this profile.
To avoid conflicts with other CMMs, this signature must be registered with the ICC. For the signature
of the default CMM, see “Default CMM Signature” (page 977).

profileVersion
The version of the profile format. The first 8 bits indicate the major version number, followed by 8
bits indicating the minor version number. The following 2 bytes are reserved.

The profile version number is not tied to the version of the ColorSync Manager. Profile formats and
their versions are defined by the ICC. For example, a major version change may indicate the addition
of new required tags to the profile format; a minor version change may indicate the addition of new
optional tags.

profileClass
One of the seven profile classes supported by the ICC: input, display, output, named color space,
device link, color space conversion, or abstract. For the signatures representing profile classes, see
“Profile Classes” (page 999).

dataColorSpace
The color space of the profile. Color values used to express colors of images using this profile are
specified in this color space. For a list of the color space signatures, see “Color Space Signatures” (page
969).

profileConnectionSpace
The profile connection space, or PCS. The signatures for the two profile connection spaces supported
by ColorSync, cmXYZData and cmLabData, are described in “Color Space Signatures” (page 969).

dateTime
The date and time when the profile was created. You can use this value to keep track of your own
versions of this profile. For information on the date and time format, see CMDateTime (page 889).

CS2profileSignature
The 'acsp' constant as required by the ICC format.

876 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

platform
The signature of the primary platform on which this profile runs. For Apple Computer, this is 'APPL'.
For other platforms, refer to the International Color Consortium Profile Format Specification.

flags
Flags that provide hints, such as preferred quality and speed options, to the preferred CMM. The
flags field consists of an unsigned long data type. The 16 bits in the low word, 0-15, are reserved
for use by the ICC. The 16 bits in the high word, 16-31, are available for use by color management
systems. For information on how these bits are defined and how your application can set and test
them, see “Flag Mask Definitions for Version 2.x Profiles” (page 983).

deviceManufacturer
The signature of the manufacturer of the device to which this profile applies. This value is registered
with the ICC.

deviceModel
The model of this device, as registered with the ICC.

deviceAttributes
Attributes that are unique to this particular device setup, such as media, paper, and ink types. The
data type for this field is an array of two unsigned longs. The low word of deviceAttributes[0]
is reserved by the ICC. The high word of deviceAttributes[0] and the entire word of
deviceAttributes[1] are available for vendor use. For information on how the bits in
deviceAttributes are defined and how your application can set and test them, see “Device Attribute
Values for Version 2.x Profiles” (page 978).

renderingIntent
The preferred rendering intent for the object or file tagged with this profile. Four types of rendering
intent are defined: perceptual, relative colorimetric, saturation, and absolute colorimetric. The
renderingIntent field consists of an unsigned long data type. The low word is reserved by the ICC
and is used to set the rendering intent. The high word is available for use. For information on how
the bits in renderingIntent are defined and how your application can set and test them, see
“Rendering Intent Values for Version 2.x Profiles” (page 1012).

white
The profile illuminant white reference point, expressed in the XYZ color space.

creator
Signature identifying the profile creator.

reserved
This field is reserved for future use.

Discussion
The ColorSync Manager defines the CM2header profile structure to support the header format specified by
the ICC format specification for version 2.x profiles. For a description of CMHeader, the ColorSync 1.0 profile
header, see CMHeader (page 898). To obtain a copy of the International Color Consortium Profile Format
Specification, or to get other information about the ICC, visit the ICC Web site at http://www.color.org/.

Your application cannot obtain a discrete profile header value using the element tag scheme available for
use with elements outside the header. Instead, to set or modify values of a profile header, your application
must obtain the entire profile header using the function CMGetProfileHeader (page 769) and replace the
header using the function CMSetProfileHeader (page 813).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org/

CM2Profile

struct CM2Profile {
 CM2Header header;
 CMTagElemTable tagTable;
 char elemData[1];
};
typedef struct CM2Profile CM2Profile;
typedef CM2Profile * CM2ProfilePtr;

Fields
header
tagTable
elemData

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

878 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CM4Header

struct CM4Header {
 UInt32 size;
 OSType CMMType;
 UInt32 profileVersion;
 OSType profileClass;
 OSType dataColorSpace;
 OSType profileConnectionSpace;
 CMDateTime dateTime;
 OSType CS2profileSignature;
 OSType platform;
 UInt32 flags;
 OSType deviceManufacturer;
 UInt32 deviceModel;
 UInt32 deviceAttributes[2];
 UInt32 renderingIntent;
 CMFixedXYZColor white;
 OSType creator;
 CMProfileMD5 digest;
 char reserved[28];
};
typedef struct CM4Header CM4Header;

Fields
size
CMMType
profileVersion
profileClass
dataColorSpace
profileConnectionSpace
dateTime
CS2profileSignature
platform
flags
deviceManufacturer
deviceModel
deviceAttributes
renderingIntent
white
creator
digest
reserved

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

Data Types 879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMAccelerationCalcData

struct CMAccelerationCalcData {
 SInt32 pixelCount;
 Ptr inputData;
 Ptr outputData;
 UInt32 reserved1;
 UInt32 reserved2;
};
typedef struct CMAccelerationCalcData CMAccelerationCalcData;

Fields

CMAccelerationCalcDataPtr

typedef CMAccelerationCalcData* CMAccelerationCalcDataPtr;

CMAccelerationCalcDataHdl

typedef CMAccelerationCalcDataPtr* CMAccelerationCalcDataHdl;

CMAccelerationTableData

struct CMAccelerationTableData {
 SInt32 inputLutEntryCount;
 SInt32 inputLutWordSize;
 Handle inputLut;
 SInt32 outputLutEntryCount;
 SInt32 outputLutWordSize;
 Handle outputLut;
 SInt32 colorLutInDim;
 SInt32 colorLutOutDim;
 SInt32 colorLutGridPoints;
 SInt32 colorLutWordSize;
 Handle colorLut;
 CMBitmapColorSpace inputColorSpace;
 CMBitmapColorSpace outputColorSpace;
 void *userData;
 UInt32 reserved1;
 UInt32 reserved2;
 UInt32 reserved3;
 UInt32 reserved4;
 UInt32 reserved5;
};
typedef struct CMAccelerationTableData CMAccelerationTableData;

Fields

CMAccelerationTableDataPtr

typedef CMAccelerationTableData* CMAccelerationTableDataPtr;

880 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMAccelerationTableDataHdl

typedef CMAccelerationTableDataPtr* CMAccelerationTableDataHdl;

CMAdaptationMatrixType

struct CMAdaptationMatrixType {
 OSType typeDescriptor;
 unsigned long reserved;
 Fixed adaptationMatrix[9];
};
typedef struct CMAdaptationMatrixType CMAdaptationMatrixType;

Fields
typeDescriptor
reserved
adaptationMatrix

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMAppleProfileHeader
Defines a data structure to provide access to both version 2.x and version 1.0 profiles, as specified by the
International Color Consortium.

union CMAppleProfileHeader {
 CMHeader cm1;
 CM2Header cm2;
 CM4Header cm4;
};
typedef union CMAppleProfileHeader CMAppleProfileHeader;

Fields
cm1

A version 1.0 profile header. For a description of the ColorSync version 1.0 profile header, see
CMHeader (page 898).

cm2
A current profile header. For a description of the ColorSync profile header, see CM2Header (page 875).

cm4

Discussion
The ColorSync Manager defines the CMAppleProfileHeader structure to provide access to both version
2.x and version 1.0 profiles, as specified by the International Color Consortium. To obtain a copy of the
International Color Consortium Profile Format Specification, or to get other information about the ICC, visit
the ICC Web site at http://www.color.org/.

Availability
Available in Mac OS X v10.0 and later.

Data Types 881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org/

Declared In
CMApplication.h

CMBitmap
Contains information that describes color bitmap images.

struct CMBitmap {
 char * image;
 long width;
 long height;
 long rowBytes;
 long pixelSize;
 CMBitmapColorSpace space;
 long user1;
 long user2;
};
typedef struct CMBitmap CMBitmap;

Fields
image

A pointer to a bit image.

width
The width of the bit image, that is, the number of pixels in a row.

height
The height of the bit image, that is, the number of rows in the image.

rowBytes
The offset in bytes from one row of the image to the next.

pixelSize
The number of bits per pixel. The pixel size should correspond to the packing size specified in the
space field. This requirement is not enforced as of ColorSync version 2.5, but it may be enforced in
future versions.

space
The color space in which the colors of the bitmap image are specified. For a description of the possible
color spaces for color bitmaps, see “Color Space Constants With Packing Formats” (page 962).

user1
Not used by ColorSync. It is recommended that you set this field to 0.

user2
Not used by ColorSync. It is recommended that you set this field to 0.

Discussion
The ColorSync Manager defines a bitmap structure of type CMBitmap to describe color bitmap images. When
your application calls the function CWMatchColors (page 828) , you pass a pointer to a source bitmap of
type CMBitmap containing the image whose colors are to be matched to the color gamut of the device
specified by the destination profile of the given color world. If you do not want the image color matched in
place, you can also pass a pointer to a resulting bitmap of type CMBitmap to define and hold the color-matched
image.

882 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

For QuickDraw GX, an image can have an indexed bitmap to a list of colors. The ColorSync Manager does
not support indexed bitmaps in the same way QuickDraw GX does. ColorSync supports indexed bitmaps
only when the cmNamedIndexed32Space color space constant is used in conjunction with a named color
space profile.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMBitmapCallBackProc

typedef CMBitmapCallBackProcPtr CMBitmapCallBackProc;

CMBitmapCallBackUPP
Defines a universal procedure pointer to a bitmap callback.

typedef CMBitmapCallBackProcPtr CMBitmapCallBackUPP;

Discussion
For more information, see the description of the CMBitmapCallBackProcPtr (page 852) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMBufferLocation

struct CMBufferLocation {
 void * buffer;
 UInt32 size;
};
typedef struct CMBufferLocation CMBufferLocation;

Fields
buffer
size

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMCMYColor
Contains color values expressed in the CMY color space.

Data Types 883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMCMYColor {
 UInt16 cyan;
 UInt16 magenta;
 UInt16 yellow;
};
typedef struct CMCMYColor CMCMYColor;

Fields
cyan
magenta
yellow

Discussion
A color value expressed in the CMY color space is composed of cyan, magenta, and yellow component
values. Each color component is expressed as a numeric value within the range of 0 to 65535 inclusive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMCMYKColor
Contains color values expressed in the CMYK color space.

struct CMCMYKColor {
 UInt16 cyan;
 UInt16 magenta;
 UInt16 yellow;
 UInt16 black;
};
typedef struct CMCMYKColor CMCMYKColor;

Fields
cyan
magenta
yellow
black

Discussion
A color value expressed in the CMYK color space is composed of cyan, magenta, yellow, and black
component values. Each color component is expressed as a numeric value within the range of 0 to 65535
inclusive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMColor
Defines a union that can be used to specify a color value defined by one of the 15 data types supported by
the union.

884 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

union CMColor {
 CMRGBColor rgb;
 CMHSVColor hsv;
 CMHLSColor hls;
 CMXYZColor XYZ;
 CMLabColor Lab;
 CMLuvColor Luv;
 CMYxyColor Yxy;
 CMCMYKColor cmyk;
 CMCMYColor cmy;
 CMGrayColor gray;
 CMMultichannel5Color mc5;
 CMMultichannel6Color mc6;
 CMMultichannel7Color mc7;
 CMMultichannel8Color mc8;
 CMNamedColor namedColor;
};
typedef union CMColor CMColor;

Fields
rgb

A color value expressed in the RGB color space as data of type CMRGBColor (page 930).

hsv
A color value expressed in the HSV color space as data of type CMHSVColor (page 901).

hls
A color value expressed in the HLS color space as data of type CMHLSColor (page 901).

XYZ
A color value expressed in the XYZ color space as data of type CMXYZColor (page 943).

Lab
A color value expressed in the L*a*b* color space as data of type CMLabColor (page 903).

Luv
A color value expressed in the L*u*v* color space as data of type CMLuvColor (page 905).

Yxy
A color value expressed in the Yxy color space as data of type CMYxyColor (page 944).

cmyk
A color value expressed in the CMYK color space as data of type CMCMYKColor (page 884).

cmy
A color value expressed in the CMY color space as data of type CMCMYColor (page 883).

gray
A color value expressed in the Gray color space as data of type CMGrayColor (page 897).

mc5
A color value expressed in the five-channel multichannel color space as data of type
CMMultichannel5Color. See CMMultichannel5Color (page 910) for a description of the
CMMultichannel5Color data type.

mc6
A color value expressed in the six-channel multichannel color space as data of type
CMMultichannel6Color. See CMMultichannel6Color (page 911) for a description of the
CMMultichannel6Color data type.

Data Types 885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

mc7
A color value expressed in the seven-channel multichannel color space as data of type
CMMultichannel7Color. See CMMultichannel7Color (page 911) for a description of the
CMMultichannel7Color data type.

mc8
A color value expressed in the eight-channel multichannel color space as data of type
CMMultichannel8Color. See CMMultichannel8Color (page 911) for a description of the
CMMultichannel8Color data type.

namedColor
A color value expressed as an index into a named color space. See CMNamedColor (page 914) for a
description of the CMNamedColor data type.

Discussion
A color union can contain one of the above fields.

Your application can use a union of type CMColor to specify a color value defined by one of the 15 data
types supported by the union. Your application uses an array of color unions to specify a list of colors to
match, check, or convert. The array is passed as a parameter to the general purpose color matching, color
checking, or color conversion functions. The following functions use a color union:

 ■ The function CWMatchColors (page 828) matches the colors in the color list array to the data color space
of the destination profile specified by the color world.

 ■ The function CWCheckColors (page 821) checks the colors in the color list array against the color gamut
specified by the color world’s destination profile.

 ■ The color conversion functions, described in “Converting Between Color Spaces”, take source and
destination array parameters of type CMColor specifying lists of colors to convert from one color space
to another.

You do not use a union of type CMColor to convert colors expressed in the XYZ color space as values of type
CMFixedXYZ because the CMColor union does not support the CMFixedXYZ data type.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
CMApplication.h

CMConcatCallBackUPP
Defines a universal procedure pointer to a progress-monitoring function that the ColorSync Manager calls
during lengthy color world processing.

typedef CMConcatCallBackProcPtr CMConcatCallBackUPP;

Discussion
For more information, see the description of the CMConcatCallBackProcPtr (page 853) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

886 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMConcatProfileSet
Contains profile and other information needed to set up a color world.

struct CMConcatProfileSet {
 UInt16 keyIndex;
 UInt16 count;
 CMProfileRef profileSet[1];
};
typedef struct CMConcatProfileSet CMConcatProfileSet;

Fields
keyIndex

A zero-based index into the array of profile references identifying the profile whose CMM is used for
the entire session. The profile’s CMMType field identifies the CMM.

count
The one-based count of profiles in the profile array. A minimum of one profile is required.

profileSet
A variable-length array of profile references. The references must be in processing order from source
to destination. The rules governing the types of profiles you can specify in a profile array differ
depending on whether you are creating a profile set for the function CWConcatColorWorld (page
823) or for the function CWNewLinkProfile (page 830). See the function descriptions for details.

Discussion
You can call the function NCWNewColorWorld (page 846) to create a color world for operations such as color
matching and color conversion. A color world is normally based on two profiles—source and destination.
But it can include a series of profiles that describe the processing for a work-flow sequence, such as scanning,
printing, and previewing an image. To create a color world that includes a series of profiles, you use the
function CWConcatColorWorld (page 823).

The array specified in the profileSet field identifies a concatenated profile set your application can use to
establish a color world in which the sequential relationship among the profiles exists until your application
disposes of the color world. Alternatively, you can create a device link profile composed of a series of linked
profiles that remains intact and available for use again after your application disposes of the concatenated
color world. In either case, you use a data structure of type CMConcatProfileSet to define the profile set.

A device link profile accommodates users who use a specific configuration requiring a combination of device
profiles and possibly non-device profiles repeatedly over time.

To set up a color world that includes a concatenated set of profiles, your application uses the function
CWConcatColorWorld (page 823) , passing it a structure of type CMConcatProfileSet. The array you pass
may contain a set of profile references or it may contain only the profile reference of a device link profile. To
create a device link profile, your application calls the function CWNewLinkProfile (page 830), passing a
structure of type CMConcatProfileSet.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

Data Types 887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMCurveType

struct CMCurveType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 countValue;
 UInt16 data[1];
};
typedef struct CMCurveType CMCurveType;

Fields
typeDescriptor
reserved
countValue
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMCWInfoRecord
Contains information about a given color world.

struct CMCWInfoRecord {
 UInt32 cmmCount;
 CMMInfoRecord cmmInfo[2];
};
typedef struct CMCWInfoRecord CMCWInfoRecord;

Fields
cmmCount

The number of CMMs involved in the color-matching session, either 1 or 2.

cmmInfo
An array containing two elements. Depending on the value that cmmCount returns, the cmmInfo
array contains one or two records of type CMMInfoRecord (page 909) reporting the CMM type and
version number.

If cmmCount is 1, the first element of the array (cmmInfo[0]) describes the CMM and the contents
of the second element of the array (cmmInfo[1]) is undefined.

If cmmCount is 2, the first element of the array (cmmInfo[0]) describes the source CMM and the
second element of the array (cmmInfo[1]) describes the destination CMM.

Discussion
Your application supplies a color world information record structure of type CMCWInfoRecord as a parameter
to the CMGetCWInfo function to obtain information about a given color world. The ColorSync Manager uses
this data structure to return information about the color world.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

888 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMApplication.h

CMDataType

struct CMDataType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 dataFlag;
 char data[1];
};
typedef struct CMDataType CMDataType;

Fields
typeDescriptor
reserved
dataFlag
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMDateTime
Contains data that specifies a date and time in year, month, day of the month, hours, minutes, and seconds

struct CMDateTime {
 UInt16 year;
 UInt16 month;
 UInt16 dayOfTheMonth;
 UInt16 hours;
 UInt16 minutes;
 UInt16 seconds;
};
typedef struct CMDateTime CMDateTime;

Fields
year

The year. Note that to indicate the year 1984, this field would store the integer 1984, not just 84.

month
The month of the year, where 1 represents January, and 12 represents December.

dayOfTheMonth
The day of the month, ranging from 1 to 31.

hours
The hour of the day, ranging from 0 to 23, where 0 represents midnight and 23 represents 11:00 P.M.

minutes
The minutes of the hour, ranging from 0 to 59.

Data Types 889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

seconds
The seconds of the minute, ranging from 0 to 59.

Discussion
The ColorSync Manager defines the CMDateTime data structure to specify a date and time in year, month,
day of the month, hours, minutes, and seconds. Other ColorSync structures use the CMDateTime structure
to specify information such as the creation date or calibration date for a color space profile.

The CMDateTime structure is similar to the Macintosh Toolbox structure DateTimeRec, and like it, is intended
to hold date and time values only for a Gregorian calendar.

The CMDateTime structure is platform independent. However, when used with Macintosh Toolbox routines
such as SecondsToDate and DateToSeconds, which use seconds to designate years, the range of years
that can be represented is limited.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMDateTimeType

struct CMDateTimeType {
 OSType typeDescriptor;
 UInt32 reserved;
 CMDateTime dateTime;
};
typedef struct CMDateTimeType CMDateTimeType;

Fields
typeDescriptor
reserved
dateTime

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

890 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMDeviceData

struct CMDeviceData {
 UInt32 dataVersion;
 CMDeviceSpec deviceSpec;
 CMDeviceScope deviceScope;
 CMDeviceState deviceState;
 CMDeviceProfileID defaultProfileID;
 UInt32 profileCount;
 UInt32 reserved;
};
typedef struct CMDeviceData CMDeviceData;

CMDeviceDataPtr

typedef CMDeviceData* CMDeviceDataPtr;

CMDeviceID
Defines a data type for a CM device ID.

typedef UInt32 CMDeviceID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

Data Types 891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMDeviceInfo

struct CMDeviceInfo {
 UInt32 dataVersion;
 CMDeviceClass deviceClass;
 CMDeviceID deviceID;
 CMDeviceScope deviceScope;
 CMDeviceState deviceState;
 CMDeviceProfileID defaultProfileID;
 CFDictionaryRef * deviceName;
 UInt32 profileCount;
 UInt32 reserved;
};
typedef struct CMDeviceInfo CMDeviceInfo;
typedef CMDeviceInfo * CMDeviceInfoPtr;

Fields
dataVersion
deviceClass
deviceID
deviceScope
deviceState
defaultProfileID
deviceName

See the CFDictionary documentation for a description of the CFDictionaryRef data type.

profileCount
reserved

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

892 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMDeviceName

struct CMDeviceName {
 UniCharCount deviceNameLength;
 UniChar deviceName[256];
};
typedef struct CMDeviceName CMDeviceName;

Fields

CMDeviceNamePtr

typedef CMDeviceName* CMDeviceNamePtr;

CMDeviceProfileArray

struct CMDeviceProfileArray {
 UInt32 profileCount;
 CMDeviceProfileInfo profiles[1];
};
typedef struct CMDeviceProfileArray CMDeviceProfileArray;
typedef CMDeviceProfileArray * CMDeviceProfileArrayPtr;

Fields
profileCount
profiles

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

CMDeviceProfileID

typedef UInt32 CMDeviceProfileID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

Data Types 893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMDeviceProfileInfo

struct CMDeviceProfileInfo {
 UInt32 dataVersion;
 CMDeviceProfileID profileID;
 CMProfileLocation profileLoc;
 CFDictionaryRef profileName;
 UInt32 reserved;
};
typedef struct CMDeviceProfileInfo CMDeviceProfileInfo;

Fields

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

CMDeviceProfileScope

typedef CMDeviceScope CMDeviceProfileScope;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMDeviceIntegration.h

CMDeviceScope

struct CMDeviceScope {
 CFStringRef deviceUser;
 CFStringRef deviceHost;
};
typedef struct CMDeviceScope CMDeviceScope;
typedef CMDeviceScope CMDeviceProfileScope;

Fields
deviceUser
deviceHost

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
CMDeviceIntegration.h

894 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMDeviceSpec

struct CMDeviceSpec {
 UInt32 specVersion;
 CMDeviceClass deviceClass;
 CMDeviceID deviceID;
 CMDeviceName deviceName;
 UInt32 reserved;
};
typedef struct CMDeviceSpec CMDeviceSpec;

Fields

CMDeviceSpecPtr

typedef CMDeviceSpec* CMDeviceSpecPtr;

CMDeviceState

typedef UInt32 CMDeviceState;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMDeviceIntegration.h

CMDisplayIDType
Defines a data type for a display ID type.

typedef UInt32 CMDisplayIDType;

Discussion
This data type is passed as a parameter to the functions CMGetProfileByAVID (page 767) and
CMSetProfileByAVID (page 808).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMError
Defines a data type for a ColorSync Manager result code.

typedef CMError;

Discussion
For a list of possible resutlt codes, see “ColorSync Manager Result Codes” (page 1020).

Data Types 895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMFileLocation
Contains a file specification for a profile stored in a disk file.

struct CMFileLocation {
 FSSpec spec;
};
typedef struct CMFileLocation CMFileLocation;

Fields
spec

A file system specification structure giving the location of the profile file. A file specification structure
includes the volume reference number, the directory ID of the parent directory, and the filename or
directory name. See the File Manager documentation for a description of the FSSpec data type.

Discussion
Your application uses the CMFileLocation structure to provide a file specification for a profile stored in a
disk file. You provide a file specification structure in the CMProfileLocation structure’s u field to specify
the location of an existing profile or a profile to be created.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMFixedXYColor

struct CMFixedXYColor {
 Fixed x;
 Fixed y;
};
typedef struct CMFixedXYColor CMFixedXYColor;

Fields
x
y

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

896 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMFixedXYZColor
Contains data that specifies the profile illuminant in the profile header’s white field and other profile element
values.

struct CMFixedXYZColor {
 Fixed X;
 Fixed Y;
 Fixed Z;
};
typedef struct CMFixedXYZColor CMFixedXYZColor;

Fields
X
Y
Z

Discussion
ColorSync uses the CMFixedXYZColor data type to specify the profile illuminant in the profile header’s
white field and to specify other profile element values. Color component values defined by the Fixed type
definition can be used to specify a color value in the XYZ color space with greater precision than a color
whose components are expressed as CMXYZComponent data types. The Fixed data type is a signed 32-bit
value. A color value expressed in the XYZ color space whose color components are of type Fixed is defined
by the CMFixedXYZColor type definition.

Your application can convert colors defined in the XYZ color space between CMXYZColor data types (in
which the color components are expressed as 16-bit unsigned values) and CMFixedXYZColor data types
(in which the colors are expressed as 32-bit signed values). To convert color values, you use the functions
CMConvertFixedXYZToXYZ (page 730) and CMConvertXYZToFixedXYZ (page 736).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMFlattenUPP
Defines a universal procedure pointer to a data-flattening callback.

typedef CMFlattenProcPtr CMFlattenUPP;

Discussion
For more information, see the description of the CMFlattenProcPtr (page 855) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMGrayColor
Contains a color value expressed in the gray color space.

Data Types 897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMGrayColor {
 UInt16 gray;
};
typedef struct CMGrayColor CMGrayColor;

Fields
gray

Discussion
A color value expressed in the Gray color space is composed of a single component, gray, represented as a
numeric value within the range of 0 to 65535 inclusive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMHandleLocation
Contains a handle specification for a profile stored in relocatable memory.

struct CMHandleLocation {
 Handle h;
};
typedef struct CMHandleLocation CMHandleLocation;

Fields
h

A data structure of type Handle containing a handle that indicates the location of a profile in memory.

Discussion
Your application uses the CMHandleLocation structure to provide a handle specification for a profile stored
in relocatable memory. You provide the handle specification structure in the CMProfileLocation structure’s
u field to specify an existing profile or a profile to be created.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMHeader
Contains version 1.0 profile header data.

898 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMHeader {
 UInt32 size;
 OSType CMMType;
 UInt32 applProfileVersion;
 OSType dataType;
 OSType deviceType;
 OSType deviceManufacturer;
 UInt32 deviceModel;
 UInt32 deviceAttributes[2];
 UInt32 profileNameOffset;
 UInt32 customDataOffset;
 CMMatchFlag flags;
 CMMatchOption options;
 CMXYZColor white;
 CMXYZColor black;
};
typedef struct CMHeader CMHeader;

Fields
size

The total size in bytes of the profile, including any custom data.

CMMType
The signature of the preferred CMM for color-matching and color-checking sessions for this profile.
To avoid conflicts with other CMMs, this signature must be registered with the ICC. For the signature
of the default CMM, see “Default CMM Signature” (page 977).

applProfileVersion
The Apple profile version. Set this field to $0100 (defined as the constant kCMApplProfileVersion).

dataType
The kind of color data.

deviceType
The kind of device.

deviceManufacturer
A name supplied by the device manufacturer.

deviceModel
The device model specified by the manufacturer.

deviceAttributes
Private information such as paper surface and ink temperature.

profileNameOffset
The offset to the profile name from the top of data.

customDataOffset
The offset to any custom data from the top of data.

Data Types 899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

flags
A field used by drivers; it can hold one of the following flags:

CMNativeMatchingPreferredCMTurnOffCache

The CMNativeMatchingPreferred flag is available for developers of intelligent peripherals that
can off-load color matching into the peripheral. Most drivers will not use this flag. (Its default setting
is 0, meaning that the profile creator does not care whether matching occurs on the host or the
device.)

Use the CMTurnOffCache flag for CMMs that will not benefit from a cache, such as those that can
look up data from a table with less overhead, or that do not want to take the memory hit a cache
entails, or that do their own caching and do not want the CMM to do it. (The default is 0, meaning
turn on cache.

options
The options field specifies the preferred matching for this profile; the default is CMPerceptualMatch;
other values are CMColorimetricMatch or CMSaturationMatch. The options are set by the image
creator.

white
The profile illuminant white reference point, expressed in the XYZ color space.

black
The black reference point for this profile, expressed in the XYZ color space.

Discussion
ColorSync 1.0 defined a version 1.0 profile whose structure and format are different from that of the ICC
version 2.x profile. The CMHeader data type represents the version 1.0 profile header. For more information
on profile version numbers, see “ColorSync and ICC Profile Format Version Numbers”. To obtain a copy of
the International Color Consortium Profile Format Specification, or to get other information about the ICC,
visit the ICC Web site at http://www.color.org/

Your application cannot use ColorSync Manager functions to update a version 1.0 profile or to search for
version 1.0 profiles. However, your application can use other ColorSync Manager functions that operate on
version 1.0 profiles. For example, your application can open a version 1.0 profile using the function
CMOpenProfile (page 790), obtain the version 1.0 profile header using the function
CMGetProfileHeader (page 769), and access version 1.0 profile elements using the function
CMGetProfileElement (page 768).

To make it possible to operate on both version 1.0 profiles and version 2.x profiles, the ColorSync Manager
defines the union CMAppleProfileHeader (page 881), which supports either profile -*header version. The
CMHeader data type defines the version 1.0 profile header, while the CM2Header (page 875) data type defines
the version 2.x profile header.

Version Notes
Use of the CMHeader type is not recommended for ColorSync versions starting with 2.0. Use CM2Header (page
875) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

900 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org/

CMHLSColor
Contains a color value expressed in the HLS color space.

struct CMHLSColor {
 UInt16 hue;
 UInt16 lightness;
 UInt16 saturation;
};
typedef struct CMHLSColor CMHLSColor;

Fields
hue

A hue value that represents a fraction of a circle in which red is positioned at 0. .

lightness
A lightness value.

saturation
A saturation value.

Discussion
A color value expressed in the HLS color space is composed of hue, lightness, and saturation component
values. Each color component is expressed as a numeric value within the range of 0 to 65535 inclusive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMHSVColor
Contains a color value expressed in the HSV color space.

struct CMHSVColor {
 UInt16 hue;
 UInt16 saturation;
 UInt16 value;
};
typedef struct CMHSVColor CMHSVColor;

Fields
hue
saturation
value

Discussion
A color value expressed in the HSV color space is composed of hue, saturation, and value component
values. Each color component is expressed as a numeric value within the range of 0 to 65535 inclusive. The
hue value represents a fraction of a circle in which red is positioned at 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

Data Types 901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMIntentCRDVMSize
Defines the rendering intent and its maximum VM size.

struct CMIntentCRDVMSize {
 long renderingIntent;
 UInt32 VMSize;
};
typedef struct CMIntentCRDVMSize CMIntentCRDVMSize;

Fields
renderingIntent

The rendering intent whose CRD virtual memory size you want to obtain. The rendering intent values
are described in “Rendering Intent Values for Version 2.x Profiles” (page 1012).

VMSize
The virtual memory size of the CRD for the rendering intent specified for the renderingIntent field.

Discussion
To specify the maximum virtual memory (VM) size of the color rendering dictionary (CRD) for a specific
rendering intent for a particular PostScript(TM) Level 2 printer type, a printer profile can include the optional
Apple-defined 'psvm' tag. The PostScript CRD virtual memory size tag structure’s element data includes an
array containing one entry for each rendering intent and its virtual memory size.

If a PostScript printer profile includes this tag, the default CMM uses the tag and returns the values specified
by the tag when your application or device driver calls the function CMGetPS2ColorRenderingVMSize (page
775).

If a PostScript printer profile does not include this tag, the CMM uses an algorithm to determine the VM size
of the CRD. This may result in a size that is greater than the actual VM size.

The CMPS2CRDVMSizeType data type for the tag includes an array containing one or more members of type
CMIntentCRDVMSize.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMIString
Defines a profile name.

struct CMIString {
 ScriptCode theScript;
 Str63 theString;
};
typedef struct CMIString CMIString;
typedef CMIString IString;

Fields
theScript

The script code for the theString parameter.

theString
The profile name.

902 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMLabColor
Contains a color value expressed in the L*a*b* color space.

struct CMLabColor {
 UInt16 L;
 UInt16 a;
 UInt16 b;
};
typedef struct CMLabColor CMLabColor;

Fields
L

A numeric value within the range of 0 to 65535, which maps to 0 to 100 inclusive. Note that this
encoding is slightly different from the 0 to 65280 encoding of the L channel defined in the ICC
specification for PCS L*a*b values.

a
A value that ranges from 0 to 65535, and maps to –128 to 127.996 inclusive.

b
A value that ranges from 0 to 65535, and maps to –128 to 127.996 inclusive.

Discussion
A color expressed in the L*a*b* color space is composed of L, a, and b component values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

Data Types 903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMLut16Type

struct CMLut16Type {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt8 inputChannels;
 UInt8 outputChannels;
 UInt8 gridPoints;
 UInt8 reserved2;
 Fixed matrix[3][3];
 UInt16 inputTableEntries;
 UInt16 outputTableEntries;
 UInt16 inputTable[1];
};
typedef struct CMLut16Type CMLut16Type;

Fields
typeDescriptor
reserved
inputChannels
outputChannels
gridPoints
reserved2
matrix
inputTableEntries
outputTableEntries
inputTable
CLUT
outputTable

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

904 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMLut8Type

struct CMLut8Type {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt8 inputChannels;
 UInt8 outputChannels;
 UInt8 gridPoints;
 UInt8 reserved2;
 Fixed matrix[3][3];
 UInt8 inputTable[1];
};
typedef struct CMLut8Type CMLut8Type;

Fields
typeDescriptor
reserved
inputChannels
outputChannels
gridPoints
reserved2
matrix
inputTable
CLUT
outputTable
aNet
aNode
aSocket

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMLuvColor
Contains a color value expressed in the L*u*v* color space.

struct CMLuvColor {
 UInt16 L;
 UInt16 u;
 UInt16 v;
};
typedef struct CMLuvColor CMLuvColor;

Fields
L

A numeric value within the range of 0 to 65535 that maps to 0 to 100 inclusive.

u
A numeric value within the range of 0 to 65535 that maps to –128 to 127.996 inclusive.

v
A numeric value within the range of 0 to 65535 that maps to –128 to 127.996 inclusive.

Data Types 905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
A color value expressed in the L*u*v* color space is composed of L, u, and v component values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMakeAndModel
Contains make and model information fro a device.

struct CMMakeAndModel {
 OSType manufacturer;
 UInt32 model;
 UInt32 serialNumber;
 UInt32 manufactureDate;
 UInt32 reserved1;
 UInt32 reserved2;
 UInt32 reserved3;
 UInt32 reserved4;
};
typedef struct CMMakeAndModel CMMakeAndModel;

Fields
manufacturer
model
serialNumber
manufactureDate
reserved1
reserved2
reserved3
reserved4

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMMakeAndModelType
Contains make and model information along with a type descriptor.

906 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMMakeAndModelType {
 OSType typeDescriptor;
 UInt32 reserved;
 CMMakeAndModel makeAndModel;
};
typedef struct CMMakeAndModelType CMMakeAndModelType;

Fields
typeDescriptor
reserved
makeAndModel

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMMatchFlag
Defines a data type for match flags.

typedef long CMMatchFlag;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMMatchOption
Defines a data type for match options.

typedef long CMMatchOption;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMMatchRef
Defines an abstract private data structure for the color-matching-session reference.

Data Types 907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef struct OpaqueCMMatchRef * CMMatchRef;

Discussion
The ColorSync Manager defines an abstract private data structure of type OpaqueCMMatchRef for the
color-matching-session reference. When your application calls the function NCMBeginMatching (page 838)
to begin a QuickDraw-specific color-matching session, the ColorSync Manager returns a reference pointer
to the color-matching session which you must later pass to the CMEndMatching function to conclude the
session.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

CMMeasurementType
Contains measurement type information.

struct CMMeasurementType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 standardObserver;
 CMFixedXYZColor backingXYZ;
 UInt32 geometry;
 UInt32 flare;
 UInt32 illuminant;
};
typedef struct CMMeasurementType CMMeasurementType;

Fields
typeDescriptor
reserved
standardObserver
backingXYZ
geometry
flare
illuminant

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMMInfo
Contains information pertainting to a color management module.

908 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMMInfo {
 UInt32 dataSize;
 OSType CMMType;
 OSType CMMMfr;
 UInt32 CMMVersion;
 unsigned char ASCIIName[32];
 unsigned char ASCIIDesc[256];
 UniCharCount UniCodeNameCount;
 UniChar UniCodeName[32];
 UniCharCount UniCodeDescCount;
 UniChar UniCodeDesc[256];
};
typedef struct CMMInfo CMMInfo;

Fields
dataSize
CMMType
CMMMfr
CMMVersion
ASCIIName
ASCIIDesc
UniCodeNameCount
UniCodeName
UniCodeDescCount
UniCodeDesc
TPLFMT_BKSZ
TPLFMT_NBLOCKS
TPLFMT_EDCLOC

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMInfoRecord
Contains CMM type and version information.

struct CMMInfoRecord {
 OSType CMMType;
 long CMMVersion;
};
typedef struct CMMInfoRecord CMMInfoRecord;

Fields
CMMType

The signature of the CMM as specified in the profile header’s CMMType field. The CMGetCWInfo
function returns this value.

CMMVersion
The version of the CMM. The CMGetCWInfo function returns this value.

Data Types 909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
Your application supplies an array containing two CMM information record structures of type CMMInfoRecord
as a field of the CMCWInfoRecord structure. These structures allow the CMGetCWInfo function to return
information about the one or two CMMs used in a given color world. Your application must allocate memory
for the array. When your application calls the CMGetCWInfo function, it passes a pointer to the
CMCWInfoRecord structure containing the array.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMMIterateUPP
Defines a universal procedure pointer to a CMM interation callback.

typedef CMMIterateProcPtr CMMIterateUPP;

Discussion
For more information, see the description of the CMMIterateProcPtr (page 862) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMultichannel5Color
Contains a color value expressed in the multichannel color space with 5 channels.

struct CMMultichannel5Color {
 UInt8 components[5];
};
typedef struct CMMultichannel5Color CMMultichannel5Color;

Fields
components

Discussion
A color expressed in the multichannel color space with 5 channels. The color value for each channel component
is expressed as an unsigned byte of type char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

910 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMMultichannel6Color
Contains a color expressed in the multichannel color space with 6 channels.

struct CMMultichannel6Color {
 UInt8 components[6];
};
typedef struct CMMultichannel6Color CMMultichannel6Color;

Fields
components

Discussion
A color expressed in the multichannel color space with 6 channels. The color value for each channel component
is expressed as an unsigned byte of type char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMultichannel7Color
Contains a color value expressed in the multichannel color space with 7 channels.

struct CMMultichannel7Color {
 UInt8 components[7];
};
typedef struct CMMultichannel7Color CMMultichannel7Color;

Fields
components

Discussion
A color expressed in the multichannel color space with 7 channels. The color value for each channel component
is expressed as an unsigned byte of type char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMultichannel8Color
Contains a color value expressed in the multichannel color space with 8 channels

Data Types 911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMMultichannel8Color {
 UInt8 components[8];
};
typedef struct CMMultichannel8Color CMMultichannel8Color;

Fields
components

Discussion
A color expressed in the multichannel color space with 8 channels. The color value for each channel component
is expressed as an unsigned byte of type char.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMMultiFunctCLUTType

struct CMMultiFunctCLUTType {
 UInt8 gridPoints[16];
 UInt8 entrySize;
 UInt8 reserved[3];
 UInt8 data[1];
};
typedef struct CMMultiFunctCLUTType CMMultiFunctCLUTType;

Fields
gridPoints
entrySize
reserved
data

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

CMMultiFunctLutA2BType

typedef CMMultiFunctLutType CMMultiFunctLutA2BType;

Availability
Available in Mac OS X v10.1 through Mac OS X v10.4.

Declared In
CMICCProfile.h

912 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMMultiFunctLutB2AType

typedef CMMultiFunctLutType CMMultiFunctLutB2AType;

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

CMMultiFunctLutType

struct CMMultiFunctLutType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt8 inputChannels;
 UInt8 outputChannels;
 UInt16 reserved2;
 UInt32 offsetBcurves;
 UInt32 offsetMatrix;
 UInt32 offsetMcurves;
 UInt32 offsetCLUT;
 UInt32 offsetAcurves;
 UInt8 data[1];
};
typedef struct CMMultiFunctLutType CMMultiFunctLutType;
typedef CMMultiFunctLutType CMMultiFunctLutA2BType;

Fields
typeDescriptor
reserved
inputChannels
outputChannels
reserved2
offsetBcurves
offsetMatrix
offsetMcurves
offsetCLUT
offsetAcurves
data

Availability
Available in Mac OS X v10.1 through Mac OS X v10.4.

Declared In
CMICCProfile.h

Data Types 913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMMultiLocalizedUniCodeEntryRec

struct CMMultiLocalizedUniCodeEntryRec {
 char languageCode[2];
 char regionCode[2];
 UInt32 textLength;
 UInt32 textOffset;
};
typedef struct CMMultiLocalizedUniCodeEntryRec CMMultiLocalizedUniCodeEntryRec;

Fields
languageCode
regionCode
textLength
textOffset

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMMultiLocalizedUniCodeType

struct CMMultiLocalizedUniCodeType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 entryCount;
 UInt32 entrySize;
};
typedef struct CMMultiLocalizedUniCodeType CMMultiLocalizedUniCodeType;

Fields
typeDescriptor
reserved
entryCount
entrySize

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMNamedColor
Contains a color value expressed in a named color space.

914 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMNamedColor {
 UInt32 namedColorIndex;
};
typedef struct CMNamedColor CMNamedColor;

Fields
namedColorIndex

Discussion
A color value expressed in a named color space is composed of a single component, namedColorIndex,
represented as a numeric value within the range of an unsigned long, or 1 to 232 – 1 inclusive.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMNamedColor2EntryType

struct CMNamedColor2EntryType {
 UInt8 rootName[32];
 UInt16 PCSColorCoords[3];
 UInt16 DeviceColorCoords[1];
};
typedef struct CMNamedColor2EntryType CMNamedColor2EntryType;

Fields
rootName
PCSColorCoords
DeviceColorCoords

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMNamedColor2Type

struct CMNamedColor2Type {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 vendorFlag;
 UInt32 count;
 UInt32 deviceChannelCount;
 UInt8 prefixName[32];
 UInt8 suffixName[32];
 char data[1];
};
typedef struct CMNamedColor2Type CMNamedColor2Type;

Fields
typeDescriptor
reserved
vendorFlag
count
deviceChannelCount
prefixName
suffixName
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMNamedColorType

struct CMNamedColorType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 vendorFlag;
 UInt32 count;
 UInt8 prefixName[1];
};
typedef struct CMNamedColorType CMNamedColorType;

Fields
typeDescriptor
reserved
vendorFlag
count
prefixName
suffixName
data

Availability
Available in Mac OS X v10.0 and later.

916 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMICCProfile.h

CMNativeDisplayInfo
Contains color information for a native display.

struct CMNativeDisplayInfo {
 UInt32 dataSize;
 CMFixedXYColor redPhosphor;
 CMFixedXYColor greenPhosphor;
 CMFixedXYColor bluePhosphor;
 CMFixedXYColor whitePoint;
 Fixed redGammaValue;
 Fixed greenGammaValue;
 Fixed blueGammaValue;
 UInt16 gammaChannels;
 UInt16 gammaEntryCount;
 UInt16 gammaEntrySize;
 char gammaData[1];
};
typedef struct CMNativeDisplayInfo CMNativeDisplayInfo;

Fields
dataSize
redPhosphor
greenPhosphor
bluePhosphor
whitePoint
redGammaValue
greenGammaValue
blueGammaValue
gammaChannels
gammaEntryCount
gammaEntrySize
gammaData

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

CMNativeDisplayInfoType
Contins color information and a tpe descriptor for a native display.

Data Types 917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMNativeDisplayInfoType {
 OSType typeDescriptor;
 unsigned long reserved;
 CMNativeDisplayInfo nativeDisplayInfo;
};
typedef struct CMNativeDisplayInfoType CMNativeDisplayInfoType;

Fields
typeDescriptor
reserved
nativeDisplayInfo

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

CMParametricCurveType

struct CMParametricCurveType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt16 functionType;
 UInt16 reserved2;
 Fixed value[1];
};
typedef struct CMParametricCurveType CMParametricCurveType;

Fields
typeDescriptor
reserved
functionType
reserved2
value

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMICCProfile.h

CMPathLocation
Contains path information.

918 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMPathLocation {
 char path[256];
};
typedef struct CMPathLocation CMPathLocation;

Fields
path

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMProcedureLocation
Contains a universal procedure pointer to a profile access procedure.

struct CMProcedureLocation {
 CMProfileAccessUPP proc;
 void * refCon;
};
typedef struct CMProcedureLocation CMProcedureLocation;

Fields
proc

A universal procedure pointer to a profile access procedure. For a description of the procedure, see
the function CMProfileAccessProcPtr (page 862).

refCon
A pointer to the profile access procedure’s private data, such as a file or resource name, a pointer to
a current offset, and so on.

Discussion
Your application uses the CMProcedureLocation structure to provide a universal procedure pointer to a
profile access procedure. You provide this structure in the CMProfileLocation structure’s u field. The
CMProcedureLocation structure also contains a pointer field to specify data associated with the profile
access procedure.

The ColorSync Manager calls your profile access procedure when the profile is created, initialized, opened,
read, updated, or closed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

Data Types 919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProfile

struct CMProfile {
 CMHeader header;
 CMProfileChromaticities profile;
 CMProfileResponse response;
 CMIString profileName;
 char customData[1];
};
typedef struct CMProfile CMProfile;
typedef CMProfile * CMProfilePtr;

Fields
header
profile
response
profileName
customData

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMProfileAccessUPP
Defines a universal procedure pointer to a profile access callback.

typedef CMProfileAccessProcPtr CMProfileAccessUPP;

Discussion
For more information, see the description of the CMProfileAccessProcPtr (page 862)) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

920 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProfileChromaticities

struct CMProfileChromaticities {
 CMXYZColor red;
 CMXYZColor green;
 CMXYZColor blue;
 CMXYZColor cyan;
 CMXYZColor magenta;
 CMXYZColor yellow;
};
typedef struct CMProfileChromaticities CMProfileChromaticities;

Fields
red
green
blue
cyan
magenta
yellow

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMProfileFilterProc

typedef CMProfileFilterProcPtr CMProfileFilterProc;

CMProfileFilterUPP
Defines a universal procedure pointer to a profile filter callback.

typedef CMProfileFilterProcPtr CMProfileFilterUPP;

Discussion
For more information, see the description of the CMProfileFilterProcPtr (page 864) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

CMProfileIdentifier
Contains data that can identify a profile but that takes up much less space than a large profile.

Data Types 921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMProfileIdentifier {
 CM2Header profileHeader;
 CMDateTime calibrationDate;
 UInt32 ASCIIProfileDescriptionLen;
 char ASCIIProfileDescription[1];
};
typedef struct CMProfileIdentifier CMProfileIdentifier;
typedef CMProfileIdentifier * CMProfileIdentifierPtr;

Fields
profileHeader

A version 2.x profile header structure. For more information, see CM2Header (page 875). In determining
a profile match, all header fields are considered, except for primary platform, flags, and rendering
intent.

calibrationDate
A structure of type CMDateTime (page 889), which specifies year, month, day of month, hours, minutes,
and seconds. This field is optional—when set to 0, it is not considered in determining a profile match.
When nonzero, it is compared to the 'calt' tag data.

ASCIIProfileDescriptionLen
The length of the ASCII description string that follows.

ASCIIProfileDescription
The ASCII profile description string, as specified by the profile description tag.

Discussion
Embedding a profile in an image guarantees that the image can be rendered correctly on a different system.
However, profiles can be large—as much as several hundred kilobytes. The ColorSync Manager defines a
profile identifier structure, CMProfileIdentifier, that can identify a profile but that takes up much less
space than a large profile.

The profile identifier structure contains a profile header, an optional calibration date, a profile description
string length, and a variable-length profile description string. Your application might use an embedded
profile identifier, for example, to change just the rendering intent or the flag values in an image without
having to embed an entire copy of a profile. Rendering intent is described in “Rendering Intent Values for
Version 2.x Profiles” (page 1012) and flag values are described in “Flag Mask Definitions for Version 2.x
Profiles” (page 983).

A document containing an embedded profile identifier cannot necessarily be ported to different systems or
platforms.

The ColorSync Manager provides the function routine NCMUseProfileComment (page 843) to embed profiles
and profile identifiers in an open picture file. Your application can embed profile identifiers in place of entire
profiles, or in addition to them. A profile identifier can refer to an embedded profile or to a profile on disk.

The ColorSync Manager provides two routines for finding a profile identifier:

 ■ CMProfileIdentifierListSearch (page 793) for finding a profile identifier in a list of profile identifiers

 ■ CMProfileIdentifierFolderSearch (page 792) for finding a profile identifier in the ColorSync Profiles
folder.

The descriptions of those functions provide information on searching algorithms. See also
CMProfileSearchRef (page 927)

The CMProfileIdentifierPtr type definition defines a pointer to a profile identifier structure.

922 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMProfileIterateData
Contains a callback routine with a description of a profile that is during an iteration through the available
profiles.

struct CMProfileIterateData {
 UInt32 dataVersion;
 CM2Header header;
 ScriptCode code;
 Str255 name;
 CMProfileLocation location;
 UniCharCount uniCodeNameCount;
 UniChar * uniCodeName;
 unsigned char * asciiName;
 CMMakeAndModel * makeAndModel;
 CMProfileMD5 * digest;
};
typedef struct CMProfileIterateData CMProfileIterateData;

Fields
dataVersion

A value identifying the version of the structure. Currently set to cmProfileIterateDataVersion1.

header
A ColorSync version 2.x profile header structure of type CM2Header (page 875), containing information
such as the profile size, type, version, and so on.

code
A script code identifying the script system used for the profile description. The ScriptCode data
type is defined in the MacTypes.h header file.

name
The profile name, stored as a Pascal-type string (with length byte first) of up to 255 characters.

location
A structure specifying the profile location. With ColorSync 2.5, the location is always file-based, but
that may not be true for future versions. Your code should always verify that the location structure
contains a file specification before attempting to use it.

Data Types 923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

uniCodeNameCount
uniCodeName
asciiName
makeAndModel
digest
TPLDEV_TYPE_WPS_SPEED
deviceData

Discussion
The ColorSync Manager defines the CMProfileIterateData structure to provide your
CMProfileIterateProcPtr (page 865) callback routine with a description of a profile during an iteration
through the available profiles that takes place when you call CMIterateColorSyncFolder (page 780).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMProfileIterateUPP
Defines a universal procedure pointer to a profile iteration callback.

typedef CMProfileIterateProcPtr CMProfileIterateUPP;

Discussion
For more information, see the description of the CMProfileIterateProcPtr (page 865)) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMProfileLocation
Contains profile location information.

struct CMProfileLocation {
 short locType;
 CMProfLoc u;
};
typedef struct CMProfileLocation CMProfileLocation;

Fields
locType

The type of data structure that the u field’s CMProfLoc union holds—a file specification, a handle, a
pointer, or a universal procedure pointer. To specify the type, you use the constants defined in the
enumeration described in “Profile Location Type” (page 1003).

u
A union of type CMProfLoc (page 928) identifying the profile location.

Discussion
Your application passes a profile location structure of type CMProfileLocation when it calls:

924 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

 ■ the function CMOpenProfile (page 790), specifying the location of a profile to open

 ■ theCMNewProfile (page 788),CWNewLinkProfile (page 830), orCMCopyProfile (page 740) functions,
specifying the location of a profile to create or duplicate

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

CMProfileMD5
Defines a data type for an MD5 digest.

typedef unsigned char CMProfileMD5[16];

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMProfileName
Contains profile name and length.

struct CMProfileName {
 UniCharCount profileNameLength;
 UniChar profileName[256];
};
typedef struct CMProfileName CMProfileName;

CMProfileNamePtr
Defines a poitner to a profile name data structure.

typedef CMProfileName* CMProfileNamePtr;

CMProfileRef
Defines a reference to an opaque data type that specifies profile information.

typedef struct OpaqueCMProfileRef * CMProfileRef;

Discussion
A profile reference is the means by which your application gains access to a profile. Several ColorSync Manager
functions return a profile reference to your application. Your application then passes it as a parameter on
subsequent calls to other ColorSync Manager functions that use profiles.

Data Types 925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

The ColorSync Manager returns a unique profile reference in response to each individual call to the
CMOpenProfile (page 790), CMCopyProfile (page 740) , and CMNewProfile (page 788) functions. This
allows multiple applications concurrent access to a profile. The ColorSync Manager defines an abstract private
data structure of type OpaqueCMProfileRef for the profile reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMProfileResponse

struct CMProfileResponse {
 UInt16 counts[9];
 UInt16 data[1];
};
typedef struct CMProfileResponse CMProfileResponse;

Fields
counts
data

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMICCProfile.h

CMProfileSearchRecord

struct CMProfileSearchRecord {
 CMHeader header;
 UInt32 fieldMask;
 UInt32 reserved[2];
};
typedef struct CMProfileSearchRecord CMProfileSearchRecord;
typedef CMProfileSearchRecord * CMProfileSearchRecordPtr;

Fields
header
fieldMask
reserved

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

926 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProfileSearchRef
Defines a reference to an opaque profile search object.

typedef struct OpaqueCMProfileSearchRef * CMProfileSearchRef;

Discussion
A search result consists of a list of profiles matching certain search criteria. When your application calls the
function CMNewProfileSearch (page 789) to search in the ColorSync Profiles folder for profiles that meet
certain criteria, the ColorSync Manager returns a reference to an internal private data structure containing
the search result. Your application passes the search result reference to these ColorSync functions:

 ■ CMUpdateProfileSearch (page 817) updates a search result list.

 ■ CMDisposeProfileSearch (page 745) disposes of a search result list.

 ■ CMSearchGetIndProfile (page 798) opens a reference to a profile at a specific position in a search
result list.

 ■ CMSearchGetIndProfileFileSpec (page 799) obtains the file specification for a profile in a search
result list.

The ColorSync Manager uses an abstract private data structure of type OpaqueCMProfileSearchRef in
defining the search result reference.

Version Notes
This type is not recommended for use in ColorSync 2.5.

This type does not take advantage of the profile cache added in ColorSync version 2.5. It is used with the
searching described in “Searching for Profiles Prior to ColorSync 2.5”. See CMProfileIterateData (page
923) for information on data structures used with searching in version 2.5.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMTypes.h

Data Types 927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMProfileSequenceDescType

struct CMProfileSequenceDescType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 count;
 char data[1];
};
typedef struct CMProfileSequenceDescType CMProfileSequenceDescType;

Fields
typeDescriptor
reserved
count
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMProfLoc
Defines a uniont that identifies the location of a profile.

union CMProfLoc {
 CMFileLocation fileLoc;
 CMHandleLocation handleLoc;
 CMPtrLocation ptrLoc;
 CMProcedureLocation procLoc;
 CMPathLocation pathLoc;
 CMBufferLocation bufferLoc;
};
typedef union CMProfLoc CMProfLoc;

Fields
fileLoc

A data structure containing a file system specification record specifying the location of a profile disk
file.

handleLoc
A data structure containing a handle that indicates the location of a profile in relocatable memory.

ptrLoc
A data structure containing a pointer that points to a profile in nonrelocatable memory.

procLoc
A data structure containing a universal procedure pointer that points to a profile access procedure
supplied by you. The ColorSync Manager calls your procedure when the profile is created, initialized,
opened, read, updated, or closed.

928 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

pathLoc
bufferLoc

Discussion
You use a union of type CMProfLoc to identify the location of a profile. You specify the union in the u field
of the data type CMProfileLocation (page 924). Your application passes a pointer to a CMProfileLocation
structure when it calls the CMOpenProfile (page 790) function to identify the location of a profile or the
CMNewProfile (page 788), CMCopyProfile (page 740) , or CWNewLinkProfile (page 830) functions to
specify the location for a newly created profile.

You also pass a pointer to a CMProfileLocation structure to the NCMGetProfileLocation (page 841)
and CMGetProfileLocation (page 770) functions to get the location of an existing profile. The
NCMGetProfileLocation function is available starting with ColorSync version 2.5. It differs from its
predecessor, CMGetProfileLocation, in that the newer version has a parameter for the size of the location
structure for the specified profile.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
CMApplication.h

CMPS2CRDVMSizeType
Defines the Apple-defined 'psvm' optional tag.

struct CMPS2CRDVMSizeType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 count;
 CMIntentCRDVMSize intentCRD[1];
};
typedef struct CMPS2CRDVMSizeType CMPS2CRDVMSizeType;

Fields
typeDescriptor

The 'psvm' tag signature.

reserved
Reserved for future use.

count
The number of entries in the intentCRD array. You should specify at least four entries: 0, 1, 2, and 3.

intentCRD
A variable-sized array of four or more members defined by the CMIntentCRDSize data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMPtrLocation
Contains a pointer specification for a profile stored in nonrelocatable memory.

Data Types 929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

struct CMPtrLocation {
 Ptr p;
};
typedef struct CMPtrLocation CMPtrLocation;

Fields
p

A data structure of type Ptr holding a pointer that points to the location of a profile in memory.

Discussion
Your application uses the CMPtrLocation structure to provide a pointer specification for a profile stored in
nonrelocatable memory. You provide the pointer specification structure in the CMProfileLocation structure’s
u field to point to an existing profile.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

CMRGBColor
Contains a color value expressed in the RGB color space.

struct CMRGBColor {
 UInt16 red;
 UInt16 green;
 UInt16 blue;
};
typedef struct CMRGBColor CMRGBColor;

Fields
red
green
blue

Discussion
A color value expressed in the RGB color space is composed of red, green, and blue component values.
Each color component is expressed as a numeric value within the range of 0 to 65535.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

930 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMS15Fixed16ArrayType

struct CMS15Fixed16ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 Fixed value[1];
};
typedef struct CMS15Fixed16ArrayType CMS15Fixed16ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMScreeningChannelRec

struct CMScreeningChannelRec {
 Fixed frequency;
 Fixed angle;
 UInt32 spotFunction;
};
typedef struct CMScreeningChannelRec CMScreeningChannelRec;

Fields
frequency
angle
spotFunction

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMScreeningType

struct CMScreeningType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 screeningFlag;
 UInt32 channelCount;
 CMScreeningChannelRec channelInfo[1];
};
typedef struct CMScreeningType CMScreeningType;

Fields
typeDescriptor
reserved
screeningFlag
channelCount
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMSearchRecord
Contains information needed for a search.

struct CMSearchRecord {
 OSType CMMType;
 OSType profileClass;
 OSType dataColorSpace;
 OSType profileConnectionSpace;
 UInt32 deviceManufacturer;
 UInt32 deviceModel;
 UInt32 deviceAttributes[2];
 UInt32 profileFlags;
 UInt32 searchMask;
 CMProfileFilterUPP filter;
};
typedef struct CMSearchRecord CMSearchRecord;

Fields
CMMType

The signature of a CMM. The signature of the default CMM is specified by the kDefaultCMMSignature
constant.

profileClass
The class signature identifying the type of profile to search for. For a list of profile class signatures,
see “Profile Classes” (page 999).

dataColorSpace
A data color space. For a list of the color space signatures, see “Color Space Signatures” (page 969).

profileConnectionSpace
A profile connection color space. The signatures for the two profile connection spaces supported by
ColorSync, cmXYZData and cmLabData, are described in “Color Space Signatures” (page 969).

932 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

deviceManufacturer
The signature of the manufacturer.

deviceModel
The model of a device.

deviceAttributes
Attributes for a particular device setup, such as media, paper, and ink types.

profileFlags
Flags that indicate hints for the preferred CMM, such as quality, speed, and memory options. In most
cases, you will not want to search for profiles based on the flags settings.

searchMask
A bitmask that specifies the search record fields to use in the profile search.

filter
A pointer to an application-supplied function that determines whether to exclude a profile from the
profile search result list. For more information, see the function CMProfileFilterProcPtr (page
864).

Discussion
Your application supplies a search record of type CMSearchRecord as the searchSpec parameter to the
function CMNewProfileSearch (page 789). The search record structure provides the ColorSync Manager
with search criteria to use in determining which version 2.x profiles to include in the result list and which to
filter out.

Most of the fields in the CMSearchRecord structure are identical to corresponding fields in the CM2Header
structure for version 2.x profiles. When you set a bit in the searchMask field of the CMSearchRecord
structure, you cause the search criteria to include the data specified by that bit. For example, if you set the
cmMatchProfileCMMType bit, the search result will not include a profile unless the data in the profile
header’s CMMType field matches the data you specify in the CMSearchRecord structure’s CMMType field.

If you specify a bit in the searchMask field, you must supply information in the CMSearchRecord field that
corresponds to that bit.

The ColorSync Manager preserves the search criteria internally along with the search result list until your
application calls the CMDisposeProfileSearch function to release the memory. This allows your application
to call the CMUpdateProfileSearch function to update the search result if the ColorSync Profiles folder
contents change without needing to provide the search specification again.

Version Notes
This type is not recommended for use in ColorSync 2.5.

You cannot use the ColorSync Manager search functions to search for ColorSync 1.0 profiles.

This type does not take advantage of the profile cache added in ColorSync version 2.5. It is used with the
searching described in “Searching for Profiles Prior to ColorSync 2.5”. See CMProfileIterateData (page
923) for information on data structures used with searching in version 2.5.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CMApplication.h

Data Types 933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMSignatureType

struct CMSignatureType {
 OSType typeDescriptor;
 UInt32 reserved;
 OSType signature;
};
typedef struct CMSignatureType CMSignatureType;

Fields
typeDescriptor
reserved
signature

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMTagElemTable

struct CMTagElemTable {
 UInt32 count;
 CMTagRecord tagList[1];
};
typedef struct CMTagElemTable CMTagElemTable;

Fields
count
tagList

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMTagRecord

struct CMTagRecord {
 OSType tag;
 UInt32 elementOffset;
 UInt32 elementSize;
};
typedef struct CMTagRecord CMTagRecord;

Fields
tag
elementOffset
elementSize

Availability
Available in Mac OS X v10.0 and later.

934 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMICCProfile.h

CMTextDescriptionType

struct CMTextDescriptionType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 ASCIICount;
 UInt8 ASCIIName[2];
};
typedef struct CMTextDescriptionType CMTextDescriptionType;

Fields
typeDescriptor
reserved
ASCIICount
ASCIIName
UniCodeCode
UniCodeCount
UniCodeName
ScriptCodeCode
ScriptCodeCount
ScriptCodeName

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMTextType

struct CMTextType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt8 text[1];
};
typedef struct CMTextType CMTextType;

Fields
typeDescriptor
reserved
text

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMU16Fixed16ArrayType

struct CMU16Fixed16ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 value[1];
};
typedef struct CMU16Fixed16ArrayType CMU16Fixed16ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMUcrBgType

struct CMUcrBgType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 ucrCount;
 UInt16 ucrValues[1];
};
typedef struct CMUcrBgType CMUcrBgType;

Fields
typeDescriptor
reserved
ucrCount
ucrValues
bgCount
bgValues
ucrbgASCII

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

936 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMUInt16ArrayType

struct CMUInt16ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt16 value[1];
};
typedef struct CMUInt16ArrayType CMUInt16ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMUInt32ArrayType

struct CMUInt32ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 value[1];
};
typedef struct CMUInt32ArrayType CMUInt32ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMUInt64ArrayType

struct CMUInt64ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt32 value[1];
};
typedef struct CMUInt64ArrayType CMUInt64ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMUInt8ArrayType

struct CMUInt8ArrayType {
 OSType typeDescriptor;
 UInt32 reserved;
 UInt8 value[1];
};
typedef struct CMUInt8ArrayType CMUInt8ArrayType;

Fields
typeDescriptor
reserved
value

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

938 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMUnicodeTextType

struct CMUnicodeTextType {
 OSType typeDescriptor;
 UInt32 reserved;
 UniChar text[1];
};
typedef struct CMUnicodeTextType CMUnicodeTextType;

Fields
typeDescriptor
reserved
text

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMVideoCardGamma
Contains video gamma data to store with a video gamma profile tag.

struct CMVideoCardGamma {
 UInt32 tagType
 union {
 CMVideoCardGammaTable table;
 CMVideoCardGammaFormula formula;
 } u;
};
typedef struct CMVideoCardGamma CMVideoCardGamma;

Fields
tagType

A “Video Card Gamma Storage Types” (page 1018) constant that specifies the format of the data currently
stored in the union. To determine the type of structure present in a specific instance of the
CMVideoCardGamma structure, you test this union tag. If you are setting up a CMVideoCardGamma
structure to store video card gamma data, you set tagType to a constant value that identifies the
structure type you are using. The possible constant values are described in “Video Card Gamma
Storage Types” (page 1018).

table
A structure of type CMVideoCardGammaTable. If the tagType field has the value
cmVideoCardGammaTableType, the CMVideoCardGamma structure’s union field should be treated
as a table, as described in CMVideoCardGammaTable (page 941).

formula

Discussion
The ColorSync Manager defines the CMVideoCardGamma data structure to specify the video gamma data to
store with a video gamma profile tag. The structure is a union that can store data in either table or formula
format.

Availability
Available in Mac OS X v10.0 and later.

Data Types 939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Declared In
CMICCProfile.h

CMVideoCardGammaFormula

struct CMVideoCardGammaFormula {
 Fixed redGamma;
 Fixed redMin;
 Fixed redMax;
 Fixed greenGamma;
 Fixed greenMin;
 Fixed greenMax;
 Fixed blueGamma;
 Fixed blueMin;
 Fixed blueMax;
};
typedef struct CMVideoCardGammaFormula CMVideoCardGammaFormula;

Fields
redGamma

The gamma value for red. It must be greater than 0.0.

redMin
The minimum gamma value for red. It must be greater than 0.0 and less than 1.0.

redMax
The maximum gamma value for red. It must be greater than 0.0 and less than 1.0.

greenGamma
The gamma value for green. It must be greater than 0.0.

greenMin
The minimum gamma value for green. It must be greater than 0.0 and less than 1.0.

greenMax
The maximum gamma value for green. It must be greater than 0.0 and less than 1.0.

blueGamma
The gamma value for blue. It must be greater than 0.0.

blueMin
The minimum gamma value for blue. It must be greater than 0.0 and less than 1.0.

blueMax
The maximum gamma value for blue. It must be greater than 0.0 and less than 1.0.

Discussion
The ColorSync Manager defines the CMVideoCardGammaFormula data structure to specify video card gamma
data by providing three values each for red, blue and green gamma. The values represent the actual gamma,
the minimum gamma, and the maximum gamma for each color. Specifying video gamma information by
formula takes less space than specifying it with a table, but the results may be less precise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

940 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMVideoCardGammaTable

struct CMVideoCardGammaTable {
 UInt16 channels;
 UInt16 entryCount;
 UInt16 entrySize;
 char data[1];
};
typedef struct CMVideoCardGammaTable CMVideoCardGammaTable;

Fields
channels

Number of gamma channels (1 or 3). If channels is set to 1 then the red, green, and blue lookup
tables (LUTs) of the video card will be loaded with the same data. If channels is set to 3, then if the
video card supports separate red, green, and blue LUTs, then the video card LUTs will be loaded with
the data for the three channels from the data array.

entryCount
Number of entries per channel (1-based). The number of entries must be greater than or equal to 2.

entrySize
Size in bytes of each entry.

data
Variable-sized array of data. The size of the data is equal to channels*entryCount*entrySize.

Discussion
The ColorSync Manager defines the CMVideoCardGammaTable data structure to specify video card gamma
data in table format. You specify the number of channels, the number of entries per channel, and the size of
each entry. The last field in the structure is an array of size one that serves as the start of the table data. The
actual size of the array is equal to the number of channels times the number of entries times the size of each
entry.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMVideoCardGammaType
Specifies a video card gamma profile tag.

struct CMVideoCardGammaType {
 OSType typeDescriptor;
 UInt32 reserved;
 CMVideoCardGamma gamma;
};
typedef struct CMVideoCardGammaType CMVideoCardGammaType;

Fields
typeDescriptor

The signature type for a video card gamma tag. There is currently only one type possible,
cmSigVideoCardGammaType.

reserved
This field is reserved and must contain the value 0.

Data Types 941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

gamma
A structure that specifies the video card gamma data for the profile tag, as described in
CMVideoCardGamma (page 939).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMViewingConditionsType

struct CMViewingConditionsType {
 OSType typeDescriptor;
 UInt32 reserved;
 CMFixedXYZColor illuminant;
 CMFixedXYZColor surround;
 UInt32 stdIlluminant;
};
typedef struct CMViewingConditionsType CMViewingConditionsType;

Fields
typeDescriptor
reserved
illuminant
surround
stdIlluminant

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMWorldRef
Defines an opaque data type used for color-matching and color-checking sessions.

typedef struct OpaqueCMWorldRef * CMWorldRef;

Discussion
Your application passes a color world reference as a parameter on calls to functions to perform color-matching
and color-checking sessions and to dispose of the color world. When your application calls the function
NCWNewColorWorld (page 846) and the function CWConcatColorWorld (page 823) to allocate a color world
for color-matching and color-checking sessions, the ColorSync Manager returns a reference to the color
world. The ColorSync Manager defines an abstract private data structure of type OpaqueCMWorldRef for
the color world reference.

The color world is affected by the rendering intent, lookup flag, gamut flag, and quality flag of the profiles
that make up the color world. For more information, see “Rendering Intent Values for Version 2.x Profiles” (page
1012), “Flag Mask Definitions for Version 2.x Profiles” (page 983), and “Quality Flag Values for Version 2.x
Profiles” (page 1011).

942 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMTypes.h

CMXYZColor
Contains values for a color specified in XYZ color space.

struct CMXYZColor {
 CMXYZComponent X;
 CMXYZComponent Y;
 CMXYZComponent Z;
};
typedef struct CMXYZColor CMXYZColor;
typedef CMXYZColor XYZColor;

Fields
X
Y
Z

Discussion
Three color component values defined by the CMXYZComponent type definition combine to form a color
value specified in the XYZ color space. The color value is defined by the CMXYZColor type definition.

Your application uses the CMXYZColor data structure to specify a color value in the CMColor union to use
in general purpose color matching, color checking, or color conversion. You also use the CMXYZColor data
structure to specify the XYZ white point reference used in the conversion of colors to or from the XYZ color
space.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMXYZComponent

typedef UInt16 CMXYZComponent;

Discussion
Three components combine to express a color value defined by the CMXYZColor type definition in the XYZ
color space. Each color component is described by a numeric value defined by the CMXYZComponent type
definition. A component value of type CMXYZComponent is expressed as a 16-bit value. This is formatted as
an unsigned value with 1 bit of integer portion and 15 bits of fractional portion.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

Data Types 943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

CMXYZType

struct CMXYZType {
 OSType typeDescriptor;
 UInt32 reserved;
 CMFixedXYZColor XYZ[1];
};
typedef struct CMXYZType CMXYZType;

Fields
typeDescriptor
reserved
XYZ

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMICCProfile.h

CMYKColor

typedef CMCMYKColor CMYKColor;

CMYxyColor
Contains values for a color expresed in the Yxy color space.

struct CMYxyColor {
 UInt16 capY;
 UInt16 x;
 UInt16 y;
};
typedef struct CMYxyColor CMYxyColor;

Fields
capY
x
y

Discussion
A color value expressed in the Yxy color space is composed of capY, x, and y component values. Each color
component is expressed as a numeric value within the range of 0 to 65535 which maps to 0 to 1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

944 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

NCMConcatProfileSet

struct NCMConcatProfileSet {
 OSType cmm;
 UInt32 flags;
 UInt32 flagsMask;
 UInt32 profileCount;
 NCMConcatProfileSpec profileSpecs[1];
};
typedef struct NCMConcatProfileSet NCMConcatProfileSet;

Fields
cmm
flags
flagsMask
profileCount
profileSpecs

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

NCMConcatProfileSpec

struct NCMConcatProfileSpec {
 UInt32 renderingIntent;
 UInt32 transformTag;
 CMProfileRef profile;
};
typedef struct NCMConcatProfileSpec NCMConcatProfileSpec;

Fields
renderingIntent
transformTag
profile

Availability
Available in Mac OS X v10.0 and later.

Declared In
CMApplication.h

Data Types 945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

NCMDeviceProfileInfo

struct NCMDeviceProfileInfo {
 UInt32 dataVersion;
 CMDeviceProfileID profileID;
 CMProfileLocation profileLoc;
 CFDictionaryRef profileName;
 CMDeviceProfileScope profileScope;
 UInt32 reserved;
};
typedef struct NCMDeviceProfileInfo NCMDeviceProfileInfo;

Fields
dataVersion
profileID
profileLoc
profileName
profileScope
reserved

Availability
Available in Mac OS X v10.1 and later.

Declared In
CMDeviceIntegration.h

Constants

Abstract Color Space Constants
Specify values that represent general color spaces.

946 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmNoSpace = 0x0000,
 cmRGBSpace = 0x0001,
 cmCMYKSpace = 0x0002,
 cmHSVSpace = 0x0003,
 cmHLSSpace = 0x0004,
 cmYXYSpace = 0x0005,
 cmXYZSpace = 0x0006,
 cmLUVSpace = 0x0007,
 cmLABSpace = 0x0008,
 cmReservedSpace1 = 0x0009,
 cmGraySpace = 0x000A,
 cmReservedSpace2 = 0x000B,
 cmGamutResultSpace = 0x000C,
 cmNamedIndexedSpace = 0x0010,
 cmMCFiveSpace = 0x0011,
 cmMCSixSpace = 0x0012,
 cmMCSevenSpace = 0x0013,
 cmMCEightSpace = 0x0014,
 cmAlphaPmulSpace = 0x0040,
 cmAlphaSpace = 0x0080,
 cmRGBASpace = cmRGBSpace + cmAlphaSpace,
 cmGrayASpace = cmGraySpace + cmAlphaSpace,
 cmRGBAPmulSpace = cmRGBASpace + cmAlphaPmulSpace,
 cmGrayAPmulSpace = cmGrayASpace + cmAlphaPmulSpace
};

Constants
cmNoSpace

The ColorSync Manager does not use this constant.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBSpace
An RGB color space composed of red, green, and blue components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a packing format describing the amount of
storage per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCMYKSpace
A CMYK color space composed of cyan, magenta, yellow, and black. A bitmap never uses this constant
alone. Instead, this color space is always combined with a packing format describing the amount of
storage per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmHSVSpace
An HSV color space composed of hue, saturation, and value components. A bitmap never uses this
constant alone. Instead, this color space is always combined with a packing format describing the
amount of storage per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmHLSSpace
An HLS color space composed of hue, lightness, and saturation components. A bitmap never uses
this constant alone. Instead, this color space is always combined with a packing format describing
the amount of storage per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmYXYSpace
A Yxy color space composed of Y, x, and y components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a packing format describing the amount of storage
per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmXYZSpace
An XYZ color space composed of X, Y, and Z components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a packing format describing the amount of storage
per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLUVSpace
An L*u*v* color space composed of L*, u*, and v* components. A bitmap never uses this constant
alone. Instead, this color space is always combined with a packing format describing the amount of
storage per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLABSpace
An L*a*b* color space composed of L*, a*, b* components. A bitmap never uses this constant alone.
Instead, this color space is always combined with a packing format describing the amount of storage
per component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmReservedSpace1
This field is reserved for use by QuickDraw GX.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGraySpace
A luminance color space with a single component, gray.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmReservedSpace2
This field is reserved for use by QuickDraw GX.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

948 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmGamutResultSpace
A color space for the resulting bitmap pointed to by the resultBitMap field of the function
CWMatchColors (page 828). A bitmap never uses this constant alone. Instead, it uses the constant
cmGamutResult1Space, which combines cmGamutResultSpace and cmOneBitDirectPacking
to define a bitmap that is 1 bit deep.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmNamedIndexedSpace
A named indexed color space.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCFiveSpace
A five-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCSixSpace
A six-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCSevenSpace
A seven-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCEightSpace
An eight-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmAlphaPmulSpace
A premultiplied alpha channel component is added to the color value.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmAlphaSpace
An alpha channel component is added to the color value.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBASpace
An RGB color space composed of red, green, and blue color value components and an alpha channel
component. ColorSync does not currently support bitmaps that use this constant alone. Instead, this
constant indicates the presence of an alpha channel in combination with cmLong8ColorPacking
to indicate 8-bit packing format and cmAlphaFirstPacking to indicate the position of the alpha
channel as the first component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmGrayASpace
A luminance color space with two components, a gray component followed by an alpha channel
component. Each component value is 16 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBAPmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayAPmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
The data type CMBitmap (page 882) defines a bitmap for an image whose colors can be matched with the
function CWMatchColors (page 828) or color-checked with the function CWCheckColors (page 821).

The space field of the CMBitmap type definition identifies the color space in which the colors of the bitmap
image are specified. A color space is characterized by a number of components or dimensions, with each
component carrying a numeric value. These values together make up the color value. A color space also
specifies the format in which the color value is stored. For bitmaps in which color values are packed, the
space field of the CMBitmap data type holds a constant that defines the color space and the packing format.

For the CWMatchBitmap function to perform color matching successfully, the color space specified in the
CMBitmap data type’s space field must correspond to the color space specified in the profile’s
dataColorSpace field. The source bitmap and source profile values must match and the destination bitmap
and destination profile values must match. For the CWCheckBitMap function to perform color checking
successfully, the source profile’s dataColorSpace field value and the space field value of the source bitmap
must specify the same color space. These functions will execute successfully as long as the color spaces are
the same without regard for the packing format specified by the bitmap.

This enumeration defines constants for abstract color spaces which, when combined with a packing format
constant as described in “Color Packing for Color Spaces” (page 957), can be used in the space field of the
CMBitmap structure. The combined constants are shown in “Color Space Constants With Packing
Formats” (page 962).

Version Notes
The constants cmRGBASpace and cmGrayASpace were moved to this enum from “Color Space Constants
With Packing Formats” (page 962) in ColorSync version 2.5.

Calibrator Name Prefix
Specify an interface for new ColorSync monitor calibrators (ColorSync 2.6 and greater)

enum {
 kCalibratorNamePrefix = 'cali'
};

Constants
kCalibratorNamePrefix

Available in Mac OS X v10.0 and later.

Declared in CMCalibrator.h.

950 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Channel Encoding Format
Specify an encoding format for sRGB64.

enum {
 cmSRGB16ChannelEncoding = 0x00010000
};

Constants
cmSRGB16ChannelEncoding

Used for sRGB64 encoding (±3.12 format)

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Chromatic Adaptation Values
Specify a transformation to use for chromaric adaptation.

typedef UInt32 CMChromaticAdaptation;
enum {
 cmUseDefaultChromaticAdaptation = 0,
 cmLinearChromaticAdaptation = 1,
 cmVonKriesChromaticAdaptation = 2,
 cmBradfordChromaticAdaptation = 3
};

Constants
cmUseDefaultChromaticAdaptation

Available in Mac OS X v10.0 and later.

Declared in CMTypes.h.

cmLinearChromaticAdaptation
Available in Mac OS X v10.0 and later.

Declared in CMTypes.h.

cmVonKriesChromaticAdaptation
Available in Mac OS X v10.0 and later.

Declared in CMTypes.h.

cmBradfordChromaticAdaptation
Available in Mac OS X v10.0 and later.

Declared in CMTypes.h.

CMM Function Selectors
Define selectors used for component-based CMM functions.

Constants 951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 kCMMOpen = -1,
 kCMMClose = -2,
 kCMMGetInfo = -4,
 kNCMMInit = 6,
 kCMMMatchColors = 1,
 kCMMCheckColors = 2,
 kCMMValidateProfile = 8,
 kCMMMatchBitmap = 9,
 kCMMCheckBitmap = 10,
 kCMMConcatenateProfiles = 5,
 kCMMConcatInit = 7,
 kCMMNewLinkProfile = 16,
 kNCMMConcatInit = 18,
 kNCMMNewLinkProfile = 19,
 kCMMGetPS2ColorSpace = 11,
 kCMMGetPS2ColorRenderingIntent = 12,
 kCMMGetPS2ColorRendering = 13,
 kCMMGetPS2ColorRenderingVMSize = 17,
 kCMMFlattenProfile = 14,
 kCMMUnflattenProfile = 15,
 kCMMInit = 0,
 kCMMGetNamedColorInfo = 70,
 kCMMGetNamedColorValue = 71,
 kCMMGetIndNamedColorValue = 72,
 kCMMGetNamedColorIndex = 73,
 kCMMGetNamedColorName = 74,
 kCMMMatchPixMap = 3,
 kCMMCheckPixMap = 4
};

Constants
kCMMOpen

Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMClose
Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetInfo
Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kNCMMInit
In response to this request code, your CMM should initialize any private data it will need for the color
session and for subsequent requests from the calling application or driver. Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

952 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

kCMMMatchColors
In response to this request code, your CMM should match the colors in the myColors parameter to
the color gamut of the destination profile and replace the color-list color values with the matched
colors. Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMCheckColors
In response to this request code, your CMM should test the given list of colors in the myColors
parameter against the gamut specified by the destination profile and report if the colors fall within
a destination device’s color gamut. For more information, see the function CWCheckColors (page
821). Required.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMValidateProfile
In response to this request code, your CMM should test the profile whose reference is passed in the
prof parameter to determine if the profile contains the minimum set of elements required for a
profile of its type. For more information, see the function CMValidateProfile (page 818).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMMatchBitmap
In response to this request code, your CMM must match the colors of the source image bitmap pointed
to by the bitmap parameter to the gamut of the destination device using the profiles specified by a
previous kNCMMInit, kCMMInit, or kCMMConcatInit request to your CMM. For more information,
see the function CWMatchBitmap (page 826).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMCheckBitmap
In response to this request code, your CMM must check the colors of the source image bitmap pointed
to by the bitmap parameter against the gamut of the destination device using the profiles specified
by a previouskNCMMInit,kCMMInit, orkCMMConcatInit request to your CMM. For more information,
see the function CWCheckBitmap (page 819).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMConcatenateProfiles
This request code is for backward compatibility with ColorSync 1.0.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMConcatInit
In response to this request code, your CMM should initialize any private data your CMM will need for
a color session involving the set of profiles specified by the profile array pointed to by the profileSet
parameter. Your function should also initialize any additional private data needed in handling
subsequent calls pertaining to this component instance. For more information, see the function
CWConcatColorWorld (page 823).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

Constants 953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

kCMMNewLinkProfile
In response to this request code, your CMM must create a single device link profile of type DeviceLink
that includes the profiles passed to you in the array pointed to by the profileSet parameter. For
more information, see the function CWNewLinkProfile (page 830).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kNCMMConcatInit
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kNCMMNewLinkProfile
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetPS2ColorSpace
In response to this request code, your CMM must obtain or derive the color space element data from
the source profile whose reference is passed to your function in the srcProf parameter and pass
the data to a low-level data-transfer function supplied by the calling application or device driver. For
more information, see the function CMGetPS2ColorSpace (page 776).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetPS2ColorRenderingIntent
In response to this request code, your CMM must obtain the color-rendering intent from the header
of the source profile whose reference is passed to your function in the srcProf parameter and then
pass the data to a low-level data-transfer function supplied by the calling application or device driver.
For more information, see the function CMGetPS2ColorRenderingIntent (page 774).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetPS2ColorRendering
In response to this request code, your CMM must obtain the rendering intent from the source profile’s
header and generate the color rendering dictionary (CRD) data from the destination profile, and then
pass the data to a low-level data-transfer function supplied by the calling application or device driver.
For more information, see the function CMGetPS2ColorRendering (page 773).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetPS2ColorRenderingVMSize
In response to this request code, your CMM must obtain or assess the maximum virtual memory (VM)
size of the color rendering dictionary (CRD) specified by the destination profile. You must return the
size of the CRD for the rendering intent specified by the source profile. For more information, see the
function CMGetPS2ColorRenderingVMSize (page 775).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

954 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

kCMMFlattenProfile
In response to this request code, your CMM must extract the profile data from the profile to flatten,
identified by the prof parameter, and pass the profile data to the function specified in the proc
parameter. For more information, see the function CMFlattenProfile (page 748).

Changed in ColorSync 2.5: Starting with ColorSync version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going through the preferred, or any, CMM. Your
CMM only needs to handle this request code for versions of ColorSync prior to version 2.5.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMUnflattenProfile
In response to this request code, your CMM must create a temporary file in which to store the profile
data you receive from the low-level data-transfer function supplied by the calling application or driver.
Your function must return the file specification.

Changed in ColorSync 2.5: Starting with ColorSync version 2.5, the ColorSync Manager calls the function
provided by the calling program directly, without going through the preferred, or any, CMM. Your
CMM only needs to handle this request code for versions of ColorSync prior to version 2.5.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMInit
This request code is provided for backward compatibility with ColorSync 1.0. A CMM that supports
ColorSync 1.0 profiles should respond to this request code by initializing any private data required
for the color-matching or gamut-checking session to be held as indicated by subsequent request
codes. If your CMM supports only ColorSync 1.0 profiles or both ColorSync 1.0 profiles and ColorSync
Manager version 2.x profiles, you must support this request code. If you support only ColorSync
Manager version 2.x profiles, you should return an unimplemented error in response to this request
code.

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetNamedColorInfo
In response to this request code, your CMM extracts named color data from the profile whose reference
is passed in the srcProf parameter. For more information, see the function
CMGetNamedColorInfo (page 763).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetNamedColorValue
In response to this request code, your CMM extracts device and profile connection space (PCS) color
values for a specific color name from the profile whose reference is passed in the prof parameter.
For more information, see the function CMGetNamedColorValue (page 764).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetIndNamedColorValue
In response to this request code, your CMM extracts device and PCS color values for a specific named
color index from the profile whose reference is passed in the prof parameter. For more information,
see the function CMGetIndNamedColorValue (page 759).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

Constants 955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

kCMMGetNamedColorIndex
In response to this request code, your CMM extracts a named color index for a specific color name
from the profile whose reference is passed in the prof parameter. For more information, see the
function CMGetNamedColorIndex (page 762).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMGetNamedColorName
In response to this request code, your CMM extracts a named color name for a specific named color
index from the profile whose reference is passed in the prof parameter. For more information, see
the function CMGetNamedColorName (page 763).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMMatchPixMap
In response to this request code, your CMM must match the colors of the pixel map image pointed
to by the myPixMap parameter to the gamut of the destination device, replacing the original pixel
colors with their corresponding colors as specified in the data color space of the destination device’s
color gamut. To perform the matching, you use the profiles specified by a previous kNCMMInit,
kCMMInit, or kCMMConcatInit request to your CMM. For more information, see the function
CWMatchPixMap (page 829).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

kCMMCheckPixMap
In response to this request code, your CMM must check the colors of the pixel map image pointed
to by the myPixMap parameter against the gamut of the destination device to determine if the pixel
colors are within the gamut of the destination device and report the results. To perform the check,
you use the profiles specified by a previous kNCMMInit, kCMMInit, or kCMMConcatInit request
to your CMM. For more information, see the function CWCheckPixMap (page 822).

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

Discussion
Your CMM must respond to the ColorSync Manager required request codes. When a CMM receives a required
request code from the ColorSync Manager, the CMM must determine the nature of the request, perform the
appropriate processing, set an error code if necessary, and return an appropriate function result to the
Component Manager. The required request codes are:

 ■ kNCMMInit

 ■ kCMMMatchColors

 ■ kCMMCheckColors

 ■ kCMMInit

Your CMM should respond to the rest of the ColorSync Manager request codes defined by this enumeration,
but it is not required to do so.

Color Management Module Component Interface
Specify a CMM interface version.

956 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 CMMInterfaceVersion = 1
};

Constants
CMMInterfaceVersion

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMMComponent.h.

Discussion
If your CMM supports the ColorSync Manager version 2.x, it should return the constant defined by the
following enumeration when the Component Manager calls your CMM with the kComponentVersionSelect
request code.

In response to the kComponentVersionSelect request code, a CMM should set its entry point function’s
result to the CMM version number. The high-order 16 bits represent the major version and the low-order 16
bits represent the minor version. The CMMInterfaceVersion constant represents the major version number.

A CMM that only supports ColorSync 1.0 returns 0 for the major version in response to the version request.

The kComponentVersionSelect request code is one of four required Component Manager requests your
CMM must handle.

Color Packing for Color Spaces
Specify how color values are stored.

Constants 957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmNoColorPacking = 0x0000,
 cmWord5ColorPacking = 0x0500,
 cmWord565ColorPacking = 0x0600,
 cmLong8ColorPacking = 0x0800,
 cmLong10ColorPacking = 0x0A00,
 cmAlphaFirstPacking = 0x1000,
 cmOneBitDirectPacking = 0x0B00,
 cmAlphaLastPacking = 0x0000,
 cm8_8ColorPacking = 0x2800,
 cm16_8ColorPacking = 0x2000,
 cm24_8ColorPacking = 0x2100,
 cm32_8ColorPacking = cmLong8ColorPacking,
 cm40_8ColorPacking = 0x2200,
 cm48_8ColorPacking = 0x2300,
 cm56_8ColorPacking = 0x2400,
 cm64_8ColorPacking = 0x2500,
 cm32_16ColorPacking = 0x2600,
 cm48_16ColorPacking = 0x2900,
 cm64_16ColorPacking = 0x2A00,
 cm32_32ColorPacking = 0x2700,
 cmLittleEndianPacking = 0x4000,
 cmReverseChannelPacking = 0x8000
};

Constants
cmNoColorPacking

This constant is not used for ColorSync bitmaps.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmWord5ColorPacking
The color values for three 5-bit color channels are stored consecutively in 16-bits, with the highest
order bit unused.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmWord565ColorPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLong8ColorPacking
The color values for three or four 8-bit color channels are stored consecutively in a 32-bit long. For
three channels, this constant is combined with either cmAlphaFirstPacking or
cmAlphaLastPacking to indicate whether the unused eight bits are located at the beginning or
end.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLong10ColorPacking
The color values for three 10-bit color channels are stored consecutively in a 32-bit long, with the two
highest order bits unused.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

958 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmAlphaFirstPacking
An alpha channel is added to the color value as its first component.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmOneBitDirectPacking
One bit is used as the pixel format. This storage format is used by the resulting bitmap pointed to by
the resultBitMap field of the function CWMatchColors (page 828); the bitmap must be only 1 bit
deep.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmAlphaLastPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm8_8ColorPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm16_8ColorPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm24_8ColorPacking
The color values for three 8-bit color channels are stored in consecutive bytes, for a total of 24 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm32_8ColorPacking
The color values for four 8-bit color channels are stored in consecutive bytes, for a total of 32 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm40_8ColorPacking
The color values for five 8-bit color channels are stored in consecutive bytes, for a total of 40 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm48_8ColorPacking
The color values for six 8-bit color channels are stored in consecutive bytes, for a total of 48 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm56_8ColorPacking
The color values for seven 8-bit color channels are stored in consecutive bytes, for a total of 56 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm64_8ColorPacking
The color values for eight 8-bit color channels are stored in consecutive bytes, for a total of 64 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cm32_16ColorPacking
The color values for two 16-bit color channels are stored in a 32-bit word.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm48_16ColorPacking
The color values for three 16-bit color channels are stored in 48 consecutive bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm64_16ColorPacking
The color values for four 16-bit color channels are stored in 64 consecutive bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cm32_32ColorPacking
The color value for a 32-bit color channel is stored in a 32-bit word.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLittleEndianPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmReverseChannelPacking
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
The ColorSync bitmap data type CMBitmap (page 882) includes a field that identifies the color space in which
the color values of the bitmap image are expressed. This enumeration defines the types of packing for a color
space’s storage format. The enumeration also defines an alpha channel that can be added as a component
of a color value to define the degree of opacity or transparency of a color. These constants are combined
with the constants described in “Abstract Color Space Constants” (page 946) to create values that identify a
bitmap’s color space. Your application does not specify color packing constants directly, but rather uses the
combined constants, which are described in “Color Space Constants With Packing Formats” (page 962).

Version Notes
The constants cm48_16ColorPacking and cm64_16ColorPacking were added in ColorSync version 2.5.

Color Responses
Specify responses for ColorSync 1.0 specifications.

960 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmGrayResponse = 0,
 cmRedResponse = 1,
 cmGreenResponse = 2,
 cmBlueResponse = 3,
 cmCyanResponse = 4,
 cmMagentaResponse = 5,
 cmYellowResponse = 6,
 cmUcrResponse = 7,
 cmBgResponse = 8,
 cmOnePlusLastResponse = 9
};

Constants
cmGrayResponse

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmRedResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmGreenResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmBlueResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmCyanResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmMagentaResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmYellowResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmUcrResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

Constants 961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmBgResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmOnePlusLastResponse
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

Color Space Constants With Packing Formats
Specifies bitmap spaces with a wide range of data formats appropriate for multiple platforms.

962 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmGray8Space = cmGraySpace + cm8_8ColorPacking,
 cmGray16Space = cmGraySpace,
 cmGray16LSpace = cmGraySpace + cmLittleEndianPacking,
 cmGrayA16Space = cmGrayASpace + cm16_8ColorPacking,
 cmGrayA32Space = cmGrayASpace,
 cmGrayA32LSpace = cmGrayASpace + cmLittleEndianPacking,
 cmGrayA16PmulSpace = cmGrayAPmulSpace + cm16_8ColorPacking,
 cmGrayA32PmulSpace = cmGrayAPmulSpace,
 cmGrayA32LPmulSpace = cmGrayAPmulSpace + cmLittleEndianPacking,
 cmRGB16Space = cmRGBSpace + cmWord5ColorPacking,
 cmRGB16LSpace = cmRGBSpace + cmWord5ColorPacking + cmLittleEndianPacking,
 cmRGB565Space = cmRGBSpace + cmWord565ColorPacking,
 cmRGB565LSpace = cmRGBSpace + cmWord565ColorPacking + cmLittleEndianPacking,
 cmRGB24Space = cmRGBSpace + cm24_8ColorPacking,
 cmRGB32Space = cmRGBSpace + cm32_8ColorPacking,
 cmRGB48Space = cmRGBSpace + cm48_16ColorPacking,
 cmRGB48LSpace = cmRGBSpace + cm48_16ColorPacking + cmLittleEndianPacking,
 cmARGB32Space = cmRGBASpace + cm32_8ColorPacking + cmAlphaFirstPacking,
 cmARGB64Space = cmRGBASpace + cm64_16ColorPacking + cmAlphaFirstPacking,
 cmARGB64LSpace = cmRGBASpace + cm64_16ColorPacking + cmAlphaFirstPacking
+ cmLittleEndianPacking,
 cmRGBA32Space = cmRGBASpace + cm32_8ColorPacking + cmAlphaLastPacking,
 cmRGBA64Space = cmRGBASpace + cm64_16ColorPacking + cmAlphaLastPacking,
 cmRGBA64LSpace = cmRGBASpace + cm64_16ColorPacking + cmAlphaLastPacking
+ cmLittleEndianPacking,
 cmARGB32PmulSpace = cmRGBAPmulSpace + cm32_8ColorPacking + cmAlphaFirstPacking,
 cmARGB64PmulSpace = cmRGBAPmulSpace + cm64_16ColorPacking + cmAlphaFirstPacking,
 cmARGB64LPmulSpace = cmRGBAPmulSpace + cm64_16ColorPacking + cmAlphaFirstPacking
+ cmLittleEndianPacking,
 cmRGBA32PmulSpace = cmRGBAPmulSpace + cm32_8ColorPacking + cmAlphaLastPacking,
 cmRGBA64PmulSpace = cmRGBAPmulSpace + cm64_16ColorPacking + cmAlphaLastPacking,
 cmRGBA64LPmulSpace = cmRGBAPmulSpace + cm64_16ColorPacking + cmAlphaLastPacking
+ cmLittleEndianPacking,
 cmCMYK32Space = cmCMYKSpace + cm32_8ColorPacking,
 cmCMYK64Space = cmCMYKSpace + cm64_16ColorPacking,
 cmCMYK64LSpace = cmCMYKSpace + cm64_16ColorPacking + cmLittleEndianPacking,
 cmHSV32Space = cmHSVSpace + cmLong10ColorPacking,
 cmHLS32Space = cmHLSSpace + cmLong10ColorPacking,
 cmYXY32Space = cmYXYSpace + cmLong10ColorPacking,
 cmXYZ24Space = cmXYZSpace + cm24_8ColorPacking,
 cmXYZ32Space = cmXYZSpace + cmLong10ColorPacking,
 cmXYZ48Space = cmXYZSpace + cm48_16ColorPacking,
 cmXYZ48LSpace = cmXYZSpace + cm48_16ColorPacking + cmLittleEndianPacking,
 cmLUV32Space = cmLUVSpace + cmLong10ColorPacking,
 cmLAB24Space = cmLABSpace + cm24_8ColorPacking,
 cmLAB32Space = cmLABSpace + cmLong10ColorPacking,
 cmLAB48Space = cmLABSpace + cm48_16ColorPacking,
 cmLAB48LSpace = cmLABSpace + cm48_16ColorPacking + cmLittleEndianPacking,
 cmGamutResult1Space = cmOneBitDirectPacking + cmGamutResultSpace,
 cmNamedIndexed32Space = cm32_32ColorPacking + cmNamedIndexedSpace,
 cmNamedIndexed32LSpace = cm32_32ColorPacking + cmNamedIndexedSpace
+ cmLittleEndianPacking,
 cmMCFive8Space = cm40_8ColorPacking + cmMCFiveSpace,
 cmMCSix8Space = cm48_8ColorPacking + cmMCSixSpace,
 cmMCSeven8Space = cm56_8ColorPacking + cmMCSevenSpace,
 cmMCEight8Space = cm64_8ColorPacking + cmMCEightSpace
};

Constants 963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

typedef UInt32 CMBitmapColorSpace;

Constants
cmGray8Space

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGray16Space
A luminance color space with a single 16-bit component, gray.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGray16LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA16Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA32Space
A luminance color space with two components, a gray component followed by an alpha channel
component. Each component value is 16 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA32LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA16PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA32PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGrayA32LPmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB16Space
An RGB color space composed of red, green, and blue components whose values are packed with 5
bits of storage per component. The storage size for a color value expressed in this color space is 16
bits, with the high-order bit not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB16LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB565Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

964 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmRGB565LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB24Space
An RGB color space composed of red, green, and blue components whose values are packed with 8
bits of storage per component. The storage size for a color value expressed in this color space is 24
bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB32Space
An RGB color space composed of red, green, and blue components whose values are packed with 8
bits of storage per component. The storage size for a color value expressed in this color space is 32
bits, with bits 24-31 not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB48Space
An RGB color space composed of red, green, and blue components whose values are packed with 16
bits of storage per component. The storage size for a color value expressed in this color space is 48
bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGB48LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB32Space
An RGB color space composed of red, green, and blue color value components preceded by an alpha
channel component whose values are packed with 8 bits of storage per component. The storage size
for a color value expressed in this color space is 32 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB64Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB64LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBA32Space
An RGB color space composed of red, green, and blue color value components, followed by an alpha
channel component. Values are packed with 8 bits of storage per component. The storage size for a
color value expressed in this color space is 32 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBA64Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmRGBA64LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB32PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB64PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmARGB64LPmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBA32PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBA64PmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmRGBA64LPmulSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCMYK32Space
A CMYK color space composed of cyan, magenta, yellow, and black components whose values are
packed with 8 bits of storage per component. The storage size for a color value expressed in this color
space is 32 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCMYK64Space
A CMYK color space composed of cyan, magenta, yellow, and black components whose values are
packed with 16 bits of storage per component. The storage size for a color value expressed in this
color space is 64 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCMYK64LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmHSV32Space
An HSV color space composed of hue, saturation, and value components whose values are packed
with 10 bits of storage per component. The storage size for a color value expressed in this color space
is 32 bits, with the high-order 2 bits not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

966 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmHLS32Space
An HLS color space composed of hue, lightness, and saturation components whose values are packed
with 10 bits of storage per component. The storage size for a color value expressed in this color space
is 32 bits, with the high-order 2 bits not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmYXY32Space
A Yxy color space composed of Y, x, and y components whose values are packed with 10 bits of
storage per component. The storage size for a color value expressed in this color space is 32 bits, with
the high-order 2 bits not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmXYZ24Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmXYZ32Space
An XYZ color space composed of X, Y, and Z components whose values are packed with 10 bits per
component. The storage size for a color value expressed in this color space is 32 bits, with the
high-order 2 bits not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmXYZ48Space
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmXYZ48LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLUV32Space
An L*u*v* color space composed of L*, u*, and v* components whose values are packed with 10 bits
per component. The storage size for a color value expressed in this color space is 32 bits, with the
high-order 2 bits not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLAB24Space
An L*a*b* color space composed of L*, a*, and b* components whose values are packed with 8 bits
per component. The storage size for a color value expressed in this color space is 24 bits. The 8-bit
unsigned a* and b* channels are interpreted numerically as ranging from -128.0 to approximately
128.0.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmLAB32Space
An L*a*b* color space composed of L*, a*, and b* components whose values are packed with 10 bits
per component. The storage size for a color value expressed in this color space is 32 bits, with the
high-order 2 bits not used. The 10-bit unsigned a* and b* channels are interpreted numerically as
ranging from -128.0 to approximately 128.0.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLAB48Space
An L*a*b* color space composed of L*, a*, and b* components whose values are packed with 16 bits
per component. The storage size for a color value expressed in this color space is 48 bits. The 16-bit
unsigned a* and b* channels are interpreted numerically as ranging from -128.0 to approximately
128.0.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmLAB48LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmGamutResult1Space
A gamut result color space for the resulting bitmap pointed to by the resultBitMap field of the
function CWMatchColors (page 828), with 1-bit direct packing. A pixel in the returned bitmap with
value 1 (displayed as black) indicates an out-of-gamut color, while a pixel value of 0 (white) indicates
a color that is in gamut.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmNamedIndexed32Space
A color space where each color is stored as a single 32-bit value, specifying an index into a named
color space. The storage size for a color value expressed in this color space is 32 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmNamedIndexed32LSpace
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCFive8Space
A five-channel multichannel (HiFi) data color space, whose values are packed with 8 bits per component.
The storage size for a color value expressed in this color space is 40 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCSix8Space
A six-channel multichannel (HiFi) data color space, whose values are packed with 8 bits per component.
The storage size for a color value expressed in this color space is 48 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

968 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmMCSeven8Space
A seven-channel multichannel (HiFi) data color space, whose values are packed with 8 bits per
component. The storage size for a color value expressed in this color space is 56 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmMCEight8Space
A eight-channel multichannel (HiFi) data color space, whose values are packed with 8 bits per
component. The storage size for a color value expressed in this color space is 64 bits.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
This enumeration defines constants for color spaces which can specify color values for a bitmap image. As
a rule, these constants include a packing format, defined in “Color Packing for Color Spaces” (page 957). You
can use these constants to set the space field of the CMBitmap type definition identifies the color space in
which the colors of the bitmap image are specified, as described in “Abstract Color Space Constants” (page
946).

Version Notes
The constants cmRGBASpace and cmGrayASpace were moved to “Abstract Color Space Constants” (page
946) in ColorSync version 2.5.

The constants cmGray16Space, cmGrayA32Space, cmRGB48Space, cmCMYK64Space, and cmLAB48Space
were added in ColorSync version 2.5.

Color Space Signatures
Define four-character-sequences associated with color spaces.

Constants 969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmXYZData = 'XYZ ',
 cmLabData = 'Lab ',
 cmLuvData = 'Luv ',
 cmYCbCrData = 'YCbr',
 cmYxyData = 'Yxy ',
 cmRGBData = 'RGB ',
 cmSRGBData = 'sRGB',
 cmGrayData = 'GRAY',
 cmHSVData = 'HSV ',
 cmHLSData = 'HLS ',
 cmCMYKData = 'CMYK',
 cmCMYData = 'CMY ',
 cmMCH5Data = 'MCH5',
 cmMCH6Data = 'MCH6',
 cmMCH7Data = 'MCH7',
 cmMCH8Data = 'MCH8',
 cm3CLRData = '3CLR',
 cm4CLRData = '4CLR',
 cm5CLRData = '5CLR',
 cm6CLRData = '6CLR',
 cm7CLRData = '7CLR',
 cm8CLRData = '8CLR',
 cm9CLRData = '9CLR',
 cm10CLRData = 'ACLR',
 cm11CLRData = 'BCLR',
 cm12CLRData = 'CCLR',
 cm13CLRData = 'DCLR',
 cm14CLRData = 'ECLR',
 cm15CLRData = 'FCLR',
 cmNamedData = 'NAME'
};

Constants
cmXYZData

The XYZ data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmLabData
The L*a*b* data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmLuvData
The L*u*v* data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmYCbCrData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

970 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmYxyData
The Yxy data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmRGBData
The RGB data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSRGBData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGrayData
The Gray data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmHSVData
The HSV data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmHLSData
The HLS data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCMYKData
The CMYK data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCMYData
The CMY data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMCH5Data
The five-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMCH6Data
The six-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMCH7Data
The seven-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmMCH8Data
The eight-channel multichannel (HiFi) data color space.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm3CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm4CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm5CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm6CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm7CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm8CLRData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cm9CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm10CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm11CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm12CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm13CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm14CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cm15CLRData
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

972 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmNamedData
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
A ColorSync profile header contains a dataColorSpace field that carries the signature of the data color
space in which the color values in an image using the profile are expressed. This enumeration defines the
signatures for the color spaces supported by ColorSync for version 2.x profiles.

Color Space Masks
Specify masks used for color spaces.

enum {
 cmColorSpaceSpaceMask = 0x0000003F,
 cmColorSpacePremulAlphaMask = 0x00000040,
 cmColorSpaceAlphaMask = 0x00000080,
 cmColorSpaceSpaceAndAlphaMask = 0x000000FF,
 cmColorSpacePackingMask = 0x0000FF00,
 cmColorSpaceEncodingMask = 0x000F0000,
 cmColorSpaceReservedMask = 0xFFF00000
};

Constants
cmColorSpaceSpaceMask

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpacePremulAlphaMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpaceAlphaMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpaceSpaceAndAlphaMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpacePackingMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpaceEncodingMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmColorSpaceReservedMask
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

ColorSync Scripting AppleEvent Errorsl
Define ColorSync AppleEvent scripting errors.

enum {
 cmspInvalidImageFile = -4220,
 cmspInvalidImageSpace = -4221,
 cmspInvalidProfileEmbed = -4222,
 cmspInvalidProfileSource = -4223,
 cmspInvalidProfileDest = -4224,
 cmspInvalidProfileProof = -4225,
 cmspInvalidProfileLink = -4226
};

Constants
cmspInvalidImageFile

Plugin cannot handle this image file type

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidImageSpace
Plugin cannot create an image file of this colorspace

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidProfileEmbed
Specific invalid profile errors

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidProfileSource
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidProfileDest
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidProfileProof
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

cmspInvalidProfileLink
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

974 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Current Device Versions
Specify the current versions of the data structure containing information on registered devices.

enum {
 cmDeviceInfoVersion1 = 0x00010000,
 cmDeviceProfileInfoVersion1 = 0x00010000,
 cmDeviceProfileInfoVersion2 = 0x00020000
};

Constants
cmDeviceInfoVersion1

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceProfileInfoVersion1
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceProfileInfoVersion2
Available in Mac OS X v10.1 and later.

Declared in CMDeviceIntegration.h.

Current Info Versions
Specify current device and profile versions.

enum {
 cmCurrentDeviceInfoVersion = cmDeviceInfoVersion1,
 cmCurrentProfileInfoVersion = cmDeviceProfileInfoVersion1
};

Constants
cmCurrentDeviceInfoVersion

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmCurrentProfileInfoVersion
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Current Major Version Mask
Specifies the current major version number.

Constants 975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmProfileMajorVersionMask = 0xFF000000,
 cmCurrentProfileMajorVersion = 0x02000000
};

Constants
cmProfileMajorVersionMask

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCurrentProfileMajorVersion
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Data Transfer Commands
Specify commands for caller-supplied ColorSync data transfer functions.

enum {
 cmOpenReadSpool = 1,
 cmOpenWriteSpool = 2,
 cmReadSpool = 3,
 cmWriteSpool = 4,
 cmCloseSpool = 5
};

Constants
cmOpenReadSpool

Directs the function to begin the process of reading data.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmOpenWriteSpool
Directs the function to begin the process of writing data.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmReadSpool
Directs the function to read the number of bytes specified by the CMFlattenProcPtr function’s
size parameter.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmWriteSpool
Directs the function to write the number of bytes specified by the CMFlattenProcPtr function’s
size parameter.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCloseSpool
Directs the function to complete the data transfer.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

976 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
When your application calls the function CMFlattenProfile (page 748), any of the functions in the group
“Accessing Profile Elements” (page 719), or the PostScript-related functions of type “Working With
PostScript” (page 722), the selected CMM—or, for the CMUnflattenProfile function, the ColorSync
Manager—calls the flatten function you supply to transform profile data. The call passes one of the command
constants defined by this enumeration.

Your application provides a pointer to your ColorSync data transfer function as a parameter to the functions.
The ColorSync Manager or the CMM calls your data transfer function, passing the command in the command
parameter. For more information on the flatten function, see CMFlattenProfile (page 748).

Data Type Element Values
Specify a data type.

enum {
 cmAsciiData = 0,
 cmBinaryData = 1
};

Constants
cmAsciiData

ASCII data.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBinaryData
Binary data.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Default CMM Signature
Specifies a signature for the default color management module supplied by Color Sync.

enum {
 kDefaultCMMSignature = 'appl'
};

Constants
kDefaultCMMSignature

Signature for the default CMM supplied with the ColorSync Manager.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
A color management module (CMM) uses profiles to convert and match a color in a given color space on a
given device to or from another color space or device.

To specify the default CMM, set the CMMType field of the profile header to the default signature defined by
the following enumeration. You use a structure of type CM2Header (page 875) for a ColorSync 2.x profile and
a structure of type CMHeader (page 898) for a 1.0 profile header.

Constants 977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Default IDs
Specify default values for device and profile IDs.

enum {
 cmDefaultDeviceID = 0,
 cmDefaultProfileID = 0
};

Constants
cmDefaultDeviceID

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDefaultProfileID
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Discussion
Certain routines require a device ID or profile ID. In some cases, a "default ID" can be used.

Device Attribute Values for Version 2.x Profiles
Define masks your application can use to set or test bits in the deviceAttributes field of the CM2Header
structure.

enum {
 cmReflectiveTransparentMask = 0x00000001,
 cmGlossyMatteMask = 0x00000002
};

Constants
cmReflectiveTransparentMask

Bit 0 of deviceAttributes[1] specifies whether the media is transparent or reflective. If it has the
value 0, the media is reflective; if it has the value 1, the media is transparent. Use the
cmReflectiveTransparentMask mask to set the transparent/reflective bit in
deviceAttributes[1] or to clear all bits except the transparent/reflective bit.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGlossyMatteMask
Bit 1of deviceAttributes[1] specifies whether the media is glossy or matte. If it has the value 0,
the media is glossy; if it has the value 1, the media is matte. Use the cmGlossyMatteMask mask to
set the glossy/matte bit in deviceAttributes[1] or to clear all bits except the glossy/matte bit.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
The ColorSync Manager defines the structure CM2Header (page 875) to represent the profile header for the
version 2.x profile format defined by the ICC.The deviceAttributes field of the CM2Header structure is
an array of two unsigned long values whose bits specify information about a profile. The ICC reserves the
use of deviceAttributes[1] and has assigned values to bits 0 and 1. All the bits of deviceAttributes[0]
are reserved for use by color management system (CMS) vendors.

978 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Device Classes
Define constants to represent a variey of input and output devices.

enum {
 cmScannerDeviceClass = 'scnr',
 cmCameraDeviceClass = 'cmra',
 cmDisplayDeviceClass = 'mntr',
 cmPrinterDeviceClass = 'prtr',
 cmProofDeviceClass = 'pruf'
};
typedef OSType CMDeviceClass;

Constants
cmScannerDeviceClass

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmCameraDeviceClass
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDisplayDeviceClass
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmPrinterDeviceClass
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmProofDeviceClass
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Device and Media Attributes
Used to set or obtaind device or media attributes.

enum {
 cmReflective = 0,
 cmGlossy = 1
};

Constants
cmReflective

If the bit 0 of the associated mask is 0 then reflective media; if 1 then transparency media.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGlossy
If the bit 1 of the associated mask is is 0 then glossy; if 1 then matte.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Device States
Specify device states.

enum {
 cmDeviceStateDefault = 0x00000000,
 cmDeviceStateOffline = 0x00000001,
 cmDeviceStateBusy = 0x00000002,
 cmDeviceStateForceNotify = 0x80000000,
 cmDeviceStateDeviceRsvdBits = 0x00FF0000,
 cmDeviceStateAppleRsvdBits = 0xFF00FFFF
};

Constants
cmDeviceStateDefault

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceStateOffline
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceStateBusy
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceStateForceNotify
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceStateDeviceRsvdBits
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmDeviceStateAppleRsvdBits
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Discussion
Specify possible values for device states accessible by the functions CMGetDeviceState and
CMSetDeviceState.

Device Types
Specify a device type.

980 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmMonitorDevice = 'mntr',
 cmScannerDevice = 'scnr',
 cmPrinterDevice = 'prtr'
};

Constants
cmMonitorDevice

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmScannerDevice
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmPrinterDevice
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

Element Tags and Signatures for Version 1.0 Profiles
Define tags and signatures used for version 1.0 profiles.

enum {
 cmCS1ChromTag = 'chrm',
 cmCS1TRCTag = 'trc ',
 cmCS1NameTag = 'name',
 cmCS1CustTag = 'cust'
};

Constants
cmCS1ChromTag

The tag signature for the profile chromaticities tag whose element data specifies the XYZ chromaticities
for the six primary and secondary colors (red, green, blue, cyan, magenta, and yellow).

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCS1TRCTag
The tag signature for profile tonal response curve data for the associated device.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCS1NameTag
The tag signature for the profile name string. This is an international string consisting of a Macintosh
script code followed by a 63-byte text string identifying the profile.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmCS1CustTag
Private data for a custom CMM.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
The ICC version 2.x profile format differs from the version 1.0 profile format, and ColorSync Manager routines
for updating a profile and searching for profiles do not work with version 1.0 profiles. However, your application
can use version 1.0 profiles with all other ColorSync routines. For example, you can open a version 1.0 profile
using the function CMOpenProfile (page 790), obtain the version 1.0 profile header using the function
CMGetProfileHeader (page 769), and access version 1.0 profile elements using the function
CMGetProfileElement (page 768).

To make this possible, the ColorSync Manager includes support for the version 1.0 profile header structure
and synthesizes tags to allow you to access four 1.0 elements outside the version 1.0 profile header. This
enumeration defines these tags.

Embedded Profile Flags
Specify copyright-protection flag options,

enum {
 cmEmbeddedProfile = 0,
 cmEmbeddedUse = 1
};

Constants
cmEmbeddedProfile

0 is not embedded profile, 1 is embedded profile

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmEmbeddedUse
0 is to use anywhere, 1 is to use as embedded profile only

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Embedded Profile Identifiers
Specify constants used when embedding picture comments.

982 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmEmbedWholeProfile = 0x00000000,
 cmEmbedProfileIdentifier = 0x00000001
};

Constants
cmEmbedWholeProfile

When the flags parameter has the value cmEmbedWholeProfile, the NCMUseProfileComment
function embeds the entire specified profile.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmEmbedProfileIdentifier
When the flags parameter has the value cmEmbedProfileIdentifier, the
NCMUseProfileComment function embeds a profile identifier for the specified profile.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Discussion
The ColorSync Manager provides these constant declarations to use with the function
NCMUseProfileComment (page 843) for embedding picture comments. You use these constants to set the
flags parameter to indicate whether to embed an entire profile or just a profile identifier.

Flag Mask Definitions for Version 2.x Profiles
Define masks your application can use to set or test various bits in the flags field of the CM2Header structure.

enum {
 cmICCReservedFlagsMask = 0x0000FFFF,
 cmEmbeddedMask = 0x00000001,
 cmEmbeddedUseMask = 0x00000002,
 cmCMSReservedFlagsMask = 0xFFFF0000,
 cmQualityMask = 0x00030000,
 cmInterpolationMask = 0x00040000,
 cmGamutCheckingMask = 0x00080000
};

Constants
cmICCReservedFlagsMask

This mask provides access to bits 0 through 15 of the flags field, which are defined and reserved by
the ICC. For more information, see the International Color Consortium Profile Format Specification,
and the next two mask definitions.

To obtain a copy of the ICC specification, or to get other information about the ICC, visit the ICC Web
site at http://www.color.org/.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

http://www.color.org/

cmEmbeddedMask
This mask provides access to bit 0 of the flags field, which specifies whether the profile is embedded.
It has the value 1 if the profile is embedded, 0 if it is not.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmEmbeddedUseMask
This mask provides access to bit 1 of the flags field, which specifies whether the profile can be used
independently or can only be used as an embedded profile. It has the value 0 if the profile can be
used anywhere, 1 if it must be embedded.

You should interpret the setting of this bit as an indication of copyright protection. If the profile
developer set this bit to 1, you should use this profile as an embedded profile only and not copy the
profile for your own purposes. The profile developer also specifies explicit copyright intention using
the cmCopyrightTag profile tag (defined in the CMICCProfile.h header file).

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCMSReservedFlagsMask
This mask provides access to bits 16 through 31 of the flags field, which are available for a color
management system (CMS) vendor, such as ColorSync. ColorSync’s default CMM uses bits 16 through
19 to provide hints for color matching, as described in the following three mask definitions. Other
CMM vendors should follow the same conventions.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmQualityMask
This mask provides access to bits 16 and 17 of the flags field, which specify the preferred quality
and speed preferences for color matching. In general, the higher the quality the slower the speed.
For example, best quality is slowest, but produces the highest quality result.

Bits 16 and 17 have the value 0 for normal quality, 1 for draft quality, and 2 for best quality. “Quality
Flag Values for Version 2.x Profiles” (page 1011) describes the constants ColorSync defines to test or
set these bits.

This feature is provided by the ColorSync Manager; it is not defined by the ICC profile specification.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmInterpolationMask
This mask provides access to bit 18 of the flags field, which specifies whether to use interpolation
in color matching. The value 0 specifies interpolation. The value 1 specifies table lookup without
interpolation. Specifying lookup only improves speed but can reduce accuracy. You might use lookup
only for a monitor profile, for example, when high resolution is not crucial.

This feature is provided by the ColorSync Manager; it is not defined by the ICC profile specification.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

984 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmGamutCheckingMask
This mask provides access to bit 19 of the flags field. When you use a profile to create a color world,
bit 19 specifies whether the color world should include information for gamut checking. It has the
value 0 if the color world should include a gamut-checking table, 1 if gamut-checking information is
not required. ColorSync can create a color world without a gamut table more quickly and in less space.

Many applications do not perform gamut checking, so they should set this bit to 1. However, if you
call a color checking function such as CWCheckColors (page 821), or CWMatchColors (page 828),
after setting a profile’s gamut-checking bit so that the color world does not contain gamut information,
these routines return the cmCantGamutCheckError error.

This feature is provided by the ColorSync Manager; it is not defined by the ICC profile specification.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
Theflags field of the structureCM2Header (page 875) is an unsigned long value whose bits specify information
about a profile. The ICC reserves the use of bits 0 to 15 and has assigned values to bits 0 and 1. Bits 16 to 31
are reserved for use by color management system (CMS) vendors. ColorSync has assigned values to bits 16
through 19.

ICC Profile Versions
Specify IDD profile version numbers.

enum {
 cmICCProfileVersion4 = 0x04000000,
 cmICCProfileVersion2 = 0x02000000,
 cmICCProfileVersion21 = 0x02100000,
 cmCS2ProfileVersion = cmICCProfileVersion2,
 cmCS1ProfileVersion = 0x00000100
};

Constants
cmICCProfileVersion4

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmICCProfileVersion2
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmICCProfileVersion21
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCS2ProfileVersion
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCS1ProfileVersion
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Illuminant Measurement Endocings
Specify standard illuminate measurement encodings.

enum {
 cmIlluminantUnknown = 0x00000000,
 cmIlluminantD50 = 0x00000001,
 cmIlluminantD65 = 0x00000002,
 cmIlluminantD93 = 0x00000003,
 cmIlluminantF2 = 0x00000004,
 cmIlluminantD55 = 0x00000005,
 cmIlluminantA = 0x00000006,
 cmIlluminantEquiPower = 0x00000007,
 cmIlluminantF8 = 0x00000008
};

Constants
cmIlluminantUnknown

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantD50
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantD65
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantD93
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantF2
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantD55
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantA
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantEquiPower
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmIlluminantF8
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Macintosh 68K Trap Word
Specifies a 68K trap word for the Macintosh.

986 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmTrap = 0xABEE
};

Constants
cmTrap

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in CMApplication.h.

Magic Cookie Number
Specifies a magic cookie number for anonymous file ID.

enum {
 cmMagicNumber = 'acsp'
};

Constants
cmMagicNumber

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Match Flags Field
Specifies a profile to match.

enum {
 cmspFavorEmbeddedMask = 0x00000001
};

Constants
cmspFavorEmbeddedMask

If bit 0 is 0 then use srcProf profile; if 1 then use profile embedded in image if present.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMScriptingPlugin.h.

Match Profiles 2.0
Defines matching flags for version 2.0 of the CMSearchRecord.searchMask.

Constants 987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmMatchAnyProfile = 0x00000000,
 cmMatchProfileCMMType = 0x00000001,
 cmMatchProfileClass = 0x00000002,
 cmMatchDataColorSpace = 0x00000004,
 cmMatchProfileConnectionSpace = 0x00000008,
 cmMatchManufacturer = 0x00000010,
 cmMatchModel = 0x00000020,
 cmMatchAttributes = 0x00000040,
 cmMatchProfileFlags = 0x00000080
};

Constants
cmMatchAnyProfile

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchProfileCMMType
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchProfileClass
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchDataColorSpace
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchProfileConnectionSpace
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchManufacturer
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchModel
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchAttributes
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

988 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmMatchProfileFlags
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Match Profiles 1.0
Defines matching flags for version 1.0 of the CMSearchRecord.searchMask.

enum {
 cmMatchCMMType = 0x00000001,
 cmMatchApplProfileVersion = 0x00000002,
 cmMatchDataType = 0x00000004,
 cmMatchDeviceType = 0x00000008,
 cmMatchDeviceManufacturer = 0x00000010,
 cmMatchDeviceModel = 0x00000020,
 cmMatchDeviceAttributes = 0x00000040,
 cmMatchFlags = 0x00000080,
 cmMatchOptions = 0x00000100,
 cmMatchWhite = 0x00000200,
 cmMatchBlack = 0x00000400
};

Constants
cmMatchCMMType

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchApplProfileVersion
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchDataType
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchDeviceType
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchDeviceManufacturer
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Constants 989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmMatchDeviceModel
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchDeviceAttributes
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchFlags
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchOptions
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchWhite
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmMatchBlack
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Maximum Path Size
Specifies the maximum length for a path name.

enum {
 CS_MAX_PATH = 256
};

Constants
CS_MAX_PATH

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Measurement Flares
Specify measurement flare encodings.

990 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmFlare0 = 0x00000000,
 cmFlare100 = 0x00000001
};

Constants
cmFlare0

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmFlare100
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Measurment Geometries
Specify measurement geometry encodings.

enum {
 cmGeometryUnknown = 0x00000000,
 cmGeometry045or450 = 0x00000001,
 cmGeometry0dord0 = 0x00000002
};

Constants
cmGeometryUnknown

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGeometry045or450
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGeometry0dord0
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Obsolete Color Response Values
Redefines obsolete color response values.

Constants 991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 grayResponse = cmGrayResponse,
 redResponse = cmRedResponse,
 greenResponse = cmGreenResponse,
 blueResponse = cmBlueResponse,
 cyanResponse = cmCyanResponse,
 magentaResponse = cmMagentaResponse,
 yellowResponse = cmYellowResponse,
 ucrResponse = cmUcrResponse,
 bgResponse = cmBgResponse,
 onePlusLastResponse = cmOnePlusLastResponse
};

Obsolete Color Space Signatures
Redefines obsolete color space signatures.

enum {
 rgbData = cmRGBData,
 cmykData = cmCMYKData,
 grayData = cmGrayData,
 xyzData = cmXYZData
};

Obsolete Device Type Names
Redefines obsolete device type names.

enum {
 monitorDevice = cmMonitorDevice,
 scannerDevice = cmScannerDevice,
 printerDevice = cmPrinterDevice
};

Parametric Types
Specify a parametric curve type enumeration,

enum {
 cmParametricType0 = 0,
 cmParametricType1 = 1,
 cmParametricType2 = 2,
 cmParametricType3 = 3,
 cmParametricType4 = 4
};

Constants
cmParametricType0

Y = X^gamma

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

992 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmParametricType1
Y = (aX+b)^gamma [X>=-b/a], Y = 0 [X<-b/a]

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmParametricType2
Y = (aX+b)^gamma + c [X>=-b/a], Y = c [X<-b/a]

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmParametricType3
Y = (aX+b)^gamma [X>=d], Y = cX [X<d]

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmParametricType4
Y = (aX+b)^gamma + e [X>=d], Y = cX+f [X<d]

Available in Mac OS X v10.2 and later.

Declared in CMICCProfile.h.

Platform Enumeration Values
Specify computer platforms.

enum {
 cmMacintosh = 'APPL',
 cmMicrosoft = 'MSFT',
 cmSolaris = 'SUNW',
 cmSiliconGraphics = 'SGI ',
 cmTaligent = 'TGNT'
};

Profile Iteration Values
Specify profiles to iterate.

enum {
 cmIterateFactoryDeviceProfiles = 0x00000001,
 cmIterateCustomDeviceProfiles = 0x00000002,
 cmIterateCurrentDeviceProfiles = 0x00000003,
 cmIterateAllDeviceProfiles = 0x00000004,
 cmIterateDeviceProfilesMask = 0x0000000F
};

Constants
cmIterateFactoryDeviceProfiles

Iterate profiles registered through the routine CMSetDeviceFactoryProfiles. To retrieve all factory
profiles for all devices, use cmIterateFactoryDeviceProfiles as the flags value when calling
CMIterateDeviceProfiles. I

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Constants 993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmIterateCustomDeviceProfiles
Iterate profiles that are meant to take the place of the factory profiles, as a result of customization or
calibration. To retrieve only custom profiles for all devices, use the
cmIterateCustomDeviceProfiles, as the flags value when calling CMIterateDeviceProfiles.

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmIterateCurrentDeviceProfiles
Iterate profiles registered through the routing CMSetDeviceProfiles. To get the profiles in use for
all devices, use cmIterateCurrentDeviceProfiles as the flags value. This will replace the factory
profiles with any overrides, yielding the currently used set.I

Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

cmIterateAllDeviceProfiles
Iterate all profiles, without replacement.

Available in Mac OS X v10.1 and later.

Declared in CMDeviceIntegration.h.

cmIterateDeviceProfilesMask
Available in Mac OS X v10.0 and later.

Declared in CMDeviceIntegration.h.

Discussion
These are possible values for flags passed to the function CMIterateDeviceProfiles.

Profile Location Sizes
Specify a location size.

enum {
 cmOriginalProfileLocationSize = 72,
 cmCurrentProfileLocationSize = 2 + CS_MAX_PATH
};

Constants
cmOriginalProfileLocationSize

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCurrentProfileLocationSize
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Profile Options
Specify a rendering intent.

994 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmPerceptualMatch = 0x0000,
 cmColorimetricMatch = 0x0001,
 cmSaturationMatch = 0x0002
};

Constants
cmPerceptualMatch

Default. For photographic images

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmColorimetricMatch
Exact matching when possible

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmSaturationMatch
For solid colors

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

PostScript Data Formats
Specify constants that indicate the format of PostScript data.

enum {
 cmPS7bit = 1,
 cmPS8bit = 2
};

Constants
cmPS7bit

The data is 7-bit safe—therefore the data could be in 7-bit ASCII encoding or in ASCII base-85 encoding.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmPS8bit
The data is 8-bit safe—therefore the data could be in 7-bit or 8-bit ASCII encoding.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
The ColorSync Manager provides these constant declarations to specify the format of PostScript data.

Picture Comment Kinds
Specify picture comment kinds for profiles and color matching.

Constants 995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmBeginProfile = 220,
 cmEndProfile = 221,
 cmEnableMatching = 222,
 cmDisableMatching = 223,
 cmComment = 224
};

Constants
cmBeginProfile

Indicates the beginning of a version 1.0 profile to embed. (To start a 2.x profile, you use cmComment.)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmEndProfile
Signals end of the use of an embedded version 2.x or 1.0 profile.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmEnableMatching
Turns on color matching for the ColorSync Manager. Do not nest cmEnableMatching and
cmDisableMatching pairs.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmDisableMatching
Turns off color matching for the ColorSync Manager. Do not nest cmEnableMatching and
cmDisableMatching pairs. After the ColorSync Manager encounters this comment, it ignores all
ColorSync-related picture comments until it encounters the nextcmEnableMatchingpicture comment.
At that point, the most recently used profile is reinstated.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmComment
Provides information about a 2.x embedded profile or embedded profile identifier reference. This
picture comment is followed by a 4-byte selector identifying what follows. “Picture Comment
Selectors” (page 997) describes the possible selectors.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Discussion
The ColorSync Manager defines five picture comment kinds. You use these comments to embed a profile
identifier, begin or end use of an embedded profile, and enable or disable color matching within drawing
code sent to an output device. The PicComment function’s kind parameter specifies the kind of picture
comment.

996 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Use a picture comment of kind cmEndProfile to explicitly terminate use of the currently effective embedded
profile and begin use of the system profile. Otherwise, the currently effective profile remains in effect, leading
to unexpected results if another picture follows that is meant to use the system profile and so is not preceded
by a profile.

Picture Comment Selectors
Specify selectors to use in piture comments.

enum {
 cmBeginProfileSel = 0,
 cmContinueProfileSel = 1,
 cmEndProfileSel = 2,
 cmProfileIdentifierSel = 3
};

Constants
cmBeginProfileSel

Identifies the beginning of version 2.x profile data. The amount of profile data you can specify is
limited to 32K minus 4 bytes for the selector.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmContinueProfileSel
Identifies the continuation of version 2.x profile data. The amount of profile data you can specify is
limited to 32K minus 4 bytes for the selector. You can use this selector repeatedly until all the profile
data is embedded.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmEndProfileSel
Signals the end of version 2.x profile data—no more data follows. Even if the amount of profile data
embedded does not exceed 32K minus 4 bytes for the selector and your application did not use
cmContinueProfileSel, you must terminate the process with cmEndProfileSel. Note that this
selector has a behavior that is different from the cmEndProfile picture comment described in
“Picture Comment Kinds” (page 995).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmProfileIdentifierSel
Identifies the inclusion of profile identifier data. For information on embedding a profile identifier,
see the functionNCMUseProfileComment (page 843). For information on the format of profile identifier
data, see CMProfileIdentifier (page 921).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Constants 997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
To embed a version 2.x profile or profile identifier reference in a picture destined for display on another
system or on a device such as a printer, your application uses the QuickDraw PicComment function. The
ColorSync Manager provides the function NCMUseProfileComment (page 843) to embed picture comments.
You specify a picture comment kind value of cmComment and a 4-byte selector describing the data in the
picture comment.

Because a profile may exceed QuickDraw’s 32 KB size limit for a picture comment, your application can use
an ordered series of picture comments to embed a large profile.

You can also embed a profile identifier reference in a picture. The profile identifier may refer to a previously
embedded profile, so that you do not have to embed the entire profile again, or it may refer to a profile
stored on disk. When you embed a profile identifier, you can change certain values for the referred-to profile,
including the quality flags and rendering intent. For more information on profile identifiers, see
CMProfileIdentifier (page 921).

This enumeration defines the 4-byte selector values your application uses to identify the beginning and
continuation of profile data and to signal the end of it.

Profile Access Procedures
Specify operations used to access profiles.

enum {
 cmOpenReadAccess = 1,
 cmOpenWriteAccess = 2,
 cmReadAccess = 3,
 cmWriteAccess = 4,
 cmCloseAccess = 5,
 cmCreateNewAccess = 6,
 cmAbortWriteAccess = 7,
 cmBeginAccess = 8,
 cmEndAccess = 9
};

Constants
cmOpenReadAccess

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmOpenWriteAccess
Open the profile for writing. The total size of the profile is specified in the size parameter.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmReadAccess
Read the number of bytes specified by the size parameter.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmWriteAccess
Write the number of bytes specified by the size parameter.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

998 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmCloseAccess
Close the profile for reading or writing.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmCreateNewAccess
Create a new data stream for the profile.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmAbortWriteAccess
Cancel the current write attempt.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmBeginAccess
Begin the process of procedural access. This is always the first operation constant passed to the access
procedure. If the call is successful, the cmEndAccess operation is guaranteed to be the last call to
the procedure.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmEndAccess
End the process of procedural access. This is always the last operation constant passed to the access
procedure (unless the cmBeginAccess call failed).

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
When your application calls the CMOpenProfile, CMNewProfile, CMCopyProfile, or CMNewLinkProfile
functions, it can supply the ColorSync Manager with a profile location structure of type
CMProcedureLocation (page 919) to specify a procedure that provides access to a profile. The ColorSync
Manager calls your procedure when the profile is created, initialized, opened, read, updated, or closed. The
profile access procedure declaration is described in CMProfileAccessProcPtr (page 862).

When the ColorSync Manager calls your profile access procedure, it passes one of these constants in the
command parameter to specify an operation. Your procedure must be able to respond to each of these
constants.

Profile Classes
Specify profile class enumerations.

Constants 999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmInputClass = 'scnr',
 cmDisplayClass = 'mntr',
 cmOutputClass = 'prtr',
 cmLinkClass = 'link',
 cmAbstractClass = 'abst',
 cmColorSpaceClass = 'spac',
 cmNamedColorClass = 'nmcl'
};

Constants
cmInputClass

An input device profile defined for a scanner.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmDisplayClass
A display device profile defined for a monitor.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmOutputClass
An output device profile defined for a printer.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmLinkClass
A device link profile.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmAbstractClass
An abstract profile.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmColorSpaceClass
A color space profile.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmNamedColorClass
A named color space profile.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
The ColorSync Manager supports seven classes, or types, of profiles.

A profile creator specifies the profile class in the profile header’s profileClass field. For a description of
the profile header, see CM2Header (page 875). This enumeration defines the profile class signatures.

1000 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Profile Concatenation Values
Specify values to use when concatnating profiles.

enum {
 kNoTransform = 0,
 kUseAtoB = 1,
 kUseBtoA = 2,
 kUseBtoB = 3,
 kDeviceToPCS = kUseAtoB,
 kPCSToDevice = kUseBtoA,
 kPCSToPCS = kUseBtoB,
 kUseProfileIntent = 0xFFFFFFFF
};

Constants
kNoTransform

Not used.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kUseAtoB
Use 'A2B*' tag from this profile or equivalent

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kUseBtoA
Use 'B2A*' tag from this profile or equivalent

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kUseBtoB
Use 'pre*' tag from this profile or equivalent

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kDeviceToPCS
Device Dependent to Device Independent

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kPCSToDevice
Device Independent to Device Dependent

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

kPCSToPCS
Independent, through device's gamut

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Constants 1001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

kUseProfileIntent
For renderingIntent in NCMConcatProfileSpec

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Profile Flags
Define flags that control native matchign and caching.

enum {
 cmNativeMatchingPreferred = 0x00000001,
 cmTurnOffCache = 0x00000002
};

Constants
cmNativeMatchingPreferred

Default to native not preferred

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

cmTurnOffCache
Default to turn on CMM cache

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMICCProfile.h.

Profile Iteration Constants
Define an interation version.

enum {
 cmProfileIterateDataVersion1 = 0x00010000,
 cmProfileIterateDataVersion2 = 0x00020000,
 cmProfileIterateDataVersion3 = 0x00030000
};

Constants
cmProfileIterateDataVersion1

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmProfileIterateDataVersion2
Added makeAndModel

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

1002 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmProfileIterateDataVersion3
Added MD5 digest

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Profile Location Type
Defines profile location kinds.

enum {
 cmNoProfileBase = 0,
 cmFileBasedProfile = 1,
 cmHandleBasedProfile = 2,
 cmPtrBasedProfile = 3,
 cmProcedureBasedProfile = 4,
 cmPathBasedProfile = 5,
 cmBufferBasedProfile = 6
};

Constants
cmNoProfileBase

The profile is temporary. It will not persist in memory after its use for a color session. You can specify
this type of profile location with the CMNewProfile and the CMCopyProfile functions.

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmFileBasedProfile
The profile is stored in a disk-file and the CMProfLoc union of type CMProfLoc (page 928) holds a
structure of type CMFileLocation (page 896) identifying the profile file. You can specify this type of
profile location with theCMOpenProfile,CMNewProfile,CMCopyProfile, andCMNewLinkProfile
functions.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmHandleBasedProfile
The profile is stored in relocatable memory and the CMProfLoc union of type CMProfLoc (page 928)
holds a handle to the profile in a structure of type CMHandleLocation (page 898). You can specify
this type of profile location with the CMOpenProfile, CMNewProfile, and CMCopyProfile functions.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmPtrBasedProfile
The profile is stored in nonrelocatable memory and the CMProfLoc union of type CMProfLoc (page
928) holds a pointer to the profile in a structure of type CMPtrLocation (page 929). You can specify
this type of profile location with the CMOpenProfile function only.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

Constants 1003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmProcedureBasedProfile
The profile is in an arbitrary location, accessed through a procedure supplied by you. The CMProfLoc
union of type CMProfLoc (page 928) holds a universal procedure pointer to your profile access
procedure in a structure of type CMProcedureLocation (page 919). You can specify this type of
profile location with theCMOpenProfile,CMNewProfile,CMCopyProfile, andCMNewLinkProfile
functions. For a description of an application-supplied profile access procedure, see
CMProfileAccessProcPtr (page 862).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CMApplication.h.

cmPathBasedProfile
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmBufferBasedProfile
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
Your application specifies the location for a profile using a profile location structure of type
CMProfileLocation (page 924). A ColorSync profile that you open or create is typically stored in one of the
following locations:

 ■ In a disk file. The u field (a union) of the profile location data structure contains a file specification for a
profile that is disk-file based. This is the most common way to store a ColorSync profile.

 ■ In relocatable memory. The u field of the profile location data structure contains a handle specification
for a profile that is stored in a handle.

 ■ In nonrelocatable memory. The u field of the profile location data structure contains a pointer specification
for a profile that is pointer based.

 ■ In an arbitrary location, accessed by a procedure you provide. The u field of the profile location data
structure contains a universal procedure pointer to your access procedure, as well as a pointer that may
point to data associated with your procedure.

Additionally, your application can create a new or duplicate temporary profile. For example, you can use a
temporary profile for a color-matching session and the profile is not saved after the session. For this case,
the ColorSync Manager allows you to specify the profile location as having no specific location.

You use a pointer to a data structure of type CMProfileLocation to identify a profile’s location when your
application calls

 ■ the CMOpenProfile function to obtain a reference to a profile

 ■ the CMNewProfile, CWNewLinkProfile, or CMCopyProfile functions to create a new profile

 ■ the CMGetProfileLocation function to get the location of an existing profile

Your application identifies the type of data the CMProfileLocation u field holds—a file specification, a
handle, and so on—in the CMProfileLocation structure’s locType field. You use the constants defined
by this enumeration to identify the location type.

1004 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Public Tags
Specify tag values available for public use.

enum {
 cmAToB0Tag = 'A2B0',
 cmAToB1Tag = 'A2B1',
 cmAToB2Tag = 'A2B2',
 cmBlueColorantTag = 'bXYZ',
 cmBlueTRCTag = 'bTRC',
 cmBToA0Tag = 'B2A0',
 cmBToA1Tag = 'B2A1',
 cmBToA2Tag = 'B2A2',
 cmCalibrationDateTimeTag = 'calt',
 cmChromaticAdaptationTag = 'chad',
 cmCharTargetTag = 'targ',
 cmCopyrightTag = 'cprt',
 cmDeviceMfgDescTag = 'dmnd',
 cmDeviceModelDescTag = 'dmdd',
 cmGamutTag = 'gamt',
 cmGrayTRCTag = 'kTRC',
 cmGreenColorantTag = 'gXYZ',
 cmGreenTRCTag = 'gTRC',
 cmLuminanceTag = 'lumi',
 cmMeasurementTag = 'meas',
 cmMediaBlackPointTag = 'bkpt',
 cmMediaWhitePointTag = 'wtpt',
 cmNamedColorTag = 'ncol',
 cmNamedColor2Tag = 'ncl2',
 cmPreview0Tag = 'pre0',
 cmPreview1Tag = 'pre1',
 cmPreview2Tag = 'pre2',
 cmProfileDescriptionTag = 'desc',
 cmProfileSequenceDescTag = 'pseq',
 cmPS2CRD0Tag = 'psd0',
 cmPS2CRD1Tag = 'psd1',
 cmPS2CRD2Tag = 'psd2',
 cmPS2CRD3Tag = 'psd3',
 cmPS2CSATag = 'ps2s',
 cmPS2RenderingIntentTag = 'ps2i',
 cmRedColorantTag = 'rXYZ',
 cmRedTRCTag = 'rTRC',
 cmScreeningDescTag = 'scrd',
 cmScreeningTag = 'scrn',
 cmTechnologyTag = 'tech',
 cmUcrBgTag = 'bfd ',
 cmViewingConditionsDescTag = 'vued',
 cmViewingConditionsTag = 'view'
};

Constants
cmAToB0Tag

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmAToB1Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 1005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmAToB2Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBlueColorantTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBlueTRCTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBToA0Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBToA1Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBToA2Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCalibrationDateTimeTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmChromaticAdaptationTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCharTargetTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmCopyrightTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmDeviceMfgDescTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmDeviceModelDescTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGamutTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGrayTRCTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

1006 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmGreenColorantTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmGreenTRCTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmLuminanceTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMeasurementTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMediaBlackPointTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMediaWhitePointTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmNamedColorTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmNamedColor2Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPreview0Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPreview1Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPreview2Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmProfileDescriptionTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmProfileSequenceDescTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPS2CRD0Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 1007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmPS2CRD1Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPS2CRD2Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPS2CRD3Tag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPS2CSATag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmPS2RenderingIntentTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmRedColorantTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmRedTRCTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmScreeningDescTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmScreeningTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmUcrBgTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmViewingConditionsDescTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmViewingConditionsTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Public Type Signatures
Specify signatures for public types.

1008 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmSigCrdInfoType = 'crdi',
 cmSigCurveType = 'curv',
 cmSigDataType = 'data',
 cmSigDateTimeType = 'dtim',
 cmSigLut16Type = 'mft2',
 cmSigLut8Type = 'mft1',
 cmSigMeasurementType = 'meas',
 cmSigMultiFunctA2BType = 'mAB ',
 cmSigMultiFunctB2AType = 'mBA ',
 cmSigNamedColorType = 'ncol',
 cmSigNamedColor2Type = 'ncl2',
 cmSigParametricCurveType = 'para',
 cmSigProfileDescriptionType = 'desc',
 cmSigProfileSequenceDescType = 'pseq',
 cmSigScreeningType = 'scrn',
 cmSigS15Fixed16Type = 'sf32',
 cmSigSignatureType = 'sig ',
 cmSigTextType = 'text',
 cmSigU16Fixed16Type = 'uf32',
 cmSigU1Fixed15Type = 'uf16',
 cmSigUInt8Type = 'ui08',
 cmSigUInt16Type = 'ui16',
 cmSigUInt32Type = 'ui32',
 cmSigUInt64Type = 'ui64',
 cmSigUcrBgType = 'bfd ',
 cmSigUnicodeTextType = 'utxt',
 cmSigViewingConditionsType = 'view',
 cmSigXYZType = 'XYZ '
};

Constants
cmSigCrdInfoType

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigCurveType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigDataType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigDateTimeType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigLut16Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigLut8Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 1009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmSigMeasurementType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigMultiFunctA2BType
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigMultiFunctB2AType
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigNamedColorType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigNamedColor2Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigParametricCurveType
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigProfileDescriptionType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigProfileSequenceDescType
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigScreeningType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigS15Fixed16Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigSignatureType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigTextType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigU16Fixed16Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigU1Fixed15Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

1010 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmSigUInt8Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigUInt16Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigUInt32Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigUInt64Type
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigUcrBgType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigUnicodeTextType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigViewingConditionsType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigXYZType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Quality Flag Values for Version 2.x Profiles
Define the possible values for the quality bits in the flags field of the CM2Header structure.

enum {
 cmNormalMode = 0,
 cmDraftMode = 1,
 cmBestMode = 2
};

Constants
cmNormalMode

This is the default setting. Normal mode indicates that the CMM should use its default method to
compromise between performance and resource requirements.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 1011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmDraftMode
Draft mode indicates that the CMM should sacrifice quality, if necessary, to minimize resource
requirements. Note that the default CMM currently produces the same results for both normal and
draft mode.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmBestMode
Best mode indicates that the CMM should maximize resource usage to ensure the highest possible
quality.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
To determine the value of the quality flag, you mask the flags field of the profile header with the
cmQualityMask mask, right shift 16 bits, then compare the result to the enumerated constants shown here.
For more information on the quality flag, see “Flag Mask Definitions for Version 2.x Profiles” (page 983).

When you start a color-matching session, ColorSync sends all involved profiles to the color management
module (CMM). The CMM extracts the information it needs from the profiles and stores an internal
representation in private memory. ColorSync’s default CMM samples the input space and stores the results
in a lookup table, a common technique that speeds up conversion for runtime applications. The size of the
table is based on the quality flag setting in the source profile header. The setting of the quality flag can affect
the memory requirements, accuracy, and speed of the color-matching session. In general, the higher the
quality setting, the larger the lookup table, the more accurate the matching, and the slower the matching
process. Note however, that the default CMM currently produces the same results for both normal and draft
mode.

Rendering Intent Values for Version 2.x Profiles
Define the four possible values for the rendering intent bits of the renderingIntent field of the CM2Header
structure.

enum {
 cmPerceptual = 0,
 cmRelativeColorimetric = 1,
 cmSaturation = 2,
 cmAbsoluteColorimetric = 3
};

Constants
cmPerceptual

All the colors of a given gamut can be scaled to fit within another gamut. This intent is best suited to
realistic images, such as photographic images.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmRelativeColorimetric
The colors that fall within the gamuts of both devices are left unchanged. This intent is best suited
to logo images.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

1012 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmSaturation
The relative saturation of colors is maintained from gamut to gamut. This intent is best suited to bar
graphs and pie charts in which the actual color displayed is less important than its vividness.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmAbsoluteColorimetric
This approach is based on a device-independent color space in which the result is an idealized print
viewed on a ideal type of paper having a large dynamic range and color gamut.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Discussion
The ColorSync Manager defines the structure CM2Header (page 875) to represent the profile header for the
version 2.x profile format defined by the ICC. The renderingIntent field of the CM2Header structure is an
unsigned long value whose bits specify information about a profile. The ICC reserves the use of bits 0 to 15
and has assigned values to bits 0 and 1. Bits 16 to 31 are reserved for use by color management system (CMS)
vendors.

Rendering intent controls the approach a CMM uses to translate the colors of an image to the color gamut
of a destination device. Your application can set a profile’s rendering intent, for example, based on a user’s
choice of the preferred approach for rendering an image.

Because rendering intent is specified by the low two bits, and because no other bits are currently defined
for this field, you can use the constants defined here to test or set the value of the entire field, without concern
for possible information stored in other bits.

Screen Encoding Tags
Specify tags to use for screen encodings.

enum {
 cmPrtrDefaultScreens = 0,
 cmLinesPer = 1
};

Constants
cmPrtrDefaultScreens

Use printer default screens; can have an associated value of 0 for false or 1 for true.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmLinesPer
Lines per unit; can have an associated value of 0 for lines per centimeter or 1 for lines per inch.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Spot Function Values
Speicfy values for spot functions.

Constants 1013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmSpotFunctionUnknown = 0,
 cmSpotFunctionDefault = 1,
 cmSpotFunctionRound = 2,
 cmSpotFunctionDiamond = 3,
 cmSpotFunctionEllipse = 4,
 cmSpotFunctionLine = 5,
 cmSpotFunctionSquare = 6,
 cmSpotFunctionCross = 7
};

Constants
cmSpotFunctionUnknown

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionDefault
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionRound
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionDiamond
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionEllipse
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionLine
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionSquare
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSpotFunctionCross
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Standard Oberver
Standard observer measurement type encodings.

1014 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmStdobsUnknown = 0x00000000,
 cmStdobs1931TwoDegrees = 0x00000001,
 cmStdobs1964TenDegrees = 0x00000002
};

Constants
cmStdobsUnknown

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmStdobs1931TwoDegrees
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmStdobs1964TenDegrees
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Tag Type Information
Defines a constant for 2.0 tag type information.

enum {
 cmNumHeaderElements = 10
};

Constants
cmNumHeaderElements

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Technology Tag Descriptions
Define descriptor tags for technologies.

Constants 1015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

enum {
 cmTechnologyDigitalCamera = 'dcam',
 cmTechnologyFilmScanner = 'fscn',
 cmTechnologyReflectiveScanner = 'rscn',
 cmTechnologyInkJetPrinter = 'ijet',
 cmTechnologyThermalWaxPrinter = 'twax',
 cmTechnologyElectrophotographicPrinter = 'epho',
 cmTechnologyElectrostaticPrinter = 'esta',
 cmTechnologyDyeSublimationPrinter = 'dsub',
 cmTechnologyPhotographicPaperPrinter = 'rpho',
 cmTechnologyFilmWriter = 'fprn',
 cmTechnologyVideoMonitor = 'vidm',
 cmTechnologyVideoCamera = 'vidc',
 cmTechnologyProjectionTelevision = 'pjtv',
 cmTechnologyCRTDisplay = 'CRT ',
 cmTechnologyPMDisplay = 'PMD ',
 cmTechnologyAMDisplay = 'AMD ',
 cmTechnologyPhotoCD = 'KPCD',
 cmTechnologyPhotoImageSetter = 'imgs',
 cmTechnologyGravure = 'grav',
 cmTechnologyOffsetLithography = 'offs',
 cmTechnologySilkscreen = 'silk',
 cmTechnologyFlexography = 'flex'
};

Constants
cmTechnologyDigitalCamera

Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmTechnologyFilmScanner
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyReflectiveScanner
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyInkJetPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyThermalWaxPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyElectrophotographicPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyElectrostaticPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyDyeSublimationPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

1016 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

cmTechnologyPhotographicPaperPrinter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyFilmWriter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyVideoMonitor
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyVideoCamera
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyProjectionTelevision
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyCRTDisplay
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyPMDisplay
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyAMDisplay
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyPhotoCD
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyPhotoImageSetter
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyGravure
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyOffsetLithography
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologySilkscreen
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmTechnologyFlexography
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Constants 1017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Use Types
Specify use types.

enum {
 cmInputUse = 'inpt',
 cmOutputUse = 'outp',
 cmDisplayUse = 'dply',
 cmProofUse = 'pruf'
};

Constants
cmInputUse

Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmOutputUse
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmDisplayUse
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

cmProofUse
Available in Mac OS X v10.0 and later.

Declared in CMApplication.h.

Discussion
Used for the function CMGetProfileByUse and SetDefaultProfileByUse.

Video Card Gamma Storage Types
Specify data storage type constants.

enum {
 cmVideoCardGammaTableType = 0,
 cmVideoCardGammaFormulaType = 1
};

Constants
cmVideoCardGammaTableType

The video card gamma data is stored in a table format. See CMVideoCardGammaTable (page 941) for
a description of the table format.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmVideoCardGammaFormulaType
The video card gamma tag data is stored as a formula. See CMVideoCardGammaFormula (page 940)
for a description of the formula format.

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

1018 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Discussion
A video card gamma profile tag can store gamma data either as a formula or as a table of values. You use a
storage type constant to specify which data storage type the tag uses.

If the video card uses a different format than the format you specify (for example, the card uses data in table
format and you supply data in formula format), ColorSync will adapt the data you supply to match the format
the card expects.

Version Notes
Starting with version 2.5, ColorSync supports an optional profile tag for video card gamma. The tag specifies
gamma information, stored either as a formula or in table format, to be loaded into the video card when the
profile containing the tag is put into use. As of version 2.5, the only ColorSync function that attempts to take
advantage of video card gamma data is CMSetProfileByAVID (page 808).

Video Card Gamma Tags
Specify video card gamma information.

enum {
 cmPS2CRDVMSizeTag = 'psvm',
 cmVideoCardGammaTag = 'vcgt',
 cmMakeAndModelTag = 'mmod',
 cmProfileDescriptionMLTag = 'dscm',
 cmNativeDisplayInfoTag = 'ndin'
};

Constants
cmPS2CRDVMSizeTag

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmVideoCardGammaTag
Constant for profile tag that specifies video card gamma information. When you create a tag to store
video card gamma data in a profile, you use the cmVideoCardGammaTag constant to specify the tag.

Starting with version 2.5, ColorSync supports an optional profile tag for video card gamma. The tag
specifies gamma information, stored either as a formula or in table format, to be loaded into the video
card when the profile containing the tag is put into use. As of version 2.5, the only ColorSync function
that attempts to take advantage of video card gamma data is CMSetProfileByAVID (page 808).

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmMakeAndModelTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmProfileDescriptionMLTag
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmNativeDisplayInfoTag
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

Constants 1019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Video Card Gamma Signatures
Specify signatures used for video card gamma information.

enum {
 cmSigPS2CRDVMSizeType = 'psvm',
 cmSigVideoCardGammaType = 'vcgt',
 cmSigMakeAndModelType = 'mmod',
 cmSigNativeDisplayInfoType = 'ndin',
 cmSigMultiLocalizedUniCodeType = 'mluc'
};

Constants
cmSigPS2CRDVMSizeType

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigVideoCardGammaType
Constant that specifies video card gamma type signature in a video card gamma profile tag. That is,
you use this constant to set the typeDescriptor field of the CMVideoCardGammaType (page 941)
structure. There is currently only one type possible for a video card gamma tag.

Starting with version 2.5, ColorSync supports an optional profile tag for video card gamma. The tag
specifies gamma information, stored either as a formula or in table format, to be loaded into the video
card when the profile containing the tag is put into use. As of version 2.5, the only ColorSync function
that attempts to take advantage of video card gamma data is CMSetProfileByAVID (page 808).

Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigMakeAndModelType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

cmSigNativeDisplayInfoType
Available in Mac OS X v10.1 and later.

Declared in CMICCProfile.h.

cmSigMultiLocalizedUniCodeType
Available in Mac OS X v10.0 and later.

Declared in CMICCProfile.h.

Result Codes

The most common result codes returned by ColorSync Manager are listed below.

DescriptionValueResult Code

No error0noErr

Available in Mac OS X v10.0 and later.

There is something wrong with the content of the profile-170cmProfileError

Available in Mac OS X v10.0 and later.

1020 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

DescriptionValueResult Code

An error occurred during the CMM arbitration process that
determines the CMM to use

-171cmMethodError

Available in Mac OS X v10.0 and later.

CMM not present-175cmMethodNotFound

Available in Mac OS X v10.0 and later.

Responder error-176cmProfileNotFound

Available in Mac OS X v10.0 and later.

Profiles are the same-177cmProfilesIdentical

Available in Mac OS X v10.0 and later.

Profiles cannot be concatenated-178cmCantConcatenateError

Available in Mac OS X v10.0 and later.

CMM does not handle XYZ color space-179cmCantXYZ

Available in Mac OS X v10.0 and later.

Responder error-180cmCantDeleteProfile

Available in Mac OS X v10.0 and later.

Responder error-181cmUnsupportedDataType

Available in Mac OS X v10.0 and later.

Responder error-182cmNoCurrentProfile

Available in Mac OS X v10.0 and later.

The tag you specified is not in the specified profile-4200cmElementTagNotFound

Available in Mac OS X v10.0 and later.

Tag index out of range-4201cmIndexRangeErr

Available in Mac OS X v10.0 and later.

Cannot delete the specified profile element-4202cmCantDeleteElement

Available in Mac OS X v10.0 and later.

Returned from File Manager while updating a profile file in
response to CMUpdateProfile; profile content may be
corrupted

-4203cmFatalProfileErr

Available in Mac OS X v10.0 and later.

Profile reference is invalid or refers to an inappropriate profile-4204cmInvalidProfile

Available in Mac OS X v10.0 and later.

Result Codes 1021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

DescriptionValueResult Code

Operation not supported for this profile location-4205cmInvalidProfileLocation

Available in Mac OS X v10.0 and later.

Bad search handle-4206cmInvalidSearch

Available in Mac OS X v10.0 and later.

Internal error occurred during profile search-4207cmSearchError

Available in Mac OS X v10.0 and later.

Unspecified profile error-4208cmErrIncompatibleProfile

Available in Mac OS X v10.0 and later.

Profile color space does not match bitmap type-4209cmInvalidColorSpace

Available in Mac OS X v10.0 and later.

Source pixel map or bitmap was invalid-4210cmInvalidSrcMap

Available in Mac OS X v10.0 and later.

Destination pix/bit map was invalid-4211cmInvalidDstMap

Available in Mac OS X v10.0 and later.

Begin matching or end matching—no graphics devices
available

-4212cmNoGDevicesError

Available in Mac OS X v10.0 and later.

Bad profile comment during drawpicture-4213cmInvalidProfileComment

Available in Mac OS X v10.0 and later.

One or more output color value overflows in color conversion;
all input color values will be converted and the overflow will
be clipped

-4214cmRangeOverFlow

Available in Mac OS X v10.0 and later.

It is illegal to copy version 1.0 profiles that have been modified-4215cmCantCopyModifiedV1Profile

Available in Mac OS X v10.0 and later.

The specified named color was not found in the specified
profile

-4216cmNamedColorNotFound

Available in Mac OS X v10.0 and later.

Gamut checking not supported by this color world—that is,
the color world does not contain a gamut table because it
was built with gamut checking turned off

-4217cmCantGamutCheckError

Available in Mac OS X v10.0 and later.

1022 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

DescriptionValueResult Code

Preferences not found or loaded; returned by a CM device
integration routine.

-4227cmDeviceDBNotFoundErr

Available in Mac OS X v10.0 and later.

Device already registered; returned by a CM device integration
routine.

-4228cmDeviceAlreadyRegistered

Available in Mac OS X v10.0 and later.

Device not found; returned by a CM device integration
routine.

-4229cmDeviceNotRegistered

Available in Mac OS X v10.0 and later.

Profiles not found; returned by a CM device integration
routine.

-4230cmDeviceProfilesNotFound

Available in Mac OS X v10.0 and later.

CoreFoundation failure; returned by a CM device integration
routine.

-4231cmInternalCFErr

Available in Mac OS X v10.0 and later.

Result Codes 1023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

1024 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

ColorSync Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in Dictionary.h

Overview

Important: The Dictionary Manager is deprecated as of Mac OS X v10.5 and is not available to 64-bit
applications. Instead, use the APIs presented by Dictionary Services, which are described in Dictionary Services
Programming Guide and Dictionary Services Reference.

The Dictionary Manager facilitates the use of dictionary files by such programs as spelling checkers and input
methods. The Dictionary Manager separates dictionary data from the code that accesses the data.

The Dictionary Manager uses access method plug-ins to mediate access to the dictionary's data. The use of
access-method plug-ins allows the Dictionary Manager to support a variety of data and does not require the
internal structure of a dictionary to conform to a fixed format.

Dictionary Manager functions with the prefix "DCM" are Carbon-compliant. However, these functions are
available only on systems that have the Japanese language kit installed.

Functions by Task

Obtaining the Version Number

DCMLibraryVersion (page 1055) Deprecated in Mac OS X v10.5
Obtains the version number of the Dictionary Manager.

Working With a List of Dictionaries
You can use the functions in this section to obtain a list of the dictionaries available on the system. You can
create a list of dictionaries, count the available dictionaries, and obtain the dictionary ID for each available
dictionary.

DCMCountObjectIterator (page 1030) Deprecated in Mac OS X v10.5
Obtains the number of dictionaries in a list.

DCMCreateDictionaryIterator (page 1033) Deprecated in Mac OS X v10.5
Obtains a list of the dictionaries available on the system.

Overview 1025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not
Recommended)

DCMDisposeObjectIterator (page 1037) Deprecated in Mac OS X v10.5
Disposes of a iterator.

DCMIterateObject (page 1055) Deprecated in Mac OS X v10.5
Obtains the object ID for a dictionary from a list of available dictionaries.

DCMResetObjectIterator (page 1060) Deprecated in Mac OS X v10.5
Resets an iterator to the start of the dictionary list.

Obtaining Access Method Information

DCMCreateAccessMethodIterator (page 1032) Deprecated in Mac OS X v10.5
Obtains a list of the available access methods.

DCMGetAccessMethodIDFromName (page 1040) Deprecated in Mac OS X v10.5
Obtains the ID for access method.

Working With a Dictionary File

DCMCloseDictionary (page 1029) Deprecated in Mac OS X v10.5
Closes a dictionary.

DCMCompactDictionary (page 1030) Deprecated in Mac OS X v10.5
Compacts a dictionary.

DCMCountRecord (page 1031) Deprecated in Mac OS X v10.5
Return number of records in a dictionary.

DCMDeleteDictionary (page 1035) Deprecated in Mac OS X v10.5
Deletes a dictionary.

DCMDeriveNewDictionary (page 1036) Deprecated in Mac OS X v10.5
Create a new dictionary based on an existing dictionary.

DCMGetDictionaryIDFromFile (page 1041) Deprecated in Mac OS X v10.5
Obtains the ID associated with a dictionary file.

DCMGetDictionaryIDFromRef (page 1042) Deprecated in Mac OS X v10.5
Obtains the dictionary ID associated with a dictionary reference.

DCMGetFileFromDictionaryID (page 1049) Deprecated in Mac OS X v10.5
Obtains the file specification associated with a dictionary ID.

DCMNewDictionary (page 1056) Deprecated in Mac OS X v10.5
Creates a new dictionary.

DCMOpenDictionary (page 1057) Deprecated in Mac OS X v10.5
Opens a dictionary.

DCMRegisterDictionaryFile (page 1058) Deprecated in Mac OS X v10.5
Registers a dictionary.

DCMReorganizeDictionary (page 1059) Deprecated in Mac OS X v10.5
Reorganizes a dictionary.

DCMUnregisterDictionary (page 1062) Deprecated in Mac OS X v10.5
Unregisters a dictionary.

1026 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Changing Access Privileges

DCMGetDictionaryWriteAccess (page 1044) Deprecated in Mac OS X v10.5
Obtains write access for an open dictionary.

DCMReleaseDictionaryWriteAccess (page 1059) Deprecated in Mac OS X v10.5
Releases write access to a dictionary.

Getting and Setting Dictionary Properties

DCMGetDictionaryProperty (page 1042) Deprecated in Mac OS X v10.5
Obtains the data associated with a property tag.

DCMGetDictionaryPropertyList (page 1043) Deprecated in Mac OS X v10.5
Obtains a list of property tags from a dictionary.

DCMSetDictionaryProperty (page 1061) Deprecated in Mac OS X v10.5
Sets a property for a dictionary. Set the properties to a dictionary.

Working With Dictionary Records

DCMAddRecord (page 1028) Deprecated in Mac OS X v10.5
Add a new record to a dictionary.

DCMCountRecordIterator (page 1032) Deprecated in Mac OS X v10.5
Returns the number of records contained in a list of search results.

DCMDeleteRecord (page 1035) Deprecated in Mac OS X v10.5
Delete specified record from the dictionary.

DCMDisposeRecordIterator (page 1037) Deprecated in Mac OS X v10.5
Disposes of a list of search results.

DCMFindRecords (page 1038) Deprecated in Mac OS X v10.5
Obtains a list of dictionary records that meet specified criteria.

DCMGetNextRecord (page 1050) Deprecated in Mac OS X v10.5
Obtains the next specified record.

DCMGetNthRecord (page 1051) Deprecated in Mac OS X v10.5
Return records in a specified order within the dictionary.

DCMGetPrevRecord (page 1052) Deprecated in Mac OS X v10.5
Obtains the previous record. Return the record previous to the specified record.

DCMGetRecordSequenceNumber (page 1053) Deprecated in Mac OS X v10.5
Obtains the sequence number for the specified record in a dictionary.

DCMIterateFoundRecord (page 1053) Deprecated in Mac OS X v10.5
Retrieves one record from a list of search results.

Working With Fields in a Single Record

DCMCreateFieldInfoRecord (page 1033) Deprecated in Mac OS X v10.5
Creates a field information record.

Functions by Task 1027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMGetDictionaryFieldInfo (page 1040) Deprecated in Mac OS X v10.5
Obtains field information for a specified field in a dictionary record.

DCMGetFieldAttributes (page 1045) Deprecated in Mac OS X v10.5
Obtains the field attributes for a field information record.

DCMGetFieldData (page 1046) Deprecated in Mac OS X v10.5
Obtains data from one or more fields in a specified record.

DCMGetFieldDefaultData (page 1047) Deprecated in Mac OS X v10.5
Obtains default data for a field information record.

DCMGetFieldFindMethods (page 1047) Deprecated in Mac OS X v10.5
Obtains the search methods for a field information record.

DCMGetFieldMaxRecordSize (page 1048) Deprecated in Mac OS X v10.5
Obtains the maximum data size for a field in a dictionary record.

DCMGetFieldTagAndType (page 1048) Deprecated in Mac OS X v10.5
Obtains the field tag and type associated with a field information record.

DCMSetFieldData (page 1061) Deprecated in Mac OS X v10.5
Set the data to a specific field of a specified record.

Functions

DCMAddRecord
Add a new record to a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMAddRecord (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 Boolean checkOnly,
 const AEDesc *dataList,
 DCMUniqueID *newUniqueID
);

Parameters
dictionaryRef

A reference to the dictionary to which you want to add a record. You obtain a dictionary reference
when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the record you want to add.

keySize
The size of the keyData parameter.

keyData
The key data of the record you want to add. You are responsible for allocating this buffer.

checkOnly
If true is specified, only a duplication check of records is carried out, and actual addition of records is
not carried out.

1028 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

dataList
A pointer to the data contained in the record you want to add. The AEDesc data structure contains
two fields: A four-character code that specifies the type of data in the structure and an opaque storage
type that points to the storage for the descriptor data. Each of the data structures in the dataList
array specifies a field name (the four-character code) in the dictionary record and the data associated
with that field. You must first call the function DCMCreateFieldInfoRecord (page 1033) to create
this array of data structures. When you create the data list, you must include all of the fields specified
by the masks kDCMIndexedFieldMask, kDCMRequiredFieldMask, and kDCMIdentifyFieldMask
as attributes of the field properties of the applicable dictionary.

newUniqueID
On output, the unique ID of the added record. If the added record is a duplicate record, the function
returns the result dcmDupRecordErr and the unique ID of the existing record is returned in the
newUniqueID parameter.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
When checkOnly is specified as true, if duplicate records do not exist, noErr is returned, and the
newUniqueID value is undefined. When checkOnly is specified as false, if the same record exists, only
the field data within that record is overwritten, and the unique ID of that record is returned as newUniqueID,
and dcmDupRecordErr is returned as the return value. If the same record does not exist, the record is added,
and the uniqueID of the added record is returned as newUniqueID, and noErr is returned as the return
value.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCloseDictionary
Closes a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMCloseDictionary (
 DCMDictionaryRef dictionaryRef
);

Parameters
dictionaryRef

A reference to the dictionary you want to close. You obtain a dictionary reference when you call the
function DCMOpenDictionary (page 1057).

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.

Functions 1029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCompactDictionary
Compacts a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMCompactDictionary (
 DCMDictionaryID dictionaryID,
 DCMProgressFilterUPP progressProc,
 UInt32 userData
);

Parameters
dictionaryID

The ID of the dictionary you want to compact. You obtain a dictionary ID when you call the functions
DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page 1041).

progressProc
A universal procedure pointer (UPP) to your progress callback function. This callback is not supported.

userData
Data needed by your progress callback function.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMCompactDictionary organizes the contents of a dictionary to reduce the size of the
dictionary as much as possible. You cannot add additional records to a dictionary after you have compacted
it unless you call the functionDCMReorganizeDictionary (page 1059) to expand the capacity of the dictionary.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCountObjectIterator
Obtains the number of dictionaries in a list. (Deprecated in Mac OS X v10.5.)

1030 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

ItemCount DCMCountObjectIterator (
 DCMObjectIterator iterator
);

Parameters
iterator

The list of available dictionaries. You obtain this list by calling the function
DCMCreateDictionaryIterator (page 1033) orDCMCreateAccessMethodIterator (page 1032).

Return Value
The number of dictionaries contained in the list specified by the iterator parameter.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCountRecord
Return number of records in a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMCountRecord (
 DCMDictionaryID dictionaryID,
 ItemCount *count
);

Parameters
dictionaryID

The ID of dictionary whose records you want to count. You obtain a dictionary ID when you call the
functions DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page
1041).

count
On output, the number of records in the dictionary.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

Functions 1031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMCountRecordIterator
Returns the number of records contained in a list of search results. (Deprecated in Mac OS X v10.5.)

ItemCount DCMCountRecordIterator (
 DCMFoundRecordIterator recordIterator
);

Parameters
recordIterator

A reference to list of search results. You obtain a list of search results by calling the function
DCMFindRecords (page 1038).

Return Value
The number of records in the list specified by the recordIterator parameter.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCreateAccessMethodIterator
Obtains a list of the available access methods. (Deprecated in Mac OS X v10.5.)

OSStatus DCMCreateAccessMethodIterator (
 DCMAccessMethodIterator *accessMethodIterator
);

Parameters
accessMethodIterator

On output, a list of access methods.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
You can operate on the list of access methods created by the function DCMCreateAccessMethodIterator
by calling the functions DCMCountObjectIterator (page 1030), DCMIterateObject (page 1055),
DCMResetObjectIterator (page 1060), andDCMDisposeObjectIterator (page 1037). You use this function
along with the function DCMGetAccessMethodIDFromName (page 1040) to obtain the accessMethodID that
you supply to the function DCMNewDictionary (page 1056) to create a new dictionary.

Normally you should not need to call this function because the Dictionary Manager handles the mapping of
a dictionary to its access method.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.

1032 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCreateDictionaryIterator
Obtains a list of the dictionaries available on the system. (Deprecated in Mac OS X v10.5.)

OSStatus DCMCreateDictionaryIterator (
 DCMDictionaryIterator *dictionaryIterator
);

Parameters
dictionaryIterator

On output, a reference to the list of available dictionaries. You are responsible for disposing of this
list when you no longer need it.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMCreateDictionaryIterator scans the dictionary directories, registers the dictionaries
found, and returns a list of dictionaries. In Mac OS X, the Dictionary Manager searches (User's
home)/Library/Dictionaries/, /Library/Dictionaries/, and their subdirectories. In Mac OS 9, it
searches the Extensions folder, Preferences folder, and their subfolders.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMCreateFieldInfoRecord
Creates a field information record. (Deprecated in Mac OS X v10.5.)

Functions 1033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMCreateFieldInfoRecord (
 DescType fieldTag,
 DescType fieldType,
 ByteCount maxRecordSize,
 DCMFieldAttributes fieldAttributes,
 AEDesc *fieldDefaultData,
 ItemCount numberOfFindMethods,
 DCMFindMethod findMethods[],
 AEDesc *fieldInfoRecord
);

Parameters
fieldTag

The tag for the field you want to create.

fieldType
The data type of the field.

maxRecordSize
The maximum size of the data in the field.

fieldAttributes
The attributes associated with the field. See “Field Attributes” (page 1073) for more information.

fieldDefaultData
On input, points to the default data for the field.

numberOfFindMethods
The number of search methods associated with the field.

findMethods
On input, an array of search methods associated with the field. See “Search Methods” (page 1078) for
more information.

fieldInfoRecord
On output, points to the field information record for the newly-created field.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
You can add multiple fields in the form of an AEDescList data structure by repeatedly calling the function
DCMCreateFieldInfoRecord. You use the field information record (fieldInfoRecord) when you call
the function DCMNewDictionary. However, when calling the function for the first time, you must set the
descriptorType of the fieldInfoRecord to typeNull.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

1034 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMDeleteDictionary
Deletes a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMDeleteDictionary (
 DCMDictionaryID dictionaryID
);

Parameters
dictionaryID

The ID of dictionary you want to delete. You obtain a dictionary ID when you call the functions
DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page 1041).

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). Returns the result dcmDictionaryBusyErr
if another application has this dictionary open.

Discussion
The function DCMDeleteDictionary deletes the dictionary specified by the dictionaryID parameter.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDeleteRecord
Delete specified record from the dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMDeleteRecord (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID
);

Parameters
dictionaryRef

A reference to the dictionary from which you want to delete a record. You obtain a dictionary reference
when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the record you want to delete.

keySize
The size of the keyData parameter.

keyData
The key data of the record you want to delete. You are responsible for allocating this buffer.

Functions 1035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

uniqueID
The unique ID of the record you want to delete.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDeriveNewDictionary
Create a new dictionary based on an existing dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMDeriveNewDictionary (
 DCMDictionaryID srcDictionary,
 const FSSpec *newDictionaryFile,
 ScriptCode scriptTag,
 Boolean invisible,
 ItemCount recordCapacity,
 DCMDictionaryID *newDictionary
);

Parameters
srcDictionary

The ID of dictionary from which you want to derive a dictionary. You obtain a dictionary ID when you
call the functions DCMRegisterDictionaryFile (page 1058) or
DCMGetDictionaryIDFromFile (page 1041).

newDictionaryFile
A pointer to an FSSpec structure that specifies the file name and location for the newly-created
dictionary. This is an input parameter.

scriptTag
The script code of the file specified by the newDictionaryFile parameter.

invisible
A Boolean value that specifies whether the dictionary is available through the Dictionary Manager.
Pass true if you do not want the dictionary to be available, false otherwise. If you set invisible to
true, that dictionary is no longer seen by such functions as DCMCreateDictionaryIterator, so
it becomes a dictionary that cannot be accessed from any application other than the application that
created the dictionary.

recordCapacity
The number of records that can be stored in the dictionary. You can supply an approximate value if
you do not know the exact number.

newDictionary
On output, points to the ID of the newly-created dictionary.

1036 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMDeriveNewDictionary creates an new dictionary file based on an existing dictionary
specified in the srcDictionary parameter, with the same field configuration and properties, but does not
contain the data from the source. The new dictionary is created with the name and at the location specified
by the newDictionaryFile parameter. The newly-created dictionary is read-write enabled even if the
source dictionary is read-only.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDisposeObjectIterator
Disposes of a iterator. (Deprecated in Mac OS X v10.5.)

OSStatus DCMDisposeObjectIterator (
 DCMObjectIterator iterator
);

Parameters
iterator

The list of available dictionaries that you want to dispose of.You obtain this list by calling the function
DCMCreateDictionaryIterator (page 1033) orDCMCreateAccessMethodIterator (page 1032).

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
You must dispose of a dictionary iterator when you no longer need it by calling the function
DCMDisposeObjectIterator (page 1037).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDisposeRecordIterator
Disposes of a list of search results. (Deprecated in Mac OS X v10.5.)

Functions 1037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMDisposeRecordIterator (
 DCMFoundRecordIterator recordIterator
);

Parameters
recordIterator

A reference to the list of search results you want to dispose of. You obtain a list of search results by
calling the function DCMFindRecords (page 1038).

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMFindRecords
Obtains a list of dictionary records that meet specified criteria. (Deprecated in Mac OS X v10.5.)

OSStatus DCMFindRecords (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMFindMethod findMethod,
 ItemCount preFetchedDataNum,
 DCMFieldTag preFetchedData[],
 ItemCount skipCount,
 ItemCount maxRecordCount,
 DCMFoundRecordIterator *recordIterator
);

Parameters
dictionaryRef

A reference to the dictionary you want to search. You obtain a dictionary reference when you call the
function DCMOpenDictionary (page 1057).

keyFieldTag
A tag that specifies the field to search through. See “Field Data Tags” (page 1074) for a list of the fields
you can specify for an Apple Japanese dictionary.

keySize
The length of the keyword specified by the keyData parameter.

keyData
The string for which you want to search.

1038 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

findMethod
The search method to use. See “Search Methods” (page 1078) for a description of the methods you can
supply.

preFetchedDataNum
The number of items in the preFetchedData array.

preFetchedData
An array of the tags obtained during the search. See “Field Data Tags” (page 1074) for a list of the field
tags that can be obtained for an Apple Japanese dictionary.

skipCount
The number of records you want to skip during the search. You can use this value along with the
maxRecordCount parameter to search through a dictionary in chunks. For example, if you want to
obtain 10 matches at a time, the first time you search you should set the skipCount parameter to 0
and the maxRecordCount to 10. The second time you search you set skipCount to 10 and
maxRecordCount to10. Each subsequent time you search, you increment skipCount by 10, keeping
maxRecordCount set to10.

maxRecordCount
The maximum number of results to return. Pass 0 if you want all matching records returned. If the
number of matching records is smaller than the maximum number of results to return, the search is
terminated and the matching records returned in the recordIterator parameter. See the description
of the skipCount parameter for information on how to use maxRecordCount to search through a
dictionary in chunks.

recordIterator
On return, a reference to list of search results.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).If a match is not found, the function returns
dcmNoRecordErr, and the recordIterator value is undefined.

Discussion
The function DCMFindRecords uses the specified key and search method to return a list of matching records.
Search results are returned as a reference to a list of matching records. After you obtain this list, you can call
the function DCMGetFieldData to retrieve each result in the list.

You can use the preFetchedData parameter to obtain a list of tags during the search. Data specified as
pre-fetched are actually retrieved at the same time as the search key is retrieved, so you can specify data
tags the need to be accessed fast and immediately after searching. In other words, you can avoid accessing
and loading data that are not going to be used immediately by omitting those tags from the preFetchedData
list. (You can retrieve those data later by calling the function DCMGetFieldData (page 1046).) For example:
An application that searches pictures by date, displays the found titles in the list, and shows the picture only
if the title is double-clicked, the key is "date", the pre-fetched data is "title", and the "picture" is retrieved later
if needed by calling the function DCMGetFieldData (page 1046).

You pass the record iterator (recordIterator) as a parameter to the function DCM
DCMCountRecordIterator (page 1032) to obtain the number of items in the list. You can obtain the individual
items in the list by passing the record iterator to the function DCMIterateFoundRecord (page 1053). Your
application is responsible for disposing of the record iterator when you no longer need it by calling the
function DCMDisposeRecordIterator (page 1037).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.

Functions 1039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetAccessMethodIDFromName
Obtains the ID for access method. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetAccessMethodIDFromName (
 ConstStr63Param accessMethodName,
 DCMAccessMethodID *accessMethodID
);

Parameters
accessMethodName

The name of access method whose ID you want to obtain.

accessMethodID
On output, the ID for the access method specified by the accessMethodName parameter.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
You can use this function to obtain the accessMethodID that you supply to the function
DCMNewDictionary (page 1056) to create a new dictionary.

Normally you should not need to call this function because the Dictionary Manager handles the mapping of
a dictionary to its access method.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryFieldInfo
Obtains field information for a specified field in a dictionary record. (Deprecated in Mac OS X v10.5.)

1040 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMGetDictionaryFieldInfo (
 DCMDictionaryID dictionaryID,
 DCMFieldTag fieldTag,
 AEDesc *fieldInfoRecord
);

Parameters
dictionaryID

The ID of dictionary from which you want to obtain field information. You obtain a dictionary ID when
you call the functions DCMRegisterDictionaryFile (page 1058) or
DCMGetDictionaryIDFromFile (page 1041).

fieldTag
The tag of the field whose field information you want to obtain. If you pass '****' (typeWildCard)
as the field tag, all of the field information contained in the specified dictionary is returned in the
fieldInfoRecord parameter.

fieldInfoRecord
On return, points to the field information for the specified field. You are responsible for disposing of
this structure by calling the Apple Event Manager function AEDisposeDesc.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryIDFromFile
Obtains the ID associated with a dictionary file. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetDictionaryIDFromFile (
 const FSSpec *fileRef,
 DCMDictionaryID *dictionaryID
);

Parameters
fileRef

The file specification for the dictionary whose ID you want to obtain.

dictionaryID
On output, points to the ID for the dictionary specified by the fileRef parameter.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). If the file is not a dictionary, the result
dcmNotDictionaryErr is returned. If the dictionary is not yet registered, the result dcmBadDictionaryErr
is returned.

Functions 1041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryIDFromRef
Obtains the dictionary ID associated with a dictionary reference. (Deprecated in Mac OS X v10.5.)

DCMDictionaryID DCMGetDictionaryIDFromRef (
 DCMDictionaryRef dictionaryRef
);

Parameters
dictionaryRef

A reference to the dictionary whose ID you want to obtain. You obtain a dictionary reference when
you call the function DCMOpenDictionary (page 1057).

Return Value
On return, the ID of the dictionary specified by the dictionaryRef parameter. If dictionaryRef is invalid,
the result kDCMInvalidObjectID is returned. See page for a description of the DCMDictionaryID data
type.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryProperty
Obtains the data associated with a property tag. (Deprecated in Mac OS X v10.5.)

1042 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMGetDictionaryProperty (
 DCMDictionaryID dictionaryID,
 DCMFieldTag propertyTag,
 ByteCount maxPropertySize,
 ByteCount *actualSize,
 LogicalAddress propertyValue
);

Parameters
dictionaryID

The ID of dictionary whose property you want to obtain. You obtain a dictionary ID when you call the
functions DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page
1041).

propertyTag
The property tag whose data you want to obtain.

maxPropertySize
The size of the data specified by the propertyValue parameter.

actualSize
On output, the actual size of the data specified by the propertyValue parameter.

propertyValue
On output, points to the property data.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). Returns the result dcmBadPropertyErr if
the property tag does not exist.

Discussion
If you don’t know the size of the property whose data you want to obtain, you need to call this function twice
as follows:

 ■ The first time you call the function DCMGetProperty, pass the dictionary ID, the property tag, 0 for the
maxPropertySize parameter and Null for propertyValue. Then allocate a propertyValue buffer
of the size returned by the actualSize parameter.

 ■ The second time you call the function DCMGetProperty, pass the dictionary ID, the property tag, the
correct size for the maxPropertySize parameter, and the propertyValue buffer of the appropriate
size.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryPropertyList
Obtains a list of property tags from a dictionary. (Deprecated in Mac OS X v10.5.)

Functions 1043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMGetDictionaryPropertyList (
 DCMDictionaryID dictionaryID,
 ItemCount maxPropertyNum,
 ItemCount *numProperties,
 DCMFieldTag propertyTag[]
);

Parameters
dictionaryID

The ID of dictionary whose list of property tags you want to obtain. You obtain a dictionary ID when
you call the functions DCMRegisterDictionaryFile (page 1058) or
DCMGetDictionaryIDFromFile (page 1041).

maxPropertyNum
The maximum number of property tags in the list.

numProperties
On output, the number of properties actually contained in the dictionary.

propertyTag
On output, an array of the property tags contained in the dictionary. You are responsible for allocating
an array of the appropriate size.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMGetDictionaryPropertyList returns a list of property tags in the specified dictionary.
You need to call this function twice. The first time you call the function to get the number of properties. Then
you must allocate a propertyTag array of the appropriate size. You call the function a second time to get
the actual list of tags.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetDictionaryWriteAccess
Obtains write access for an open dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetDictionaryWriteAccess (
 DCMDictionaryRef dictionaryRef,
 Duration timeOutDuration
);

Parameters
dictionaryRef

A reference to the dictionary for which you want to obtain write access. You obtain a dictionary
reference when you call the function DCMOpenDictionary (page 1057).

1044 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

timeOutDuration
The maximum amount of time to wait for write access. This parameter is currently not used.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). Returns the result dcmPermissionErr if
the dictionary is read-only dictionary or if another application has write access.

Discussion
When you call the function DCMOpenDictionary (page 1057), the dictionary opens with read-only access.
You must call the function DCMGetDictionaryWriteAccess to obtain write privileges. You can obtain
write access only if a dictionary is already opened and no other application has write access to that dictionary.
You should release write privileges as soon as you no longer need write access, by calling the function
DCMReleaseDictionaryWriteAccess (page 1059).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetFieldAttributes
Obtains the field attributes for a field information record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFieldAttributes (
 const AEDesc *fieldInfoRecord,
 DCMFieldAttributes *attributes
);

Parameters
fieldInfoRecord

On input, points to the field information record whose attributes you want to obtain.

attributes
On output, points to the attributes obtained from the field information record. See “Field
Attributes” (page 1073)for more information.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

Functions 1045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMGetFieldData
Obtains data from one or more fields in a specified record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFieldData (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID,
 ItemCount numOfData,
 const DCMFieldTag dataTag[],
 AEDesc *dataList
);

Parameters
dictionaryRef

A reference to the dictionary that contains the field data you want to obtain. You obtain a dictionary
reference when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
A field tag that specifies the data you want to obtain.

keySize
The size of the keyData parameter.

keyData
The key data of the record you whose field you want to obtain. You are responsible for allocating this
buffer.

uniqueID
The unique ID of the record whose field you want to obtain.

numOfData
The number of data fields tags in the dataTag array.

dataTag
A list of the data field to obtain.

dataList
On return, points to a list of obtained data. The data obtained is returned in t as an AERecord data
structure. You can retrieve data from specific field using the Apple Event Manager function
AEGetKeyPtr. You are responsible for disposing of the dataList array by calling the Apple Event
Manager function AEDisposeDesc.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

1046 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMGetFieldDefaultData
Obtains default data for a field information record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFieldDefaultData (
 const AEDesc *fieldInfoRecord,
 DescType desiredType,
 AEDesc *fieldDefaultData
);

Parameters
fieldInfoRecord

On input, points to the field information record whose default data you want to obtain.

desiredType
The data type of the default data.

fieldDefaultData
On output, points to the default data obtained from the field information record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetFieldFindMethods
Obtains the search methods for a field information record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFieldFindMethods (
 const AEDesc *fieldInfoRecord,
 ItemCount findMethodsArrayMaxSize,
 DCMFindMethod findMethods[],
 ItemCount *actualNumberOfFindMethods
);

Parameters
fieldInfoRecord

On input, points to the field information record whose search methods you want to obtain.

findMethodsArrayMaxSize
The number of elements in the findMethods array.

findMethods
On output, an array of search methods obtained from the field information record. See “Search
Methods” (page 1078) for more information.

actualNumberOfFindMethods
On output, the actual number of search methods obtained from the field information array.

Functions 1047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetFieldMaxRecordSize
Obtains the maximum data size for a field in a dictionary record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFieldMaxRecordSize (
 const AEDesc *fieldInfoRecord,
 ByteCount *maxRecordSize
);

Parameters
fieldInfoRecord

On input, points to the field information record whose maximum data size you want to obtain.

maxRecordSize
On output, points to the maximum data size obtained from the field information record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetFieldTagAndType
Obtains the field tag and type associated with a field information record. (Deprecated in Mac OS X v10.5.)

1048 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMGetFieldTagAndType (
 const AEDesc *fieldInfoRecord,
 DCMFieldTag *fieldTag,
 DCMFieldType *fieldType
);

Parameters
fieldInfoRecord

On input, points to the field information record whose field tag and type you want to obtain.

fieldTag
On output, points to the field tag obtained from the field information record.

fieldType
On output, points to the field tag type obtained from the field information record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMGetFileFromDictionaryID
Obtains the file specification associated with a dictionary ID. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetFileFromDictionaryID (
 DCMDictionaryID dictionaryID,
 FSSpec *fileRef
);

Parameters
dictionaryID

The ID of the dictionary whose file specification you want to obtain. You obtain a dictionary ID when
you call the functions DCMRegisterDictionaryFile (page 1058) or
DCMGetDictionaryIDFromFile (page 1041).

fileRef
On output, points to the file specification for the dictionary specified by the dictionaryID parameter.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Declared In
Dictionary.h

DCMGetNextRecord
Obtains the next specified record. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetNextRecord (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID,
 ByteCount maxKeySize,
 ByteCount *nextKeySize,
 LogicalAddress nextKeyData,
 DCMUniqueID *nextUniqueID
);

Parameters
dictionaryRef

A reference to the dictionary whose record you want to obtain. You obtain a dictionary reference
when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the data you want to obtain.

keySize
The size of the keyData parameter. If you pass 0, the first record in the dictionary is returned.

keyData
The key data of the reference record.

uniqueID
The unique ID of the reference record.

maxKeySize
The size of the buffer for the nextKeyData parameter.

nextKeySize
On output, the actual size of the buffer for the nextKeyData parameter.

nextKeyData
On output, points to the next key of the specified record. You must allocate this buffer.

nextUniqueID
On output, the unique ID of the found record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1050 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Declared In
Dictionary.h

DCMGetNthRecord
Return records in a specified order within the dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetNthRecord (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ItemCount serialNum,
 ByteCount maxKeySize,
 ByteCount *keySize,
 LogicalAddress keyData,
 DCMUniqueID *uniqueID
);

Parameters
dictionaryRef

A reference to the dictionary whose record you want to obtain. You obtain a dictionary reference
when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the data you want to obtain.

serialNum
A value that specifies the location of the record within the dictionary. You can obtain this value by
calling the function DCMGetRecordSequenceNumber (page 1053).

maxKeySize
The maximum size of the keyData parameter.

keySize
On output, the size of the keyData parameter.

keyData
The key data of the record you want to obtain. You are responsible for allocating this buffer.

uniqueID
On output, the unique ID of the found record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

Functions 1051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMGetPrevRecord
Obtains the previous record. Return the record previous to the specified record. (Deprecated in Mac OS X
v10.5.)

OSStatus DCMGetPrevRecord (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID,
 ByteCount maxKeySize,
 ByteCount *prevKeySize,
 LogicalAddress prevKeyData,
 DCMUniqueID *prevUniqueID
);

Parameters
dictionaryRef

A reference to the dictionary whose record you want to obtain. You obtain a dictionary reference
when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the data you want to obtain.

keySize
The size of the keyData parameter. If you pass 0, the last record in the dictionary is returned.

keyData
The key data of the reference record.

uniqueID
The unique ID of the record reference record.

maxKeySize
The size of the buffer for the prevKeyData parameter.

prevKeySize
On output, the actual size of the buffer for the prevKeyData parameter.

prevKeyData
On output, points to the previous key of the specified record. You must allocate this buffer.

prevUniqueID
On output, the unique ID of the found record.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

1052 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMGetRecordSequenceNumber
Obtains the sequence number for the specified record in a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMGetRecordSequenceNumber (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID,
 ItemCount *sequenceNum
);

Parameters
dictionaryRef

A reference to the dictionary whose record sequence number you want to obtain. You obtain a
dictionary reference when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
The field tag that specifies the data you want to obtain.

keySize
The size of the keyData parameter.

keyData
The key data of the record whose sequence number you want to obtain.

uniqueID
The unique ID of the record whose sequence number you want to obtain.

sequenceNum
On output, a value that specifies the order of the record in the dictionary. The first record in a dictionary
has the value 1. Subsequent records are numbered sequentially.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMIterateFoundRecord
Retrieves one record from a list of search results. (Deprecated in Mac OS X v10.5.)

Functions 1053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMIterateFoundRecord (
 DCMFoundRecordIterator recordIterator,
 ByteCount maxKeySize,
 ByteCount *actualKeySize,
 LogicalAddress keyData,
 DCMUniqueID *uniqueID,
 AEDesc *dataList
);

Parameters
recordIterator

A reference to list of search results. You obtain a list of search results by calling the function
DCMFindRecords (page 1038).

maxKeySize
The size of the keyData parameter.

actualKeySize
On output, the actual size of the buffer needed for the data specified by the keyData parameter.

keyData
On output, the key of the retrieved data.

uniqueID
On output, the unique ID of the retrieved record. This value is guaranteed to be unique among records
with the same key data; but it is not unique among all records in the dictionary. You can use the
unique ID in conjunction with the retrieved key data to specify individual records within the dictionary
when you call the functions DCMGetNextRecord (page 1050), DCMGetPrevRecord (page 1052),
DCMGetRecordSequenceNumber (page 1053),DCMDeleteRecord (page 1035),DCMGetFieldData (page
1046), and DCMSetFieldData (page 1061).

dataList
On output, the data associated with the key specified by the keyData parameter.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). The function returns the result
dcmIterationCompleteErr when the final record is retrieved.

Discussion
The function DCMIterateFoundRecord retrieves one record from a list of search results referenced by a
record iterator. You can retrieve all of the records referenced by a record iterator by repeatedly calling the
DCMIterateFoundRecord function.

The data associated with the fields specified in the preFetchedData parameter is returned to dataList
in the form of an AERecord. (See DCMFindRecords (page 1038) for more information on pre-fetched data).
It is possible to retrieve data by specifying the field tag and data type, and use the AEGetKeyPtr and so
forth of the Apple Event Manager. You application is responsible for disposing of dataList by calling the
Apple Event Manager function AEDisposeDesc.

Only pre-fetched data can be retrieved here since these data are already retrieved. Other data can be retrieved
later by calling the function DCMGetFieldData (page 1046).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1054 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Declared In
Dictionary.h

DCMIterateObject
Obtains the object ID for a dictionary from a list of available dictionaries. (Deprecated in Mac OS X v10.5.)

OSStatus DCMIterateObject (
 DCMObjectIterator iterator,
 DCMObjectID *objectID
);

Parameters
iterator

The list of available dictionaries. You obtain this list by calling the function
DCMCreateDictionaryIterator (page 1033) orDCMCreateAccessMethodIterator (page 1032).

objectID
On output, the object ID of the dictionary.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The first time you call the function DCMIterateObject it retrieves the object ID of the first dictionary in the
list. The next time you call the function, it retrieves the object ID of the next dictionary in the list. You can
obtain all object IDs by repeatedly calling this function. If you call the function after you obtain the object
ID for the last dictionary, the function returns the result dcmIterationCompleteErr.

You can reset the iterator to the first dictionary in the list by calling the function
DCMResetObjectIterator (page 1060). When you no longer need the iterator, you must dispose of it by
calling the function DCMDisposeObjectIterator (page 1037).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMLibraryVersion
Obtains the version number of the Dictionary Manager. (Deprecated in Mac OS X v10.5.)

UInt32 DCMLibraryVersion (
 void
);

Parameters
Return Value
The library version number.

Functions 1055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Discussion
The function DCMLibraryVersion returns the version of the installed Dictionary Manager in the same
format as the 'vers' resource. That is, the version number is returned in Binary-Coded Decimal (BCD) format
in the high-order word, and the release stage information is returned in the low-order word. For example,
the version 1.1.1 library returns 0x01118000.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMNewDictionary
Creates a new dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMNewDictionary (
 DCMAccessMethodID accessMethodID,
 const FSSpec *newDictionaryFile,
 ScriptCode scriptTag,
 const AEDesc *listOfFieldInfoRecords,
 Boolean invisible,
 ItemCount recordCapacity,
 DCMDictionaryID *newDictionary
);

Parameters
accessMethodID

The ID of access method to use for the dictionary. You can obtain an access method ID by calling the
function DCMGetAccessMethodIDFromName (page 1040).

newDictionaryFile
On output, a pointer to an FSSpec structure that specifies the dictionary file to be created.

scriptTag
The code of the script system in which the filename of the dictionary file is to be displayed.

listOfFieldInfoRecords
A pointer to an array of AEDesc data structures. The AEDesc data structure contains two fields: A
four-character code that specifies the type of data in the structure and an opaque storage type that
points to the storage for the descriptor data. Each of the data structures in the
listOfFieldInfoRecords array specifies a field name (the four-character code) in the dictionary
record and the data associated with that field. You must first call the function
DCMCreateFieldInfoRecord (page 1033) to create this array of data structures.

invisible
A Boolean value that specifies whether the dictionary is available through the Dictionary Manager.
Pass true if you do not want the dictionary to be available, false otherwise. If you set invisible to
true, that dictionary is no longer seen by such functions as DCMCreateDictionaryIterator, so
it becomes a dictionary that cannot be accessed from any application other than the application that
created the dictionary.

1056 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

recordCapacity
The number of records that can be stored in the dictionary. You can supply an approximate value if
you do not know the exact number.

newDictionary
On output, points to the ID of the newly-created dictionary.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMNewDictionary creates a new dictionary file and registers that dictionary with the Dictionary
Manager. You need to specify the access method to use in creating the dictionary. The Dictionary Manager
does not operate directly on a dictionary. Instead it accesses dictionaries using the access method specified
for the dictionary. The access method mediates between the dictionary and the Dictionary Manager, so that
the Dictionary Manager does not need to know anything about the physical format of the dictionary. As a
result, the dictionary can have an free-form internal structure. You can also to use an existing dictionary as
long as the dictionary has its own access method.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMOpenDictionary
Opens a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMOpenDictionary (
 DCMDictionaryID dictionaryID,
 ByteCount protectKeySize,
 ConstLogicalAddress protectKey,
 DCMDictionaryRef *dictionaryRef
);

Parameters
dictionaryID

The ID of the dictionary you want to open. You obtain a dictionary ID when you register a dictionary
by calling the function DCMRegisterDictionaryFile (page 1058) or
DCMGetDictionaryIDFromFile (page 1041).

protectKeySize
The size of the keyword specified by the protectKey parameter. This parameter is optional. Pass 0
if you do not plan to provide a password.

protectKey
The keyword to use when opening the dictionary. An access method can use the protectKey
parameter as a password to restrict access to the dictionary. This parameter is optional. Pass NULL if
you do not plan to provide a password.

Functions 1057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

dictionaryRef
On output, a reference to the opened dictionary.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMOpenDictionary opens the dictionary specified by the dictionary ID and obtains a reference
to the dictionary (dictionaryRef). You can pass this reference as a parameter to other Dictionary Manager
functions to access the records in the dictionary.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMRegisterDictionaryFile
Registers a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMRegisterDictionaryFile (
 const FSSpec *dictionaryFile,
 DCMDictionaryID *dictionaryID
);

Parameters
dictionaryFile

The file specification for the dictionary you want to register.

dictionaryID
On output, points to the ID of the registered dictionary. A dictionary ID is not persistent across system
restarts.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
You should use this function only when the target dictionary is not in default location
(seeDCMCreateDictionaryIterator (page 1033)). Otherwise, dictionaries should be already registered and
you can obtain the dictionaryID by calling the function DCMGetDictionaryIDFromFile (page 1041) or
DCMCreateDictionaryIterator (page 1033).

You can only use registered dictionaries. You pass the dictionary ID obtained from the function
DCMRegisterDictionaryFile when you call other Dictionary Manager functions.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

1058 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Dictionary.h

DCMReleaseDictionaryWriteAccess
Releases write access to a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMReleaseDictionaryWriteAccess (
 DCMDictionaryRef dictionaryRef,
 Boolean commitTransaction
);

Parameters
dictionaryRef

A reference to the dictionary for which you want to release write access. You obtain a dictionary
reference when you call the function DCMOpenDictionary (page 1057).

commitTransaction
A Boolean value that specifies whether or not to write changed to the dictionary. Pass true to write
changes to the dictionary. Pass false to cancel changes. The dictionary must support transaction
processing for this parameter to have an effect. This parameter is currently not used.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMReorganizeDictionary
Reorganizes a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMReorganizeDictionary (
 DCMDictionaryID dictionaryID,
 ItemCount extraCapacity,
 DCMProgressFilterUPP progressProc,
 UInt32 userData
);

Parameters
dictionaryID

The ID of dictionary you want to reorganize. You obtain a dictionary ID when you call the functions
DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page 1041).

Functions 1059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

extraCapacity
The number of additional records you want to add. This number can be approximate.

progressProc
A universal procedure pointer (UPP) to a progress callback function. This callback is not supported.

userData
Data needed by your progress callback function.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
The function DCMReorganizeDictionary reorganizes the contents of the dictionary specified by the
dictionaryID parameter, expanding the dictionary to allow for the additional number of records specified
by the extraCapacity parameter.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMResetObjectIterator
Resets an iterator to the start of the dictionary list. (Deprecated in Mac OS X v10.5.)

OSStatus DCMResetObjectIterator (
 DCMObjectIterator iterator
);

Parameters
iterator

The list of available dictionaries. You obtain this list by calling the function
DCMCreateDictionaryIterator (page 1033) orDCMCreateAccessMethodIterator (page 1032).

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Discussion
If you want to retrieve the object ID for a dictionary in the list, call the function DCMIterateObject (page
1055). When you no longer need the iterator, you must dispose of it by calling the function
DCMDisposeObjectIterator (page 1037).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1060 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Declared In
Dictionary.h

DCMSetDictionaryProperty
Sets a property for a dictionary. Set the properties to a dictionary. (Deprecated in Mac OS X v10.5.)

OSStatus DCMSetDictionaryProperty (
 DCMDictionaryID dictionaryID,
 DCMFieldTag propertyTag,
 ByteCount propertySize,
 ConstLogicalAddress propertyValue
);

Parameters
dictionaryID

The ID of dictionary whose property you want to set. You obtain a dictionary ID when you call the
functions DCMRegisterDictionaryFile (page 1058) or DCMGetDictionaryIDFromFile (page
1041).

propertyTag
The property tag whose data you want to set.

propertySize
The size of data pointed to by the propertyValue parameter.

propertyValue
A pointer to the property data to be set.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). Returns the result dcmPermissionErr if
the property already exists and it is a read-only property.

Discussion
If the specified properties already exists and it is a writable property, the property data is replaced. If the
property does not exist, it is created.

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMSetFieldData
Set the data to a specific field of a specified record. (Deprecated in Mac OS X v10.5.)

Functions 1061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMSetFieldData (
 DCMDictionaryRef dictionaryRef,
 DCMFieldTag keyFieldTag,
 ByteCount keySize,
 ConstLogicalAddress keyData,
 DCMUniqueID uniqueID,
 const AEDesc *dataList
);

Parameters
dictionaryRef

A reference to the dictionary that contains the field data you want to set. You obtain a dictionary
reference when you call the function DCMOpenDictionary (page 1057).

keyFieldTag
Tag of applicable key field.

keySize
The size of the keyData parameter.

keyData
The key data of the record you whose field you want to set.

uniqueID
The unique ID of the record whose field you want to obtain.

dataList
A pointer to the list of data you want to set. The AEDesc data structure contains two fields: A
four-character code that specifies the type of data in the structure and an opaque storage type that
points to the storage for the descriptor data. Each of the data structures in the dataList array specifies
a field name (the four-character code) in the dictionary record and the data associated with that field.
You must first call the function DCMCreateFieldInfoRecord (page 1033) to create this array of data
structures.

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMUnregisterDictionary
Unregisters a dictionary. (Deprecated in Mac OS X v10.5.)

1062 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

OSStatus DCMUnregisterDictionary (
 DCMDictionaryID dictionaryID
);

Parameters
dictionaryID

Return Value
A result code. See “Dictionary Manager Result Codes” (page 1080). Returns dcmDictionaryBusyErr if the
dictionary is in use by another client.

Discussion
You should use this function only for dictionaries that you registered by calling the function
DCMRegisterDictionaryFile (page 1058).

Availability
Available in CarbonLib 1.0 and later when running Japanese Mac OS 8.5 or later, or other Mac OS 8.5 or later
with the Japanese Language Kit.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Dictionary.h

Callbacks

DCMProgressFilterProcPtr
Displays the progress state of a reorganization or compaction operation.

typedef Boolean (*DCMProgressFilterProcPtr)
(
 Boolean determinateProcess,
 UInt16 percentageComplete,
 UInt32 callbackUD
);

If you name your function MyDCMProgressFilterProc, you would declare it like this:

Boolean DCMProgressFilterProcPtr (
 Boolean determinateProcess,
 UInt16 percentageComplete,
 UInt32 callbackUD
);

Discussion
You supply this callback as a parameter to the DCMReorganizeDictionary (page 1059) and
DCMCompactDictionary (page 1030) functions.

Availability
Available in Mac OS X v10.0 and later.

Callbacks 1063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Dictionary.h

Data Types

DCMAccessMethodID
Represents an access method ID.

typedef DCMObjectID DCMAccessMethodID;

Discussion
See DCMGetAccessMethodIDFromName (page 1040).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMAccessMethodIterator
Represents a list of access methods.

typedef DCMObjectIterator DCMAccessMethodIterator;

Discussion
See DCMCreateAccessMethodIterator (page 1032).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDictionaryHeader
Contains header information for a dictionary.

1064 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

struct DCMDictionaryHeader {
 FourCharCode headerSignature;
 UInt32 headerVersion;
 ByteCount headerSize;
 Str63 accessMethod;
};
typedef struct DCMDictionaryHeader DCMDictionaryHeader;

Fields
headerSignature

The header signature must be 'dict'.

headerVersion
The version of header information. The current version is specified by the constant
kDCMDictionaryHeaderVersion.

headerSize
The size of the header information. The current size is 76 bytes.

accessMethod
The library name of the access method.

Discussion
The internal structure of dictionaries used by the Dictionary Manager can be broadly divided into three
structures: dictionary header section, dictionary property section, and data record section. However, internal
structures apart from the dictionary header section rely on the access method and can be freely defined, so
you must be aware that this is strictly a structural model for dictionaries viewed from outside.

Dictionary files that are managed by the Dictionary Manager have a dictionary header at the start of its data
fork in a defined format, and this header must contain a signature which indicates that it is a dictionary
supported by the Dictionary Manager. The file must also contain basic information such as the name of the
access method which can manage this dictionary. The dictionary header is the only information in the
dictionary that can be accessed without the use of an access method.

The dictionary property section contains information about the dictionary as a whole, such as access restrictions
(whether it is write enabled, whether its content can be downloaded). Properties are managed by tags, and
it is possible to define and save different types of information.

The data record section contains registered data records. Each data record is further divided into fields," and
these are managed using tags which represent the meaning of the data—for example, 'yomi' (read) and
'hins' (part of speech). At least one field in a record must be a key field. The key field is used as an index, and
tag and key data for this field are used to find records. When searching through records, you can specify
other field tags in addition to the key field, thereby enabling a variety of data to be obtained at once.

Each field in a record has field attributes that specify the field’s data type, maximum data length, and default
data The key data field also has an attribute that specifies the search methods it supports.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

Data Types 1065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMDictionaryID
Represents the ID associated with a specific dictionary.

typedef DCMObjectID DCMDictionaryID;

Discussion
When you call the function DCMRegisterDictionaryFile (page 1058) to register a dictionary, the Dictionary
Manager assigned a unique ID that you need to use in subsequent calls to the Dictionary Manager. The
DCMDictionaryID value is not persistent across system restarts, so you must not save this value for future
use. Each time your application launches or the system starts up you need to obtain the newly-assigned
DCMDictionaryID value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDictionaryIterator
Represents a list of dictionaries.

typedef DCMObjectIterator DCMDictionaryIterator;

Discussion
See DCMCreateDictionaryIterator (page 1033).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMDictionaryRef
Represents a reference to a dictionary.

typedef DCMObjectRef DCMDictionaryRef;

Discussion
You can obtain a dictionary reference by calling the function DCMOpenDictionary (page 1057). You need
this reference to operate on the dictionary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

1066 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMFieldTag
Represents a field inside a dictionary.

typedef DescType DCMFieldTag;

Discussion
A field tag is a 4-byte value used to identify a fields. A field must be unique within a dictionary. See “Field
Data Tags” (page 1074) for more information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMFieldType
Represents the data type of the data stored in a field.

typedef DescType DCMFieldType;

Discussion
A field tag is a 4-byte value used to specify the data type contained in a field. The basic definition is the data
type defined by Apple Event Manager. “Field Data Types” (page 1074).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMFoundRecordIterator
Represents a reference to an opaque list of search results.

typedef struct OpaqueDCMFoundRecordIterator * DCMFoundRecordIterator;

Discussion
See DCMFindRecords (page 1038) for more information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMObjectID
Represents a reference to an opaque dictionary ID.

Data Types 1067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

typedef struct OpaqueDCMObjectID * DCMObjectID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMObjectIterator
Defines a reference to an opaque dictionary object iterator.

typedef struct OpaqueDCMObjectIterator * DCMObjectIterator;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMObjectRef
Defines a reference to an opaque dictionary reference.

typedef struct OpaqueDCMObjectRef * DCMObjectRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

DCMProgressFilterUPP
Defines a universal procedure pointer (UPP) to a progress filter callback.

typedef DCMProgressFilterProcPtr DCMProgressFilterUPP;

Discussion
For more information see DCMProgressFilterProcPtr (page 1063). You pass a progress filter callback UPP
to the functions DCMReorganizeDictionary (page 1059) and DCMCompactDictionary (page 1030).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

1068 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DCMUniqueID
Represents the unique ID of a record in a dictionary.

typedef UInt32 DCMUniqueID;

Discussion
This ID is used in many functions. For example, seeDCMGetNextRecord (page 1050),DCMGetPrevRecord (page
1052), and DCMGetNthRecord (page 1051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dictionary.h

Constants

Access Method Features
Specify features associated with an access method.

enum {
 kDCMCanUseFileDictionaryMask = 0x00000001,
 kDCMCanUseMemoryDictionaryMask = 0x00000002,
 kDCMCanStreamDictionaryMask = 0x00000004,
 kDCMCanHaveMultipleIndexMask = 0x00000008,
 kDCMCanModifyDictionaryMask = 0x00000010,
 kDCMCanCreateDictionaryMask = 0x00000020,
 kDCMCanAddDictionaryFieldMask = 0x00000040,
 kDCMCanUseTransactionMask = 0x00000080
};
typedef OptionBits DCMAccessMethodFeature;

Constants
kDCMCanUseFileDictionaryMask

Specifies the file dictionary mask.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanUseMemoryDictionaryMask
Specifies the memory dictionary mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Constants 1069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

kDCMCanStreamDictionaryMask
Specifies t the stream dictionary mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanHaveMultipleIndexMask
Specifies the multiple index mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanModifyDictionaryMask
Specifies the modify dictionary mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanCreateDictionaryMask
Specifies the create dictionary mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanAddDictionaryFieldMask
Specifies to use the add dictionary field mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMCanUseTransactionMask
Specifies to use the use transaction dictionary mask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Discussion
The Dictionary Manager does not operate directly on a dictionary. Instead it accesses dictionaries using the
access method specified for the dictionary. The access method mediates between the dictionary and the
Dictionary Manager, so that the Dictionary Manager does not need to know anything about the physical
format of the dictionary. As a result, the dictionary can have an free-form internal structure. You can also to
use an existing dictionary as long as the dictionary has its own access method.

Normally (except when you create a dictionary) you do not need to recognize the existence of the access
method.

Dictionary Classes
Specify dictionary classes associated with the property pDCMClass.

1070 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

enum {
 kDCMUserDictionaryClass = 0,
 kDCMSpecificDictionaryClass = 1,
 kDCMBasicDictionaryClass = 2
};

Constants
kDCMUserDictionaryClass

Indicates a user dictionary.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMSpecificDictionaryClass
Indicates a specific dictionary.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMBasicDictionaryClass
Indicates a basic dictionary.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Dictionary Information Constants
Specify various data in a dictionary.

enum {
 kDictionaryFileType = 'dict',
 kDCMDictionaryHeaderSignature = 'dict',
 kDCMDictionaryHeaderVersion = 2
};

Constants
kDictionaryFileType

Specify the file type.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMDictionaryHeaderSignature
Specify the header in a dictionary.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Constants 1071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

kDCMDictionaryHeaderVersion
Specify the header version.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Dictionary Properties
Specify standard dictionary properties.

enum {
 pDCMAccessMethod = 'amtd',
 pDCMPermission = 'perm',
 pDCMListing = 'list',
 pDCMMaintenance = 'mtnc',
 pDCMLocale = 'locl',
 pDCMClass = pClass,
 pDCMCopyright = 'info'
};

Constants
pDCMAccessMethod

Specifies an access method; the associated data type is typeChar and is read-only. This property is
required.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

pDCMPermission
Specifies a permission level; the associated data type is typeUInt16. This property is required.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

pDCMListing
Specifies whether or not to allow data to be downloaded from the dictionary; the associated data
type is typeUInt16. This property is optional.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

pDCMMaintenance
This property is obsolete.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

1072 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

pDCMLocale
Specifies a script code for the dictionary contents; the associated data type is typeUInt32. The default
is kLocaleIdentifierWildCard. This property is optional.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

pDCMClass
Specifies a dictionary class; the associated data type is typeUInt16. The possible values are
kDCMUserDictionaryClass, kDCMSpecificDictionaryClass), and
kDCMBasicDictionaryClass. This property is optional.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

pDCMCopyright
Specifies copyright information; the associated data type is typeChar and is read-only.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Discussion
Of the properties listed here, the only property that must always be supported is the pDCMPermission
property. If a existing property is set by calling the function DCMSetDictionaryProperty (page 1061) the
property data is overwritten, except if the property is defined as read-only property. However, some read-write
properties can be restricted so they can be modified only by an access method.

Functions that obtain data from a dictionary cannot be used on any dictionary whose pDCMListing property
is set to kDCMProhibitListing. In this case, the function trying to obtain the data returns the result
dcmPermissionErr. This means the dictionary data is protected because it is impossible to output the
contents of the dictionary as text.

Field Attributes
Specify attributes for fields in a dictionary.

enum {
 kDCMIndexedFieldMask = 0x00000001,
 kDCMRequiredFieldMask = 0x00000002,
 kDCMIdentifyFieldMask = 0x00000004,
 kDCMFixedSizeFieldMask = 0x00000008,
 kDCMHiddenFieldMask = 0x80000000
};
typedef OptionBits DCMFieldAttributes;

Constants
kDCMIndexedFieldMask

Specifies a key field that can be used in search.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Constants 1073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

kDCMRequiredFieldMask
Specifies an essential field in which data must always be provided when adding a record.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMIdentifyFieldMask
Specifies a field that can be used to identify the same record.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFixedSizeFieldMask
Specifies a fixed-size field.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMHiddenFieldMask
Specfies a hidden field that is not returned by the function that obtains the field list.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Discussion
The records contained in a dictionary have a variety of fields. For example, a record in a dictionary for kana-kanji
conversion, typically has a "read" key field which stores hiragana character strings that are found, as well as
a "part of speech" and a "notation" fields that refers to the search results. These respective fields also require
attributes such as data type, maximum length of stored data, and fixed length/variable length.

When you create a new dictionary using the Dictionary Manager, you can specify the fields to include in the
dictionary and the attributes associated with each of those field.

Field Data Tags
Specify field tags in an Apple Japanese dictionary.

enum {
 kDCMJapaneseYomiTag = 'yomi',
 kDCMJapaneseHyokiTag = 'hyok',
 kDCMJapaneseHinshiTag = 'hins',
 kDCMJapaneseWeightTag = 'hind',
 kDCMJapanesePhoneticTag = 'hton',
 kDCMJapaneseAccentTag = 'acnt',
 kDCMJapaneseOnKunReadingTag = 'OnKn',
 kDCMJapaneseFukugouInfoTag = 'fuku'
};

Field Data Types
Specify the data types for the values associated with field tags.

1074 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

enum {
 kDCMJapaneseYomiType = typeUnicodeText,
 kDCMJapaneseHyokiType = typeUnicodeText,
 kDCMJapaneseHinshiType = 'hins',
 kDCMJapaneseWeightType = typeShortInteger,
 kDCMJapanesePhoneticType = typeUnicodeText,
 kDCMJapaneseAccentType = 'byte',
 kDCMJapaneseOnKunReadingType = typeUnicodeText,
 kDCMJapaneseFukugouInfoType = 'fuku'
};

Constants
kDCMJapaneseYomiType

Specifies the data type is Unicode text.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapaneseHyokiType
Specifies the data type is Unicode text.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapaneseHinshiType
Specifies the data type is 'hins'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapaneseWeightType
Specifies the data type is short integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapanesePhoneticType
Specifies the data type is Unicode text.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapaneseAccentType
Specifies the data type is byte.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Constants 1075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

kDCMJapaneseOnKunReadingType
Specifies the data type is Unicode text.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMJapaneseFukugouInfoType
Specifies the data type is 'fuku'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Field Info Record Entries
Specifies tags for the entries in a field information record.

enum {
 keyDCMFieldTag = 'ftag',
 keyDCMFieldType = 'ftyp',
 keyDCMMaxRecordSize = 'mrsz',
 keyDCMFieldAttributes = 'fatr',
 keyDCMFieldDefaultData = 'fdef',
 keyDCMFieldName = 'fnam',
 keyDCMFieldFindMethods = 'ffnd'
};

Constants
keyDCMFieldTag

The data type of the associated data is typeEnumeration.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

keyDCMFieldType
The data type of the associated data is typeEnumeration.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

keyDCMMaxRecordSize
The data type of the associated data is typeMagnitude.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

keyDCMFieldAttributes
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

1076 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

keyDCMFieldDefaultData
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

keyDCMFieldName
The data type of the associated data is typeChar.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

keyDCMFieldFindMethods
The data associated with this field is a list (typeAEList) of typeDCMFindMethod values.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Field Info Record Types
Specify special types for a field information record.

enum {
 typeDCMFieldAttributes = 'fatr',
 typeDCMFindMethod = 'fmth'
};

Constants
typeDCMFieldAttributes

Specifies a data type for field attributes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

typeDCMFindMethod
Specifies a data type for search methods.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Listing Permissions
Specifies whether to allow or prohibit a dictionary from being listed.

Constants 1077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

enum {
 kDCMAllowListing = 0,
 kDCMProhibitListing = 1
};

Constants
kDCMAllowListing

Specifies to allow listing.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMProhibitListing
Specifies to prohibit listing.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Discussion
A dictionary that is prohibited from being listed is available only to the application that created the dictionary.

Permission Levels
Specify permission levels for a dictionary.

enum {
 kDCMReadOnlyDictionary = 0,
 kDCMReadWriteDictionary = 1
};

Constants
kDCMReadOnlyDictionary

Specifies the dictionary is read-only.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMReadWriteDictionary
Specifies the dictionary has read-write permission.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Search Methods
Specify search criteria.

1078 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

enum {
 kDCMFindMethodExactMatch = kAEEquals,
 kDCMFindMethodBeginningMatch = kAEBeginsWith,
 kDCMFindMethodContainsMatch = kAEContains,
 kDCMFindMethodEndingMatch = kAEEndsWith,
 kDCMFindMethodForwardTrie = 'ftri',
 kDCMFindMethodBackwardTrie = 'btri'
};
typedef OSType DCMFindMethod;

Constants
kDCMFindMethodExactMatch

Specifies an exact match.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFindMethodBeginningMatch
Specifies the beginning must match. For example, cat matches catch and catalog.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFindMethodContainsMatch
Specifies the match can be contained in a string. (rat matches crater, decorate)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFindMethodEndingMatch
Specifies the end must match. For example, bat matches combat and acrobat.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFindMethodForwardTrie
Specifies partial character string from the front. For example, theme matches the, them, and theme.
Used for morphological analysis.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMFindMethodBackwardTrie
Specfies partial character string from the back. For example, flash matches ash, lash, and flash. Used
for morphological analysis.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Constants 1079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Wild Card Values
Represent any field tag or field type.

enum {
 kDCMAnyFieldTag = typeWildCard,
 kDCMAnyFieldType = typeWildCard
};

Constants
kDCMAnyFieldTag

Specifies any field.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

kDCMAnyFieldType
Specifies any type.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Dictionary.h.

Result Codes

The most common result codes returned by Dictionary Manager are listed below.

DescriptionValueResult Code

Bad parameter.-7100dcmParamErr

Available in Mac OS X v10.0 and later.

Not a dictionary.-7101dcmNotDictionaryErr

Available in Mac OS X v10.0 and later.

Invalid dictionary.-7102dcmBadDictionaryErr

Available in Mac OS X v10.0 and later.

Invalid permission.-7103dcmPermissionErr

Available in Mac OS X v10.0 and later.

Dictionary not opened.-7104dcmDictionaryNotOpenErr

Available in Mac OS X v10.0 and later.

Dictionary is busy.-7105dcmDictionaryBusyErr

Available in Mac OS X v10.0 and later.

Dictionary block is full.-7107dcmBlockFullErr

Available in Mac OS X v10.0 and later.

1080 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DescriptionValueResult Code

No such record.-7108dcmNoRecordErr

Available in Mac OS X v10.0 and later.

Same record already exists.-7109dcmDupRecordErr

Available in Mac OS X v10.0 and later.

Missing the required field.-7110dcmNecessaryFieldErr

Available in Mac OS X v10.0 and later.

Incomplete field.-7111dcmBadFieldInfoErr

Available in Mac OS X v10.0 and later.

No such field type supported.-7112dcmBadFieldTypeErr

Available in Mac OS X v10.0 and later.

No such field exists.-7113dcmNoFieldErr

Available in Mac OS X v10.0 and later.

Bad key information.-7115dcmBadKeyErr

Available in Mac OS X v10.0 and later.

Too many key fields.-7116dcmTooManyKeyErr

Available in Mac OS X v10.0 and later.

Data size too large.-7117dcmBadDataSizeErr

Available in Mac OS X v10.0 and later.

Search method not supported.-7118dcmBadFindMethodErr

Available in Mac OS X v10.0 and later.

No such property exists.-7119dcmBadPropertyErr

Available in Mac OS X v10.0 and later.

Need a keyword to use the dictionary.-7121dcmProtectedErr

Available in Mac OS X v10.0 and later.

No such access method exists.-7122dcmNoAccessMethodErr

Available in Mac OS X v10.0 and later.

Invalid access method feature.-7124dcmBadFeatureErr

Available in Mac OS X v10.0 and later.

Iteration complete; no more items in the iterator.-7126dcmIterationCompleteErr

Available in Mac OS X v10.0 and later.

Result Codes 1081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

DescriptionValueResult Code

Data is larger than the buffer size.-7127dcmBufferOverflowErr

Available in Mac OS X v10.0 and later.

1082 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Dictionary Manager Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in Displays.h

Overview

Important: The Display Manager is deprecated in Mac OS X version 10.4 and later. The replacement is Quartz
Display Services, a modern Mac OS X API that provides similar functionality. For more information, see Quartz
Display Services Reference.

In Mac OS 9 and earlier, the Display Manager allowed users to dynamically change the arrangement and
display modes of the monitors attached to their computers. The Display Manager was included in Carbon to
facilitate the porting of legacy applications to Mac OS X. You should not use Display Manager functions in
new application development. Instead, you should use Quartz Display Services.

Functions by Task

Adding and Removing Video Devices From the Device List

DMAddDisplay (page 1090) Deprecated in Mac OS X v10.4
Adds the GDevice structure for a video device to the device list. (Deprecated. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

DMDisposeDisplay (page 1096) Deprecated in Mac OS X v10.4
Disposes of the GDevice structure for a video device. (Deprecated. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

DMDisposeList (page 1097) Deprecated in Mac OS X v10.4
Disposes of a display mode list built by DMNewDisplayModeList. (Deprecated. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

DMGetIndexedDisplayModeFromList (page 1107) Deprecated in Mac OS X v10.4
Obtains a display mode from the display mode list built by DMNewDisplayModeList. (Deprecated.
Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewDisplay (page 1115) Deprecated in Mac OS X v10.4
Adds a video device to the device list and makes the device active. (Deprecated. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

Overview 1083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not
Recommended)

DMNewDisplayModeList (page 1117) Deprecated in Mac OS X v10.4
Builds a new display mode list for a specified video device. (Deprecated. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

DMRemoveDisplay (page 1119) Deprecated in Mac OS X v10.4
Removes a video device from the device list. (Deprecated. Use Quartz Display Services instead; see
Quartz Display Services Reference.)

Changing Display Modes and Display Configurations

DMBeginConfigureDisplays (page 1091) Deprecated in Mac OS X v10.4
Allows your application to configure displays. You should generally never need to use this function.
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMBlockMirroring (page 1092) Deprecated in Mac OS X v10.4
Disables video mirroring. You should generally never need to use this function. (Deprecated. Use
Quartz Display Services instead; see Quartz Display Services Reference.)

DMDisableDisplay (page 1095) Deprecated in Mac OS X v10.4
Makes a video device inactive by removing its display area from the desktop. You should generally
never need to use this function. (Deprecated. Use Quartz Display Services instead; see Quartz Display
Services Reference.)

DMEnableDisplay (page 1099) Deprecated in Mac OS X v10.4
Reactivates a display made inactive with the function DMDisableDisplay. You should generally
never need to use this function. (Deprecated. Use Quartz Display Services instead; see Quartz Display
Services Reference.)

DMEndConfigureDisplays (page 1099) Deprecated in Mac OS X v10.4
Ends configuration begun by DMBeginConfigureDisplays. You should generally never need to
use this function. (Deprecated. Use Quartz Display Services instead; see Quartz Display Services
Reference.)

DMMirrorDevices (page 1111) Deprecated in Mac OS X v10.4
Turns on video mirroring. (Deprecated. Use Quartz Display Services instead; see QuartzDisplay Services
Reference.)

DMMoveDisplay (page 1112) Deprecated in Mac OS X v10.4
Moves the boundary rectangle for a video device. You should generally never need to use this function.
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMSetDisplayMode (page 1125) Deprecated in Mac OS X v10.4
Sets the display mode and pixel depth for a video device. (Deprecated. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

DMSetMainDisplay (page 1126) Deprecated in Mac OS X v10.4
Sets a display to be the main screen. You should generally never need to use this function. (Deprecated.
Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMUnblockMirroring (page 1127) Deprecated in Mac OS X v10.4
Reenables video mirroring disabled by the function DMUnblockMirroring. You should generally
never need to use this function. (Deprecated. Use Quartz Display Services instead; see Quartz Display
Services Reference.)

DMUnmirrorDevice (page 1127) Deprecated in Mac OS X v10.4
Turns off video mirroring. (Deprecated. Use Quartz Display Services instead; see QuartzDisplay Services
Reference.)

1084 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Determining Display Modes and Display Configurations

DMCanMirrorNow (page 1093) Deprecated in Mac OS X v10.4
Determines whether video mirroring can be activated on the user’s computer system. (Deprecated.
Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMCheckDisplayMode (page 1094) Deprecated in Mac OS X v10.4
Determines if a video device supports a particular display mode and pixel depth. (Deprecated. Use
Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetAVPowerState (page 1100) Deprecated in Mac OS X v10.4
Obtains the current power state of a display. (Deprecated. Use Quartz Display Services instead; see
Quartz Display Services Reference.)

DMGetDisplayMode (page 1103) Deprecated in Mac OS X v10.4
Obtains the current display mode of a specified video display. (Deprecated. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

DMGetGraphicInfoByAVID (page 1106) Deprecated in Mac OS X v10.4
Obtains information about the graphic display of a display device. (Deprecated. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

DMGetNameByAVID (page 1108) Deprecated in Mac OS X v10.4
Obtains the name of a display device. (Deprecated. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

DMIsMirroringOn (page 1110) Deprecated in Mac OS X v10.4
Determines if video mirroring is active. (Deprecated. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

DMQDIsMirroringCapable (page 1117) Deprecated in Mac OS X v10.4
Determines if QuickDraw supports video mirroring on the user’s system. (Deprecated. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

DMSaveScreenPrefs (page 1122) Deprecated in Mac OS X v10.4
Saves the user’s screen configuration preferences. (Deprecated. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

DMSetAVPowerState (page 1123) Deprecated in Mac OS X v10.4
Sets the power state of a display device. (Deprecated. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

Getting Video Devices

DMGetDisplayIDByGDevice (page 1102) Deprecated in Mac OS X v10.4
Obtains the display ID number for a video device. (Deprecated. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

DMGetFirstScreenDevice (page 1104) Deprecated in Mac OS X v10.4
Returns a handle for the first video device in the device list. (Deprecated. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

DMGetGDeviceByDisplayID (page 1105) Deprecated in Mac OS X v10.4
Obtains a handle for the video device with a specified display ID. (Deprecated. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

Functions by Task 1085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMGetNextMirroredDevice (page 1108) Deprecated in Mac OS X v10.4
Obtains a handle for a video device that mirrors another specified video device. (Deprecated. Use
Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetNextScreenDevice (page 1109) Deprecated in Mac OS X v10.4
Returns a handle for the next video device in the device list. (Deprecated. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

Registering and Unregistering Your Program

DMRegisterExtendedNotifyProc (page 1118) Deprecated in Mac OS X v10.4
Registers a function that responds to a Display Notice event outside of an event loop. (Deprecated.
Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMRemoveExtendedNotifyProc (page 1120) Deprecated in Mac OS X v10.4
Removes your Display Notice event-handling function registered by the
DMRegisterExtendedNotifyProc function. (Deprecated. Use Quartz Display Services instead; see
Quartz Display Services Reference.)

DMSendDependentNotification (page 1122) Deprecated in Mac OS X v10.4
Notifies dependent displays of changes in depth mode or configuration. (Deprecated. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

Working With Universal Procedure Pointers for Display Manager Callbacks

DisposeDMComponentListIteratorUPP (page 1088) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DisposeDMDisplayListIteratorUPP (page 1088) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DisposeDMDisplayModeListIteratorUPP (page 1089) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DisposeDMExtendedNotificationUPP (page 1089) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DisposeDMNotificationUPP (page 1089) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DisposeDMProfileListIteratorUPP (page 1090) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

InvokeDMComponentListIteratorUPP (page 1128) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

InvokeDMDisplayListIteratorUPP (page 1129) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

InvokeDMDisplayModeListIteratorUPP (page 1129) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

InvokeDMExtendedNotificationUPP (page 1129) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

InvokeDMNotificationUPP (page 1130) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

1086 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

InvokeDMProfileListIteratorUPP (page 1130) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMComponentListIteratorUPP (page 1130) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMDisplayListIteratorUPP (page 1131) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMDisplayModeListIteratorUPP (page 1131) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMExtendedNotificationUPP (page 1131) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMNotificationUPP (page 1131) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

NewDMProfileListIteratorUPP (page 1132) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

Miscellaneous

DMConfirmConfiguration (page 1095) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMDisposeAVComponent (page 1096) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMDrawDesktopRect (page 1098) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMDrawDesktopRegion (page 1098) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetDeskRegion (page 1101) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetDeviceAVIDByPortAVID (page 1101) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetDeviceComponentByAVID (page 1102) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetDisplayComponent (page 1102) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetEnableByAVID (page 1104) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetIndexedComponentFromList (page 1106) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMGetPortComponentByAVID (page 1110) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVDeviceList (page 1113) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVEngineList (page 1113) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

Functions by Task 1087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMNewAVIDByDeviceComponent (page 1114) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVIDByPortComponent (page 1114) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVPanelList (page 1114) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVPortListByDeviceAVID (page 1115) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMNewAVPortListByPortType (page 1115) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMRegisterNotifyProc (page 1119) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMRemoveNotifyProc (page 1121) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMResolveDisplayComponents (page 1121) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMSetDisplayComponent (page 1124) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMSetEnableByAVID (page 1126) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz Display Services instead; see Quartz Display Services Reference.)

Functions

DisposeDMComponentListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DisposeDMComponentListIteratorUPP (
 DMComponentListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

DisposeDMDisplayListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

1088 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

void DisposeDMDisplayListIteratorUPP (
 DMDisplayListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

DisposeDMDisplayModeListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DisposeDMDisplayModeListIteratorUPP (
 DMDisplayModeListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

DisposeDMExtendedNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DisposeDMExtendedNotificationUPP (
 DMExtendedNotificationUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

DisposeDMNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DisposeDMNotificationUPP (
 DMNotificationUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DisposeDMProfileListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DisposeDMProfileListIteratorUPP (
 DMProfileListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

DMAddDisplay
Adds the GDevice structure for a video device to the device list. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

OSErr DMAddDisplay (
 GDHandle newDevice,
 short driver,
 UInt32 mode,
 UInt32 reserved,
 UInt32 displayID,
 Component displayComponent,
 Handle displayState
);

Parameters
newDevice

A handle to the GDevice structure for the video device you want to add to the device list. The function
DMNewDisplay (page 1115) usually initializes this structure.

driver
The reference number of the graphics device which you are adding to the device list. For most video
devices, this information is set at system startup. The function DMAddDisplay passes the number
supplied in this parameter to the InitGDevice function in its gdRefNum parameter.

mode
The depth mode. Used by the video device driver, this value sets the pixel depth and specifies color.
The function DMAddDisplay passes the value supplied here to the function InitGDevice in its mode
parameter.

reserved
Reserved for future expansion. Pass NULL in this parameter.

displayID
A unique identification for the display. For new displays, supply this parameter with the value 0, which
causes the Display Manager to generate a unique display ID for this device. If this display was removed,
then pass the display ID number of the current display in this parameter.

1090 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

displayComponent
Reserved for future expansion. Pass NULL in this parameter.

displayState
If your application called DMNewDisplay (page 1115), you must pass the displayState handle
obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The DMAddDisplay function adds the display specified by the newDevice parameter as inactive. However,
if the specified display is the only display, the Display Manager automatically makes it active. Otherwise, you
must call the function DMEnableDisplay (page 1099) to make the specified display active.

The function DMNewDisplay (page 1115) automatically calls DMAddDisplay and DMEnableDisplay. The
only time you ned to call DMAddDisplay directly is after the device has been removed by
DMRemoveDisplay (page 1119) but not yet disposed of by DMDisposeDisplay (page 1096).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMBeginConfigureDisplays
Allows your application to configure displays. You should generally never need to use this function. (Deprecated
in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMBeginConfigureDisplays (
 Handle *displayState
);

Parameters
displayState

On return, a pointer to a handle to internal Display Manager information about the current display
state. The DMEndConfigureDisplays (page 1099) function and many other functions require this
parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Functions 1091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Discussion
The DMBeginConfigureDisplays function tells the Display Manager to postpone Display Manager
configuration checking, the rebuilding of desktop regions, and Apple event notification of Display Manager
changes until your application uses the DMEndConfigureDisplays function.

You should call the function DMBeginConfigureDisplays before calling other Display Manager functions
that configure the user’s display. When calling functions that configure displays, you should pass the handle
obtained by the DMBeginConfigureDisplays function. DMBeginConfigureDisplays causes system
software to wait for your application to complete display changes before managing additional Display
Manager events. When your application completes configuring the display environment, call the function
DMEndConfigureDisplays.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMBlockMirroring
Disables video mirroring. You should generally never need to use this function. (Deprecated in Mac OS X
v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMBlockMirroring (
 void
);

Parameters
Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The function DMBlockMirroring disables video mirroring until the user restarts the computer or until an
application calls the function DMUnblockMirroring (page 1127).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

1092 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMCanMirrorNow
Determines whether video mirroring can be activated on the user’s computer system. (Deprecated in Mac
OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMCanMirrorNow (
 Boolean *canMirrorNow
);

Parameters
canMirrorNow

A pointer to a Boolean value; true indicates that mirroring can be activated; false indicates it cannot.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
In the value pointed to by the canMirrorNow parameter, the DMCanMirrorNow function reports whether
video mirroring can be activated. When the canMirrorNow parameter points to a value of true, then the
computer uses a version of QuickDraw that supports video mirroring, has exactly two displays attached, and
does not have mirror blocking in effect.

You can use the DMQDIsMirroringCapable (page 1117) function to determine whether the computer uses
a version of QuickDraw that supports video mirroring. You can use the DMBlockMirroring (page 1092)
function and the DMUnblockMirroring (page 1127) function to block and unblock video mirroring. To
determine whether the user’s computer system currently uses video mirroring, use the
DMIsMirroringOn (page 1110) function.

Special Considerations

The DMCanMirrorNow function may move or purge memory blocks in the application heap. Your application
should not call this function at interrupt time.

Version Notes
As of System Software version 7.5, only PowerBook computers support video mirroring.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DMCheckDisplayMode
Determines if a video device supports a particular display mode and pixel depth. (Deprecated in Mac OS X
v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMCheckDisplayMode (
 GDHandle theDevice,
 UInt32 mode,
 UInt32 depthMode,
 UInt32 *switchFlags,
 UInt32 reserved,
 Boolean *modeOk
);

Parameters
theDevice

A handle to the GDevice structure for the video device whose display mode and pixel depth you
wish to check.

mode
The display mode you wish to check. You get a list of display modes by calling
DMGetDisplayMode (page 1103).

depthMode
The pixel depth you wish to check. See “Video Depth Mode Values” for list of possible values.

switchFlags
On return, a pointer to a long integer that indicates if a video device will support the mode specified
by the mode parameter and the pixel depth specified by the depthMode parameter. See “Switch
Flags” (page 1163) for a description.

reserved
Reserved for future expansion. Pass NULL in this parameter.

modeOk
On return, a pointer to a Boolean. If modeOk points to a value of true, the user or your application
can switch the display mode for the video device to the one specified by mode.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
Usually, your application only needs to know if a video device supports a specific pixel depth. Thus your
application can use the Color QuickDraw functionHasDepth. The functionDMCheckDisplayMode is essentially
obsolete, and is here for completeness.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1094 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DMConfirmConfiguration
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMConfirmConfiguration (
 DMModalFilterUPP filterProc,
 UInt32 confirmFlags,
 UInt32 reserved,
 Handle displayState
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDisableDisplay
Makes a video device inactive by removing its display area from the desktop. You should generally never
need to use this function. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

OSErr DMDisableDisplay (
 GDHandle disableDevice,
 Handle displayState
);

Parameters
disableDevice

A handle to the GDevice structure for the video device whose display you wish to disable.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
You are not allowed to disable the last remaining display. Doing so will simply re-enable it. If you want to
remove the last remaining display, thereby enabling the GDevice structure not associated with any video
device, call the function DMRemoveDisplay (page 1119).

If you specify the device for the main screen in the disableDevice parameter, then DMDisableDisplay
picks another device and makes it the new main screen.

Functions 1095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

If DMDisableDisplay results in setting a new main screen, the handle you pass in the disableDevice
parameter does not point to the same GDevice structure after DMDisableDisplay completes; instead, it
points to the GDevice structure for the new main screen. If you need to recover the GDevice structure for
the device you disabled, determine its display ID by using the function DMGetDisplayIDByGDevice (page
1102) before calling DMDisableDisplay. Then use the function DMGetGDeviceByDisplayID (page 1105) to
obtain its structure.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDisposeAVComponent
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMDisposeAVComponent (
 Component theAVComponent
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDisposeDisplay
Disposes of the GDevice structure for a video device. (Deprecated in Mac OS X v10.4. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

1096 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMDisposeDisplay (
 GDHandle disposeDevice,
 Handle displayState
);

Parameters
disposeDevice

A handle to the GDevice structure for a video device you want to delete.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The DMDisposeDisplay function disposes of a GDevice structure, releases the space allocated for it, and
disposes of all the data structures allocated for it. The Display Manager calls this function when appropriate.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDisposeList
Disposes of a display mode list built by DMNewDisplayModeList. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

OSErr DMDisposeList (
 DMListType panelList
);

Parameters
panelList

A value that specifies the display mode list you want to delete.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
You should call the DMDisposeList function after you have iterated the mode list.

Functions 1097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDrawDesktopRect
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DMDrawDesktopRect (
 Rect *globalRect
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMDrawDesktopRegion
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void DMDrawDesktopRegion (
 RgnHandle globalRgn
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

1098 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMEnableDisplay
Reactivates a display made inactive with the function DMDisableDisplay. You should generally never need
to use this function. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display
Services Reference.)

OSErr DMEnableDisplay (
 GDHandle enableDevice,
 Handle displayState
);

Parameters
enableDevice

A handle to the GDevice structure for the video device whose display you wish to make active.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The function DMEnableDisplay reactivates the specified video device by adding its display area to the
desktop.

If you add a display with the function DMAddDisplay (page 1090) and there are no active displays, the Display
Manager will enable the added display.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMEndConfigureDisplays
Ends configuration begun by DMBeginConfigureDisplays. You should generally never need to use this
function. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services
Reference.)

Functions 1099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMEndConfigureDisplays (
 Handle displayState
);

Parameters
displayState

Supply this parameter with the handle obtained by the DMBeginConfigureDisplays (page 1091)
function.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The function DMEndConfigureDisplays resumes Display Manager configuration checking, the rebuilding
of desktop regions, and Apple event notification of Display Manager changes, all of which are postponed
when you use the function DMBeginConfigureDisplays (page 1091). Your application will then receive a
single Display Notice event notifying your application of Display Manager changes, and your application can
manage its windows accordingly.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetAVPowerState
Obtains the current power state of a display. (Deprecated in Mac OS X v10.4. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

OSErr DMGetAVPowerState (
 AVIDType theID,
 AVPowerStatePtr getPowerState,
 UInt32 reserved1
);

Parameters
theID

The ID number of the display device whose power state you want to obtain.

1100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

getPowerState
A pointer to a structure of type AVPowerStateRec (page 1137). On return, this parameter points to a
value specifying the current power state of display device.

reserved1
Reserved for future expansion. Pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetDeskRegion
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetDeskRegion (
 RgnHandle *desktopRegion
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetDeviceAVIDByPortAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetDeviceAVIDByPortAVID (
 AVIDType portAVID,
 AVIDType *deviceAVID
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DMGetDeviceComponentByAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetDeviceComponentByAVID (
 AVIDType theDeviceID,
 Component *theDeviceComponent,
 ComponentDescription *theDesciption,
 ResType *theDeviceKind
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetDisplayComponent
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetDisplayComponent (
 GDHandle theDevice,
 Component *displayComponent
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetDisplayIDByGDevice
Obtains the display ID number for a video device. (Deprecated in Mac OS X v10.4. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

1102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMGetDisplayIDByGDevice (
 GDHandle displayDevice,
 DisplayIDType *displayID,
 Boolean failToMain
);

Parameters
displayDevice

A handle to the GDevice structure for the video device whose display ID you wish to obtain.

displayID
On return, a pointer to the display ID for the video device specified by the displayDevice parameter.

failToMain
If true and the specified video device does not have a display ID, on return the function sets the
displayID parameter to a pointer to the display ID of the video device for the main screen. If false
and the specified video device does not have a display ID, the function returns the
kDMDisplayNotFoundErr result code.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetDisplayMode
Obtains the current display mode of a specified video display. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetDisplayMode (
 GDHandle theDevice,
 VDSwitchInfoPtr switchInfo
);

Parameters
theDevice

A handle to the GDevice structure for the video device whose display mode you wish to obtain.

switchInfo
On return, a pointer to an internal Display Manager structure containing display mode information.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Functions 1103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetEnableByAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetEnableByAVID (
 AVIDType theAVID,
 Boolean *isAVIDEnabledNow,
 Boolean *canChangeEnableNow
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetFirstScreenDevice
Returns a handle for the first video device in the device list. (Deprecated in Mac OS X v10.4. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

GDHandle DMGetFirstScreenDevice (
 Boolean activeOnly
);

Parameters
activeOnly

If true, the DMGetFirstScreenDevice function returns a handle to the first of all active video
devices. If false, the function returns a handle to the first of all video devices, active or not. You may
use the Active Device Constants in this parameter. See “Active Device Only Values” (page 1148).

Return Value
If activeOnly is true, a handle to the GDevice structure for the first active video device. If activeOnly
is false, a handle to the GDevice structure for the first video device. See the QuickDraw Manager
documentation for a description of the GDHandle data type.

Discussion
The DMGetFirstScreenDevice function is useful if you want to find out more about the current mode.

1104 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

You can use the function DMGetNextScreenDevice (page 1109) to loop through all of the video devices in
the device list.

The DMGetFirstScreenDevice function is similar to the QuickDraw function GetDeviceList, except that
when returning GDevice structures, GetDeviceList does not distinguish between inactive and active
video devices or between the GDevice structures for video devices and the GDevice structures associated
with no video devices.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetGDeviceByDisplayID
Obtains a handle for the video device with a specified display ID. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetGDeviceByDisplayID (
 DisplayIDType displayID,
 GDHandle *displayDevice,
 Boolean failToMain
);

Parameters
displayID

The display ID for the video device whose handle you wish to obtain.

displayDevice
On return, a pointer to the handle to the GDevice structure for the video device specified by the
displayID parameter.

failToMain
If true and there is no video device associated with the displayID parameter, on return the function
sets displayDevice to a pointer to the handle for the video device for the main screen. If false
and there is no video device associated with the displayID parameter, the function returns the
kDMDisplayNotFoundErr result code.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Displays.h

DMGetGraphicInfoByAVID
Obtains information about the graphic display of a display device. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetGraphicInfoByAVID (
 AVIDType theID,
 PicHandle *theAVPcit,
 Handle *theAVIconSuite,
 AVLocationRec *theAVLocation
);

Parameters
theID

The ID number of the display device whose information you want to obtain.

theAVPcit
On return, a pointer to the handle for the picture structure you want to get.

theAVIconSuite
On return, a pointer to a handle whose structure reports the icon suite for a display device.

theAVLocation
On return, a pointer to the location structure for the device you want information about.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetIndexedComponentFromList
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

1106 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMGetIndexedComponentFromList (
 DMListType panelList,
 DMListIndexType itemIndex,
 UInt32 reserved,
 DMComponentListIteratorUPP listIterator,
 void *userData
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetIndexedDisplayModeFromList
Obtains a display mode from the display mode list built by DMNewDisplayModeList. (Deprecated in Mac
OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetIndexedDisplayModeFromList (
 DMListType panelList,
 DMListIndexType itemIndex,
 UInt32 reserved,
 DMDisplayModeListIteratorUPP listIterator,
 void *userData
);

Parameters
panelList

A value that specifies the list from which to obtain information about the display modes created by
the function DMNewDisplayModeList (page 1117).

itemIndex
A value that specifies the index of the display mode you wish to obtain.

reserved
Reserved for future expansion. Pass NULL in this parameter.

listIterator
A universal procedure pointer. The iterator this pointer specifies supplies the function to be called
with the information about the display mode specified by theListCount.

userData
A pointer you pass for listIterator usually used to obtain information about the display mode
from the UPP and return it to the caller of DMGetIndexedDisplayModeFromList.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Functions 1107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetNameByAVID
Obtains the name of a display device. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

OSErr DMGetNameByAVID (
 AVIDType theID,
 UInt32 nameFlags,
 Str255 name
);

Parameters
theID

The ID number of the display device whose name you want to obtain.

nameFlags
Reserved for future expansion. Pass NULL in this parameter.

name
On return, a string containing the name of the display device specified by the parameter theID.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
An AVID is really a display ID as an AVID references a video display just like a display ID. Developers planned
to use AVIDs for an extended set of devices, however, they never did this.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetNextMirroredDevice
Obtains a handle for a video device that mirrors another specified video device. (Deprecated in Mac OS X
v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

1108 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMGetNextMirroredDevice (
 GDHandle gDevice,
 GDHandle *mirroredDevice
);

Parameters
gDevice

A handle to the GDevice structure for the video device that another video device mirrors.

mirroredDevice
On return, a pointer to the handle for the video device that displays a mirror image of the device
specified in the gDevice parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetNextScreenDevice
Returns a handle for the next video device in the device list. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

GDHandle DMGetNextScreenDevice (
 GDHandle theDevice,
 Boolean activeOnly
);

Parameters
theDevice

A handle to the GDevice structure at which you want the function to begin. You can supply the
handle returned by the function DMGetFirstScreenDevice or DMGetNextScreenDevice.

activeOnly
If true, the DMGetNextScreenDevice function returns a handle for the next active video device. If
false, DMGetNextScreenDevice returns a handle for the next video device, active or not. You may
use the Active Device Constants in this parameter. See “Active Device Only Values” (page 1148).

Return Value
If activeOnly is true, a handle to the next GDevice structure for an active video device. If activeOnly
is false, a handle to the next GDevice structure for a video device. If there are no more GDevice structures
in the list, DMGetNextScreenDevice returns NULL. See the QuickDraw Manager documentation for a
description of the GDHandle data type.

Functions 1109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Discussion
The DMGetNextScreenDevice function is similar to the QuickDraw function GetNextDevice, except that
when returning GDevice structures, GetNextDevice does not distinguish between inactive and active
video devices or between the GDevice structures for video devices and the GDevice structures associated
with no video devices.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMGetPortComponentByAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMGetPortComponentByAVID (
 DisplayIDType thePortID,
 Component *thePortComponent,
 ComponentDescription *theDesciption,
 ResType *thePortKind
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMIsMirroringOn
Determines if video mirroring is active. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

OSErr DMIsMirroringOn (
 Boolean *isMirroringOn
);

Parameters
isMirroringOn

On return, a pointer to a Boolean value; true indicates that mirroring is on; false indicates it is not.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

1110 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMMirrorDevices
Turns on video mirroring. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

OSErr DMMirrorDevices (
 GDHandle gD1,
 GDHandle gD2,
 Handle displayState
);

Parameters
gD1

A handle to the GDevice structure for the video device whose pixel image you want duplicated on
another device.

gD2
A handle to the GDevice structure for the video device on which you want to duplicate the pixel
image specified in the gD1 parameter.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
Your application should leave control of video mirroring to the user. However, if video mirroring is useful for
your application (for example, if your application displays on-screen presentations), you might provide a
control so that the user can switch to video mirroring directly from your application. In this case,
DMMirrorDevices is useful to your application. Your control should also allow the user to turn video mirroring
off; the function DMUnmirrorDevice (page 1127) supports this.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DMMoveDisplay
Moves the boundary rectangle for a video device. You should generally never need to use this function.
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMMoveDisplay (
 GDHandle moveDevice,
 short x,
 short y,
 Handle displayState
);

Parameters
moveDevice

A handle to the GDevice structure for the video device whose boundary rectangle you wish to move.

x
The horizontal coordinate on the QuickDraw global coordinate plane for the point to which you want
to move the upper-left corner of the boundary rectangle.

y
The vertical coordinate on the QuickDraw global coordinate plane for the point to which you want
to move the upper-left corner of the boundary rectangle.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The DMMoveDisplay function moves the boundary rectangle for the specified video device to the point (
x,y) in the QuickDraw global coordinate plane. If the video device controls the main screen, which always
has the global coordinates (0,0), then all other video devices are offset by horizontal distance x and vertical
distance y.

A boundary rectangle is the rectangle that links the local coordinate system of a graphics port to QuickDraw’s
global coordinate system and defines the area of the pixel image or bit image into which QuickDraw can
draw. The boundary rectangle is stored in either the pixel map or the bitmap contained in a GDevice structure.

The Display Manager will reposition overlapped or discontiguous boundary rects to create a non-overlapping
contiguous desktop space.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application

1112 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVDeviceList
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVDeviceList (
 ResType deviceType,
 UInt32 deviceListFlags,
 UInt32 reserved,
 DMListIndexType *deviceCount,
 DMListType *deviceList
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVEngineList
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVEngineList (
 DisplayIDType displayID,
 ResType engineType,
 DMFidelityType minimumFidelity,
 UInt32 engineListFlags,
 UInt32 reserved,
 DMListIndexType *engineCount,
 DMListType *engineList
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

Functions 1113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMNewAVIDByDeviceComponent
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVIDByDeviceComponent (
 Component theDeviceComponent,
 ResType portKind,
 UInt32 reserved,
 DisplayIDType *newID
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVIDByPortComponent
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVIDByPortComponent (
 Component thePortComponent,
 ResType portKind,
 UInt32 reserved,
 AVIDType *newID
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVPanelList
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVPanelList (
 DisplayIDType displayID,
 ResType panelType,
 DMFidelityType minimumFidelity,
 UInt32 panelListFlags,
 UInt32 reserved,
 DMListIndexType *thePanelCount,
 DMListType *thePanelList
);

Availability
Available in Mac OS X v10.0 and later.

1114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVPortListByDeviceAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVPortListByDeviceAVID (
 AVIDType theID,
 DMFidelityType minimumFidelity,
 UInt32 portListFlags,
 UInt32 reserved,
 DMListIndexType *devicePortCount,
 DMListType *theDevicePortList
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewAVPortListByPortType
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMNewAVPortListByPortType (
 ResType subType,
 UInt32 portListFlags,
 UInt32 reserved,
 DMListIndexType *devicePortCount,
 DMListType *theDevicePortList
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMNewDisplay
Adds a video device to the device list and makes the device active. (Deprecated in Mac OS X v10.4. Use Quartz
Display Services instead; see Quartz Display Services Reference.)

Functions 1115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMNewDisplay (
 GDHandle *newDevice,
 short driverRefNum,
 UInt32 mode,
 UInt32 reserved,
 DisplayIDType displayID,
 Component displayComponent,
 Handle displayState
);

Parameters
newDevice

A pointer to a handle to a GDevice structure for the video device that you want to add to the device
list.

driverRefNum
The reference number of the video device which you are adding to the device list. This information
is usually set at system startup. The function DMAddDisplay (page 1090) passes the value supplied
here to the InitGDevice function in its gdRefNum parameter.

mode
The depth mode. Used by the video device driver, this value sets the pixel depth and specifies color.
The function DMAddDisplay (page 1090) passes the value supplied here to the function InitGDevice
in its mode parameter.

reserved
Reserved for future expansion. Pass NULL in this parameter.

displayID
A unique identification for the display. For new displays, supply this parameter with the value 0, which
causes the Display Manager to generate a unique display ID for this device. If this display was removed,
then pass the display ID of the current display in this parameter.

displayComponent
Reserved for future expansion. Pass NULL in this parameter.

displayState
If your application called DMAddDisplay (page 1090), you must pass the displayState handle
obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

1116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMNewDisplayModeList
Builds a new display mode list for a specified video device. (Deprecated in Mac OS X v10.4. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

OSErr DMNewDisplayModeList (
 DisplayIDType displayID,
 UInt32 modeListFlags,
 UInt32 reserved,
 DMListIndexType *thePanelCount,
 DMListType *thePanelList
);

Parameters
displayID

The display ID for the video device that will have a new display mode list.

modeListFlags
Reserved for future expansion. Pass NULL in this parameter.

reserved
Reserved for future expansion. Pass NULL in this parameter.

thePanelCount
The number of entries in the display mode list specified by the theList parameter.

thePanelList
The display mode list for the specified video device.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMQDIsMirroringCapable
Determines if QuickDraw supports video mirroring on the user’s system. (Deprecated in Mac OS X v10.4. Use
Quartz Display Services instead; see Quartz Display Services Reference.)

Functions 1117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMQDIsMirroringCapable (
 Boolean *qdIsMirroringCapable
);

Parameters
qdIsMirroringCapable

On return, a pointer to the value true if QuickDraw supports video mirroring; otherwise, a pointer
to the value false.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMRegisterExtendedNotifyProc
Registers a function that responds to a Display Notice event outside of an event loop. (Deprecated in Mac
OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMRegisterExtendedNotifyProc (
 DMExtendedNotificationUPP notifyProc,
 void *notifyUserData,
 unsigned short nofifyOnFlags,
 DMProcessInfoPtr whichPSN
);

Parameters
notifyProc

A pointer to your function that handles a Display Notice event.

notifyUserData
A pointer to caller-specific information which the Display Manager will return to your application
when you request it.

notifyOnFlags
Reserved for future expansion. You should pass kNilOptions in this parameter.

whichPSN
A pointer to the Process Serial Number associated with your Display Notice event-handling function.
If this process terminates, the Display Notice event-handling function is automatically removed. For
example, the Monitors control panel supplies the Finder’s process number when registering its Display
Notice event-handling function.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

1118 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Discussion
When the Display Manager sends your function the Display Notice event, your application or utility should
respond by moving or resizing its windows and updating any internally-maintained video device information
as appropriate.

When you are finished with your notification function, remove it by calling
DMRemoveExtendedNotifyProc (page 1120).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMRegisterNotifyProc
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMRegisterNotifyProc (
 DMNotificationUPP notificationProc,
 DMProcessInfoPtr whichPSN
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMRemoveDisplay
Removes a video device from the device list. (Deprecated in Mac OS X v10.4. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

OSErr DMRemoveDisplay (
 GDHandle removeDevice,
 Handle displayState
);

Parameters
removeDevice

A handle to the GDevice structure for the video device you want to remove from the device list. The
function DMRemoveDisplay does not actually dispose of this structure, but instead removes it from
the device list.

Functions 1119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The function DMRemoveDisplay may call the function DMSetMainDisplay (page 1126), which causes the
removeDevice parameter to contain a handle to the GDevice structure for the new main screen, not the
video device whose handle was passed to DMRemoveDisplay. To recover the GDevice structure for the
disabled device, determine its display ID by using the function DMGetDisplayIDByGDevice (page 1102)
before calling DMRemoveDisplay. Then use the function DMGetGDeviceByDisplayID (page 1105) to obtain
the GDevice structure for the specified device.

You are not allowed to disable the last remaining display using the DMDisableDisplay (page 1095) function.
Doing so will simply re-enable it. If you want to remove the last remaining display, thereby enabling the
GDevice structure not associated with any video device, you must call DMRemoveDisplay.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Generally, your application should not use this function, but should instead allow system software to maintain
the device list. This function is described here for completeness only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMRemoveExtendedNotifyProc
Removes your Display Notice event-handling function registered by the DMRegisterExtendedNotifyProc
function. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services
Reference.)

OSErr DMRemoveExtendedNotifyProc (
 DMExtendedNotificationUPP notifyProc,
 void *notifyUserData,
 DMProcessInfoPtr whichPSN,
 unsigned short removeFlags
);

Parameters
notifyProc

A pointer to your function you want to remove that handles a Display Notice event.

notifyUserData
A pointer to caller-specific information which the Display Manager will return to your application
when you request it.

1120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

whichPSN
A pointer to the Process Serial Number associated with your Display Notice event-handling function.
If this process terminates, the Display Notice event-handling function is automatically removed. For
example, the Monitors control panel supplies the Finder’s process number when registering its Display
Notice event-handling function.

removeFlags
Reserved for future expansion. You should pass kNilOptions in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMRemoveNotifyProc
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMRemoveNotifyProc (
 DMNotificationUPP notificationProc,
 DMProcessInfoPtr whichPSN
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMResolveDisplayComponents
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMResolveDisplayComponents (
 void
);

Parameters
Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Functions 1121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMSaveScreenPrefs
Saves the user’s screen configuration preferences. (Deprecated in Mac OS X v10.4. Use Quartz Display Services
instead; see Quartz Display Services Reference.)

OSErr DMSaveScreenPrefs (
 UInt32 reserved1,
 UInt32 saveFlags,
 UInt32 reserved2
);

Parameters
reserved1

Reserved for future expansion. Pass NULL in this parameter.

saveFlags
Reserved for future expansion. Pass NULL in this parameter.

reserved2
Reserved for future expansion. Pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
Usually when you change screen properties such as pixel depth, the changes will only be temporary and will
usually reset after restarting. However, the function DMSaveScreenPrefsmakes the current screen properties
permanent.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMSendDependentNotification
Notifies dependent displays of changes in depth mode or configuration. (Deprecated in Mac OS X v10.4. Use
Quartz Display Services instead; see Quartz Display Services Reference.)

1122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMSendDependentNotification (
 ResType notifyType,
 ResType notifyClass,
 AVIDType displayID,
 ComponentInstance notifyComponent
);

Parameters
notifyType

The resource type that identifies the engine that made the change. Examples might be component
engines that control brightness, contrast, or screen size. You may pass zero in this parameter. See
DependentNotifyRec (page 1138) for more information.

notifyClass
The resource type that identifies the class of change the user or engine has made, such as color depth,
pixel size, or screen size. See DependentNotifyRec (page 1138) for more information.

displayID
The ID number of the dependent display which you want to notify of Display Manager events. On
return, the Display Manager sets the notifyPortID constant of the DependentNotifyRec (page
1138) structure. See DependentNotifyRec (page 1138) for more information.

notifyComponent
A value that notifies the display component what engine, if any, caused a change in a dependent
display. You may pass 0 in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
The Display Manager uses the DMSendDependentNotification function to send notifications to registered
Display Notice event-handling functions. This function uses all its parameters to supply values for the
DependentNotifyRec (page 1138) structure which is sent out to registrants. Generally, your application does
not need to use this function.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMSetAVPowerState
Sets the power state of a display device. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead;
see Quartz Display Services Reference.)

Functions 1123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMSetAVPowerState (
 AVIDType theID,
 AVPowerStatePtr setPowerState,
 UInt32 powerFlags,
 Handle displayState
);

Parameters
theID

The ID number of the display device whose power state you want to change.

setPowerState
On return, this parameter points to a value that your application can use to set the power state of a
display device.

powerFlags
A value that specifies the power state to which a display device can be set.

displayState
A handle to internal Display Manager information about the current display state.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMSetDisplayComponent
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMSetDisplayComponent (
 GDHandle theDevice,
 Component displayComponent
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

1124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMSetDisplayMode
Sets the display mode and pixel depth for a video device. (Deprecated in Mac OS X v10.4. Use Quartz Display
Services instead; see Quartz Display Services Reference.)

OSErr DMSetDisplayMode (
 GDHandle theDevice,
 UInt32 mode,
 UInt32 *depthMode,
 long reserved,
 Handle displayState
);

Parameters
theDevice

A handle to the GDevice structure for the video device whose display mode and pixel depth you
wish to set.

mode
The number used by a video device to identify its display mode. If you supply the value 0 in this
parameter, DMSetDisplayMode uses the current display mode. To specify another display mode,
use the function DMNewDisplayModeList (page 1117).

depthMode
A pointer to the desired pixel depth for the video device specified by theDevice. If you pass a pointer
to 0, DMSetDisplayMode attempts to keep the current depth. If you pass a pointer to 1, 2, 4, 8, 16,
or 32, DMSetDisplayMode attempts to set the device to use your specified pixel depth. If you supply
a pointer to a value of 128 or greater, then DMSetDisplayMode sets the depth to the depth mode
represented by the Video Depth Mode values. See “Video Depth Mode Values” for more information.

On return, this parameter contains a pointer to the new pixel depth. This value represents the depth
mode closest to the one you requested when calling DMSetDisplayMode.

reserved
Reserved for future expansion. Pass NULL in this parameter.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

Functions 1125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMSetEnableByAVID
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMSetEnableByAVID (
 AVIDType theAVID,
 Boolean doEnable,
 Handle displayState
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMSetMainDisplay
Sets a display to be the main screen. You should generally never need to use this function. (Deprecated in
Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

OSErr DMSetMainDisplay (
 GDHandle newMainDevice,
 Handle displayState
);

Parameters
newMainDevice

A handle to the GDevice structure for the video device whose display you wish to make the main
screen.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
After a call to the function DMSetMainDisplay, the handle specified by the parameter newMainDevice
will point to the GDevice structure for the video device whose display, before calling DMSetMainDisplay,
was the main screen. To obtain a handle to the main screen, you can use the Color QuickDraw function
GetMainDevice.

DMSetMainDisplay moves the menu bar to the display for the video device specified by newMainDevice.
QuickDraw maps the (0,0) origin point of the global coordinate system to the main screen’s upper-left corner,
and other screens are positioned adjacent to it.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

1126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMUnblockMirroring
Reenables video mirroring disabled by the function DMUnblockMirroring. You should generally never
need to use this function. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

OSErr DMUnblockMirroring (
 void
);

Parameters
Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Applications generally never need to use this function. In case you find a compelling need to change the
user’s display configuration, this function is described here for completeness. Note that if your application
uses Display Manager functions to change the display configuration of the user’s video devices, your application
should make these changes only with the consent of the user. If your application must have a specific pixel
depth, for example, it should display a dialog box that offers the user a choice between changing to that
depth or canceling display of the image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

DMUnmirrorDevice
Turns off video mirroring. (Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz
Display Services Reference.)

Functions 1127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

OSErr DMUnmirrorDevice (
 GDHandle gDevice,
 Handle displayState
);

Parameters
gDevice

A handle to the GDevice structure for the video device on which you no longer wish to mirror the
pixel image of another device.

displayState
If your application calledDMBeginConfigureDisplays (page 1091), you must pass thedisplayState
handle obtained. Otherwise pass NULL in this parameter.

Return Value
A result code. See “Display Manager Result Codes” (page 1164).

Discussion
When the function DMUnmirrorDevice completes, the display controlled by the video device specified in
the gDevice parameter no longer contains the mirror image of another display.

Your application should leave control of video mirroring to the user. However, if video mirroring is useful for
your application (for example, if your application displays on-screen presentations), you might provide a
control so that the user can switch to video mirroring directly from your application. In this case, the function
DMMirrorDevices (page 1111) is useful for switching video mirroring on, and DMUnmirrorDevice function
is useful for switching it off again.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Displays.h

InvokeDMComponentListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMComponentListIteratorUPP (
 void *userData,
 DMListIndexType itemIndex,
 DMComponentListEntryPtr componentInfo,
 DMComponentListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

InvokeDMDisplayListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMDisplayListIteratorUPP (
 void *userData,
 DMListIndexType itemIndex,
 DisplayListEntryPtr displaymodeInfo,
 DMDisplayListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

InvokeDMDisplayModeListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMDisplayModeListIteratorUPP (
 void *userData,
 DMListIndexType itemIndex,
 DMDisplayModeListEntryPtr displaymodeInfo,
 DMDisplayModeListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

InvokeDMExtendedNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMExtendedNotificationUPP (
 void *userData,
 short theMessage,
 void *notifyData,
 DMExtendedNotificationUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

InvokeDMNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMNotificationUPP (
 AppleEvent *theEvent,
 DMNotificationUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

InvokeDMProfileListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

void InvokeDMProfileListIteratorUPP (
 void *userData,
 DMListIndexType itemIndex,
 DMProfileListEntryPtr profileInfo,
 DMProfileListIteratorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

NewDMComponentListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMComponentListIteratorUPP NewDMComponentListIteratorUPP (
 DMComponentListIteratorProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

1130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

NewDMDisplayListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMDisplayListIteratorUPP NewDMDisplayListIteratorUPP (
 DMDisplayListIteratorProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

NewDMDisplayModeListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMDisplayModeListIteratorUPP NewDMDisplayModeListIteratorUPP (
 DMDisplayModeListIteratorProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

NewDMExtendedNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMExtendedNotificationUPP NewDMExtendedNotificationUPP (
 DMExtendedNotificationProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

NewDMNotificationUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

Functions 1131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMNotificationUPP NewDMNotificationUPP (
 DMNotificationProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

NewDMProfileListIteratorUPP
(Deprecated in Mac OS X v10.4. Use Quartz Display Services instead; see Quartz Display Services Reference.)

DMProfileListIteratorUPP NewDMProfileListIteratorUPP (
 DMProfileListIteratorProcPtr userRoutine
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Displays.h

Callbacks

DMComponentListIteratorProcPtr
typedef void (*DMComponentListIteratorProcPtr)
(
 void * userData,
 DMListIndexType itemIndex,
 DMComponentListEntryPtr componentInfo
);

If you name your function MyDMComponentListIteratorProc, you would declare it like this:

void MyDMComponentListIteratorProc (
 void * userData,
 DMListIndexType itemIndex,
 DMComponentListEntryPtr componentInfo
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1132 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMDisplayListIteratorProcPtr
typedef void (*DMDisplayListIteratorProcPtr)
(
 void * userData,
 DMListIndexType itemIndex,
 DisplayListEntryPtr displaymodeInfo
);

If you name your function MyDMDisplayListIteratorProc, you would declare it like this:

void MyDMDisplayListIteratorProc (
 void * userData,
 DMListIndexType itemIndex,
 DisplayListEntryPtr displaymodeInfo
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMDisplayModeListIteratorProcPtr
Defines a pointer to a list iterator callback function.

typedef void (*DMDisplayModeListIteratorProcPtr)
(
 void * userData,
 DMListIndexType itemIndex,
 DMDisplayModeListEntryPtr displaymodeInfo
);

If you name your function MyDMDisplayModeListIteratorProc, you would declare it like this:

void MyDMDisplayModeListIteratorProc (
 void * userData,
 DMListIndexType itemIndex,
 DMDisplayModeListEntryPtr displaymodeInfo
);

Parameters
userData

A pointer to data about mode changes provided by the user.

itemIndex
Specifies the list entry. See DMListIndexType (page 1145) for more information. This is the index
passed into DMGetIndexedDisplayModeFromList (page 1107).

displaymodeInfo
A pointer to a structure of type DMDisplayModeListEntryRec (page 1143) that provides display
mode information.

Callbacks 1133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Discussion
The function DMGetIndexedDisplayModeFromList (page 1107) uses this callback function to retrieve and
return information about a display mode to the caller of DMGetIndexedDisplayModeFromList.

When you implement this function, the pointer you pass to the DMGetIndexedDisplayModeFromList
function should be a universal procedure pointer with the following type definition:

typedef (DMDisplayModeListIteratorProcPtr)
DMDisplayModeListIteratorUPP;

To create a universal procedure pointer for your application-defined function, you should use the
NewDMDisplayModeListIteratorUPP function as follows:

DMDisplayModeListIteratorUPP MyDMDisplayModeListIteratorUPP;
MyDMDisplayModeListIteratorUPP = NewDMDisplayModeListIteratorUPP
(&MyDMDisplayModeListIteratorCallback)

You can then pass MyDMDisplayModeListIteratorUPP in the listIterator parameter of the
DMGetIndexedDisplayModeFromList (page 1107) function. When you no longer need the list iterator, you
should dispose of the UPP using the DisposeDMDisplayModeListIteratorUPP function:

DisposeDMDisplayModeListIteratorUPP (
 MyDMDisplayModeListIteratorUPP);

Using this call ensures that the call is made through a universal procedure pointer.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMExtendedNotificationProcPtr
Defines a pointer to an extended notification callback function.

typedef void (*DMExtendedNotificationProcPtr)
(
 void * userData,
 short theMessage,
 void * notifyData
);

If you name your function MyDMExtendedNotificationProc, you would declare it like this:

void MyDMExtendedNotificationProc (
 void * userData,
 short theMessage,
 void * notifyData
);

1134 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Parameters
userData

A pointer you passed into DMRegisterExtendedNotifyProc (page 1118).

theMessage
A message selector. See “Notification Messages” (page 1159) for information on specific message
selectors.

notifyData
A pointer to message-specific information data provided by the the Display Manager, described in
“Notification Messages” (page 1159).

Discussion
Display Manager notification functions use this callback function when your application needs to know when
certain events have occurred. The system software may implement these events or follow a user action. When
these events occur, the Display Manager will send notification messages to registrants.

When you call the function DMRegisterExtendedNotifyProc (page 1118) you designate an
application-defined function to handle the extended notification procedure.

When you implement this function, the pointer you pass to the DMRegisterExtendedNotifyProc function
should be a universal procedure pointer with the following type definition:

typedef (DMExtendedNotificationProcPtr) DMExtendedNotificationUPP;

To create a universal procedure pointer for your application-defined function, you should use the
NewDMExtendedNotificationProc macro as follows:

DMExtendedNotificationUPP MyExtendedNotificationUPP;
MyExtendedNotificationUPP = NewDMExtendedNotificationProc
(MyExtendedNotificationCallback);

You can then pass MyExtendedNotificationUPP in the notifyProc parameter of the
DMRegisterExtendedNotifyProc (page 1118) function. When you no longer need notifications, you should
remove it using the DMRemoveExtendedNotifyProc (page 1120) function. You sould also dispose of the UPP
using the DisposeDMExtendedNotificationUPP function:

DisposeDMExtendedNotificationUPP(MyExtendedNotificationUPP);

Using this call ensures that the call is made through a universal procedure pointer.

Special Considerations

Because this function may move or purge memory blocks or access handles, you cannot call it at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Callbacks 1135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMNotificationProcPtr
typedef void (*DMNotificationProcPtr)
(
 AppleEvent * theEvent
);

If you name your function MyDMNotificationProc, you would declare it like this:

void MyDMNotificationProc (
 AppleEvent * theEvent
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMProfileListIteratorProcPtr
typedef void (*DMProfileListIteratorProcPtr)
(
 void * userData,
 DMListIndexType itemIndex,
 DMProfileListEntryPtr profileInfo
);

If you name your function MyDMProfileListIteratorProc, you would declare it like this:

void MyDMProfileListIteratorProc (
 void * userData,
 DMListIndexType itemIndex,
 DMProfileListEntryPtr profileInfo
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1136 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Data Types

AVLocationRec
struct AVLocationRec {
 unsigned long locationConstant;
};
typedef struct AVLocationRec AVLocationRec;
typedef AVLocationRec * AVLocationPtr;

Fields
locationConstant

Reserved for future expansion. Set this field to zero.

Discussion
The function DMGetGraphicInfoByAVID (page 1106) uses the AVLocationRec structure to get information
about graphic displays.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

AVPowerStatePtr
typedef VDPowerStateRec * AVPowerStatePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

AVPowerStateRec
typedef VDPowerStateRec AVPowerStateRec;

Discussion
The functions DMGetAVPowerState (page 1100) and DMSetAVPowerState (page 1123) contain a parameter
of type AVPowerStatePtr, which is a pointer to the AVPowerStateRec data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DependentNotifyRec
struct DependentNotifyRec {
 ResType notifyType;
 ResType notifyClass;
 DisplayIDType notifyPortID;
 ComponentInstance notifyComponent;
 unsigned long notifyVersion;
 unsigned long notifyFlags;
 unsigned long notifyReserved;
 unsigned long notifyFuture;
};
typedef struct DependentNotifyRec DependentNotifyRec;
typedef DependentNotifyRec * DependentNotifyPtr;

Fields
notifyType

A value that specifies the type of engine, if any, that made the change. The Display Manager may set
this field to zero.

notifyClass
A value specifying the class of change that occurred: for instance, color or screen size. This field uses
a value supplied by the constant described under “Dependent Notification Constants” (page 1153) to
specify the class of change that has occurred in a dependent display.

notifyPortID
Specifies which device was touched (kInvalidDisplayID specifies all or none).

notifyComponent
A value that indentifies the engine that made the change. The Display Manager may set this field to
zero.

notifyVersion
Reserved for future expansion. The Display Manager sets this field to zero.

notifyFlags
Reserved for future expansion. The Display Manager sets this field to zero.

notifyReserved
Reserved for future expansion. The Display Manager sets this field to zero.

notifyFuture
Reserved for future expansion. The Display Manager sets this field to zero.

Discussion
The function DMSendDependentNotification (page 1122) uses the notifyType and notifyClass fields
of the DependentNotifyRec structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1138 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DisplayListEntryRec
struct DisplayListEntryRec {
 GDHandle displayListEntryGDevice;
 DisplayIDType displayListEntryDisplayID;
 UInt32 displayListEntryIncludeFlags;
 UInt32 displayListEntryReserved1;
 UInt32 displayListEntryReserved2;
 UInt32 displayListEntryReserved3;
 UInt32 displayListEntryReserved4;
 UInt32 displayListEntryReserved5;
};
typedef struct DisplayListEntryRec DisplayListEntryRec;
typedef DisplayListEntryRec * DisplayListEntryPtr;

Fields
displayListEntryGDevice

A value of type GDHandle.

displayListEntryDisplayID
A value of type DisplayIDType that specifies the display ID.

displayListEntryIncludeFlags
A value of type UInt32 that specifies the reason this entry was included.

displayListEntryReserved1
Reserved for future expansion. Set this field to zero.

displayListEntryReserved2
Reserved for future expansion. Set this field to zero.

displayListEntryReserved3
Reserved for future expansion. Set this field to zero.

displayListEntryReserved4
Reserved for future expansion. Set this field to zero.

displayListEntryReserved5
Reserved for future expansion. Set this field to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMComponentListEntryRec
struct DMComponentListEntryRec {
 DisplayIDType itemID;
 Component itemComponent;
 ComponentDescription itemDescription;
 ResType itemClass;
 DMFidelityType itemFidelity;
 ResType itemSubClass;
 Point itemSort;
 unsigned long itemFlags;
 ResType itemReserved;
 unsigned long itemFuture1;
 unsigned long itemFuture2;
 unsigned long itemFuture3;
 unsigned long itemFuture4;
};
typedef struct DMComponentListEntryRec DMComponentListEntryRec;
typedef DMComponentListEntryRec * DMComponentListEntryPtr;

Fields
itemID
itemComponent
itemDescription
itemClass
itemFidelity
itemSubClass
itemSort

Reserved for future expansion. Set this field to zero.

itemFlags
Reserved for future expansion. Set this field to zero.

itemReserved
itemFuture1

Reserved for future expansion. Set this field to zero.

itemFuture2
Reserved for future expansion. Set this field to zero.

itemFuture3
Reserved for future expansion. Set this field to zero.

itemFuture4
Reserved for future expansion. Set this field to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1140 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMComponentListIteratorUPP
typedef DMComponentListIteratorProcPtr DMComponentListIteratorUPP;

Discussion
For more information, see the description of the DMComponentListIteratorProcPtr (page 1132) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMDepthInfoBlockRec
struct DMDepthInfoBlockRec {
 unsigned long depthBlockCount;
 DMDepthInfoPtr depthVPBlock;
 unsigned long depthBlockFlags;
 unsigned long depthBlockReserved1;
 unsigned long depthBlockReserved2;
};
typedef struct DMDepthInfoBlockRec DMDepthInfoBlockRec;
typedef DMDepthInfoBlockRec * DMDepthInfoBlockPtr;

Fields
depthBlockCount

Specifies the number of mode depths available.

depthVPBlock
Array of DMDepthInfoRec (page 1142).

depthBlockFlags
Reserved for future expansion.

depthBlockReserved1
Reserved for future expansion.

depthBlockReserved2
Reserved for future expansion.

Discussion
When you call the function DMGetIndexedDisplayModeFromList (page 1107) , the Display Manager passes
a pointer to a DMDisplayModeListEntryRec (page 1143) structure to your application. Its field
displayModeDepthBlockInfo is a pointer to a DMDepthInfoBlockRec structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMDepthInfoRec
struct DMDepthInfoRec {
 VDSwitchInfoPtr depthSwitchInfo;
 VPBlockPtr depthVPBlock;
 UInt32 depthFlags;
 UInt32 depthReserved1;
 UInt32 depthReserved2;
};
typedef struct DMDepthInfoRec DMDepthInfoRec;
typedef DMDepthInfoRec * DMDepthInfoPtr;

Fields
depthSwitchInfo

A pointer to the structure VDSwitchInfoRec, which contains values that specify information on
video switch modes and data.

depthVPBlock
A pointer to the structure VPBlock, which supplies information about size, depth and format.

depthFlags
Values from the video structure VDVideoParametersInfoRec, which specify color, size, and depth.

depthReserved1
Reserved for future expansion.

depthReserved2
Reserved for future expansion.

Discussion
This structure provides information that the structure DMDepthInfoBlockRec (page 1141) supplies to the
function DMGetIndexedDisplayModeFromList (page 1107).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMDisplayListIteratorUPP
typedef DMDisplayListIteratorProcPtr DMDisplayListIteratorUPP;

Discussion
For more information, see the description of the DMDisplayListIteratorProcPtr (page 1133) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1142 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMDisplayModeListEntryRec
struct DMDisplayModeListEntryRec {
 UInt32 displayModeFlags;
 VDSwitchInfoPtr displayModeSwitchInfo;
 VDResolutionInfoPtr displayModeResolutionInfo;
 VDTimingInfoPtr displayModeTimingInfo;
 DMDepthInfoBlockPtr displayModeDepthBlockInfo;
 UInt32 displayModeVersion;
 StringPtr displayModeName;
 DMDisplayTimingInfoPtr displayModeDisplayInfo;
};
typedef struct DMDisplayModeListEntryRec DMDisplayModeListEntryRec;
typedef DMDisplayModeListEntryRec * DMDisplayModeListEntryPtr;

Fields
displayModeFlags

A pointer to a video structure, VDSwitchInfoRec, which provides information you need to tell the
driver how to switch into different configurations, bit depths, or resolutions. See the function
DMSetDisplayMode (page 1125) for more information.

displayModeSwitchInfo
A pointer to a VDSwitchInfoRec video structure, which provides information you need to tell the
driver how to switch into different configurations, bit depths, or resolutions. See the function
DMSetDisplayMode (page 1125) for more information.

displayModeResolutionInfo
A pointer to a pointer to a VDResolutionInfoRec video structure, which provides information about
horizontal pixels, maximum depth modes, and the vertical line of the specified display mode.

displayModeTimingInfo
A pointer to a pointer to a VDTimingInfoRec video structure, which provides information about
timing, format of the specified display mode.

displayModeDepthBlockInfo
A pointer to a DMDepthInfoBlockRec (page 1141) structure, which provides information about
available pixel formats and the VPBlock, including size and depth.

displayModeVersion
The version of this structure. Currently it is version kDisplayTimingInfoVersionOne. See “Display
Version Values” (page 1155) for more information.

displayModeName
A string pointer giving the display mode name.

displayModeDisplayInfo
A pointer to theDMDisplayTimingInfoRec (page 1144) data type. This data type supplies information
about the quality and default values of the timing.

Discussion
The DMDisplayModeListEntryRec structure contains information about a display mode in a display mode
list built by the function DMNewDisplayModeList (page 1117).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMDisplayModeListIteratorUPP
typedef DMDisplayModeListIteratorProcPtr DMDisplayModeListIteratorUPP;

Discussion
For more information, see the description of theDMDisplayModeListIteratorProcPtr (page 1133) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMDisplayTimingInfoRec
struct DMDisplayTimingInfoRec {
 UInt32 timingInfoVersion;
 UInt32 timingInfoAttributes;
 SInt32 timingInfoRelativeQuality;
 SInt32 timingInfoRelativeDefault;
 UInt32 timingInfoReserved[16];
};
typedef struct DMDisplayTimingInfoRec DMDisplayTimingInfoRec;
typedef DMDisplayTimingInfoRec * DMDisplayTimingInfoPtr;

Fields
timingInfoVersion

An unsigned 32 bit integer that shows the timing version. See “Display Version Values” (page 1155) for
timing version values.

timingInfoAttributes
An unsigned 32 bit integer that the Display Manager sets to show timing attributes.

timingInfoRelativeQuality
A signed 32 bit integer whose flags the Display Manager sets to provide information on the quality
of the timing.

timingInfoRelativeDefault
A signed 32 bit integer the Display Manager sets that specifies the relative default value of the timing.

timingInfoReserved
Reserved for future expansion.

Discussion
This structure supplies information about timing attributes, defaults and values to the structure
DMDisplayModeListEntryRec (page 1143).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

1144 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMExtendedNotificationUPP
typedef DMExtendedNotificationProcPtr DMExtendedNotificationUPP;

Discussion
For more information, see the description of the DMExtendedNotificationProcPtr (page 1134) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMFidelityType
typedef UInt32 DMFidelityType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMListIndexType
typedef unsigned long DMListIndexType;

Discussion
The function DMGetIndexedDisplayModeFromList (page 1107) uses this data type to supply a list of display
modes from which you can obtain information about a specified display mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMListType
typedef void * DMListType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DMMakeAndModelRec
struct DMMakeAndModelRec {
 ResType manufacturer;
 UInt32 model;
 UInt32 serialNumber;
 UInt32 manufactureDate;
 UInt32 makeReserved[4];
};
typedef struct DMMakeAndModelRec DMMakeAndModelRec;
typedef DMMakeAndModelRec * DMMakeAndModelPtr;

Fields
manufacturer

Represents the manufacturer of the specified display.

model
Represents the model name of the specified display.

serialNumber
Represents the serial number of the specified display.

manufactureDate
Represents the date of manufacture of the specified display.

makeReserved
Reserved for future expansion.

Discussion
This structure stores information about a specified monitor or display. If you need to keep track of
configurations and user preferences, you can store that information in this structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMModalFilterUPP
typedef void * DMModalFilterUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMNotificationUPP
typedef DMNotificationProcPtr DMNotificationUPP;

Discussion
For more information, see the description of the DMNotificationProcPtr (page 1136) callback function.

Availability
Available in Mac OS X v10.0 and later.

1146 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Declared In
Displays.h

DMProcessInfoPtr
typedef void * DMProcessInfoPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMProfileListEntryRec
struct DMProfileListEntryRec {
 CMProfileRef profileRef;
 Ptr profileReserved1;
 Ptr profileReserved2;
 Ptr profileReserved3;
};
typedef struct DMProfileListEntryRec DMProfileListEntryRec;
typedef DMProfileListEntryRec * DMProfileListEntryPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

DMProfileListIteratorUPP
typedef DMProfileListIteratorProcPtr DMProfileListIteratorUPP;

Discussion
For more information, see the description of the DMProfileListIteratorProcPtr (page 1136) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Displays.h

Data Types 1147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Constants

Active Device Only Values
enum {
 dmOnlyActiveDisplays = true,
 dmAllDisplays = false
};

Constants
dmOnlyActiveDisplays

Returns a handle to the GDevice structure for an active device only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

dmAllDisplays
Returns a handle to the GDevice structure for a device, active or not.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
The functions DMGetFirstScreenDevice (page 1104) and DMGetNextScreenDevice (page 1109) contain
the parameter activeOnly which you can specify with an Active Device Constant.

1148 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Apple Event Notification Keywords
enum {
 kAESystemConfigNotice = 'cnfg',
 kAEDisplayNotice = 'dspl',
 kAEDisplaySummary = 'dsum',
 keyDMConfigVersion = 'dmcv',
 keyDMConfigFlags = 'dmcf',
 keyDMConfigReserved = 'dmcr',
 keyDisplayID = 'dmid',
 keyDisplayComponent = 'dmdc',
 keyDisplayDevice = 'dmdd',
 keyDisplayFlags = 'dmdf',
 keyDisplayMode = 'dmdm',
 keyDisplayModeReserved = 'dmmr',
 keyDisplayReserved = 'dmdr',
 keyDisplayMirroredId = 'dmmi',
 keyDeviceFlags = 'dddf',
 keyDeviceDepthMode = 'dddm',
 keyDeviceRect = 'dddr',
 keyPixMapRect = 'dpdr',
 keyPixMapHResolution = 'dphr',
 keyPixMapVResolution = 'dpvr',
 keyPixMapPixelType = 'dppt',
 keyPixMapPixelSize = 'dpps',
 keyPixMapCmpCount = 'dpcc',
 keyPixMapCmpSize = 'dpcs',
 keyPixMapAlignment = 'dppa',
 keyPixMapResReserved = 'dprr',
 keyPixMapReserved = 'dppr',
 keyPixMapColorTableSeed = 'dpct',
 keySummaryMenubar = 'dsmb',
 keySummaryChanges = 'dsch',
 keyDisplayOldConfig = 'dold',
 keyDisplayNewConfig = 'dnew'
};

Constants
kAESystemConfigNotice

Keyword for the Event ID for a Display Notice event.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kAEDisplayNotice
Keyword for a required parameter to a Display Notice event.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kAEDisplaySummary
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDMConfigVersion
Keyword for the descriptor structure describing the version number for this Display Notice event.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

keyDMConfigFlags
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDMConfigReserved
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayID
Keyword for the descriptor structure describing the display ID for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayComponent
Unless you are disconnecting display components, this is for internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayDevice
Keyword for the descriptor structure containing a handle to the GDevice structure for the video
device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayFlags
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayMode
Keyword for the descriptor structure containing the sResource number from the video device for
this display mode.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayModeReserved
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayReserved
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayMirroredId
Keyword for the display this device is mirrored to.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1150 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

keyDeviceFlags
Keyword for the descriptor structure describing the attributes for the video device as maintained in
the gdFlags field of the GDevice structure for the device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDeviceDepthMode
Keyword for the descriptor structure describing the depth mode for the video device; that is, the
value of the gdMode field in the GDevice structure for the device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDeviceRect
Keyword for the descriptor structure describing the boundary rectangle of the video device; that is,
the value of the gdRect field in the GDevice structure for the device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapRect
Keyword for the descriptor structure describing the boundary rectangle into which QuickDraw can
draw; that is, the bounds field in the PixMap structure for the GDevice structure for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapHResolution
Keyword for the descriptor structure describing the horizontal resolution of the pixel image in the
PixMap structure for the GDevice structure for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapVResolution
Keyword for the descriptor structure describing the vertical resolution of the pixel image in the PixMap
structure for the GDevice structure for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapPixelType
Keyword for the descriptor structure describing the storage format for the pixel image on the device;
that is, the value of the pixelType field in the PixMap structure for the GDevice structure for the
video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapPixelSize
Keyword for the descriptor structure describing the pixel depth for the device; that is, the value of
the pixelSize field in the PixMap structure for the GDevice structure for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

keyPixMapCmpCount
Keyword for the descriptor structure containing the number of components used to represent a color
for a pixel; that is, the value of the cmpCount field in the PixMap structure for the GDevice structure
for the device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapCmpSize
Keyword for the descriptor structure describing the size in bits of each component for a pixel; that
is, the value of the cmpSize field in the PixMap structure for the GDevice structure for the device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapAlignment
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapResReserved
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapReserved
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyPixMapColorTableSeed
Keyword for the descriptor structure containing the value of the ctSeed field of the ColorTable
structure for the PixMap structure for the GDevice structure for the video device.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keySummaryMenubar
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keySummaryChanges
Reserved for future expansion. Internal use only.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

keyDisplayOldConfig
Keyword for the descriptor structure describing the video device’s previous state.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1152 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

keyDisplayNewConfig
Keyword for the descriptor structure describing the video device’s new state.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
The Display Manager sends an Apple event—the Display Notice event—to notify applications that it has
changed the display environment. The keywords that specify the Display Notice event and its descriptor
structures are described here.

Confirm Flags
enum {
 kForceConfirmBit = 0,
 kForceConfirmMask = (1 << kForceConfirmBit)
};

Constants
kForceConfirmBit

Indicates to force a confirm dialog.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kForceConfirmMask
Use to set or test for a forced confirm dialog.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Dependent Notification Constants
enum {
 kDependentNotifyClassShowCursor = 'shcr',
 kDependentNotifyClassDriverOverride = 'ndrv',
 kDependentNotifyClassDisplayMgrOverride = 'dmgr',
 kDependentNotifyClassProfileChanged = 'prof'
};

Constants
kDependentNotifyClassShowCursor

The Display Manager sends an extended notification when a hidden cursor shows during a display
unmirror.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDependentNotifyClassDriverOverride
The Display Manager sends notification that a video driver has been overridden with a newer revision.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kDependentNotifyClassDisplayMgrOverride
The Display Manager sends notification that it has been upgraded with a newer revision.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDependentNotifyClassProfileChanged
The Display Manager sends notification when the profile associated with a display changes.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
The function DMSendDependentNotification (page 1122) contains the parameter notifyClass which
you can specify with a Dependent Notification Constant.

Display/Device ID Constants
The Display Manager uses these values to help with the configuration of the display.

enum {
 kDummyDeviceID = 0x00FF,
 kInvalidDisplayID = 0x0000,
 kFirstDisplayID = 0x0100
};

Constants
kDummyDeviceID

This is the ID of the dummy display, used when the last “real” display is removed.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kInvalidDisplayID
This is the ID of the invalid display, which has been removed from the active display list.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kFirstDisplayID
When your application sets this bit it asks the Display Manager to return the ID of the first display
device on the active display list.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1154 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Display Gestalt Constants
enum {
 kDisplayGestaltDisplayCommunicationAttr = 'comm',
 kDisplayGestaltForbidI2CMask = (1 << 0),
 kDisplayGestaltUseI2CPowerMask = (1 << 1),
 kDisplayGestaltCalibratorAttr = 'cali',
 kDisplayGestaltBrightnessAffectsGammaMask = (1 << 0),
 kDisplayGestaltViewAngleAffectsGammaMask = (1 << 1)
};

Display Mode Flags
The structure DMDisplayModeListEntryRec uses these values for its displayModeFlags field.

enum {
 kDisplayModeListNotPreferredBit = 0,
 kDisplayModeListNotPreferredMask = (1 << kDisplayModeListNotPreferredBit)
};

Constants
kDisplayModeListNotPreferredBit

Indicates there is a better timing available and that this timing should be shown only if the user wants
to see all options.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDisplayModeListNotPreferredMask
(1 kDisplayModeListNotPreferredBit)

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Display Version Values
enum {
 kDisplayTimingInfoVersionZero = 1,
 kDisplayTimingInfoReservedCountVersionZero = 16,
 kDisplayModeEntryVersionZero = 0,
 kDisplayModeEntryVersionOne = 1
};

Constants
kDisplayTimingInfoVersionZero

This relative information is always NULL in this version.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDisplayTimingInfoReservedCountVersionZero
This relative information is always NULL in this version.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kDisplayModeEntryVersionZero
This relative information is always NULL in this version.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDisplayModeEntryVersionOne
This relative information is always NULL in this version.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
These values supply information to the structure DMDisplayModeListEntryRec (page 1143).

Fidelity Check Constants
enum {
 kNoFidelity = 0,
 kMinimumFidelity = 1,
 kDefaultFidelity = 500,
 kDefaultManufacturerFidelity = 1000
};

Get Name By AVID Mask
enum {
 kDMSupressNumbersMask = (1 << 0),
 kDMForceNumbersMask = (1 << 1),
 kDMSupressNameMask = (1 << 2)
};

Constants
kDMSupressNumbersMask

If the bit specified by this mask is set, the numbers are suppressed and only names are returned.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMForceNumbersMask
If the bit specified by this mask is set, the numbers are forced to always be shown–even on single
display configs.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMSupressNameMask
If the bit specified by this mask is set, the names are suppressed and only numbers are returned.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1156 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Include Masks
enum {
 kIncludeOnlineActiveDisplaysMask = (1 << 0),
 kIncludeOnlineDisabledDisplaysMask = (1 << 1),
 kIncludeOfflineDisplaysMask = (1 << 2),
 kIncludeOfflineDummyDisplaysMask = (1 << 3),
 kIncludeHardwareMirroredDisplaysMask = (1 << 4)
};

Item Flags
enum {
 kComponentListNotPreferredBit = 0,
 kComponentListNotPreferredMask = (1 << kComponentListNotPreferredBit)
};

Mode List Masks
enum {
 kDMModeListIncludeAllModesMask = (1 << 0),
 kDMModeListIncludeOfflineModesMask = (1 << 1),
 kDMModeListExcludeDriverModesMask = (1 << 2),
 kDMModeListExcludeDisplayModesMask = (1 << 3),
 kDMModeListExcludeCustomModesMask = (1 << 4),
 kDMModeListPreferStretchedModesMask = (1 << 5),
 kDMModeListPreferSafeModesMask = (1 << 6)
};

Constants
kDMModeListIncludeAllModesMask

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMModeListIncludeOfflineModesMask
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMModeListExcludeDriverModesMask
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMModeListExcludeDisplayModesMask
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMModeListExcludeCustomModesMask
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kDMModeListPreferStretchedModesMask
Prefer modes that are stretched over modes that are letterboxed when setting
kDisplayModeListNotPreferredBit

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMModeListPreferSafeModesMask
Prefer modes that are safe over modes that are not when setting kDisplayModeListNotPreferredBit

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1158 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Name Flags
enum {
 kSuppressNumberBit = 0,
 kSuppressNumberMask = 1,
 kForceNumberBit = 1,
 kForceNumberMask = 2,
 kSuppressNameBit = 2,
 kSuppressNameMask = 4
};

New Engine List Constants
enum {
 kAnyPanelType = 0,
 kAnyEngineType = 0,
 kAnyDeviceType = 0,
 kAnyPortType = 0
};

Notification Messages
enum {
 kDMNotifyRequestConnectionProbe = 0,
 kDMNotifyInstalled = 1,
 kDMNotifyEvent = 2,
 kDMNotifyRemoved = 3,
 kDMNotifyPrep = 4,
 kDMNotifyExtendEvent = 5,
 kDMNotifyDependents = 6,
 kDMNotifySuspendConfigure = 7,
 kDMNotifyResumeConfigure = 8,
 kDMNotifyRequestDisplayProbe = 9,
 kDMNotifyDisplayWillSleep = 10,
 kDMNotifyDisplayDidWake = 11,
 kExtendedNotificationProc = (1L << 16)
};

Constants
kDMNotifyRequestConnectionProbe

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyInstalled
The Display Manager provides this message during a callback function to if your application has
installed an extended notification procedure pointer for the first time. The Display Manager provides
this message in the notifyData parameter of DMSendDependentNotification (page 1122).

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kDMNotifyEvent
The Display Manager provides this message when an Apple event update occurs, after a display
configuration change is made. This is the only time non-extended notifications are called.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyRemoved
The Display Manager provides this message when the function
DMSendDependentNotification (page 1122) is called on your function.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyPrep
Before passing kDMSNotifyRemoved, the Display Manager provides this message to indicate that it
is about to begin to configure. Calling DMSendDependentNotification (page 1122) tells the Display
Manager to send this message.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyExtendEvent
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyDependents
The Display Manager provides this message to DMSendDependentNotification (page 1122).

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifySuspendConfigure
The Display Manager passes this selector to notify your UPP that configuration is temporarily
suspended. For instance, if a video game makes a temporary change to the display configuration, the
game is expected to resume configuration and restore video before allowing other applications to
access the screen.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyResumeConfigure
The Display Manager passes this selector to notify your application when previously suspended
configuration is resumed. Your application can then replace windows and icons, and change depth
mode if necessary.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyRequestDisplayProbe
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDMNotifyDisplayWillSleep
This selector is only available in Mac OS X.

Available in Mac OS X v10.2 and later.

Declared in Displays.h.

1160 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kDMNotifyDisplayDidWake
This selector is only available in Mac OS X.

Available in Mac OS X v10.2 and later.

Declared in Displays.h.

kExtendedNotificationProc
Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
Display Manager functions needed for dependency notification and event processing use the notification
message selectors in extended application-defined functions. DMRegisterExtendedNotifyProc (page
1118) gets all these messages. Applications should update all information about the display configurations at
this point.

Notification Types
enum {
 kFullNotify = 0,
 kFullDependencyNotify = 1
};

Constants
kFullNotify

The Display Manager sets this bit to provide the major Apple notification event.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kFullDependencyNotify
The Display Manager sets this bit to provide notification only to those applications that need to know
about interrelated functionality. It is used for updating the user interface.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
The function DMSendDependentNotification (page 1122) uses these values in the notifyTypeparameter.

Constants 1161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Panel List Flags
enum {
 kAllowDuplicatesBit = 0
};

Port List Flags
enum {
 kPLIncludeOfflineDevicesBit = 0
};

Constants
kPLIncludeOfflineDevicesBit

Should offline devices be put into the port list (such as dummy display)

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Reserved Count Constants
enum {
 kMakeAndModelReservedCount = 4
};

Constants
kMakeAndModelReservedCount

Indicates the number of reserved fields.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

1162 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Summary Change Flags
enum {
 kBeginEndConfigureBit = 0,
 kMovedDisplayBit = 1,
 kSetMainDisplayBit = 2,
 kSetDisplayModeBit = 3,
 kAddDisplayBit = 4,
 kRemoveDisplayBit = 5,
 kNewDisplayBit = 6,
 kDisposeDisplayBit = 7,
 kEnabledDisplayBit = 8,
 kDisabledDisplayBit = 9,
 kMirrorDisplayBit = 10,
 kUnMirrorDisplayBit = 11
};

Switch Flags
enum {
 kNoSwitchConfirmBit = 0,
 kDepthNotAvailableBit = 1,
 kShowModeBit = 3,
 kModeNotResizeBit = 4,
 kNeverShowModeBit = 5
};

Constants
kNoSwitchConfirmBit

If the Display Manager sets this bit the display mode is required to function correctly. Your application
does not need to provide confirmation if the user switches to this mode.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kDepthNotAvailableBit
If the Display Manager sets this bit the pixel depth of the specified device is not available for the
specified display mode.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kShowModeBit
If the Display Manager sets this bit your application should display this mode to the user, even though
it may require confirmation.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

kModeNotResizeBit
If the Display Manager sets this bit you should not use this mode to resize a display; this mode drives
a different connector in cards than in a built-in display.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Constants 1163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

kNeverShowModeBit
If the Display Manager sets this bit you should not show the mode in the user interface.

Available in Mac OS X v10.0 and later.

Declared in Displays.h.

Discussion
In its switchFlags parameter, the function DMCheckDisplayMode (page 1094) returns a pointer to a long
integer that specifies flags in two of its bits. The constants represent bits that are set to 1. These bits are set
by the Display Manager, not your application

Result Codes

The table below lists the result codes that are specific to the Display Manager.

DescriptionValueResult Code

An indeterminate error occurred.-6220kDMGenErr

Available in Mac OS X v10.0 and later.

Video mirroring is already enabled.-6221kDMMirroringOnAlready

Available in Mac OS X v10.0 and later.

Wrong number of displays.-6222kDMWrongNumberOfDisplays

Available in Mac OS X v10.0 and later.

Video is blocked.-6223kDMMirroringBlocked

Available in Mac OS X v10.0 and later.

Video mirroring is already enabled and can’t be blocked;
use DMUnMirrorDevice, then call DMBlockMirroring
again.

-6224kDMCantBlock

Available in Mac OS X v10.0 and later.

Video mirroring is not currently enabled.-6225kDMMirroringNotOn

Available in Mac OS X v10.0 and later.

Some piece of system software is too old for the Display
Manager to operate.

-6226kSysSWTooOld

Available in Mac OS X v10.0 and later.

The required pieces of system software are not initialized.-6227kDMSWNotInitializedErr

Available in Mac OS X v10.0 and later.

The video driver for the display does not support the
Display Manager.

-6228kDMDriverNotDisplayMgrAwareErr

Available in Mac OS X v10.0 and later.

1164 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-6229kDMNotFoundErr

There are no GDevice structures for displays in the device
list.

-6229kDMDisplayNotFoundErr

Available in Mac OS X v10.0 and later.

The display is already in the device list and can’t be added.-6230kDMDisplayAlreadyInstalledErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-6231kDMNoDeviceTableclothErr

Available in Mac OS X v10.0 and later.-6231kDMMainDisplayCannotMoveErr

Item found-6232kDMFoundErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Display Manager Version selectors
defined in the Gestalt Manager. For more information, see Gestalt Manager Reference.

Gestalt Constants 1165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

1166 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Display Manager Reference (Not Recommended)

Framework: ApplicationServices/ApplicationServices.h

Declared in Fonts.h

Overview

As of Mac OS X version 10.5, all Font Manager functions but three
(FMFontGetCGFontRefFromFontFamilyInstance (page 1178),FMGetATSFontRefFromFont (page 1179),
and FMGetFontFromATSFontRef (page 1186)) are deprecated. Most were deprecated in Mac OS X v10.4. The
Font Manager was the font management API for the QuickDraw framework, which is now deprecated.

There are several alternatives that provide better compatibility with the rest of Mac OS X than using QuickDraw
font functions. You should consider the following:

 ■ For drawing and measuring text, use Core Text on Mac OS X v10.5 and later to render text directly through
a Quartz (Core Image) graphics context. See Core Text ProgrammingGuide and Core Text ReferenceCollection.
On Mac OS X v10.4 and earlier, you can use the Appearance Manager API or the ATSUI API. See Appearance
Manager Reference, ATSUI Programming Guide, and ATSUI Reference.

 ■ For accessing information on fonts tracked by the operating system, use Core Text on Mac OS X v10.5
and later. See Core Text Programming Guide and Core Text Reference Collection. On Mac OS X v10.4 and
earlier, use the ATS for Fonts API. See Apple Type Services for Fonts Programming Guide and Apple Type
Services for Fonts Reference.

 ■ For accessing and modifying information on fonts in a Quartz graphics context, use the Quartz API. See
Quartz 2D Programming Guide and Quartz 2D Reference Collection.

The Font Manager API was used to manage the fonts your application uses to display and print text. The
Font Manager was used to determine the characteristics of a font, change certain font settings, favor outline
fonts over bitmapped fonts, and manipulate fonts in memory.

Functions by Task

Activating and Deactivating Fonts

FMGetGeneration (page 1189) Deprecated in Mac OS X v10.5
Retrieves the value of the generation count. (Deprecated. Use ATSGetGeneration (page 678) instead.)

FMActivateFonts (page 1172) Deprecated in Mac OS X v10.4
Activates one or more fonts. (Deprecated. Use ATSFontActivateFromFileReference (page 647)
instead.)

Overview 1167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMDeactivateFonts (page 1176) Deprecated in Mac OS X v10.4
Deactivates one or more fonts. (Deprecated. Use ATSFontDeactivate (page 651) instead.)

Accessing Font Objects

FMGetFontContainer (page 1179) Deprecated in Mac OS X v10.4
Obtains the file that contains data for a font. (Deprecated. Use ATSFontGetContainer (page 662)
instead.)

FMGetFontFormat (page 1185) Deprecated in Mac OS X v10.4
Obtains the format identifier of a font.

FMGetFontGeneration (page 1187) Deprecated in Mac OS X v10.4
Obtains the generation count of a font. (Deprecated. Use ATSFontGetGeneration (page 665) instead.)

FMGetFontTable (page 1188) Deprecated in Mac OS X v10.4
Retrieves all or part of a data table for a font. (Deprecated. Use ATSFontGetTable (page 668) or
CTFontCopyTable instead.)

FMGetFontTableDirectory (page 1189) Deprecated in Mac OS X v10.4
Obtains the table directory for a font.

Accessing Font Containers

FMGetFontContainerFromFontFamilyInstance (page 1180) Deprecated in Mac OS X v10.4
Obtains the font container associated with a font family instance. (Deprecated. Use
ATSFontGetContainer (page 662) instead.)

FMGetFontFamilyResource (page 1184) Deprecated in Mac OS X v10.4
Obtains the font family resource for a font family. (Deprecated. Use
ATSFontGetFontFamilyResource (page 664) instead.)

Accessing Font Family Objects

FMGetFontFamilyFromName (page 1181) Deprecated in Mac OS X v10.4
Returns the font family reference associated with a standard QuickDraw name. (Deprecated. Use
ATSFontFamilyFindFromName (page 652) instead.)

FMGetFontFamilyGeneration (page 1182) Deprecated in Mac OS X v10.4
Obtains the generation count of a font family. (Deprecated. UseATSFontFamilyGetGeneration (page
654) instead.)

FMGetFontFamilyName (page 1183) Deprecated in Mac OS X v10.4
Obtains the font family name associated with a font family reference. (Deprecated. Use
ATSFontFamilyGetName (page 654) instead.)

FMGetFontFamilyTextEncoding (page 1185) Deprecated in Mac OS X v10.4
Obtains the text encoding used by a font family. (Deprecated. UseATSFontFamilyGetEncoding (page
653) instead.)

1168 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Enumerating Font Data

FMCreateFontFamilyInstanceIterator (page 1173) Deprecated in Mac OS X v10.4
Creates a font family instance iterator that your application can use to access the member fonts
associated with a font family.

FMCreateFontFamilyIterator (page 1174) Deprecated in Mac OS X v10.4
Creates a font family iterator that your application can use to access font family objects. (Deprecated.
Use ATSFontFamilyIteratorCreate (page 655) instead.)

FMCreateFontIterator (page 1175) Deprecated in Mac OS X v10.4
Creates an iterator that your application can use to access fonts. (Deprecated. Use
ATSFontIteratorCreate (page 671) instead.)

FMDisposeFontFamilyInstanceIterator (page 1176) Deprecated in Mac OS X v10.4
Disposes of a font family instance iterator.

FMDisposeFontFamilyIterator (page 1177) Deprecated in Mac OS X v10.4
Disposes of the contents of a font family iterator. (Deprecated. Use
ATSFontFamilyIteratorRelease (page 658) instead.)

FMDisposeFontIterator (page 1177) Deprecated in Mac OS X v10.4
Disposes of a font iterator. (Deprecated. Use ATSFontIteratorRelease (page 673) instead.)

FMGetNextFont (page 1190) Deprecated in Mac OS X v10.4
Obtains the next font reference. (Deprecated. Use ATSFontIteratorNext (page 672) instead.)

FMGetNextFontFamily (page 1190) Deprecated in Mac OS X v10.4
Obtains the next font family reference. (Deprecated. Use ATSFontFamilyIteratorNext (page 657)
instead.)

FMGetNextFontFamilyInstance (page 1191) Deprecated in Mac OS X v10.4
Obtains the next instance associated with a font family reference.

FMResetFontFamilyInstanceIterator (page 1192) Deprecated in Mac OS X v10.4
Resets the a font family instance iterator to the beginning of the iteration for the specified font family.

FMResetFontFamilyIterator (page 1193) Deprecated in Mac OS X v10.4
Resets a font family iterator to the beginning of the iteration. (Deprecated. Use
ATSFontFamilyIteratorReset (page 658) instead.)

FMResetFontIterator (page 1194) Deprecated in Mac OS X v10.4
Resets a font iterator to the beginning of the iteration. (Deprecated. Use
ATSFontIteratorReset (page 674) instead.)

Converting Font Data

FMFontGetCGFontRefFromFontFamilyInstance (page 1178)
Obtains the Quartz font associated with a typeface from a QuickDraw font family.

FMGetATSFontRefFromFont (page 1179)
Obtains the ATS font reference associated with a font object.

FMGetFontFromATSFontRef (page 1186)
Obtains the font object associated with an ATS font reference.

FMGetATSFontFamilyRefFromFontFamily (page 1179) Deprecated in Mac OS X v10.4
Obtains the ATS font family reference associated with a font family object.

Functions by Task 1169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMGetFontFamilyFromATSFontFamilyRef (page 1181) Deprecated in Mac OS X v10.4
Obtains the font family associated with an ATS font family reference.

FMGetFontFamilyInstanceFromFont (page 1182) Deprecated in Mac OS X v10.4
Finds the font family reference and standard QuickDraw style associated with a font.

FMGetFontFromFontFamilyInstance (page 1187) Deprecated in Mac OS X v10.4
Obtains the font reference associated with a standard QuickDraw style and font family. (Deprecated.
Use CTFontCreateWithQuickdrawInstance instead.)

Getting Font Information

FetchFontInfo (page 1171) Deprecated in Mac OS X v10.4
Obtains the information for a specific font. (Deprecated. There is no replacement function.)

FMSwapFont (page 1195) Deprecated in Mac OS X v10.4
Returns a pointer to the font output structure for a specified font. (Deprecated. There is no replacement
function.)

FontMetrics (page 1195) Deprecated in Mac OS X v10.4
Obtains fractional measurements for the font, size, and style specified in the current graphics port.
(Deprecated. There is no replacement function.)

GetFNum (page 1197) Deprecated in Mac OS X v10.4
Obtains the font family ID for a specified font family name. (Deprecated. Use
ATSFontFamilyFindFromName (page 652) instead.)

GetFontName (page 1198) Deprecated in Mac OS X v10.4
Obtains the name of a font family that has a specified family ID number. (Deprecated. Use
ATSFontFamilyGetName (page 654) instead.)

OutlineMetrics (page 1201) Deprecated in Mac OS X v10.4
Obtains font measurements for a block of text to be drawn in a specified outline font. (Deprecated.
There is no replacement function.)

RealFont (page 1203) Deprecated in Mac OS X v10.4
Determines whether a font is available or is intended for use in a specified size. (Deprecated. There
is no replacement function.)

Working With Outline Fonts

GetOutlinePreferred (page 1198) Deprecated in Mac OS X v10.4
Obtains the current preference for whether outline or bitmapped fonts are returned when the Font
Manager receives a font request. (Deprecated. There is no replacement function.)

GetPreserveGlyph (page 1199) Deprecated in Mac OS X v10.4
Determines whether the Font Manager preserves the shapes of glyphs from outline fonts. (Deprecated.
There is no replacement function.)

IsOutline (page 1200) Deprecated in Mac OS X v10.4
Determines whether the specified scaling factors will cause the Font Manager to choose an outline
font for the current graphics port. (Deprecated. There is no replacement function.)

SetOutlinePreferred (page 1206) Deprecated in Mac OS X v10.4
Sets the preference for whether to use bitmapped or outline fonts when both kinds of fonts are
available. (Deprecated. There is no replacement function.)

1170 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

SetPreserveGlyph (page 1206) Deprecated in Mac OS X v10.4
Temporarily changes the default behavior of the Font Manager, so that it does not scale oversized
glyphs. (Deprecated. There is no replacement function.)

Working with Antialiased Text

IsAntiAliasedTextEnabled (page 1199) Deprecated in Mac OS X v10.4
Checks whether antialiased text is enabled. (Deprecated. There is no replacement function.)

SetAntiAliasedTextEnabled (page 1204) Deprecated in Mac OS X v10.4
Enables or disables antialiased text for an application. (Deprecated. There is no replacement function.)

Working With Font Measurements and Scaling

QDTextBounds (page 1203) Deprecated in Mac OS X v10.4
Obtains a rectangle that specifies the bounds of QuickDraw text. (Deprecated. There is no replacement
function.)

SetFractEnable (page 1204) Deprecated in Mac OS X v10.4
Enables or disables fractional glyph widths. (Deprecated. There is no replacement function.)

SetFScaleDisable (page 1205) Deprecated in Mac OS X v10.4
Enables or disables the computation of font scaling factors by the Font Manager for bitmapped glyphs.
(Deprecated. There is no replacement function.)

Using the Current, System, and Application Fonts

GetAppFont (page 1196) Deprecated in Mac OS X v10.4
Returns the font family ID of the current application font. (Deprecated. There is no replacement
function.)

GetDefFontSize (page 1197) Deprecated in Mac OS X v10.4
Determines the default size of the system font. (Deprecated. There is no replacement function.)

GetSysFont (page 1199) Deprecated in Mac OS X v10.4
Obtains the font family ID of the current system font. (Deprecated. There is no replacement function.)

Functions

FetchFontInfo
Obtains the information for a specific font. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Functions 1171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OSErr FetchFontInfo (
 SInt16 fontID,
 SInt16 fontSize,
 SInt16 fontStyle,
 FontInfo *info
);

Parameters
fontID

A signed, 16-bit integer that specifies the font ID of the font whose information you want to obtain.

fontSize
A signed, 16-bit integer that specifies the font size of the font whose information you want to obtain.

fontStyle
A signed, 16-bit integer that specifies the font style of the font whose information you want to obtain.

info
On output, points to a font information structure that contains measurement information (ascent,
descent, width, and leading) for the specified font.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMActivateFonts
Activates one or more fonts. (Deprecated in Mac OS X v10.4. Use
ATSFontActivateFromFileReference (page 647) instead.)

OSStatus FMActivateFonts (
 const FSSpec *iFontContainer,
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions
);

Parameters
iFontContainer

A pointer to the file specification of the file that contains the font data you want to activate. You can
specify a directory or an individual font file.

iFilter
A pointer to a filter specification. This parameter is currently reserved for future use, so you should
pass NULL.

iRefCon
An arbitrary 32-bit value specified by your application. This parameter is currently reserved for future
use, so you should pass NULL.

1172 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

iOptions
A value that specifies the scope to which the function applies. If you want the Font Manager to make
the fonts visible only to your application, use the constant kFMLocalActivationContext. If you
want the Font Manager to make fonts visible to all applications installed on the system, use the
constant kFMGlobalActivationContext. See Activation Contexts (page 1224) for more information
on these constants.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMCreateFontFamilyInstanceIterator
Creates a font family instance iterator that your application can use to access the member fonts associated
with a font family. (Deprecated in Mac OS X v10.4.)

OSStatus FMCreateFontFamilyInstanceIterator (
 FMFontFamily iFontFamily,
 FMFontFamilyInstanceIterator *ioIterator
);

Parameters
iFontFamily

A reference to the font family you want to access.

ioIterator
A pointer to a structure of type FMFontFamilyInstanceIterator. On input, pass a pointer to an
uninitialized structure. On output, its contents may have been changed and may include references
to other data structures allocated by the system to maintain the structure’s state. The iterator is
positioned before the first member font of the font family. When you no longer need the font family
instance iterator, you should call the function FMDisposeFontFamilyInstanceIterator to release
the auxiliary data and memory allocated by the system.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
A font family instance iterator is an opaque data structure used by the Font Manager to keep track of an
iteration over currently active font family instances. A font family instance is a typeface and a size—an entry
from the font association table.

When the font family iterator is initialized, it does not yet reference a font family instance. Do not attempt
to modify the contents of a font family instance iterator.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Declared In
Fonts.h

FMCreateFontFamilyIterator
Creates a font family iterator that your application can use to access font family objects. (Deprecated in Mac
OS X v10.4. Use ATSFontFamilyIteratorCreate (page 655) instead.)

OSStatus FMCreateFontFamilyIterator (
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions,
 FMFontFamilyIterator *ioIterator
);

Parameters
iFilter

A pointer to a filter specification. Pass NULL if you want to access all font family objects within the
scope of your iteration. Otherwise, you can use this parameter to restrict the scope of the iteration
to the font families that match a generation count or criteria you specify in a custom filter function.
Pass the filter selector constant kFMGenerationFilterSelector to select a generation filter or the
constant kFMFontFamilyCallbackFilterSelector to select a custom filter. See
FMFilterSelector in the ATS Types Reference for more information on these constants.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. If you are not using a custom filter
function, pass NULL.

iOptions
A value that specifies the scope to which the font family iterator applies. If you want the Font Manager
to apply the font family iterator only to the fonts accessible from your application use the
kFMLocalIterationScope constant. If you want the Font Manager to apply the font family iterator
to all fonts registered with the system use the constant kFMGlobalIterationScope. See Activation
Contexts (page 1224) for more information on these constants.

ioIterator
A pointer to a structure of type FMFontFamilyIterator. On input, pass a pointer to an uninitialized
structure. On output, the structure’s contents may have been changed and may include references
to other data structures allocated by the system to maintain the structure’s state. When you no longer
need the font family iterator, you should call the function FMDisposeFontFamilyIterator to
release the auxiliary data and memory allocated by the system.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
A font family iterator is an opaque data structure used by the Font Manager to keep track of an iteration over
currently active font families. When the font family iterator is initialized, it does not yet reference a font family.
Do not attempt to modify the contents of a font family iterator.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1174 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Declared In
Fonts.h

FMCreateFontIterator
Creates an iterator that your application can use to access fonts. (Deprecated in Mac OS X v10.4. Use
ATSFontIteratorCreate (page 671) instead.)

OSStatus FMCreateFontIterator (
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions,
 FMFontIterator *ioIterator
);

Parameters
iFilter

A pointer to font filter specification. Pass NULL if you want to access all font objects within the scope
of your iteration. Otherwise, you can use this parameter to restrict the scope of the iteration to font
information that matches a technology, font container, or criteria you specify in a custom filter function.
Pass the filter selector constant kFMFontTechnologyFilterSelector to select a font technology
filter, the constant kFMFontContainerFilterSelector to select a font container filter, or the
constant kFMFontCallbackFilterSelector to select a custom filter. See FMFilterSelector in
the ATS Types Reference for more information on these constants.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. If are not using a custom filter
function, pass NULL.

iOptions
A value that specifies the scope to which the font iterator applies. If you want the Font Manager to
apply the font iterator only to the fonts accessible from your application use the
kFMLocalIterationScope constant. If you want the Font Manager to apply the font iterator to all
fonts registered with the system use the constants kFMGlobalIterationScope. See Activation
Contexts (page 1224) for more information on these constants.

ioIterator
A pointer to a structure of type FMFontIterator. On input, pass a pointer to an uninitialized structure.
On output, the structure’s contents may have been changed and may include references to other
data structures allocated by the system to maintain the structure’s state. When you no longer need
the font iterator, you should call the function FMDisposeFontIterator to release the auxiliary data
and memory allocated by the system.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
A font iterator is an opaque structure used by the Font Manager to maintain font information in the context
of the current application process. When the font iterator is initialized, it is not yet positioned on a font object.
You should not attempt to modify the contents of a font iterator.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Not available to 64-bit applications.

Declared In
Fonts.h

FMDeactivateFonts
Deactivates one or more fonts. (Deprecated in Mac OS X v10.4. Use ATSFontDeactivate (page 651) instead.)

OSStatus FMDeactivateFonts (
 const FSSpec *iFontContainer,
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions
);

Parameters
iFontContainer

A pointer to the file specification of the file that contains the font data you want to deactivate. You
can specify a directory or an individual font file.

iFilter
A pointer to a filter specification. This parameter is currently reserved for future use, so you should
pass NULL.

iRefCon
An arbitrary 32-bit value specified by your application. This parameter is currently reserved for future
use, so you should pass NULL.

iOptions
A value that specifies the scope to which the function applies. This parameter is currently reserved
for future use, so you should pass NULL.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMDisposeFontFamilyInstanceIterator
Disposes of a font family instance iterator. (Deprecated in Mac OS X v10.4.)

1176 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OSStatus FMDisposeFontFamilyInstanceIterator (
 FMFontFamilyInstanceIterator *ioIterator
);

Parameters
ioIterator

A pointer to a font family instance iterator you created with the function
FMCreateFontFamilyInstanceIterator (page 1173). If you try to use the font family instance
iterator after disposing of its contents through this function, the Font Manager returns an error code
to your application.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMDisposeFontFamilyIterator
Disposes of the contents of a font family iterator. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyIteratorRelease (page 658) instead.)

OSStatus FMDisposeFontFamilyIterator (
 FMFontFamilyIterator *ioIterator
);

Parameters
ioIterator

A pointer to a font family iterator you created with the functionFMCreateFontFamilyIterator (page
1174). If you try to use the font family iterator after disposing of its contents through this function, the
Font Manager returns an error code to your application.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMDisposeFontIterator
Disposes of a font iterator. (Deprecated in Mac OS X v10.4. Use ATSFontIteratorRelease (page 673)
instead.)

Functions 1177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OSStatus FMDisposeFontIterator (
 FMFontIterator *ioIterator
);

Parameters
ioIterator

A pointer to a font iterator you created with the function FMCreateFontIterator (page 1175). If you
try to use the font iterator after disposing of its contents through this function, the Font Manager
returns an error code to your application.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMFontGetCGFontRefFromFontFamilyInstance
Obtains the Quartz font associated with a typeface from a QuickDraw font family.

OSStatus FMFontGetCGFontRefFromFontFamilyInstance (
 FMFontFamily iFontFamily,
 FMFontStyle iStyle,
 CGFontRef *oFont,
 FMFontStyle *oStyle
);

Parameters
iFontFamily

A QuickDraw font family.

iStyle
A QuickDraw font style.

oFont
A pointer to a Quartz font reference. On output, points to the Quartz font reference for the specified
font family and style. You are responsible for allocating the memory for the Quartz font reference.

oStyle
On output, a pointer to an intrinsic font style. If a font object isn’t found that matches the font family
reference and font style you specify, the function returns the QuickDraw style that matches most
closely.

Return Value
A result code. See “Font Manager Result Codes” (page 1230). If a font reference and intrinsic style are not found,
the function returns a value of kFMInvalidFontErr.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

1178 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Declared In
Fonts.h

FMGetATSFontFamilyRefFromFontFamily
Obtains the ATS font family reference associated with a font family object. (Deprecated in Mac OS X v10.4.)

ATSFontFamilyRef FMGetATSFontFamilyRefFromFontFamily (
 FMFontFamily iFamily
);

Parameters
iFamily

A font family reference.

Return Value
The ATSFontFamilyRef associated with the font family object.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetATSFontRefFromFont
Obtains the ATS font reference associated with a font object.

ATSFontRef FMGetATSFontRefFromFont (
 FMFont iFont
);

Parameters
iFont

A font reference.

Return Value
The ATSFontRef associated with the font object.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontContainer
Obtains the file that contains data for a font. (Deprecated in Mac OS X v10.4. Use
ATSFontGetContainer (page 662) instead.)

Functions 1179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OSStatus FMGetFontContainer (
 FMFont iFont,
 FSSpec *oFontContainer
);

Parameters
iFont

A font reference.

oFontContainer
On output, a pointer to the file specification of the file that contains the font data.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
You can pass the file specification returned by this function to the Resource Manager or File Manager to
obtain the actual font data. However, if the font is an LWFN-class font, the outline data is located in a separate
file from the font suitcase. The function FMGetFontContainer obtains the font suitcase. Your application
is responsible for finding the individual outline files.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontContainerFromFontFamilyInstance
Obtains the font container associated with a font family instance. (Deprecated in Mac OS X v10.4. Use
ATSFontGetContainer (page 662) instead.)

OSStatus FMGetFontContainerFromFontFamilyInstance (
 FMFontFamily iFontFamily,
 FMFontStyle iStyle,
 FMFontSize iFontSize,
 FSSpec *oFontContainer
);

Parameters
iFontFamily

A font family reference for the font family whose container you want to obtain. You must pass a valid
font family.

iStyle
The font style of the font family whose container you want to obtain. You must pass a valid font style.

iFontSize
The font size of the font family whose container you want to obtain. You must pass a valid font size.

oFontContainer
On output, a pointer to a file specification that specifies the name and location of the font container.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

1180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFamilyFromATSFontFamilyRef
Obtains the font family associated with an ATS font family reference. (Deprecated in Mac OS X v10.4.)

FMFontFamily FMGetFontFamilyFromATSFontFamilyRef (
 ATSFontFamilyRef iFamily
);

Parameters
iFamily

An ATS font family reference.

Return Value
The font family reference associated with the specified ATS font family reference.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFamilyFromName
Returns the font family reference associated with a standard QuickDraw name. (Deprecated in Mac OS X
v10.4. Use ATSFontFamilyFindFromName (page 652) instead.)

FMFontFamily FMGetFontFamilyFromName (
 ConstStr255Param iName
);

Parameters
iName

A QuickDraw font family name.

Return Value
A font family reference. The function returns kInvalidFontFamily if it cannot find a matching font family.
See the ATS Types documentation for a description of the FMFontFamily data type.

Discussion
This function is a replacement for the GetFNum (page 1197) function. You should use the function
FMGetFontFamilyFromName instead of the function GetFNum to assure your application supports font
formats other than the resource fork TrueType and PostScript Type 1 fonts.

Functions 1181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFamilyGeneration
Obtains the generation count of a font family. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyGetGeneration (page 654) instead.)

OSStatus FMGetFontFamilyGeneration (
 FMFontFamily iFontFamily,
 FMGeneration *oGeneration
);

Parameters
iFontFamily

A font family reference.

oGeneration
On output, a pointer to the generation count for the font family associated with the font family
reference.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFamilyInstanceFromFont
Finds the font family reference and standard QuickDraw style associated with a font. (Deprecated in Mac OS
X v10.4.)

OSStatus FMGetFontFamilyInstanceFromFont (
 FMFont iFont,
 FMFontFamily *oFontFamily,
 FMFontStyle *oStyle
);

Parameters
iFont

A font reference.

1182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

oFontFamily
A pointer to a font family reference. On output, points to the font family reference associated with
the specified font. You are responsible for allocating the memory for the font family reference.

oStyle
A pointer to a font style. On output, points to the font style associated with the specified font. You
are responsible for allocating the memory for the font style.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
A font can be a member of more than one font family. This means if you call the function
FMGetFontFromFontFamilyInstance (page 1187) and then call the function
FMGetFontFamilyInstanceFromFont, you will not necessarily get the font family reference you supplied
when you called FMGetFontFromFontFamilyInstance.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFamilyName
Obtains the font family name associated with a font family reference. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyGetName (page 654) instead.)

OSStatus FMGetFontFamilyName (
 FMFontFamily iFontFamily,
 Str255 oName
);

Parameters
iFontFamily

A font family reference.

oName
On output, the string contains the QuickDraw font family name. If the function does not find a name,
it returns an empty string and a result code of kFMInvalidFontFamilyErr.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
This function is a replacement for the GetFontName (page 1198) function. You should use the function
FMGetFontFamilyName instead of the function GetFontName to assure your application supports font
formats other than the resource fork TrueType and PostScript Type 1 fonts.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Declared In
Fonts.h

FMGetFontFamilyResource
Obtains the font family resource for a font family. (Deprecated in Mac OS X v10.4. Use
ATSFontGetFontFamilyResource (page 664) instead.)

OSStatus FMGetFontFamilyResource (
 FMFontFamily iFontFamily,
 FMFontStyle iFontStyle,
 FMFontSize iFontSize,
 ByteCount iBufferSize,
 void *ioBuffer,
 ByteCount *oSize
);

Parameters
iFontFamily

A value of type FMFontFamily that specifies the font family whose resource you want to obtain. You
must pass a valid font family.

iFontStyle
A value of type FMFontStyle that specifies the font style of the font family whose resource you want
to obtain. You must pass a valid font style.

iFontSize
A value of type FMFontSize that specifies the font size of the font family whose resource you want
to obtain. You must pass a valid font size.

iBufferSize
The size of the buffer (ioBuffer).

ioBuffer
A pointer to the buffer used to store a copy of the font family resource. On input, pass NULL if you
want to obtain only the length of the font family resource, not its contents.

oSize
On output, the actual size of the buffer.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
You should call the function FMGetFontFamilyResource twice. First, to get the length of the font family
resource. Then after you allocate a buffer (ioBuffer) of the appropriate size, call the function a second time
to obtain the contents of the font family resource.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMGetFontFamilyTextEncoding
Obtains the text encoding used by a font family. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyGetEncoding (page 653) instead.)

OSStatus FMGetFontFamilyTextEncoding (
 FMFontFamily iFontFamily,
 TextEncoding *oTextEncoding
);

Parameters
iFontFamily

A font family reference.

oTextEncoding
On output, a pointer to the text encoding used by the font family associated with the font family
reference.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
This function is a replacement for the Script Manager function FontToScript. You should use the function
FMGetFontFamilyTextEncoding instead of the function FontToScript to ensure your application
supports font formats other than the resource fork TrueType and PostScript Type 1 fonts. Unlike the
FontToScript function, the state of the font force flag is ignored and the script system of the font family
is not mapped to zero even if the script system is disabled in the current application process.

Once you have obtained the text encoding, you can use Text Encoding Converter Manager function
RevertTextEncodingToScriptInfo to extract the script as follows:

status = FMGetFontFamilyTextEncoding (myFontFamily, &myTextEncoding)

status = RevertTextEncodingToScriptInfo (myTextEncoding, &myScriptCode);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFormat
Obtains the format identifier of a font. (Deprecated in Mac OS X v10.4.)

OSStatus FMGetFontFormat (
 FMFont iFont,
 FourCharCode *oFormat
);

Parameters
iFont

A font reference.

Functions 1185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

oFormat
On output, a pointer to a four-character-code that represents the format identifier of the font. See
the discussion that follows for information on format identifiers.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
A format identifier is a four-character-code, assigned to a font by a font vendor, that identifies the format of
a font. Some of the identifiers currently supported in the Mac OS are:

 ■ 'true' TrueType fonts use the 32-bit hexadecimal value 0x00010000.

 ■ 'LWFN' PostScript Type 1 fonts (“LaserWriter Font”) consist of two parts: a 'FOND' resource (contained
in a font or font suitcase resource file) whose style mapping table references PostScript font data for
each typeface (style), stored in separate file. The separate data files have names derived from the PostScript
name of the typeface.

 ■ 'typ1' PostScript Type 1 fonts are housed in packages that have an 'sfnt' format (OpenType).

 ■ 'OTTO' PostScript compact font format (CFF) font data is housed in a package that has an 'sfnt' format
(OpenType).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontFromATSFontRef
Obtains the font object associated with an ATS font reference.

FMFont FMGetFontFromATSFontRef (
 ATSFontRef iFont
);

Parameters
iFont

An ATS font reference.

Return Value
The font reference associated with the specified ATS font reference.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Fonts.h

1186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMGetFontFromFontFamilyInstance
Obtains the font reference associated with a standard QuickDraw style and font family. (Deprecated in Mac
OS X v10.4. Use CTFontCreateWithQuickdrawInstance instead.)

OSStatus FMGetFontFromFontFamilyInstance (
 FMFontFamily iFontFamily,
 FMFontStyle iStyle,
 FMFont *oFont,
 FMFontStyle *oIntrinsicStyle
);

Parameters
iFontFamily

A font family reference.

iStyle
A font style.

oFont
A pointer to a font reference. On output, points to the font reference for the specified font family and
style. You are responsible for allocating the memory for the font reference.

oIntrinsicStyle
On output, a pointer to an intrinsic font style. If a font object isn’t found that matches the font family
reference and font style you specify, the function returns the QuickDraw style that matches most
closely.

Return Value
A result code. See “Font Manager Result Codes” (page 1230). If a font reference and intrinsic style are not found,
the function returns a value of kFMInvalidFontErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontGeneration
Obtains the generation count of a font. (Deprecated in Mac OS X v10.4. Use ATSFontGetGeneration (page
665) instead.)

OSStatus FMGetFontGeneration (
 FMFont iFont,
 FMGeneration *oGeneration
);

Parameters
iFont

A font reference.

oGeneration
On output, a pointer to a value that specifies the generation count of the font.

Functions 1187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontTable
Retrieves all or part of a data table for a font. (Deprecated in Mac OS X v10.4. Use ATSFontGetTable (page
668) or CTFontCopyTable instead.)

OSStatus FMGetFontTable (
 FMFont iFont,
 FourCharCode iTag,
 ByteOffset iOffset,
 ByteCount iLength,
 void *iBuffer,
 ByteCount *oActualLength
);

Parameters
iFont

A font reference.

iTag
A tag that identifies the data table for a font.

iOffset
An offset to font table data you want to retrieve. The offset is relative to the beginning of the data
table and is zero-based.

iLength
The size of the data buffer (ioBuffer) you allocate.

iBuffer
A pointer to the buffer used to store a copy of the font table. On input, pass NULL if you want to
obtain only the length of the table, not its contents.

oActualLength
On output, the actual length of the font table.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
You should call the function FMGetFontTable twice. First, call it to retrieve the length of the font table.
Then, after you’ve allocated space for the iBuffer parameter, call the function a second time to obtain the
contents of the font table.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Not available to 64-bit applications.

Declared In
Fonts.h

FMGetFontTableDirectory
Obtains the table directory for a font. (Deprecated in Mac OS X v10.4.)

OSStatus FMGetFontTableDirectory (
 FMFont iFont,
 ByteCount iLength,
 void *iBuffer,
 ByteCount *oActualLength
);

Parameters
iFont

A font reference.

iLength
The number of bytes in the buffer used to store a copy of the font table directory associated with the
font.

iBuffer
A pointer to the buffer used to store a copy of the font table directory. On input, pass NULL if you
want to obtain only the length of the table directory, not its contents.

oActualLength
On output, the length of the font table directory.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
You should call the function FMGetFontTableDirectory twice. First, call it to retrieve the length of the
font table directory. Then, after you’ve allocated space for the iBuffer parameter, call the function a second
time to obtain the contents of the table directory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetGeneration
Retrieves the value of the generation count. (Deprecated in Mac OS X v10.5. Use ATSGetGeneration (page
678) instead.)

Functions 1189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMGeneration FMGetGeneration (
 void
);

Return Value
The generation count. See the ATS Types documentation for a description of the FMGeneration data type.

Discussion
Any operation that adds, deletes, or modifies one or more font families or fonts triggers an update of the
global generation count. You can use this function in conjunction with the iteration functions to identify
changes made to the font database.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetNextFont
Obtains the next font reference. (Deprecated in Mac OS X v10.4. Use ATSFontIteratorNext (page 672)
instead.)

OSStatus FMGetNextFont (
 FMFontIterator *ioIterator,
 FMFont *oFont
);

Parameters
ioIterator

A pointer to a font iterator you created using the function FMCreateFontIterator.

oFont
A pointer to a font reference. On output, points to the next font reference obtained by the font iterator.
You are responsible for allocating the memory for the font reference.

Return Value
A result code. See “Font Manager Result Codes” (page 1230). If there are no more font objects to get, the
function FMGetNextFont returns the result code kFMIterationCompleted.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetNextFontFamily
Obtains the next font family reference. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyIteratorNext (page 657) instead.)

1190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OSStatus FMGetNextFontFamily (
 FMFontFamilyIterator *ioIterator,
 FMFontFamily *oFontFamily
);

Parameters
ioIterator

A pointer to a font family iterator you created using the function FMCreateFontFamilyIterator.

oFontFamily
A pointer to a font family reference. On output, points to the font family reference obtained by the
iterator. You are responsible for allocating memory for the font family reference.

Return Value
A result code. See “Font Manager Result Codes” (page 1230). If there are no more font family references to get,
the function FMGetNextFontFamily returns the result code kFMIterationCompleted.

Discussion
If any changes are made to the font database while you are using the font family iterator, the iterator is
invalidated and the function FMGetNextFontFamily returns the error kFMIteratorScopeModified. To
remedy this error, your application must either restart or cancel the enumeration by calling the
FMResetFontFamilyIterator (page 1193) or theFMDisposeFontFamilyIterator (page 1177) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMGetNextFontFamilyInstance
Obtains the next instance associated with a font family reference. (Deprecated in Mac OS X v10.4.)

OSStatus FMGetNextFontFamilyInstance (
 FMFontFamilyInstanceIterator *ioIterator,
 FMFont *oFont,
 FMFontStyle *oStyle,
 FMFontSize *oSize
);

Parameters
ioIterator

A pointer to a font family instance iterator you created with the function
FMCreateFontFamilyInstanceIterator (page 1173).

oFont
A pointer to a font reference. On output, points to the font reference obtained by the iterator. You
are responsible for allocating the memory for the font reference.

oStyle
A pointer to a font style. On output, points to the font style obtained by the iterator. You are responsible
for allocating the memory for the font style.

Functions 1191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

oSize
A pointer to a font size. On output, points to the font size obtained by the iterator. You are responsible
for allocating the memory for the font size.

Return Value
A result code. See “Font Manager Result Codes” (page 1230). If there is no more font family information to
retrieve, the function FMGetNextFontFamlyInstance returns the status code kFMIterationCompleted.

Discussion
Instances are not necessarily retrieved in the order they are listed in a Font Association Table.

If any changes are made to the font database while your application is using the font family instance iterator,
the iterator is invalidated and the function FMGetNextFontFamilyInstance (page 1191) returns the error
kFMIteratorScopeModified. To remedy this error, your application must either call the
FMResetFontFamilyInstanceIterator (page 1192) or the
FMDisposeFontFamilyInstanceIterator (page 1176) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FMResetFontFamilyInstanceIterator
Resets the a font family instance iterator to the beginning of the iteration for the specified font family.
(Deprecated in Mac OS X v10.4.)

OSStatus FMResetFontFamilyInstanceIterator (
 FMFontFamily iFontFamily,
 FMFontFamilyInstanceIterator *ioIterator
);

Parameters
iFontFamily

A font family reference.

ioIterator
A pointer to a font family instance iterator you created with the function
FMCreateFontFamilyInstanceIterator.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
Once you have created a font family instance iterator, you can reuse it by calling the function
FMResetFontFamilyInstanceIterator. This function sets the iFontFamily parameter to the new font
family object you specify, and repositions the iterator so it is ready to get the first font family instance when
you call the function FMGetNextFontFamilyInstance (page 1191).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Not available to 64-bit applications.

Declared In
Fonts.h

FMResetFontFamilyIterator
Resets a font family iterator to the beginning of the iteration. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyIteratorReset (page 658) instead.)

OSStatus FMResetFontFamilyIterator (
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions,
 FMFontFamilyIterator *ioIterator
);

Parameters
iFilter

A pointer to a filter specification. Pass NULL if you want to access all font family objects within the
scope of your iteration. Otherwise, you can use this parameter to restrict the scope of the iteration
to the font families that match a generation count or criteria you specify in a custom filter function.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. If you are not using a custom filter
function, pass NULL.

iOptions
A value that specifies the scope to which the font family iterator applies. If you want the Font Manager
to apply the font family iterator only to the fonts accessible from your application use the
kFMLocalIterationScope constant. If you want the Font Manager to apply the font family iterator
to all fonts registered with the system use the constant kFMGlobalIterationScope.

i0Iterator
A pointer to a font family iterator you created with the function FMCreateFontFamilyIterator.
On output, the font family iterator is reset.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
Once you have created a font family iterator, you can reuse it by calling the function
FMResetFontFamilyIterator (page 1193). This function sets the parameters to the new values you specify,
and repositions the iterator so it is ready to get the first font family reference when you call the function
FMGetNextFontFamily (page 1190).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

Functions 1193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMResetFontIterator
Resets a font iterator to the beginning of the iteration. (Deprecated in Mac OS X v10.4. Use
ATSFontIteratorReset (page 674) instead.)

OSStatus FMResetFontIterator (
 const FMFilter *iFilter,
 void *iRefCon,
 OptionBits iOptions,
 FMFontIterator *ioIterator
);

Parameters
iFilter

A pointer to font filter specification. Pass NULL if you want to access all font objects within the scope
of your iteration. Otherwise, you can use this parameter to restrict the scope of the iteration to font
information that matches a technology, font container, or criteria you specify in a custom filter function.
Pass the filter selector constant kFMFontTechnologyFilterSelector to select a font technology
filter, the constant kFMFontContainerFilterSelector to select a font container filter, or the
constant kFMFontCallbackFilterSelector to select a custom filter. See FMFilterSelector in
the ATS Types Reference for more information on these constants.

iRefCon
An arbitrary 32-bit value specified by your application. If you are using a custom filter function, you
can use this parameter to pass data to the custom filter function. If are not using a custom filter
function, pass NULL.

iOptions
A value that specifies the scope to which the font iterator applies. If you want the Font Manager to
apply the font iterator only to the fonts accessible from your application use the
kFMLocalIterationScope constant. If you want the Font Manager to apply the font iterator to all
fonts registered with the system use the constant kFMGlobalIterationScope.

ioIterator
A pointer to a font iterator you created with the function FMCreateFontIterator (page 1175). On
output, the font iterator is not positioned on a font object, and any information about font objects
that were returned previously in the font iterator is no longer available.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
Once you have created a font iterator, you can reuse it by calling the function FMResetFontIterator (page
1194). This function sets the parameters to the new values you specify, and repositions the iterator so it is ready
to get the first font object when you call the function FMGetNextFont (page 1190).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

FMSwapFont
Returns a pointer to the font output structure for a specified font. (Deprecated in Mac OS X v10.4. There is
no replacement function.)

FMOutPtr FMSwapFont (
 const FMInput *inRec
);

Parameters
inRec

A pointer to the font input structure for which you want to obtain font output information. A font
input structure contains the font family ID, the style requested, scaling factors, and other information
that specifies the characteristics of the font that is requested.

Return Value
A pointer to a font output structure (FMOutput). The font output structure contains a handle to the font
resource for the specified input font, along with information about the font, such as the ascent, descent, and
leading measurements.

Discussion
The function FMSwapFont is typically called by QuickDraw and other parts of the system software to access
font handles. QuickDraw calls the FMSwapFont function every time a QuickDraw text function is used.

In most cases you don’t need to call this function. If you want to call the FMSwapFont function to get a handle
to a font resource or information about a font, you must first create a font input structure and fill it with the
appropriate information. You can use the pointer returned by FMSwapFont to access the font output structure.
You cannot assume that the font resource pointed to by the fontHandle field of the font output structure
returned by this function is of any particular type, such as 'NFNT' or 'sfnt'. If you need to access specific
information in the font resource, call the Resource Manager function GetResInfo with the handle returned
in the font output structure to determine the font resource type.

The pointer to the font output structure returned by the function FMSwapFont points to a structure allocated
in low memory by the Font Manager. The same structure is reused for each call made to FMSwapFont. Do
not free the memory allocated for this structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

FontMetrics
Obtains fractional measurements for the font, size, and style specified in the current graphics port. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

Functions 1195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

void FontMetrics (
 FMetricRecPtr theMetrics
);

Parameters
theMetrics

A pointer to a font metrics structure. On output, the structure contains the font measurement
information in fractional values.

Discussion
The FontMetrics function obtains measurements for the ascent, descent, leading, and width of the largest
glyph in the font for the font, size, and style specified in the current graphics port.

The font metrics structure (of data type FMetricRec) contains a handle to the global width table, which in
turn contains a handle to the associated font family resource for the current font (the font in the current
graphics port). It also contains the values of four measurements for the current font.

The FontMetrics function is similar to the QuickDraw function GetFontInfo except that FontMetrics
returns fractional values for greater accuracy in high-resolution printing. The FontMetrics function also
does not take into account any additional widths that are added by QuickDraw when it applies styles to the
glyphs in a font.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

GetAppFont
Returns the font family ID of the current application font. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

short GetAppFont (
 void
);

Return Value
The font family ID of the current application font. This is the font family ID that has been mapped to 1 by the
system software.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

GetDefFontSize
Determines the default size of the system font. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

short GetDefFontSize (
 void
);

Return Value
The the default font size of the system font.

Discussion
You can determine the preferred size for either the system font or the application font of any enabled script
system by calling the Script Manager function GetScriptManagerVariable.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

GetFNum
Obtains the font family ID for a specified font family name. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyFindFromName (page 652) instead.)

Not recommended.

void GetFNum (
 ConstStr255Param name,
 short *familyID
);

Parameters
name

The font family name.

familyID
On output, a pointer to the font family ID for the font family specified in name. If the font specified
in the parameter name does not exist, the font family ID contains 0.

Carbon Porting Notes

You should use the function FMGetFontFamilyFromName instead of the function GetFNum.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Functions 1197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Declared In
Fonts.h

GetFontName
Obtains the name of a font family that has a specified family ID number. (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyGetName (page 654) instead.)

Not recommended.

void GetFontName (
 short familyID,
 Str255 name
);

Parameters
familyID

The font family ID.

name
On output, this parameter contains the font family name for the font family specified in familyID.
If the font specified in the familyID parameter does not exist, name contains an empty string.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

GetOutlinePreferred
Obtains the current preference for whether outline or bitmapped fonts are returned when the Font Manager
receives a font request. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Boolean GetOutlinePreferred (
 void
);

Return Value
The value of the Font Manager’s current preference for outline or bitmapped fonts. If GetOutlinePreferred
returns TRUE, then the Font Manager will return an outline font when both an outline font and a bitmapped
font are available for a particular request. If GetOutlinePreferred returns FALSE, then the Font Manager
will return the bitmapped font when both types are available. See the Debugger Services documentation
for a description of the Boolean data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

GetPreserveGlyph
Determines whether the Font Manager preserves the shapes of glyphs from outline fonts. (Deprecated in
Mac OS X v10.4. There is no replacement function.)

Boolean GetPreserveGlyph (
 void
);

Return Value
A Boolean value that indicates whether the Font Manager preserves the shapes of glyphs from outline fonts.
Your application can set the value of this variable with the SetPreserveGlyph function. If
GetPreserveGlyph returns TRUE, the Font Manager preserves glyph shapes; if GetPreserveGlyph returns
FALSE, then the Font Manager scales glyphs to fit between the ascent and descent lines for the font in use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

GetSysFont
Obtains the font family ID of the current system font. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

short GetSysFont (
 void
);

Return Value
The current value of the font family ID of the current system font. This is the font family ID that has been
mapped to 0 by the system software.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

IsAntiAliasedTextEnabled
Checks whether antialiased text is enabled. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Functions 1199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Boolean IsAntiAliasedTextEnabled (
 SInt16 *oMinFontSize
);

Parameters
oMinFontSize

On output, points to the minimum font size for which antialiasing is enabled.

Return Value
Returns true if antialiased text is enabled; false otherwise.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

IsOutline
Determines whether the specified scaling factors will cause the Font Manager to choose an outline font for
the current graphics port. (Deprecated in Mac OS X v10.4. There is no replacement function.)

Boolean IsOutline (
 Point numer,
 Point denom
);

Parameters
numer

The numerators of the vertical and horizontal scaling factors. The numer parameter is of type Point,
and contains two fields: h (the numerator of the ratio for horizontal scaling) and v (the numerator of
the ratio for vertical scaling).

denom
The denominators of the vertical and horizontal scaling factors. The denom parameter is of type Point,
and contains two fields: h (the denominator of the ratio for horizontal scaling) and v (the denominator
of the ratio for vertical scaling).

Return Value
Returns TRUE if the Font Manager will choose an outline font for the current graphics port.

Discussion
The Font Manager uses the font scaling factors specified in the numer and denom parameters as well as the
current preference (as set by the SetOutlinePreferred function) as criteria to choose which font to use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1200 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

OutlineMetrics
Obtains font measurements for a block of text to be drawn in a specified outline font. (Deprecated in Mac
OS X v10.4. There is no replacement function.)

OSErr OutlineMetrics (
 short byteCount,
 const void *textPtr,
 Point numer,
 Point denom,
 short *yMax,
 short *yMin,
 FixedPtr awArray,
 FixedPtr lsbArray,
 RectPtr boundsArray
);

Parameters
byteCount

The number of bytes in the block of text that you want measured.

textPtr
A pointer to the block of text that for which you want to obtain font measurements.

numer
The numerators of the vertical and horizontal scaling factors. The numer parameter is of type Point,
and contains two fields: h (the numerator of the ratio for horizontal scaling) and v (the numerator of
the ratio for vertical scaling). The Font Manager applies these scaling factors to the current font when
calculating the measurements for glyphs in the block of text.

denom
The denominators of the vertical and horizontal scaling factors. The denom parameter is of type Point,
and contains two fields: h (the denominator of the ratio for horizontal scaling) and v (the denominator
of the ratio for vertical scaling). The Font Manager applies these scaling factors to the current font
when calculating the measurements for glyphs in the block of text.

yMax
On output, a pointer to the maximum y-value for the text. Pass NULL in this parameter if you don’t
want this value returned.

yMin
On output, a pointer to the minimum y-value for the text. Pass NULL in this parameter if you don’t
want this value returned.

awArray
A pointer to an array. On output the array is filled with the advance width measurements for the
glyphs being measured. These measurements are in pixels, based on the point size and font scaling
factors of the current font. There is an entry in this array for each glyph that is being measured.

The awArray parameter is of type FixedPtr. The FixedPtr data type is a pointer to an array, and
each entry in the array is of type Fixed, which is 4 bytes in length. Multiply byteCount by 4 to
calculate the memory you need in bytes.

If the FractEnable global variable has been set to TRUE through the SetFractEnable function,
the values in awArray have fractional character widths. If FractEnable has been set to FALSE, the
Font Manager returns integer values for the advance widths, with 0 in the decimal part of the values.

Functions 1201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

lsbArray
A pointer to an array. On output the array is filled with the left-side bearing measurements for the
glyphs being measured. The measurements are in pixels, based on the point size of the current font.
There is an entry in this array for each glyph that is being measured.

The lsbArray parameter is of type FixedPtr. The FixedPtr data type is a pointer to an array, and
each entry in the array is of type Fixed, which is 4 bytes in length. Multiply byteCount by 4 to
calculate the memory you need in bytes.

The fractional portion of left-side bearing values are retained.

boundsArray
A pointer to an array. On output the array is filled with the bounding boxes for the glyphs being
measured. Bounding boxes are the smallest rectangles that fit around the pixels of the glyph. There
is an entry in this array for each glyph that is being measured.

The coordinate system used to describe the bounding boxes is in pixel units, centered at the glyph
origin, and with a vertical positive direction upwards. This is the opposite of the QuickDraw vertical
orientation.

The boundsArray parameter is of type RectPtr. The RectPtr data type is a pointer to QuickDraw’s
Rect data type, which is 8 bytes in length. Multiply byteCount by 8 to calculate the memory you
need in bytes. Allocate the memory needed for the array and pass a pointer to the array in the
boundsArray parameter.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Discussion
The OutlineMetrics function computes the maximum y-value, minimum y-value, advance widths, left-side
bearings, and bounding boxes for a block of text. It uses the font, size, and style specified in the current
graphics port. You can use these measurements when laying out text. You may need to adjust line spacing
to accommodate exceptionally large glyphs.

The OutlineMetrics function works for outline fonts only and is the preferred method for measuring text
that is drawn with an outline font.

When you are using OutlineMetrics to compute advance width values, left-side bearing values, or bounding
boxes, you need to bear in mind that when a text block contains 2-byte characters, not every byte in the
awArray, lsbArray, and boundsArray structures is used. Each of these arrays is indexed by the glyph
index; thus, if you have five characters in a string, only the first five entries in each array contains a value. Call
the Script Manager function CharByte to determine how many characters there are in the text block, and
ignore the unused array entries (which occur at the end of each array).

If you don’t want OutlineMetrics to compute one of these three values, pass NULL in the applicable
parameter. Otherwise, allocate the amount of memory needed for the array and pass a pointer to it in this
parameter.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

1202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

QDTextBounds
Obtains a rectangle that specifies the bounds of QuickDraw text. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

void QDTextBounds (
 short byteCount,
 const void *textAddr,
 Rect *bounds
);

Parameters
byteCount

The number of bytes in the buffer that contains the text whose bounds you want to obtain.

textAddr
A pointer to a buffer that contains the text whose bounds you want to obtain. You must allocate this
buffer.

bounds
On output, points to a rectangle that specifies the bounds of QuickDraw text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

RealFont
Determines whether a font is available or is intended for use in a specified size. (Deprecated in Mac OS X
v10.4. There is no replacement function.)

Boolean RealFont (
 short fontNum,
 short size
);

Parameters
fontNum

The font family ID.

size
The font size requested.

Return Value
Returns TRUE if the requested size of the font is available. The function RealFont first checks for a bitmapped
font from the specified family. If one is not available, RealFont checks next for an outline font. If neither
kind of font is available, RealFont returns FALSE.

Functions 1203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Discussion
If an outline font exists for the requested font family, RealFont normally considers the font to be available
in any requested size. However, the font designer can include instructions in the font that outlines should
not be used at certain point sizes, in which case the RealFont function considers the font unavailable and
returns FALSE. The Font Manager determines whether the size is valid by testing the value of the smallest
readable size element of the font family header table.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

SetAntiAliasedTextEnabled
Enables or disables antialiased text for an application. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSStatus SetAntiAliasedTextEnabled (
 Boolean iEnable,
 SInt16 iMinFontSize
);

Parameters
iEnable

A Boolean value. Pass true to enable antialiased text or false to disable it.

iMinFontSize
A integer of type SInt16 that specifies the minimum font size to which antialiasing should be enabled.

Return Value
A result code. See “Font Manager Result Codes” (page 1230).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

SetFractEnable
Enables or disables fractional glyph widths. (Deprecated in Mac OS X v10.4. There is no replacement function.)

1204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

void SetFractEnable (
 Boolean fractEnable
);

Parameters
fractEnable

Specifies whether fractional widths or integer widths are to be used to determine glyph measurements.
A value of TRUE indicates fractional glyph widths; a value of FALSE indicates integer glyph widths.

The SetFractEnable function assigns the value that you specify in the fractEnable parameter
to the global variable FractEnable.

Discussion
The SetFractEnable function establishes whether or not the Font Manager provides fractional glyph widths
to QuickDraw, which then uses them for advancing the pen during text drawing.

The Font Manager defaults to integer widths to ensure compatibility with existing applications. When fractional
glyph widths are enabled, the Font Manager can determine the locations of glyphs more accurately than is
possible with integer widths.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

SetFScaleDisable
Enables or disables the computation of font scaling factors by the Font Manager for bitmapped glyphs.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

void SetFScaleDisable (
 Boolean fscaleDisable
);

Parameters
fscaleDisable

Specifies whether bitmapped fonts are to be scaled. A value of TRUE indicates that font scaling is
disabled; a value of FALSE indicates that font scaling is enabled.

If you set the fscaleDisable parameter to TRUE, the Font Manager disables font scaling, which
means it responds to a request for a font size that is not available by computing font scaling factors
of 1/1 and returning a smaller, unscaled bitmapped font with the widths of the requested size. If you
set the fscaleDisable parameter to FALSE, the Font Manager computes scaling factors for
bitmapped fonts.

Discussion
QuickDraw performs the actual scaling of glyph bitmaps for bitmapped fonts by using the font scaling factors
computed and returned by the Font Manager.

When font scaling is enabled, the Font Manager can scale a bitmapped glyph that is present in the System
file to imitate the appearance of a bitmapped glyph in another point size that is not present. By default, the
Font Manager scales fonts to ensure compatibility with existing applications.

Functions 1205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

SetOutlinePreferred
Sets the preference for whether to use bitmapped or outline fonts when both kinds of fonts are available.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

void SetOutlinePreferred (
 Boolean outlinePreferred
);

Parameters
outlinePreferred

Specifies whether the Font Manager chooses an outline font or a bitmapped font when both are
available to fill a font request. A value of TRUE indicates an outline font; a value of FALSE indicates a
bitmapped font.

If you want the Font Manager to choose outline fonts over any bitmapped font counterparts, set the
outlinePreferred parameter to TRUE. If you want it to choose bitmapped fonts, set the
outlinePreferred parameter to FALSE.

Discussion
If an outline font and a bitmapped font are both available for a font request, the default behavior for the
Font Manager is to choose the bitmapped font, in order to maintain compatibility with documents that were
created on computer systems on which outline fonts were not available. The SetOutlinePreferred function
sets the Font Manager’s current preference for either bitmapped or outline fonts when both are available.

If only outline fonts are available, the Font Manager chooses them regardless of the value of the
outlinePreferred parameter. If only bitmapped fonts are available, they are chosen. The Font Manager
chooses bitmapped versus outline fonts on a size basis, before it takes stylistic variations into account, which
can lead to unexpected results.

The preference you set is valid only during the current session with your application. The outlinePreferred
parameter does not set a global variable.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

SetPreserveGlyph
Temporarily changes the default behavior of the Font Manager, so that it does not scale oversized glyphs.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

1206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

void SetPreserveGlyph (
 Boolean preserveGlyph
);

Parameters
preserveGlyph

Specifies whether or not glyphs from an outline font are scaled to fit between the ascent and descent
lines. If you set the value of the preserveGlyph parameter to TRUE, the measurements of all glyphs
are preserved, which means that your application may have to alter the leading between lines in a
document if some of the glyphs extend beyond the ascent or descent lines. If you set the value of
the preserveGlyph parameter to FALSE, all glyphs are scaled to fit between the ascent and descent
lines.

Discussion
The SetPreserveGlyph function establishes how the Font Manager treats glyphs that do not fit between
the ascent and descent lines for the current font. The default behavior for the Font Manager is to scale a
glyph from an outline font so that it fits between the ascent and descent lines; however, this alters the
appearance of the glyph.

You can determine the current behavior of the Font Manager in this regard by calling the GetPreserveGlyph
function. To ensure that documents have the same appearance whenever they are opened, you need to call
GetPreserveGlyph and save the value that it returns with your documents and restore it each time a
document is displayed by your application.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Fonts.h

Data Types

Font and Font Family Data Structures

FMFontContainer
Represents a font container.

typedef UInt32 FMFontContainer;

FMFontInstance
Contains information for a font instance.

Data Types 1207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

struct FMFontInstance {
 FMFont font;
 UInt32 fontInstanceIndex;
};

Fields
font

A font reference.

fontInstanceIndex
The index associated with the font.

FMFontSpecification
Contains a font family and style.

struct FMFontSpecification {
 FMFontFamily fontFamily;
 SInt16 style;
};

Fields
fontFamily

A font family reference.

style
A font style.

FontFamilyID
Represents the ID of a font family.

typedef FMFontFamily FontFamilyID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

Font Input and Output Structures

FMInput
Contains information about a specific font.

1208 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

struct FMInput {
 SInt16 family;
 SInt16 size;
 Style face;
 Boolean needBits;
 SInt16 device;
 Point numer;
 Point denom;
 float x;
 float y;
 float width;
 float height;
 CGPoint origin;
 CGSize size;
};

Fields
family

The font family ID.

size
The point size of the font.

face
The font style. The defined QuickDraw styles are bold, italic, underline, outline, shadow, condense,
and extend.

needBits
Indicates whether QuickDraw draws the glyphs. If QuickDraw does not draw the glyphs, as is the case
for measurement functions such as MeasureText, then the glyph bitmaps do not have to be read
or constructed. If QuickDraw draws the glyphs and the font is contained in a bitmapped font resource,
all of the information describing the font, including the bit image, is read into memory.

device
This is no longer used. The high-order byte contains the printer driver reference number as defined
in the old Printing Manager. The low-order byte is reserved.

numer
The numerators of the vertical and horizontal scaling factors. The numer field is of type Point and
contains two fields: h (the numerator of the ratio for horizontal scaling) and v (the numerator of the
ratio for vertical scaling).

denom
The denominators of the vertical and horizontal scaling factors. The denom field is of type Point and
contains two fields: h (the denominator of the ratio for horizontal scaling) and v (the denominator of
the ratio for vertical scaling).

Discussion
The font input structure, of data type FMInput, is used by QuickDraw when it requests a font from the Font
Manager. You can also use this data type when you request a font with the FMSwapFont (page 1195) function.

FMOutPtr
Defines a reference to a font output structure.

Data Types 1209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

typedef FMOutputPtr FMOutPtr;

Discussion
See FMOutput (page 1210).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FMOutput
Contains a handle to a font resource and measurement and display information about a specific font.

struct FMOutput {
 SInt16 errNum;
 Handle fontHandle;
 UInt8 boldPixels;
 UInt8 italicPixels;
 UInt8 ulOffset;
 UInt8 ulShadow;
 UInt8 ulThick;
 UInt8 shadowPixels;
 SInt8 extra;
 UInt8 ascent;
 UInt8 descent;
 UInt8 widMax;
 SInt8 leading;
 SInt8 curStyle;
 Point numer;
 Point denom;
};
typedef struct FMOutput FMOutput;

Fields
errNum

Reserved for use by Apple Computer, Inc.

fontHandle
A handle to the font resource. The font resource can be for either a bitmapped font or outline font
resource.

boldPixels
A value used by QuickDraw to modify how it applies the bold style on the screen and on raster printers.
Other display devices may handle styles differently.

italicPixels
A value used by QuickDraw to modify how it applies the italic style on the screen and on raster printers.
Other display devices may handle styles differently.

ulOffset
A value used by QuickDraw to modify how it applies the underline style on the screen and on raster
printers. Other display devices may handle styles differently.

ulShadow
A value used by QuickDraw to modify how it applies the underline shadow style on the screen and
on raster printers. Other display devices may handle styles differently.

1210 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

ulThick
A value used by QuickDraw to modify how it applies the thickness of the underline style on the screen
and on raster printers. Other display devices may handle styles differently.

shadowPixels
A value used by QuickDraw to modify how it applies the shadow style on the screen and on raster
printers. Other display devices may handle styles differently.

extra
The number of pixels by which the styles have widened each glyph.

ascent
The ascent measurement of the font. Any algorithmic styles or stretching that may be applied to the
font are not taken into account for this value.

descent
The descent measurement of the font. Any algorithmic styles or stretching that may be applied to
the font are not taken into account for this value.

widMax
The maximum width of the font. Any algorithmic styles or stretching that may be applied to the font
are not taken into account for this value.

leading
The leading assigned to the font. Any algorithmic styles or stretching that may be applied to the font
are not taken into account for this value.

curStyle
The actual style being made available for QuickDraw’s text drawing, as opposed to the requested
style.

numer
The numerators of the vertical and horizontal scaling factors. The numer parameter is of type Point,
and contains two fields: h (the numerator of the ratio for horizontal scaling) and v (the numerator of
the ratio for vertical scaling).

denom
The denominators of the vertical and horizontal scaling factors. The demon parameter is of type Point,
and contains two fields: h (the denominator of the ratio for horizontal scaling) and v (the denominator
of the ratio for vertical scaling).

Discussion
The font output structure, of data type FMOutput, contains a handle to a font and information about font
measurements. It is filled in by the Font Manager upon responding to a font request. You can request a font
using the FMSwapFont (page 1195) function.

The bold, italic, ulOffset, ulShadow, ulThick, and shadow values are all used to communicate to
QuickDraw how to modify the way it renders each stylistic variation. Each byte value is taken from the font
characterization table of the printer driver and is used by QuickDraw when it draws to a screen or raster
printer.

The ascent, descent, widMax, and leading values can all be different in this structure than the
corresponding values in the FontInfo structure that is produced by the GetFontInfo function in QuickDraw.
This is because GetFontInfo takes into account any algorithmic styles or stretching that QuickDraw performs,
while the Font Manager functions do not.

The numer and denom values are used to designate how font scaling is to be done. The values for these fields
in the font output structure can be different than the values specified in the font input structure.

Data Types 1211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FMOutputPtr
Defines a pointer to a font output structure.

typedef FMOutput* FMOutputPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

Font Measurements

FMetricRec
Contains font measurements.

struct FMetricRec {
 Fixed ascent;
 Fixed descent;
 Fixed leading;
 Fixed widMax;
 Handle wTabHandle;
};
typedef struct FMetricRec FMetricRec;

Fields
ascent

The measurement, in pixels, from the baseline to the ascent line of the font. You can determine the
line height, in pixels, by adding the values of the ascent, descent, and leading fields of the font
metrics structure.

descent
The measurement, in pixels, from the baseline to the descent line of the font.

leading
The measurement, in pixels, from the descent line to the ascent line below it.

widMax
The width, in pixels, of the largest glyph in the font.

wTabHandle
A handle to the global font width table.

1212 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Discussion
The font metrics structure (of data type FMetricRec) contains a handle to the global width table, which in
turn contains a handle to the associated font family resource for the current font (the font in the current
graphics port). It also contains the values of four measurements for the current font.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FMetricRecHandle
Defines a handle to a font metrics structure.

typedef FMetricRecPtr* FMetricRecHandle;

Discussion
See FMetricRec (page 1212).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FMetricRecPtr
Defines a pointer to a font metrics structure.

typedef FMetricRec* FMetricRecPtr;

Discussion
See FMetricRec (page 1212).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FontPointSize
Represents the point size of a font.

typedef FMFontSize FontPointSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

Data Types 1213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Deprecated Data Types

The following data structures referenced by the low memory global variables of the Font Manager are
deprecated in Mac OS X and CarbonLib 1.1. The low memory global variables are not shared between
processes and may result in inconsistencies compared to previous releases of the system software. Changes
made to the information contained in the low memory global variables, including any indirectly reference
width tables, font family records, and font records, are not reflected in the global state of the Font Manager
and may only be accessed through the font access and data management function of the Font Manager or
ATS.

AsscEntry
Contains the size and style for a specific font.

struct AsscEntry {
 SInt16 fontSize;
 SInt16 fontStyle;
 SInt16 fontID;
};

Fields
fontSize

A font point size.

fontStyle
A font style.

fontID
A font Resource ID.

Discussion
The font association entry structure is used in FontAssoc (page 1216).

FamRec
Contains format information for a font family resource.

1214 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

struct FamRec {
 SInt16 ffFlags;
 SInt16 ffFamID;
 SInt16 ffFirstChar;
 SInt16 ffLastChar;
 SInt16 ffAscent;
 SInt16 ffDescent;
 SInt16 ffLeading;
 SInt16 ffWidMax;
 SInt32 ffWTabOff;
 SInt32 ffKernOff;
 SInt32 ffStylOff;
 SInt16 ffProperty[9];
 SInt16 ffIntl[2];
 SInt16 ffVersion;
};

Fields
ffFlags

Flags for family.

ffFamID
Family ID number.

ffFirstChar
ASCII code of first character.

ffLastChar
ASCII code of last character.

ffAscent
Maximum ascent for 1-point font.

ffDescent
Maximum descent for 1-point font.

ffLeading
Maximum leading for 1-point font.

ffWidMax
Maximum glyph width for 1-point font.

ffWTabOff
Offset to family glyph-width table.

ffKernOff
Offset to kerning table.

ffStylOff
Offset to style-mapping table.

ffProperty
Style properties info.

ffIntl
For international use.

ffVersion
Version number.

Data Types 1215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Discussion
The font family structure, of data type FamRec, describes the format of the font family ('FOND') resource. It
is shown here as a guide to the format of the resource. The font family structure is not used directly by any
Font Manager functions.

FontAssoc
Contains the number of entries in a font association table.

struct FontAssoc {
 SInt16 numAssoc;
};

Fields
numAssoc

Number of entries - 1.

Discussion
Each entry in the font association table is a font association entry structure, of data type AsscEntry (page
1214).

The font association table structure, which is part of the font family resource, maps a point size and style to
a specific font that is part of the family. The table structure, of data type FontAssoc, consists of a count of
the entries in the table and is followed by the entry structures.

FontRec
Contains information for a format of ‘NFNT' and, likewise, the 'FONT' resource

struct FontRec {
 SInt16 fontType;
 SInt16 firstChar;
 SInt16 lastChar;
 SInt16 widMax;
 SInt16 kernMax;
 SInt16 nDescent;
 SInt16 fRectWidth;
 SInt16 fRectHeight;
 UInt16 owTLoc;
 SInt16 ascent;
 SInt16 descent;
 SInt16 leading;
 SInt16 rowWords;
};
typedef struct FontRec FontRec;

Fields
fontType

Font type.

firstChar
Character code of first glyph.

lastChar
Character code of last glyph.

1216 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

widMax
Maximum glyph width.

kernMax
Negative of maximum glyph kern.

nDescent
Negative of descent.

fRectWidth
Width of font rectangle.

fRectHeight
Height of font rectangle.

owTLoc
Location of width/offset table.

ascent
Ascent.

descent
Descent.

leading
Leading.

rowWords
Row width of bit image / 2.

Discussion
The font structure, of data type FontRec, describes the format of ‘NFNT' and, likewise, the 'FONT' resource.
It is shown here as a guide to the format of the resource. The font structure is not used directly by any Font
Manager functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FontRecHdl
Defines a handle to a font record.

typedef FontRecPtr* FontRecHdl;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

FontRecPtr
Defines a pointer to a font record.

Data Types 1217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

typedef FontRec* FontRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

KernEntry
Contains kerning information for a specific stylistic variation of the font family.

struct KernEntry {
 SInt16 kernStyle;
 SInt16 kernLength;
};

Fields
kernStyle

Length of this entry.

kernLength
Style to which this entry applies.

KernPair
Specifies a kerning value for a pair of glyphs.

struct KernPair {
 char kernFirst;
 char kernSecond;
 SInt16 kernWidth;
};

Fields
kernFirst

ASCII character code of the first character of a kerned pair.

kernSecond
ASCII character code of the second character of a kerned pair.

kernWidth
Kerning value in 1pt fixed format.

KernTable
Contains the number of entries in a kerning table.

1218 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

struct KernTable {
 SInt16 numKerns;
};

Fields
numKerns

Number of subtable entries.

Discussion
The font family kerning table structure, which is part of the font family resource, contains a number of kerning
subtable entries, with different subtables for different stylistic variations. The table structure, of data type
KernTable, consists of a count of the entries in the table and is followed by the entry structures.

NameTable
Contains the base name and suffixes for a font family.

struct NameTable {
 SInt16 stringCount;
 Str255 baseFontName;
};

Fields
stringCount

The number of entries in the name table.

baseFontName
A string that specifies the base name and suffixes for a font family name.

StyleTable
Contains font style information

struct StyleTable {
 SInt16 fontClass;
 SInt32 offset;
 SInt32 reserved;
 char indexes[48];
};

Fields
fontClass

The font class of this table.

offset
Offset to glyph-encoding subtable.

reserved
Reserved.

indexes
Indexes into the font suffix name table. The font suffix name subtable structure, of data type
NameTable (page 1219), contains the base name and suffixes for a font family.

Data Types 1219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Discussion
The style-mapping table structure, which is part of the font family resource, provides information that is used
by printer drivers to implement font styles. Each font family can have its own character encoding and its own
set of font suffix names for style designations. Each style of a font has its own name, typically created by
adding a style suffix to the base name of the font.

WidEntry
Specifies a style for a glyph width.

struct WidEntry {
 SInt16 widStyle;
};

Fields
widStyle

The style to which the entry applies.

WidTable
Specifies the number of entries in a font family glyph-width table.

struct WidTable {
 SInt16 numWidths;
};

Fields
numWidths

The number of entries minus one.

Discussion
The font family glyph-width table structure, which is part of the font family resource, is used to specify glyph
widths for the font family on a per-style basis.

WidthTable
Contains the widths of all the glyphs of a specific font.

1220 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

struct WidthTable {
 Fixed tabData[256];
 Handle tabFont;
 SInt32 sExtra;
 SInt32 style;
 SInt16 fID;
 SInt16 fSize;
 SInt16 face;
 SInt16 device;
 Point inNumer;
 Point inDenom;
 SInt16 aFID;
 Handle fHand;
 Boolean usedFam;
 UInt8 aFace;
 SInt16 vOutput;
 SInt16 hOutput;
 SInt16 vFactor;
 SInt16 hFactor;
 SInt16 aSize;
 SInt16 tabSize;
};
typedef struct WidthTable WidthTable;

Fields
tabData

The widths for the glyphs in the font, in standard 32-bit fixed-point format. If a glyph is missing in
the font, its entry contains the width of the missing-character glyph.

tabFont
A handle to the font resource used to build this table.

sExtra
The average number of pixels by which QuickDraw widens each space in a line of text.

style
The average number of pixels by which QuickDraw widens a line of text after applying a style.

fID
The font family ID of the font represented by this table. This is the ID that was used in the request to
build the table. It may be different from the ID of the font family that was used, which is indicated by
the aFID field.

fSize
The point size that was originally requested for the font represented by this table. The actual size
used is specified in the aSize field.

face
The font style that was originally requested for the font represented by this table. The actual style
used is specified in the aFace field.

device
The device ID of the device on which these widths may be used.

inNumer
The numerators of the vertical and horizontal scaling factors. The numer parameter is of type Point,
and contains two fields: h (the numerator of the ratio for horizontal scaling) and v (the numerator of
the ratio for vertical scaling).

Data Types 1221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

inDenom
The denominators of the vertical and horizontal scaling factors. The denom parameter is of type Point,
and contains two fields: h (the denominator of the ratio for horizontal scaling) and v (the denominator
of the ratio for vertical scaling).

aFID
The font family ID of the font family actually used to build this table. If the Font Manager could not
find the font requested, this value may be different from the value of the fID field.

fHand
The handle to the font family resource used to build this table.

usedFam
Set to TRUE if the fixed-point family glyph widths were used rather than integer glyph widths.

aFace
The font style of the font whose widths are contained in this table.

vOutput
The factor by which glyphs are to be expanded vertically in the current graphics port. This is a 16-bit
fixed-point number, with the integer part in the high-order byte and a fractional part in the low-order
byte.

hOutput
The factor by which glyphs are to be expanded horizontally in the current graphics port. This is a
16-bit fixed-point number, with the integer part in the high-order byte and a fractional part in the
low-order byte.

vFactor
The factor by which widths of the chosen font, after a style has been applied, have been increased
vertically in the current graphics port. This is a 16-bit fixed-point number, with the integer part in the
high-order byte and a fractional part in the low-order byte. The value of the vFactor field is not used
by the Font Manager.

hFactor
The factor by which widths of the chosen font, after a style has been applied, have been increased
horizontally in the current graphics port. This is a 16-bit fixed-point number, with the integer part in
the high-order byte and a fractional part in the low-order byte.

aSize
The size of the font actually used to build this table. Both the point size and the font used to build
this table may be different from the requested point size and font. If font scaling is disabled, the Font
Manager may use a size different from the size requested and add more or less space to approximate
the appearance of the font requested.

tabSize
The total size of the global width table.

Discussion
The global width table structure, of data type WidthTable, contains the widths of all the glyphs of one font.
The font family, point size, and style of this font are specified in this table. Your application should use the
widths found in the global width table for placement of glyphs and words both on the screen and on the
printed page. You can use the FontMetrics (page 1195) function to get a handle to the global width table.
However, you should not assume that the table is the same size as shown in the structure declaration; it may
be larger because of some private system-specific information that is attached to it.

Multiplying the values of the hOutput and vOutput fields by the values of the hFactor and vFactor fields,
respectively, gives the font scaling. (Because the value of the vFactor field is ignored, the Font Manager
multiplies the value of the vOutput field by 1.) The product of the value of the hOutput field and an entry
in the global width table is the scaled width for that glyph.

1222 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

The Font Manager gathers data for the global width table from one of three data structures:

1. The Font Manager looks in the font resource for a table that stores fractional glyph widths. For bitmapped
fonts, the Font Manager uses the glyph-width table of the bitmapped font resource. For outline fonts,
the Font Manager uses the advance width and left-side bearing values in the horizontal metrics table of
the outline font. In both cases, the values are stored in 16-bit fixed format, with the integer part in the
high-order byte and the fractional part in the low-order byte.

2. If there is no glyph-width table in the font resource, the Font Manager looks for the font family’s
glyph-width table in the font family resource, which contains fractional widths for a hypothetical 1-point
font. The Font Manager calculates the actual values by multiplying these widths by the requested font
size.

3. If there is no glyph-width table in the font family resource, and if the font is contained in a bitmapped
font resource, the Font Manager derives the glyph widths from the integer widths contained in the
glyph-width table of the bitmapped font resource. There is no corresponding table for the outline font
resource.

Your application should obtain glyph widths either from the global width table or from the QuickDraw
function MeasureText. The MeasureText function works only with text to be displayed on the screen, not
with text to be printed. You can get the individual widths of glyphs of an outline font using the
OutlineMetrics function. The FontMetrics function returns only the width of the largest glyph in a font
contained in a bitmapped font resource.

Do not use the values from the global width table if your application is running on a computer on which
non-Roman script systems are installed. You can check to see if a non-Roman script system is present by
calling the GetScriptManagerVariable function with a selector of smEnabled; if the function returns a
value greater than 0, at least one non-Roman script system is present and you need to call MeasureText to
measure text that is displayed on the screen. Measuring text from a non-Roman script system for printing is
handled by the printer driver.

For more information about the MeasureText function, see the documentation on “QuickDraw Text”. See
also the FontMetrics (page 1195) and OutlineMetrics (page 1201) functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

WidthTableHdl
Defines a handle to a glyph width table.

typedef WidthTablePtr* WidthTableHdl;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

Data Types 1223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

WidthTablePtr
Defines a pointer to a glyph width table.

typedef WidthTable* WidthTablePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Fonts.h

Constants

Activation Contexts
Specify the scope of available fonts.

enum{
kFMDefaultActivationContext = kFMDefaultOptions,
kFMGlobalActivationContext = 0x00000001,
kFMLocalActivationContext = kFMDefaultActivationContext
}

Constants
kFMDefaultActivationContext

Specifies to use the default scope, which is local.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

kFMGlobalActivationContext
Specifies the scope is global; fonts are available to all applications.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

kFMLocalActivationContext
Specifies the scope is local; fonts are available only to the application.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

Default Options
Specify the scope of fonts for an application.

1224 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

enum {
 kFMDefaultOptions = kNilOptions
};

Constants
kFMDefaultOptions

Restricts the scope only to the fonts accessible to your application. This flag is also used when Apple
has not yet defined options for a function that has an options parameter. When no options are defined
yet, you can use kFMDefaultOptions as a neutral value to assure future compatibility.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

Font ID Constants
Specify a font. These constants are deprecated.

enum {
 kFontIDNewYork = 2,
 kFontIDGeneva = 3,
 kFontIDMonaco = 4,
 kFontIDVenice = 5,
 kFontIDLondon = 6,
 kFontIDAthens = 7,
 kFontIDSanFrancisco = 8,
 kFontIDToronto = 9,
 kFontIDCairo = 11,
 kFontIDLosAngeles = 12,
 kFontIDTimes = 20,
 kFontIDHelvetica = 21,
 kFontIDCourier = 22,
 kFontIDSymbol = 23,
 kFontIDMobile = 24
};

Font Constants
Specify a font. These constants are deprecated.

Constants 1225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

enum {
 newYork = 2,
 geneva = 3,
 monaco = 4,
 venice = 5,
 london = 6,
 athens = 7,
 sanFran = 8,
 toronto = 9,
 cairo = 11,
 losAngeles = 12,
 times = 20,
 helvetica = 21,
 courier = 22,
 symbol = 23,
 mobile = 24
};

Discussion
You should use the functions GetFNum or FMGetFontFamilyFromName to find a font family from a standard
QuickDraw name.

Global Scope Option

enum {
kFMUseGlobalScopeOption
};

Discussion
Use the constant kFMGlobalIterationScope instead; kFMUseGlobalScopeOption is deprecated.

Height and Width Constants
Specify proportional or fixed font heights and widths.

enum {
 propFont = 36864,
 prpFntH = 36865,
 prpFntW = 36866,
 prpFntHW = 36867,
 fixedFont = 45056,
 fxdFntH = 45057,
 fxdFntW = 45058,
 fxdFntHW = 45059,
 fontWid = 44208
};

Constants
propFont

Specifies a proportional font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

1226 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

prpFntH
Specifies a proportional height font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

prpFntW
Specifies a proportional width font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

prpFntHW
Specifies a proportional width and height font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

fixedFont
Specifies a fixed font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

fxdFntH
Specifies a fixed height font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

fxdFntW
Specifies a fixed width font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

fxdFntHW
Specifies a fixed height and width font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

fontWid
Specifies a font width.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

Iteration Scopes
Specify a scope over which to iterate.

Constants 1227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

enum{
kFMDefaultIterationScope = kFMDefaultOptions,
kFMGlobalIterationScope = 0x00000001,
kFMLocalIterationScope = kFMDefaultIterationScope
}

Constants
kFMDefaultIterationScope

Specifies to use the default.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

kFMGlobalIterationScope
Specifies the scope is global, iterate over all applications.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

kFMLocalIterationScope
Specifies the scope is local, restrict the iteration to the application.

Available in Mac OS X v10.1 and later.

Declared in Fonts.h.

Marking Character Constants
Specify a character to use for an active menu or submenu item.

enum {
 commandMark = 17,
 checkMark = 18,
 diamondMark = 19,
 appleMark = 20
};

Constants
commandMark

Specifies to use a command mark next to an active menu or submenu item.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

checkMark
Specifies to use a check mark next to an active menu or submenu item.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

diamondMark
Specifies to use a diamond mark next to an active menu or submenu item.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

1228 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

appleMark
Specifies to use an Apple character next to an active menu or submenu item.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

Discussion
You can pass these constants in the markChar parameter of the Menu Manager function GetItemMark and
the marking character field of the menu resource (of type 'MENU') and return these constants in the markChar
parameter of the Menu Manager function SetItemMark to specify the mark of a specific menu item or the
menu ID of the submenu associated with the menu item.

QuickTime User Interface Default Font
Defines the default font for the QuickTime user interface.

enum {
 kPlatformDefaultGuiFontID = applFont;
};

Constants
kPlatformDefaultGuiFontID

Specifies that the default font ID for the graphical user interface in QuickTime 3.0 should be the
application font ID.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

Discussion
This constant is used in QuickTime 3.0.

System and Application Fonts
Specify the current system and application fonts.

enum {
 systemFont = 0,
 applFont = 1
};

Constants
systemFont

Specifies the current System font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

applFont
Specifies the current application font.

Available in Mac OS X v10.0 and later.

Declared in Fonts.h.

Constants 1229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Result Codes

The most common result codes returned by Font Manager are listed below.

DescriptionValueResult Code

Iteration successfully completed.-980kFMIterationCompleted

Available in Mac OS X v10.0 and later.

The specified font family is invalid.-981kFMInvalidFontFamilyErr

Available in Mac OS X v10.0 and later.

The specified font is invalid.-982kFMInvalidFontErr

Available in Mac OS X v10.0 and later.

Iteration scope modified.-983kFMIterationScopeModifiedErr

Available in Mac OS X v10.0 and later.

The table specified is invalid or doesn’t exist.-984kFMTableAccessErr

Not able to access font container.-985kFMFontContainerAccessErr

Available in Mac OS X v10.0 and later.

1230 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Font Manager Reference

Framework: Carbon/Carbon.h

Declared in Icons.h

Overview

The Icon Utilities allow your application (and system software) to manipulate and draw icons of any standard
resource type in windows and if necessary in menus or dialog boxes. You need to use these routines only if
you wish to draw icons in your application’s windows or to draw icons whose resource types are not recognized
by the Menu Manager and Dialog Manager in menus and dialog boxes.

To display an icon most effectively at a variety of sizes and bit depths, you should provide an icon family.
You can then draw the appropriate member of the family for a given size and bit depth either by passing
the family’s resource ID to an Icon Utilities routine or by reading the family’s icon resources into memory as
an icon suite and passing the suite’s handle to Icon Utilities routines.

Icon Services provides icon data to multiple Mac OS clients, including the Finder, extensions and applications.
Using Icon Services to obtain icon data means you can provide efficient icon caching and release memory
when you don't need icon data any longer. Icon Services provides the appropriate icon for any file object
(file, folder, or volume), as well as other commonly used icons such as caution, note, or help icons in alert
boxes, for example. The icons provided by Icon Services support a much larger palette of colors: up to 24
bits per pixel and an eight-bit mask. Icons are Appearance-compliant and appropriate to the active theme.

Functions by Task

Converting an Icon Mask to a Region

IconIDToRgn (page 1260) Deprecated in Mac OS X v10.5
Converts the icon mask in an icon family to a region. (Deprecated. Use Icon Services instead.)

IconMethodToRgn (page 1261) Deprecated in Mac OS X v10.5
Converts, to a region, the mask for an icon that IconMethodToRgn obtains with the aid of your icon
getter callback function. (Deprecated. Use Icon Services instead.)

IconSuiteToRgn (page 1267) Deprecated in Mac OS X v10.5
Converts the icon mask in an icon suite to a region. (Deprecated. Use Icon Services instead.)

Overview 1231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Creating an Icon Suite

AddIconToSuite (page 1238) Deprecated in Mac OS X v10.5
Adds an icon to an icon suite. (Deprecated. Use Icon Services instead.)

GetIconSuite (page 1257) Deprecated in Mac OS X v10.5
Creates an icon suite in memory that contains handles to a specified icon family’s resources.
(Deprecated. Use Icon Services instead.)

NewIconSuite (page 1273) Deprecated in Mac OS X v10.5
Gets a handle to an empty icon suite. (Deprecated. Use Icon Services instead.)

Determining Whether a Point Is Within an Icon

PtInIconID (page 1285) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon. (Deprecated. Use Icon Services instead.)

PtInIconMethod (page 1285) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon obtained with the aid of your icon getter
callback function. (Deprecated. Use Icon Services instead.)

PtInIconSuite (page 1288) Deprecated in Mac OS X v10.5
Determines whether a specified point is within an icon. (Deprecated. Use Icon Services instead.)

Determining Whether a Rectangle Intersects an Icon

RectInIconID (page 1289)
Hit-tests a rectangle against the appropriate icon mask from an icon family for a specified destination
rectangle and alignment. (Deprecated. Use Icon Services instead.)

RectInIconMethod (page 1290)
Hit-tests a rectangle against an icon obtained by your icon getter callback function for a specified
destination rectangle and alignment. (Deprecated. Use Icon Services instead.)

RectInIconSuite (page 1292)
Hit-tests a rectangle against the appropriate icon mask from an icon suite for a specified destination
rectangle and alignment. (Deprecated. Use Icon Services instead.)

Disposing of Icon Suites

DisposeIconSuite (page 1241) Deprecated in Mac OS X v10.5
Releases the memory occupied by an icon suite. (Deprecated. Use Icon Services instead.)

Disposing of Icons

DisposeCIcon (page 1240) Deprecated in Mac OS X v10.5
Releases the memory occupied by a color icon structure. (Deprecated. Use Icon Services instead.)

1232 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Drawing Icons From an Icon Suite

PlotIconSuite (page 1282) Deprecated in Mac OS X v10.5
Draws the icon described by an icon suite using the most appropriate icon in the suite for the current
bit depth of the display device and the rectangle in which the icon is to be drawn. (Deprecated. Use
Icon Services instead.)

Drawing Icons From Resources

PlotCIcon (page 1275) Deprecated in Mac OS X v10.5
Draws a color icon of resource type 'cicn' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotCIconHandle (page 1276) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'cicn' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotIcon (page 1277) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'ICON' to which you have a handle. (Deprecated. Use Icon Services
instead.)

PlotIconHandle (page 1278) Deprecated in Mac OS X v10.5
Draws an icon of resource type 'ICON' or 'ICN#' to which you have a handle. (Deprecated. Use
Icon Services instead.)

PlotIconID (page 1279) Deprecated in Mac OS X v10.5
Draws the icon described by an icon family. (Deprecated. Use Icon Services instead.)

PlotIconMethod (page 1280) Deprecated in Mac OS X v10.5
Draws an icon obtained with the aid of your icon getter callback function. (Deprecated. Use Icon
Services instead.)

PlotSICNHandle (page 1284) Deprecated in Mac OS X v10.5
Draws a small icon of resource type 'SICN' to which you have a handle. (Deprecated. Use Icon
Services instead.)

Enabling and Disabling Custom Icons

GetCustomIconsEnabled (page 1245)
Determines whether custom icons are enabled or disabled on a specified volume.

SetCustomIconsEnabled (page 1297)
Enables or disables custom icons on a specified volume.

Flushing IconRef Data

FlushIconRefs (page 1242) Deprecated in Mac OS X v10.3
Reclaims memory used by the specified icon if the memory is purgeable. (Deprecated. There is no
replacement; this function was included to facilitate porting classic applications to Carbon, but it
serves no useful purpose in Mac OS X.)

Functions by Task 1233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

FlushIconRefsByVolume (page 1243) Deprecated in Mac OS X v10.3
On a given volume, reclaims memory used by purgeable icons. (Deprecated. There is no replacement;
this function was included to facilitate porting classic applications to Carbon, but it serves no useful
purpose in Mac OS X.)

Getting and Setting the Label for an Icon Suite

GetSuiteLabel (page 1259) Deprecated in Mac OS X v10.5
Gets the default label setting associated with an icon suite. (Deprecated. Use Icon Services instead.)

SetSuiteLabel (page 1300) Deprecated in Mac OS X v10.5
Specifies the default label associated with an icon suite. (Deprecated. Use Icon Services instead.)

Getting Label Information

GetLabel (page 1258) Deprecated in Mac OS X v10.5
Gets the color and string used for a given label in the Label menu of the Finder and in the Labels
control panel. (Deprecated. Use Icon Services instead.)

Getting Icons From an Icon Suite

GetIconFromSuite (page 1249) Deprecated in Mac OS X v10.5
Gets an icon from an icon suite. (Deprecated. Use Icon Services instead.)

Getting Icons From Resources That Don’t Belong to an Icon Family

GetCIcon (page 1244) Deprecated in Mac OS X v10.5
Gets a handle to a color icon of resource type 'cicn'. (Deprecated. Use Icon Services instead.)

GetIcon (page 1246) Deprecated in Mac OS X v10.5
Gets a handle to an icon resource of type 'ICON'. (Deprecated. Use Icon Services instead.)

IconRef Reference Counting

AcquireIconRef (page 1238)
Increments the reference count for an IconRef.

GetIconRefOwners (page 1255)
Provides the current reference count for an IconRef.

ReleaseIconRef (page 1296)
Decrements the reference count for an IconRef.

1234 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Modifying IconRef Data

OverrideIconRef (page 1274)
Replaces the bitmaps of one IconRef with those of another IconRef.

RemoveIconRefOverride (page 1297)
Restores the original bitmaps of an overridden IconRef.

UpdateIconRef (page 1301)
Forces an update of IconRef data.

OverrideIconRefFromResource (page 1275) Deprecated in Mac OS X v10.5
Replaces the bitmaps in an IconRef with bitmaps from a specified resource file. (Deprecated. Use
OverrideIconRef (page 1274) instead.)

Obtaining Icon Data

IsDataAvailableInIconRef (page 1268)
Indicates whether an IconRef has the specified data.

IsIconRefComposite (page 1269)
Reports whether a specified IconRef has been composited.

IsIconRefMaskEmpty (page 1270)
Reports whether a specified mask is empty.

IsValidIconRef (page 1270)
Reports whether a specified IconRef is valid.

GetIconSizesFromIconRef (page 1256) Deprecated in Mac OS X v10.3
Provides an IconSelectorValue indicating the sizes and depths of icon data available for an
IconRef. (Deprecated. Use IsDataAvailableInIconRef (page 1268) instead.)

Obtaining IconRef Values

GetIconRef (page 1249)
Provides an IconRef object for an icon in the desktop database or for a registered icon.

GetIconRefFromFolder (page 1252)
Provides an IconRef object for a folder with no custom icon.

GetIconRefFromFileInfo (page 1251)
Provides an IconRef object for a file with minimal file I/O.

GetIconRefFromTypeInfo (page 1254)
Provides an IconRef object with the specified type information.

GetIconRefFromIconFamilyPtr (page 1253)
Provides an IconRef object from a specified icon family.

GetIconRefFromComponent (page 1250)
Provides an IconRef object based on a specified component.

GetIconRefFromFile (page 1251) Deprecated in Mac OS X v10.5
Provides an IconRef object for a file, folder or volume. (Deprecated. Use
GetIconRefFromFileInfo (page 1251) instead.)

Functions by Task 1235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Performing Operations on Icons in an Icon Suite

ForEachIconDo (page 1244) Deprecated in Mac OS X v10.5
Performs an action on one or more icons in an icon suite. (Deprecated. Use Icon Services instead.)

Reading, Copying, and Converting Icon Data

GetIconFamilyData (page 1248)
Obtains a copy of the raw icon data for an individual element in an icon family.

IconRefToIconFamily (page 1265)
Provides icon family data for a given IconRef.

ReadIconFromFSRef (page 1289)
Reads an icon ('icns') file into memory.

SetIconFamilyData (page 1299)
Provides new raw icon data for an individual element of an icon family.

IconFamilyToIconSuite (page 1259) Deprecated in Mac OS X v10.5
Provides icon suite data for a given icon family. (Deprecated. Use Icon Services instead.)

IconSuiteToIconFamily (page 1266) Deprecated in Mac OS X v10.5
Provides IconFamily data for a specified IconSuite. (Deprecated. Use Icon Services instead.)

ReadIconFile (page 1288) Deprecated in Mac OS X v10.5
Copies data from a given file into an icon family. (Deprecated. Use ReadIconFromFSRef (page 1289)
instead.)

WriteIconFile (page 1302) Deprecated in Mac OS X v10.5
Copies data from a given icon family into a file. (Deprecated. Use the File Manager instead.)

Registering and Unregistering IconRef Values

RegisterIconRefFromFSRef (page 1293)
Registers an IconRef from a .icns file and associates it with a creator and type pair.

RegisterIconRefFromIconFamily (page 1294)
Adds an iconFamily-derived IconRef to the Icon Services registry.

UnregisterIconRef (page 1301)
Removes the specified icon data from the icon registry.

RegisterIconRefFromIconFile (page 1295) Deprecated in Mac OS X v10.5
Adds a file-derived IconRef to the Icon Services registry. (Deprecated. Use
RegisterIconRefFromFSRef (page 1293) instead.)

RegisterIconRefFromResource (page 1295) Deprecated in Mac OS X v10.5
Adds a resource-derived IconRef to the Icon Services registry. (Deprecated. Use
RegisterIconRefFromFSRef (page 1293) instead.)

1236 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Using IconRef Data

CompositeIconRef (page 1239)
Superimposes one IconRef onto another.

GetIconRefVariant (page 1255)
Specifies a transformation for a given IconRef.

IconRefContainsCGPoint (page 1262)
Returns a Boolean value indicating whether an icon contains a specified point.

IconRefIntersectsCGRect (page 1263)
Returns a Boolean value indicating whether an icon intersects a specified rectangle.

IconRefToHIShape (page 1264)
Converts an icon into an HIShape object.

PlotIconRefInContext (page 1281)
Plots an IconRef using Quartz.

IconRefToRgn (page 1265) Deprecated in Mac OS X v10.5
Converts an Icon Services icon into a QuickDraw region. (Deprecated. Use IconRefToHIShape (page
1264) instead.)

PlotIconRef (page 1281) Deprecated in Mac OS X v10.5
Draws an icon using appropriate size and depth data from an IconRef. (Deprecated. Use
PlotIconRefInContext (page 1281) instead.)

PtInIconRef (page 1287) Deprecated in Mac OS X v10.5
Tests whether a specified point falls within an icon’s mask. (Deprecated. Use
IconRefContainsCGPoint (page 1262) instead.)

RectInIconRef (page 1292) Deprecated in Mac OS X v10.5
Tests whether a specified rectangle falls within an icon’s mask. (Deprecated. Use
IconRefIntersectsCGRect (page 1263) instead.)

Working With Icon Caches

GetIconCacheData (page 1246) Deprecated in Mac OS X v10.5
Gets the data associated with an icon cache. (Deprecated. Use Icon Services instead.)

GetIconCacheProc (page 1247) Deprecated in Mac OS X v10.5
Gets the icon getter function associated with an icon cache. (Deprecated. Use Icon Services instead.)

LoadIconCache (page 1270) Deprecated in Mac OS X v10.5
Loads into an icon cache a handle to the appropriate icon data for a specified destination rectangle
and the current bit depth, for drawing later with a specified alignment and transform. (Deprecated.
Use Icon Services instead.)

MakeIconCache (page 1272) Deprecated in Mac OS X v10.5
Gets a handle to an empty icon cache. (Deprecated. Use Icon Services instead.)

SetIconCacheData (page 1298) Deprecated in Mac OS X v10.5
Sets the data associated with an icon cache. (Deprecated. Use Icon Services instead.)

SetIconCacheProc (page 1299) Deprecated in Mac OS X v10.5
Sets the icon getter callback function associated with an icon cache. (Deprecated. Use Icon Services
instead.)

Functions by Task 1237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Creating and Managing Universal Procedure Pointers

NewIconActionUPP (page 1272)
Creates a new universal procedure pointer (UPP) to an icon action callback function.

NewIconGetterUPP (page 1273)
Creates a new universal procedure pointer (UPP) to an icon getter callback function.

DisposeIconActionUPP (page 1241)
Disposes of the universal procedure pointer (UPP) to your icon action callback function.

DisposeIconGetterUPP (page 1241)
Disposes of the universal procedure pointer (UPP) to your icon getter callback function.

InvokeIconActionUPP (page 1268)
Calls your icon action callback function.

InvokeIconGetterUPP (page 1268)
Calls your icon getter callback function.

Functions

AcquireIconRef
Increments the reference count for an IconRef.

OSErr AcquireIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef whose reference count you wish to increment.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

AddIconToSuite
Adds an icon to an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

1238 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr AddIconToSuite (
 Handle theIconData,
 IconSuiteRef theSuite,
 ResType theType
);

Parameters
theIconData

A handle to the data for the new icon to be added to the icon suite. You can obtain a handle to icon
data using various functions, such as GetIcon (page 1246) or GetResource.

The handle to the icon data is added at the location reserved for icon data of the type specified by
theType. If the icon suite already includes a handle to icon data for that type, this function replaces
the handle to the old data without disposing of it. In this case you may want to call the
GetIconFromSuite (page 1249) function first to obtain the old handle so that you can dispose of it.

The handles that you add to the suite do not have to be associated with a resource fork. For example,
your application might get icon data from the desktop database rather than reading it from a resource,
or your application might read icon data from a resource and then detach it.

theSuite
A handle to the icon suite to which to add the icon.

theType
The resource type of the new icon. The resource type should be that of an icon family member.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
This function is most often used to read icons into an empty icon suite created with the NewIconSuite (page
1273) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

CompositeIconRef
Superimposes one IconRef onto another.

Functions 1239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr CompositeIconRef (
 IconRef backgroundIconRef,
 IconRef foregroundIconRef,
 IconRef *compositeIconRef
);

Parameters
backgroundIconRef

A value to use as the background for the composite IconRef.

foregroundIconRef
A value to use as the foregound for the composite IconRef.

compositeIconRef
On completion, this points to an IconRef that is a composite of the specified background and
foreground IconRefs.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
This function provides an alternative to badging when you need to indicate a change of state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

DisposeCIcon
Releases the memory occupied by a color icon structure. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

void DisposeCIcon (
 CIconHandle theIcon
);

Parameters
theIcon

A handle to the color icon structure to dispose of, previously obtained from the GetCIcon (page 1244)
function.

Discussion
To dispose of a handle obtained from GetIcon or GetResource, use the ReleaseResource function to
release the memory occupied by the icon resource data.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

DisposeIconActionUPP
Disposes of the universal procedure pointer (UPP) to your icon action callback function.

void DisposeIconActionUPP (
 IconActionUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See the IconActionProcPtr (page 1302) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

DisposeIconGetterUPP
Disposes of the universal procedure pointer (UPP) to your icon getter callback function.

void DisposeIconGetterUPP (
 IconGetterUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See the IconGetterProcPtr (page 1303) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

DisposeIconSuite
Releases the memory occupied by an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Functions 1241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr DisposeIconSuite (
 IconSuiteRef theIconSuite,
 Boolean disposeData
);

Parameters
theIconSuite

A handle to the icon suite to be disposed of.

disposeData
A Boolean value indicating whether or not to dispose of handles in the icon suite that are not associated
with a resource fork.

Set this value to TRUE to automatically release icon data that is associated with the specified icon
suite but not explicitly associated with a resource fork. If you set this value to FALSE, the function
does not dispose of any icon data that is associated with the specified icon suite.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
This function does not release the memory of any icons explicitly associated with an open resource fork, that
is, any handles to icon resource data that your application added to the suite using the functions
GetIconSuite (page 1257) or AddIconToSuite (page 1238). For handles to icon data that your application
added to the icon suite using AddIconToSuite (for example, if your application read in an icon resource,
detached it, then added the handle to the suite), you can request that AddIconToSuite release the memory
associated with the handles.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

FlushIconRefs
Reclaims memory used by the specified icon if the memory is purgeable. (Deprecated in Mac OS X v10.3.
There is no replacement; this function was included to facilitate porting classic applications to Carbon, but
it serves no useful purpose in Mac OS X.)

OSErr FlushIconRefs (
 OSType creator,
 OSType iconType
);

Parameters
creator

The creator code of the file whose icon data is to be flushed.

1242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

iconType
The type code of the file whose icon data is to be flushed.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
IconsCore.h

FlushIconRefsByVolume
On a given volume, reclaims memory used by purgeable icons. (Deprecated in Mac OS X v10.3. There is no
replacement; this function was included to facilitate porting classic applications to Carbon, but it serves no
useful purpose in Mac OS X.)

OSErr FlushIconRefsByVolume (
 SInt16 vRefNum
);

Parameters
vRefNum

The volume whose icon cache is to be flushed.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Calling this function locks the bitmap data of all IconRefs with non-zero reference counts (that is, all
IconRefs that are in use) on the volume. The Finder normally maintains a number of IconRefswith non-zero
reference counts, so you should use the function FlushIconRefs (page 1242) instead of the
FlushIconRefsByVolume function whenever feasible.

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
IconsCore.h

Functions 1243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

ForEachIconDo
Performs an action on one or more icons in an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr ForEachIconDo (
 IconSuiteRef theSuite,
 IconSelectorValue selector,
 IconActionUPP action,
 void *yourDataPtr
);

Parameters
theSuite

A handle to an icon suite.

selector
Indicates which icons in the suite to perform the operation on. See “Icon Selector Constants” (page
1310) for a description of the values you can use in this parameter.

action
A universal procedure pointer to your icon action callback function. The ForEachIconDo function
uses this icon action function to perform an action on the specified icons in the icon suite.

ForEachIconDo calls your icon action function once for each type of icon specified in the selector
parameter. ForEachIconDo passes to your icon action function a handle to the icon to perform the
action on. Your icon action function should perform any action as indicated by the yourDataPtr
parameter and return a result code.

See the IconActionProcPtr (page 1302) callback for more information about icon action functions.

yourDataPtr
A pointer to data or other information required by your icon action function that is passed to your
icon action function. Typically, you use this parameter to specify which action your icon action function
should perform.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324). The result code returned by your icon
action function. If your icon action function returns a nonzero function result, ForEachIconDo immediately
returns to the application.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetCIcon
Gets a handle to a color icon of resource type 'cicn'. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

1244 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

CIconHandle GetCIcon (
 SInt16 iconID
);

Parameters
iconID

The resource ID for an icon of resource type 'cicn'. In general, you should specify your icon resources
as purgeable.

Return Value
A handle to the CIcon (page 1305) structure for the icon, or NULL if the function could not find the resource.

Discussion
The function searches the current resource chain for the resource. If it finds the resource, it reads the resource,
creates a color icon structure for the icon, and initializes the fields of the structure according to the information
contained in the 'cicn' resource.

To draw an icon obtained from this function in a specified rectangle, you can use either the PlotCIcon (page
1275) function, or thePlotCIconHandle (page 1276) function. The latter function allows you to specify transforms
and alignments.

When you are finished with a handle obtained from this function, use the DisposeCIcon (page 1240) function
to release the memory occupied by the color icon structure.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetCustomIconsEnabled
Determines whether custom icons are enabled or disabled on a specified volume.

OSErr GetCustomIconsEnabled (
 SInt16 vRefNum,
 Boolean *customIconsEnabled
);

Parameters
vRefNum

The volume whose status you are querying.

customIconsEnabled
On return, customIconsEnabled points to the value true if custom icons are enabled on the volume
specified or false if custom icons are disabled on the volume specified.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Functions 1245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIcon
Gets a handle to an icon resource of type 'ICON'. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Handle GetIcon (
 SInt16 iconID
);

Parameters
iconID

The resource ID for an icon of resource type 'ICON'. The function searches the current resource chain
for the resource. In general, you should specify your icon resources as purgeable.

Return Value
A handle to the icon with the specified ID or NULL if the function could not find the resource.

Discussion
To draw an icon obtained from this function in a specified rectangle, you can use either the PlotIcon (page
1277) function, or thePlotIconHandle (page 1278) function. The latter function allows you to specify transforms
and alignments.

When you are finished using a handle obtained from this function, use the ReleaseResource function to
release the memory occupied by the icon resource data.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconCacheData
Gets the data associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

1246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr GetIconCacheData (
 IconCacheRef theCache,
 void **theData
);

Parameters
theCache

A handle to the icon cache whose data is desired.

theData
On return, a pointer to a pointer to the data associated with the icon cache.

You associate data with an icon cache when you first create the cache using the MakeIconCache (page
1272) function. You can also set this data using the SetIconCacheData (page 1298) function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconCacheProc
Gets the icon getter function associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr GetIconCacheProc (
 IconCacheRef theCache,
 IconGetterUPP *theProc
);

Parameters
theCache

A handle to the icon cache whose associated icon getter function is desired.

theProc
On return, a pointer to the universal procedure pointer to the icon getter callback function associated
with the specified cache. See the IconGetterProcPtr (page 1303) callback for more information on
icon getter functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Functions 1247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconFamilyData
Obtains a copy of the raw icon data for an individual element in an icon family.

OSErr GetIconFamilyData (
 IconFamilyHandle iconFamily,
 OSType iconType,
 Handle h
);

Parameters
iconFamily

A handle to an iconFamily data structure to use as a source for icon data.

iconType
The format of the icon data you want to obtain.You may specify one of the icon types (as defined in
IconStorage.h in the CoreServices/OSServices framework) or 'PICT' in this parameter. For example,
you can pass kThumbnail32BitData ('it32'), to obtain 65,536 bytes of raw bitmap data.

h
A handle to the icon data being returned. Icon Services resizes this handle as needed. If no data is
available for the specified icon family, Icon Services sets the handle to 0.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

1248 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

GetIconFromSuite
Gets an icon from an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr GetIconFromSuite (
 Handle *theIconData,
 IconSuiteRef theSuite,
 ResType theType
);

Parameters
theIconData

On return, a pointer to a handle to the data for the requested icon. If an icon of the specified type
does not exist in the given icon suite, this parameter is NULL.

If you intend to dispose of the handle, pass aNULLhandle to theAddIconToSuite (page 1238) function
to delete the corresponding entry in the suite.

You can use the handle returned by this function to manipulate the icon data, for example, to alter
its color or add three-dimensional shading. However, you should not use the returned handle to draw
the icon with other Icon Utilities functions.

To plot an icon from an icon suite, you should normally use the PlotIconSuite (page 1282) function.
The PlotIconHandle (page 1278) function may not draw the icon correctly if you pass it the handle
returned in this parameter.

theSuite
A handle to the icon suite from which to get the icon.

theType
The resource type of the desired icon.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconRef
Provides an IconRef object for an icon in the desktop database or for a registered icon.

Functions 1249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr GetIconRef (
 SInt16 vRefNum,
 OSType creator,
 OSType iconType,
 IconRef *theIconRef
);

Parameters
vRefNum

The volume where Icon Services should start to search for the desired icon. Pass the kOnSystemDisk
constant if you are not sure which value to specify in this parameter.

creator
The creator code of the desired icon.

iconType
The type code of the desired icon.

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 1296).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Icon Services defines constants for commonly-used system icons. You can pass one of these constants in the
iconType parameter if you specify kSystemIconsCreator in the creator parameter. See “Folder Icon
Constants” (page 1315) for a list of these constants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefFromComponent
Provides an IconRef object based on a specified component.

OSStatus GetIconRefFromComponent (
 Component inComponent,
 IconRef *outIconRef
);

Parameters
inComponent

The component whose icon data you want to obtain.

outIconRef
On return, a pointer to an IconRef object based on the componentIconFamily field of the specified
component's 'thng' resource. You are responsible for releasing the object by calling
ReleaseIconRef (page 1296).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

1250 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
This function obtains an IconRef object based on the resource ID of an icon family. A component can provide
an icon family in addition to the icon provided in the componentIcon field. Note that members of this icon
family are not used by the Finder; you supply an icon family only so that other components or applications
can display your component's icon in their user interfaces if needed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
IconsCore.h

GetIconRefFromFile
Provides an IconRef object for a file, folder or volume. (Deprecated in Mac OS X v10.5. Use
GetIconRefFromFileInfo (page 1251) instead.)

OSErr GetIconRefFromFile (
 const FSSpec *theFile,
 IconRef *theIconRef,
 SInt16 *theLabel
);

Parameters
theFile

A pointer to the FSSpec structure specifying the file, folder or volume for the IconRef.

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 1296).

theLabel
On return, a pointer to the file or folder’s label.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Use this function if you have no information about the file object passed in the theFile parameter. If you
have already called the File System Manager function PBGetCatInfo, you can use the function
GetIconRefFromFolder (page 1252) if the object is a folder without custom icons or the function
GetIconRef (page 1249) if the object is a file without custom icons.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

GetIconRefFromFileInfo
Provides an IconRef object for a file with minimal file I/O.

Functions 1251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSStatus GetIconRefFromFileInfo (
 const FSRef *inRef,
 UniCharCount inFileNameLength,
 const UniChar *inFileName,
 FSCatalogInfoBitmap inWhichInfo,
 const FSCatalogInfo *inCatalogInfo,
 IconServicesUsageFlags inUsageFlags,
 IconRef *outIconRef,
 SInt16 *outLabel
);

Parameters
inRef

A pointer to an FSRef for the target file.

inFileNameLength
The length of the name of the target file.

inFileName
A pointer to the name of the target file.

inWhichInfo
The mask of the file information contained in the inCatalogInfo parameter.

inCatalogInfo
A pointer to the catalog information.

inUsageFlags
The usage flags for this call; use kIconServicesNormalUsageFlag.

outIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 1296).

outLabel
On return, a pointer to the output label for the icon/file.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
To minimize file operations, FSGetCatalogInfo should be called prior to calling this function. The information
in the FSCatalogInfo structure should correspond to that specified by kIconServicesCatalogInfoMask.
The name should be fetched and passed in. If either the name or the correct catalog information is not passed
in, this function will do file operations for this information instead.

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

GetIconRefFromFolder
Provides an IconRef object for a folder with no custom icon.

1252 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr GetIconRefFromFolder (
 SInt16 vRefNum,
 SInt32 parentFolderID,
 SInt32 folderID,
 SInt8 attributes,
 SInt8 accessPrivileges,
 IconRef *theIconRef
);

Parameters
vRefNum

The volume where the folder is located.

parentFolderID
The ID of the desired folder’s parent folder.

folderID
The ID of the desired folder.

attributes
The attributes of the desired folder. You can obtain this data from the
CInfoPBRec.dirInfo.ioFlAttrib field of the folder’s catalog information record.

accessPrivileges
The access privileges of the specified folder. You can obtain this data from the
CInfoPBRec.dirInfo.ioACUser field of the folder’s catalog information record.

theIconRef
On return, a pointer to an IconRef object. You are responsible for releasing the object by calling
ReleaseIconRef (page 1296).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
If you do not have the catalog information for a folder, use the function GetIconRefFromFileInfo (page
1251).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefFromIconFamilyPtr
Provides an IconRef object from a specified icon family.

OSStatus GetIconRefFromIconFamilyPtr (
 const IconFamilyResource *inIconFamilyPtr,
 Size inSize,
 IconRef *outIconRef
);

Parameters
inIconFamilyPtr

A pointer to an icon family. See IconStorage.h for more information.

Functions 1253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

inSize
The size of the resource buffer containing the icon family.

outIconRef
On return, a pointer to an IconRef object that matches the specified inputs. You are responsible for
releasing the object by calling ReleaseIconRef (page 1296).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Typically, you do not need to use this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

GetIconRefFromTypeInfo
Provides an IconRef object with the specified type information.

OSErr GetIconRefFromTypeInfo (
 OSType inCreator,
 OSType inType,
 CFStringRef inExtension,
 CFStringRef inMIMEType,
 IconServicesUsageFlags inUsageFlags,
 IconRef *outIconRef
);

Parameters
inCreator

The creator code of the desired IconRef. You may pass 0 if the creator code is unknown.

inType
The type code of the desired IconRef. You may pass 0 if the type code is unknown.

inExtension
The file name extension of the desired IconRef. You may pass NULL if the extension is unknown.

inMIMEType
The MIME type of the desired IconRef. You may pass NULL if the MIME type is unknown.

inUsageFlags
The usage flags; use kIconServicesNormalUsageFlag.

outIconRef
On return, a pointer to an IconRef object that most closely matches the specified inputs. You are
responsible for releasing the object by calling ReleaseIconRef (page 1296).

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

1254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
This function serves as a more versatile version of GetIconRef (page 1249). If you specify creator and type
codes and do not specify the extension and MIME type, calling this function is equivalent to calling
GetIconRef (kOnSystemDisk, inCreator, inType). If none of the input parameters is specified or
if no match is found, this function returns the generic document icon.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

GetIconRefOwners
Provides the current reference count for an IconRef.

OSErr GetIconRefOwners (
 IconRef theIconRef,
 UInt16 *owners
);

Parameters
theIconRef

An IconRef whose reference count you wish to obtain.

owners
On return, a pointer to the value which represents the current reference count.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
When an IconRef’s reference count reaches 0, all memory allocated for the IconRef is marked as disposable.
Any subsequent attempt to use the IconRef returns a result code of -2580 (invalidIconRefErr).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

GetIconRefVariant
Specifies a transformation for a given IconRef.

IconRef GetIconRefVariant (
 IconRef inIconRef,
 OSType inVariant,
 IconTransformType *outTransform
);

Parameters
inIconRef

A value to be tested.

Functions 1255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

inVariant
A four-character value. You specify a variant by passing one of the following constants:

kTileIconVariant specifies a tiled icon.

kRolloverIconVariant specifies a rollover icon.

kDropIconVariant specifies a drop target icon.

kOpenIconVariant specifies an open icon.

kOpenDropIconVariant specifies a open drop target icon.

outTransform
On completion, this points to a transformation type that you pass to the function PlotIconRef (page
1281) for purposes of hit-testing.

Return Value
An IconRef value that you pass to the function PlotIconRef (page 1281) for purposes of hit-testing.

Discussion
Icon variants give you a simple way to indicate a temporary change of state by changing an icon’s appearance.
For example, if you specify the kDropIconVariant value when the user drags over a valid drop target, the
GetIconVariant function provides the appropriate data for you to plot the variant with the function
PlotIconRef (page 1281).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

GetIconSizesFromIconRef
Provides an IconSelectorValue indicating the sizes and depths of icon data available for an IconRef.
(Deprecated in Mac OS X v10.3. Use IsDataAvailableInIconRef (page 1268) instead.)

OSErr GetIconSizesFromIconRef (
 IconSelectorValue iconSelectorInput,
 IconSelectorValue *iconSelectorOutputPtr,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
iconSelectorInput

The icon sizes and depths you are requesting from the IconRef. For a description of the possible
values, see “Icon Selector Constants” (page 1310).

iconSelectorOutputPtr
On return, this points to a value describing the icon sizes and depths available for the specified
IconRef. For a description of the possible values, see “Icon Selector Constants” (page 1310).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon family to query.

1256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Note that this function may be very time-consuming, as Icon Services may have to search disks or even the
network to obtain the requested data.

Special Considerations

Because this function is so time-consuming, it is more efficient to simply query the icon for particular data
using the function IsDataAvailableInIconRef (page 1268).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Icons.h

GetIconSuite
Creates an icon suite in memory that contains handles to a specified icon family’s resources. (Deprecated in
Mac OS X v10.5. Use Icon Services instead.)

OSErr GetIconSuite (
 IconSuiteRef *theIconSuite,
 SInt16 theResID,
 IconSelectorValue selector
);

Parameters
theIconSuite

On return, a pointer to a handle to an icon suite for the requested icon family, for which this function
allocates the memory. To release the memory occupied by an icon suite, you must use the
DisposeIconSuite function.

theResID
The resource ID of the icons in the icon family to be read into memory. In general, you should specify
your icon resources as purgeable.

selector
Indicates which icons from the icon family to include in the icon suite. See “Icon Selector
Constants” (page 1310) for a description of the values you can use in this parameter.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
When you create an icon suite from icon family resources, the associated resource file should remain open
while you use Icon Utilities functions. If you call the SetResLoad function with the load parameter set to
FALSE before you call this function, the suite is filled with unloaded resource handles.

Functions 1257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

When you create an icon suite using this function, it sets the default label for the suite to none. To set a new
default label for an icon suite, use the SetSuiteLabel (page 1300) function. To perform operations on one
or more icons in an icon suite, use the ForEachIconDo (page 1244) function. To draw the icon described by
the icon suite using the icon family member that is most suitable for the current bit depth of the display
device, use the PlotIconSuite (page 1282) function.

As an alternative to this function, you can also create an empty icon suite using the NewIconSuite (page
1273) function and then add icons to it one at a time using the AddIconToSuite (page 1238) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

GetLabel
Gets the color and string used for a given label in the Label menu of the Finder and in the Labels control
panel. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr GetLabel (
 SInt16 labelNumber,
 RGBColor *labelColor,
 Str255 labelString
);

Parameters
labelNumber

An integer from 1 to 7 indicating which label’s information is requested.

labelColor
On return, a pointer to the color of the specified label.

labelString
On return, the string associated with the specified label.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

GetSuiteLabel
Gets the default label setting associated with an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

SInt16 GetSuiteLabel (
 IconSuiteRef theSuite
);

Parameters
theSuite

A handle to an icon suite.

Return Value
The default label setting associated with the specified icon suite. The default label setting is an integer from
1 to 7 that specifies which of the label colors shown in the Finder’s Label menu is applied to icons of that
suite when your application displays them. The function returns 0 if the suite doesn’t have a label. You can
override the default label setting for a suite by specifying a label in the transform parameter of the
PlotIconSuite (page 1282) function. To get information about the color and string for a specific label, you
can use the GetLabel (page 1258) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconFamilyToIconSuite
Provides icon suite data for a given icon family. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconFamilyToIconSuite (
 IconFamilyHandle iconFamily,
 IconSelectorValue whichIcons,
 IconSuiteRef *iconSuite
);

Parameters
iconFamily

A handle to an iconFamily data structure to use as a source for icon data. For more information on
the IconFamily data structure, see 'icns'.

Functions 1259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

whichIcons
The depths and sizes of icons to extract from the IconFamily data structure. For a description of the
possible values, see “Icon Selector Constants” (page 1310).

iconSuite
On return, a pointer to the structure which contains icon data as specified in the iconFamily and
whichIcons parameters. Icon Services returns NULL if no appropriate icon data is found.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconIDToRgn
Converts the icon mask in an icon family to a region. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconIDToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function.

The returned region corresponds to the icon’s mask (the mask defined by either an 'ICN#' or 'ics#'
resource in an icon family, according to the rectangle and alignment specified in the iconRect and
align parameters).

Once you have a region that describes the icon mask for a given icon, you can use it to perform
accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function uses this rectangle as the bounding box of the region. The function
determines, from the size of the rectangle specified here, which icon mask to use from the specified
icon family.

align
Specifies how the function should align the mask within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

iconID
The resource ID of the icon for which to create a region. In general, you should specify your icon
resources as purgeable.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

1260 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconMethodToRgn
Converts, to a region, the mask for an icon that IconMethodToRgn obtains with the aid of your icon getter
callback function. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconMethodToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function. Once you have a region that describes the icon mask for a given icon, you can
use it to perform accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function obtains the data for the icon mask from your icon getter function and
then converts the icon mask to a region. The function uses the rectangle specified in this parameter
as the bounding box of the region.

align
Specifies how the function should align the mask within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

Functions 1261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

theMethod
A universal procedure pointer to your icon getter callback function. IconMethodToRgn passes to
your icon getter function the type of the icon to get and the value specified in the yourDataPtr
parameter. The IconMethodToRgn function examines the size of the rectangle and requests the
appropriate icon from your icon getter function—an icon of icon type 'ICN#' or 'ics#'. Your icon
getter function should return a handle to the data of the requested icon type. The IconMethodToRgn
function extracts the mask from the icon data that your icon getter function returns. If your icon getter
function returns data that does not correspond to an icon of type 'ICN#' or type 'ics#',
IconMethodToRgn attempts to generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever method is
appropriate to your application. For example, your application might maintain its own cache of icons
(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function to get an icon
from the desktop database.

See the IconGetterProcPtr (page 1303) callback for more information on creating an icon getter
function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconRefContainsCGPoint
Returns a Boolean value indicating whether an icon contains a specified point.

Boolean IconRefContainsCGPoint (
 const CGPoint *testPt,
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testPt

A pointer to the point to be tested. The point should be specified in the coordinate system of the
rectangle specified in the iconRect parameter.

iconRect
A pointer to the rectangle in which the icon appears. The rectangle you specify should be the same
rectangle that you last used to draw the icon.

1262 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

align
Specifies how the icon is aligned within the rectangle specified in the iconRect parameter. The
alignment you specify should be the same alignment that you last used to draw the icon. See “Icon
Alignment Constants” (page 1307) for a description of the values you can use in this parameter.

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to test.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Discussion
This function uses the size of the rectangle you specify to determine the optimal icon mask to represent the
icon. The function uses the alignment information you specify to adjust the position of the mask inside its
bounding rectangle, and then determines whether the specified point is within the mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

IconRefIntersectsCGRect
Returns a Boolean value indicating whether an icon intersects a specified rectangle.

Boolean IconRefIntersectsCGRect (
 const CGRect *testRect,
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testRect

A pointer to the rectangle to be tested. The rectangle should be specified in the coordinate system
of the rectangle specified in the iconRect parameter.

iconRect
A pointer to the rectangle in which the icon appears. The rectangle you specify should be the same
rectangle that you last used to draw the icon.

align
Specifies how the icon is aligned within the rectangle specified by the iconRect parameter. The
alignment you specify should be the same alignment that you last used to draw the icon. See “Icon
Alignment Constants” (page 1307) for a description of the values you can use in this parameter.

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to test.

Functions 1263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Discussion
This function uses the size of the rectangle you specify in the iconRect parameter to determine the optimal
icon mask to represent the icon. The function uses the alignment information you specify to adjust the
position of the mask inside its bounding rectangle, and then determines whether the rectangle you specify
in the testRect parameter intersects the mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

IconRefToHIShape
Converts an icon into an HIShape object.

HIShapeRef IconRefToHIShape (
 const CGRect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
iconRect

A pointer to the rectangle defining the area that Icon Services uses as the bounding box of the shape.

align
A value which determines how Icon Services aligns the shape within the rectangle. For a description
of possible values, see “Icon Alignment Constants” (page 1307).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to be converted.

Return Value
An HIShape object, or NULL if the icon could not be converted.

Discussion
This function uses the size of the rectangle you specify to determine the optimal icon mask to represent the
icon. The function uses the alignment information you specify to adjust the position of the mask inside its
bounding rectangle, and then returns the shape of the mask.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Icons.h

1264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

IconRefToIconFamily
Provides icon family data for a given IconRef.

OSErr IconRefToIconFamily (
 IconRef theIconRef,
 IconSelectorValue whichIcons,
 IconFamilyHandle *iconFamily
);

Parameters
theIconRef

An IconRef to use as a source for icon data.

whichIcons
The depths and sizes of icons in the iconFamily data structure. For a description of the possible
values, see “Icon Selector Constants” (page 1310).

iconFamily
On return, a pointer to a handle to the data structure which contains icon data as specified in the
IconRef and whichIcons parameters. Icon Services returns NULL if no appropriate icon data is
found. For more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconRefToRgn
Converts an Icon Services icon into a QuickDraw region. (Deprecated in Mac OS X v10.5. Use
IconRefToHIShape (page 1264) instead.)

OSErr IconRefToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
theRgn

A handle to the requested region. You must call the QuickDraw function NewRegion to allocate
memory for the region handle before calling the IconRefToRgn function.

iconRect
A pointer to the rectangle defining the area that Icon Services uses as the bounding box of the region.

align
The value which determines how Icon Services aligns the region within the rectangle. For a description
of possible return values, see “Icon Alignment Constants” (page 1307).

Functions 1265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The IconRef for the icon family to use for drawing the requested region.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Icon Services uses the rectangle and alignment values to automatically select the icon used to generate the
region data.

This function is similar to the Icon Utilities function IconSuiteToRegion.

Icon Services uses the icon’s black-and-white mask to determine the region data, even if you provide a deep
mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

IconSuiteToIconFamily
Provides IconFamily data for a specified IconSuite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr IconSuiteToIconFamily (
 IconSuiteRef iconSuite,
 IconSelectorValue whichIcons,
 IconFamilyHandle *iconFamily
);

Parameters
iconSuite

The IconSuiteRef to use as a source for icon data.

whichIcons
The depths and sizes of icons to extract from the iconFamily data structure. For a description of
the possible values, see “Icon Selector Constants” (page 1310).

iconFamily
On return, a pointer to a handle to the structure which contains icon data as specified in the iconSuite
and whichIcons parameters. Icon Services returns NULL if no appropriate icon data is found. For
more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Not available to 64-bit applications.

Declared In
Icons.h

IconSuiteToRgn
Converts the icon mask in an icon suite to a region. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr IconSuiteToRgn (
 RgnHandle theRgn,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
theRgn

On return, a handle to the requested region. You must allocate memory for the region handle before
calling this function.

The returned region corresponds to the icon’s mask (the mask defined by either an 'ICN#' or 'ics#'
entry in an icon suite, according to the rectangle and alignment specified in the iconRect and align
parameters).

Once you have a region that describes the icon mask for a given icon, you can use it to perform
accurate hit-testing and outline dragging of the icon in your application.

iconRect
A pointer to the rectangle in which the icon is to be drawn, specified in local coordinates of the current
graphics port. The function uses this rectangle as the bounding box of the region. The function
determines, from the size of the rectangle specified here, which icon mask to use from the icon suite.

align
Specifies how the function should align the region within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

theIconSuite
A handle to an icon suite.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Functions 1267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

InvokeIconActionUPP
Calls your icon action callback function.

OSErr InvokeIconActionUPP (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr,
 IconActionUPP userUPP
);

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
You should not need to use the function InvokeIconActionUPP, as the system calls your icon action callback
function for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

InvokeIconGetterUPP
Calls your icon getter callback function.

Handle InvokeIconGetterUPP (
 ResType theType,
 void *yourDataPtr,
 IconGetterUPP userUPP
);

Discussion
You should not need to use the function InvokeIconGetterUPP, as the system calls your icon getter callback
function for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IsDataAvailableInIconRef
Indicates whether an IconRef has the specified data.

1268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Boolean IsDataAvailableInIconRef (
 OSType inIconKind,
 IconRef inIconRef
);

Parameters
inIconKind

The icon data kind. See IconStorage.h for more information.

inIconRef
The icon reference whose data you want to check.

Return Value
True if the icon reference contains the indicated data, False otherwise.

Discussion
This function can be used to determine the optimal icon size if you plan to cache a bitmap image of the icon.

Availability
Available in Mac OS X v10.3 and later.

Declared In
IconsCore.h

IsIconRefComposite
Reports whether a specified IconRef has been composited.

OSErr IsIconRefComposite (
 IconRef compositeIconRef,
 IconRef *backgroundIconRef,
 IconRef *foregroundIconRef
);

Parameters
compositeIconRef

An IconRef that you wish to test to determine whether it has been composited.

backgroundIconRef
On return, this points to the IconRef value that forms the background of the IconRef specified in
the compositeIconRef parameter. If the IconRef specified in the compositeIconRef parameter
is not a composite, the return value is 0.

foregroundIconRef
On return, this points to the IconRef value that forms the foreground of the IconRef specified in
the compositeIconRef parameter. If the IconRef specified in the compositeIconRef parameter
is not a composite, the return value is 0.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
The function CompositeIconRef (page 1239) allows the creation of a composite IconRef from a given
background IconRef and a given foreground IconRef. The IsIconRefComposite function checks a
specified IconRef to determine whether it is a composite and, if so, provides the background and foreground
IconRef values.

Functions 1269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

IsIconRefMaskEmpty
Reports whether a specified mask is empty.

Boolean IsIconRefMaskEmpty (
 IconRef iconRef
);

Parameters
iconRef

An IconRef whose mask you wish to test.

Return Value
true if the mask associated with the given IconRef is empty, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IsValidIconRef
Reports whether a specified IconRef is valid.

Boolean IsValidIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef.

Return Value
true if the specified IconRef is valid, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

LoadIconCache
Loads into an icon cache a handle to the appropriate icon data for a specified destination rectangle and the
current bit depth, for drawing later with a specified alignment and transform. (Deprecated in Mac OS X v10.5.
Use Icon Services instead.)

1270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr LoadIconCache (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconCacheRef theIconCache
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port. The function uses the rectangle specified in this parameter and the bit depth of the
display device to determine which icon type to load into the cache.

align
Specifies how to align the icon within the rectangle. See “Icon Alignment Constants” (page 1307) for a
description of the values you can use in this parameter.

transform
Specifies how to modify the appearance of the icon. See “Icon Transformation Constants” (page 1309)
for a description of the values you can use in this parameter.

theIconCache
A reference to the icon cache into which to load the icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
This function can be useful, for example, if you suspect that the icon may be drawn at a time not convenient
for loading resource data (for instance, when the resource fork isn’t in the current resource chain). The function
uses the same criteria as the PlotIconSuite (page 1282) function to select the icon to load.

This function uses the icon getter callback function associated with the icon cache to get the appropriate
icon. The icon getter function returns a handle to the requested icon data, and LoadIconCache adds the
returned handle to the entry for that icon in the icon cache.

After calling this function, you can pass the same parameters to PlotIconSuite to plot the icon data. Note
that if you specify an alignment when you call LoadIconCache, then call PlotIconSuite and specify no
alignment, PlotIconSuite draws the icon using the alignment that you originally specified to
LoadIconCache.

All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Functions 1271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

MakeIconCache
Gets a handle to an empty icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr MakeIconCache (
 IconCacheRef *theCache,
 IconGetterUPP makeIcon,
 void *yourDataPtr
);

Parameters
theCache

On return, a pointer to a handle to the new, empty icon cache. The function allocates the necessary
memory. You can add icon data to the new cache using the LoadIconCache (page 1270) function.

makeIcon
A universal procedure pointer to the icon getter callback function to associate with the icon cache.
See the IconGetterProcPtr (page 1303) callback for more information on icon getter callback
functions.

yourDataPtr
A pointer to the data to associate with the icon cache.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

NewIconActionUPP
Creates a new universal procedure pointer (UPP) to an icon action callback function.

1272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

IconActionUPP NewIconActionUPP (
 IconActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your icon action function.

Return Value
A UPP to the icon action function.

Discussion
See the IconActionProcPtr (page 1302) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

NewIconGetterUPP
Creates a new universal procedure pointer (UPP) to an icon getter callback function.

IconGetterUPP NewIconGetterUPP (
 IconGetterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your icon getter function.

Return Value
A UPP to the icon getter function.

Discussion
See the IconGetterProcPtr (page 1303) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

NewIconSuite
Gets a handle to an empty icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Functions 1273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr NewIconSuite (
 IconSuiteRef *theIconSuite
);

Parameters
theIconSuite

On return, a pointer to a handle to a new, empty icon suite. Use the AddIconToSuite (page 1238)
function to add handles to icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
When you create an icon suite using this function, it sets the default label for the suite to none. To set a new
default label for an icon suite, use the SetSuiteLabel (page 1300) function. NewIconSuite allocates the
memory for the icon suite handle. To release the memory occupied by an icon suite, you must use the
DisposeIconSuite (page 1241) function.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

OverrideIconRef
Replaces the bitmaps of one IconRef with those of another IconRef.

OSErr OverrideIconRef (
 IconRef oldIconRef,
 IconRef newIconRef
);

Parameters
oldIconRef

A pointer to a value of type IconRef whose bitmaps are to be replaced.

newIconRef
A pointer to a value of typeIconRef containing the replacement bitmaps.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

1274 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OverrideIconRefFromResource
Replaces the bitmaps in an IconRef with bitmaps from a specified resource file. (Deprecated in Mac OS X
v10.5. Use OverrideIconRef (page 1274) instead.)

OSErr OverrideIconRefFromResource (
 IconRef theIconRef,
 const FSSpec *resourceFile,
 SInt16 resourceID
);

Parameters
theIconRef

An IconRef to be updated.

resourceFile
A pointer to the file system specification structure for the resource file containing the replacement
bitmaps.

resourceID
The resource ID containing the replacement bitmaps. This value must be non-zero. You should provide
a resource of type 'icns' if possible. If an 'icns' resource is not available, Icon Services uses standard
icon suite resources, such as 'ICN#', instead.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

PlotCIcon
Draws a color icon of resource type 'cicn' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

void PlotCIcon (
 const Rect *theRect,
 CIconHandle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

theIcon
A handle to the color icon structure of the color icon to draw. You can obtain a handle to the icon
using the GetCIcon (page 1244) function, or GetResource or other Resource Manager functions.

Functions 1275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
The iconMask field of the CIcon (page 1305) structure determines which pixels in the iconPMap field are
drawn and which are not. Only pixels with 1s in corresponding positions in the iconMask field are drawn.
If the screen depth is 1 or 2 bits per pixel, this function uses the iconBMap field instead of the iconPMap
field (unless the rowBytes field of IconBMap contains 0, indicating that there is no bitmap for the icon).

When this function draws the icon, it uses the bounds field of iconPMap as the source rectangle of the image.
If the destination rectangle is not the same size as the icon or its mask, the function stretches or shrinks the
icon to fit. The icon’s pixels are remapped to the current depth and color table, if necessary. The bounds
fields of iconPMap, iconBMap, and iconMask are expected to be equal in size.

Unlike PlotCIconHandle (page 1276), this function does not allow you to specify any transforms or alignment.
This function uses the QuickDraw function CopyMask and doesn’t send any of its drawing commands through
QuickDraw bottleneck functions. Therefore, calls to this function are not recorded as pictures.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotCIconHandle
Draws an icon of resource type 'cicn' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

OSErr PlotCIconHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 CIconHandle theCIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use in this parameter.

theCIcon
A handle to the color icon structure of the icon to draw. You can obtain a handle to the icon using
the GetCIcon (page 1244) function or GetResource or other Resource Manager functions.

1276 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Unlike PlotCIcon (page 1275), this function doesn’t honor the current foreground and background colors.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotIcon
Draws an icon of resource type 'ICON' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

void PlotIcon (
 const Rect *theRect,
 Handle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

theIcon
A handle to the icon to draw. You must have previously obtained this handle using the GetIcon (page
1246) function, or GetResource or other Resource Manager functions.

Discussion
This function does not allow you to specify any transforms or alignment. The PlotIcon function uses the
QuickDraw function CopyBits with the srcCopy transfer mode. To plot an icon of resource type 'ICON'
with a specified transform and alignment, use the PlotIconHandle (page 1278) function.

If the destination rectangle is not 32 by 32 pixels, the function stretches or shrinks the icon to fit.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

PlotIconHandle
Draws an icon of resource type 'ICON' or 'ICN#' to which you have a handle. (Deprecated in Mac OS X
v10.5. Use Icon Services instead.)

OSErr PlotIconHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 Handle theIcon
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use in this parameter.

theIcon
A handle to the icon to draw. You must have previously obtained a handle to the icon using the
GetIcon (page 1246) function, or GetResource or other Resource Manager functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
To plot an icon from an icon suite, you should normally use PlotIconSuite (page 1282). This function may
not draw the icon correctly if you pass it the handle returned in the theIconData parameter of
GetIconFromSuite (page 1249).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

1278 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

PlotIconID
Draws the icon described by an icon family. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr PlotIconID (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 SInt16 theResID
);

Parameters
theRect

A pointer to the rectangle, specified in local coordinates of the current graphics port, in which to draw
the icon.

You cannot determine which icon from the family specified by theResID the function will draw. The
function determines, from the size of the specified destination rectangle and the current bit depth
of the display device, which icon of a given size to draw from an icon family. For example, if the
destination rectangle has the coordinates (100,100,116,116) and the display device is set to 4-bit color,
the function draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32, the function uses the
32-by-32 pixel icon with the appropriate bit depth for the display device. If the destination rectangle
is less than 32 by 32 pixels and greater than 16 pixels wide or 12 pixels high, PlotIconID uses the
16-by-16 pixel icon with the appropriate bit depth. If the destination rectangle’s height is less than
or equal to 12 pixels or its width is less than or equal to 16 pixels, PlotIconID uses the 12-by-16
pixel icon with the appropriate bit depth. (Typically only the Finder and Standard File Package use
12-by-16 pixel icons.)

The destination rectangle must be exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for the
function to draw the icon without stretching it. If the destination rectangle is not one of these standard
sizes, the function expands or shrinks the icon to fit.

align
Specifies how the function should align the icon within the rectangle. For example, you can specify
that it center the icon within the rectangle or align it at one side or the other. The function moves
the icon so that the edges of its mask align with the specified side or direction. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use here.

theResID
The resource ID of the icon to draw. The icon resource must be of resource type 'ICN#', 'ics#',
'icl4', 'icl8', 'ics4', or 'ics8'. In general, you should specify your icon resources as purgeable.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. Your application should not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

PlotIconMethod
Draws an icon obtained with the aid of your icon getter callback function. (Deprecated in Mac OS X v10.5.
Use Icon Services instead.)

OSErr PlotIconMethod (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how to align the icon within the specified rectangle. See “Icon Alignment Constants” (page
1307) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use here.

theMethod
A universal procedure pointer to your icon getter callback function. PlotIconMethod uses your icon
getter function to obtain the icon to draw.

PlotIconMethod passes to your icon getter function the type of the icon to draw and the value
specified in the yourDataPtr parameter. The PlotIconMethod function examines the current bit
depth of the display devices and calls your icon getter function once for each display device that
intersects the rectangle specified in the parameter theRect. Your icon getter function should return
a handle to the requested icon’s data. Your icon getter function can get the icon data using whatever
method is appropriate to your application. For example, your application might maintain its own
cache of icons or use its icon getter function to get an icon from the desktop database.

For more information see the IconGetterProcPtr (page 1303) callback.

yourDataPtr
A pointer to data that is passed to your icon getter callback function.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1280 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

PlotIconRef
Draws an icon using appropriate size and depth data from an IconRef. (Deprecated in Mac OS X v10.5. Use
PlotIconRefInContext (page 1281) instead.)

OSErr PlotIconRef (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconServicesUsageFlags theIconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
theRect

A pointer to the rectangle where the icon is to be drawn.

align
A value specifying how Icon Services should align the icon within the rectangle.

transform
A value specifying how Icon Services should modify the appearance of the icon.

theIconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The IconRef for the icon to draw.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
This function is similar to the Icon Utilities function PlotIconSuite.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PlotIconRefInContext
Plots an IconRef using Quartz.

Functions 1281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSStatus PlotIconRefInContext (
 CGContextRef inContext,
 const CGRect *inRect,
 IconAlignmentType inAlign,
 IconTransformType inTransform,
 const RGBColor *inLabelColor,
 PlotIconRefFlags inFlags,
 IconRef inIconRef
);

Parameters
inContext

The graphics context to use.

inRect
A pointer to the rectangle to plot the icon in.

inAlign
The icon alignment. See “Icon Alignment Constants” (page 1307).

inTransform
The icon transform. See “Icon Transformation Constants” (page 1309).

inLabelColor
A pointer to the icon label color.

inFlags
The drawing flags to use; this is usually kPlotIconRefNormalFlags.

inIconRef
The IconRef to plot.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Icons.h

PlotIconSuite
Draws the icon described by an icon suite using the most appropriate icon in the suite for the current bit
depth of the display device and the rectangle in which the icon is to be drawn. (Deprecated in Mac OS X
v10.5. Use Icon Services instead.)

1282 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr PlotIconSuite (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 IconSuiteRef theIconSuite
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon.

The function plots a single icon from the icon suite in the current graphics port. You cannot determine
which icon from a given suite it will draw; the function bases this decision on the size of the specified
destination rectangle and the current bit depth of the display device. For example, if the destination
rectangle has the coordinates (100,100,116,116) and the display device is set to 4-bit color, the function
draws the icon of type 'ics4' if that icon is available in the icon suite.

If the width or height of a destination rectangle is greater than or equal to 32 pixels, the function uses
the 32-by-32 pixel icon with the appropriate bit depth for the display device. If the destination rectangle
is less than 32 by 32 pixels and greater than 16 pixels wide or 12 pixels high, the function uses the
16-by-16 pixel icon with the appropriate bit depth. If the destination rectangle’s height is less than
or equal to 12 pixels or its width is less than or equal to 16 pixels, the function uses the 12-by-16 pixel
icon with the appropriate bit depth. (Typically, only the Finder and Standard File Package use 12-by-16
pixel icons.)

The destination rectangle passed in the theRect parameter must be exactly 32 by 32 pixels, 16 by
16 pixels, or 12 by 16 pixels for the function to draw the icon without stretching it. If the destination
rectangle is not one of these standard sizes, the function expands or shrinks the icon to fit.

align
Specifies how the function should align the icon within the rectangle. For example, you can specify
that the function center the icon within the rectangle or align it at one side or the other. See “Icon
Alignment Constants” (page 1307) for a description of the values you can use here.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use here.

If you don’t specify a label constant in this parameter, the function displays the icon using the default
label for that icon suite. When you create an icon suite using the GetIconSuite (page 1257) function
or the NewIconSuite (page 1273) function, these functions set the default label for the suite to none.
To set a new default label for an icon suite, use the SetSuiteLabel (page 1300) function.

theIconSuite
A handle to the icon suite from which the function gets the icon to draw. You can get a handle to an
icon suite using the GetIconSuite or NewIconSuite functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

PlotSICNHandle
Draws a small icon of resource type 'SICN' to which you have a handle. (Deprecated in Mac OS X v10.5. Use
Icon Services instead.)

OSErr PlotSICNHandle (
 const Rect *theRect,
 IconAlignmentType align,
 IconTransformType transform,
 Handle theSICN
);

Parameters
theRect

A pointer to the rectangle in which to draw the icon, specified in local coordinates of the current
graphics port.

align
Specifies how the function should align the icon within the rectangle. See “Icon Alignment
Constants” (page 1307) for a description of the values you can use in this parameter.

transform
Specifies how the function should modify the appearance of the icon. See “Icon Transformation
Constants” (page 1309) for a description of the values you can use in this parameter.

theSICN
A handle to the icon to draw. You can obtain a handle to the icon using GetResource or other
Resource Manager functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
Only 'SICN' resources with a single member—or with two members, the second of which is a mask for the
first—plot correctly.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

1284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

PtInIconID
Determines whether a specified point is within an icon. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

Boolean PtInIconID (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The function determines, from the size of the rectangle specified in this parameter,
which icon mask from the given icon family to test the point against. The rectangle which you specify
here should be the same rectangle that you last used to draw the icon. The function then uses the
location of this rectangle (and the alignment of the icon in the rectangle) to determine whether the
specified point is within the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 1307) for a description of the values
you can use in this parameter.

iconID
A resource ID for an icon family. In general, you should specify your icon resources as purgeable.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

PtInIconMethod
Determines whether a specified point is within an icon obtained with the aid of your icon getter callback
function. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Functions 1285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Boolean PtInIconMethod (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 1307) for a description of the values
you can use in this parameter.

theMethod
A universal procedure pointer to your icon getter callback function. PtInIconMethod passes to your
icon getter function the type of icon your function should retrieve (either 'ICN#' or 'ics#') and
also passes the value specified in the yourDataPtr parameter. The PtInIconMethod function
examines the size of the specified rectangle and requests the appropriate icon from your icon getter
function. Your icon getter function should return a handle to the requested icon’s data. The
PtInIconMethod function extracts the mask from the icon data that your icon getter function returns.
If your icon getter function returns data that does not correspond to an icon of type 'ICN#' or type
'ics#', PtInIconMethod attempts to generate a mask from the returned data.

Your icon getter function can get the icon’s data using whatever method is appropriate to your
application. For example, your application might maintain its own cache of icons (and pass a pointer
to it in the yourDataPtr parameter) or use its icon getter function to get an icon from the desktop
database.

See the IconGetterProcPtr (page 1303) callback for more information on creating an icon getter
function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1286 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

PtInIconRef
Tests whether a specified point falls within an icon’s mask. (Deprecated in Mac OS X v10.5. Use
IconRefContainsCGPoint (page 1262) instead.)

Boolean PtInIconRef (
 const Point *testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags theIconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testPt

A pointer to the location, specified in local coordinates of the current graphics port, that Icon Services
tests to see whether it falls within the mask of the indicated icon.

iconRect
A pointer to the rectangle defining the area that Icon Services uses to determine which icon is
hit-tested. Use the same Rect value as when the icon was last drawn.

align
A value that specifies how the indicated icon is aligned within the rectangle specified in the iconRect
parameter. Use the same IconAlignmentType value as when the icon was last drawn. for a description
of possible return values, see “Icon Alignment Constants” (page 1307).

theIconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
The icon to be tested.

Return Value
true if the point specified in the testPt parameter falls within the appropriate icon mask, false otherwise.

Discussion
This function is similar to the Icon Utilities function PtInIconSuite. The function is useful when you want
to determine whether a user has clicked on a particular icon, for example.

Icon Services uses the icon’s black-and-white mask for hit-testing, even if you provide a deep mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Functions 1287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

PtInIconSuite
Determines whether a specified point is within an icon. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

Boolean PtInIconSuite (
 Point testPt,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
testPt

The point to be tested, specified in local coordinates of the current graphics port. A point is considered
to be within an icon if the point is within the icon’s mask.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The function determines, from the size of the rectangle specified in this parameter,
which icon mask ('ICN#' or 'ics#') from the specified icon suite to test the point against. The
function then uses the location of this rectangle (and the location of the icon in the rectangle) to
determine whether the given point is within the icon. The rectangle which you specify here should
be the same rectangle that you last used to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by the
iconRect parameter. The alignment which you specify here should be the same alignment that you
last used to draw the icon. See “Icon Alignment Constants” (page 1307) for a description of the values
you can use in this parameter.

theIconSuite
A handle to an icon suite.

Return Value
TRUE if the point is in the icon and FALSE if it is not.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

ReadIconFile
Copies data from a given file into an icon family. (Deprecated in Mac OS X v10.5. Use
ReadIconFromFSRef (page 1289) instead.)

1288 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr ReadIconFile (
 const FSSpec *iconFile,
 IconFamilyHandle *iconFamily
);

Parameters
iconFile

A pointer to the file specification structure for the source file for icon data.

iconFamily
A handle to an iconFamily data structure to be used as the target data structure. Icon Services
resizes the handle as needed. For more information on the IconFamily data structure, see 'icns'.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

ReadIconFromFSRef
Reads an icon ('icns') file into memory.

OSStatus ReadIconFromFSRef (
 const FSRef *ref,
 IconFamilyHandle *iconFamily
);

Parameters
ref

A pointer to the FSRef for the icon file.

iconFamily
A pointer to the handle for the icon family.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

RectInIconID
Hit-tests a rectangle against the appropriate icon mask from an icon family for a specified destination rectangle
and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

Functions 1289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Boolean RectInIconID (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 SInt16 iconID
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon. Like the PtInIconID (page 1285) function, this function determines, from the size
of the rectangle specified in this parameter, which icon mask from the icon family to test the testRect
parameter against.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 1307) for a description of the values you can use in this
parameter.

iconID
A resource ID for an icon family. In general, you should specify your icon resources as purgeable.

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RectInIconMethod
Hit-tests a rectangle against an icon obtained by your icon getter callback function for a specified destination
rectangle and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

1290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Boolean RectInIconMethod (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconGetterUPP theMethod,
 void *yourDataPtr
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 1307) for a description of the values you can use in this
parameter.

theMethod
A universal procedure pointer to your icon getter callback function. RectInIconMethod passes to
your icon getter function the type of the icon your function should retrieve and the value specified
in the yourDataPtr parameter. The RectInIconMethod function examines the size of the rectangle
and requests the appropriate icon from your icon getter function—an icon of icon type 'ICN#' or
'ics#'. Your icon getter function should return a handle to the data of the requested icon type. The
RectInIconMethod function extracts the mask from the icon data that your icon getter function
returns. If your icon getter function returns data that does not correspond to an icon of type 'ICN#'
or type 'ics#', RectInIconMethod attempts to generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever method is
appropriate to your application. For example, your application might maintain its own cache of icons
(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function to get an icon
from the desktop database.

See the IconGetterProcPtr (page 1303) callback for more information on creating an icon getter
function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

Functions 1291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

RectInIconRef
Tests whether a specified rectangle falls within an icon’s mask. (Deprecated in Mac OS X v10.5. Use
IconRefIntersectsCGRect (page 1263) instead.)

Boolean RectInIconRef (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconServicesUsageFlags iconServicesUsageFlags,
 IconRef theIconRef
);

Parameters
testRect

A pointer to the rectangle, specified in local coordinates of the current graphics port, that Icon Services
tests to see whether it falls within the mask of the indicated icon.

iconRect
A pointer to the area that Icon Services uses to determine which icon is hit-tested. Use the same Rect
value as when the icon was last drawn.

align
A value that specifies how the indicated icon is aligned within the rectangle specified in the iconRect
parameter. Use the same IconAlignmentType value as when the icon was last drawn. for a description
of possible return values, see “Icon Alignment Constants” (page 1307).

iconServicesUsageFlags
Reserved for future use. Pass the kIconServicesNormalUsageFlag constant in this parameter.

theIconRef
A pointer to a value of type IconRef specifying the icon family to use for drawing the requested
icon.

Return Value
true if the rectangle specified in the testRect parameter intersects the appropriate icon mask, false
otherwise.

Discussion
This function is similar to the Icon Utilities function RectInIconSuite. The function is useful when you
want to determine whether a user selection intersects a particular icon, for example.

Icon Services uses the icon’s black-and-white mask for hit-testing, even if you provide a deep mask.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RectInIconSuite
Hit-tests a rectangle against the appropriate icon mask from an icon suite for a specified destination rectangle
and alignment. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

1292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Boolean RectInIconSuite (
 const Rect *testRect,
 const Rect *iconRect,
 IconAlignmentType align,
 IconSuiteRef theIconSuite
);

Parameters
testRect

A pointer to the rectangle to be tested, specified in local coordinates of the current graphics port.

iconRect
A pointer to the rectangle in which the icon appears, specified in local coordinates of the current
graphics port. The rectangle which you specify here should be the same rectangle that you last used
to draw the icon. Like the PtInIconSuite (page 1288) function, this function determines, from the
size of the rectangle specified in this parameter, which icon mask from the icon suite specified by
theIconSuite to test the test rectangle against. For example, if the coordinates of the iconRect
parameter are (100,100,116,116) and the icon cache contains entries for each icon family member,
RectInIconSuite uses the icon mask defined by the 'ics#' entry.

The function then intersects the rectangle specified by testRectwith the icon mask in the iconRect
rectangle.

align
Specifies how the icon against which to hit-test is aligned within the rectangle specified by iconRect.
The alignment which you specify here should be the same alignment that you last used to draw the
icon. See “Icon Alignment Constants” (page 1307) for a description of the values you can use in this
parameter.

theIconSuite
A handle to an icon suite.

Return Value
TRUE if the rectangle intersects the icon and FALSE if it doesn’t.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

RegisterIconRefFromFSRef
Registers an IconRef from a .icns file and associates it with a creator and type pair.

Functions 1293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSStatus RegisterIconRefFromFSRef (
 OSType creator,
 OSType iconType,
 const FSRef *iconFile,
 IconRef *theIconRef
);

Parameters
creator

The creator code for the .icns file.

iconType
The type code for the .icns file.

iconFile
A pointer to the FSRef of the .icns file.

theIconRef
A pointer to an IconRef. On return, this contains the registered IconRef.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.1 and later.

Declared In
IconsCore.h

RegisterIconRefFromIconFamily
Adds an iconFamily-derived IconRef to the Icon Services registry.

OSErr RegisterIconRefFromIconFamily (
 OSType creator,
 OSType iconType,
 IconFamilyHandle iconFamily,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the desired icon. You can use your application’s creator code, for example.
Lower-case creator codes are reserved for the System.

iconType
The type code of the desired icon.

iconFamily
A handle to the iconFamily data structure to register.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

1294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
Consider using the function RegisterIconRefFromIconFile (page 1295), since the data registered using
the RegisterIconRefFromIconFamily function cannot be purged. You are responsible for disposing of
the IconRef by using the function ReleaseIconRef (page 1296).

Calling this function increments the reference count of the IconRef.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

RegisterIconRefFromIconFile
Adds a file-derived IconRef to the Icon Services registry. (Deprecated in Mac OS X v10.5. Use
RegisterIconRefFromFSRef (page 1293) instead.)

OSErr RegisterIconRefFromIconFile (
 OSType creator,
 OSType iconType,
 const FSSpec *iconFile,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the icon data you wish to register. You can use your application’s creator code,
for example. Lower-case creator codes are reserved for the system.

iconType
The type code of the icon data you wish to register.

iconFile
A pointer to the file system specification structure for the file to use as the icon data source.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

RegisterIconRefFromResource
Adds a resource-derived IconRef to the Icon Services registry. (Deprecated in Mac OS X v10.5. Use
RegisterIconRefFromFSRef (page 1293) instead.)

Functions 1295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr RegisterIconRefFromResource (
 OSType creator,
 OSType iconType,
 const FSSpec *resourceFile,
 SInt16 resourceID,
 IconRef *theIconRef
);

Parameters
creator

The creator code of the icon data you wish to register. You can use your application’s creator code,
for example. Lower-case creator codes are reserved for the system.

iconType
The type code of the icon data you wish to register.

resourceFile
A pointer to the file system specification structure for the resource file from which to read the icon
data.

resourceID
The resource ID of the icon data to be registered. This value must be non-zero.

You should provide a resource of type 'icns' if possible. If an 'icns' resource is not available, Icon
Services uses standard icon suite resources, such as 'ICN#', instead.

theIconRef
On return, a pointer to the desired icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
You can use the RegisterIconRefFromResource function to register icons from 'icns' resources or
“classic” custom icon resources ('ics#' , 'ICN#' , etc.). Icon Services searches 'icns' resources before
searching other icon resources.

Calling this function increments the reference count of the IconRef.

Remember to call the function ReleaseIconRef (page 1296) when you're done with an IconRef.

Special Considerations

Before using the recommended replacement function, you need to move the contents of the icon resource
into an icon family .icns file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

ReleaseIconRef
Decrements the reference count for an IconRef.

1296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

OSErr ReleaseIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef whose reference count you wish to decrement.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
When an IconRef’s reference count reaches 0, all memory allocated for the IconRef is marked as disposable.
Any subsequent attempt to use the IconRef returns a result code of - 2580 (invalidIconRefErr).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

RemoveIconRefOverride
Restores the original bitmaps of an overridden IconRef.

OSErr RemoveIconRefOverride (
 IconRef theIconRef
);

Parameters
theIconRef

A pointer to a value of type IconRef whose bitmaps are to be restored.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

SetCustomIconsEnabled
Enables or disables custom icons on a specified volume.

OSErr SetCustomIconsEnabled (
 SInt16 vRefNum,
 Boolean enableCustomIcons
);

Parameters
vRefNum

The volume where custom icons are to be enabled or disabled.

Functions 1297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enableCustomIcons
If you pass true, custom icons are enabled on the volume specified. Passing false disables custom
icons on the volume specified.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
If you use the SetCustomIconsEnabled function to enable or disable custom icons, the setting remains in
effect only as long as the specified volume remains mounted during the current session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

SetIconCacheData
Sets the data associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon Services instead.)

OSErr SetIconCacheData (
 IconCacheRef theCache,
 void *theData
);

Parameters
theCache

A reference to the icon cache whose data is to be set.

theData
A pointer to the data to set.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

1298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

SetIconCacheProc
Sets the icon getter callback function associated with an icon cache. (Deprecated in Mac OS X v10.5. Use Icon
Services instead.)

OSErr SetIconCacheProc (
 IconCacheRef theCache,
 IconGetterUPP theProc
);

Parameters
theCache

A reference to the icon cache whose icon getter function is to be set.

theProc
A universal procedure pointer to the icon getter callback function to associate with the specified
cache. See theIconGetterProcPtr (page 1303) callback for more information on icon getter functions.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
All the Icon Utilities functions that accept a handle to an icon suite also accept a handle to an icon cache. An
icon cache is like an icon suite except that it also contains a pointer to an icon getter callback function and
a pointer to data that can be used as a reference constant. An icon cache typically does not contain handles
to the icon resources for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities functions call your application’s icon getter function
to retrieve the data for that icon type.

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

SetIconFamilyData
Provides new raw icon data for an individual element of an icon family.

OSErr SetIconFamilyData (
 IconFamilyHandle iconFamily,
 OSType iconType,
 Handle h
);

Parameters
iconFamily

A handle to an iconFamily data structure to be used as the target.

Functions 1299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

iconType
The format of the icon data you provide.You may specify one of the icon types (as defined in
IconStorage.h in the CoreServices/OSServices framework) or 'PICT' in this parameter. For a
thumbnail icon, for example, you specify kThumbnail32BitData in this parameter. For a thumbnail
mask, you specify kThumbnail8BitMask.

h
A handle to the icon data you provide. For a thumbnail icon, the handle contains raw image data in
the form of 128x128, four bytes per pixel, RGB data. For a thumbnail mask, the data is in the same
format except that it is one byte per pixel.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

SetSuiteLabel
Specifies the default label associated with an icon suite. (Deprecated in Mac OS X v10.5. Use Icon Services
instead.)

OSErr SetSuiteLabel (
 IconSuiteRef theSuite,
 SInt16 theLabel
);

Parameters
theSuite

A handle to an icon suite.

theLabel
An integer from 1 to 7 that specifies a label for the icon suite, or 0 to set the icon suite’s label to none.
The default label setting helps to determine which of the label colors shown in the Finder’s Label
menu is applied to icons of that suite when your application displays them.

You can override the default label setting for a suite by specifying a label in the transform parameter
of the PlotIconSuite (page 1282) function. For example, suppose the color currently set for the third
label displayed in the Finder’s Label menu is red, and the color for the fourth label is green. If you set
the default label for a suite using SetSuiteLabel(theSuite,3), then draw an icon from the same
suite using PlotIconSuite and specifying kTransformNone in the transform parameter, the
label color red is applied to the icon. However, if you specify kTransformLabel4 in the transform
parameter of the PlotIconSuite function, the label color green is applied to the icon.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

This function may move or purge memory blocks in the application heap. For that reason, your application
should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

1300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Icons.h

UnregisterIconRef
Removes the specified icon data from the icon registry.

OSErr UnregisterIconRef (
 OSType creator,
 OSType iconType
);

Parameters
creator

The creator code of the icon data to be unregistered.

iconType
The type code of the icon data to be unregistered.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
The specified icon data is not unregistered until all its users have called the function ReleaseIconRef (page
1296).

You should not unregister an icon that you have not registered.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

UpdateIconRef
Forces an update of IconRef data.

OSErr UpdateIconRef (
 IconRef theIconRef
);

Parameters
theIconRef

An IconRef to be updated.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Functions 1301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Discussion
This function is useful after you have changed a file or folder’s custom icon, for example. Do not call the
UpdateIconRef function if you have not already obtained an IconRef for a particular icon; call the function
GetIconRefFromFile (page 1251) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

WriteIconFile
Copies data from a given icon family into a file. (Deprecated in Mac OS X v10.5. Use the File Manager instead.)

OSErr WriteIconFile (
 IconFamilyHandle iconFamily,
 const FSSpec *iconFile
);

Parameters
iconFamily

A handle to an iconFamily data structure to be used as a source for icon data. For more information
on the IconFamily data structure, see 'icns'.

iconFile
A pointer to the file specification structure for the file to use as the target for icon data.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Special Considerations

Icon Services is designed to read icon data from a file and cache the data, but not to write out icon data. You
can use File Manager functions to write your icon data to a file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
IconsCore.h

Callbacks

IconActionProcPtr
Defines a pointer to an icon action callback function, which performs an action on a single icon.

1302 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

typedef OSErr (*IconActionProcPtr) (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr
);

If you name your function MyIconActionProc, you would declare it like this:

OSErr MyIconActionProc (
 ResType theType,
 Handle *theIcon,
 void *yourDataPtr
);

Parameters
theType

The resource type of the icon.

theIcon
A pointer to the handle to the icon on which to perform the operation.

yourDataPtr
A pointer to data as specified in the yourDataPtr parameter of the ForEachIconDo function. When
your application calls ForEachIconDo, it typically provides in the yourDataPtr parameter a value
that identifies the action your function should perform.

Return Value
A result code. See “Icon Services and Utilities Result Codes” (page 1324).

Discussion
You can perform operations on every icon in an icon suite by providing a pointer to an icon action function
as a parameter to the ForEachIconDo (page 1244) function. The ForEachIconDo function calls your icon
action function for specified icon resource types. Your icon action function should return a result code
indicating whether it successfully performed the action on the icon.

Before using your icon action function, you must first create a new universal procedure pointer to it, using
the NewIconActionUPP (page 1272) function, as shown here:

IconActionUPP MyIconActionUPP;
MyIconActionUPP = NewIconActionUPP(&MyIconActionProc)

You then pass MyIconActionUPP to the ForEachIconDo function. When you are finished with your icon
action callback function, you should dispose of the universal procedure pointer associated with it:

DisposeIconActionUPP(MyIconActionUPP);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconGetterProcPtr
Defines a pointer to an icon getter callback function, which retrieves a handle to an icon of the requested
type.

Callbacks 1303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

typedef Handle (*IconGetterProcPtr) (
 ResType theType,
 void *yourDataPtr
);

If you name your function MyIconGetterProc, you would declare it like this:

Handle MyIconGetterProc (
 ResType theType,
 void *yourDataPtr
);

Parameters
theType

The resource type of the icon. In general, you should specify your icon resources as purgeable.

yourDataPtr
If your icon getter function was called by an icon cache function, this parameter contains, on return,
a pointer to the data associated with the icon cache. Otherwise, this parameter contains the value
your application specified in the yourDataPtr parameter. For icon caches, you initially set this value
when you first create a cache using the MakeIconCache (page 1272) function. You can change this
value using the SetIconCacheData (page 1298) function. The icon getter function can use this data
as needed.

Return Value
An icon getter function should return as its function result a handle to the requested icon’s data.

Discussion
If you use icon caches, you must provide at least one icon getter function. The MakeIconCache function
takes a pointer to an icon getter function for use with a new icon cache. Subsequent calls to Icon Utilities
functions that use icon types not present in the icon cache use the icon getter function associated with the
icon cache to return a handle to the icon data. To get and set an existing icon cache’s icon getter function,
use the GetIconCacheProc (page 1247) and SetIconCacheProc (page 1299) functions.

You can also specify an icon getter function for use by the PlotIconMethod (page 1280),
IconMethodToRgn (page 1261),PtInIconMethod (page 1285), andRectInIconMethod (page 1290) functions.
Like Icon Utilities functions that work with icon caches, the icon getter function that you provide as a parameter
to PlotIconMethod should return a handle to the requested icon’s data. Note that the icon getter function
that you provide as a parameter to IconMethodToRgn, PtInIconMethod, and RectInIconMethod should
also return a handle to the requested icon; these three functions then extract the icon mask from the icon
data your icon getter function returns.

Before using your icon getter function, you must first create a new universal procedure pointer to it, using
the NewIconGetterUPP (page 1273) function, as shown here:

IconGetterUPP MyIconGetterUPP;
MyIconGetterUPP = NewIconGetterUPP(&MyIconGetterProc)

You can then pass MyIconGetterUPP to any of the Icon Utilities functions which use custom icon getter
functions. When you are finished with your icon getter callback function, you should dispose of the universal
procedure pointer associated with it, using the DisposeIconGetterUPP (page 1241) function:

DisposeIconGetterUPP(MyIconGetterUPP);

Availability
Available in Mac OS X v10.0 and later.

1304 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

Data Types

CIcon
Defines a color icon structure.

struct CIcon {
 PixMap iconPMap;
 BitMap iconMask;
 BitMap iconBMap;
 Handle iconData;
 SInt16 iconMaskData[1];
};
typedef struct CIcon CIcon;
typedef CIcon * CIconPtr;

Fields
iconPMap

The pixel map describing the icon. Note that this is a pixel map record, not a handle to a pixel map
record.

iconMask
A bitmap of the icon’s mask.

iconBMap
A bitmap of the icon.

iconData
A handle to the icon’s pixel image.

iconMaskData
An array containing the icon’s mask data followed by the icon’s bitmap data. This is used only when
the icon is stored as a resource.

Discussion
ThePlotCIcon (page 1275),PlotCIconHandle (page 1276),GetCIcon (page 1244), andDisposeCIcon (page
1240) functions all use the CIconHandle data type to refer to a color icon structure. A color icon structure
contains information about a color icon.

All color icon resources should be marked purgeable. You can use icons of resource type 'cicn' in menus
the same way that you use resources of type 'ICON'. If a menu item specifies an icon number, the menu
definition function first tries to load in a 'cicn' resource with the specified resource ID. If it doesn’t find
one, the menu definition function tries to load in an 'ICON' resource with the same ID. The Dialog Manager
also uses a 'cicn' resource instead of an 'ICON' resource if it finds one with the same resource ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Icons.h

Data Types 1305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

IconRef
Defines an icon reference.

typedef struct OpaqueIconRef * IconRef;

Discussion
An IconRef is a 32–bit values identifying cached icon data. IconRef 0 is invalid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IconsCore.h

IconActionUPP
Defines a universal procedure pointer (UPP) to an icon action callback function.

typedef IconActionProcPtr IconActionUPP;

Discussion
For more information, see the description of the IconActionProcPtr (page 1302) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconGetterUPP
Defines a universal procedure pointer to an icon getter callback function.

typedef IconGetterProcPtr IconGetterUPP;

Discussion
For more information, see the description of the IconGetterProcPtr (page 1303) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Icons.h

IconCacheRef
Defines a reference to an icon cache.

typedef Handle IconCacheRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1306 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Declared In
Icons.h

IconSuiteRef
Defines a reference to an icon suite.

typedef Handle IconSuiteRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Icons.h

Constants

Icon Alignment Constants
Define constants that allow you to specify how to align an icon within its rectangle.

enum {
 kAlignNone = 0x00,
 kAlignVerticalCenter = 0x01,
 kAlignTop = 0x02,
 kAlignBottom = 0x03,
 kAlignHorizontalCenter = 0x04,
 kAlignAbsoluteCenter = kAlignVerticalCenter | kAlignHorizontalCenter,
 kAlignCenterTop = kAlignTop | kAlignHorizontalCenter,
 kAlignCenterBottom = kAlignBottom | kAlignHorizontalCenter,
 kAlignLeft = 0x08,
 kAlignCenterLeft = kAlignVerticalCenter | kAlignLeft,
 kAlignTopLeft = kAlignTop | kAlignLeft,
 kAlignBottomLeft = kAlignBottom | kAlignLeft,
 kAlignRight = 0x0C,
 kAlignCenterRight = kAlignVerticalCenter | kAlignRight,
 kAlignTopRight = kAlignTop | kAlignRight,
 kAlignBottomRight = kAlignBottom | kAlignRight
};
typedef SInt16 IconAlignmentType;

Constants
kAlignNone

Use this value if you do not wish to specify a particular alignment.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Constants 1307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

kAlignVerticalCenter
Use this value to center the icon vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTop
Use this value to top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignBottom
Use this value to bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignHorizontalCenter
Use this value to center the icon horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignAbsoluteCenter
Use this value to center the icon horizontally and vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterTop
Use this value to top align the icon and center it horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterBottom
Use this value to bottom align the icon and center it horizontally within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignLeft
Use this value to left align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterLeft
Use this value to left align the icon and center it vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTopLeft
Use this value to left and top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

1308 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

kAlignBottomLeft
Use this value to left and bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignRight
Use this value to right align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignCenterRight
Use this value to right align the icon and center it vertically within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignTopRight
Use this value to right and top align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kAlignBottomRight
Use this value to right and bottom align the icon within the rectangle.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Discussion
Icon Services and Utilities functions use the IconAlignmentType constants to determine how an icon is
aligned within its bounding rectangle.

Icon Transformation Constants
Define values that Icon Services uses to report how an icon has been transformed after you call the function
GetIconRefVariant.

Constants 1309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kTransformNone = 0x00,
 kTransformDisabled = 0x01,
 kTransformOffline = 0x02,
 kTransformOpen = 0x03,
 kTransformLabel1 = 0x0100,
 kTransformLabel2 = 0x0200,
 kTransformLabel3 = 0x0300,
 kTransformLabel4 = 0x0400,
 kTransformLabel5 = 0x0500,
 kTransformLabel6 = 0x0600,
 kTransformLabel7 = 0x0700,
 kTransformSelected = 0x4000,
 kTransformSelectedDisabled = kTransformSelected | kTransformDisabled,
 kTransformSelectedOffline = kTransformSelected | kTransformOffline,
 kTransformSelectedOpen = kTransformSelected | kTransformOpen
};
typedef SInt16 IconTransformType;

Discussion
The functions PlotIconID (page 1279)PlotIconMethod (page 1280), PlotIconHandle (page 1278),
PlotCIconHandle (page 1276), PlotIconSuite (page 1282), LoadIconCache (page 1270) and
PlotSICNHandle (page 1284) use these constants to specify how an icon should be modified, if at all, when
plotted.

Icon Selector Constants
Describe values that you can use to obtain information about the sizes and depths of icons available in a
given icon family.

1310 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kSelectorLarge1Bit = 0x00000001,
 kSelectorLarge4Bit = 0x00000002,
 kSelectorLarge8Bit = 0x00000004,
 kSelectorLarge32Bit = 0x00000008,
 kSelectorLarge8BitMask = 0x00000010,
 kSelectorSmall1Bit = 0x00000100,
 kSelectorSmall4Bit = 0x00000200,
 kSelectorSmall8Bit = 0x00000400,
 kSelectorSmall32Bit = 0x00000800,
 kSelectorSmall8BitMask = 0x00001000,
 kSelectorMini1Bit = 0x00010000,
 kSelectorMini4Bit = 0x00020000,
 kSelectorMini8Bit = 0x00040000,
 kSelectorHuge1Bit = 0x01000000,
 kSelectorHuge4Bit = 0x02000000,
 kSelectorHuge8Bit = 0x04000000,
 kSelectorHuge32Bit = 0x08000000,
 kSelectorHuge8BitMask = 0x10000000,
 kSelectorAllLargeData = 0x000000FF,
 kSelectorAllSmallData = 0x0000FF00,
 kSelectorAllMiniData = 0x00FF0000,
 kSelectorAllHugeData = 0xFF000000,
 kSelectorAll1BitData = kSelectorLarge1Bit | kSelectorSmall1Bit
| kSelectorMini1Bit | kSelectorHuge1Bit,
 kSelectorAll4BitData = kSelectorLarge4Bit | kSelectorSmall4Bit
| kSelectorMini4Bit | kSelectorHuge4Bit,
 kSelectorAll8BitData = kSelectorLarge8Bit | kSelectorSmall8Bit
| kSelectorMini8Bit | kSelectorHuge8Bit,
 kSelectorAll32BitData = kSelectorLarge32Bit | kSelectorSmall32Bit
| kSelectorHuge32Bit,
 kSelectorAllAvailableData = 0xFFFFFFFF
};
typedef UInt32 IconSelectorValue;

Constants
kSelectorLarge1Bit

Specify to include 'ICN#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge4Bit
Specify to include 'icl4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge8Bit
Specify to include 'icl8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorLarge32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Constants 1311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

kSelectorLarge8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall1Bit
Specify to include 'ics#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall4Bit
Specify to include 'ics4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall8Bit
Specify to include 'ics8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorSmall8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini1Bit
Specify to include 'icm#' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini4Bit
Specify to include 'icm4' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorMini8Bit
Specify to include 'icm8' resource.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge1Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge4Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge8Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

1312 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

kSelectorHuge32Bit
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorHuge8BitMask
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllLargeData
Specify to include 'ICN#', 'icl4', and 'icl8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllSmallData
Specify to include 'ics#', 'ics4', and 'ics8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllMiniData
Specify to include 'icm#', 'icm4', and 'icm8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllHugeData
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll1BitData
Specify to include 'ICN#', 'ics#', and 'icm#' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll4BitData
Specify to include 'icl4', 'ics4', and 'icm4' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll8BitData
Specify to include 'icl8', 'ics8', and 'icm8' resources.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAll32BitData
Available in Mac OS X v10.0 and later.

Declared in Icons.h.

kSelectorAllAvailableData
Specify to include all resources of given ID.

Available in Mac OS X v10.0 and later.

Declared in Icons.h.

Discussion
The functionsGetIconSuite (page 1257) andForEachIconDo (page 1244) use these constants in theselector
parameter to specify which members of the family to include in the icon suite.

Constants 1313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Catalog Information Bitmask
Defines a minimal bitmask for use with the GetIconRefFromFileInfo function.

enum {
 kIconServicesCatalogInfoMask =
 (kFSCatInfoNodeID | kFSCatInfoParentDirID | kFSCatInfoVolume
 | kFSCatInfoNodeFlags | kFSCatInfoFinderInfo |
 kFSCatInfoFinderXInfo | kFSCatInfoUserAccess)
};

Constants
kIconServicesCatalogInfoMask

Use this mask with the File Manager function FSGetCatalogInfo before calling
GetIconRefFromFileInfo.

Available in Mac OS X v10.1 and later.

Declared in IconsCore.h.

System Icon Constant
Defines a creator type for all system–defined icons.

enum {
 kSystemIconsCreator = 'macs'
};

Discussion
You can use the kSystemIconsCreator constant to obtain System icons that are not associated with a file,
such as the help icon.

Icon Services Usage Flag

typedef UInt32 IconServicesUsageFlags;
enum {
 kIconServicesNormalUsageFlag = 0
};

Alert Icon Constants
Specify standard alert icons.

enum {
 kAlertNoteIcon = 'note',
 kAlertCautionIcon = 'caut',
 kAlertStopIcon = 'stop'
};

Discussion
Icon Services defines constants for a number of standard alert icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 1249), for example.

1314 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Filesharing Privilege Icon Constants
Identify standard filesharing privilege icons.

enum {
 kSharingPrivsNotApplicableIcon = 'shna',
 kSharingPrivsReadOnlyIcon = 'shro',
 kSharingPrivsReadWriteIcon = 'shrw',
 kSharingPrivsUnknownIcon = 'shuk',
 kSharingPrivsWritableIcon = 'writ'
};

Discussion
Icon Services defines constants for a number of standard filesharing privilege icons. You can pass one of
these constants in the iconType parameter of the function GetIconRef (page 1249), for example.

Folder Icon Constants
Identify standard folder icons.

enum {
 kGenericFolderIcon = 'fldr',
 kDropFolderIcon = 'dbox',
 kMountedFolderIcon = 'mntd',
 kOpenFolderIcon = 'ofld',
 kOwnedFolderIcon = 'ownd',
 kPrivateFolderIcon = 'prvf',
 kSharedFolderIcon = 'shfl'
};

Discussion
Icon Services defines constants for a number of standard folder icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 1249), for example.

Internet Icon Constants
Identify standard Internet icons.

enum {
 kInternetLocationHTTPIcon = 'ilht',
 kInternetLocationFTPIcon = 'ilft',
 kInternetLocationAppleShareIcon = 'ilaf',
 kInternetLocationAppleTalkZoneIcon = 'ilat',
 kInternetLocationFileIcon = 'ilfi',
 kInternetLocationMailIcon = 'ilma',
 kInternetLocationNewsIcon = 'ilnw',
 kInternetLocationNSLNeighborhoodIcon = 'ilns',
 kInternetLocationGenericIcon = 'ilge'
};

Discussion
Icon Services defines constants for a number of standard Internet icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 1249), for example.

Constants 1315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Toolbar Icons
Identify standard toolbar icons.

enum {
 kToolbarCustomizeIcon = 'tcus',
 kToolbarDeleteIcon = 'tdel',
 kToolbarFavoritesIcon = 'tfav',
 kToolbarHomeIcon = 'thom'
};

Miscellaneous Icon Constants
Identify miscellaneous icons.

enum {
 kAppleLogoIcon = 'capl',
 kAppleMenuIcon = 'sapl',
 kBackwardArrowIcon = 'baro',
 kFavoriteItemsIcon = 'favr',
 kForwardArrowIcon = 'faro',
 kGridIcon = 'grid',
 kHelpIcon = 'help',
 kKeepArrangedIcon = 'arng',
 kLockedIcon = 'lock',
 kNoFilesIcon = 'nfil',
 kNoFolderIcon = 'nfld',
 kNoWriteIcon = 'nwrt',
 kProtectedApplicationFolderIcon = 'papp',
 kProtectedSystemFolderIcon = 'psys',
 kRecentItemsIcon = 'rcnt',
 kShortcutIcon = 'shrt',
 kSortAscendingIcon = 'asnd',
 kSortDescendingIcon = 'dsnd',
 kUnlockedIcon = 'ulck',
 kConnectToIcon = 'cnct',
 kGenericWindowIcon = 'gwin',
 kQuestionMarkIcon = 'ques',
 kDeleteAliasIcon = 'dali',
 kEjectMediaIcon = 'ejec',
 kBurningIcon = 'burn',
 kRightContainerArrowIcon = 'rcar'
};

Discussion
Icon Services defines constants for a number of miscellaneous icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 1249), for example.

Networking Icon Constants
Identify standard networking icons.

1316 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kAppleTalkIcon = 'atlk',
 kAppleTalkZoneIcon = 'atzn',
 kAFPServerIcon = 'afps',
 kFTPServerIcon = 'ftps',
 kHTTPServerIcon = 'htps',
 kGenericNetworkIcon = 'gnet',
 kIPFileServerIcon = 'isrv'
};

Discussion
Icon Services defines constants for a number of standard networking icons. You can pass one of these
constants in the iconType parameter of the function GetIconRef (page 1249), for example.

Special Folder Icon Constants
Identify special folder icons.

Constants 1317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kAppearanceFolderIcon = 'appr',
 kAppleExtrasFolderIcon = 'aexƒ',
 kAppleMenuFolderIcon = 'amnu',
 kApplicationsFolderIcon = 'apps',
 kApplicationSupportFolderIcon = 'asup',
 kAssistantsFolderIcon = 'astƒ',
 kColorSyncFolderIcon = 'prof',
 kContextualMenuItemsFolderIcon = 'cmnu',
 kControlPanelDisabledFolderIcon = 'ctrD',
 kControlPanelFolderIcon = 'ctrl',
 kControlStripModulesFolderIcon = 'sdvƒ',
 kDocumentsFolderIcon = 'docs',
 kExtensionsDisabledFolderIcon = 'extD',
 kExtensionsFolderIcon = 'extn',
 kFavoritesFolderIcon = 'favs',
 kFontsFolderIcon = 'font',
 kHelpFolderIcon = 'ƒhlp',
 kInternetFolderIcon = 'intƒ',
 kInternetPlugInFolderIcon = 'ƒnet',
 kInternetSearchSitesFolderIcon = 'issf',
 kLocalesFolderIcon = 'ƒloc',
 kMacOSReadMeFolderIcon = 'morƒ',
 kPublicFolderIcon = 'pubf',
 kPreferencesFolderIcon = 'prfƒ',
 kPrinterDescriptionFolderIcon = 'ppdf',
 kPrinterDriverFolderIcon = 'ƒprd',
 kPrintMonitorFolderIcon = 'prnt',
 kRecentApplicationsFolderIcon = 'rapp',
 kRecentDocumentsFolderIcon = 'rdoc',
 kRecentServersFolderIcon = 'rsrv',
 kScriptingAdditionsFolderIcon = 'ƒscr',
 kSharedLibrariesFolderIcon = 'ƒlib',
 kScriptsFolderIcon = 'scrƒ',
 kShutdownItemsDisabledFolderIcon = 'shdD',
 kShutdownItemsFolderIcon = 'shdf',
 kSpeakableItemsFolder = 'spki',
 kStartupItemsDisabledFolderIcon = 'strD',
 kStartupItemsFolderIcon = 'strt',
 kSystemExtensionDisabledFolderIcon = 'macD',
 kSystemFolderIcon = 'macs',
 kTextEncodingsFolderIcon = 'ƒtex',
 kUsersFolderIcon = 'usrƒ',
 kUtilitiesFolderIcon = 'utiƒ',
 kVoicesFolderIcon = 'fvoc'
};

Discussion
Icon Services defines constants for a number of special folder icons. You can pass one of these constants in
the iconType parameter of the function GetIconRef (page 1249), for example.

Standard Finder Icon Constants
Identify standard Finder icons.

1318 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kClipboardIcon = 'CLIP',
 kClippingUnknownTypeIcon = 'clpu',
 kClippingPictureTypeIcon = 'clpp',
 kClippingTextTypeIcon = 'clpt',
 kClippingSoundTypeIcon = 'clps',
 kDesktopIcon = 'desk',
 kFinderIcon = 'FNDR',
 kFontSuitcaseIcon = 'FFIL',
 kFullTrashIcon = 'ftrh',
 kGenericApplicationIcon = 'APPL',
 kGenericCDROMIcon = 'cddr',
 kGenericControlPanelIcon = 'APPC',
 kGenericControlStripModuleIcon = 'sdev',
 kGenericComponentIcon = 'thng',
 kGenericDeskAccessoryIcon = 'APPD',
 kGenericDocumentIcon = 'docu',
 kGenericEditionFileIcon = 'edtf',
 kGenericExtensionIcon = 'INIT',
 kGenericFileServerIcon = 'srvr',
 kGenericFontIcon = 'ffil',
 kGenericFontScalerIcon = 'sclr',
 kGenericFloppyIcon = 'flpy',
 kGenericHardDiskIcon = 'hdsk',
 kGenericIDiskIcon = 'idsk',
 kGenericRemovableMediaIcon = 'rmov',
 kGenericMoverObjectIcon = 'movr',
 kGenericPCCardIcon = 'pcmc',
 kGenericPreferencesIcon = 'pref',
 kGenericQueryDocumentIcon = 'qery',
 kGenericRAMDiskIcon = 'ramd',
 kGenericSharedLibaryIcon = 'shlb',
 kGenericStationeryIcon = 'sdoc',
 kGenericSuitcaseIcon = 'suit',
 kGenericURLIcon = 'gurl',
 kGenericWORMIcon = 'worm',
 kInternationalResourcesIcon = 'ifil',
 kKeyboardLayoutIcon = 'kfil',
 kSoundFileIcon = 'sfil',
 kSystemSuitcaseIcon = 'zsys',
 kTrashIcon = 'trsh',
 kTrueTypeFontIcon = 'tfil',
 kTrueTypeFlatFontIcon = 'sfnt',
 kTrueTypeMultiFlatFontIcon = 'ttcf',
 kUserIDiskIcon = 'udsk',
 kUnknownFSObjectIcon = 'unfs',
 kInternationResourcesIcon = kInternationalResourcesIcon
};

Discussion
Icon Services defines constants for a number of standard Finder icons. You can pass one of these constants
in the iconType parameter of the function GetIconRef (page 1249), for example.

Standard Icon Badge Constants
Identify standard badges.

Constants 1319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 kAppleScriptBadgeIcon = 'scrp',
 kLockedBadgeIcon = 'lbdg',
 kMountedBadgeIcon = 'mbdg',
 kSharedBadgeIcon = 'sbdg',
 kAliasBadgeIcon = 'abdg',
 kAlertCautionBadgeIcon = 'cbdg'
};

Discussion
Icon Services defines constants for a number of standard badges. You can pass one of these constants in the
iconType parameter of the function GetIconRef (page 1249), for example.

Users and Groups Icon Constants
Identify icons used in the Users and Groups control panel.

enum {
 kUserFolderIcon = 'ufld',
 kWorkgroupFolderIcon = 'wfld',
 kGuestUserIcon = 'gusr',
 kUserIcon = 'user',
 kOwnerIcon = 'susr',
 kGroupIcon = 'grup'
};

Discussion
Icon Services defines constants for a number of icons used in the Users and Groups control panel. You can
pass one of these constants in the iconType parameter of the function GetIconRef (page 1249), for example.

genericDocumentIconResource
Use the constants listed in "Standard Icon Resources" instead.

1320 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 genericDocumentIconResource = kGenericDocumentIconResource,
 genericStationeryIconResource = kGenericStationeryIconResource,
 genericEditionFileIconResource = kGenericEditionFileIconResource,
 genericApplicationIconResource = kGenericApplicationIconResource,
 genericDeskAccessoryIconResource = kGenericDeskAccessoryIconResource,
 genericFolderIconResource = kGenericFolderIconResource,
 privateFolderIconResource = kPrivateFolderIconResource,
 floppyIconResource = kFloppyIconResource,
 trashIconResource = kTrashIconResource,
 genericRAMDiskIconResource = kGenericRAMDiskIconResource,
 genericCDROMIconResource = kGenericCDROMIconResource,
 desktopIconResource = kDesktopIconResource,
 openFolderIconResource = kOpenFolderIconResource,
 genericHardDiskIconResource = kGenericHardDiskIconResource,
 genericFileServerIconResource = kGenericFileServerIconResource,
 genericSuitcaseIconResource = kGenericSuitcaseIconResource,
 genericMoverObjectIconResource = kGenericMoverObjectIconResource,
 genericPreferencesIconResource = kGenericPreferencesIconResource,
 genericQueryDocumentIconResource = kGenericQueryDocumentIconResource,
 genericExtensionIconResource = kGenericExtensionIconResource,
 systemFolderIconResource = kSystemFolderIconResource,
 appleMenuFolderIconResource = kAppleMenuFolderIconResource
};

Standard Icon Resources
Identify standard icon resources.

Constants 1321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

/*Icons for which both icon suites and 'SICN' resources exist*/
enum {
 kGenericDocumentIconResource = -4000,
 kGenericStationeryIconResource = -3985,
 kGenericEditionFileIconResource = -3989,
 kGenericApplicationIconResource = -3996,
 kGenericDeskAccessoryIconResource = -3991,
 kGenericFolderIconResource = -3999,
 kPrivateFolderIconResource = -3994,
 kFloppyIconResource = -3998,
 kTrashIconResource = -3993,
 kGenericRAMDiskIconResource = -3988,
 kGenericCDROMIconResource = -3987
};
/* Icons for which only 'SICN' resources exist*/
enum {
 kDesktopIconResource = -3992,
 kOpenFolderIconResource = -3997,
 kGenericHardDiskIconResource = -3995,
 kGenericFileServerIconResource = -3972,
 kGenericSuitcaseIconResource = -3970,
 kGenericMoverObjectIconResource = -3969
};
/*Icons for which only icon suites exist*/
enum {
 kGenericPreferencesIconResource = -3971,
 kGenericQueryDocumentIconResource = -16506,
 kGenericExtensionIconResource = -16415,
 kSystemFolderIconResource = -3983,
 kHelpIconResource = -20271,
 kAppleMenuFolderIconResource = -3982
};
enum {
 kStartupFolderIconResource = -3981,
 kOwnedFolderIconResource = -3980,
 kDropFolderIconResource = -3979,
 kSharedFolderIconResource = -3978,
 kMountedFolderIconResource = -3977,
 kControlPanelFolderIconResource = -3976,
 kPrintMonitorFolderIconResource = -3975,
 kPreferencesFolderIconResource = -3974,
 kExtensionsFolderIconResource = -3973,
 kFontsFolderIconResource = -3968,
 kFullTrashIconResource = -3984
};

startupFolderIconResource
Use the constants described in "Standard Icon Resources" instead.

1322 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 startupFolderIconResource = kStartupFolderIconResource,
 ownedFolderIconResource = kOwnedFolderIconResource,
 dropFolderIconResource = kDropFolderIconResource,
 sharedFolderIconResource = kSharedFolderIconResource,
 mountedFolderIconResource = kMountedFolderIconResource,
 controlPanelFolderIconResource = kControlPanelFolderIconResource,
 printMonitorFolderIconResource = kPrintMonitorFolderIconResource,
 preferencesFolderIconResource = kPreferencesFolderIconResource,
 extensionsFolderIconResource = kExtensionsFolderIconResource,
 fontsFolderIconResource = kFontsFolderIconResource,
 fullTrashIconResource = kFullTrashIconResource
};

atNone
Use the constants described in "Icon Alignment Constants" instead.

enum {
 atNone = kAlignNone,
 atVerticalCenter = kAlignVerticalCenter,
 atTop = kAlignTop,
 atBottom = kAlignBottom,
 atHorizontalCenter = kAlignHorizontalCenter,
 atAbsoluteCenter = kAlignAbsoluteCenter,
 atCenterTop = kAlignCenterTop,
 atCenterBottom = kAlignCenterBottom,
 atLeft = kAlignLeft,
 atCenterLeft = kAlignCenterLeft,
 atTopLeft = kAlignTopLeft,
 atBottomLeft = kAlignBottomLeft,
 atRight = kAlignRight,
 atCenterRight = kAlignCenterRight,
 atTopRight = kAlignTopRight,
 atBottomRight = kAlignBottomRight
};

svLarge1Bit
Use the constants described in "Icon Selector Constants" instead.

Constants 1323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

enum {
 svLarge1Bit = kSelectorLarge1Bit,
 svLarge4Bit = kSelectorLarge4Bit,
 svLarge8Bit = kSelectorLarge8Bit,
 svSmall1Bit = kSelectorSmall1Bit,
 svSmall4Bit = kSelectorSmall4Bit,
 svSmall8Bit = kSelectorSmall8Bit,
 svMini1Bit = kSelectorMini1Bit,
 svMini4Bit = kSelectorMini4Bit,
 svMini8Bit = kSelectorMini8Bit,
 svAllLargeData = kSelectorAllLargeData,
 svAllSmallData = kSelectorAllSmallData,
 svAllMiniData = kSelectorAllMiniData,
 svAll1BitData = kSelectorAll1BitData,
 svAll4BitData = kSelectorAll4BitData,
 svAll8BitData = kSelectorAll8BitData,
 svAllAvailableData = kSelectorAllAvailableData
};

ttNone
Use the constants described in "Icon Transformation Constants" instead.

enum {
 ttNone = kTransformNone,
 ttDisabled = kTransformDisabled,
 ttOffline = kTransformOffline,
 ttOpen = kTransformOpen,
 ttLabel1 = kTransformLabel1,
 ttLabel2 = kTransformLabel2,
 ttLabel3 = kTransformLabel3,
 ttLabel4 = kTransformLabel4,
 ttLabel5 = kTransformLabel5,
 ttLabel6 = kTransformLabel6,
 ttLabel7 = kTransformLabel7,
 ttSelected = kTransformSelected,
 ttSelectedDisabled = kTransformSelectedDisabled,
 ttSelectedOffline = kTransformSelectedOffline,
 ttSelectedOpen = kTransformSelectedOpen
};

Result Codes

The table below shows the most common result codes returned by Icon Services and Utilities.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-1000noMaskFoundErr

The IconRef is not valid.-2580invalidIconRefErr

Available in Mac OS X v10.0 and later.

1324 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

DescriptionValueResult Code

The requested icon could not be found.-2581noSuchIconErr

Available in Mac OS X v10.0 and later.

The necessary icon data is not available.-2582noIconDataAvailableErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Icon Services selectors defined
in the Gestalt Manager. For more information, see Gestalt Manager Reference.

Gestalt Constants 1325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

1326 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Icon Services and Utilities Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in LanguageAnalysis.h

Overview

The Language Analysis Manager application programming interface (API) is a shared library designed to
analyze morphemes in text. It is a general-purpose API that does not rely on languages, algorithms of
morpheme analysis, or their applications. Language Analysis Manager is not a framework for creating
International-aware applications. To make your applications work correctly with various languages, you can
use APIs such as Script Manager and Text Utilities.

The Language Analysis Manager (LAM) provides your application with morphological analysis capability, and
is designed to work with a language analysis engine. Using the Language Analysis Manager, your application
can manage an analysis engine and create environments and contexts in which morpheme analysis can
occur. This version of the Language Analysis Manager works only with a Japanese analysis engine.

Functions by Task

Getting The Library Version

LALibraryVersion (page 1335) Deprecated in Mac OS X v10.5
Returns the version of the Language Analysis Manager installed.

Handling Environments

LACreateCustomEnvironment (page 1332) Deprecated in Mac OS X v10.5
Creates a new environment with the specified name.

LADeleteCustomEnvironment (page 1332) Deprecated in Mac OS X v10.5
Disposes of a reference to a custom language analysis environment.

LAGetEnvironmentList (page 1333) Deprecated in Mac OS X v10.5
Obtains a list of the available language analysis environments.

LAGetEnvironmentName (page 1334) Deprecated in Mac OS X v10.5
Obtains the name of an environment.

LAGetEnvironmentRef (page 1334) Deprecated in Mac OS X v10.5
Obtains the language analysis environment reference associated with an environment name

Overview 1327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Opening and Closing Contexts

LACloseAnalysisContext (page 1329) Deprecated in Mac OS X v10.5
Closes the specified language analysis context.

LAOpenAnalysisContext (page 1338) Deprecated in Mac OS X v10.5
Creates a language analysis context from a specified language analysis environment.

Managing Dictionaries

LAAddNewWord (page 1328) Deprecated in Mac OS X v10.5
Adds a new word to a dictionary.

LACloseDictionary (page 1330) Deprecated in Mac OS X v10.5
Closes a dictionary in the specified environment.

LAListAvailableDictionaries (page 1336) Deprecated in Mac OS X v10.5
Obtains the number of dictionaries available in a specified environment.

LAOpenDictionary (page 1339) Deprecated in Mac OS X v10.5
Opens a dictionary for the specified environment.

Analyzing Text

LAContinuousMorphemeAnalysis (page 1330) Deprecated in Mac OS X v10.5
Performs a continuous morphological analysis of Unicode text.

LAGetMorphemes (page 1335) Deprecated in Mac OS X v10.5
Reads the results of a continuous morpheme analysis.

LAMorphemeAnalysis (page 1337) Deprecated in Mac OS X v10.5
Performs a morphological analysis of the specified Unicode text.

LAResetAnalysis (page 1339) Deprecated in Mac OS X v10.5
Clears the internal status of the analysis context.

LAShiftMorphemes (page 1340) Deprecated in Mac OS X v10.5
Shifts the read out of continuous morpheme analysis.

LATextToMorphemes (page 1341) Deprecated in Mac OS X v10.5
Performs a morphological analysis of the specified text.

Functions

LAAddNewWord
Adds a new word to a dictionary. (Deprecated in Mac OS X v10.5.)

1328 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

OSStatus LAAddNewWord (
 LAEnvironmentRef environ,
 const FSSpec *dictionary,
 const AEDesc *dataList
);

Parameters
environ

A reference to the language analysis environment for the dictionary you want to modify.

dictionary
The file specification for the dictionary you want to modify.

dataList
A pointer to an AEDesc data structure that specifies the word you want to add to the dictionary. See
the Apple Event Manager documentation for more information on Apple Event descriptor records.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LACloseAnalysisContext
Closes the specified language analysis context. (Deprecated in Mac OS X v10.5.)

OSStatus LACloseAnalysisContext (
 LAContextRef context
);

Parameters
context

A reference to the language analysis context you want to close.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

Functions 1329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

LACloseDictionary
Closes a dictionary in the specified environment. (Deprecated in Mac OS X v10.5.)

OSStatus LACloseDictionary (
 LAEnvironmentRef environ,
 const FSSpec *dictionary
);

Parameters
environ

A reference to the language analysis environment for which you want to close a dictionary.

dictionary
The file specification for the dictionary you want to close.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAContinuousMorphemeAnalysis
Performs a continuous morphological analysis of Unicode text. (Deprecated in Mac OS X v10.5.)

OSStatus LAContinuousMorphemeAnalysis (
 LAContextRef context,
 ConstUniCharArrayPtr text,
 UniCharCount textLength,
 Boolean incrementalText,
 LAMorphemePath *leadingPath,
 LAMorphemePath *trailingPath,
 Boolean *modified
);

Parameters
context

A reference to the language analysis context whose text you want to analyze. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

text
A pointer to the Unicode text string you want to analyze.

textLength
The length of the Unicode text string specified in the text parameter. This value must specify the
number of UniChar (double-byte) values in the string.

1330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

incrementalText
A Boolean value that indicates the method for passing text. Pass false to specify you want the text
to be analyzed as a whole and the analysis started. Pass true if the text is a continuation of the text
currently held by the context, and should be added to the context before undergoing analysis.

leadingPath
A pointer to the morpheme path that specifies the results of analyzing the text just previous to the
string specified by the text parameter. The Langauage Analysis Manager uses this string to restrict
the analyis. For example, if the previous section ends with a noun, the text that follows can begin
with a verb. If no valid leading path is available you can pass NULL or a “Leading and Trailing
Constants” (page 1350)—kLAFreeEdge or kLADefaultEdge. Pass kLAFreeEdge if it is possible for
an optional morpheme to come at the start or the end of analysis. Pass kLADefaultEdge if you want
the analysis is carried out so that the start/end of analysis becomes the start of the sentence/end of
sentence or the start of the segment/end of segment. Definitions for start of sentence/end of sentence
and start of segment/end of segment depend on the engine.

trailingPath
A pointer to the morpheme path that specifies the results of analyzing the text that follows the string
specified by the text parameter. When performing a continuous analysis, you must pass the constant
kLAIncompleteEdge to indicate that the string is not complete. Note that the function
LAGetMorphemes only returns the results it has completed analyzing, not the analysis of the complete
source text. If you want to obtain all of the analysis results up to a point, (if a user expressly indicates
a conversion with the space bar in a kana-kanji conversion program, and so forth) then you can pass
a value other than kLAIncompleteEdge. Then, when you call the function LAGetMorphemes you
obtain analysis results for that portion of the string that has been analyzed to that point.

modified
On output, true if the internal state of the context is changed (new analyzed morphemes are
generated); otherwise false. When true is returned, you should call the function LAGetMorphemes
and update the display. If modified is specified as NULL, values are not returned.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
The function LAContinuousMorphemeAnalysis does not return analysis results, but holds them internally.
You can obtain the results by calling the functions LAGetMorphemes or LAShiftMorphemes. In contrast to
the function LAMorphemeAnalysis you cannot obtain multiple paths for an analysis done using the function
LAContinuousMorphemeAnalysis.

You can obtain the same results as calling the function LAResetAnalysis by calling
LAContinuousMorphemeAnalysiswith the textparameter set to "" and the incrementalTextparameter
set to false.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

Functions 1331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

LACreateCustomEnvironment
Creates a new environment with the specified name. (Deprecated in Mac OS X v10.5.)

OSStatus LACreateCustomEnvironment (
 LAEnvironmentRef baseEnvironment,
 ConstStr63Param newEnvironmentName,
 Boolean persistent,
 LAEnvironmentRef *newEnvironment
);

Parameters
baseEnvironment

A reference to the language analysis environment that you want to use as the base environment.

newEnvironmentName
The name for the newly-created environment. This name must be unique. If an environment with the
same name already exists, the function returns the result code laEnvironmentExistErr.

persistent
A Boolean value that specifies whether the environment should be persistent (true) or not (false).
If you pass true, the newly-created environment is saved to disk, and it can be referred to at any
time subsequently by using the name. If you pass false, the newly-created environment can only
be used during that session. Additionally, environments created with persistent set to false are not
returned in the list provided by the function LAGetEnvironmentList, so these environments can
be used only as private environments. If you create a private environment, you must call the function
LADeleteCustomEnviroment to dispose of it before you terminate your application.

newEnvironemnt
On output, a reference to the newly-created language analysis environment.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
If you open or close dictionaries for custom environments, it is possible to create independent environments
without interfering with existing environments.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LADeleteCustomEnvironment
Disposes of a reference to a custom language analysis environment. (Deprecated in Mac OS X v10.5.)

1332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

OSStatus LADeleteCustomEnvironment (
 LAEnvironmentRef environment
);

Parameters
environment

A reference to the language analysis environment you want to dispose of.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAGetEnvironmentList
Obtains a list of the available language analysis environments. (Deprecated in Mac OS X v10.5.)

OSStatus LAGetEnvironmentList (
 UInt32 maxCount,
 UInt32 *actualCount,
 LAEnvironmentRef environmentList[]
);

Parameters
maxCount

The maximum number of environments provided by the system. To determine this value, see the
Discussion.

actualCount
On output, the actual number of environments.

environmentList
On output, a list of the available environments. You must allocate a buffer of the appropriate size. If
you are uncertain of how much memory to allocate for this array, see the Discussion.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
Typically, you use the function LAGetEnvironmentList by calling it twice, as follows:

1. Pass 0 for the maxCount parameter and NULL for the environmentList parameter.

2. Allocate enough space for an array of the size specified by actualCount, then call the function
LAGetEnvironmentList again. This time, provide a count of the actual number of environments as
the maxCount parameter, and a pointer to a buffer of the correct size for the environmentList
parameter. On output, the pointer points to an array of the available environments.

Functions 1333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAGetEnvironmentName
Obtains the name of an environment. (Deprecated in Mac OS X v10.5.)

OSStatus LAGetEnvironmentName (
 LAEnvironmentRef environment,
 Str63 environmentName
);

Parameters
environment

A reference to the language analysis environment whose name you want to obtain.

environmentName
On return, the environment name.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAGetEnvironmentRef
Obtains the language analysis environment reference associated with an environment name (Deprecated in
Mac OS X v10.5.)

OSStatus LAGetEnvironmentRef (
 ConstStr63Param targetEnvironmentName,
 LAEnvironmentRef *environment
);

Parameters
targetEnvironmentName

The environment name whose language analysis environment reference you want to obtain.

environment
On output, a reference to the language analysis environment associated with the environment name.

1334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAGetMorphemes
Reads the results of a continuous morpheme analysis. (Deprecated in Mac OS X v10.5.)

OSStatus LAGetMorphemes (
 LAContextRef context,
 LAMorphemePath *result
);

Parameters
context

A reference to the language analysis context whose result you want to obtain. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

result
On output, points to the morpheme bundle that contains the results of the analysis. You are responsible
for disposing of this structure by calling the Apple Event Manager function AEDisposeDesc.

Return Value
A result code. See “Result Codes” (page 1354).

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LALibraryVersion
Returns the version of the Language Analysis Manager installed. (Deprecated in Mac OS X v10.5.)

UInt32 LALibraryVersion (
 void
);

Return Value
Returns the version of Language Analysis manager that is installed.

Functions 1335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Discussion
The function LALibraryVersion returns the version of the Language Analysis Manager installed in the
same format as 'vers' resource. That is to say, the version number is returned in BCD (Binary-Coded Decimal)
format to higher-place words, while release stage information is returned to lower-place words. For example,
version 1.1.1 final release library returns 0x01118000.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAListAvailableDictionaries
Obtains the number of dictionaries available in a specified environment. (Deprecated in Mac OS X v10.5.)

OSStatus LAListAvailableDictionaries (
 LAEnvironmentRef environ,
 ItemCount maxCount,
 ItemCount *actualCount,
 FSSpec dictionaryList[],
 Boolean opened[]
);

Parameters
environ

A reference to the language analysis environment for which you want to obtain a list of available
dictionaries.

maxCount
The maximum number of available dictionaries. To determine this value, see the Discussion.

actualCount
On output, the actual number of available dictionaries.

dictionaryList
On output, points to a list of available dictionaries. You must allocate a buffer of the appropriate size.
If you are uncertain of how much memory to allocate for this array, see the Discussion.

opened
On output, points to a list of Boolean values that specify whether the available dictionaries are open.
This array is parallel to the dictionaryList array. A dictionary file whose associated value is true
is open and false if it is not open. You must allocate a buffer of the appropriate size. If you are
uncertain of how much memory to allocate for this array, see the Discussion.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
Typically, you use the function LAListAvailableDictionaries by calling it twice, as follows:

1. Pass 0 for the maxCount parameter, NULL for the dictionaryList parameter, and NULL for the opened
parameter.

1336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

2. Allocate enough space for arrays of the size specified by actualCount, then call the function
LAListAvailableDictionaries again. This time, provide a count of the actual number of dictionaries
as the maxCount parameter, and a pointer to buffers of the correct size for the dictionaryList and
opened parameters. On output, dictionaryList points to an array of the available dictionaries and
opened points to an array that specifies whether each dictionary is opened or closed.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorphemeAnalysis
Performs a morphological analysis of the specified Unicode text. (Deprecated in Mac OS X v10.5.)

OSStatus LAMorphemeAnalysis (
 LAContextRef context,
 ConstUniCharArrayPtr text,
 UniCharCount textLength,
 LAMorphemePath *leadingPath,
 LAMorphemePath *trailingPath,
 ItemCount pathCount,
 LAMorphemeBundle *result
);

Parameters
context

A reference to the language analysis context whose text you want to analyze. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

text
A pointer to the Unicode text string you want to analyze.

textLength
The length of the Unicode text string specified in the text parameter. This value must specify the
number of UniChar (double-byte) values in the string.

leadingPath
A pointer to the morpheme path that specifies the results of analyzing the text just previous to the
string specified by the text parameter. The Language Analysis Manager uses this string to restrict
the analysis. For example, if the previous section ends with a noun, the text that follows can begin
with a verb. If no valid leading path is available you can pass NULL or a “Leading and Trailing
Constants” (page 1350)—kLAFreeEdge or kLADefaultEdge. Pass kLAFreeEdge if it is possible for
an optional morpheme to come at the start or the end of analysis. Pass kLADefaultEdge if you want
the analysis is carried out so that the start/end of analysis becomes the start of the sentence/end of
sentence or the start of the segment/end of segment. Definitions for start of sentence/end of sentence
and start of segment/end of segment depend on the engine.

Functions 1337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

trailingPath
A pointer to the morpheme path that specifies the results of analyzing the text that follows the string
specified by the text parameter. The Language Analysis Manager uses this string to restrict the
analysis. For example, if the following section begins with a verb, the text that precedes it can begin
with a noun. If no valid trailing path is available you can pass NULL or a “Leading and Trailing
Constants” (page 1350)—kLAFreeEdge or kLADefaultEdge. Pass kLAFreeEdge if it is possible for
an optional morpheme to come at the start or the end of analysis. Pass kLADefaultEdge if you want
the analysis is carried out so that the start/end of analysis becomes the start of the sentence/end of
sentence or the start of the segment/end of segment. Definitions for start of sentence/end of sentence
and start of segment/end of segment depend on the engine.

pathCount
On output, specifies the maximum rank of the returned path.

result
On output, points to the morpheme bundle that contains the results of the analysis. You are responsible
for disposing of this structure by calling the Apple Event Manager function AEDisposeDesc.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
If you have previously called the function LAContinuousMorphemeAnalysis, and you the call the function
LAMorphemeAnalysis, the internal state maintained by the function LAContinuousMorphemeAnalysis
is disposed of. Then, if you call the functions LAGetMorphemes and LAShiftMorphemes the result code
laNoMoreMorphemeErr is returned .

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAOpenAnalysisContext
Creates a language analysis context from a specified language analysis environment. (Deprecated in Mac OS
X v10.5.)

OSStatus LAOpenAnalysisContext (
 LAEnvironmentRef environ,
 LAContextRef *context
);

Parameters
environ

A reference to the language analysis environment for which you want to open a context.

context
On output, a language analysis context derived from the specified language analysis environment.

Return Value
A result code. See “Result Codes” (page 1354).

1338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAOpenDictionary
Opens a dictionary for the specified environment. (Deprecated in Mac OS X v10.5.)

OSStatus LAOpenDictionary (
 LAEnvironmentRef environ,
 const FSSpec *dictionary
);

Parameters
environ

A reference to the language analysis environment for which you want to open the dictionary.

dictionary
The file specification for the dictionary you want to open.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
The environment makes an appropriate assessment of type of dictionary, user dictionary, option dictionary
and so forth, before carrying out necessary operations.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAResetAnalysis
Clears the internal status of the analysis context. (Deprecated in Mac OS X v10.5.)

OSStatus LAResetAnalysis (
 LAContextRef context
);

Parameters
context

A reference to the language analysis context whose analysis you want to reset. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

Functions 1339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
Clear the internal status of analysis context. This is accessed before the continuous analysis by the next
LAContinuousMorphemeAnalysis. Accessing LAGetMorphemes and LAShiftMorphemes immediately after
this call will fail.

The same result will be achieved even if LAContinuousMorphemeAnalysis is accessed as text = "",
incrementalText = false

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAShiftMorphemes
Shifts the read out of continuous morpheme analysis. (Deprecated in Mac OS X v10.5.)

OSStatus LAShiftMorphemes (
 LAContextRef context,
 ItemCount morphemeCount,
 LAMorphemePath *path,
 UniCharCount *shiftedLength
);

Parameters
context

A reference to the language analysis context whose read-out you want to shift. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

morphemeCount
The number of morphemes to be shifted. If you pass kAllMorphemes, all morphemes which are
analized are returned.

path
If you pass typeNull a new path is created. If you pass a valid path, the morpheme read out at the
end of the path is added. This is handy when this path is to be used as the leading edge the next time
LAContinuousMorphemeAnalysis is accessed. In both cases, when you are done using the path,
you must dispose of it by calling the Apple Event Manager function AEDispose.

shiftedLength
A pointer to the input character string length (in UniChars) corresponding to the morpheme read
out. If you pass NULL, it is not returned.

Return Value
A result code. See “Result Codes” (page 1354).

1340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Discussion
When you call the function LAShiftMorphemes, the results of the analysis performed by the function
LAContinuousMorphemeAnalysis are returned from the start to the number of morpheme readout paths
specified in the morphemeCount parameter . Morphemes which have been read out are deleted from analysis
context. For example, if "AABBCC" represents the internal status, after you fetch the morpheme "AA" by
calling LAShiftMorphemes, the internal status becomes "BBCC".

The results you obtain by calling the funciton LAShiftMorphemes, are impacted by the trailingEdge
parameter of the function LAContinuousMorphemeAnalysis. If the value of the trailingEdge parameter
iskLAIncompleteEdge, the functionLAShiftMorphemesmight not return all morphemes and non-converted
sections. The analysis engine only returns morphemes with a high degree of certainty. For example, those
morphemes which are likely to change if text is added, and laNoMoreMorphemeErr is returned in subsequent
accesses. If something other than kLAIncompleteEdge is passed as the trailingEdge parameter, it is
possible to fetch morphemes up to the final morpheme. After all morphemes are fetched, the result code
laNoMoreMorphemeErr is returned to indicate that nothing remains. This is the same as the status returned
after calling the function LAResetAnalysis.

You can carry out a continuous analysis using the functions LAContinuousMorphemeAnalysis and
LAShiftMorphemes in two ways. The first method leaves as much text as possible within the analysis engine.
That is, continue to provide text to the fucntoin LAContinuousMorphemeAnalysis until you encounter
the result code laTextOverflowErr , and call the function LAShiftMorphemes once when the error is
returned. The second method leaves as little text as possible within the analysis search engine. That is,
continue to provide text to the function LAContinuousMorphemeAnalysis until true is returned to the
modifiedparameter. When true is returned, call the function LAShiftMorphemeswith the morphemeCount
parameter set to kAllMorphemes.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LATextToMorphemes
Performs a morphological analysis of the specified text. (Deprecated in Mac OS X v10.5.)

Functions 1341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

OSStatus LATextToMorphemes (
 LAContextRef context,
 TextEncoding preferedEncoding,
 ByteCount textLength,
 ConstLogicalAddress sourceText,
 ByteCount bufferSize,
 OptionBits convertFlags,
 UInt32 structureVersion,
 ByteCount *acceptedLength,
 LAMorphemesArrayPtr resultBuffer
);

Parameters
context

A reference to the language analysis context whose text you want to analyze. You can obtain a
language analysis context by calling the function LAOpenAnalysisContext.

preferedEncoding
A value of type TextEncoding that specifies the encoding of text to use for both input and output.
The text and length included in the results parameter are adjusted in accordance with the encoding
specified here.

textLength
The length, in bytes, of the text you want to analyze.

sourceText
A pointer to the text you want to analyze.

bufferSize
The size of the buffer pointed to by the resultBuffer parameter.

convertFlags
An OptionBits value that specifies how to proceed with the analysis. Currently the only option you
can set is kLAEndOfSourceTextMask. If this bit is set, the source text is analyzed to the end, and
then results are generated. If this bit is not set, there is a possibility that the end portion of the source
text is not yet analyzed when results are available. For example, when a large text file is analyzed it
may be preferable to analyze it in chunks, returning results as each chunk is analyzed. You can specify
this by passing 0 for the convertFlags parameter, advancing the analysis, and the setting
kLAEndOfSourceTextMask when the whole file has been read.

structureVersion
The current version of LAMorphemesArrayPtr. You should pass kLAMorphemesArrayVersion.

acceptedLength
On output, the length of the source text that is accepted by the analysis engine.

resultBuffer
On output, a pointer to an array of LAMorphmesArray structures that contain the results of the
morphological analysis.

Return Value
A result code. See “Result Codes” (page 1354).

Discussion
The function LATextToMorphemes analyzes the text specified in textLength and sourceText, and returns
the results to resultBuffer in the form of LAMorphemesArray. While there are no restrictions on the
length of text specified, the length in byte units of sourceText received in this call is set to acceptedLength
at the point where the output buffer becomes full, or until all text provided has been analyzed. In practice,
sections currently being analyzed exist within the analysis context, so be aware that the length returned may

1342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

not necessarily be the same as the section included in analysis results. This means that if the length of the
returned text is shorter than the source text, analysis results are not complete. In this case, fetch the results,
increment the sourceText by the acceptedLength, shorten textLength by the acceptedLength, and
repeatedly call LATextToMorphemes until all the text is analyzed. The sample code below shows how to
analyze text while loading it from a file.

while (fileErr == noErr)
{
 fileErr = ReadFile (readBufferSize, &actualReadSize, readBuffer);
 if (fileErr == eofErr)
 analyzeOption = kLAEndOfSourceTextMask;
 else
 analyzeOption = 0;
 analyzeLen = actualReadSize;
 analyzeText = readBuffer;
 result->morphemesCount = 0;
 while (analyzeLen || result->morphemesCount)
 {
 err = LATextToMorphemes (context, kTextEncodingMacJapanese,
 analyzeLen, analyzeText, resultBufferSize,
 analyzeOption, kLAMorphemesArrayVersion,
 &acceptedLen, result);
 if (result->morphemesCount > 0)
 {
 //
 // Retrieve result here...
 //
 }
 analyzeText += acceptedLen; // Increment source text ptr
 analyzeLen -= acceptedLen; // Decrement source text length
 }
}

If kLAEndOfSourceTextMask is specified and the analysis of all of the source text is done, the context
becomes empty. If the analysis is suspended under this or other conditions (including errors), you must call
the function LAResetAnalysis to clear the context.

Availability
Available in CarbonLib 1.0 and later when LanguageAnalysis 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

Data Types

HomographAccent
Defines a data type for a homographic accent.

Data Types 1343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

typedef UInt8 HomographAccent;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

HomographDicInfoRec
Contains dictionary information for a homograph.

struct HomographDicInfoRec {
 DCMDictionaryID dictionaryID;
 DCMUniqueID uniqueID;
};
typedef struct HomographDicInfoRec HomographDicInfoRec;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

HomographWeight
Defines a data type for a homographic weighting value.

typedef UInt16 HomographWeight;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

JapanesePartOfSpeech
Defines a data type for a Japanese part of speech.

typedef MorphemePartOfSpeech JapanesePartOfSpeech;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

1344 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

LAContextRef
A reference to an opaque language analysis context.

typedef struct OpaqueLAContextRef * LAContextRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAEnvironmentRef
A reference to an opaque language analysis environment structure.

typedef struct OpaqueLAEnvironmentRef * LAEnvironmentRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAHomograph
Defines a data types for a homograph node.

typedef AERecord LAHomograph;

Discussion
The Apple event record (AERecord) is the data type upon which many Language Analysis Manager data
types are based. A homograph node is the minimum unit of analysis and is representative of an individual
language. Typically a homograph node corresponds to one word obtained from the dictionary.

Homograph nodes include the character string which represents this language, but the content varies
according to the type of analysis stipulated in the analysis environment. Depending on the type of
environment, additional information may be included for a specific language.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorpheme
Defines a data type for a morpheme node.

Data Types 1345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

typedef AERecord LAMorpheme;

Discussion
The Apple event record (AERecord) is the data type upon which many Language Analysis Manager data
types are based. Morpheme nodes display the language of a specific part of speech for a particular text
character strings, and have corresponding character string range, part of speech and homograph nodes
within text character strings as attributes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorphemeBundle
Defines a data type for a morpheme bundle.

typedef AERecord LAMorphemeBundle;

Discussion
The Apple event record (AERecord) is the data type upon which many Language Analysis Manager data
types are based. Morpheme bundles are a collection of different solutions to morpheme analysis on one
character string. The "different solutions" referred to here means that two solutions have different morpheme
delimiters, or the same morpheme delimiters, but the parts of speech are not the same. Morpheme bundles
have each of these different solutions in the from of a morpheme path. Morpheme bundles normally have
multiple paths in the "most likely" order.

Within morpheme bundles, morpheme paths do not directly include morpheme nodes. Morpheme bundles
have a list of morpheme nodes as one of their attributes distinct from the morpheme path, and morpheme
paths have an index to that list. In this way, it is possible to share a morpheme node from one or more paths
by indirectly indicating the morpheme node. In most cases, multiple paths within one bundle resemble one
another to some extent, and multiple paths may be deemed to have the same morpheme node. One
morpheme node may include many homograph nodes, making it bigger, so a mechanism such as this which
allows sharing is important in maintaining a small data size.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorphemePath
Defines a data type for a morpheme path.

1346 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

typedef AERecord LAMorphemePath;

Discussion
The Apple event record (AERecord) is the data type upon which many Language Analysis Manager data
types are based. A morpheme path defines a single solution for the analysis of a morpheme. The path has
an individual morphme delmiinter and part of speech.

There are two types of variation of morpheme paths which have a different way of holding the lower-place
morpheme nodes, and in some cases they are used for different purposes. One is the morpheme path within
the morpheme bundle mentioned earlier, where the path does not directly include morpheme nodes.

The other form is the morpheme path which can be used alone, and in this case, it is more convenient for it
to be closed in that unit. If an application changes the operation of a morpheme node, the morpheme node
must not be being shared. Therefore, for single morpheme paths, morpheme nodes are directly included in
the morpheme path.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorphemeRec
Contains results of the analayis of one morpheme.

struct LAMorphemeRec {
 ByteCount sourceTextLength;
 LogicalAddress sourceTextPtr;
 ByteCount morphemeTextLength;
 LogicalAddress morphemeTextPtr;
 UInt32 partOfSpeech;
};
typedef struct LAMorphemeRec LAMorphemeRec;

Fields
sourceTextLength

The length of the source text for this morpheme.

sourceTextPtr
A pointer to the source text.

morphemeTextLength
The length of the result text for this morpheme.

morphemeTextPtr
A pointer to the result text.

partOfSpeech
The part of speech of this morpheme.

Discussion
This structure is an entry in the LAMorphemesArray data structure.

Availability
Available in Mac OS X v10.0 and later.

Data Types 1347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAMorphemesArray
Contains the results of high-level morphological analysis.

struct LAMorphemesArray {
 ItemCount morphemesCount;
 ByteCount processedTextLength;
 ByteCount morphemesTextLength;
 LAMorphemeRec morphemes[1];
};
typedef struct LAMorphemesArray LAMorphemesArray;
typedef LAMorphemesArray * LAMorphemesArrayPtr;

Fields
morphemesCount

The number of morphemes included.

processedTextLength
The processed source character length.

morphemesTextLength
The overall length of the result string.

morphemes
An array of morpheme records.

Discussion
When you perform high-level analysis, you can analyze stream-format text and obtain the results as an array
of morpeme information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

LAPropertyKey
Defines a data type for a language analysis property key.

typedef AEKeyword LAPropertyKey;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

1348 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

LAPropertyType
Defines a data type for a language analysis property type.

typedef DescType LAPropertyType;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

MorphemePartOfSpeech
Defines a data type for a morpheme part of speech.

typedef UInt32 MorphemePartOfSpeech;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

MorphemeTextRange
Contains a range of text associated with a morpheme.

struct MorphemeTextRange {
 UInt32 sourceOffset;
 UInt32 length;
};
typedef struct MorphemeTextRange MorphemeTextRange;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LanguageAnalysis.h

Constants

File Creator Constants
Specify file creator for dictionary of Apple Japanese access methods.

Constants 1349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

enum {
 kAppleJapaneseDictionarySignature = 'jlan'
};

Analysis Engine Keywords
Specify analysis engine keywords for morpheme/homograph information.

enum {
 keyAEHomographDicInfo = 'lahd',
 keyAEHomographWeight = 'lahw',
 keyAEHomographAccent = 'laha'
};

Analysis Results Constants
Specify the nodes associated with analysis resutls.

enum {
 keyAELAMorphemeBundle = 'lmfb',
 keyAELAMorphemePath = 'lmfp',
 keyAELAMorpheme = 'lmfn',
 keyAELAHomograph = 'lmfh'
};

Morpheme Key Values
Specify key values used for morpheme/homgraph information.

enum {
 keyAEMorphemePartOfSpeechCode = 'lamc',
 keyAEMorphemeTextRange = 'lamt'
};

All Morphemes Constant
Specifies to use all morphemes.

enum {
 kLAAllMorphemes = 0
};

Leading and Trailing Constants
Specify constraints to apply to a string.

1350 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

enum {
 kLADefaultEdge = 0,
 kLAFreeEdge = 1,
 kLAIncompleteEdge = 2
};

Converting Mask
Defines a mask for high-level API conversion flags.

enum {
 kLAEndOfSourceTextMask = 0x00000001
};

Morphemes Array Version
Specifies the version of the array used to hold morpheme analysis results.

enum {
 kLAMorphemesArrayVersion = 0
};

Conjugation Constants
Specify Japanese conjugations.

enum {
 kLASpeechKatsuyouGokan = 0x00000001,
 kLASpeechKatsuyouMizen = 0x00000002,
 kLASpeechKatsuyouRenyou = 0x00000003,
 kLASpeechKatsuyouSyuushi = 0x00000004,
 kLASpeechKatsuyouRentai = 0x00000005,
 kLASpeechKatsuyouKatei = 0x00000006,
 kLASpeechKatsuyouMeirei = 0x00000007
};

Parts of Speech Constants
Specify Japanese parts of speech.

Constants 1351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

enum {
 kLASpeechMeishi = 0x00000000,
 kLASpeechFutsuuMeishi = 0x00000000,
 kLASpeechJinmei = 0x00000100,
 kLASpeechJinmeiSei = 0x00000110,
 kLASpeechJinmeiMei = 0x00000120,
 kLASpeechChimei = 0x00000200,
 kLASpeechSetsubiChimei = 0x00000210,
 kLASpeechSoshikimei = 0x00000300,
 kLASpeechKoyuuMeishi = 0x00000400,
 kLASpeechSahenMeishi = 0x00000500,
 kLASpeechKeidouMeishi = 0x00000600,
 kLASpeechRentaishi = 0x00001000,
 kLASpeechFukushi = 0x00002000,
 kLASpeechSetsuzokushi = 0x00003000,
 kLASpeechKandoushi = 0x00004000,
 kLASpeechDoushi = 0x00005000,
 kLASpeechGodanDoushi = 0x00005000,
 kLASpeechKagyouGodan = 0x00005000,
 kLASpeechSagyouGodan = 0x00005010,
 kLASpeechTagyouGodan = 0x00005020,
 kLASpeechNagyouGodan = 0x00005030,
 kLASpeechMagyouGodan = 0x00005040,
 kLASpeechRagyouGodan = 0x00005050,
 kLASpeechWagyouGodan = 0x00005060,
 kLASpeechGagyouGodan = 0x00005070,
 kLASpeechBagyouGodan = 0x00005080,
 kLASpeechIchidanDoushi = 0x00005100,
 kLASpeechKahenDoushi = 0x00005200,
 kLASpeechSahenDoushi = 0x00005300,
 kLASpeechZahenDoushi = 0x00005400,
 kLASpeechKeiyoushi = 0x00006000,
 kLASpeechKeiyoudoushi = 0x00007000,
 kLASpeechSettougo = 0x00008000,
 kLASpeechSuujiSettougo = 0x00008100,
 kLASpeechSetsubigo = 0x00009000,
 kLASpeechJinmeiSetsubigo = 0x00009100,
 kLASpeechChimeiSetsubigo = 0x00009200,
 kLASpeechSoshikimeiSetsubigo = 0x00009300,
 kLASpeechSuujiSetsubigo = 0x00009400,
 kLASpeechMuhinshi = 0x0000A000,
 kLASpeechTankanji = 0x0000A000,
 kLASpeechKigou = 0x0000A100,
 kLASpeechKuten = 0x0000A110,
 kLASpeechTouten = 0x0000A120,
 kLASpeechSuushi = 0x0000A200,
 kLASpeechDokuritsugo = 0x0000A300,
 kLASpeechSeiku = 0x0000A400,
 kLASpeechJodoushi = 0x0000B000,
 kLASpeechJoshi = 0x0000C000
};

Parts of Speech Masks
Specify masks for parts of speech.

1352 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

enum {
 kLASpeechRoughClassMask = 0x0000F000,
 kLASpeechMediumClassMask = 0x0000FF00,
 kLASpeechStrictClassMask = 0x0000FFF0,
 kLASpeechKatsuyouMask = 0x0000000F
};

Engine Limitations
Specify language analysis engine limitations.

enum {
 kMaxInputLengthOfAppleJapaneseEngine = 200
};

Analysis Engine Type Definitions
Specify language analysis engine type definitions for morpheme/homograph information.

enum {
 typeAEHomographDicInfo = 'lahd',
 typeAEHomographWeight = typeShortInteger,
 typeAEHomographAccent = 'laha'
};

Morpheme Types
Specify data types for morphemes.

enum {
 typeAEMorphemePartOfSpeechCode = 'lamc',
 typeAEMorphemeTextRange = 'lamt'
};

Morpheme Type Analysis Constants
Specify types used in morphological analysis.

enum { typeLAMorphemeBundle = typeAERecord, typeLAMorphemePath = typeAERecord,
typeLAMorpheme = typeAEList, typeLAHomograph = typeAEList };

Default Environment Names
Specify names for default environments for Japanese analysis.

Constants 1353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

#define kLAJapaneseKanaKanjiEnvironment "\pKanaKanjiConversion"
#define kLAJapaneseMorphemeAnalysisEnvironment
 "\pJapaneseMorphemeAnalysis"
#define kLAJapaneseTTSEnvironment "\pJapaneseTextToSpeech"

Result Codes

The most common result codes retuned by the Language Analysis Manager are listed in the table below.

DescriptionValueResult Code

The output buffer is too small to store any result.-6984laTooSmallBufferErr

Available in Mac OS X v10.0 and later.

The specified environment is used.-6985laEnvironmentBusyErr

Available in Mac OS X v10.0 and later.

The specified environment can’t be found.-6986laEnvironmentNotFoundErr

Available in Mac OS X v10.0 and later.

An environment by the same name already exists.-6987laEnvironmentExistErr

Available in Mac OS X v10.0 and later.

The path is not correct.-6988laInvalidPathErr

Available in Mac OS X v10.0 and later.

There is nothing to read.-6989laNoMoreMorphemeErr

Available in Mac OS X v10.0 and later.

The analysis failed.-6990laFailAnalysisErr

Available in Mac OS X v10.0 and later.

The text is too long.-6991laTextOverFlowErr

Available in Mac OS X v10.0 and later.

The dictionary is not opened.-6992laDictionaryNotOpenedErr

Available in Mac OS X v10.0 and later.

This dictionary can’t be used with this environment.-6993laDictionaryUnknownErr

Available in Mac OS X v10.0 and later.

There are too many dictionaries.-6994laDictionaryTooManyErr

Available in Mac OS X v10.0 and later.

Invalid property value.-6995laPropertyValueErr

Available in Mac OS X v10.0 and later.

1354 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

DescriptionValueResult Code

The property is unknown to this environment.-6996laPropertyUnknownErr

Available in Mac OS X v10.0 and later.

The property is read only.-6997laPropertyIsReadOnlyErr

Available in Mac OS X v10.0 and later.

The property can’t be found.-6998laPropertyNotFoundErr

Available in Mac OS X v10.0 and later.

There is an error in the property.-6999laPropertyErr

Available in Mac OS X v10.0 and later.

The engine can’t be found.-7000laEngineNotFoundErr

Available in Mac OS X v10.0 and later.

Result Codes 1355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

1356 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Language Analysis Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in Palettes.h

Overview

Important: The Palette Manager is deprecated as of Mac OS X v10.4. There is no replacement.

Prior to Mac OS X, applications could use the Palette Manager to ensure that the best set of colors is available
when drawing to displays with limited color capabilities (pixel depth of 8 bits or less). For applications running
in Mac OS X, the Palette Manager is no longer relevant because display devices always support direct color
(pixel depth of 16 or 32 bits). The palette-based graphics model only works in 256-color (8-bit pseudocolor)
modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Functions by Task

Function descriptions are grouped by programming task. For an alphabetical list of functions, see the API
index.

Animating Palettes

AnimateEntry (page 1361) Deprecated in Mac OS X v10.4
Changes the color of a window’s palette entry. (Deprecated. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

AnimatePalette (page 1362) Deprecated in Mac OS X v10.4
Changes the colors of a series of palette entries; it is similar to the AnimateEntry function, but it
acts upon a range of entries. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

Changing the Pixel Depth for a Video Device

SetDepth (page 1382)
Changes the pixel depth of a video device. (Deprecated. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

Overview 1357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not
Recommended)

HasDepth (page 1371) Deprecated in Mac OS X v10.4
Determines whether a video device supports a specific pixel depth. (Deprecated. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Drawing With Color Palettes

PmBackColor (page 1376) Deprecated in Mac OS X v10.4
Sets the background color field of the current graphics port to a palette color. (Deprecated. There is
no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

PmForeColor (page 1376) Deprecated in Mac OS X v10.4
Sets the foreground color field of the current graphics port to a palette color. (Deprecated. There is
no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

RestoreBack (page 1379) Deprecated in Mac OS X v10.4
Sets the current background color to the color you specify. (Deprecated. There is no replacement;
8-bit graphics mode is not supported by the Mac OS X GUI.)

RestoreFore (page 1380) Deprecated in Mac OS X v10.4
Sets the current foreground color to the color you supply. (Deprecated. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

SaveBack (page 1381) Deprecated in Mac OS X v10.4
Saves the current background color. (Deprecated. There is no replacement; 8-bit graphics mode is
not supported by the Mac OS X GUI.)

SaveFore (page 1381) Deprecated in Mac OS X v10.4
Saves the current foreground color. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

Initializing and Allocating Palettes

DisposePalette (page 1365) Deprecated in Mac OS X v10.4
Disposes of a palette. (Deprecated. There is no replacement; 8-bit graphics mode is not supported by
the Mac OS X GUI.)

GetNewPalette (page 1369) Deprecated in Mac OS X v10.4
Creates and initializes a palette from a ‘pltt’ resource. (Deprecated. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

NewPalette (page 1373) Deprecated in Mac OS X v10.4
Allocates a new palette from colors in the color table. (Deprecated. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

Initializing the Palette Manager

InitPalettes (page 1372) Deprecated in Mac OS X v10.4
Initializes the Palette Manager. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

1358 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

PMgrVersion (page 1377) Deprecated in Mac OS X v10.4
Determines which version of the Palette Manager is executing; it returns an integer specifying the
version number. (Deprecated. There is no replacement; 8-bit graphics mode is not supported by the
Mac OS X GUI.)

Interacting With the Window Manager

ActivatePalette (page 1360) Deprecated in Mac OS X v10.4
Changes the device color tables and generates window updates as needed to meet the color
requirements of your window. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

GetPalette (page 1370) Deprecated in Mac OS X v10.4
Obtains a window’s palette. (Deprecated. There is no replacement; 8-bit graphics mode is not supported
by the Mac OS X GUI.)

GetPaletteUpdates (page 1371) Deprecated in Mac OS X v10.4
Obtains the update attribute of a palette. (Deprecated. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

NSetPalette (page 1374) Deprecated in Mac OS X v10.4
Associates a new palette with a window. (Deprecated. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

SetPalette (page 1385) Deprecated in Mac OS X v10.4
Associates a palette with a window. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

SetPaletteUpdates (page 1386) Deprecated in Mac OS X v10.4
Sets the update attribute of a palette. (Deprecated. There is no replacement; 8-bit graphics mode is
not supported by the Mac OS X GUI.)

Manipulating Palette Entries

Entry2Index (page 1366) Deprecated in Mac OS X v10.4
Obtains the index for a specified entry in the current graphics port’s palette on the current device.
(Deprecated. There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

GetEntryColor (page 1367) Deprecated in Mac OS X v10.4
Obtains the color of a palette entry. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

GetEntryUsage (page 1367) Deprecated in Mac OS X v10.4
Obtains the usage and tolerance fields of a palette entry. (Deprecated. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

SetEntryColor (page 1383) Deprecated in Mac OS X v10.4
Changes the color of a palette entry. (Deprecated. There is no replacement; 8-bit graphics mode is
not supported by the Mac OS X GUI.)

SetEntryUsage (page 1384) Deprecated in Mac OS X v10.4
Modifies the usage category and tolerance values of a palette entry. (Deprecated. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Functions by Task 1359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Manipulating Palettes and Color Tables

CopyPalette (page 1363) Deprecated in Mac OS X v10.4
Copies entries from one palette to another. (Deprecated. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

CTab2Palette (page 1364) Deprecated in Mac OS X v10.4
Copies the colors of a color table into a palette. (Deprecated. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Palette2CTab (page 1375) Deprecated in Mac OS X v10.4
Copies the colors of a palette into a color table. (Deprecated. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

ResizePalette (page 1378) Deprecated in Mac OS X v10.4
Changes the size of a palette. (Deprecated. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

RestoreDeviceClut (page 1379) Deprecated in Mac OS X v10.4
Sets the color table of a graphics device to its default state. (Deprecated. There is no replacement;
8-bit graphics mode is not supported by the Mac OS X GUI.)

Miscellaneous

GetGray (page 1368) Deprecated in Mac OS X v10.4
Determines the best intermediate color between two colors on a given graphics device. (Deprecated.
There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Functions

ActivatePalette
Changes the device color tables and generates window updates as needed to meet the color requirements
of your window. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode is not supported
by the Mac OS X GUI.)

Not recommended.

void ActivatePalette (
 WindowRef srcWindow
);

Parameters
srcWindow

A pointer to the window for which you want status changes reported.

Discussion
The Window Manager calls ActivatePalette when your window’s status changes—for example, when
your window opens, closes, moves, or becomes frontmost. You need to call the ActivatePalette function
yourself if you change a palette—for example, by changing a color with the SetEntryColor function—and
you want the changes to take place immediately, before the Window Manager would do it.

1360 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

If the window specified in the srcWindow parameter is frontmost, ActivatePalette examines the
information stored in the window’s palette and attempts to provide the color environment described therein.
It determines a list of devices on which to render the palette by intersecting the port rectangle of the window
with each device. If the intersection is not empty and if the device has a color table, then ActivatePalette
checks to see if the color environment is sufficient. If a change is required, ActivatePalette calls QuickDraw
to reserve or modify the device’s color entries as needed. The ActivatePalette function then generates
update events for all windows that need color updates.

Calling ActivatePalette with an offscreen graphics world has no effect.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

AnimateEntry
Changes the color of a window’s palette entry. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void AnimateEntry (
 WindowRef dstWindow,
 short dstEntry,
 const RGBColor *srcRGB
);

Parameters
dstWindow

A pointer to the window whose palette color is to be changed.

dstEntry
The palette entry to be changed.

srcRGB
A pointer to the new RGB value.

Discussion
The AnimateEntry function changes the RGB value of an animated entry for a window’s palette. Each device
for which that index has been reserved is immediately modified to contain the new value. This is not considered
to be a change to the device’s color environment because no other windows should be using the animated
entry.

Functions 1361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

If the palette entry is not an animated color or if the associated indexes are no longer reserved, no animation
occurs.

If you have blocked color updates in a window by using SetPalette with cUpdates set to FALSE, you may
observe unintentional animation. This occurs when ActivatePalette reserves for animation device indexes
that are already used in the window. Redrawing the window, which normally is the result of a color update
event, removes any animated colors that do not belong to the window.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

AnimatePalette
Changes the colors of a series of palette entries; it is similar to the AnimateEntry function, but it acts upon
a range of entries. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

Not recommended.

void AnimatePalette (
 WindowRef dstWindow,
 CTabHandle srcCTab,
 short srcIndex,
 short dstEntry,
 short dstLength
);

Parameters
dstWindow

A pointer to the window whose palette colors are to be changed.

srcCTab
A handle to the color table containing the new colors.

srcIndex
The source color table entry at which copying starts.

dstEntry
The palette entry at which copying starts.

dstLength
The number of palette entries to be changed.

1362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Discussion
The AnimatePalette function changes the colors of a series of palette entries. Beginning at the index
specified by the srcIndex parameter (which has a minimum value of 0), the number of entries specified in
dstLength are copied from the source color table to the destination window’s palette, beginning at the
entry specified in the dstEntry parameter. If the source color table specified in srcCTab is not sufficiently
large to accommodate the request, AnimatePalette modifies as many entries as possible and leaves the
remaining entries unchanged.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

CopyPalette
Copies entries from one palette to another. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void CopyPalette (
 PaletteHandle srcPalette,
 PaletteHandle dstPalette,
 short srcEntry,
 short dstEntry,
 short dstLength
);

Parameters
srcPalette

A handle to the palette from which colors are copied.

dstPalette
A handle to the palette to which colors are copied.

srcEntry
The source palette entry at which copying starts.

dstEntry
The destination palette entry at which copying starts.

dstLength
The number of destination palette entries to change.

Functions 1363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Discussion
The CopyPalette function copies entries from the source palette into the destination palette. The copy
operation begins at the values specified by the srcEntry and dstEntry parameters, copying into as many
entries as are specified by the dstLength parameter. CopyPalette resizes the destination palette when
the number of entries after the copy operation is greater than it was before the copy operation.

CopyPalette does not call ActivatePalette, so your application is free to change the palette a number
of times without causing a series of intermediate changes to the color environment. Your application should
call ActivatePalette after completing all palette changes.

If either of the palette handles is NULL, CopyPalette does nothing.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

CTab2Palette
Copies the colors of a color table into a palette. (Deprecated in Mac OS X v10.4. There is no replacement;
8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void CTab2Palette (
 CTabHandle srcCTab,
 PaletteHandle dstPalette,
 short srcUsage,
 short srcTolerance
);

Parameters
srcCTab

A handle to the color table whose colors are to be copied.

dstPalette
The palette to receive the colors.

srcUsage
A usage constant to be assigned the palette entries. Usage constants are described in “Update
Constants” (page 1390).

srcTolerance
A tolerance value to be assigned the palette entries.

1364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Discussion
The CTab2Palette function copies the fields from an existing color-table structure into an existing palette
structure. If the structures are not the same size, then CTab2Palette resizes the palette structure to match
the number of entries in the color-table structure. If the palette in dstPalette has any entries allocated for
animation on any screen device, they are relinquished before the new colors are copied. The srcUsage and
srcTolerance parameters are the value that you assign to the new colors.

If you want to use color-table animation, you can use AnimateEntry (page 1361) and AnimatePalette (page
1362) to change the colors in a palette and on corresponding devices. Changes made to a palette by
CTab2Palette do not take effect until the next ActivatePalette function is performed. If either the
color-table handle or the palette handle is NULL, CTab2Palette does nothing.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

DisposePalette
Disposes of a palette. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode is not
supported by the Mac OS X GUI.)

Not recommended.

void DisposePalette (
 PaletteHandle srcPalette
);

Parameters
srcPalette

A handle to the palette to be disposed of.

Discussion
If the palette has any entries allocated for animation on any screen device, then DisposePalette relinquishes
these entries before the palette’s memory is released.

If a palette is attached to a window automatically—because the palette resource and the window have the
same ID—you do not have to call the DisposePalette function to dispose of the function. The Palette
Manager and Window Manager dispose of the palette automatically if the palette is replaced or if the window
goes away.

Functions 1365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

However, if you explicitly attach a palette to a window with the SetPalette or NSetPalette function,
your application owns the palette and is responsible for disposing of it. It is possible to attach a single palette
to multiple windows; therefore, even when a window goes away and no longer needs a palette, other windows
may still need it.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

Entry2Index
Obtains the index for a specified entry in the current graphics port’s palette on the current device. (Deprecated
in Mac OS X v10.4. There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

SInt32 Entry2Index (
 short entry
);

Parameters
entry

The palette entry whose equivalent device index is to be returned.

Return Value
The index of the given entry.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

1366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

GetEntryColor
Obtains the color of a palette entry. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

void GetEntryColor (
 PaletteHandle srcPalette,
 short srcEntry,
 RGBColor *dstRGB
);

Parameters
srcPalette

A handle to the palette to be accessed.

srcEntry
The palette entry whose color is desired.

dstRGB
A pointer to an RGB color structure to receive the palette color.

Discussion
You can modify the entry’s color using the SetEntryColor (page 1383) function.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

GetEntryUsage
Obtains the usage and tolerance fields of a palette entry. (Deprecated in Mac OS X v10.4. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

Functions 1367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

void GetEntryUsage (
 PaletteHandle srcPalette,
 short srcEntry,
 short *dstUsage,
 short *dstTolerance
);

Parameters
srcPalette

A handle to the palette to be accessed.

srcEntry
The palette entry whose usage and tolerance are desired.

dstUsage
A pointer to the usage value of the palette entry.

dstTolerance
A pointer to the tolerance value of the palette entry.

Discussion
You can modify the entry’s usage and tolerance values by using the SetEntryUsage (page 1384) function.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

GetGray
Determines the best intermediate color between two colors on a given graphics device. (Deprecated in Mac
OS X v10.4. There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Boolean GetGray (
 GDHandle device,
 const RGBColor *backGround,
 RGBColor *foreGround
);

Parameters
device

A handle to the graphics device for which an intermediate color or gray is needed.

backGround
The RGBColor structure for one of the two colors for which you want an intermediate color.

1368 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

foreGround
On input, the RGBColor structure for the other of the two colors; upon completion, the best
intermediate color between these two.

Return Value
If no gray is available (or if no distinguishable third color is available), the foreGround parameter is unchanged,
and the function returns FALSE. If at least one gray or intermediate color is available, it is returned in the
foreGround parameter, and the function returns TRUE.

Discussion
The GetGray function determines the midpoint values for the red, green, and blue values of the two colors
you specify in the backGround and foreGround parameters.

You can also use GetGray to return the best gray. For example, when dimming an object, supply black and
white as the two colors, and GetGray returns the best available gray that lies between them.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

GetNewPalette
Creates and initializes a palette from a ‘pltt’ resource. (Deprecated in Mac OS X v10.4. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

PaletteHandle GetNewPalette (
 short PaletteID
);

Parameters
PaletteID

The resource ID of the source palette.

Return Value
A handle to the new palette.

Discussion
The GetNewPalette function detaches the resource when it creates the new palette, so you do not need
to call the ReleaseResource function.

Functions 1369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

If you open a new color window with GetNewCWindow, the Window Manager calls GetNewPalette
automatically, with paletteID equal to the window’s resource ID. Therefore, if you have created a palette
resource with the same ID as a window, the Window Manager and Palette Manager automatically create the
palette for you and your application need not call GetNewPalette to create the palette.

To attach a palette to a window after creating it, use the SetPalette (page 1385) function. To change the
entries in a palette after creating it, use the SetEntryColor (page 1383) and SetEntryUsage (page 1384)
functions.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

GetPalette
Obtains a window’s palette. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

Not recommended.

PaletteHandle GetPalette (
 WindowRef srcWindow
);

Parameters
srcWindow

A pointer to the window for which you want the associated palette.

Return Value
A handle to the palette associated with the window specified in the srcWindow parameter or NULL if the
window has no associated palette or is not a color window.

Discussion
Normally, the GetPalette function does not allocate memory, with one exception. When your application
calls GetPalette to get a copy of the default application palette, the Palette Manager looks at the
AppPalette global variable. If AppPalette is NULL, GetPalettemakes a copy of the default system palette
and returns a handle to this copy.

You request the default palette as follows:

myPaletteHndl = GetPalette ((WindowPtr) -1);

1370 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

GetPaletteUpdates
Obtains the update attribute of a palette. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

short GetPaletteUpdates (
 PaletteHandle p
);

Parameters
p

A handle to the palette.

Return Value
One of the update attributes described in “Update Constants” (page 1390).

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

HasDepth
Determines whether a video device supports a specific pixel depth. (Deprecated in Mac OS X v10.4. There is
no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Functions 1371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

short HasDepth (
 GDHandle gd,
 short depth,
 short whichFlags,
 short flags
);

Parameters
gd

A handle to the GDevice structure of the video device.

depth
The pixel depth for which you’re testing.

whichFlags
The gdDevType constant, which represents a bit in the gdFlags field of the GDevice structure. If
this bit is set to 0 in the GDevice structure, the video device is black and white; if the bit is set to 1,
the device supports color.

flags
The value 0 or 1. If you pass 0 in this parameter, the HasDepth function tests whether the video device
is black and white. If you pass 1 in this parameter, HasDepth tests whether the video device supports
color.

Return Value
Returns 0 if the device does not support the depth you specify in the depth parameter or the display mode
you specify in the flags parameter. Any other value indicates that the device supports the specified depth
and display mode. The function result contains the mode ID that QuickDraw passes to the video driver to
set its pixel depth and to specify color or black and white. You can pass this mode ID in the depth parameter
for the SetDepth function to set the graphics device to the pixel depth and display mode for which you
tested.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

InitPalettes
Initializes the Palette Manager. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

Not recommended.

1372 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

void InitPalettes (
 void
);

Discussion
The InitPalettes function searches for devices that support a device color table and initializes an internal
data structure for each one. Your application does not have to call InitPalettes because the Window
Manager’s InitWindows function calls it automatically.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

NewPalette
Allocates a new palette from colors in the color table. (Deprecated in Mac OS X v10.4. There is no replacement;
8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

PaletteHandle NewPalette (
 short entries,
 CTabHandle srcColors,
 short srcUsage,
 short srcTolerance
);

Parameters
entries

The number of ColorInfo structures to be created in the new palette.

srcColors
A handle to the color table from which the colors are to be obtained. If no color table is provided
(srcColors = NULL), then all colors in the palette are set to black (red, green, and blue equal to
$0000).

srcUsage
The usage value to be assigned each ColorInfo structure in the palette.

srcTolerance
The tolerance value to be assigned each ColorInfo structure in the palette.

Return Value
A handle to the new palette.

Functions 1373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Discussion
The NewPalette function fills the palette with as many RGB values from the color table as it has or can fit.

To attach a palette to a window after creating it, use the SetPalette (page 1385) function. To change the
entries in a palette after creating it, use the SetEntryColor (page 1383) and SetEntryUsage (page 1384)
functions.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

NSetPalette
Associates a new palette with a window. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit
graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void NSetPalette (
 WindowRef dstWindow,
 PaletteHandle srcPalette,
 short nCUpdates
);

Parameters
dstWindow

A pointer to the window to which you want to assign a new palette.

srcPalette
A handle to the palette you want to assign.

nCUpdates
An integer value in which you specify whether the window is to receive updates as a result of various
changes to the color environment. See “Update Constants” (page 1390) for a description of the update
options.

Discussion
NSetPalette changes the palette associated with the window specified in the dstWindow parameter to
the palette specified by srcPalette. NSetPalette also records whether the window is to receive updates
as a result of changes to its color environment. The update constants, which you pass to the nCUpdates
parameter, determine when the window is updated.

This function is identical to the SetPalette (page 1385) function except that the nCUpdates parameter is
an integer rather than a Boolean value, so that a variety of conditions can trigger an update event.

1374 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Use the SetPalette (page 1385) function if you do not need the flexibility that NSetPalette provides for
update events.

Use theGetNewPalette (page 1369) function or theNewPalette (page 1373) function to create a new palette.
To dispose of a palette, use the DisposePalette (page 1365) function.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

Palette2CTab
Copies the colors of a palette into a color table. (Deprecated in Mac OS X v10.4. There is no replacement;
8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void Palette2CTab (
 PaletteHandle srcPalette,
 CTabHandle dstCTab
);

Parameters
srcPalette

A handle to the palette whose colors are to be used.

dstCTab
A handle to the color table to receive the colors.

Discussion
The Palette2CTab function copies all of the colors from an existing palette structure into an existing
color-table structure. If the structures are not the same size, then Palette2CTab resizes the color-table
structure to match the number of entries in the palette structure. If either the palette handle or the color-table
handle is NULL, Palette2CTab does nothing.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.

Functions 1375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

PmBackColor
Sets the background color field of the current graphics port to a palette color. (Deprecated in Mac OS X v10.4.
There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void PmBackColor (
 short dstEntry
);

Parameters
dstEntry

The palette entry whose color is to be used as the background color.

Discussion
The PmBackColor function sets the current color graphics port’s rgbBkColor field to match the color in
the entry specified by the dstEntry parameter of the palette associated with the current window structure.
For courteous and tolerant entries, PmBackColor calls the RGBBackColor function using the RGB color of
the palette entry. For animated colors, PmBackColor selects the recorded device index previously reserved
for animation (if still present) and installs it in the color graphics port. The rgbBgColor field is set to the
value from the palette entry. For explicit colors, PmBackColor places the value

dstEntry modulo (maxIndex +1)

into the color graphics port, where maxIndex is the largest index available in a device’s color table. When
multiple devices with different depths are present, maxIndex varies appropriately for each device.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

PmForeColor
Sets the foreground color field of the current graphics port to a palette color. (Deprecated in Mac OS X v10.4.
There is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

1376 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Not recommended.

void PmForeColor (
 short dstEntry
);

Parameters
dstEntry

The palette entry whose color is to be used as the foreground color.

Discussion
The PmForeColor function sets the current color graphics port’s rgbFgColor field to match the color in
the entry specified by the dstEntry parameter of the palette associated with the current window structure.
For courteous and tolerant entries, PmForeColor calls the RGBForeColor function using the RGB color of
the palette entry. For animated colors, PmForeColor selects the recorded device index previously reserved
for animation (if still present) and installs it in the color graphics port. The RGB foreground color field is set
to the value from the palette entry. For explicit colors, PmForeColor places the value

dstEntry modulo (maxIndex +1)

into the color graphics port, where maxIndex is the largest index available in a device’s color table. When
multiple devices with different depths are present, the value of maxIndex varies appropriately for each
device.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

PMgrVersion
Determines which version of the Palette Manager is executing; it returns an integer specifying the version
number. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode is not supported by
the Mac OS X GUI.)

short PMgrVersion (
 void
);

Return Value
PMgrVersion returns $0202 if system software version 7.0 is executing; $0201 if system software version
6.0.5 is executing; and $0200 if the original 32-Bit QuickDraw system extension is executing.

Functions 1377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

ResizePalette
Changes the size of a palette. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics mode
is not supported by the Mac OS X GUI.)

Not recommended.

void ResizePalette (
 PaletteHandle p,
 short size
);

Parameters
p

A handle to the palette to be resized.

size
The number of resulting entries in the palette.

Discussion
The ResizePalette function sets the palette specified in srcPalette to the number of entries indicated
in the size parameter. If ResizePalette adds entries at the end of the palette, it sets them to pmCourteous,
with the RGB values set to (0,0,0)—that is, black. If ResizePalette deletes entries from the end of the
palette, it safely disposes of them.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

1378 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

RestoreBack
Sets the current background color to the color you specify. (Deprecated in Mac OS X v10.4. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void RestoreBack (
 const ColorSpec *c
);

Parameters
c

A pointer to the ColorSpec structure containing the RGB color to be set as the background color. If
you specify 0 in the value field of the ColorSpec structure, the RestoreBack function stores the
RGB value in the rgbFgColor field of the current CGrafPort structure. If you specify 1 in the value
field of the ColorSpec structure, the RestoreBack function stores the RGB value in the pmBkColor
field of the GrafVars structure.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

RestoreDeviceClut
Sets the color table of a graphics device to its default state. (Deprecated in Mac OS X v10.4. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void RestoreDeviceClut (
 GDHandle gd
);

Parameters
gd

A handle to the GDevice structure. Pass NULL in the gdh parameter to restore all screens.

Discussion
The RestoreDeviceClut function changes the color table of the device specified by the gdh parameter to
its default state. If this process changes any entries, the Palette Manager posts color updates to windows
intersecting the device.

Functions 1379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

You do not need to use this function to restore the Finder’s desktop colors, because its colors are automatically
restored upon switching from applications that use the Palette Manager. Likewise, you need not worry when
switching to another application that uses the Palette Manager. Although colors are not automatically restored
in this case, if that application needs a certain set of colors, the Palette Manager provides them the moment
that application comes to the front.

The reason to use RestoreDeviceClut is that you may be switching to an application that does not use
the Palette Manager, in which case that application inherits your palette unless you restore the default color
lookup tables for all the available display devices.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

RestoreFore
Sets the current foreground color to the color you supply. (Deprecated in Mac OS X v10.4. There is no
replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void RestoreFore (
 const ColorSpec *c
);

Parameters
c

A pointer to the ColorSpec structure containing the RGB color to be set as the foreground color. If
you specify 0 in the value field of the ColorSpec structure, the RestoreFore function stores the
RGB value in the rgbFgColor field of the current CGrafPort structure. If you specify 1 in the value
field of the ColorSpec structure, the RestoreFore function stores the RGB value in the pmFgColor
field of the GrafVars structure.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1380 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Palettes.h

SaveBack
Saves the current background color. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

void SaveBack (
 ColorSpec *c
);

Parameters
c

A pointer to the ColorSpec structure to receive the current background color. A value of 0 in the
value field of the ColorSpec structure specifies retrieving the RGB color from the rgbBkColor field
of the CGrafPort structure; a value of 1 in the value field specifies retrieving the palette entry from
the pmBkColor field of the GrafVars structure.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

SaveFore
Saves the current foreground color. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

Functions 1381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

void SaveFore (
 ColorSpec *c
);

Parameters
c

A pointer to the ColorSpec structure to hold the current foreground color. A value of 0 in the value
field of the ColorSpec structure specifies retrieving the RGB color from the rgbFgColor field of the
CGrafPort structure; a value of 1 in the value field specifies retrieving the palette entry from the
pmFgColor field of the GrafVars structure.On return, ColorSpec structure holds the current
foreground color. You can save either QuickDraw’s foreground color from the CGrafPort structure
or the Palette Manager’s foreground color from the GrafVars structure.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

SetDepth
Changes the pixel depth of a video device. (Deprecated. There is no replacement; 8-bit graphics mode is
not supported by the Mac OS X GUI.)

OSErr SetDepth (
 GDHandle gd,
 short depth,
 short whichFlags,
 short flags
);

Parameters
gd

A handle to the GDevice structure of the video device whose pixel depth you wish to change.

depth
The mode ID returned by the HasDepth (page 1371) function indicating that the video device supports
the desired pixel depth. Alternatively, you can pass the desired pixel depth directly in this parameter,
although you should use the HasDepth function to ensure that the device supports this depth.

whichFlags
The gdDevType constant, which represents a bit in the gdFlags field of the GDevice structure. (If
this bit is set to 0 in the GDevice structure, the video device is black and white; if the bit is set to 1,
the device supports color.

1382 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

flags
The value 0 or 1. If you pass 0 in this parameter, the SetDepth function changes the video device to
black and white; if you pass 1 in this parameter, SetDepth changes the video device to color.

Return Value
Returns zero if successful, or it returns a nonzero value if it cannot impose the desired depth and display
mode on the requested device.

Discussion
The SetDepth function does not change the 'scrn' resource; when the system is restarted, the original
depth for this device is restored.

The Monitors control panel is the user interface for changing the pixel depth, color capabilities, and positions
of video devices. Since the user can control the capabilities of the video device, your application should be
flexible: although it may have a preferred pixel depth, your application should do its best to accommodate
less than ideal conditions.

Use SetDepth only if your application can run on devices of a particular pixel depth and is unable to adapt
to any other depth. Your application should display a dialog box that offers the user a choice between
changing to that depth or canceling display of the image before your application uses SetDepth. Such a
dialog box saves the user the trouble of going to the Monitors control panel before returning to your
application.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.k.h

SetEntryColor
Changes the color of a palette entry. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

void SetEntryColor (
 PaletteHandle dstPalette,
 short dstEntry,
 const RGBColor *srcRGB
);

Parameters
dstPalette

The palette whose entry color is to be changed.

dstEntry
The palette entry to be changed.

Functions 1383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

srcRGB
A pointer to the new RGB color value.

Discussion
SetEntryColor marks the entry as having changed, but it does not change the color environment. That
change occurs upon the next call to ActivatePalette. SetEntryColor marks modified entries such that
the palette is updated, even though no update is required by a change in the color environment.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

SetEntryUsage
Modifies the usage category and tolerance values of a palette entry. (Deprecated in Mac OS X v10.4. There
is no replacement; 8-bit graphics mode is not supported by the Mac OS X GUI.)

Not recommended.

void SetEntryUsage (
 PaletteHandle dstPalette,
 short dstEntry,
 short srcUsage,
 short srcTolerance
);

Parameters
dstPalette

A handle to the palette to be modified.

dstEntry
The palette entry.

srcUsage
The new usage value; one or more usage constants.

srcTolerance
The new tolerance value.

Discussion
SetEntryUsage marks the entry as having changed, but it does not change the color environment. That
change occurs upon the next call to ActivatePalette. Modified entries are marked such that the palette
is updated even though no update is required by a change in the color environment. If either srcUsage or
srcTolerance is set to $FFFF (–1), the entries are not changed.

1384 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

This function allows you to easily modify a palette created with NewPalette or modified by CTab2Palette.
For such palettes the ciUsage and ciTolerance fields of the ColorInfo structure are the same because
you can designate only one value for each. You typically call SetEntryUsage after NewPalette or
CTab2Palette to adjust and customize your palette.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

SetPalette
Associates a palette with a window. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

void SetPalette (
 WindowRef dstWindow,
 PaletteHandle srcPalette,
 Boolean cUpdates
);

Parameters
dstWindow

A pointer to the window to which you want to assign a new palette.

srcPalette
A handle to the palette you want to assign.

cUpdates
A Boolean value in which your application specifies whether the window is to receive updates as a
result of changes to the color environment. Specify TRUE if you want the window to be updated, even
if the window is not the frontmost window. When a window is the frontmost window, changes to its
palette cause it to get an update event regardless of how the cUpdates parameter is set.

Discussion
You can use the NSetPalette (page 1374) function, which does the same thing as SetPalette, when you
need greater flexibility in setting criteria for updates. The nCUpdates parameter for the NSetPalette
function includes the option of turning off updates when the window is the frontmost window.

Use the NSetPalette function to associate a palette with a window but with additional options as to when
an update event is triggered by changes to the color environment.

Functions 1385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Use theGetNewPalette (page 1369) function or theNewPalette (page 1373) function to create a new palette.
To dispose of a palette, use the DisposePalette (page 1365) function.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

SetPaletteUpdates
Sets the update attribute of a palette. (Deprecated in Mac OS X v10.4. There is no replacement; 8-bit graphics
mode is not supported by the Mac OS X GUI.)

Not recommended.

void SetPaletteUpdates (
 PaletteHandle p,
 short updates
);

Parameters
p

A handle to the palette.

updates
One of the update attributes for the NSetPalette function. See “Update Constants” (page 1390) for
a description of the update attributes.

Special Considerations

For applications running in Mac OS X, the Palette Manager is no longer relevant because display devices
always support direct color (pixel depth of 16 or 32 bits). The palette-based graphics model only works in
256-color (8-bit pseudocolor) modes of operation, which are not supported for the Mac OS X GUI.

There is some support for palettes in Quartz Services; see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Palettes.h

1386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Data Types

ColorInfo
Specifies color information for each color in a palette.

struct ColorInfo {
 RGBColor ciRGB;
 short ciUsage;
 short ciTolerance;
 short ciDataFields[3];
};
typedef struct ColorInfo ColorInfo;
typedef ColorInfo * ColorInfoPtr;

Fields
ciRGB

An RGB color value, which is defined by the RGBColor structure. It contains three fields that contain
integer values for defining, respectively, the red, green, and blue values of the color.

ciUsage
One or more of the usage constants, specifying how this entry is to be used. The ciUsage field can
contain any of the Usage Constants (page 1388).

ciTolerance
An integer expressing the range in RGB space within which the red, green, and blue values must fall
to satisfy this entry. A tolerance value of $0000 means that only an exact match is acceptable. Values
of $0xxx other than $0000 are reserved and should not be used in applications.

ciDataFields
Private fields.

Discussion
Each color information structure in a palette comprises an RGB color value, information describing how the
color is to be used, a tolerance value for colors that need only be approximated, and private fields. You should
not create and modify the public fields directly; instead, use Palette Manager functions such as SetEntryColor
and SetEntryUsage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Palettes.h

Palette
Represents a set of colors optimized for use on display devices with a limited number of colors.

Data Types 1387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

struct Palette {
 short pmEntries;
 short pmDataFields[7];
 ColorInfo pmInfo[1];
};
typedef struct Palette Palette;
typedef Palette * PalettePtr;

Fields
pmEntries

The number of ColorInfo structures in the pmInfo array.

pmDataFields
Private fields used by the Palette Manager.

pmInfo
An array of ColorInfo (page 1387) structures.

Discussion
A palette structure contains a header and a collection of color information structures, one for each color in
the palette.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Palettes.h

Constants

Usage Constants
Constants used to determine how the Palette Manager uses a specific palette color.

1388 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

enum {
 pmCourteous = 0,
 pmDithered = 0x0001,
 pmTolerant = 0x0002,
 pmAnimated = 0x0004,
 pmExplicit = 0x0008,
 pmWhite = 0x0010,
 pmBlack = 0x0020,
 pmInhibitG2 = 0x0100,
 pmInhibitC2 = 0x0200,
 pmInhibitG4 = 0x0400,
 pmInhibitC4 = 0x0800,
 pmInhibitG8 = 0x1000,
 pmInhibitC8 = 0x2000
};

Constants
pmCourteous

The color accepts whatever value the Color Manager determines to be the closest match currently
available in the device color table.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmDithered
[description forthcoming]

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmTolerant
The color accepts the Color Manager's choices on an indexed device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmAnimated
The color is used for special color animation effects.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmExplicit
The color specifies an index value rather than an RGB color and always generates the corresponding
entry from the device's color table.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmWhite
Assign color to white on a 1-bit device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmBlack
Assign color to black on a 1-bit device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

Constants 1389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

pmInhibitG2
Inhibit on 2-bit grayscale device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmInhibitC2
Inhibit on 2-bit color device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmInhibitG4
Inhibit on 4-bit grayscale device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmInhibitC4
Inhibit on 4-bit color device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmInhibitG8
Inhibit on 8-bit grayscale device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmInhibitC8
Inhibit on 8-bit color device.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

Discussion
You can logically AND these constants in certain combinations to specify the value of ciUsage in a
ColorInfo (page 1387) record.

The inhibit constants are used to indicate that a graphics device should be prevented from displaying the
color at specified pixel depths. They are always used in combination with other usage constants.

Update Constants
Constants used to determine whether a window is updated based on various changes to the color environment.

1390 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

enum {
 pmNoUpdates = 0x8000,
 pmBkUpdates = 0xA000,
 pmFgUpdates = 0xC000,
 pmAllUpdates = 0xE000
};

Constants
pmNoUpdates

Do not update the window when its color environment changes.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmBkUpdates
Update the window only when it is not the active window.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmFgUpdates
Update the window only when it is the active window.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

pmAllUpdates
Update the window whenever its color environment changes.

Available in Mac OS X v10.0 and later.

Declared in Palettes.h.

Discussion
You use these constants in the nCUpdates parameter of the NSetPalette (page 1374) function and the
updates parameter of the SetPaletteUpdates (page 1386) function.

Constants 1391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

1392 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Palette Manager Reference (Not Recommended)

Framework: HIServices/HIServices.h

Declared in Pasteboard.h

Companion guide Pasteboard Manager Programming Guide

Overview

The Pasteboard Manager lets you create and manipulate pasteboards, which act as holding containers for
data to be transferred from one place to another. Typically you use pasteboards to facilitate copy-and-paste
or drag-and-drop operations, but you can use them whenever you need to temporarily store data that will
be moved elsewhere.

Note: The Pasteboard Manager supersedes the Scrap Manager and the drag flavor APIs in the Drag Manager,
adding greater flexibility in the type and quantity of data to be transferred. Pasteboard Manager pasteboards
are also fully compatible with Cocoa pasteboards.

Functions by Task

Creating and Using Pasteboards

PasteboardCreate (page 1397)
Creates a reference to the specified global pasteboard.

PasteboardSynchronize (page 1402)
Synchronizes the local pasteboard reference to reflect the contents of the global pasteboard.

PasteboardClear (page 1394)
Clears the contents of the specified pasteboard.

PasteboardCopyName (page 1396)
Gets the name of a pasteboard.

PasteboardGetItemCount (page 1398)
Obtains the number of data items in the specified pasteboard.

PasteboardGetItemIdentifier (page 1399)
Obtains the item identifier for an item in a pasteboard.

Overview 1393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Manipulating Pasteboard Flavor Data

PasteboardCopyItemFlavors (page 1395)
Obtains an array of flavors for a specified item in a pasteboard.

PasteboardGetItemFlavorFlags (page 1398)
Obtains the flags for a given flavor.

PasteboardCopyItemFlavorData (page 1395)
Obtains data from a pasteboard for the desired flavor.

PasteboardPutItemFlavor (page 1399)
Adds flavor data or a promise to the specified pasteboard.

PasteboardSetPromiseKeeper (page 1402)
Registers the promise keeper callback function for a pasteboard.

PasteboardCopyPasteLocation (page 1396)
Determines the location in which to paste promised data.

PasteboardSetPasteLocation (page 1401)
Sets the paste location before requesting flavor data.

PasteboardResolvePromises (page 1400)
Resolves all promises to a given pasteboard.

Functions

PasteboardClear
Clears the contents of the specified pasteboard.

OSStatus PasteboardClear (
 PasteboardRef inPasteboard
);

Parameters
inPasteboard

The pasteboard you want to clear.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
After calling this function, the application owns the pasteboard and can add data to it. You must call
PasteboardClear before modifying a pasteboard.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

1394 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

PasteboardCopyItemFlavorData
Obtains data from a pasteboard for the desired flavor.

OSStatus PasteboardCopyItemFlavorData (
 PasteboardRef inPasteboard,
 PasteboardItemID inItem,
 CFStringRef inFlavorType,
 CFDataRef *outData
);

Parameters
inPasteboard

The pasteboard containing the data.

inItem
The identifier for the item whose flavor data you want to obtain.

inFlavorType
The flavor of the data you want to obtain, specified as a uniform type identifier.

outData
On return, outData points to the flavor data. You must release this data using CFRelease when you
are done using it.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch

Declared In
Pasteboard.h

PasteboardCopyItemFlavors
Obtains an array of flavors for a specified item in a pasteboard.

OSStatus PasteboardCopyItemFlavors (
 PasteboardRef inPasteboard,
 PasteboardItemID inItem,
 CFArrayRef *outFlavorTypes
);

Parameters
inPasteboard

The pasteboard containing the data.

inItem
The identifier for the item whose flavors you want to obtain.

outFlavorTypes
On return, outFlavorTypes points to an array of flavors, specified as uniform type identifiers. You
must release this array by calling CFRelease when you are done using it.

Functions 1395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

PasteboardCopyName
Gets the name of a pasteboard.

OSStatus PasteboardCopyName (
 PasteboardRef inPasteboard,
 CFStringRef *outName
);

Parameters
inPasteboard

The pasteboard whose name you want to retrieve.

outName
A pointer to a CFStringRef variable allocated by the caller. On return, the string contains the name
of the specified pasteboard. The caller is responsible for releasing the string.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You can use this function to discover the name of a uniquely-named pasteboard so that other processes may
access it.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Pasteboard.h

PasteboardCopyPasteLocation
Determines the location in which to paste promised data.

OSStatus PasteboardCopyPasteLocation (
 PasteboardRef inPasteboard,
 CFURLRef *outPasteLocation
);

Parameters
inPasteboard

The pasteboard whose paste location you want to determine.

1396 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

outPasteLocation
On return, outPasteLocation points to a CFURL indicating the paste location. You must release
this URL when you are done with it by calling CFRelease.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You typically call this function from your promise keeper callback function to determine where to deliver a
promised file. It is also used to tell a translation service where to place a translated file.

This function is analogous to the Drag Manager function GetDropLocation.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

PasteboardCreate
Creates a reference to the specified global pasteboard.

OSStatus PasteboardCreate (
 CFStringRef inName,
 PasteboardRef *outPasteboard
);

Parameters
inName

The name of the pasteboard to reference. To create a new pasteboard, specify a unique name.
Pasteboard names should have a reverse DNS-style name to ensure uniqueness. You may also pass
one of the following constants:

 ■ kPasteboardFind (page 1405) to obtain a reference to the global Find pasteboard

 ■ kPasteboardClipboard (page 1405) to obtain a reference to the global Clipboard

 ■ kPasteboardUniqueName (page 1405) to ask the Pasteboard Manager to create a new pasteboard
with a unique name

outPasteboard
A pointer to a PasteboardRef variable allocated by the caller. On return, the variable refers to the
pasteboard specified in the inName parameter.

When you are finished using the pasteboard, you can call CFRelease to release the reference. If you
do not release the reference, the pasteboard continues to exist even after your application terminates.
A subsequently launched application can find a previously created pasteboard by name and examine
the data within it.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You can use this function to create a reference to a new or existing pasteboard.

Availability
Available in Mac OS X v10.3 and later.

Functions 1397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

PasteboardGetItemCount
Obtains the number of data items in the specified pasteboard.

OSStatus PasteboardGetItemCount (
 PasteboardRef inPasteboard,
 ItemCount *outItemCount
);

Parameters
inPasteboard

The pasteboard whose items you want to count.

outItemCount
On return, outItemCount points to the number of items in the pasteboard.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You usually call this function before calling PasteboardGetItemIdentifier (page 1399).

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

PasteboardGetItemFlavorFlags
Obtains the flags for a given flavor.

OSStatus PasteboardGetItemFlavorFlags (
 PasteboardRef inPasteboard,
 PasteboardItemID inItem,
 CFStringRef inFlavorType,
 PasteboardFlavorFlags *outFlags
);

Parameters
inPasteboard

The pasteboard containing the data.

inItem
The identifier for the item whose flavor flags you want to obtain.

1398 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

inFlavorType
The flavor whose flags you want to obtain.

outFlags
On return, outFlags points to a bit field containing the flavor flags. See “Pasteboard Flavor Flags” (page
1405) for a list of possible values.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

PasteboardGetItemIdentifier
Obtains the item identifier for an item in a pasteboard.

OSStatus PasteboardGetItemIdentifier (
 PasteboardRef inPasteboard,
 CFIndex inIndex,
 PasteboardItemID *outItem
);

Parameters
inPasteboard

The pasteboard containing the data.

inIndex
The one-based index number of the data item whose identifier you want to obtain.

outItem
On return, outItem points to the item identifier for the data item at index inIndex.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
The item index is one-based to match the convention used by the Drag Manager.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch

Declared In
Pasteboard.h

PasteboardPutItemFlavor
Adds flavor data or a promise to the specified pasteboard.

Functions 1399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

OSStatus PasteboardPutItemFlavor (
 PasteboardRef inPasteboard,
 PasteboardItemID inItem,
 CFStringRef inFlavorType,
 CFDataRef inData,
 PasteboardFlavorFlags inFlags
);

Parameters
inPasteboard

The pasteboard to which to add flavor data or a promise.

inItem
The identifier for the item to which to add flavor data or a promise.

inFlavorType
The flavor type of the data or promise you are adding, specified as a uniform type identifier.

inData
The data to add, or a promise to supply the data later. If you pass a CFData object, you may safely
release the object when this function returns. To indicate that the data is promised, pass
kPasteboardPromisedData (page 1407). For more information about promised data, see the Discussion
below.

inFlags
A bit field of flags for the specified flavor.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
If you promise data, you must implement a promise keeper callback to deliver the data when asked for it
(see PasteboardPromiseKeeperProcPtr (page 1403) for more details). Typically, you store promises instead
of the actual data when the data requires a large overhead to generate. You can call this function multiple
times to add multiple flavors to a given item. You should add the flavors in your application’s order of
preference or richness.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

PasteboardResolvePromises
Resolves all promises to a given pasteboard.

1400 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

OSStatus PasteboardResolvePromises (
 PasteboardRef inPasteboard
);

Parameters
inPasteboard

The pasteboard whose promises your application wants to resolve. If you pass
kPasteboardResolveAllPromises (page 1407), all the promises for all pasteboards handled by the
application are resolved.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You should call this function when your application quits or otherwise becomes unavailable.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

PasteboardSetPasteLocation
Sets the paste location before requesting flavor data.

OSStatus PasteboardSetPasteLocation (
 PasteboardRef inPasteboard,
 CFURLRef inPasteLocation
);

Parameters
inPasteboard

The pasteboard you want to obtain flavor data from.

inPasteLocation
A Core Foundation URL indicating where to put the data.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
Applications that receive pasteboard data in the form of a file should call this function before calling
PasteboardCopyItemFlavorData (page 1395), so the sender knows where to place the promised data. If
the requested data was promised by the sender, the sending application calls
PasteboardCopyPasteLocation (page 1396) to determine where to put it.

If a paste location is not applicable for your application, you don’t need to call this function.

This function is analogous to the Drag Manager function SetDropLocation.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

Functions 1401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

PasteboardSetPromiseKeeper
Registers the promise keeper callback function for a pasteboard.

OSStatus PasteboardSetPromiseKeeper (
 PasteboardRef inPasteboard,
 PasteboardPromiseKeeperProcPtr inPromiseKeeper,
 void *inContext
);

Parameters
inPasteboard

The pasteboard to assign the promise keeper callback. If you have multiple pasteboards, you can
assign multiple callbacks.

inPromiseKeeper
A pointer to your promise keeper callback function. See PasteboardPromiseKeeperProcPtr (page
1403) for more information about implementing the callback.

inContext
A pointer to application-defined data. The value you pass in this parameter is passed to your promise
keeper callback function when it is called.

Return Value
A result code. See “Pasteboard Manager Result Codes” (page 1407).

Discussion
You must have registered a promise keeper callback function before promising any data on the specified
pasteboard.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

PasteboardSynchronize
Synchronizes the local pasteboard reference to reflect the contents of the global pasteboard.

PasteboardSyncFlags PasteboardSynchronize (
 PasteboardRef inPasteboard
);

Parameters
inPasteboard

The pasteboard you want to synchronize.

Return Value
A flag indicating what synchronization actions occurred.

Discussion
Calling this function compares the local pasteboard reference with its global pasteboard. If the global
pasteboard was modified, it updates the local pasteboard reference to reflect this change. You typically call
this function whenever your application becomes active, so that its pasteboard information reflects any
changes that occurred while it was in the background. This function has low overhead, so you should call it
whenever you suspect a global pasteboard may have been changed.

1402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
CarbonSketch

Declared In
Pasteboard.h

Callbacks

PasteboardPromiseKeeperProcPtr
Defines a pointer to a callback function that supplies the actual data promised on the pasteboard.

typedef OSStatus (*PasteboardPromiseKeeperProcPtr)
(
PasteboardRef pasteboard,
PasteboardItemID item,
CFStringRef flavorType,
void* context
);

You would declare your promise keeper callback function named MyPromiseKeeper like this:

OSStatus MyPromiseKeeper (
PasteboardRef pasteboard,
PasteboardItemID item,
CFStringRef flavorType,
void* context
);

Parameters
pasteboard

The pasteboard whose promise you need to fulfill.

item
The pasteboard item identifier containing the promised flavor.

flavorType
The flavor of the data being requested, specified as a uniform type identifier.

context
The pointer you passed to PasteboardSetPromiseKeeper (page 1402) in the inContextparameter.

Discussion
When promising any flavor data on a pasteboard using PasteboardPutItemFlavor (page 1399), you must
implement a callback function to fulfill that promise.

If your application delivers the promised data as a file, your callback should call
PasteboardCopyPasteLocation (page 1396) to determine where to deliver the requested data and then
take the necessary steps to do so.

Callbacks 1403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

Data Types

PasteboardRef
Defines an opaque type that represents a pasteboard.

typedef struct OpaquePasteboardRef *PasteboardRef;

Discussion
This is a Core Foundation type. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

PasteboardItemID
Defines a pasteboard item identifier.

typedef void* PasteboardItemID;

Discussion
You can use any arbitrary (but unique) ID to identify your pasteboard items when placing them on a
pasteboard. For example, you may want to identify items by their internal memory address. Only the owning
application should interpret its pasteboard item identifiers.

When your application’s promise keeper callback function is invoked, it receives a pasteboard item ID, and
your application must be able to map that ID to the corresponding promised data.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Pasteboard.h

Constants

Pasteboard Name Constants
Define the pasteboard names used when calling PasteboardCreate (page 1397).

1404 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

#define kPasteboardClipboard CFSTR("com.apple.pasteboard.clipboard")
#define kPasteboardFind CFSTR("com.apple.pasteboard.find")
#define kPasteboardUniqueName (CFStringRef)NULL

Constants
kPasteboardClipboard

The global Clipboard (used for copy and paste).

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFind
The global Find pasteboard (used for search fields).

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardUniqueName
A system-declared pasteboard that is guaranteed to be unique. Each time you call
PasteboardCreate (page 1397) with this constant, you create a different, unique pasteboard.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

Pasteboard Flavor Flags
Indicate useful information associated with pasteboard item flavors.

enum {
 kPasteboardFlavorNoFlags = 0,
 kPasteboardFlavorSenderOnly = (1 << 0),
 kPasteboardFlavorSenderTranslated = (1 << 1),
 kPasteboardFlavorNotSaved = (1 << 2),
 kPasteboardFlavorRequestOnly = (1 << 3),
 kPasteboardFlavorSystemTranslated = (1 << 8),
 kPasteboardFlavorPromised = (1 << 9)
};
typedef UInt32 PasteboardFlavorFlags;

Constants
kPasteboardFlavorNoFlags

No flag information exists for this flavor.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFlavorSenderOnly
Only the process that added this flavor can see it. Typically used to tag proprietary data that can be
cut, dragged, or pasted only within the owning application. This flag is identical to the Drag Manager
flavorSenderOnly flag.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

Constants 1405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

kPasteboardFlavorSenderTranslated
The sender translated this data in some fashion before adding it to the pasteboard. The Finder cannot
store flavor items marked with this flag in clipping files. This flag is identical to the Drag Manager
flavorSenderTranslated flag.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFlavorNotSaved
The receiver should not save the data provided for this flavor. The data may become stale after a drag,
or the flavor may be used only to augment another flavor. For example, an application may add a
flavor whose only purpose is to supply additional information (say text style) about another flavor.
The Finder cannot store flavor items marked with this flag in clipping files. This flag is identical to the
Drag Manager flavorNotSaved flag.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFlavorRequestOnly
When the sender sets this flag, this flavor is hidden from calls to PasteboardCopyItemFlavors (page
1395). However, you can obtain the flavor flags and data by calling
PasteboardGetItemFlavorFlags (page 1398) orPasteboardCopyItemFlavorData (page 1395).
The net result is that applications cannot obtain this flavor unless they are already aware it exists and
specifically request it. This functionality can be useful for copying and pasting proprietary data within
a suite of applications.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFlavorSystemTranslated
This data flavor is available through the Translation Manager. That is, the Translation Manager must
translate the sender’s data before the receiver can receive it. This flag is set automatically when
appropriate and cannot be set programmatically. The Finder cannot store flavor items marked with
this flag in clipping files. This flag is identical to the Drag Manager flavorSystemTranslated flag.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardFlavorPromised
The data associated with this flavor is not yet on the pasteboard. Typically data is promised to the
pasteboard if it requires a lot of overhead to generate. If the receiver requests the data, the sender is
notified so it can supply the promised data. This flag is set automatically when appropriate and cannot
be set programmatically. This flag is identical to the Drag Manager flavorDataPromised flag.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

Pasteboard Synchronization Flags
Indicate the pasteboard status after a call to PasteboardSynchronize (page 1402).

1406 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

enum {
 kPasteboardModified = (1 << 0),
 kPasteboardClientIsOwner = (1 << 1)
};
typedef UInt32 PasteboardSyncFlags;

Constants
kPasteboardModified

The pasteboard was modified since the last time the application accessed it, and the local pasteboard
has been synchronized to reflect any changes. Your application should check to see what flavors are
now available on the pasteboard and update appropriately (for example, enabling the Paste menu
item).

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardClientIsOwner
The application recently cleared the pasteboard and is its current owner. The application can add
flavor data to the pasteboard as desired.

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

Pasteboard Promise Constants
Define constants related to the use of promised data.

#define kPasteboardPromisedData (CFDataRef)NULL
#define kPasteboardResolveAllPromises (PasteboardRef)NULL

Constants
kPasteboardPromisedData

Indicates a promise that pasteboard data will be supplied later. Used when calling
PasteboardPutItemFlavor (page 1399).

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

kPasteboardResolveAllPromises
Indicates that all promises on all global pasteboard resources owned by this application should be
resolved. Used when calling PasteboardResolvePromises (page 1400).

Available in Mac OS X v10.3 and later.

Declared in Pasteboard.h.

Result Codes

The table below lists the most common error codes returned by the Pasteboard Manager.

Result Codes 1407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

DescriptionValueResult Code

The pasteboard has been modified and must be
synchronized before use.

-25130badPasteboardSyncErr

Available in Mac OS X v10.3 and later.

The specified pasteboard item index does not exist.-25131badPasteboardIndexErr

Available in Mac OS X v10.3 and later.

The item reference does not exist.-25132badPasteboardItemErr

Available in Mac OS X v10.3 and later.

The item flavor does not exist.-25133badPasteboardFlavorErr

Available in Mac OS X v10.3 and later.

The item flavor already exists.-25134duplicatePasteboardFlavorErr

Available in Mac OS X v10.3 and later.

The application did not clear the pasteboard before
attempting to add flavor data.

-25135notPasteboardOwnerErr

Available in Mac OS X v10.3 and later.

The application attempted to add promised data without
previously registering a promise keeper callback.

-25136noPasteboardPromiseKeeperErr

Available in Mac OS X v10.3 and later.

1408 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Pasteboard Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in PictUtils.h

Overview

Important: The Picture Utilities are deprecated as of Mac OS X v10.4. The replacement API for all QuickDraw
technologies is Quartz 2D (Core Graphics). See Quartz Programming Guide for QuickDraw Developers for
strategies to replace QuickDraw code with Quartz 2D..

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

QuickDraw pictures are sequences of saved drawing commands. Pictures provide a common medium for
the sharing of image data.

The Picture Utilities allow your application to gather information about a picture, such as color, fonts, picture
comments, and resolution. You can also use the Picture Utilities to gather information about the colors in
pixel maps.

Functions by Task

Collecting Picture Information

DisposePictInfo (page 1412) Deprecated in Mac OS X v10.4
Disposes of the private data structures allocated by the NewPictInfo function. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPictInfo (page 1414) Deprecated in Mac OS X v10.4
Gathers information about a single picture. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPixMapInfo (page 1416) Deprecated in Mac OS X v10.4
Gathers color information about a single pixel map or bitmap. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Overview 1409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not
Recommended)

NewPictInfo (page 1422) Deprecated in Mac OS X v10.4
Begins collecting pictures, pixel maps, and bitmaps for a survey of pictures. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

RecordPictInfo (page 1424) Deprecated in Mac OS X v10.4
Adds a picture to an informational survey of multiple pictures. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

RecordPixMapInfo (page 1424) Deprecated in Mac OS X v10.4
Adds a pixel map or bitmap to an informational survey of multiple pixel maps and bitmaps. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

RetrievePictInfo (page 1425) Deprecated in Mac OS X v10.4
Returns information about all the pictures, pixel maps, and bitmaps included in a survey. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Using Universal Procedure Pointers

DisposeCalcColorTableUPP (page 1411) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a color table calculation callback. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeDisposeColorPickMethodUPP (page 1411) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a method disposal callback. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeInitPickMethodUPP (page 1412) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a method initialization callback. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeRecordColorsUPP (page 1413) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a color recording callback. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeCalcColorTableUPP (page 1418) Deprecated in Mac OS X v10.4
Invokes a color table calculation callback, using a universal procedure pointer. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeDisposeColorPickMethodUPP (page 1418) Deprecated in Mac OS X v10.4
Invokes a method disposal callback, using a universal procedure pointer. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeInitPickMethodUPP (page 1419) Deprecated in Mac OS X v10.4
Invokes a method initialization callback, using a universal procedure pointer. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeRecordColorsUPP (page 1419) Deprecated in Mac OS X v10.4
Invokes a color recording callback, using a universal procedure pointer. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

NewCalcColorTableUPP (page 1420) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a color table calculation callback. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewDisposeColorPickMethodUPP (page 1420) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a method disposal callback. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

1410 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

NewInitPickMethodUPP (page 1421) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a method initialization callback. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewRecordColorsUPP (page 1423) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a color recording callback. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions

DisposeCalcColorTableUPP
Disposes of a universal procedure pointer (UPP) to a color table calculation callback. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeCalcColorTableUPP (
 CalcColorTableUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
For more information, see CalcColorTableProcPtr (page 1426).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

DisposeDisposeColorPickMethodUPP
Disposes of a universal procedure pointer (UPP) to a method disposal callback. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeDisposeColorPickMethodUPP (
 DisposeColorPickMethodUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Functions 1411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Discussion
For more information, see DisposeColorPickMethodProcPtr (page 1428).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

DisposeInitPickMethodUPP
Disposes of a universal procedure pointer (UPP) to a method initialization callback. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeInitPickMethodUPP (
 InitPickMethodUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
For more information, see InitPickMethodProcPtr (page 1429).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

DisposePictInfo
Disposes of the private data structures allocated by the NewPictInfo function. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

1412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

OSErr DisposePictInfo (
 PictInfoID thePictInfoID
);

Parameters
thePictInfoID

The unique identifier returned by NewPictInfo.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
The DisposePictInfo function does not dispose of any of the handles returned to you in a PictInfo
structure by the RetrievePictInfo (page 1425) function. Instead, you can dispose of a Palette structure
by using the DisposePalette function. You can dispose of a ColorTable structure by using the
DisposeCTable function. Dispose of other allocations with the DisposeHandle function.

Use this function when you are finished gathering information from a survey of pictures, pixel maps, or
bitmaps.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

DisposeRecordColorsUPP
Disposes of a universal procedure pointer (UPP) to a color recording callback. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeRecordColorsUPP (
 RecordColorsUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
For more information, see RecordColorsProcPtr (page 1431).

Functions 1413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

GetPictInfo
Gathers information about a single picture. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

OSErr GetPictInfo (
 PicHandle thePictHandle,
 PictInfo *thePictInfo,
 short verb,
 short colorsRequested,
 short colorPickMethod,
 short version
);

Parameters
thePictHandle

A handle to a picture.

1414 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

thePictInfo
On return, a pointer to a PictInfo (page 1434) structure, which holds information about the picture.
Initially, all of the fields in the new PictInfo structure are set to NULL. Relevant fields are set to
appropriate values depending on the information you request using the GetPictInfo function.

This function collects information from black-and-white pictures and bitmaps, and is supported in
System 7 even by computers running only basic QuickDraw. However, when collecting color information
on a computer running only basic QuickDraw, the function returns NULL instead of a handle to a
Palette or ColorTable structure.

verb
A value indicating what type of information you want GetPictInfo to return in the PictInfo
structure. See “Color Information Type” (page 1440) for a description of the values you can use in this
parameter.

You can specify whether you want color information (in a ColorTable structure, a Palette structure,
or both), whether you want picture comment information, and whether you want font information.
If you want color information, be sure to use the colorPickMethod parameter to specify the method
by which to select colors.

Because the Palette Manager adds black and white when creating a Palette structure, you can
specify the number of colors you want minus 2 in the colorsRequested parameter and specify the
suppressBlackAndWhite constant in the verb parameter when gathering colors destined for a
Palette structure or a screen.

colorsRequested
From 1 to 256, the number of colors you want in the ColorTable or Palette structure returned via
the PictInfo structure. If you are not requesting colors (that is, if you pass the recordComments
or recordFontInfo constant in the verb parameter), specify 0 in this parameter.

colorPickMethod
The method by which colors are selected for the ColorTable or Palette structure returned via the
PictInfo structure. See “Color Selection Method” (page 1440) for a description of the values you can
use here.

You can also create your own color-picking method in a resource file of type 'cpmt' and pass its
resource ID in the colorPickMethod parameter. The resource ID must be greater than 127.

version
Always set this parameter to 0.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
The Picture Utilities provide two color-picking methods: one (specified by the popularMethod constant)
that gives you the most frequently used colors and one (specified by the medianMethod constant) that gives
you the widest range of colors. Each has advantages in different situations. For example, suppose the picture
of a forest image contains 400 colors, of which 300 are greens, 80 are browns, and the rest are a scattering
of golden sunlight effects. If you ask for the 250 most used colors, you will probably receive all greens. If you
ask for a range of 250 colors, you will receive an assortment stretching from the greens and golds to the
browns, including colors in between that might not actually appear in the image. If you specify the
systemMethod constant, the Picture Utilities choose the method; currently they always choose
popularMethod. You can also supply a color-picking method of your own.

If your application uses more than one color-picking method, it should present the user with a choice of
which method to use.

Functions 1415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

When you are finished with the information in the PictInfo structure, use the Memory Manager function
DisposeHandle to dispose of the PictInfo, CommentSpec, and FontSpec structures. Dispose of the
Palette structure by using the DisposePalette function. Dispose of the ColorTable structure by using
the DisposeCTable function.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

When you ask for color information, GetPictInfo takes into account only the version 2 and extended
version 2 picture opcodes RGBFgCol, RGBBkCol, BkPixPat, PnPixPat, FillPixPat, HiliteColor and
pixel map or bitmap data. Each occurrence of these opcodes is treated as 1 pixel, regardless of the number
and sizes of the objects drawn with that color. If you need an accurate set of colors from a complex picture,
create an image of the picture in an offscreen pixel map, and then call theGetPixMapInfo (page 1416) function
to obtain color information about that pixel map.

The GetPictInfo function returns a bit depth of 1 on QuickTime-compressed 'PICT' files. However, when
QuickTime is installed, QuickTime decompresses and displays the image correctly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

GetPixMapInfo
Gathers color information about a single pixel map or bitmap. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr GetPixMapInfo (
 PixMapHandle thePixMapHandle,
 PictInfo *thePictInfo,
 short verb,
 short colorsRequested,
 short colorPickMethod,
 short version
);

Parameters
thePixMapHandle

A handle to a pixel map or bitmap.

1416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

thePictInfo
On return, a pointer to a PictInfo (page 1434) structure, which holds information about a pixel map
or bitmap. Initially, all of the fields in a new PictInfo structure are set to NULL. Relevant fields are
set to appropriate values depending on the information you request using the GetPixMapInfo
function.

This function also collects information from black-and-white pictures and bitmaps, and is supported
in System 7 even by computers running only basic QuickDraw. However, when collecting color
information on a computer running only basic QuickDraw, this function returns NULL instead of a
handle to a Palette or ColorTable structure.

verb
A value indicating whether you want color information returned in a ColorTable structure, a Palette
structure, or both. You can also request that black and white not be included among the returned
colors. See “Color Information Type” (page 1440) for a description of the values you can use here.

Because the Palette Manager adds black and white when creating a Palette structure, you can
specify the number of colors you want minus 2 in the colorsRequested parameter and specify the
constant suppressBlackAndWhite in the verb parameter when gathering colors destined for a
Palette structure or a screen.

colorsRequested
From 1 to 256, the number of colors you want in the ColorTable or Palette structure returned via
the PictInfo structure.

colorPickMethod
The method by which colors are selected for the ColorTable or Palette structure returned via the
PictInfo structure. See “Color Selection Method” (page 1440) for a description of the values you can
use here.

You can also create your own color-picking method in a resource file of type 'cpmt' and pass its
resource ID in the colorPickMethod parameter. The resource ID must be greater than 127.

version
Always set this parameter to 0.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
The Picture Utilities provide two color-picking methods: one that gives you the most frequently used colors
and one that gives you the widest range of colors. If you specify the systemMethod constant, the Picture
Utilities choose that method. Currently they always choose popularMethod. You can also supply a
color-picking method of your own.

When you are finished with the information in the PictInfo structure, be sure to dispose of it. Use the
Memory Manager function DisposeHandle to dispose of the PictInfo structure. Dispose of the Palette
structure by using the DisposePalette function. Dispose of the ColorTable structure by using the
DisposeCTable function.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.

Functions 1417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

InvokeCalcColorTableUPP
Invokes a color table calculation callback, using a universal procedure pointer. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr InvokeCalcColorTableUPP (
 UInt32 dataRef,
 SInt16 colorsRequested,
 void *colorBankPtr,
 CSpecArray resultPtr,
 CalcColorTableUPP userUPP
);

Discussion
For parameter descriptions, see CalcColorTableProcPtr (page 1426).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

InvokeDisposeColorPickMethodUPP
Invokes a method disposal callback, using a universal procedure pointer. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr InvokeDisposeColorPickMethodUPP (
 UInt32 dataRef,
 DisposeColorPickMethodUPP userUPP
);

Discussion
For more information, see DisposeColorPickMethodProcPtr (page 1428).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

1418 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

InvokeInitPickMethodUPP
Invokes a method initialization callback, using a universal procedure pointer. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr InvokeInitPickMethodUPP (
 SInt16 colorsRequested,
 UInt32 *dataRef,
 SInt16 *colorBankType,
 InitPickMethodUPP userUPP
);

Discussion
For parameter descriptions, see InitPickMethodProcPtr (page 1429).

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

InvokeRecordColorsUPP
Invokes a color recording callback, using a universal procedure pointer. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr InvokeRecordColorsUPP (
 UInt32 dataRef,
 RGBColor *colorsArray,
 SInt32 colorCount,
 SInt32 *uniqueColors,
 RecordColorsUPP userUPP
);

Discussion
For parameter descriptions, see RecordColorsProcPtr (page 1431).

Functions 1419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

NewCalcColorTableUPP
Creates a new universal procedure pointer (UPP) to a color table calculation callback. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CalcColorTableUPP NewCalcColorTableUPP (
 CalcColorTableProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your color table calculation callback. For more information, see
CalcColorTableProcPtr (page 1426).

Return Value
A UPP to the callback.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

NewDisposeColorPickMethodUPP
Creates a new universal procedure pointer (UPP) to a method disposal callback. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

1420 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

DisposeColorPickMethodUPP NewDisposeColorPickMethodUPP (
 DisposeColorPickMethodProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your method disposal callback. For more information, see
DisposeColorPickMethodProcPtr (page 1428).

Return Value
A UPP to the callback.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

NewInitPickMethodUPP
Creates a new universal procedure pointer (UPP) to a method initialization callback. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InitPickMethodUPP NewInitPickMethodUPP (
 InitPickMethodProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your method initialization callback. For more information, see
InitPickMethodProcPtr (page 1429).

Return Value
A UPP to the callback.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

Functions 1421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

NewPictInfo
Begins collecting pictures, pixel maps, and bitmaps for a survey of pictures. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr NewPictInfo (
 PictInfoID *thePictInfoID,
 short verb,
 short colorsRequested,
 short colorPickMethod,
 short version
);

Parameters
thePictInfoID

On return, a value that uniquely identifies your collection of pictures, pixel maps, or bitmaps.

verb
A value indicating what type of information you want the RetrievePictInfo (page 1425) function
to return in aPictInfo (page 1434) structure. See “Color Information Type” (page 1440) for a description
of the values you can use here.

The constants recordComments and recordFontInfo and the values they represent have no effect
when gathering information about the pixel maps and bitmaps included in your survey.

Because the Palette Manager adds black and white when creating a palette, you can specify the
number of colors you want minus 2 in the colorsRequested parameter and specify the constant
suppressBlackAndWhite in the verb parameter when gathering colors destined for a Palette
structure or a screen.

colorsRequested
From 1 to 256, the number of colors you want included in the ColorTable or Palette structure
returned by the RetrievePictInfo function via a PictInfo structure.

colorPickMethod
The method by which colors are selected for the ColorTable or Palette structure included in the
PictInfo structure returned by the RetrievePictInfo function. See “Color Selection Method” (page
1440) for a description of the values you can use here.

You can also create your own color-picking method in a resource file of type 'cpmt' and pass its
resource ID in the colorPickMethod parameter. The resource ID must be greater than 127.

version
Always set this parameter to 0.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
To add the information for a picture to your survey, use the RecordPictInfo function. To add the information
for a pixel map or a bitmap to your survey, use the RecordPixMapInfo (page 1424) function. For each of
these functions, identify the survey with the ID number returned by NewPictInfo.

Use the RetrievePictInfo function to return information about the pictures, pixel maps, and bitmaps in
the survey. The RetrievePictInfo function returns your requested information in a PictInfo structure.

Use the verbparameter for NewPictInfo to specify whether you want to gather comment or font information
for the pictures in the survey. If you want to gather color information, use the verb parameter for
NewPictInfo to specify whether you want this information in a ColorTable structure, a Palette structure,

1422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

or both. The PictInfo structure returned by the RetrievePictInfo function will then include a handle
to a ColorTable structure or a Palette structure, or handles to both. If you want color information, be
sure to use the colorPickMethod parameter to specify the method by which to select colors.

The Picture Utilities provide two color-picking methods: one (specified by the popularMethod constant)
that gives you the most frequently used colors and one (specified by the medianMethod constant) that gives
you the widest range of colors. If you specify the systemMethod constant, the Picture Utilities choose the
method; currently they always choose popularMethod. You can also supply a color-picking method of your
own.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

NewRecordColorsUPP
Creates a new universal procedure pointer (UPP) to a color recording callback. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

RecordColorsUPP NewRecordColorsUPP (
 RecordColorsProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your color recording callback. For more information, see RecordColorsProcPtr (page
1431).

Return Value
A UPP to the callback.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PictUtils.h

Functions 1423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

RecordPictInfo
Adds a picture to an informational survey of multiple pictures. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr RecordPictInfo (
 PictInfoID thePictInfoID,
 PicHandle thePictHandle
);

Parameters
thePictInfoID

The ID number—returned by the NewPictInfo (page 1422) function—that identifies the survey to
which you are adding the picture.

thePictHandle
A handle to the picture being added to the survey.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
The RecordPictInfo function adds the picture you specify in the parameter thePictHandle to the survey
of pictures identified by the parameter thePictInfoID. Use RecordPictInfo repeatedly to add additional
pictures to your survey.

After you have collected all of the pictures you need, use the RetrievePictInfo (page 1425) function to
return information about pictures in the survey.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

When you ask for color information, RecordPictInfo takes into account only the version 2 and extended
version picture opcodes RGBFgCol, RGBBkCol, BkPixPat, PnPixPat, FillPixPat, and HiliteColor.
Each occurrence of these opcodes is treated as 1 pixel, regardless of the number and sizes of the objects
drawn with that color. If you need an accurate set of colors from a complex picture, create an image of the
picture in an offscreen pixel map, and then call the GetPixMapInfo (page 1416) function to obtain color
information about that pixel map.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

RecordPixMapInfo
Adds a pixel map or bitmap to an informational survey of multiple pixel maps and bitmaps. (Deprecated in
Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

1424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

OSErr RecordPixMapInfo (
 PictInfoID thePictInfoID,
 PixMapHandle thePixMapHandle
);

Parameters
thePictInfoID

The ID number—returned by the NewPictInfo (page 1422) function—that identifies the survey to
which you are adding the pixel map or bitmap.

thePixMapHandle
A handle to a pixel map or bitmap to be added to the survey.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
The RecordPixMapInfo function adds the pixel map or bitmap you specify in the parameter
thePixMapHandle to the survey identified by the parameter thePictInfoID. Use RecordPictInfo
repeatedly to add additional pixel maps and bitmaps to your survey.

After you have collected all of the images you need, use the RetrievePictInfo (page 1425) function to
return information about all the images in the survey.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

RetrievePictInfo
Returns information about all the pictures, pixel maps, and bitmaps included in a survey. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr RetrievePictInfo (
 PictInfoID thePictInfoID,
 PictInfo *thePictInfo,
 short colorsRequested
);

Parameters
thePictInfoID

The ID number, returned by theNewPictInfo (page 1422) function, that identifies the survey of pictures,
pixel maps, and bitmaps.

Functions 1425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

thePictInfo
On return, a pointer to the PictInfo (page 1434) structure that holds information about the pictures
or images in the survey.

This function also collects information from black-and-white pictures and bitmaps, and is supported
in System 7 even by computers running only basic QuickDraw. However, when collecting color
information on a computer running only basic QuickDraw, the function returns NULL instead of a
handle to a Palette or ColorTable structure.

colorsRequested
From 1 to 256, the number of colors you want returned in the ColorTable or Palette structure
included in the PictInfo structure.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441).

Discussion
After using the NewPictInfo function to create a new survey, and then using RecordPictInfo to add
pictures to your survey and RecordPixMapInfo to add pixel maps and bitmaps to your survey, call
RetrievePictInfo.

When you are finished with the information in the PictInfo structure, dispose of the Palette structure
by using the DisposePalette function. Dispose of the ColorTable structure with the DisposeCTable
function. Dispose of other allocations with the DisposeHandle function. Use the DisposePictInfo function
to dispose of the private data structures created by the NewPictInfo function.

Special Considerations

Because Quartz 2D uses an entirely different approach to graphics than used by QuickDraw, there is no
one-to-one correlation between QuickDraw and Quartz 2D functions. However, because Quartz offers many
new features and improved performance compared to QuickDraw, it is worthwhile making the effort to
convert your graphics code to Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PictUtils.h

Callbacks

CalcColorTableProcPtr
Defines a pointer to a color table calculation callback. Your color calculation callback selects as many colors
as are requested by your application from the color bank for a picture or pixel map and then fills these colors
into an array of ColorSpec structures.

1426 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

typedef OSErr (*CalcColorTableProcPtr)
(
 UInt32 dataRef,
 SInt16 colorsRequested,
 void * colorBankPtr,
 CSpecArray resultPtr
);

If you name your function MyCalcColorTableProc, you would declare it like this:

OSErr CalcColorTableProcPtr (
 UInt32 dataRef,
 SInt16 colorsRequested,
 void * colorBankPtr,
 CSpecArray resultPtr
);

Parameters
dataRef

A handle to any data your method needs. Your application initially creates this handle using the
InitPickMethodProcPtr (page 1429) function.

colorsRequested
The number of colors requested by your application to be gathered for examination in a ColorTable
or Palette structure.

colorBankPtr
If your MyInitPickMethodCallback function returned either the colorBankIsExactAnd555 or
colorBankIs555 constant, then this parameter contains a pointer to the 5-5-5 histogram that
describes all of the colors in the picture, pixel map, or bitmap being examined. (The format of the
5-5-5 histogram is explained in the function description for the InitPickMethodProcPtr (page
1429) function.) Your MyCalcColorTableCallback function should examine these colors and then,
using its own criterion for selecting the colors, fill in an array of ColorSpec structures with the number
of colors specified in the colorsRequested parameter.

If your MyInitPickMethodCallback function returned the colorBankIsCustom constant, then
the value passed in this parameter is invalid. In this case, your MyCalcColorTableCallback function
should use the custom color bank that your application created (using the
RecordColorsProcPtr (page 1431) function) for filling in an array of ColorSpec structures with the
number of colors specified in the colorsRequested parameter.

Your MyCalcColorTableCallback function should return a pointer to this array of ColorSpec
structures in the next parameter.

resultPtr
A pointer to the array of ColorSpec structures to be filled with the number of colors specified in the
colorsRequested parameter. The Picture Utilities function that your application initially called places
these colors in a Palette structure or ColorTable structure, as specified by your application.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441). If MyCalcColorTableCallback generates an
error, it should return the error as its function result. This error is passed back to the GetPictInfo,
GetPixMapInfo, or NewPictInfo function, which in turn passes the error to your application as a function
result.

Callbacks 1427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Discussion
Selecting from the color bank created for the picture, bitmap, or pixel map being examined,
MyCalcColorTableCallback fills an array of ColorSpec structures with the number of colors requested
in the colorsRequested parameter and returns this array in the resultPtr parameter.

If more colors are requested than the picture contains, MyCalcColorTable fills the remaining entries with
black (0000 0000 0000).

The colorBankPtr parameter is of type Ptr because the data stored in the color bank is of the type specified
by your InitPickMethodProcPtr (page 1429) function. Thus, if you specified colorBankIs555 in the
colorBankType parameter, the color bank would be an array of integers. However, if the Picture Utilities
support other data types in the future, the colorBankPtr parameter could point to completely different
data types.

Always coerce the value passed in the colorBankPtr parameter to a pointer to an integer. In the future
you may need to coerce this value to a pointer of the type you specify in your MyInitPickMethodCallback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

DisposeColorPickMethodProcPtr
Defines a pointer to a method disposal callback function. Your method disposal function releases the memory
for the 'cpmt' resource allocated by your MyInitPickMethodCallback function.

typedef OSErr (*DisposeColorPickMethodProcPtr)
(
 UInt32 dataRef
);

If you name your function MyDisposeColorPickMethodProc, you would declare it like this:

OSErr DisposeColorPickMethodProcPtr (
 UInt32 dataRef
);

Parameters
dataRef

A handle to any data your method needs. Your application initially creates this handle using the
InitPickMethodProcPtr (page 1429) function.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441). If your MyDisposeColorPickMethodCallback
function generates an error, it should return the error as its function result. This error is passed back to the
GetPictInfo, GetPixMapInfo, or NewPictInfo function, which in turn passes the error to your application
as a function result.

Availability
Available in Mac OS X v10.0 and later.

1428 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Declared In
PictUtils.h

InitPickMethodProcPtr
Defines a pointer to a method initialization callback function. Your method initialization function specifies
the color back and allocates whatever data your color-picking method needs.

typedef OSErr (*InitPickMethodProcPtr)
(
 SInt16 colorsRequested,
 UInt32 * dataRef,
 SInt16 * colorBankType
);

If you name your function MyInitPickMethodProc, you would declare it like this:

OSErr InitPickMethodProcPtr (
 SInt16 colorsRequested,
 UInt32 * dataRef,
 SInt16 * colorBankType
);

Parameters
colorsRequested

The number of colors requested by your application to be gathered for examination in a ColorTable
or Palette structure.

dataRef
A handle to any data needed by your color-picking method; that is, if your application allocates and
uses additional data, it should return a handle to it in this parameter.

Callbacks 1429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

colorBankType
The type of color bank your color-picking method uses. Your MyInitPickMethodCallback function
should return one of three valid color bank types.

Return the colorBankIs555 constant in this parameter if you want to let the Picture Utilities gather
the colors for a picture or a pixel map into a 5-5-5 histogram. When you return the colorBankIs555
constant, the Picture Utilities call your MyCalcColorTableCallback function with a pointer to the
color bank (that is, to the 5-5-5 histogram). Your MyCalcColorTableCallback function selects
whatever colors it needs from this color bank. Then the Picture Utilities function called by your
application returns these colors in a Palette structure, a ColorTable structure, or both, as requested
by your application.

Return the ColorBankIsExactAnd555 constant in this parameter to make the Picture Utilities return
exact colors if there are less than 256 unique colors in the picture; otherwise, the Picture Utilities
gather the colors for the picture in a 5-5-5 histogram, just as they do when you return the
colorBankIs555 constant. If the picture or pixel map has fewer colors than your application requests
when it calls a Picture Utilities function, the Picture Utilities function returns all of the colors contained
in the color bank. If the picture or pixel map contains more colors than your application requests, the
Picture Utilities call your MyCalcColorTableCallback function to select which colors to return.

Return the colorBankIsCustom constant in this parameter if you want to implement your own color
bank for storing the colors in a picture or a pixel map. For example, because the 5-5-5 histogram that
the Picture Utilities provide gathers colors to a resolution of 5 bits per color, your application may
want to create a histogram with a resolution of 8 bits per color. When you return the
colorBankIsCustom constant, the Picture Utilities call your MyRecordColorsCallback function
to create this color bank. The Picture Utilities also call your MyCalcColorTableCallback function
to select colors from this color bank.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441). If MyInitPickMethodCallback generates
any error, it should return the error as its function result. This error is passed back to the GetPictInfo,
GetPixMapInfo, or NewPictInfo function, which in turn passes the error to your application as a function
result.

Discussion
Your color-picking method ('cpmt') resource should include a function that specifies its color bank (that
is, the structure into which all the colors of a picture, pixel map, or bitmap are gathered) and allocates whatever
data your color-picking method needs. Your MyInitPickMethodCallback can let the Picture Utilities
generate a color bank consisting of a histogram (that is, frequency counts of each color) to a resolution of 5
bits per color. Or, your MyInitPickMethodCallback function can specify that your application has its own
custom color bank—for example, a histogram to a resolution of 8 bits per color.

The 5-5-5 histogram that the Picture Utilities provide if you return the ColorBankIs555 or
ColorBankIsExactAnd555 constant in the colorBankType parameter is like a reversed cSpecArray
structure, which is an array of ColorSpec structures. This 5-5-5 histogram is an array of 32,768 integers,
where the index into the array is the color: 5 bits of red, followed by 5 bits of green, followed by 5 bits of
blue. Each entry in the array is the number of colors in the picture that are approximated by the index color
for that entry.

For example, suppose there were three instances of the following color in the pixel map:

 ■ Red = %1101 1010 1010 1110

 ■ Green = %0111 1010 1011 0001

 ■ Blue = %0101 1011 0110 1010

1430 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

This color would be represented by index % 0 11011-01111-01011 (in hexadecimal, $6DEB), and the value
in the histogram at this index would be 3, because there are three instances of this color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

RecordColorsProcPtr
Defines a pointer to a color recording callback function. Your color recording function creates a color bank.

typedef OSErr (*RecordColorsProcPtr)
(
 UInt32 dataRef,
 RGBColor * colorsArray,
 SInt32 colorCount,
 SInt32 * uniqueColors
);

If you name your function MyRecordColorsProc, you would declare it like this:

OSErr RecordColorsProcPtr (
 UInt32 dataRef,
 RGBColor * colorsArray,
 SInt32 colorCount,
 SInt32 * uniqueColors
);

Parameters
dataRef

A handle to any data your function needs. Your application initially creates this handle using the
InitPickMethodProcPtr (page 1429) function.

colorsArray
An array of RGBColor structures. Your MyRecordColorsCallback function stores the color
information for this array of RGBColor structures in a data structure of type RGBColorArray.

colorCount
The number of colors in the array specified in the colorsArray parameter.

uniqueColors
Upon input, the number of unique colors already added to the array in the colorsArray parameter.
(The Picture Utilities functions call your MyRecordColors function once for every color in the picture,
pixel map, or bitmap.) Your MyRecordColorsCallback function must calculate the number of
unique colors (to the resolution of the color bank) that are added by this call. Your
MyRecordColorsCallback function should add this amount to the value passed upon input in this
parameter and then return the sum in this parameter.

Return Value
A result code. See “Picture Utilities Result Codes” (page 1441). If your MyRecordColorsCallback function
generates any error, it should return the error as its function result. This error is passed back to the
GetPictInfo, GetPixMapInfo, or NewPictInfo function, which in turn passes the error to your application
as a function result.

Callbacks 1431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Discussion
MyRecordColorsCallback stores each color encountered in a picture or pixel into its own color bank. The
Picture Utilities call MyRecordColorsCallback only if your MyInitPickMethodCallback function returns
the constant colorBankIsCustom in the colorBankType parameter. When you return the
colorBankIsCustom constant in the colorBankType parameter to your MyInitPickMethodCallback
function, your color-picking method ('cpmt') resource must include a function that creates this color bank;
for example, your application may want to create a histogram with a resolution of 8 bits per color.

The Picture Utilities functions call MyRecordColorsCallback for all the colors in the picture, pixel map, or
bitmap.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

Data Types

CalcColorTableUPP
Defines a universal procedure pointer (UPP) to a color table calculation callback.

typedef CalcColorTableProcPtr CalcColorTableUPP;

Discussion
For more information, see the description of the callback function CalcColorTableProcPtr (page 1426).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

CommentSpec
Contains information about the comments in a picture.

struct CommentSpec {
 short count;
 short ID;
};
typedef struct CommentSpec CommentSpec;
typedef CommentSpec * CommentSpecPtr;
typedef CommentSpecPtr * CommentSpecHandle;

Fields
count

The number of times this kind of picture comment occurs in the picture specified to the GetPictInfo
function or in all the pictures examined with the NewPictInfo function.

1432 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

ID
The value set in the kind parameter when the picture comment was created using the function
PicComment. For a description of this function, see Inside Mac OS X: Quickdraw Reference.

Discussion
If you specify the structureComments constant in the verb parameter to the GetPictInfo (page 1414)
function or theNewPictInfo (page 1422) function, you receive aPictInfo (page 1434) structure that includes
in its commentHandle field a handle to an array of CommentSpec structures. The uniqueComments field of
the PictInfo structure indicates the number of CommentSpec structures in this array.

When you are finished using the information returned in a CommentSpec structure, use the DisposeHandle
function to dispose of the memory allocated to it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

DisposeColorPickMethodUPP
Defines a universal procedure pointer (UPP) to a method disposal callback.

typedef DisposeColorPickMethodProcPtr DisposeColorPickMethodUPP;

Discussion
For more information, see the description of the callback function DisposeColorPickMethodProcPtr (page
1428).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

FontSpec
Contains information about the fonts in a picture.

struct FontSpec {
 short pictFontID;
 short sysFontID;
 long size[4];
 short style;
 long nameOffset;
};
typedef struct FontSpec FontSpec;
typedef FontSpec * FontSpecPtr;
typedef FontSpecPtr * FontSpecHandle;

Fields
pictFontID

The ID number of the font as it is stored in the picture.

Data Types 1433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

sysFontID
The number that identifies the resource file (of type 'FOND') that specifies the font family. Every font
family, has a unique font family ID, in a range of values that determines the script system to which
the font family belongs.

size
The point sizes of the fonts in the picture. The field contains 128 bits, in which a bit is set for each
point size encountered, from 1 to 127 points. Bit 0 is set if a size larger than 127 is found.

style
The styles for this font family at any of its sizes. The values in this field can also be represented with
the Style data type.

nameOffset
The offset into the list of font names (indicated by the fontNamesHandle field of the PictInfo
structure) at which the name for this font family is stored. A font name is given to a font family to
distinguish it from other font families.

Discussion
If you specify the recordFontInfo constant in the verb parameter to the GetPictInfo function or the
NewPictInfo function, your application receives a PictInfo structure that includes in its fontHandle
field a handle to an array of FontSpec structures. The uniqueFonts field of the PictInfo structure indicates
the number of FontSpec structures in this array. (For bitmap fonts, a font is a complete set of glyphs in one
size, typeface, and style. For outline fonts, a font is a complete set of glyphs in one typeface and style.)

When you are finished using the information returned in a FontSpec structure, you should use the Memory
Manager function DisposeHandle to dispose of the memory allocated to it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

InitPickMethodUPP
Defines a universal procedure pointer (UPP) to a method initialization callback.

typedef InitPickMethodProcPtr InitPickMethodUPP;

Discussion
For more information, see the description of the callback function InitPickMethodProcPtr (page 1429).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

PictInfo
Contains information about a picture.

1434 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

struct PictInfo {
 short version;
 long uniqueColors;
 PaletteHandle thePalette;
 CTabHandle theColorTable;
 Fixed hRes;
 Fixed vRes;
 short depth;
 Rect sourceRect;
 long textCount;
 long lineCount;
 long rectCount;
 long rRectCount;
 long ovalCount;
 long arcCount;
 long polyCount;
 long regionCount;
 long bitMapCount;
 long pixMapCount;
 long commentCount;
 long uniqueComments;
 CommentSpecHandle commentHandle;
 long uniqueFonts;
 FontSpecHandle fontHandle;
 Handle fontNamesHandle;
 long reserved1;
 long reserved2;
};
typedef struct PictInfo PictInfo;
typedef PictInfo * PictInfoPtr;

Fields
version

The version number of the Picture Utilities, currently set to 0.

uniqueColors
The number of colors in the picture specified to the GetPictInfo function, or the number of colors
in the pixel map or bitmap specified to the GetPixMapInfo function, or the total number of colors
for all the pictures, pixel maps, and bitmaps returned by the RetrievePictInfo function. The
number of colors returned in this field is limited by the accuracy of the Picture Utilities’ color bank
for color storage. See InitPickMethodProcPtr (page 1429), RecordColorsProcPtr (page 1431),
CalcColorTableProcPtr (page 1426), and DisposeColorPickMethodProcPtr (page 1428) for
information about the Picture Utility’s color bank and about how you can create your own for selecting
colors.

thePalette
A handle to the resulting Palette structure if you specified to the GetPictInfo, GetPixMapInfo,
or NewPictInfo function that colors be returned in a Palette structure. That Palette structure
contains either the number of colors you specified to the function or—if there are not that many
colors in the pictures, pixel maps, or bitmaps—the number of colors found. Depending on the constant
you pass in the verb parameter to the function, the Palette structure contains either the most used
or the widest range of colors in the pictures, pixel maps, and bitmaps. On Macintosh computers
running basic QuickDraw only, this field is always returned as NULL.

Data Types 1435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

theColorTable
A handle to the resulting ColorTable structure if you specified to the GetPictInfo, GetPixMapInfo,
or NewPictInfo function that colors be returned in a ColorTable structure. If the pictures, pixel
maps, or bitmaps contain fewer colors found than you specified to the function, the unused entries
in the ColorTable structure are filled with black. Depending on the constant you pass in the verb
parameter to the function, the ColorTable structure contains either the most used or the widest
range of colors in the pictures, pixel maps, and bitmaps. On Macintosh computers running basic
QuickDraw only, this field is always returned as NULL.

If a picture has more than 256 colors or has pixel depths of 32 bits, then Color QuickDraw translates
the colors in the ColorTable structure to 16-bit depths. In such a case, the returned colors might
have a slight loss of resolution, and the uniqueColors field reflects the number of colors
distinguishable at that pixel depth.

hRes
The horizontal resolution of the current picture, pixel map, or bitmap retrieved by the GetPictInfo
or GetPixMapInfo function or the greatest horizontal resolution from all pictures, pixel maps, and
bitmaps retrieved by the RetrievePictInfo function.

vRes
The vertical resolution of the current picture, pixel map, or bitmap retrieved by the GetPictInfo or
GetPixMapInfo function or the greatest vertical resolution of all pictures, pixel maps, and bitmaps
retrieved by the RetrievePictInfo function. Although the values of the hRes and vRes fields are
usually the same, they do not have to be.

depth
The pixel depth of the picture specified to the GetPictInfo function or the pixel map specified to
the GetPixMapInfo function. When you use the RetrievePictInfo function, this field contains
the deepest pixel depth of all pictures or pixel maps retrieved by the function.

sourceRect
The optimal bounding rectangle for displaying the picture at the resolution indicated by the hRes
and vRes fields. The upper-left corner of the rectangle is always (0,0). Pictures created with the
OpenCPicture function have the hRes, vRes, and sourceRect fields built into their Picture
structures. For pictures created by OpenPicture, the hRes and vRes fields are set to 72 dpi, and the
source rectangle is calculated using the picFrame field of the Picture structure for the picture.

textCount
The number of text strings in the picture specified to the GetPictInfo function, or the total number
of text objects in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and
bitmaps specified to GetPixMapInfo or RetrievePictInfo, this field is set to 0.

lineCount
The number of lines in the picture specified to the GetPictInfo function, or the total number of
lines in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

rectCount
The number of rectangles in the picture specified to the GetPictInfo function, or the total number
of rectangles in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and
bitmaps, this field is set to 0.

rRectCount
The number of rounded rectangles in the picture specified to the GetPictInfo function, or the total
number of rounded rectangles in all the pictures retrieved by the RetrievePictInfo function. For
pixel maps and bitmaps, this field is set to 0.

1436 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

ovalCount
The number of ovals in the picture specified to the GetPictInfo function, or the total number of
ovals in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

arcCount
The number of arcs and wedges in the picture specified to the GetPictInfo function, or the total
number of arcs and wedges in all the pictures retrieved by the RetrievePictInfo function. For
pixel maps and bitmaps, this field is set to 0.

polyCount
The number of polygons in the picture specified to the GetPictInfo function, or the total number
of polygons in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and
bitmaps, this field is set to 0.

regionCount
The number of regions in the picture specified to the GetPictInfo function, or the total number of
regions in all the pictures retrieved by the RetrievePictInfo function. For pixel maps and bitmaps,
this field is set to 0.

bitMapCount
The total number of bitmaps in the survey.

pixMapCount
The total number of pixel maps in the survey.

commentCount
The number of comments in the picture specified to the GetPictInfo function, or the total number
of comments in all the pictures retrieved by the RetrievePictInfo function. This field is valid only
if you specified to the GetPictInfo or NewPictInfo function that comments be returned in a
CommentSpec structure. For pixel maps and bitmaps, this field is set to 0.

uniqueComments
The number of picture comments that have different IDs in the picture specified to the GetPictInfo
function, or the total number of picture comments with different IDs in all the pictures retrieved by
the RetrievePictInfo function. This field is valid only if you specify that comments be returned
in a CommentSpec (page 1432) structure. For pixel maps and bitmaps, this field is set to 0.

commentHandle
A handle to an array of CommentSpec structures. For pixel maps and bitmaps, this field is set to NULL.
See CommentSpec (page 1432).

uniqueFonts
The number of different fonts in the picture specified to the GetPictInfo function, or the total
number of different fonts in all the pictures retrieved by the RetrievePictInfo function. For bitmap
fonts, a font is a complete set of glyphs in one size, typeface, and style. For outline fonts, a font is a
complete set of glyphs in one typeface and style—for example, 12-point Geneva italic. For outline
fonts, a font is a complete set of glyphs in one typeface and style—for example, Geneva italic.

This field is valid only if you specify that fonts be returned in a FontSpec (page 1433) structure. For
pixel maps and bitmaps, this field is set to 0.

fontHandle
A handle to a list of FontSpec structures. For pixel maps and bitmaps, this field is set to NULL.

fontNamesHandle
A handle to the names of the fonts in the picture retrieved by the GetPictInfo function or the
pictures retrieved by the RetrievePictInfo function. The offset to a particular name is stored in
the nameOffset field of the FontSpec structure for that font. A font name is a name given to one
font family to distinguish it from other font families.

Data Types 1437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

reserved1
reserved2

Discussion
When you use the GetPictInfo (page 1414) function to collect information about a picture, or when you use
theGetPixMapInfo (page 1416) function to collect color information about a pixel map or bitmap, the function
returns the information in a PictInfo structure. When you gather this information for multiple pictures,
pixel maps, or bitmaps, the RetrievePictInfo (page 1425) function also returns a PictInfo structure
containing this information.

Initially, all of the fields in a new PictInfo structure are set to NULL. Relevant fields are set to appropriate
values depending on the information you request using the Picture Utilities functions.

When you are finished with this information, be sure to dispose of it. You can dispose of Palette structures
by using the Palette Manager function, DisposePalette. Dispose of ColorTable structures by using the
QuickDraw function, DisposeCTable. Dispose of other allocations with the Memory Manager function,
DisposeHandle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

PictInfoID
Defines an identifier for a collection of pictures, pixel maps, or bitmaps in an application.

typedef long PictInfoID;

Discussion
Picture Utilities returns a PictInfoID value when you call the function NewPictInfo (page 1422). It serves
as a unique identifier for a collection of pictures, pixel maps, or bitmaps defined in your application. You use
this ID when calling other Picture Utilities functions to manage and survey your collection.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PictUtils.h

RecordColorsUPP
Defines a universal procedure pointer (UPP) to a color recording callback.

typedef RecordColorsProcPtr RecordColorsUPP;

Discussion
For more information, see the description of the callback function RecordColorsProcPtr (page 1431).

Availability
Available in Mac OS X v10.0 and later.

1438 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Declared In
PictUtils.h

Constants

Color Bank Type
Specifies the type of color bank used in a color-picking method.

enum {
 ColorBankIsCustom = -1,
 ColorBankIsExactAnd555 = 0,
 ColorBankIs555 = 1
};

Constants
ColorBankIsCustom

Gathers colors into a custom color bank. Picture Utilities gathers the colors for a picture or a pixel
map into a 5-5-5 histogram. When you return the colorBankIs555 constant, the Picture Utilities
call your RecordColorsProcPtr (page 1431) function with a pointer to the color bank (that is, to the
5-5-5 histogram). Your CalcColorTableProcPtr function selects whatever colors it needs from this
color bank. Then the Picture Utilities function called by your application returns these colors in a
Palette structure, a ColorTable structure, or both, as requested by your application.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

ColorBankIsExactAnd555
Gathers exact colors if there are less than 256 unique colors in picture; otherwise gathers colors for
picture in a 5-5-5 histogram. If the picture or pixel map has fewer colors than your application requests
when it calls a Picture Utilities function, the Picture Utilities function returns all of the colors contained
in the color bank. If the picture or pixel map contains more colors than your application requests, the
Picture Utilities call your CalcColorTableProcPtr function to select which colors to return.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

ColorBankIs555
Gathers colors into a 5-5-5 histogram. Specify colorBankIsCustom constant if you want to implement
your own color bank for storing the colors in a picture or a pixel map. For example, because the 5-5-5
histogram that the Picture Utilities provide gathers colors to a resolution of 5 bits per color, your
application may want to create a histogram with a resolution of 8 bits per color. When you return the
colorBankIsCustom constant, the Picture Utilities call your RecordColorsProcPtr (page 1431)
function to create this color bank. The Picture Utilities also call your CalcColorTableProcPtr
function to select colors from this color bank.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

Discussion
YourInitPickMethodProcPtr (page 1429) function returns these constants in thecolorBankTypeparameter
to indicate the type of color bank used in your color-picking method.

Constants 1439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Color Selection Method
Indicates the color selection method used in a PictInfo record.

enum {
 systemMethod = 0,
 popularMethod = 1,
 medianMethod = 2
};

Constants
systemMethod

Lets Picture Utilities choose the method. Currently they always choose popularMethod.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

popularMethod
Returns the most frequently used colors.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

medianMethod
Returns a weighted distribution of colors.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

Discussion
These constants are used to indicate the method by which colors are selected for the ColorTable or Palette
structure returned via the PictInfo structure, by the functions NewPictInfo (page 1422) ,
GetPixMapInfo (page 1416) , or GetPictInfo (page 1414).

Color Information Type
Indicates the type of color information returned in a PictInfo record.

enum {
 returnColorTable = 0x0001,
 returnPalette = 0x0002,
 recordComments = 0x0004,
 recordFontInfo = 0x0008,
 suppressBlackAndWhite = 0x0010
};

Constants
returnColorTable

Specify to return a Color Table.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

returnPalette
Specify to return a Palette structure.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

1440 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

recordComments
Specify to return comment information.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

recordFontInfo
Specify to return font information.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

suppressBlackAndWhite
Don't include black and white with returned colors.

Available in Mac OS X v10.0 and later.

Declared in PictUtils.h.

Discussion
These constants are used in the verb parameter of the GetPictInfo (page 1414) , GetPixMapInfo (page
1416) ,andNewPictInfo (page 1422) functions to indicate the type of information those functions should return.
You can use any or all of these constants or the sum of the integers they represent.

Result Codes

The table below lists the most common result codes returned by Picture Utilities.

DescriptionValueResult Code

Wrong version of the PictInfo structure.-11000pictInfoVersionErr

Available in Mac OS X v10.0 and later.

The internal consistancy check for the PictInfoID is wrong.-11001pictInfoIDErr

Available in Mac OS X v10.0 and later.

The PictInfo verb is not valid.-11002pictInfoVerbErr

Available in Mac OS X v10.0 and later.

Unable to load the custom pick method resource.-11003cantLoadPickMethodErr

Available in Mac OS X v10.0 and later.

The number of colors requested is illegal.-11004colorsRequestedErr

Available in Mac OS X v10.0 and later.

The picture data is not valid.-11005pictureDataErr

Available in Mac OS X v10.0 and later.

Result Codes 1441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

1442 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Picture Utilities Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in Processes.h

Overview

The Process Manager provides the cooperative multitasking environment for versions of Mac OS that preceded
Mac OS X. The Process Manager controls access to shared resources and manages the scheduling and
execution of applications.

You can use the Process Manager to control the execution of processes and to get information about processes,
including your own. You can use the Process Manager routines to

 ■ control the execution of your application

 ■ get information about processes

 ■ launch other applications

Some Process Manager functions access a ProcessInfoRec data structure, which contains fields that are
no longer applicable in a preemptively scheduled environment (for example, the processLocation,
processFreeMem, and processActiveTime fields). Your application should avoid accessing such fields.
Changes to the memory model may also affect certain fields.

Carbon does not support Process Manager functions that deal with control panels or desk accessories.

Functions by Task

Getting Process Information

CopyProcessName (page 1445)
Gets a copy of the name of a process.

GetCurrentProcess (page 1446)
Gets information about the current process, if any.

GetFrontProcess (page 1446)
Gets the process serial number of the front process.

GetNextProcess (page 1447)
Gets information about the next process, if any, in the Process Manager’s internal list of open processes.

Overview 1443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

GetProcessBundleLocation (page 1447)
Retrieves the file system location of the application bundle (or executable file) associated with a
process.

GetProcessInformation (page 1448)
Get information about a specific process.

ProcessInformationCopyDictionary (page 1452)
Obtains a superset of GetProcessInformation in modern data types.

GetProcessPID (page 1449)
Obtains the Unix PID from a process serial number.

GetProcessForPID (page 1448)
Obtains the process serial number from a Unix PID.

IsProcessVisible (page 1450)
Determines the visiblility of the user interface for a process.

SameProcess (page 1453)
Determines whether two process serial numbers specify the same process.

Starting and Terminating Processes

LaunchApplication (page 1451)
Launches an application.

ExitToShell (page 1445)
Terminates an application.

KillProcess (page 1450)
Terminates a process with the specified ID.

Modifying Processes

SetFrontProcess (page 1454)
Moves a process to the foreground.

SetFrontProcessWithOptions (page 1455)
Brings a process to the front of the process list, and activates it.

ShowHideProcess (page 1455)
Shows or hides a given process.

TransformProcessType (page 1456)
Changes the type of the specified process.

WakeUpProcess (page 1456)
Makes a suspended process eligible for CPU time.

1444 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

Functions

CopyProcessName
Gets a copy of the name of a process.

OSStatus CopyProcessName (
 const ProcessSerialNumber *psn,
 CFStringRef *name
);

Parameters
PSN

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

name
A Core Foundation string that contains the name of the specified process.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
Because the string returned is a Core Foundation string, it can represent a multilingual name, unlike the
processName field value you obtain using GetProcessInformation (page 1448).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ExitToShell
Terminates an application.

void ExitToShell (
 void
);

Discussion
In general, you need to call ExitToShell only if you want your application to terminate without reaching
the end of its main function.

The ExitToShell function terminates the calling process. The Process Manager removes your application
from the list of open processes and performs any other necessary cleanup operations. In particular, all memory
in your application partition and any temporary memory still allocated to your application is released. If
necessary, the Application Died Apple event is sent to the process that launched your application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HideMenuBar

Functions 1445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

ictbSample
QTCarbonShell
QTMetaData

Declared In
Processes.h

GetCurrentProcess
Gets information about the current process, if any.

OSErr GetCurrentProcess (
 ProcessSerialNumber * PSN
);

Parameters
PSN

On output, a pointer to the process serial number of the current process, that is, the one currently
accessing the CPU. This application can be running in either the foreground or the background.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
Applications can use this function to find their own process serial number. Drivers can use this function to
find the process serial number of the current process. You can use the returned process serial number in
other Process Manager functions.

This function is named MacGetCurrentProcess on non Macintosh platforms and GetCurrentProcess
on Macintosh computers. However, even Macintosh code can use the MacGetCurrentProcess name
because a macro exists that automatically maps that call to GetCurrentProcess.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetFrontProcess
Gets the process serial number of the front process.

OSErr GetFrontProcess (
 ProcessSerialNumber *PSN
);

Parameters
PSN

On return, a pointer to the process serial number of the process running in the foreground.

Return Value
A result code. See “Process Manager Result Codes” (page 1467). If no process is running in the foreground,
returns procNotFound.

1446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

Discussion
You can use this function to determine if your process or some other process is in the foreground. You can
use the process serial number returned in the PSN parameter in other Process Manager functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetNextProcess
Gets information about the next process, if any, in the Process Manager’s internal list of open processes.

OSErr GetNextProcess (
 ProcessSerialNumber *PSN
);

Parameters
PSN

On input, a pointer to the process serial number of a process. This number should be a valid process
serial number returned from LaunchApplication (page 1451), GetFrontProcess (page 1446), or
GetCurrentProcess (page 1446), or a process serial number structure containing kNoProcess. For
details about this structure, seeProcessSerialNumber (page 1461). On return, a pointer to the process
serial number of the next process, or else kNoProcess.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
The Process Manager maintains a list of all open processes. You can derive this list by using repetitive calls
to GetNextProcess. Begin generating the list by calling GetNextProcess and specifying the constant
kNoProcess in the PSN parameter. You can then use the returned process serial number to get the process
serial number of the next process. Note that the order of the list of processes is internal to the Process
Manager. When the end of the list is reached, GetNextProcess returns the constant kNoProcess in the
PSN parameter and the result code procNotFound.

You can use the returned process serial number in other Process Manager functions. You can also use this
process serial number to specify a target application when your application sends a high-level event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessBundleLocation
Retrieves the file system location of the application bundle (or executable file) associated with a process.

Functions 1447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

OSStatus GetProcessBundleLocation (
 const ProcessSerialNumber *psn,
 FSRef *location
);

Parameters
PSN

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

location

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Processes.h

GetProcessForPID
Obtains the process serial number from a Unix PID.

OSStatus GetProcessForPID (
 pid_t pid,
 ProcessSerialNumber *psn
);

Parameters
pid

The Unix process ID (PID).

psn
On return, psn points to the process serial number.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
Note that this call does not make sense for Classic applications, since they all share a single UNIX process ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessInformation
Get information about a specific process.

1448 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

OSErr GetProcessInformation (
 const ProcessSerialNumber *PSN,
 ProcessInfoRec *info
);

Parameters
PSN

A pointer to a valid process serial number. You can pass a process serial number structure containing
the constant kCurrentProcess to get information about the current process. See
ProcessSerialNumber (page 1461) for more information.

info
On return, a pointer to a structure containing information about the specified process.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
The information returned in the info parameter includes the application’s name as it appears in the
Application menu, the type and signature of the application, the address of the application partition, the
number of bytes in the application partition, the number of free bytes in the application heap, the application
that launched the application, the time at which the application was launched, and the location of the
application file.

The GetProcessInformation function also returns information about the application’s 'SIZE' resource
and indicates whether the process is an application or a desk accessory.

You need to specify values for the processInfoLength, processName, and processAppSpec fields of the
process information structure. Specify the length of the process information structure in the
processInfoLength field. If you do not want information returned in the processName and
processAppSpec fields, specify NULL for these fields. Otherwise, allocate at least 32 bytes of storage for the
string pointed to by the processName field and, in the processAppSpec field, specify a pointer to an FSSpec
structure.

The processName field may not be what you expect, especially if an application has a localized name. The
processName field, if not NULL, on return will contain the filename part of the executable file of the
application. If you want the localized, user-displayable name for an application, call CopyProcessName (page
1445).

In Mac OS X, the processActiveTime field of the returned structure is always 0, and the
modeCanBackground, mode32BitCompatible, and modeHighLevelEventAware fields are always set.

Special Considerations

In most cases, Mac OS X applications should use ProcessInformationCopyDictionary (page 1452) instead
of this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

GetProcessPID
Obtains the Unix PID from a process serial number.

Functions 1449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

OSStatus GetProcessPID (
 const ProcessSerialNumber *psn,
 pid_t *pid
);

Parameters
psn

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

pid
On return, pid points to a Unix PID.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
Note that this call does not make sense for Classic applications, since they all share a single UNIX process ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

IsProcessVisible
Determines the visiblility of the user interface for a process.

Boolean IsProcessVisible (
 const ProcessSerialNumber *psn
);

Parameters
PSN

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

Return Value
Returns true if the user interface is currently visible. Otherwise, returns false.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Processes.h

KillProcess
Terminates a process with the specified ID.

1450 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

OSErr KillProcess (
 const ProcessSerialNumber *inProcess
);

Parameters
inProcess

The serial number of the process you want to terminate. You can also pass a process serial number
structure containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 1461) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
KillProcess terminates an process without sending a “quit” Apple event or allowing it any time to save
user data or perform cleanup. You should use this function only as a last resort when all other attempts have
failed. Even then, there is no guarantee that this call will succeed in killing the application, even if it returns
with noErr.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Processes.h

LaunchApplication
Launches an application.

OSErr LaunchApplication (
 LaunchPBPtr LaunchParams
);

Parameters
LaunchParams

A pointer to a LaunchParamBlockRec (page 1457) specifying information about the application to
launch.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
The LaunchApplication function launches the application from the specified file and returns the process
serial number, preferred partition size, and minimum partition size if the application is successfully launched.

Note that if you launch another application without terminating your application, the launched application
is not actually executed until you make a subsequent call to WaitNextEvent or EventAvail.

Set the launchContinue flag in the launchControlFlags field of the launch parameter block if you want
your application to continue after the specified application is launched. If you do not set this flag,
LaunchApplication terminates your application after launching the specified application, even if the
launch fails.

Availability
Available in Mac OS X v10.0 and later.

Functions 1451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

Declared In
Processes.h

ProcessInformationCopyDictionary
Obtains a superset of GetProcessInformation in modern data types.

CFDictionaryRef ProcessInformationCopyDictionary (
 const ProcessSerialNumber *PSN,
 UInt32 infoToReturn
);

Parameters
PSN

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

infoToReturn
A bitmask indicating the information to obtain. Pass
kProcessDictionaryIncludeAllInformationMask for this parameter.

Return Value
An immutable Core Foundation dictionary containing the system information in key-value pairs.

Discussion
You should use this function instead of GetProcessInformation (page 1448). Table 41-1 and Table 41-2
show keys you can use to get process attributes in the returned Core Foundation dictionary. All keys in the
dictionary are Core Foundation strings. (Note that additional keys exist, but these are for internal use only.)
Keys marked with an asterisk (*) may not appear in the dictionary, depending on the application.

Table 41-1 Process information keys

SummaryTypeKey

The process serial number. See ProcessSerialNumber (page
1461).

CFNumberRefPSN

A hint as to the type of the application. You shouldn’t need to
use this key.

CFNumberRefFlavor

Attributes for the process. Useful attributes generally have
their own keys.

CFNumberRefAttributes

The process serial number of the application that launched
this process.

CFNumberRefParentPSN *

The file type (if any) of the executable.CFStringRefFileType *

The creator type (if any) of the executable.CFStringRefFileCreator *

The UNIX PID for this process.CFNumberRefpid *

kCFBooleanTrue if the application is a background-only
application.

CFBooleanRefLSBackgroundOnly

1452 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

SummaryTypeKey

kCFBooleanTrue if the application is an accessibility
UIElement.

CFBooleanRefLSUIElement

kCFBooleanTrue if the application is currently hidden.CFBooleanRefIsHiddenAttr

kCFBooleanTrue if the application’s Info.plist file indicates
that it is a Carbon application.

CFBooleanRefRequiresCarbon

The initial user-interface mode for the application. See Runtime
Configuration Guidelines for a list of possible values.

CFNumberRefLSUIPresentationMode

The path to the application bundle (if the application is
bundled).

CFStringRefBundlePath *

Table 41-2 lists additional keys that you should reference by their predefined constants, rather than the actual
string names.

Table 41-2 Process information key constants

SummaryTypeKey

The path to the actual executable file.CFStringRefkCFBundleExecutableKey *

The application’s display name.CFStringRefkCFBundleNameKey *

The application’s bundle identifier (if the application is
bundled). For example, “com.apple.TextEdit”.

CFStringRefkCFBundleIdentifierKey *

Availability
Available in Mac OS X v10.2 and later.

Declared In
Processes.h

SameProcess
Determines whether two process serial numbers specify the same process.

OSErr SameProcess (
 const ProcessSerialNumber *PSN1,
 const ProcessSerialNumber *PSN2,
 Boolean *result
);

Parameters
PSN1

A process serial number.

PSN2
A process serial number.

Functions 1453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

result
On return, a pointer to a Boolean value which is TRUE if the process serial numbers passed in PSN1
and PSN2 refer to the same process; otherwise FALSE.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
Do not attempt to compare two process serial numbers by any means other than the SameProcess function,
because the interpretation of the bits in a process serial number is internal to the Process Manager.

The values of PSN1 and PSN2must be valid process serial numbers returned from LaunchApplication (page
1451) ,GetNextProcess (page 1447) ,GetFrontProcess (page 1446) ,GetCurrentProcess (page 1446) , or a
high-level event. You can also pass a process serial number structure containing the constant
kCurrentProcess to refer to the current process.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

SetFrontProcess
Moves a process to the foreground.

OSErr SetFrontProcess (
 const ProcessSerialNumber *PSN
);

Parameters
PSN

A pointer to a valid process serial number. You can also pass a process serial number structure
containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 1461) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
The SetFrontProcess function moves the specified process to the foreground immediately.

If the specified process serial number is invalid or if the specified process is a background-only application,
SetFrontProcess returns a nonzero result code and does not change the current foreground process.

Special Considerations

Do not call SetFrontProcess at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

1454 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

SetFrontProcessWithOptions
Brings a process to the front of the process list, and activates it.

OSStatus SetFrontProcessWithOptions (
 const ProcessSerialNumber *inProcess,
 OptionBits inOptions
);

Parameters
PSN

A pointer to a valid process serial number. You can also pass a process serial number structure
containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 1461) for more information.

inOptions
A flag that indicates how process windows should be brought forward—see the discussion below.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
If you pass 0 in the inOptions parameter, the process is activated and all process windows are brought
forward. This is equivalent to calling SetFrontProcess (page 1454). If you pass
kSetFrontProcessFrontWindowOnly, the process is activated and the frontmost nonfloating window is
brought forward.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Processes.h

ShowHideProcess
Shows or hides a given process.

OSErr ShowHideProcess (
 const ProcessSerialNumber *psn,
 Boolean visible
);

Parameters
PSN

A pointer to a valid process serial number. SeeProcessSerialNumber (page 1461) for more information.

visible
A Boolean value that specifies whether you want to show (true) or hide (false) the process.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Processes.h

Functions 1455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

TransformProcessType
Changes the type of the specified process.

OSStatus TransformProcessType (
 const ProcessSerialNumber *psn,
 ProcessApplicationTransformState transformState
);

Parameters
PSN

The serial number of the process you want to transform. You can also use the constant
kCurrentProcess to refer to the current process. See ProcessSerialNumber (page 1461) for more
information.

transformState
A constant indicating the type of transformation you want. See “Process Transformation
Constant” (page 1467). Currently you can pass onlykProcessTransformToForegroundApplication.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
You can use this call to transform a background-only application into a foreground application. A foreground
application appears in the Dock (and in the Force Quit dialog) and contains a menu bar. This function does
not cause the application to be brought to the front; you must call SetFrontProcess (page 1454) to do so.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Processes.h

WakeUpProcess
Makes a suspended process eligible for CPU time.

OSErr WakeUpProcess (
 const ProcessSerialNumber *PSN
);

Parameters
PSN

The serial number of the process you want to wake up. You can also pass a process serial number
structure containing the constant kCurrentProcess to refer to the current process. See
ProcessSerialNumber (page 1461) for more information.

Return Value
A result code. See “Process Manager Result Codes” (page 1467).

Discussion
The WakeUpProcess function makes a process suspended by WaitNextEvent eligible to receive CPU time.
A process is suspended when the value of the sleep parameter in the WaitNextEvent function is not 0
and no events for that process are pending in the event queue. This process remains suspended until the
time specified in the sleep parameter expires or an event becomes available for that process. You can use

1456 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

WakeUpProcess to make the process eligible for execution before the time specified in the sleep parameter
expires. This function does not change the order of the processes scheduled for execution; it only makes the
specified process eligible for execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

Data Types

AppParameters
Defines the first high-level event sent to a newly-launched application.

struct AppParameters {
 struct {
 UInt16 what;
 UInt32 message;
 UInt32 when;
 Point where;
 UInt16 modifiers;
 } theMsgEvent;
 unsigned long eventRefCon
 unsigned long messageLength
};
typedef struct AppParameters AppParameters;
typedef AppParameters * AppParametersPtr;

Discussion
The application parameters structure is used in the launchAppParameters field of the launch parameter
block,LaunchParamBlockRec (page 1457) , whose address is passed to theLaunchApplication (page 1451)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

LaunchParamBlockRec
Defines the required parameters when launching an application.

Data Types 1457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

struct LaunchParamBlockRec {
 unsigned long reserved1;
 unsigned short reserved2;
 unsigned short launchBlockID;
 unsigned long launchEPBLength;
 unsigned short launchFileFlags;
 LaunchFlags launchControlFlags;
 FSSpecPtr launchAppSpec;
 ProcessSerialNumber launchProcessSN;
 unsigned long launchPreferredSize;
 unsigned long launchMinimumSize;
 unsigned long launchAvailableSize;
 AppParametersPtr launchAppParameters;
};
typedef struct LaunchParamBlockRec LaunchParamBlockRec;
typedef LaunchParamBlockRec * LaunchPBPtr;

Fields
reserved1

Reserved.

reserved2
Reserved.

launchBlockID
A value that indicates whether you are using the fields following it in the launch parameter block.
Specify the constant extendedBlock if you use the fields that follow it.

launchEPBLength
The length of the fields following this field in the launch parameter block. Use the constant
extendedBlockLen to specify this value.

launchFileFlags
The Finder flags for the application file. Set the launchNoFileFlags constant in the
launchControlFlags field if you want the LaunchApplication function to extract the Finder
flags from the application file and to set the launchFileFlags field for you.

launchControlFlags
See “Launch Options” (page 1464) for a complete description of these flags.

launchAppSpec
A pointer to a file specification structure that gives the location of the application file to launch.

launchProcessSN
The process serial number returned to your application if the launch is successful. You can use this
process serial number in other Process Manager functions to refer to the launched application.

launchPreferredSize
The preferred partition size for the launched application as specified in the launched application’s
'SIZE' resource. LaunchApplication sets this field to 0 if an error occurred or if the application
is already open.

launchMinimumSize
The minimum partition size for the launched application as specified in the launched application’s
'SIZE' resource. LaunchApplication sets this field to 0 if an error occurred or if the application
is already open.

1458 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

launchAvailableSize
The maximum partition size that is available for allocation. This value is returned to your application
only if the memFullErr result code is returned. If the application launch fails because of insufficient
memory, you can use this value to determine if there is enough memory available to launch in the
minimum size.

launchAppParameters
The first high-level event to send to the launched application. If you set this field to NULL,
LaunchApplication creates and sends the Open Application Apple event to the launched application.

Discussion
You specify a launch parameter block as a parameter to the LaunchApplication (page 1451) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessInfoRec
Defines the structure of a process information record.

struct ProcessInfoRec {
 unsigned long processInfoLength;
 StringPtr processName;
 ProcessSerialNumber processNumber;
 unsigned long processType;
 OSType processSignature;
 unsigned long processMode;
 Ptr processLocation;
 unsigned long processSize;
 unsigned long processFreeMem;
 ProcessSerialNumber processLauncher;
 unsigned long processLaunchDate;
 unsigned long processActiveTime;
 FSSpecPtr processAppSpec;
};
typedef struct ProcessInfoRec ProcessInfoRec;
typedef ProcessInfoRec * ProcessInfoRecPtr;

Fields
processInfoLength

The number of bytes in the process information structure. For compatibility, you should specify the
length of the structure in this field.

processName
The name of the application. This field contains the name of the application as designated by the
user at the time the application was opened. For example, for foreground applications, the
processName field contains the name as it appears in the Application menu. You must specify NULL
in the processName field if you do not want the application name returned. Otherwise, you should
allocate at least 32 bytes of storage for the string pointed to by the processName field. Note that
the processName field specifies the name of the application, whereas the processAppSpec field
specifies the location of the file.

processNumber
The process serial number.

Data Types 1459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

processType
The file type of the application, generally 'APPL' for applications and 'appe' for background-only
applications launched at startup.

processSignature
The signature (or creator) of the file containing the application.

processMode
Process mode flags. These flags indicate whether the process is an application or desk accessory. For
applications, this field also returns information specified in the application’s 'SIZE' resource. This
information is returned as flags.

On Mac OS X, some flags in processMode will not be set as they were on Mac OS 9, even for Classic
applications. Mac OS X doesn't support applications which can't be sent into the background, so
modeCanBackground will always be set. Similarly, Mac OS X applications will always have
mode32BitCompatible and modeHighLevelEventAware set

processLocation
The beginning address of the application partition.

processSize
The number of bytes in the application partition (including the heap, stack, and A5 world).

processFreeMem
The number of free bytes in the application heap.

processLauncher
The process serial number of the process that launched the application or desk accessory. If the
original launcher of the process is no longer open, the lowLongOfPSN field of the process serial
number structure contains the constant kNoProcess.

processLaunchDate
The value of the Ticks global variable at the time that the process was launched.

processActiveTime
The accumulated time, in ticks, during which the process has used the CPU, including both foreground
and background processing time.

processAppSpec
The address of a file specification structure that stores the location of the file containing the application
or 'DRVR' resource. You should specify NULL in the processAppSpec field if you do not want the
FSSpec structure of the file returned.

Discussion
A process information record is returned by the GetProcessInformation (page 1448) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessInfoExtendedRec
Defines an extended version of the process information record.

1460 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

struct ProcessInfoExtendedRec {
 unsigned long processInfoLength;
 StringPtr processName;
 ProcessSerialNumber processNumber;
 unsigned long processType;
 OSType processSignature;
 unsigned long processMode;
 Ptr processLocation;
 unsigned long processSize;
 unsigned long processFreeMem;
 ProcessSerialNumber processLauncher;
 unsigned long processLaunchDate;
 unsigned long processActiveTime;
 FSSpecPtr processAppSpec;
 unsigned long processTempMemTotal;
 unsigned long processPurgeableTempMemTotal;
};
typedef struct ProcessInfoExtendedRec ProcessInfoExtendedRec;
typedef ProcessInfoExtendedRec * ProcessInfoExtendedRecPtr;

Discussion
See ProcessInfoRec (page 1459) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

ProcessSerialNumber
Defines the unique identifier for an open process.

struct ProcessSerialNumber {
 unsigned long highLongOfPSN;
 unsigned long lowLongOfPSN;
};
typedef struct ProcessSerialNumber ProcessSerialNumber;
typedef ProcessSerialNumber * ProcessSerialNumberPtr;

Fields
highLongOfPSN

The high-order long integer of the process serial number.

lowLongOfPSN
The low-order long integer of the process serial number.

Discussion
All applications (defined as things which can appear in the Dock that are not documents and are launched
by the Finder or Dock) on Mac OS X have a unique process serial number. This number is created when the
application launches, and remains until the application quits. Other system services, like Apple events, use
the ProcessSerialNumber structure to specify an application.

During launch, every application “checks in” with the Process Manager. Before this checkin, the application
can not receive events or draw to the screen. Prior to Mac OS 10.2, this check in occurred before the
applications's main function was entered. In Mac OS 10.2 and later, this check in does not occur until the
first time the application calls a Process Manager function, or until it enters CFRunLoopRun for the main

Data Types 1461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

event loop. This allows tools and other executables which do not need to receive events to link against more
of the higher level toolbox frameworks, but may cause a problem if the application expects to be able to
retrieve events or use CoreGraphics services before this checkin has occurred. An application can force the
connection to the Process Manager to be set up by calling any Process Manager routine, but the recommended
way to do this is to call GetCurrentProcess (page 1446) to ask for the current application's PSN. Doing so
initializes the connection to the Process Manager if it has not already been set up and ”check in“ the application
with the system.

You should not make any assumptions about the meaning of the bits in a process serial number. To compare
two process serial numbers, you should use the function SameProcess (page 1453).

You can obtain a process serial number in one of the following ways:

 ■ Process serial numbers are returned by the functions LaunchApplication (page 1451),
GetCurrentProcess (page 1446), and GetFrontProcess (page 1446).

 ■ Some high-level events return process serial numbers.

If you want to specify a process using the “Process Identification Constants” (page 1466), you must populate
a process serial number structure, passing 0 in highLongOfPSN and the appropriate constant (such as
kCurrentProcess) in lowLongOfPSN. For example, to bring the current process forward, you can use the
following code:

 ProcessSerialNumber psn = { 0, kCurrentProcess };
 SetFrontProcess(&psn);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTypes.h

SizeResourceRec
Defines a representation of the SIZE resource.

struct SizeResourceRec {
 unsigned short flags;
 unsigned long preferredHeapSize;
 unsigned long minimumHeapSize;
};
typedef struct SizeResourceRec SizeResourceRec;
typedef SizeResourceRec * SizeResourceRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Processes.h

1462 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

Constants

Control Panel Result Codes
Specifies the values that a control panel can return.

Unsupported

enum {
 cdevGenErr = -1,
 cdevMemErr = 0,
 cdevResErr = 1,
 cdevUnset = 3
};

Extension Launch Codes
Specifies the values used when launching extensions.

enum {
 extendedBlock = 0x4C43,
 extendedBlockLen = sizeof(LaunchParamBlockRec) - 12
};

Control Panel Message Codes
Specifies the values for messages to a control panel.

enum {
 initDev = 0,
 hitDev = 1,
 closeDev = 2,
 nulDev = 3,
 updateDev = 4,
 activDev = 5,
 deactivDev = 6,
 keyEvtDev = 7,
 macDev = 8,
 undoDev = 9,
 cutDev = 10,
 copyDev = 11,
 pasteDev = 12,
 clearDev = 13,
 cursorDev = 14
};

Termination Options
Specifies masks to control the timing of application termination during system shutdown or restart.

Constants 1463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

enum {
 kQuitBeforeNormalTimeMask = 1,
 kQuitAtNormalTimeMask = 2,
 kQuitBeforeFBAsQuitMask = 4,
 kQuitBeforeShellQuitsMask = 8,
 kQuitBeforeTerminatorAppQuitsMask = 16,
 kQuitNeverMask = 32,
 kQuitOptionsMask = 0x7F,
 kQuitNotQuitDuringInstallMask = 0x0100,
 kQuitNotQuitDuringLogoutMask = 0x0200
};

Discussion
Applications and background applications can control when they are asked to quit by the system at restart
and shutdown by setting these bits in a 'quit'(0) resource located in the resource fork.

Applications without this resource are terminated at kQuitAtNormalTime.

Availability
Available in CarbonLib 1.0 and later. Not available in Mac OS X version 10.0 and later.

Front Process Options
Specifies options for bringing windows forward when a process is activated.

enum {
 kSetFrontProcessFrontWindowOnly = (1 << 0)
};

Constants
kSetFrontProcessFrontWindowOnly

Activate the process, but bring only the frontmost non-floating window forward.

Available in Mac OS X version 10.2 and later.

Declared in Processes.h.

Launch Options
Specifies the valid launch options in the launchControlFlags field of the launch parameter block.

1464 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

typedef unsigned short LaunchFlags;
enum {
 launchContinue = 0x4000,
 launchNoFileFlags = 0x0800,
 launchUseMinimum = 0x0400,
 launchDontSwitch = 0x0200,
 launchAllow24Bit = 0x0100,
 launchInhibitDaemon = 0x0080
};

Constants
launchContinue

Set this flag if you want your application to continue after the specified application is launched. If you
do not set this flag, LaunchApplication terminates your application after launching the specified
application, even if the launch fails.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchNoFileFlags
Set this flag if you want the LaunchApplication function to ignore any value specified in the
launchFileFlags field. If you set the launchNoFileFlags flag, the LaunchApplication function
extracts the Finder flags from the application file for you. If you want to supply the file flags, clear the
launchNoFileFlags flag and specify the Finder flags in the launchFileFlags field of the launch
parameter block.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchUseMinimum
Clear this flag if you want the LaunchApplication function to attempt to launch the application
in the preferred size (as specified in the application’s 'SIZE' resource). If you set the
launchUseMinimum flag, the LaunchApplication function attempts to launch the application
using the largest available size greater than or equal to the minimum size but less than the preferred
size. If the LaunchApplication function returns the result code memFullErr or memFragErr, the
application cannot be launched under the current memory conditions.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchDontSwitch
Set this flag if you do not want the launched application brought to the front. If you set this flag, the
launched application runs in the background until the user brings the application to the front—for
example, by clicking in one of the application’s windows. Note that most applications expect to be
launched in the foreground. If you clear the launchDontSwitch flag, the launched application is
brought to the front, and your application is sent to the background.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

launchAllow24Bit
Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Constants 1465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

launchInhibitDaemon
Set this flag if you do not want LaunchApplication to launch a background-only application. (A
background-only application has the onlyBackground flag set in its 'SIZE' resource.)

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Discussion
For more information, see LaunchApplication (page 1451) and LaunchParamBlockRec (page 1457).

Process Mode Flags
Specifies the type of information returned in a process information record.

enum {
 modeReserved = 0x01000000,
 modeControlPanel = 0x00080000,
 modeLaunchDontSwitch = 0x00040000,
 modeDeskAccessory = 0x00020000,
 modeMultiLaunch = 0x00010000,
 modeNeedSuspendResume = 0x00004000,
 modeCanBackground = 0x00001000,
 modeDoesActivateOnFGSwitch = 0x00000800,
 modeOnlyBackground = 0x00000400,
 modeGetFrontClicks = 0x00000200,
 modeGetAppDiedMsg = 0x00000100,
 mode32BitCompatible = 0x00000080,
 modeHighLevelEventAware = 0x00000040,
 modeLocalAndRemoteHLEvents = 0x00000020,
 modeStationeryAware = 0x00000010,
 modeUseTextEditServices = 0x00000008,
 modeDisplayManagerAware = 0x00000004
};

Discussion
These constants indicate, in the processMode field of the ProcessInfoRec (page 1459) structure, whether
the process is an application or a desk accessory. If the process is an application, these flags return information
about the application’s ‘SIZE’ resource.

Process Identification Constants
Specifies constants used instead of a process serial number to identify a process.

enum {
 kNoProcess = 0,
 kSystemProcess = 1,
 kCurrentProcess = 2
};

Constants
kNoProcess

Identifies a process that doesn’t exist.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

1466 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

kSystemProcess
Identifies a process that belongs to the Operating System.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

kCurrentProcess
Identifies the current process.

Available in Mac OS X v10.0 and later.

Declared in Processes.h.

Discussion
If you want to use these constants to specify a process, you must populate a process serial number structure
(ProcessSerialNumber (page 1461)), passing 0 in the highLongOfPSN field and the appropriate constant
(such as kCurrentProcess) in the lowLongOfPSN. For example, to bring the current process forward, you
can use the following code:

 ProcessSerialNumber psn = { 0, kCurrentProcess };
 SetFrontProcess(&psn);

Process Transformation Constant
Specify tranformation types to be applied when calling TransformProcessType (page 1456).

enum {
 kProcessTransformToForegroundApplication = 1L
};
typedef UInt32 ProcessApplicationTransformState;

Constants
kProcessTransformToForegroundApplication

Use to convert a background-only application to a foreground application.

Available in Mac OS X v10.3 and later.

Declared in Processes.h.

Result Codes

The table below lists the most common result codes returned by the Process Manager.

DescriptionValueResult Code

No eligible process with specified process serial number.-600procNotFound

Available in Mac OS X v10.0 and later.

Not enough room to launch application with special requirements.-601memFragErr

Available in Mac OS X v10.0 and later.

Addressing mode is 32-bit, but application is not 32-bit clean.-602appModeErr

Available in Mac OS X v10.0 and later.

Result Codes 1467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

DescriptionValueResult Code

app made module calls in improper order-603protocolErr

Available in Mac OS X v10.0 and later.

Hardware configuration not supported.-604hardwareConfigErr

Available in Mac OS X v10.0 and later.

Partition size specified in SIZE resource is not big enough for
launch.

-605appMemFullErr

Available in Mac OS X v10.0 and later.

Application runs in background only.-606appIsDaemon

Available in Mac OS X v10.0 and later.

The application could not launch because the required platform
is not available.

-875wrongApplicationPlatform

Available in Mac OS X v10.0 and later.

The application's creator and version are incompatible with the
current version of Mac OS.

-876appVersionTooOld

Available in Mac OS X v10.0 and later.

This application will not (or should not) run in Classic.-877notAppropriateForClassic

Available in Mac OS X v10.0 and later.

1468 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Process Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGDirectDisplay.h
CGDirectPalette.h
CGDisplayConfiguration.h
CGDisplayFade.h
CGError.h
CGRemoteOperation.h
CGSession.h
CGWindowLevel.h

Companion guide Quartz Display Services Programming Topics

Overview

Note: This document was previously titled Quartz Services Reference. Some information related to low-level
events has been moved from this document into Quartz Event Services Reference.

Quartz Display Services provides direct access to certain low-level features in the Mac OS X window server
related to the configuration and control of display hardware. For example, you can use Quartz Display Services
to:

 ■ Examine and change display mode properties such as width, height, and pixel depth

 ■ Configure a set of displays in a single operation

 ■ Capture one or more displays for exclusive use

 ■ Perform fade effects

 ■ Activate display mirroring

 ■ Configure gamma color correction tables and color palettes

 ■ Receive notification of screen update operations

Overview 1469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Functions by Task

Finding Displays

CGMainDisplayID (page 1522)
Returns the display ID of the main display.

CGGetOnlineDisplayList (page 1521)
Provides a list of displays that are online (active, mirrored, or sleeping).

CGGetActiveDisplayList (page 1515)
Provides a list of displays that are active (or drawable).

CGGetDisplaysWithOpenGLDisplayMask (page 1516)
Provides a list of displays that corresponds to the bits set in an OpenGL display mask.

CGGetDisplaysWithPoint (page 1517)
Provides a list of online displays with bounds that include the specified point.

CGGetDisplaysWithRect (page 1518)
Gets a list of online displays with bounds that intersect the specified rectangle.

CGOpenGLDisplayMaskToDisplayID (page 1522)
Maps an OpenGL display mask to a display ID.

CGDisplayIDToOpenGLDisplayMask (page 1498)
Maps a display ID to an OpenGL display mask.

Capturing and Releasing Displays

CGDisplayCapture (page 1493)
Captures a display for exclusive use by an application.

CGDisplayCaptureWithOptions (page 1493)
Captures a display for exclusive use by an application, using the specified options.

CGDisplayRelease (page 1507)
Releases a captured display.

CGDisplayIsCaptured (page 1501)
Returns a Boolean value indicating whether a display is captured.

CGCaptureAllDisplays (page 1478)
Captures all attached displays.

CGCaptureAllDisplaysWithOptions (page 1479)
Captures all attached displays, using the specified options.

CGReleaseAllDisplays (page 1529)
Releases all captured displays.

CGShieldingWindowID (page 1535)
Returns the window ID of the shield window for a captured display.

CGShieldingWindowLevel (page 1536)
Returns the window level of the shield window for a captured display.

1470 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayAddressForPosition (page 1485)
Returns the address in frame buffer memory that corresponds to a position on an online display.

CGDisplayBaseAddress (page 1487)
Returns the base address in frame buffer memory of an online display.

CGDisplayGetDrawingContext (page 1497)
Returns a graphics context suitable for drawing to a captured display.

Configuring Displays

CGBeginDisplayConfiguration (page 1477)
Begins a new set of display configuration changes.

CGCancelDisplayConfiguration (page 1478)
Cancels a set of display configuration changes.

CGCompleteDisplayConfiguration (page 1479)
Completes a set of display configuration changes.

CGConfigureDisplayMirrorOfDisplay (page 1481)
Changes the configuration of a mirroring set.

CGConfigureDisplayMode (page 1482)
Configures the display mode of a display.

CGConfigureDisplayOrigin (page 1483)
Configures the origin of a display in global display (desktop) coordinates.

CGRestorePermanentDisplayConfiguration (page 1531)
Restores the permanent display configuration settings for the current user.

CGConfigureDisplayStereoOperation (page 1484)
Enables or disables stereo operation for a display, as part of a display configuration.

CGDisplaySetStereoOperation (page 1511)
Immediately enables or disables stereo operation for a display.

Getting the Display Configuration

CGDisplayCopyColorSpace (page 1494)
Returns the color space for a display.

CGDisplayIOServicePort (page 1498)
Returns the I/O Kit service port of the specified display.

CGDisplayIsActive (page 1499)
Returns a Boolean value indicating whether a display is active.

CGDisplayIsAlwaysInMirrorSet (page 1499)
Returns a Boolean value indicating whether a display is always in a mirroring set.

CGDisplayIsAsleep (page 1500)
Returns a Boolean value indicating whether a display is sleeping (and is therefore not drawable.)

CGDisplayIsBuiltin (page 1500)
Returns a Boolean value indicating whether a display is built-in, such as the internal display in portable
systems.

Functions by Task 1471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayIsInHWMirrorSet (page 1501)
Returns a Boolean value indicating whether a display is in a hardware mirroring set.

CGDisplayIsInMirrorSet (page 1502)
Returns a Boolean value indicating whether a display is in a mirroring set.

CGDisplayIsMain (page 1502)
Returns a Boolean value indicating whether a display is the main display.

CGDisplayIsOnline (page 1503)
Returns a Boolean value indicating whether a display is connected or online.

CGDisplayIsStereo (page 1503)
Returns a Boolean value indicating whether a display is running in a stereo graphics mode.

CGDisplayMirrorsDisplay (page 1504)
For a secondary display in a mirroring set, returns the primary display.

CGDisplayModelNumber (page 1504)
Returns the model number of a display monitor.

CGDisplayPrimaryDisplay (page 1506)
Returns the primary display in a hardware mirroring set.

CGDisplayRotation (page 1508)
Returns the rotation angle of a display in degrees.

CGDisplayScreenSize (page 1509)
Returns the width and height of a display in millimeters.

CGDisplaySerialNumber (page 1510)
Returns the serial number of a display monitor.

CGDisplayUnitNumber (page 1513)
Returns the logical unit number of a display.

CGDisplayUsesOpenGLAcceleration (page 1514)
Returns a Boolean value indicating whether Quartz is using OpenGL-based window acceleration
(Quartz Extreme) to render in a display.

CGDisplayVendorNumber (page 1514)
Returns the vendor number of the specified display's monitor.

Registering for Notification of Display Configuration Changes
These functions are used to register and unregister a callback function for notification of display configuration
changes.

CGDisplayRegisterReconfigurationCallback (page 1507)
Registers a callback function to be invoked whenever a local display is reconfigured.

CGDisplayRemoveReconfigurationCallback (page 1508)
Removes the registration of a callback function that’s invoked whenever a local display is reconfigured.

Retrieving Display Parameters

CGDisplayBounds (page 1491)
Returns the bounds of a display in global display space.

1472 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayPixelsHigh (page 1505)
Returns the display height in pixel units.

CGDisplayPixelsWide (page 1506)
Returns the display width in pixel units.

CGDisplayBitsPerPixel (page 1491)
Returns the number of bits used to represent a pixel in the frame buffer.

CGDisplayBitsPerSample (page 1491)
Returns the number of bits used to represent a pixel component in the frame buffer.

CGDisplaySamplesPerPixel (page 1509)
Returns the number of color components used to represent a pixel.

CGDisplayBytesPerRow (page 1492)
Returns the number of bytes per row in a display.

Using Display Modes

CGDisplayAvailableModes (page 1486)
Returns information about the currently available display modes.

CGDisplayBestModeForParameters (page 1488)
Returns information about the display mode closest to a specified depth and screen size.

CGDisplayBestModeForParametersAndRefreshRate (page 1488)
Returns information about the display mode closest to a specified depth, screen size, and refresh rate.

CGDisplayBestModeForParametersAndRefreshRateWithProperty (page 1490)
Returns information about the display mode closest to a specified depth, screen size, and refresh rate,
with a required property.

CGDisplayCurrentMode (page 1494)
Returns information about the current display mode.

CGDisplaySwitchToMode (page 1512)
Switches a display to a different mode.

Adjusting the Display Gamma

CGSetDisplayTransferByFormula (page 1533)
Sets the gamma function for a display, by specifying the coefficients of the gamma transfer formula.

CGGetDisplayTransferByFormula (page 1518)
Gets the coefficients of the gamma transfer formula for a display.

CGSetDisplayTransferByTable (page 1535)
Sets the color gamma function for a display, by specifying the values in the RGB gamma tables.

CGGetDisplayTransferByTable (page 1520)
Gets the values in the RGB gamma tables for a display.

CGSetDisplayTransferByByteTable (page 1532)
Sets the byte values in the 8-bit RGB gamma tables for a display.

CGDisplayRestoreColorSyncSettings (page 1508)
Restores the gamma tables to the values in the user’s ColorSync display profile.

Functions by Task 1473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayGammaTableCapacity (page 1497)
Returns the capacity, or number of entries, in the gamma table for a display.

Working With Color Palettes

CGPaletteCreateDefaultColorPalette (page 1523)
Returns a new display palette representing the default 8-bit color palette.

CGPaletteCreateFromPaletteBlendedWithColor (page 1524)
Returns a new tinted display palette. The new palette is derived from an existing palette blended
with a solid color, at a specified level of intensity.

CGPaletteCreateWithByteSamples (page 1524)
Returns a new display palette using 8-bit sample data.

CGPaletteCreateWithCapacity (page 1525)
Returns a new display palette with a specified capacity. The new palette is initialized from the default
color palette.

CGPaletteCreateWithDisplay (page 1525)
Returns a copy of the current palette for a display.

CGPaletteCreateWithSamples (page 1525)
Returns a new display palette using RGB sample data.

CGPaletteCreateCopy (page 1523)
Returns a copy of a specified display palette.

CGPaletteRelease (page 1528)
Decrements the retain count of a display palette.

CGPaletteGetColorAtIndex (page 1526)
Returns the color value at the specified index.

CGPaletteGetIndexForColor (page 1526)
Returns the index of the display palette entry that most closely matches a specified color value.

CGPaletteGetNumberOfSamples (page 1527)
Returns the number of colors in a display palette.

CGPaletteIsEqualToPalette (page 1527)
Returns a Boolean value indicating whether two display palettes are equal.

CGPaletteSetColorAtIndex (page 1528)
Updates the color value at the specified index in a display palette.

CGDisplayCanSetPalette (page 1492)
Returns a Boolean value indicating whether the current display mode supports palettes.

CGDisplaySetPalette (page 1510)
Sets the palette for a display.

Display Fade Effects

CGConfigureDisplayFadeEffect (page 1480)
Modifies the settings of the built-in fade effect that occurs during a display configuration.

CGAcquireDisplayFadeReservation (page 1476)
Reserves the fade hardware for a specified time interval.

1474 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayFade (page 1495)
Performs a single fade operation.

CGDisplayFadeOperationInProgress (page 1496)
Returns a Boolean value indicating whether a fade operation is currently in progress.

CGReleaseDisplayFadeReservation (page 1530)
Releases a display fade reservation, and unfades the display if needed.

Beam Position
These functions are advisory in nature and depend on IO Kit and hardware-specific drivers to implement
support. If you need extremely precise timing, or access to vertical blanking interrupts, you should consider
writing a device driver to tie into hardware-specific capabilities.

CGDisplayBeamPosition (page 1487)
Returns the current beam position on a display.

CGDisplayWaitForBeamPositionOutsideLines (page 1515)
Waits until the beam position moves outside a region in a display screen. This function is not designed
for VBL drawing synchronization.

Controlling the Mouse Cursor

CGDisplayHideCursor (page 1497)
Hides the mouse cursor, and increments the hide cursor count.

CGDisplayShowCursor (page 1512)
Decrements the hide cursor count, and shows the mouse cursor if the count is zero.

CGDisplayMoveCursorToPoint (page 1505)
Moves the mouse cursor to a specified point relative to the display origin (the upper left corner of
the display).

CGCursorIsVisible (page 1485)
Returns a Boolean value indicating whether the mouse cursor is visible.

CGCursorIsDrawnInFramebuffer (page 1484)
Returns a Boolean value indicating whether the mouse cursor is drawn in frame buffer memory.

CGAssociateMouseAndMouseCursorPosition (page 1477)
Connects or disconnects the mouse and cursor while an application is in the foreground.

CGWarpMouseCursorPosition (page 1539)
Moves the mouse cursor without generating events.

CGGetLastMouseDelta (page 1520)
Reports the change in mouse position since the last mouse movement event received by the
application.

Getting Window Server Information

CGSessionCopyCurrentDictionary (page 1532)
Returns information about the caller’s window server session.

Functions by Task 1475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGWindowServerCFMachPort (page 1540)
Returns a Core Foundation mach port (CFMachPort) that corresponds to the Mac OS X window server.

CGWindowLevelForKey (page 1539)
Returns the window level that corresponds to one of the standard window types.

Getting Information About Refresh and Move Operations
You can use these functions to find out what areas on local displays are changing their appearance as the
result of operations such as drawing, window movement or scrolling, and display reconfiguration.

CGRegisterScreenRefreshCallback (page 1529)
Registers a callback function to be invoked when local displays are refreshed or modified.

CGUnregisterScreenRefreshCallback (page 1536)
Removes a previously registered callback function invoked when local displays are refreshed or
modified.

CGWaitForScreenRefreshRects (page 1537)
Waits for screen refresh operations.

CGScreenRegisterMoveCallback (page 1531)
Registers a callback function to be invoked when an area of the display is moved.

CGScreenUnregisterMoveCallback (page 1532)
Removes a previously registered callback function invoked when an area of the display is moved.

CGWaitForScreenUpdateRects (page 1538)
Waits for screen update operations.

CGReleaseScreenRefreshRects (page 1530)
Deallocates a list of rectangles that represent changed areas on local displays.

Functions

CGAcquireDisplayFadeReservation
Reserves the fade hardware for a specified time interval.

CGError CGAcquireDisplayFadeReservation (
 CGDisplayReservationInterval seconds,
 CGDisplayFadeReservationToken *pNewToken
);

Parameters
seconds

The desired number of seconds to reserve the fade hardware. An application can specify any value
in the interval (0, kCGMaxDisplayReservationInterval].

pNewToken
A pointer to storage (provided by the caller) for a fade reservation token. On return, the storage
contains a new token.

1476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Return Value
Returns kCGErrorNoneAvailable if another fade reservation is in effect. Otherwise, returns
kCGErrorSuccess.

Discussion
Before performing a fade operation, an application must reserve the fade hardware for a specified period of
time. Quartz returns a token that represents a new fade reservation. The application uses this token as an
argument in subsequent calls to other display fade functions.

During the fade reservation interval, the application has exclusive rights to use the fade hardware. At the
end of the interval, the token becomes invalid and the hardware automatically returns to a normal state.
Typically the application callsCGReleaseDisplayFadeReservation (page 1530) to release the fade reservation
before it expires.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGAssociateMouseAndMouseCursorPosition
Connects or disconnects the mouse and cursor while an application is in the foreground.

CGError CGAssociateMouseAndMouseCursorPosition (
 boolean_t connected
);

Parameters
connected

Pass true if the mouse and cursor should be connected; otherwise, pass false.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
When you call this function to disconnect the cursor and mouse, all events received by your application have
a constant absolute location but contain mouse delta (change in X and Y) data. You may hide the cursor or
change it into something appropriate for your application. You can reposition the cursor by using the function
CGDisplayMoveCursorToPoint (page 1505) or the function CGWarpMouseCursorPosition (page 1539).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGBeginDisplayConfiguration
Begins a new set of display configuration changes.

Functions 1477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGError CGBeginDisplayConfiguration (
 CGDisplayConfigRef *pConfigRef
);

Parameters
pConfigRef

A pointer to storage you provide for a display configuration. On return, your storage contains a new
display configuration.

Return Value
A result code. If the object is successfully created, the result is kCGErrorSuccess. For other possible values,
see “Quartz Display Services Result Codes” (page 1564).

Discussion
This function creates a display configuration object that provides a context for a set of display configuration
changes. After you specify the desired changes, you use CGCompleteDisplayConfiguration (page 1479)
to apply them in a single transaction.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGCancelDisplayConfiguration
Cancels a set of display configuration changes.

CGError CGCancelDisplayConfiguration (
 CGDisplayConfigRef configRef
);

Parameters
configRef

The display configuration to cancel. On return, the configuration is cancelled and is no longer valid.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function is used to abandon a display configuration. As a side effect, the display configuration object is
released.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGCaptureAllDisplays
Captures all attached displays.

1478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGCaptureAllDisplays (
 void
);

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function captures all attached displays in a single operation. This operation provides an immersive
environment for your application, and it prevents other applications from trying to adjust to display changes.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGDisplayCapture (page 1493)

Declared In
CGDirectDisplay.h

CGCaptureAllDisplaysWithOptions
Captures all attached displays, using the specified options.

CGDisplayErr CGCaptureAllDisplaysWithOptions (
 CGCaptureOptions options
);

Parameters
options

The options to use. See “Display Capture Options” (page 1553).

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function allows you to specify one or more options to use during capture of all attached displays.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGCaptureAllDisplays (page 1478)

Declared In
CGDirectDisplay.h

CGCompleteDisplayConfiguration
Completes a set of display configuration changes.

Functions 1479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGError CGCompleteDisplayConfiguration (
 CGDisplayConfigRef configRef,
 CGConfigureOption option
);

Parameters
configRef

The display configuration with the desired changes. On return, this configuration is no longer valid.

option
The scope of the display configuration changes. Pass one of the constants listed in “Display
Configuration Scopes” (page 1555).

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function applies a set of display configuration changes as a single atomic transaction. The duration or
scope of the changes depends on the value of the option parameter. The possible scopes are fully described
in “Display Configuration Scopes” (page 1555).

A configuration change may fail if an unsupported display mode is requested, or if another application is
running in full-screen mode.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGConfigureDisplayFadeEffect
Modifies the settings of the built-in fade effect that occurs during a display configuration.

CGError CGConfigureDisplayFadeEffect (
 CGDisplayConfigRef configRef,
 CGDisplayFadeInterval fadeOutSeconds,
 CGDisplayFadeInterval fadeInSeconds,
 float fadeRed,
 float fadeGreen,
 float fadeBlue
);

Parameters
configRef

A display configuration, acquired by calling CGBeginDisplayConfiguration (page 1477).

fadeOutSeconds
The time in seconds to fade from the normal display to the specified fade color. The fade out is
completed before the display configuration is changed. If the interval is 0, Quartz applies the color
immediately.

fadeInSeconds
Time in seconds to return from the specified fade color to the normal display. The fade-in is run
asynchronously after the display configuration is changed.

1480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

fadeRed
An intensity value in the interval [0, 1] that represents the red component of the desired blend color.

fadeGreen
An intensity value in the interval [0, 1] that represents the green component of the desired blend
color.

fadeBlue
An intensity value in the interval [0, 1] that represents the blue component of the desired blend color.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function provides a way to customize the built-in fade effect that Quartz performs when displays are
reconfigured. The default time settings for this fade effect are 0.3 seconds to fade out, and 0.5 seconds to
fade back in. The default fade color is French Blue for a normal desktop, and black for a captured display.

Before using this function, you need to call CGBeginDisplayConfiguration (page 1477) to acquire the
display configuration token for the desired display. No fade reservation is needed—when you call
CGCompleteDisplayConfiguration (page 1479), Quartz reserves the fade hardware (assuming it is available)
and performs the fade.

Calling this function modifies the fade behavior for a single display configuration, and has no permanent
effect.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGConfigureDisplayMirrorOfDisplay
Changes the configuration of a mirroring set.

CGError CGConfigureDisplayMirrorOfDisplay (
 CGDisplayConfigRef configRef,
 CGDirectDisplayID display,
 CGDirectDisplayID masterDisplay
);

Parameters
configRef

A display configuration, acquired by calling CGBeginDisplayConfiguration (page 1477).

display
The display to add to a mirroring set.

masterDisplay
A display in a mirroring set, or kCGNullDirectDisplay to disable mirroring. To specify the main
display, use CGMainDisplayID (page 1522).

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Functions 1481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
Display mirroring and display matte generation are implemented either in hardware (preferred) or software,
at the discretion of the device driver.

 ■ Hardware mirroring

With hardware mirroring enabled, all drawing is directed to the primary display—see
CGDisplayPrimaryDisplay (page 1506).

If the device driver selects hardware matte generation, the display bounds and rowbytes values are
adjusted to reflect the active drawable area.

 ■ Software mirroring

In this form of mirroring, identical content is drawn into each display in the mirroring set. Applications
that use the window system need not be concerned about mirroring, as the window system takes care
of all flushing of window content to the appropriate displays.

Applications that draw directly to the display, as with display capture, must make sure to draw the same
content to all mirrored displays in a software mirror set. When drawing to software mirrored displays
using a full screen OpenGL context (not drawing through a window), you should create shared OpenGL
contexts for each display and re-render for each display.

You can use the function CGGetActiveDisplayList (page 1515) to determine which displays are active, or
drawable. This automatically gives your application the correct view of the current displays.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGConfigureDisplayMode
Configures the display mode of a display.

CGError CGConfigureDisplayMode (
 CGDisplayConfigRef configRef,
 CGDirectDisplayID display,
 CFDictionaryRef mode
);

Parameters
configRef

A display configuration, acquired by calling CGBeginDisplayConfiguration (page 1477).

display
The display being configured.

mode
A display mode dictionary (see the discussion below).

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
A display mode is a set of properties such as width, height, pixel depth, and refresh rate, and options such
as stretched LCD panel filling.

1482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

The display mode you provide must be one of the following:

 ■ A dictionary returned by one of the CGDisplayBestMode functions, such as
CGDisplayBestModeForParameters (page 1488).

 ■ A dictionary in the array returned by CGDisplayAvailableModes (page 1486).

If you use this function to change the mode of a display in a mirroring set, Quartz may adjust the bounds,
resolutions, and depth of the other displays in the set to a safe mode, with matching depth and the smallest
enclosing size.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGConfigureDisplayOrigin
Configures the origin of a display in global display (desktop) coordinates.

CGError CGConfigureDisplayOrigin (
 CGDisplayConfigRef configRef,
 CGDirectDisplayID display,
 CGDisplayCoord x,
 CGDisplayCoord y
);

Parameters
configRef

A display configuration, acquired by calling CGBeginDisplayConfiguration (page 1477).

display
The display being configured.

x
The desired x-coordinate for the upper left corner of the display.

y
The desired y-coordinate for the upper left corner of the display.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
In Quartz, the upper left corner of a display is called the origin. The origin of a display is always specified in
global display (desktop) coordinates. The origin of the main or primary display is (0,0).

The new origin is placed as close as possible to the requested location, without overlapping or leaving a gap
between displays.

If you use this function to change the origin of a mirrored display, the display may be removed from the
mirroring set.

Availability
Available in Mac OS X v10.2 and later.

Functions 1483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDisplayConfiguration.h

CGConfigureDisplayStereoOperation
Enables or disables stereo operation for a display, as part of a display configuration.

CGError CGConfigureDisplayStereoOperation (
 CGDisplayConfigRef configRef,
 CGDirectDisplayID display,
 boolean_t stereo,
 boolean_t forceBlueLine
);

Parameters
configRef

A display configuration, acquired by calling CGBeginDisplayConfiguration (page 1477).

display
The display being configured.

stereo
Pass true if you want to enable stereo operation. To disable it, pass false.

forceBlueLine
When in stereo operation, a display may need to generate a special stereo sync signal as part of the
video output. The sync signal consists of a blue line which occupies the first 25% of the last scanline
for the left eye view, and the first 75% of the last scanline for the right eye view. The remainder of
the scanline is black. To force the display to generate this sync signal, pass true; otherwise, pass
false.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
The system normally detects the presence of a stereo window and automatically switches a display containing
a stereo window to stereo operation. This function provides a mechanism to force a display to stereo operation,
and to set options (blue line sync signal) when in stereo operation.

On success, the display resolution, mirroring mode, and available display modes may change due to
hardware-specific capabilities and limitations. You should check these settings to verify that they are
appropriate for your application.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGDisplayConfiguration.h

CGCursorIsDrawnInFramebuffer
Returns a Boolean value indicating whether the mouse cursor is drawn in frame buffer memory.

1484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

boolean_t CGCursorIsDrawnInFramebuffer (
 void
);

Return Value
If true, the cursor is drawn in frame buffer memory; otherwise, false.

Discussion
This function returns a Boolean value that indicates whether or not the cursor is drawn in the frame buffer.
(The cursor could exist in an overlay plane or a similar mechanism that puts pixels on-screen without altering
frame buffer content.) If the cursor is drawn in the frame buffer, it is read back along with window data.

The reported Boolean value is based on the union of the state of the cursor on all displays. If the cursor is
drawn in the frame buffer on any display, the function returns true.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

CGCursorIsVisible
Returns a Boolean value indicating whether the mouse cursor is visible.

boolean_t CGCursorIsVisible (
 void
);

Return Value
If true, the cursor is visible on any display; otherwise, false.

Discussion
To hide or show the cursor, you can use the functions CGDisplayHideCursor (page 1497) and
CGDisplayShowCursor (page 1512).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

CGDisplayAddressForPosition
Returns the address in frame buffer memory that corresponds to a position on an online display.

Functions 1485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

void * CGDisplayAddressForPosition (
 CGDirectDisplayID display,
 CGDisplayCoord x,
 CGDisplayCoord y
);

Parameters
display

The display to access.

x
The x-coordinate of a position in global display space. The origin is the upper left corner of the main
display.

y
The y-coordinate of a position in global display space. The origin is the upper left corner of the main
display, and the y-axis is oriented down.

Return Value
The address in frame buffer memory that corresponds to the specified position. If the display ID is invalid or
the point lies outside the bounds of the display, the return value is NULL.

Discussion
If the display has not been captured, the returned address may refer to read-only memory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayAvailableModes
Returns information about the currently available display modes.

CFArrayRef CGDisplayAvailableModes (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
An array of dictionaries with display mode information, or NULL if the display is invalid. The array is owned
by the system and you should not release it. Each dictionary in the array contains information about a mode
that the display supports. For a list of the properties in a display mode dictionary, see “Display Mode Standard
Properties” (page 1557) and “Display Mode Optional Properties” (page 1558). For general information about
using dictionaries, see CFDictionary Reference.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

1486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectDisplay.h

CGDisplayBaseAddress
Returns the base address in frame buffer memory of an online display.

void * CGDisplayBaseAddress (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The base address in frame buffer memory of the specified display. If the display ID is invalid, the return value
is NULL.

Discussion
If the display has not been captured, the returned address may refer to read-only memory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayBeamPosition
Returns the current beam position on a display.

CGBeamPosition CGDisplayBeamPosition (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The current beam position on the specified display. If the display does not implement conventional video
vertical and horizontal sweep in painting, or the driver does not implement this functionality, 0 is returned.

Discussion
This function returns the number of the scan line on which the beam is currently positioned, expressed as a
non-negative integer. The value increases as the beam moves lower on the display.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

Functions 1487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayBestModeForParameters
Returns information about the display mode closest to a specified depth and screen size.

CFDictionaryRef CGDisplayBestModeForParameters (
 CGDirectDisplayID display,
 size_t bitsPerPixel,
 size_t width,
 size_t height,
 boolean_t *exactMatch
);

Parameters
display

The display to optimize.

bitsPerPixel
Optimal display depth in bits per pixel. Note that this value is not the same as pixel depth, which is
the number of bits per channel or component.

width
Optimal display width in pixel units.

height
Optimal display height in pixel units.

exactMatch
A pointer to a Boolean variable. On return, its value is true if an exact match in display depth, width,
and height is found; otherwise, false. If this information is not needed, pass NULL.

Return Value
A display mode dictionary, or NULL if the display is invalid. The dictionary is owned by the system and you
should not release it. The dictionary contains information about the display mode closest to the specified
depth and screen size. For a list of the properties in a display mode dictionary, see “Display Mode Standard
Properties” (page 1557) and “Display Mode Optional Properties” (page 1558). For general information about
using dictionaries, see CFDictionary Reference.

Discussion
This function tries to find an optimal display mode for the specified display. The function first tries to find a
mode with the specified pixel depth and dimensions equal to or greater than the specified width and height.
If no depth match is found, it tries to find a mode with greater depth and the same or greater dimensions.
If a suitable display mode is not found, this function simply returns the current display mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayBestModeForParametersAndRefreshRate
Returns information about the display mode closest to a specified depth, screen size, and refresh rate.

1488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CFDictionaryRef CGDisplayBestModeForParametersAndRefreshRate (
 CGDirectDisplayID display,
 size_t bitsPerPixel,
 size_t width,
 size_t height,
 CGRefreshRate refresh,
 boolean_t *exactMatch
);

Parameters
display

The display to access.

bitsPerPixel
Optimal display depth, in bits per pixel. Note that this value is not the same as pixel depth, which is
the number of bits per channel or component.

width
Optimal display width, in pixel units.

height
Optimal display height, in pixel units.

refresh
Optimal display refresh rate, in frames per second.

exactMatch
A pointer to a Boolean variable. On return, its value is true if an exact match in display depth, width,
height, and refresh rate is found; otherwise, false. If this information is not needed, pass NULL.

Return Value
A display mode dictionary, or NULL if the display is invalid. The dictionary is owned by the system and you
should not release it. The dictionary contains information about the display mode closest to the specified
depth, screen size, and refresh rate. For a list of the properties in a display mode dictionary, see “Display
Mode Standard Properties” (page 1557) and “Display Mode Optional Properties” (page 1558). For general
information about using dictionaries, see CFDictionary Reference.

Discussion
This function searches the list of available display modes for a mode that comes closest to satisfying these
criteria:

 ■ Has a pixel depth equal to or greater than the specified depth

 ■ Has dimensions equal to or greater than the specified height and width

 ■ Uses a refresh rate equal to or near the specified rate

If a suitable display mode is not found, this function simply returns the current display mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

Functions 1489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayBestModeForParametersAndRefreshRateWithProperty
Returns information about the display mode closest to a specified depth, screen size, and refresh rate, with
a required property.

CFDictionaryRef CGDisplayBestModeForParametersAndRefreshRateWithProperty (
 CGDirectDisplayID display,
 size_t bitsPerPixel,
 size_t width,
 size_t height,
 CGRefreshRate refresh,
 CFStringRef property,
 boolean_t *exactMatch
);

Parameters
display

The display to access.

bitsPerPixel
Optimal display depth, in bits per pixel. Note that this value is not the same as pixel depth, which is
the number of bits per channel or component.

width
Optimal display width, in pixels.

height
Optimal display height, in pixels.

refresh
Optimal display refresh rate, in refreshes per second.

property
A required display mode property. For a list of the properties you can specify, see “Display Mode
Optional Properties” (page 1558).

exactMatch
A pointer to a Boolean variable. On return, its value is true if an exact match in display depth, width,
height, refresh rate, and property is found; otherwise, false. If this information is not needed, pass
NULL.

Return Value
A display mode dictionary, or NULL if the display is invalid. The dictionary is owned by the system and you
should not release it. The dictionary contains information about the display mode with the specified property
that comes closest to the specified depth, screen size, and refresh rate. For a list of the properties in a display
mode dictionary, see “Display Mode Standard Properties” (page 1557) and “Display Mode Optional
Properties” (page 1558). For general information about using dictionaries, see CFDictionary Reference.

Discussion
This function searches the list of available display modes for a mode that includes the specified property and
comes closest to satisfying these criteria:

 ■ Has a pixel depth equal to or greater than the specified depth

 ■ Has dimensions equal to or greater than the specified height and width

 ■ Uses a refresh rate equal to or near the specified rate

If no matching display mode is found, this function simply returns the current display mode.

1490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDirectDisplay.h

CGDisplayBitsPerPixel
Returns the number of bits used to represent a pixel in the frame buffer.

size_t CGDisplayBitsPerPixel (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The number of bits used to represent a pixel in the frame buffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayBitsPerSample
Returns the number of bits used to represent a pixel component in the frame buffer.

size_t CGDisplayBitsPerSample (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The number of bits used to represent a pixel component such as a color value in the frame buffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayBounds
Returns the bounds of a display in global display space.

Functions 1491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGRect CGDisplayBounds (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The bounds of the display, expressed as a rectangle in the global display coordinate space (relative to the
upper left corner of the main display).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayBytesPerRow
Returns the number of bytes per row in a display.

size_t CGDisplayBytesPerRow (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The number of bytes per row in the display. This number also represents the stride between pixels in the
same column of the display.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayCanSetPalette
Returns a Boolean value indicating whether the current display mode supports palettes.

boolean_t CGDisplayCanSetPalette (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the current display mode supports palettes; otherwise, false.

1492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
Palettes are supported in any display selected to run in a 256-color display mode.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayCapture
Captures a display for exclusive use by an application.

CGDisplayErr CGDisplayCapture (
 CGDirectDisplayID display
);

Parameters
display

The display to capture.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
When an application captures a display, Quartz does not allow other applications and system services to use
the display or change its configuration.

If hardware or software mirroring is in effect, the easiest way to capture the primary display and all mirrored
displays is to use the function CGCaptureAllDisplays (page 1478). In case of software mirroring, applications
that draw directly to the display must make sure to draw the same content to all displays in the mirror set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayCaptureWithOptions
Captures a display for exclusive use by an application, using the specified options.

CGDisplayErr CGDisplayCaptureWithOptions (
 CGDirectDisplayID display,
 CGCaptureOptions options
);

Parameters
display

The display to capture.

options
The options to use. See “Display Capture Options” (page 1553).

Functions 1493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function allows you to specify one or more options to use during capture of a display.

Availability
Available in Mac OS X v10.3 and later.

See Also
CGDisplayCapture (page 1493)

Declared In
CGDirectDisplay.h

CGDisplayCopyColorSpace
Returns the color space for a display.

CGColorSpaceRef CGDisplayCopyColorSpace (
 CGDirectDisplayID display
);

Parameters
display

The display whose color space you want to obtain.

Return Value
The current color space for the specified display. The caller is responsible for releasing the color space with
the CGColorSpaceRelease (page 55) function.

Discussion
This function returns a display-dependent ICC-based color space. You can use this function when rendering
content for a specific display in order to produce color-matched output for that display.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayCurrentMode
Returns information about the current display mode.

CFDictionaryRef CGDisplayCurrentMode (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

1494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Return Value
A display mode dictionary, or NULL if the display is invalid. The dictionary is owned by the system and you
should not release it. The dictionary contains information about the current display mode. For a list of the
properties in a display mode dictionary, see “Display Mode Standard Properties” (page 1557) and “Display
Mode Optional Properties” (page 1558). For general information about using dictionaries, see CFDictionary
Reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayFade
Performs a single fade operation.

CGError CGDisplayFade (
 CGDisplayFadeReservationToken myToken,
 CGDisplayFadeInterval seconds,
 CGDisplayBlendFraction startBlend,
 CGDisplayBlendFraction endBlend,
 float redBlend,
 float greenBlend,
 float blueBlend,
 boolean_t synchronous
);

Parameters
myToken

A reservation token for the fade hardware, acquired by calling
CGAcquireDisplayFadeReservation (page 1476).

seconds
The desired number of seconds for the fade operation. You should use a value in the interval [0,
kCGMaxDisplayReservationInterval]. If the value is 0, the ending blend color is applied
immediately.

startBlend
An intensity value in the interval [0, 1] that specifies the alpha component of the desired blend color
at the beginning of the fade operation. See “Display Fade Blend Fractions” (page 1556).

endBlend
An intensity value in the interval [0, 1] that specifies the alpha component of the desired blend color
at the end of the fade operation. See “Display Fade Blend Fractions” (page 1556).

redBlend
An intensity value in the interval [0, 1] that specifies the red component of the desired blend color.

greenBlend
An intensity value in the interval [0, 1] that specifies the green component of the desired blend color.

blueBlend
An intensity value in the interval [0, 1] that specifies the blue component of the desired blend color.

Functions 1495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

synchronous
Pass true if you want the fade operation to be synchronous; otherwise, pass false. If a fade operation
is synchronous, the function does not return until the operation is complete.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
Over the fade operation time interval, Quartz interpolates a blending coefficient between the starting and
ending values given, applying a nonlinear (sine-based) bias term. Using this coefficient, the video output is
blended with the specified color.

The following example shows how to perform a two-second synchronous fade-out to black:

CGDisplayFade (
 myToken,
 2.0, // 2 seconds
 kCGDisplayBlendNormal, // starting state
 kCGDisplayBlendSolidColor, // ending state
 0.0, 0.0, 0.0, // black
 true // wait for completion
);

To perform a two-second asynchronous fade-in from black:

CGDisplayFade (
 myToken,
 2.0, // 2 seconds
 kCGDisplayBlendSolidColor, // starting state
 kCGDisplayBlendNormal, // ending state
 0.0, 0.0, 0.0, // black
 false // don't wait for completion
);

If you specify an asynchronous fade operation, it’s safe to call CGReleaseDisplayFadeReservation (page
1530) immediately after this function returns.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGDisplayFadeOperationInProgress
Returns a Boolean value indicating whether a fade operation is currently in progress.

boolean_t CGDisplayFadeOperationInProgress (
 void
);

Return Value
If true, a fade operation is currently in progress; otherwise, false.

Discussion
You may call this function from any task running on the system. The calling task need not have a valid fade
reservation.

1496 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGDisplayGammaTableCapacity
Returns the capacity, or number of entries, in the gamma table for a display.

CGTableCount CGDisplayGammaTableCapacity (
 CGDirectDisplayID display
);

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDirectDisplay.h

CGDisplayGetDrawingContext
Returns a graphics context suitable for drawing to a captured display.

CGContextRef CGDisplayGetDrawingContext (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A Quartz graphics context suitable for drawing to a captured display, or NULL if the display has not been
captured. The context is owned by the system and you should not release it.

Discussion
After capturing a display or changing the configuration of a captured display, you can use this function to
obtain the current graphics context for the display. The graphics context remains valid while the display is
captured and the display configuration is unchanged. Releasing the captured display or reconfiguring the
display invalidates the context. To determine when the display configuration is changing, you can use the
function CGDisplayRegisterReconfigurationCallback (page 1507) to register a display reconfiguration
callback.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDirectDisplay.h

CGDisplayHideCursor
Hides the mouse cursor, and increments the hide cursor count.

Functions 1497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGDisplayHideCursor (
 CGDirectDisplayID display
);

Parameters
display

This parameter is not used. By default, you may pass kCGDirectMainDisplay.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function hides the cursor regardless of its current location; the display parameter is ignored. In most
cases, the caller must be the foreground application to affect the cursor.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGDisplayShowCursor (page 1512)

Declared In
CGDirectDisplay.h

CGDisplayIDToOpenGLDisplayMask
Maps a display ID to an OpenGL display mask.

CGOpenGLDisplayMask CGDisplayIDToOpenGLDisplayMask (
 CGDirectDisplayID display
);

Parameters
display

The display ID to be converted.

Return Value
The OpenGL display mask that corresponds to the specified display.

Discussion
OpenGL sometimes identifies a display using a bitmask with one bit set. This function maps a display ID to
the corresponding OpenGL display mask.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayIOServicePort
Returns the I/O Kit service port of the specified display.

1498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

io_service_t CGDisplayIOServicePort (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The I/O Kit service port for the specified display.

Discussion
An I/O Kit service port can be passed to I/O Kit to obtain additional information about the display.

The port is owned by the graphics system, and should not be destroyed.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsActive
Returns a Boolean value indicating whether a display is active.

boolean_t CGDisplayIsActive (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is active; otherwise, false.

Discussion
An active display is connected, awake, and available for drawing. In a hardware mirroring set, only the primary
display is active.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsAlwaysInMirrorSet
Returns a Boolean value indicating whether a display is always in a mirroring set.

Functions 1499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

boolean_t CGDisplayIsAlwaysInMirrorSet (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is in a mirroring set and cannot be removed from this set.

Discussion
Some hardware configurations support the connection of auxiliary displays that always mirror the main
display, and therefore cannot be removed from the mirroring set to which they belong.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsAsleep
Returns a Boolean value indicating whether a display is sleeping (and is therefore not drawable.)

boolean_t CGDisplayIsAsleep (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is in sleep mode; otherwise, false.

Discussion
A display is sleeping when its frame buffer and the attached monitor are in reduced power mode. A sleeping
display is still considered to be a part of global display (desktop) space, but it is not drawable.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsBuiltin
Returns a Boolean value indicating whether a display is built-in, such as the internal display in portable
systems.

1500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

boolean_t CGDisplayIsBuiltin (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is considered to be a built-in display; otherwise, false.

Discussion
Portable systems typically identify the internal LCD panel as a built-in display.

Note that it is possible and reasonable for a system to have no displays marked as built-in. For example, a
portable system running with the lid closed may report no built-in displays.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsCaptured
Returns a Boolean value indicating whether a display is captured.

boolean_t CGDisplayIsCaptured (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is captured; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayIsInHWMirrorSet
Returns a Boolean value indicating whether a display is in a hardware mirroring set.

boolean_t CGDisplayIsInHWMirrorSet (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Functions 1501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Return Value
If true, the specified display is a member of a hardware mirroring set; otherwise, false.

Discussion
When hardware mirroring is enabled, the contents of a single frame buffer are rendered in all displays in the
hardware mirroring set. All drawing operations are directed to the primary display in the set—see
CGDisplayPrimaryDisplay (page 1506).

For more information about display mirroring, see CGConfigureDisplayMirrorOfDisplay (page 1481).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsInMirrorSet
Returns a Boolean value indicating whether a display is in a mirroring set.

boolean_t CGDisplayIsInMirrorSet (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is a member of a software or hardware mirroring set; otherwise, false.

Discussion
For more information about display mirroring, see CGConfigureDisplayMirrorOfDisplay (page 1481).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsMain
Returns a Boolean value indicating whether a display is the main display.

boolean_t CGDisplayIsMain (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is currently the main display; otherwise, false.

1502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
For information about the characteristics of a main display, see CGMainDisplayID (page 1522).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsOnline
Returns a Boolean value indicating whether a display is connected or online.

boolean_t CGDisplayIsOnline (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is connected; otherwise, false.

Discussion
A display is considered connected or online when the frame buffer hardware is connected to a monitor.

You can use this function to determine if someone has hot-plugged a display to the system. Note that
hot-plugging is a hardware feature that may not be present on all displays.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayIsStereo
Returns a Boolean value indicating whether a display is running in a stereo graphics mode.

boolean_t CGDisplayIsStereo (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, the specified display is running in a stereo graphics mode; otherwise, false.

Availability
Available in Mac OS X v10.4 and later.

Functions 1503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDisplayConfiguration.h

CGDisplayMirrorsDisplay
For a secondary display in a mirroring set, returns the primary display.

CGDirectDisplayID CGDisplayMirrorsDisplay (
 CGDirectDisplayID display
);

Parameters
display

A secondary display in a mirroring set.

Return Value
Returns the primary display in the mirroring set. Returns kCGNullDirectDisplay if the specified display
is actually the primary display or is not in a mirroring set.

Discussion
For more information about display mirroring, see CGConfigureDisplayMirrorOfDisplay (page 1481).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayModelNumber
Returns the model number of a display monitor.

uint32_t CGDisplayModelNumber (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A model number for the monitor associated with the specified display, or a constant to indicate an
exception—see the discussion below.

Discussion
This function uses I/O Kit to identify the monitor associated with the specified display. The return value
depends on the following:

 ■ If I/O Kit can identify the monitor, the product ID code for the monitor is returned.

 ■ If I/O Kit can’t identify the monitor, kDisplayProductIDGeneric is returned.

 ■ If no monitor is connected, a value of 0xFFFFFFFF is returned.

1504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayMoveCursorToPoint
Moves the mouse cursor to a specified point relative to the display origin (the upper left corner of the display).

CGDisplayErr CGDisplayMoveCursorToPoint (
 CGDirectDisplayID display,
 CGPoint point
);

Parameters
display

The display to access.

point
The coordinates of a point in local display space. The origin is the upper left corner of the specified
display.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
No events are generated as a result of this move. Points that would lie outside the desktop are clipped to
the desktop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayPixelsHigh
Returns the display height in pixel units.

size_t CGDisplayPixelsHigh (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The display height in pixel units.

Availability
Available in Mac OS X v10.0 and later.

Functions 1505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectDisplay.h

CGDisplayPixelsWide
Returns the display width in pixel units.

size_t CGDisplayPixelsWide (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The display width in pixel units.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayPrimaryDisplay
Returns the primary display in a hardware mirroring set.

CGDirectDisplayID CGDisplayPrimaryDisplay (
 CGDirectDisplayID display
);

Parameters
display

A display in a hardware mirror set.

Return Value
The primary display in the mirror set. If display is not hardware-mirrored, this function simply returns
display.

Discussion
In hardware mirroring, the contents of a single frame buffer are rendered in two or more displays
simultaneously. The mirrored displays are said to be in a hardware mirroring set.

At the discretion of the device driver, one of the displays in a hardware mirroring set is designated as the
primary display. The device driver binds the drawing engine, hardware accelerator, and 3D engine to the
primary display, and directs all drawing operations to this display.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

1506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayRegisterReconfigurationCallback
Registers a callback function to be invoked whenever a local display is reconfigured.

CGError CGDisplayRegisterReconfigurationCallback (
 CGDisplayReconfigurationCallBack proc,
 void *userInfo
);

Parameters
proc

A pointer to the callback function to be registered.

userInfo
A pointer to user-defined data, or NULL. The userInfo argument is passed back to the callback
function each time it’s invoked.

Discussion
Whenever local displays are reconfigured, the callback function you register is invoked twice for each display
that’s added, removed, or currently online—once before the reconfiguration, and once after the
reconfiguration. For more information, see the callback type CGDisplayReconfigurationCallBack (page
1540).

A callback function may be registered multiple times with different user-defined data pointers, resulting in
multiple registration entries. For each registration, when notification is no longer needed you should remove
the registration by calling the function CGDisplayRemoveReconfigurationCallback (page 1508).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayRelease
Releases a captured display.

CGDisplayErr CGDisplayRelease (
 CGDirectDisplayID display
);

Parameters
display

The display to release.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

Functions 1507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayRemoveReconfigurationCallback
Removes the registration of a callback function that’s invoked whenever a local display is reconfigured.

CGError CGDisplayRemoveReconfigurationCallback (
 CGDisplayReconfigurationCallBack proc,
 void *userInfo
);

Parameters
proc

A pointer to the callback function associated with the registration to be removed.

userInfo
A pointer to user-defined data associated with the registration to be removed, or NULL. This is the
same pointer that’s passed to the function CGDisplayRegisterReconfigurationCallback (page
1507) when registering the callback.

Discussion
When you call this function, the two arguments must match the registered entry to be removed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayRestoreColorSyncSettings
Restores the gamma tables to the values in the user’s ColorSync display profile.

void CGDisplayRestoreColorSyncSettings (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayRotation
Returns the rotation angle of a display in degrees.

double CGDisplayRotation (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The rotation angle of the display in degrees, or 0 if the display is not valid.

1508 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
This function returns the rotation angle of a display in a clockwise direction. For example, if the specified
display is rotated clockwise 90 degrees then this function returns 90.0. After a 90 degree clockwise rotation,
the physical bottom of the display is on the left side and the physical top is on the right side.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGDisplayConfiguration.h

CGDisplaySamplesPerPixel
Returns the number of color components used to represent a pixel.

size_t CGDisplaySamplesPerPixel (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The number of color components used to represent a pixel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayScreenSize
Returns the width and height of a display in millimeters.

CGSize CGDisplayScreenSize (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The size of the specified display in millimeters, or 0 if the display is not valid.

Discussion
If Extended Display Identification Data (EDID) for the display device is not available, the size is estimated
based on the device width and height in pixels fromCGDisplayBounds (page 1491), with an assumed resolution
of 2.835 pixels/mm or 72 DPI, a reasonable guess for displays predating EDID support.

Availability
Available in Mac OS X v10.3 and later.

Functions 1509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDisplayConfiguration.h

CGDisplaySerialNumber
Returns the serial number of a display monitor.

uint32_t CGDisplaySerialNumber (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A serial number for the monitor associated with the specified display, or a constant to indicate an
exception—see the discussion below.

Discussion
This function uses I/O Kit to identify the monitor associated with the specified display.

If I/O Kit can identify the monitor:

 ■ If the manufacturer has encoded a serial number for the monitor, the number is returned.

 ■ If there is no encoded serial number, 0x00000000 is returned.

If I/O Kit cannot identify the monitor:

 ■ If a monitor is connected to the display, 0x00000000 is returned.

 ■ If no monitor is connected to the display hardware, a value of 0xFFFFFFFF is returned.

Note that a serial number is meaningful only in conjunction with a specific vendor and product or model.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplaySetPalette
Sets the palette for a display.

CGDisplayErr CGDisplaySetPalette (
 CGDirectDisplayID display,
 const CGDirectPaletteRef palette
);

Parameters
display

The display to access.

1510 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

palette
The display palette to set.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplaySetStereoOperation
Immediately enables or disables stereo operation for a display.

CGError CGDisplaySetStereoOperation (
 CGDirectDisplayID display,
 boolean_t stereo,
 boolean_t forceBlueLine,
 CGConfigureOption option
);

Parameters
display

The display being configured.

stereo
Pass true if you want to enable stereo operation. To disable it, pass false.

forceBlueLine
When in stereo operation, a display may need to generate a special stereo sync signal as part of the
video output. The sync signal consists of a blue line which occupies the first 25% of the last scanline
for the left eye view, and the first 75% of the last scanline for the right eye view. The remainder of
the scanline is black. To force the display to generate this sync signal, pass true; otherwise pass
false.

option
A constant that specifies the scope of the display configuration changes. For more information, see
“Display Configuration Scopes” (page 1555).

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
The system normally detects the presence of a stereo window and automatically switches a display containing
a stereo window to stereo operation. This function provides a mechanism to force a display to stereo operation
immediately, and to set options (blue line sync signal) when in stereo operation.

On success, the display resolution, mirroring mode, and available display modes may change due to
hardware-specific capabilities and limitations. You should check these settings to verify that they are
appropriate for your application.

Availability
Available in Mac OS X v10.4 and later.

Functions 1511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDisplayConfiguration.h

CGDisplayShowCursor
Decrements the hide cursor count, and shows the mouse cursor if the count is zero.

CGDisplayErr CGDisplayShowCursor (
 CGDirectDisplayID display
);

Parameters
display

This parameter is not used. By default, you may pass kCGDirectMainDisplay.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
If the hide cursor count is zero, this function shows the cursor regardless of its current location; the display
parameter is ignored. In most cases, the caller must be the foreground application to affect the cursor.

Availability
Available in Mac OS X v10.0 and later.

See Also
CGDisplayHideCursor (page 1497)

Declared In
CGDirectDisplay.h

CGDisplaySwitchToMode
Switches a display to a different mode.

CGDisplayErr CGDisplaySwitchToMode (
 CGDirectDisplayID display,
 CFDictionaryRef mode
);

Parameters
display

The display to access.

mode
A display mode dictionary that contains information about the display mode to set. The dictionary
passed in must be a dictionary returned by another Quartz display function such as
CGDisplayAvailableModes (page 1486) orCGDisplayBestModeForParameters (page 1488). For a
list of the properties in a display mode dictionary, see “Display Mode Standard Properties” (page 1557)
and “Display Mode Optional Properties” (page 1558). For general information about using dictionaries,
see CFDictionary Reference.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

1512 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
This function switches the display mode of the specified display. The operation is always synchronous; the
function does not return until the mode switch is complete. Note that after switching, display parameters
and addresses may change.

The selected display mode persists for the life of the calling program. When the program terminates, the
display mode automatically reverts to the permanent setting in the Displays panel of System Preferences.

When changing the display mode of a display in a mirroring set, other displays in the mirroring set will be
assigned a mode that's capable of mirroring the bounds of the display being adjusted. To avoid this automatic
behavior, you can use the following procedure: call CGBeginDisplayConfiguration, call
CGConfigureDisplayMode for each display to explicitly set the mode, and finally call
CGCompleteDisplayConfiguration.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayUnitNumber
Returns the logical unit number of a display.

uint32_t CGDisplayUnitNumber (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A logical unit number for the specified display.

Discussion
The logical unit number represents a particular node in the I/O Kit device tree associated with the display’s
frame buffer. For a particular hardware configuration, this value will not change when the attached monitor
is changed.

The unit number will change if the I/O Kit device tree changes, as when hardware is reconfigured, drivers
are replaced, or significant changes occur to I/O Kit, so it should not be assumed to be invariant across login
sessions.

For more information about I/O Kit, see the Apple publication “I/O Kit Fundamentals”.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

Functions 1513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayUsesOpenGLAcceleration
Returns a Boolean value indicating whether Quartz is using OpenGL-based window acceleration (Quartz
Extreme) to render in a display.

boolean_t CGDisplayUsesOpenGLAcceleration (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
If true, Quartz Extreme is used to render in the specified display; otherwise, false.

Discussion
Quartz Extreme is an OpenGL-based, hardware-accelerated window compositor available in Mac OS X version
10.2 and later. Quartz Extreme requires a minimum hardware configuration to operate.

The information this function provides is typically used to adjust the demands of drawing operations to the
capabilities of the display hardware. For example, an application running on an unaccelerated system could
disable live window-resizing.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayVendorNumber
Returns the vendor number of the specified display's monitor.

uint32_t CGDisplayVendorNumber (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A vendor number for the monitor associated with the specified display, or a constant to indicate an
exception—see the discussion below.

Discussion
This function uses I/O Kit to identify the monitor associated with the specified display.

There are three cases:

 ■ If I/O Kit can identify the monitor, the vendor ID is returned.

 ■ If I/O Kit cannot identify the monitor, kDisplayVendorIDUnknown is returned.

 ■ If there is no monitor associated with the display, 0xFFFFFFFF is returned.

1514 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGDisplayWaitForBeamPositionOutsideLines
Waits until the beam position moves outside a region in a display screen. This function is not designed for
VBL drawing synchronization.

CGDisplayErr CGDisplayWaitForBeamPositionOutsideLines (
 CGDirectDisplayID display,
 CGBeamPosition upperScanLine,
 CGBeamPosition lowerScanLine
);

Parameters
display

The display to access.

upperScanLine
The upper scan line number.

lowerScanLine
The lower scan line number.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function waits until the beam position is outside the range specified by the arguments upperScanLine
and lowerScanLine. If the value of upperScanLine is greater than the value of lowerScanLine, or if
upperScanLine and lowerScanLine encompass the entire display height, this function returns an error.

Some displays may not use conventional video vertical and horizontal sweep in painting. These displays
report a kCGDisplayRefreshRate of 0 in the dictionary returned by CGDisplayCurrentMode (page 1494).
Also, some display device drivers may not implement support for this mechanism. On such displays, this
function returns at once.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGGetActiveDisplayList
Provides a list of displays that are active (or drawable).

Functions 1515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGGetActiveDisplayList (
 CGDisplayCount maxDisplays,
 CGDirectDisplayID *activeDspys,
 CGDisplayCount *dspyCnt
);

Parameters
maxDisplays

The size of the activeDspys array. This value determines the maximum number of displays that can
be returned.

activeDspys
A pointer to storage provided by the caller for an array of display IDs. On return, the array contains a
list of active displays. If you pass NULL, on return the display count contains the total number of active
displays.

dspyCnt
A pointer to a display count variable provided by the caller. On return, the display count contains the
actual number of displays returned in the activeDspys array. This value is at most maxDisplays.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
The first entry in the list of active displays is the main display. In case of mirroring, the first entry is the largest
drawable display or, if all are the same size, the display with the greatest pixel depth.

Note that when hardware mirroring is being used between displays, only the primary display is active and
appears in the list. When software mirroring is being used, all the mirrored displays are active and appear in
the list. For more information about mirroring, see CGConfigureDisplayMirrorOfDisplay (page 1481).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
CGDirectDisplay.h

CGGetDisplaysWithOpenGLDisplayMask
Provides a list of displays that corresponds to the bits set in an OpenGL display mask.

CGDisplayErr CGGetDisplaysWithOpenGLDisplayMask (
 CGOpenGLDisplayMask mask,
 CGDisplayCount maxDisplays,
 CGDirectDisplayID *dspys,
 CGDisplayCount *dspyCnt
);

Parameters
mask

An OpenGL display mask that identifies one or more displays.

1516 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

maxDisplays
The size of the dspys array. This value determines the maximum number of displays that can be
returned.

dspys
A pointer to storage provided by the caller for an array of display IDs. On return, the array contains a
list of displays that corresponds to the bits set in the mask. If you pass NULL, on return the display
count contains the total number of displays specified in the mask.

dspyCnt
A pointer to a display count variable provided by the caller. On return, the display count contains the
actual number of displays returned in the dspys array. This value is at most maxDisplays.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGGetDisplaysWithPoint
Provides a list of online displays with bounds that include the specified point.

CGDisplayErr CGGetDisplaysWithPoint (
 CGPoint point,
 CGDisplayCount maxDisplays,
 CGDirectDisplayID *dspys,
 CGDisplayCount *dspyCnt
);

Parameters
point

The coordinates of a point in global display space. The origin is the upper left corner of the main
display.

maxDisplays
The size of the dspys array. This value determines the maximum number of displays that can be
returned.

dspys
A pointer to storage provided by the caller for an array of display IDs. On return, the array contains a
list of displays with bounds that include the point. If you pass NULL, on return the display count
contains the total number of displays with bounds that include the point.

dspyCnt
A pointer to a display count variable provided by the caller. On return, the display count contains the
actual number of displays returned in the dspys array. This value is at most maxDisplays.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Functions 1517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectDisplay.h

CGGetDisplaysWithRect
Gets a list of online displays with bounds that intersect the specified rectangle.

CGDisplayErr CGGetDisplaysWithRect (
 CGRect rect,
 CGDisplayCount maxDisplays,
 CGDirectDisplayID *dspys,
 CGDisplayCount *dspyCnt
);

Parameters
rect

The location and size of a rectangle in global display space. The origin is the upper left corner of the
main display.

maxDisplays
The size of the dspys array. This value determines the maximum number of displays that can be
returned in the dspys parameter. Generally, you should specify a number greater than 0 for this
parameter. If you specify 0, the value returned in dspyCnt is undefined and this function sets the
dspys parameter to NULL.

dspys
A pointer to storage provided by the caller for an array of display IDs. On return, the array contains a
list of displays whose bounds intersect the specified rectangle.

dspyCnt
A pointer to a display count variable provided by the caller. On return, this variable contains the
number of displays that were returned in the dspys parameter. You must provide a non-NULL value
for this parameter.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGGetDisplayTransferByFormula
Gets the coefficients of the gamma transfer formula for a display.

1518 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGGetDisplayTransferByFormula (
 CGDirectDisplayID display,
 CGGammaValue *redMin,
 CGGammaValue *redMax,
 CGGammaValue *redGamma,
 CGGammaValue *greenMin,
 CGGammaValue *greenMax,
 CGGammaValue *greenGamma,
 CGGammaValue *blueMin,
 CGGammaValue *blueMax,
 CGGammaValue *blueGamma
);

Parameters
display

The display to access.

redMin
The minimum value of the red channel in the gamma table. The value is a number in the interval [0,
redMax).

redMax
The maximum value of the red channel in the gamma table. The value is a number in the interval
(redMin, 1].

redGamma
A positive value used to compute the red channel in the gamma table.

greenMin
The minimum value of the green channel in the gamma table. The value is a number in the interval
[0, greenMax).

greenMax
The maximum value of the green channel in the gamma table. The value is a number in the interval
(greenMin, 1].

greenGamma
A positive value used to compute the green channel in the gamma table.

blueMin
The minimum value of the blue channel in the gamma table. The value is a number in the interval [0,
blueMax).

blueMax
The maximum value of the blue channel in the gamma table. The value is a number in the interval
(blueMin, 1].

blueGamma
A positive value used to compute the blue channel in the gamma table.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
For information about the gamma transfer formula, see the description of the function
CGSetDisplayTransferByFormula (page 1533).

Availability
Available in Mac OS X v10.0 and later.

Functions 1519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectDisplay.h

CGGetDisplayTransferByTable
Gets the values in the RGB gamma tables for a display.

CGDisplayErr CGGetDisplayTransferByTable (
 CGDirectDisplayID display,
 CGTableCount capacity,
 CGGammaValue *redTable,
 CGGammaValue *greenTable,
 CGGammaValue *blueTable,
 CGTableCount *sampleCount
);

Parameters
display

The display to access.

capacity
The number of entries each table can hold.

redTable
A pointer to an array of type CGGammaValue with size capacity. On return, the array contains the
values of the red channel in the display’s gamma table.

greenTable
A pointer to an array of type CGGammaValue with size capacity. On return, the array contains the
values of the green channel in the display’s gamma table.

blueTable
A pointer to an array of type CGGammaValue with size capacity. On return, the array contains the
values of the blue channel in the display’s gamma table.

sampleCount
The number of samples actually copied into each array.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGGetLastMouseDelta
Reports the change in mouse position since the last mouse movement event received by the application.

1520 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

void CGGetLastMouseDelta (
 CGMouseDelta *deltaX,
 CGMouseDelta *deltaY
);

Parameters
deltaX

A pointer to a CGMouseDelta variable. On return, this variable contains the horizontal change in the
mouse position since the last mouse movement event.

deltaY
A pointer to a CGMouseDelta variable. On return, this variable contains the vertical change in the
mouse position since the last mouse movement event.

Discussion
This function is not recommended for general use. Instead, you should use the mouse tracking functions in
the Carbon Event Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGGetOnlineDisplayList
Provides a list of displays that are online (active, mirrored, or sleeping).

CGDisplayErr CGGetOnlineDisplayList (
 CGDisplayCount maxDisplays,
 CGDirectDisplayID *onlineDspys,
 CGDisplayCount *dspyCnt
);

Parameters
maxDisplays

The size of the onlineDspys array. This value determines the maximum number of display IDs that
can be returned.

onlineDspys
A pointer to storage provided by the caller for an array of display IDs. On return, the array contains a
list of the online displays. If you pass NULL, on return the display count contains the total number of
online displays.

dspyCnt
A pointer to a display count variable provided by the caller. On return, the display count contains the
actual number of displays returned in the onlineDspys array. This value is at most maxDisplays.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
If the frame buffer hardware is connected, a display is considered connected or online.

When hardware mirroring is used, a display can be online but not active or drawable. Programs which
manipulate display settings such as the palette or gamma tables need access to all displays, including hardware
mirrors which are not drawable.

Functions 1521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDirectDisplay.h

CGMainDisplayID
Returns the display ID of the main display.

CGDirectDisplayID CGMainDisplayID (
 void
);

Return Value
The display ID assigned to the main display.

Discussion
The main display is the display with its screen location at (0,0) in global coordinates. In a system without
display mirroring, the display with the menu bar is typically the main display.

If mirroring is enabled and the menu bar appears on more than one display, this function provides a reliable
way to find the main display.

In case of hardware mirroring, the drawable display becomes the main display. In case of software mirroring,
the display with the highest resolution and deepest pixel depth typically becomes the main display.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
LiveVideoMixer2

Declared In
CGDirectDisplay.h

CGOpenGLDisplayMaskToDisplayID
Maps an OpenGL display mask to a display ID.

CGDirectDisplayID CGOpenGLDisplayMaskToDisplayID (
 CGOpenGLDisplayMask mask
);

Parameters
mask

The OpenGL display mask to be converted.

Return Value
The display ID assigned to the specified display mask, or kCGNullDirectDisplay if no display matches the
mask.

1522 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Discussion
OpenGL sometimes identifies a display using a bitmask with one bit set. This function maps such a display
mask to the corresponding display ID. If you pass in a mask with multiple bits set, this function returns a
display ID matching one of these bits.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDirectDisplay.h

CGPaletteCreateCopy
Returns a copy of a specified display palette.

CGDirectPaletteRef CGPaletteCreateCopy (
 CGDirectPaletteRef palette
);

Parameters
palette

The display palette to copy.

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteCreateDefaultColorPalette
Returns a new display palette representing the default 8-bit color palette.

CGDirectPaletteRef CGPaletteCreateDefaultColorPalette (
 void
);

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Discussion
Palettes are used with 256 color display modes. The default palette is the old default 8-bit Mac OS palette,
with white at index 0 and black at index 255.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

Functions 1523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGPaletteCreateFromPaletteBlendedWithColor
Returns a new tinted display palette. The new palette is derived from an existing palette blended with a solid
color, at a specified level of intensity.

CGDirectPaletteRef CGPaletteCreateFromPaletteBlendedWithColor (
 CGDirectPaletteRef palette,
 CGPaletteBlendFraction fraction,
 CGDeviceColor color
);

Parameters
palette

The palette to blend.

fraction
A value between 0 and 1 that represents the blend intensity. See CGPaletteBlendFraction (page
1551).

color
The blend color. See CGDeviceColor (page 1545).

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteCreateWithByteSamples
Returns a new display palette using 8-bit sample data.

CGDirectPaletteRef CGPaletteCreateWithByteSamples (
 CGDeviceByteColor *sampleTable,
 CGTableCount sampleCount
);

Parameters
sampleTable

A color table with integer values that represent the intensity of the red,green, and blue components
in each table entry. Each value ranges from 0 (no color) to 255 (full intensity). See
CGDeviceByteColor (page 1544).

sampleCount
The number of entries in the specified color table.

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

1524 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectPalette.h

CGPaletteCreateWithCapacity
Returns a new display palette with a specified capacity. The new palette is initialized from the default color
palette.

CGDirectPaletteRef CGPaletteCreateWithCapacity (
 CGTableCount capacity
);

Parameters
capacity

The number of entries in the new palette.

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteCreateWithDisplay
Returns a copy of the current palette for a display.

CGDirectPaletteRef CGPaletteCreateWithDisplay (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
A new display palette object, or NULL if the current display mode does not support a palette. When you no
longer need the palette, you should release it using the function CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteCreateWithSamples
Returns a new display palette using RGB sample data.

Functions 1525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDirectPaletteRef CGPaletteCreateWithSamples (
 CGDeviceColor *sampleTable,
 CGTableCount sampleCount
);

Parameters
sampleTable

A color table with floating point values that represent the intensity of the red,green, and blue
components in each table entry. Each value ranges from 0 (no color) to 1 (full intensity). See
CGDeviceColor (page 1545).

sampleCount
The number of entries in the specified color table.

Return Value
A new display palette object. When you no longer need the palette, you should release it using the function
CGPaletteRelease (page 1528).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteGetColorAtIndex
Returns the color value at the specified index.

CGDeviceColor CGPaletteGetColorAtIndex (
 CGDirectPaletteRef palette,
 CGTableCount index
);

Parameters
palette

The display palette to access.

index
The zero-based index of the desired palette entry.

Return Value
A color value. See CGDeviceColor (page 1545).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteGetIndexForColor
Returns the index of the display palette entry that most closely matches a specified color value.

1526 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGTableCount CGPaletteGetIndexForColor (
 CGDirectPaletteRef palette,
 CGDeviceColor color
);

Parameters
palette

The display palette to access.

color
The color value to match. See CGDeviceColor (page 1545).

Return Value
The index of the display palette entry that most closely matches the specified color value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteGetNumberOfSamples
Returns the number of colors in a display palette.

CGTableCount CGPaletteGetNumberOfSamples (
 CGDirectPaletteRef palette
);

Parameters
palette

The display palette to access.

Return Value
The number of colors in the specified display palette.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteIsEqualToPalette
Returns a Boolean value indicating whether two display palettes are equal.

Boolean CGPaletteIsEqualToPalette (
 CGDirectPaletteRef palette1,
 CGDirectPaletteRef palette2
);

Parameters
palette1

The first display palette to compare.

Functions 1527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

palette2
The second display palette to compare.

Return Value
If true, the two specified display palettes are equal; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteRelease
Decrements the retain count of a display palette.

void CGPaletteRelease (
 CGDirectPaletteRef palette
);

Parameters
palette

The display palette to release.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGPaletteSetColorAtIndex
Updates the color value at the specified index in a display palette.

void CGPaletteSetColorAtIndex (
 CGDirectPaletteRef palette,
 CGDeviceColor color,
 CGTableCount index
);

Parameters
palette

The display palette to access.

color
The new color value.

index
The index of the palette entry to update.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

1528 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGRegisterScreenRefreshCallback
Registers a callback function to be invoked when local displays are refreshed or modified.

CGError CGRegisterScreenRefreshCallback (
 CGScreenRefreshCallback function,
 void *userParameter
);

Parameters
function

A pointer to the callback function to be registered.

userParameter
A pointer to user-defined data, or NULL. The userParameter argument is passed back to the callback
function each time it’s invoked.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
A callback function may be registered multiple times with different user-defined data pointers, resulting in
multiple registration entries. For each registration, when notification is no longer needed you should call the
function CGUnregisterScreenRefreshCallback (page 1536) to remove the registration.

The callback function you register is invoked only if your application has an active event loop. The callback
is invoked in the same thread of execution that is processing events within your application.

Special Considerations

In Mac OS X v10.4 and earlier, the result code returned by this function is a random value and should be
ignored. In Mac OS X v10.5 and later, the result code is valid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGReleaseAllDisplays
Releases all captured displays.

CGDisplayErr CGReleaseAllDisplays (
 void
);

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function releases all captured displays and restores the display modes to the user's preferences. It may
be used in conjunction with any of the functions that capture displays, such as CGCaptureAllDisplays (page
1478).

Availability
Available in Mac OS X v10.0 and later.

Functions 1529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectDisplay.h

CGReleaseDisplayFadeReservation
Releases a display fade reservation, and unfades the display if needed.

CGError CGReleaseDisplayFadeReservation (
 CGDisplayFadeReservationToken myToken
);

Parameters
myToken

The current fade reservation token to be released. On return, the reservation token is no longer valid
and should be discarded.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
If you call this function while an asynchronous fade operation is running, there are two possible outcomes:

 ■ If the ending blend value is kCGDisplayBlendNormal, the fade operation is allowed to run to completion.

 ■ If the ending blend value is not kCGDisplayBlendNormal, the fade operation is terminated immediately
and the display is returned to normal.

In both cases, the reservation is actually released when the fade operation completes.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGReleaseScreenRefreshRects
Deallocates a list of rectangles that represent changed areas on local displays.

void CGReleaseScreenRefreshRects (
 CGRect *rectArray
);

Parameters
rectArray

A list of rectangles obtained by calling CGWaitForScreenRefreshRects (page 1537) or
CGWaitForScreenUpdateRects (page 1538).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

1530 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGRestorePermanentDisplayConfiguration
Restores the permanent display configuration settings for the current user.

void CGRestorePermanentDisplayConfiguration (
 void
);

Discussion
This function provides a convenient way to restore the permanent display configuration.

Applications that temporarily change the display configuration—such as applications and games that switch
to full-screen display mode—can use this function to undo the changes.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayConfiguration.h

CGScreenRegisterMoveCallback
Registers a callback function to be invoked when an area of the display is moved.

CGError CGScreenRegisterMoveCallback (
 CGScreenUpdateMoveCallback function,
 void *userParameter
);

Parameters
function

A pointer to the callback function to be registered.

userParameter
A pointer to user-defined data, or NULL. The userParameter argument is passed back to the callback
function each time it’s invoked.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
A callback function may be registered multiple times with different user-defined data pointers, resulting in
multiple registration entries. For each registration, when notification is no longer needed you should remove
the registration by calling the function CGScreenUnregisterMoveCallback (page 1532).

The callback function you register is invoked only if your application has an active event loop. The callback
is invoked in the same thread of execution that is processing events within your application.

Special Considerations

This function is implemented in Mac OS X version 10.4.3 and later.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

Functions 1531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGScreenUnregisterMoveCallback
Removes a previously registered callback function invoked when an area of the display is moved.

void CGScreenUnregisterMoveCallback (
 CGScreenUpdateMoveCallback function,
 void *userParameter
);

Parameters
function

A pointer to the callback function to be unregistered.

userParameter
A pointer to user-defined data, or NULL. You should pass the same value you used when you registered
the callback function.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
When you call this function, the two arguments must match the registered entry to be removed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

CGSessionCopyCurrentDictionary
Returns information about the caller’s window server session.

CFDictionaryRef CGSessionCopyCurrentDictionary (
 void
);

Return Value
A window server session dictionary, or NULL if the caller is not running within a Quartz GUI session or the
window server is disabled. You should release the dictionary when you are finished using it. For information
about the key-value pairs in this dictionary, see “Window Server Session Properties” (page 1563).

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGSession.h

CGSetDisplayTransferByByteTable
Sets the byte values in the 8-bit RGB gamma tables for a display.

1532 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGSetDisplayTransferByByteTable (
 CGDirectDisplayID display,
 CGTableCount tableSize,
 const CGByteValue *redTable,
 const CGByteValue *greenTable,
 const CGByteValue *blueTable
);

Parameters
display

The display to access.

tableSize
The number of entries in each table.

redTable
An array of size tableSize containing the byte values of the red channel in the display’s gamma
table.

greenTable
An array of size tableSize containing the byte values of the green channel in the display’s gamma
table.

blueTable
An array of size tableSize containing the byte values of the blue channel in the display’s gamma
table.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
The same table may be passed in for the red, green, and blue channels. The tables are interpolated as needed
to generate the number of samples required by the graphics hardware.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGSetDisplayTransferByFormula
Sets the gamma function for a display, by specifying the coefficients of the gamma transfer formula.

Functions 1533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayErr CGSetDisplayTransferByFormula (
 CGDirectDisplayID display,
 CGGammaValue redMin,
 CGGammaValue redMax,
 CGGammaValue redGamma,
 CGGammaValue greenMin,
 CGGammaValue greenMax,
 CGGammaValue greenGamma,
 CGGammaValue blueMin,
 CGGammaValue blueMax,
 CGGammaValue blueGamma
);

Parameters
display

The display to access.

redMin
The minimum value of the red channel in the gamma table. The value should be a number in the
interval [0, redMax).

redMax
The maximum value of the red channel in the gamma table. The value should be a number in the
interval (redMin, 1].

redGamma
A positive value used to compute the red channel in the gamma table.

greenMin
The minimum value of the green channel in the gamma table. The value should be a number in the
interval [0, greenMax).

greenMax
The maximum value of the green channel in the gamma table. The value should be a number in the
interval (greenMin, 1].

greenGamma
A positive value used to compute the green channel in the gamma table.

blueMin
The minimum value of the blue channel in the gamma table. The value should be a number in the
interval [0, blueMax).

blueMax
The maximum value of the blue channel in the gamma table. The value should be a number in the
interval (blueMin, 1].

blueGamma
A positive value used to compute the blue channel in the gamma table.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
This function uses the specified parameter values to compute a gamma correction table for the specified
display. The values in the table are computed by sampling the following gamma transfer formula for a range
of indices from 0 to 1:

value = Min + ((Max - Min) * pow(index, Gamma))

The resulting values are converted to a machine-specific format and loaded into display hardware.

1534 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGSetDisplayTransferByTable
Sets the color gamma function for a display, by specifying the values in the RGB gamma tables.

CGDisplayErr CGSetDisplayTransferByTable (
 CGDirectDisplayID display,
 CGTableCount tableSize,
 const CGGammaValue *redTable,
 const CGGammaValue *greenTable,
 const CGGammaValue *blueTable
);

Parameters
display

The display to access.

tableSize
The number of entries in each table.

redTable
An array of size tableSize containing the values of the red channel in the display’s gamma table.
The values should be in the range 0.0 to 1.0.

greenTable
An array of size tableSize containing the values of the green channel in the display’s gamma table.
The values should be in the range 0.0 to 1.0.

blueTable
An array of size tableSize containing the values of the blue channel in the display’s gamma table.
The values should be in the range 0.0 to 1.0.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
The same table may be passed in for the red, green, and blue channels. The tables are interpolated as needed
to generate the number of samples required by the graphics hardware.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGShieldingWindowID
Returns the window ID of the shield window for a captured display.

Functions 1535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

uint32_t CGShieldingWindowID (
 CGDirectDisplayID display
);

Parameters
display

The display to access.

Return Value
The window ID of the shield window for the specified display, or NULL if the display is not shielded.

Discussion
To prevent updates by direct-to-screen programs (such as Classic), Quartz draws a shield window that fills
the entire screen of a captured display.

This function is not recommended for use in applications. Note that the graphics context associated with
this window is not a full-featured drawing context. To get a full-featured drawing context for a captured
display, you should use the function CGDisplayGetDrawingContext (page 1497).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGShieldingWindowLevel
Returns the window level of the shield window for a captured display.

int32_t CGShieldingWindowLevel (
 void
);

Return Value
The window level of the shield window for a captured display.

Discussion
This function returns a value that is sometimes used to position a window over the shield window for a
captured display. Attempting to position a window over a captured display may be unsuccessful—or may
present undesirable results such as illegible or invisible content—because of interactions between full-screen
graphics (such as OpenGL full-screen drawing contexts) and the graphics hardware. Because of these
limitations, and because the implementation of display capture may change in the future, this technique is
not recommended.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGUnregisterScreenRefreshCallback
Removes a previously registered callback function invoked when local displays are refreshed or modified.

1536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

void CGUnregisterScreenRefreshCallback (
 CGScreenRefreshCallback function,
 void *userParameter
);

Parameters
function

A pointer to the callback function to be unregistered.

userParameter
A pointer to user-defined data, or NULL. You should pass the same value you used when you registered
the callback function.

Discussion
When you call this function, the two arguments must match the registered entry to be removed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGWaitForScreenRefreshRects
Waits for screen refresh operations.

CGError CGWaitForScreenRefreshRects (
 CGRect **pRectArray,
 CGRectCount *pCount
);

Parameters
pRectArray

A pointer to a CGRect* variable. On return, the variable contains an array of rectangles that bound
the refreshed areas, specified in global coordinates. When you no longer need the array, you should
deallocate it by calling CGReleaseScreenRefreshRects (page 1530).

pCount
A pointer to a CGRectCount variable. On return, the variable contains the number of entries in the
returned array of rectangles.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
In some applications it may be preferable to wait for screen refresh data synchronously, using this function.
You should call this function in a thread other than the main event-processing thread.

As an alternative, Quartz also supports asynchronous notification—see
CGRegisterScreenRefreshCallback (page 1529). If refresh callback functions are registered, this function
should not be used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

Functions 1537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGWaitForScreenUpdateRects
Waits for screen update operations.

CGError CGWaitForScreenUpdateRects (
 CGScreenUpdateOperation requestedOperations,
 CGScreenUpdateOperation *currentOperation,
 CGRect **pRectArray,
 size_t *pCount,
 CGScreenUpdateMoveDelta *pDelta
);

Parameters
requestedOperations

The desired types of screen update operations. There are several possible choices:

 ■ Specify kCGScreenUpdateOperationRefresh if you want all move operations to be returned
as refresh operations.

 ■ Specify (kCGScreenUpdateOperationRefresh | kCGScreenUpdateOperationMove) if
you want to distinguish between move and refresh operations.

 ■ Add kCGScreenUpdateOperationReducedDirtyRectangleCount to the screen operations
if you want to minimize the number of rectangles returned to represent changed areas of the
display.

currentOperation
A pointer to a CGScreenUpdateOperation variable. On return, the variable indicates the type of
update operation (refresh or move).

pRectArray
A pointer to a CGRect* variable. On return, the variable contains an array of rectangles that bound
the updated areas, specified in global coordinates. When you no longer need the array, you should
deallocate it by calling CGReleaseScreenRefreshRects (page 1530).

pCount
A pointer to a size_t variable. On return, the variable contains the number of entries in the returned
array of rectangles.

pDelta
A pointer to a CGScreenUpdateMoveDelta variable. On return, if the value of the currentOperation
parameter is kCGScreenUpdateOperationMove the variable contains the distance moved.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
In some applications it may be preferable to wait for screen update data synchronously, using this function.
You should call this function in a thread other than the main event-processing thread.

As an alternative, Quartz also supports asynchronous notification—see
CGRegisterScreenRefreshCallback (page 1529) andCGScreenRegisterMoveCallback (page 1531). If
refresh or move callback functions are registered, this function should not be used.

Special Considerations

This function is implemented in Mac OS X version 10.4.3 and later.

Availability
Available in Mac OS X v10.3 and later.

1538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGRemoteOperation.h

CGWarpMouseCursorPosition
Moves the mouse cursor without generating events.

CGError CGWarpMouseCursorPosition (
 CGPoint newCursorPosition
);

Parameters
newCursorPosition

The new mouse cursor position in global display coordinates.

Return Value
A result code. See “Quartz Display Services Result Codes” (page 1564).

Discussion
You can use this function to 'warp' or alter the cursor position without generating or posting an event. For
example, this function is often used to move the cursor position back to the center of the screen by games
that do not want the cursor pinned by display edges.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGWindowLevelForKey
Returns the window level that corresponds to one of the standard window types.

CGWindowLevel CGWindowLevelForKey (
 CGWindowLevelKey key
);

Parameters
key

A window level key constant that represents one of the standard window types. See “Window Level
Keys” (page 1560).

Return Value
The window level that corresponds to the specified key.

Discussion
This function is not recommended for use in applications. (This function is provided for application frameworks
that create and manage windows, such as Carbon and Cocoa.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGWindowLevel.h

Functions 1539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGWindowServerCFMachPort
Returns a Core Foundation mach port (CFMachPort) that corresponds to the Mac OS X window server.

CFMachPortRef CGWindowServerCFMachPort (
 void
);

Return Value
A Core Foundation mach port, or NULL if the window server is not running. When you no longer need the
port, you should release it using the function CFRelease.

Discussion
You can use this function to detect if the window server process exits or is not running. If this function returns
NULL, the window server is not running. This code example shows how to register a callback function to
detect when the window server exits:

static void handleWindowServerDeath(CFMachPortRef port, void *info)
{
 printf("Window Server port death detected!\n");
 CFRelease(port);
 exit(1);
}

static void watchForWindowServerDeath()
{
 CFMachPortRef port = CGWindowServerCFMachPort();
 CFMachPortSetInvalidationCallBack(port, handleWindowServerDeath);
}

Note that this callback will not work unless your program has an active run loop.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGRemoteOperation.h

Callbacks

CGDisplayReconfigurationCallBack
A client-supplied callback function that’s invoked whenever the configuration of a local display is changed.

typedef void (*CGDisplayReconfigurationCallBack) (
 CGDirectDisplayID display,
 CGDisplayChangeSummaryFlags flags,
 void *userInfo
);

If you name your function MyDisplayReconfigurationCallBack, you would declare it like this:

void MyDisplayReconfigurationCallBack (
 CGDirectDisplayID display,

1540 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

 CGDisplayChangeSummaryFlags flags,
 void *userInfo
);

Parameters
display

The display being reconfigured.

flags
Flags that indicate which display configuration parameters are changing.

userInfo
The userInfo argument passed to the function
CGDisplayRegisterReconfigurationCallback (page 1507) when the callback function is registered.

Discussion
To register a display reconfiguration callback function, you call the function
CGDisplayRegisterReconfigurationCallback (page 1507). Quartz invokes your callback function when:

 ■ Your application calls a function to reconfigure a local display.

 ■ Your application is listening for events in the event-processing thread, and another application calls a
function to reconfigure a local display.

 ■ The user changes the display hardware configuration—for example, by disconnecting a display or
changing a system preferences setting.

Before display reconfiguration, Quartz invokes your callback function once for each online display to indicate
a pending configuration change. The flags argument is always set to
kCGDisplayBeginConfigurationFlag. Other than the display ID, this callback does not carry other
per-display information, as details of how a reconfiguration affects a particular device rely on device-specific
behaviors which may not be exposed by a device driver.

After display reconfiguration, Quartz invokes your callback function once for each added, removed, and
online display. At this time, all display state reported by Core Graphics, QuickDraw, and the Carbon Display
Manager will be up to date. This callback runs after the Carbon Display Manager notification callbacks. The
flags argument indicates how the display configuration has changed. Note that in the case of removed
displays, calls into Quartz with the removed display ID will fail.

The following code example illustrates how to test for specific conditions:

void MyDisplayReconfigurationCallBack (
 CGDirectDisplayID display,
 CGDisplayChangeSummaryFlags flags,
 void *userInfo)
{
 if (flags & kCGDisplayAddFlag) {
 // display has been added
 }
 else if (flags & kCGDisplayRemoveFlag) {
 // display has been removed
 }
}

Callbacks 1541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Your callback function should avoid attempting to change display configurations, and should not raise
exceptions or perform a non-local return such as calling longjmp. When you are finished using a callback
registration, you should call the function CGDisplayRemoveReconfigurationCallback (page 1508) to
remove it.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGDisplayConfiguration.h

CGScreenRefreshCallback
A client-supplied callback function that’s invoked when an area of the display is modified or refreshed.

typedef void (*CGScreenRefreshCallback) (
 CGRectCount count,
 const CGRect * rectArray,
 void * userParameter
);

If you name your function MyScreenRefreshCallback, you would declare it like this:

void MyScreenRefreshCallback (
 CGRectCount count,
 const CGRect * rectArray,
 void * userParameter
);

Parameters
count

The number of rectangles in the rectArray parameter.

rectArray
A list of the rectangles in the refreshed areas, specified in global coordinates. You should not modify
or deallocate memory pointed to by rectArray.

userParameter
The user data you specify when you register this callback.

Discussion
To register a screen refresh callback function, you call the function
CGRegisterScreenRefreshCallback (page 1529). Quartz invokes your callback function when operations
such as drawing, window movement, scrolling, or display reconfiguration occur on local displays. When you
are finished using a callback registration, you should call the function
CGUnregisterScreenRefreshCallback (page 1536) to remove it.

Note that a single rectangle may occupy multiple displays, either by overlapping the displays or by residing
on coincident displays when mirroring is active. You can use the function CGGetDisplaysWithRect (page
1518) to determine the displays a rectangle occupies.

Availability
Available in Mac OS X v10.0 and later.

1542 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGRemoteOperation.h

CGScreenUpdateMoveCallback
A client-supplied callback function that’s invoked when an area of the display is moved.

typedef void (*CGScreenUpdateMoveCallback) (
 CGScreenUpdateMoveDelta delta,
 CGRectCount count,
 const CGRect * rectArray,
 void * userParameter
);

If you name your function MyScreenUpdateMoveCallback, you would declare it like this:

void MyScreenUpdateMoveCallback (
 CGScreenUpdateMoveDelta delta,
 CGRectCount count,
 const CGRect * rectArray,
 void * userParameter
);

Parameters
delta

The distance the display area has moved.

count
The number of rectangles in the rectArray parameter.

rectArray
A list of the rectangles in the moved areas, specified in global coordinates. The rectangles describe
the area prior to the move operation. You should not modify or deallocate memory pointed to by
rectArray.

userParameter
The user data you specify when you register this callback.

Discussion
To register a screen move callback function, you call the function CGScreenRegisterMoveCallback (page
1531). Quartz invokes your callback function when operations such as window movement or scrolling occur
on local displays. When you are finished using a callback registration, you should call the function
CGScreenUnregisterMoveCallback (page 1532) to remove it.

Note that a single rectangle may occupy multiple displays, either by overlapping the displays or by residing
on coincident displays when mirroring is active. You can use the function CGGetDisplaysWithRect (page
1518) to determine the displays a rectangle occupies.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

Callbacks 1543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Data Types

CGBeamPosition
Represents a horizontal scan line on a monitor that uses a scanning electron beam to refresh the screen.

typedef uint32_t CGBeamPosition;

Discussion
CRT and analog-driven displays use a horizontal scanning beam to refresh the screen. The beam position is
a number assigned to a horizontal scan line on the screen. Scan lines are numbered 0 to n-1 from top of
screen, where n represents the total number of scan lines.

The concept of beam position does not apply to flat-panel LCD displays. While all displays have some concept
of scan lines with respect to the frame buffer, LCD displays may not use linear scanning to refresh the screen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGByteValue
Represents a unit of information in a byte-addressable array or data structure.

typedef uint8_t CGByteValue;

Discussion
Quartz uses CGByteValue to represent integer-based color values in a display palette or a gamma table. For
example, see CGDeviceByteColor (page 1544).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDeviceByteColor
Represents a color in a Quartz display palette, using 8-bit integer components.

struct CGDeviceByteColor {
 CGByteValue red;
 CGByteValue green;
 CGByteValue blue;
};
typedef struct CGDeviceByteColor CGDeviceByteColor;

Fields
red

The red component of a palette entry.

1544 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

green
The green component of a palette entry.

blue
The blue component of a palette entry.

Discussion
This data structure consists of three integer values that represent the intensity of the red,green, and blue
components in a display palette entry. Each component ranges from 0 (no color) to 255 (full intensity).

Quartz provides CGDeviceByteColor to allow you to create a display palette using integer-based sample
data. Once loaded, you can retrieve color data from the palette only as entries of type CGDeviceColor (page
1545).

For more information about display palettes, see CGDirectPaletteRef (page 1546).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGDeviceColor
Represents a color in a Quartz display palette.

struct CGDeviceColor {
 float red;
 float green;
 float blue;
};
typedef struct CGDeviceColor CGDeviceColor;

Fields
red

The red component of a palette entry.

green
The green component of a palette entry.

blue
The blue component of a palette entry.

Discussion
This data structure consists of three floating point values that represent the intensity of the red,green, and
blue components in a display palette entry. Each component ranges from 0 (no color) to 1 (full intensity).
Values outside this range are clamped to 0 or 1 when the palette is created.

Quartz uses CGDeviceColor as the canonical form for a color entry in a display palette. Palette entries can
be created and retrieved in this form.

For more information about display palettes, see CGDirectPaletteRef (page 1546).

Availability
Available in Mac OS X v10.0 and later.

Data Types 1545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDirectPalette.h

CGDirectDisplayID
Represents a unique identifier for an attached display.

typedef uint32_t CGDirectDisplayID;

Discussion
In Quartz, the term display refers to a graphics hardware system consisting of a framebuffer, a color correction
(gamma) table or color palette, and possibly an attached monitor. If no monitor is attached, a display is
characterized as offline.

When a monitor is attached, Quartz assigns a unique display identifier (ID). A display ID can persist across
processes and system reboot, and typically remains constant as long as certain display parameters do not
change.

When assigning a display ID, Quartz considers the following parameters:

 ■ vendor

 ■ model

 ■ serial number

 ■ position in the I/O Kit registry

For information about how to obtain a display ID, see “Finding Displays” (page 1470).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDirectPaletteRef
Defines a reference to a Quartz 8-bit display palette.

typedef struct _CGDirectPaletteRef * CGDirectPaletteRef;

Discussion
A display palette is a bounded set of color values available for display. Some display operating modes have
a maximum color depth of 8 bits (256 colors). The CGDirectPalette API is designed for application and game
developers that want to create and use display palettes for these older displays.

Quartz uses reference counting to manage display palettes. See “Working With Color Palettes” (page 1474) for
more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

1546 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayBlendFraction
Represents the percentage of blend color used in a fade operation.

typedef float CGDisplayBlendFraction;

Discussion
The blend fraction ranges from 0 (no color) to 1 (full intensity). If you specify 0, the blend color is not applied.
If you specify 1, the user sees only the blend color on the screen.

In a fade operation, Quartz blends a color specified by the application with the current contents of the frame
buffer. The blend color can be applied both at the beginning and the end of a fade operation.

Color blending during a fade operation is analogous to alpha blending in Quartz 2D, and the visual appearance
is similar. However, the implementation is quite different. In a fade operation, the blend color is applied at
the very end of the graphics pipeline, as the frame buffer is transferred to video output.

For example, the Universal Access preference panel in Mac OS X allows you to select a flashing screen effect
(sometimes called a visual bell) to accompany the system alert sound. When you select this option, the system
uses a Quartz fade operation to produce the flash. The blend color is applied using a blend fraction of 0.5 or
50%.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGDisplayConfigRef
Defines a reference to a display configuration transaction.

typedef struct _CGDisplayConfigRef * CGDisplayConfigRef;

Discussion
This data type makes it possible to

 ■ create a new display configuration transaction using the functionCGBeginDisplayConfiguration (page
1477)

 ■ record a set of configuration changes, each bound to one or more displays

 ■ apply the changes in a single transaction using the function CGCompleteDisplayConfiguration (page
1479), or discard the changes using the function CGCancelDisplayConfiguration (page 1478)

There are no restrictions on the order in which you accumulate configuration changes in a transaction.

Configuration changes sometimes conflict with each other. For example, a new origin might be rendered
invalid by a subsequent configuration change.

If possible, Quartz uses a “best fit” strategy to resolve conflicts between configuration changes. For example,
when you change the resolution of a single display in a two-display system, Quartz automatically re-tiles the
displays to prevent separation or overlap of the adjoining edges.

Availability
Available in Mac OS X v10.2 and later.

Data Types 1547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Declared In
CGDisplayConfiguration.h

CGDisplayCoord
Represents a coordinate position in global display space.

typedef int32_t CGDisplayCoord;

Discussion
Quartz uses CGDisplayCoord to represent the x- and y-coordinates of points in the per-display coordinate
system. The origin is defined as the upper-left corner of the screen.

This data type is also used in functions that need to find the address of a specific pixel and monitor. For
example, the functionCGDisplayAddressForPosition (page 1485) finds the address in frame buffer memory
that corresponds to a given position or point.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayCount
Represents the number of displays in various lists.

typedef uint32_t CGDisplayCount;

Discussion
Quartz uses CGDisplayCount to represent a count of either the current or the maximum number of displays
in a display list. For example, see the function CGGetActiveDisplayList (page 1515).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGDisplayErr
Defines a uniform type for result codes returned by functions in Quartz Display Services.

typedef CGError CGDisplayErr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

1548 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGDisplayFadeInterval
Represents the duration in seconds of a fade operation or a fade hardware reservation.

typedef float CGDisplayFadeInterval;

Discussion
Quartz uses this data type to specify the duration of both fade-out and fade-in operations. Values may range
from zero to kCGMaxDisplayReservationInterval seconds. A zero value means fade immediately—see
CGDisplayFade (page 1495).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGDisplayFadeReservationToken
Defines a token issued by Quartz when reserving one or more displays for a fade operation during a specified
interval.

typedef uint32_t CGDisplayFadeReservationToken;

Discussion
Quartz lets you reserve the display hardware to perform a fade operation. Fade reservations are valid for up
to 15 seconds. Only one token is needed for both fade-out and fade-in.

You should release a fade reservation immediately when you no longer need it. If the reservation expires,
releasing it is safe but not necessary.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

CGDisplayReservationInterval
Represents the time interval for a fade reservation.

typedef float CGDisplayReservationInterval;

Discussion
A fade reservation interval is a period of time during which a specific display is reserved for a fade operation.
Fade reservation intervals range from 1 to kCGMaxDisplayReservationInterval seconds.

For more information about fade reservations, see the function CGAcquireDisplayFadeReservation (page
1476). Fade reservation tokens are discussed in CGDisplayFadeReservationToken (page 1549).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CGDisplayFade.h

Data Types 1549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGError
Defines a uniform type for result codes returned by functions in Quartz Services.

typedef int32_t CGError;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGError.h

CGGammaValue
Represents information used to map a color generated in software to a color supported by the display
hardware.

typedef float CGGammaValue;

Discussion
In Mac OS X, the Display panel in System Preferences is used to set the default gamma for a display. Quartz
also allows an application to provide its own custom gamma information, using functions such as
CGSetDisplayTransferByTable (page 1535) and CGSetDisplayTransferByFormula (page 1533).

These functions take CGGammaValue arguments that specify

 ■ a set of gamma table entries ranging from 0 to 1

 ■ the positive real coefficients in a gamma equation

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGMouseDelta
Represents a change in mouse position, in mouse units.

typedef int32_t CGMouseDelta;

Discussion
A mouse unit is a hardware-specific unit of measure, and generally has higher resolution than pixel units.

Note that the function CGGetLastMouseDelta (page 1520) is no longer recommended—instead, you should
use mouse tracking functions in the Carbon Event Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

1550 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGOpenGLDisplayMask
Defines a bitmask used in OpenGL to specify a set of attached displays.

typedef uint32_t CGOpenGLDisplayMask;

Discussion
In Mac OS X, OpenGL can provide information about the capabilities of the hardware renderers driving a
specified set of displays. A 32-bit mask is used to specify the displays—each bit in the mask represents a
single display.

To learn how to find the mask bit that corresponds to a given display, see the function
CGDisplayIDToOpenGLDisplayMask (page 1498).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGPaletteBlendFraction
Represents the intensity of a solid color used to tint a display palette.

typedef float CGPaletteBlendFraction;

Discussion
A palette blend-fraction value can range from 0 (no color) to 1 (full intensity). At full intensity, the palette is
completely washed out by the color.

For more information, see the function CGPaletteCreateFromPaletteBlendedWithColor (page 1524).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectPalette.h

CGRectCount
Represents the size of an array of Quartz rectangles.

typedef uint32_t CGRectCount;

Discussion
For example, see the function CGWaitForScreenRefreshRects (page 1537).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

Data Types 1551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGRefreshRate
Represents a display’s refresh rate in frames per second.

typedef double CGRefreshRate;

Discussion
When requesting a new display mode, you can specify a desired refresh rate as a hint to Quartz. For example,
see the function CGDisplayBestModeForParametersAndRefreshRate (page 1488).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

CGScreenUpdateMoveDelta
Represents the distance a region on the screen moves in pixel units.

struct _CGScreenUpdateMoveDelta {
 int32_t dX, dY;
};
typedef struct _CGScreenUpdateMoveDelta CGScreenUpdateMoveDelta;

Discussion
Move operation notifications are restricted to changes that move a region by an integer number of pixels.
The fields dX and dY describe the direction of movement:

 ■ Positive values of dX indicate movement to the right.

 ■ Negative values of dX indicate movement to the left.

 ■ Positive values of dY indicate movement downward.

 ■ Negative values of dY indicate movement upward.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

CGTableCount
Defines a uniform type to represent the number of entries in a table.

typedef uint32_t CGTableCount;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGDirectDisplay.h

1552 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

CGWindowLevel
Represents a level assigned to a window by an application framework.

typedef int32_t CGWindowLevel;

Discussion
In Mac OS X, application frameworks support the concept of multiple window levels (or layers). Window
levels are assigned and managed by each individual framework.

Note that in an Aqua-compliant application, each document window exists in its own layer. As a result,
windows created by different applications can be interleaved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGWindowLevel.h

Constants

Display Capture Options
Specify configuration parameters when capturing displays.

enum {
 kCGCaptureNoOptions = 0,
 kCGCaptureNoFill = (1 << 0)
};
typedef uint32_t CGCaptureOptions;

Constants
kCGCaptureNoOptions

Specifies that the system should use the default fill behavior, which is fill with black.

Available in Mac OS X v10.3 and later.

Declared in CGDirectDisplay.h.

kCGCaptureNoFill
Disables fill with black.

Available in Mac OS X v10.3 and later.

Declared in CGDirectDisplay.h.

Discussion
For information about how these constants are used, see the functions
CGDisplayCaptureWithOptions (page 1493) and CGCaptureAllDisplaysWithOptions (page 1479).

Display Configuration Change Flags
Specify the configuration parameters passed to a display reconfiguration callback function.

Constants 1553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

enum {
 kCGDisplayBeginConfigurationFlag = (1 << 0),
 kCGDisplayMovedFlag = (1 << 1),
 kCGDisplaySetMainFlag = (1 << 2),
 kCGDisplaySetModeFlag = (1 << 3),
 kCGDisplayAddFlag = (1 << 4),
 kCGDisplayRemoveFlag = (1 << 5),
 kCGDisplayEnabledFlag = (1 << 8),
 kCGDisplayDisabledFlag = (1 << 9),
 kCGDisplayMirrorFlag = (1 << 10),
 kCGDisplayUnMirrorFlag = (1 << 11),
 kCGDisplayDesktopShapeChangedFlag = (1 << 12)
};
typedef u_int32_t CGDisplayChangeSummaryFlags;

Constants
kCGDisplayBeginConfigurationFlag

The display configuration is about to change.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayMovedFlag
The location of the upper-left corner of the display in global display space has changed.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplaySetMainFlag
The display is now the main display.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplaySetModeFlag
The display mode has changed.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayAddFlag
The display has been added to the active display list.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayRemoveFlag
The display has been removed from the active display list.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayEnabledFlag
The display has been enabled.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

1554 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGDisplayDisabledFlag
The display has been disabled.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayMirrorFlag
The display is now mirroring another display.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayUnMirrorFlag
The display is no longer mirroring another display.

Available in Mac OS X v10.3 and later.

Declared in CGDisplayConfiguration.h.

kCGDisplayDesktopShapeChangedFlag
The shape of the desktop (the union of display areas) has changed.

Available in Mac OS X v10.5 and later.

Declared in CGDisplayConfiguration.h.

Discussion
For information about how these constants are used, see the callback
CGDisplayReconfigurationCallBack (page 1540).

Display Configuration Scopes
Specify the scope of the changes in a display configuration transaction.

enum {
 kCGConfigureForAppOnly = 0,
 kCGConfigureForSession = 1,
 kCGConfigurePermanently = 2
};

Constants
kCGConfigureForAppOnly

Specifies that changes persist for the lifetime of the current application. After the application terminates,
the display configuration settings revert to the current login session.

Available in Mac OS X v10.2 and later.

Declared in CGDisplayConfiguration.h.

kCGConfigureForSession
Specifies that changes persist for the lifetime of the current login session. After the current session
terminates, the displays revert to the last saved permanent configuration.

Available in Mac OS X v10.2 and later.

Declared in CGDisplayConfiguration.h.

Constants 1555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGConfigurePermanently
Specifies that changes persist in future login sessions by the same user. If the requested changes
cannot be supported by the Aqua UI (resolution and pixel depth constraints apply), the settings for
the current login session are used instead, and any changes have session scope.

Available in Mac OS X v10.2 and later.

Declared in CGDisplayConfiguration.h.

Discussion
For information about how these constants are used, see the function
CGCompleteDisplayConfiguration (page 1479).

Display Fade Blend Fractions
Specify the lower and upper bounds for blend color fractions during a display fade operation.

#define kCGDisplayBlendNormal (0.0)
#define kCGDisplayBlendSolidColor (1.0)

Constants
kCGDisplayBlendNormal

Specifies that the blend color is not applied at the start or end of a fade operation.

Available in Mac OS X v10.2 and later.

Declared in CGDisplayFade.h.

kCGDisplayBlendSolidColor
Specifies that the user sees only the blend color at the start or end of a fade operation.

Available in Mac OS X v10.2 and later.

Declared in CGDisplayFade.h.

Discussion
For general information about blend fractions, see the data type CGDisplayBlendFraction (page 1547).
For information about how these constants are used, see the function CGDisplayFade (page 1495).

Display Fade Constants
Specifies values relating to fade operations.

#define kCGMaxDisplayReservationInterval (15.0)
#define kCGDisplayFadeReservationInvalidToken (0)

Constants
kCGMaxDisplayReservationInterval

Specifies the maximum number of seconds for fade hardware reservations and display fade operations.
For general information about fade intervals, see the data type CGDisplayFadeInterval (page
1549).

Available in Mac OS X v10.2 and later.

Declared in CGDisplayFade.h.

1556 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGDisplayFadeReservationInvalidToken
Specifies an invalid fade reservation token. For general information about fade reservation tokens,
see the data type CGDisplayFadeReservationToken (page 1549).

Available in Mac OS X v10.2 and later.

Declared in CGDisplayFade.h.

Display ID Defaults
Default values for a display ID.

#define kCGDirectMainDisplay (CGMainDisplayID())
#define kCGNullDirectDisplay ((CGDirectDisplayID)0)

Constants
kCGDirectMainDisplay

Specifies the current main display ID.

Available in Mac OS X v10.0 and later.

Declared in CGDirectDisplay.h.

kCGNullDirectDisplay
Specifies a value that will never correspond to actual hardware.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

Display Mode Standard Properties
Specify keys for the standard properties in a display mode dictionary.

#define kCGDisplayWidth CFSTR("Width")
#define kCGDisplayHeight CFSTR("Height")
#define kCGDisplayMode CFSTR("Mode")
#define kCGDisplayBitsPerPixel CFSTR("BitsPerPixel")
#define kCGDisplayBitsPerSample CFSTR("BitsPerSample")
#define kCGDisplaySamplesPerPixel CFSTR("SamplesPerPixel")
#define kCGDisplayRefreshRate CFSTR("RefreshRate")
#define kCGDisplayModeUsableForDesktopGUICFSTR("UsableForDesktopGUI")
#define kCGDisplayIOFlags CFSTR("IOFlags")
#define kCGDisplayBytesPerRow CFSTR("kCGDisplayBytesPerRow")

Constants
kCGDisplayWidth

Specifies a CFNumber integer value that represents the width of the display in pixels.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayHeight
Specifies a CFNumber integer value that represents the height of the display in pixels.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

Constants 1557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGDisplayMode
Specifies a CFNumber integer value that represents the I/O Kit display mode number.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayBitsPerPixel
Specifies a CFNumber integer value that represents the number of bits in a pixel.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayBitsPerSample
Specifies a CFNumber integer value that represents the number of bits in an individual sample (for
example, a color value in an RGB pixel).

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplaySamplesPerPixel
Specifies a CFNumber integer value that represents the number of samples in a pixel.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayRefreshRate
Specifies a CFNumber double-precision floating point value that represents the refresh rate of a CRT
display. Some displays may not use conventional video vertical and horizontal sweep in painting the
screen; these displays report a refresh rate of 0.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayModeUsableForDesktopGUI
Specifies a CFBoolean value that indicates whether the display is suitable for use with the Mac OS X
graphical user interface. The criteria include factors such as sufficient width and height and adequate
pixel depth.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayIOFlags
Specifies a CFNumber integer value that contains the I/O Kit display mode flags. For more information,
see the header file IOKit/IOGraphicsTypes.h.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayBytesPerRow
Specifies a CFNumber integer value that represents the number of bytes in a row on the display.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

Discussion
To learn how to use these keys to access the values in a display mode dictionary, see CFDictionary Reference.

Display Mode Optional Properties
Specify keys for optional properties in a display mode dictionary.

1558 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

#define kCGDisplayModeIsSafeForHardware CFSTR ("kCGDisplayModeIsSafeForHardware")
#define kCGDisplayModeIsInterlaced CFSTR("kCGDisplayModeIsInterlaced")
#define kCGDisplayModeIsStretched CFSTR("kCGDisplayModeIsStretched")
#define kCGDisplayModeIsTelevisionOutput CFSTR ("kCGDisplayModeIsTelevisionOutput")

Constants
kCGDisplayModeIsSafeForHardware

Specifies a CFBoolean value indicating that the display mode doesn't need a confirmation dialog to
be set.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayModeIsInterlaced
Specifies a CFBoolean value indicating that the I/O Kit interlace mode flag is set.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayModeIsStretched
Specifies a CFBoolean value indicating that the I/O Kit stretched mode flag is set.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

kCGDisplayModeIsTelevisionOutput
Specifies a CFBoolean value indicating that the I/O Kit television output mode flag is set.

Available in Mac OS X v10.2 and later.

Declared in CGDirectDisplay.h.

Discussion
A given key is present in a display mode dictionary only if the property applies, and is always associated with
a value of kCFBooleanTrue. Keys not relevant to a particular display mode will not appear in the mode
dictionary.

Reserved Window Levels
Specifies window level constants.

#define kCGNumReservedWindowLevels (16)

Constants
kCGNumReservedWindowLevels

The number of window levels reserved by Apple for internal use. Application frameworks such as
Carbon and Cocoa use this constant during compilation

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

Screen Update Operations
Specify types of screen update operations.

Constants 1559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

enum _CGScreenUpdateOperation {
 kCGScreenUpdateOperationRefresh = 0,
 kCGScreenUpdateOperationMove = (1 << 0),
 kCGScreenUpdateOperationReducedDirtyRectangleCount = (1 << 31)
};
typedef uint32_t CGScreenUpdateOperation;

Constants
kCGScreenUpdateOperationRefresh

Specifies a screen refresh operation.

Available in Mac OS X v10.3 and later.

Declared in CGRemoteOperation.h.

kCGScreenUpdateOperationMove
Specifies a screen move operation.

Available in Mac OS X v10.3 and later.

Declared in CGRemoteOperation.h.

kCGScreenUpdateOperationReducedDirtyRectangleCount
When presented as part of the requested operations to the function
CGWaitForScreenUpdateRects (page 1538), specifies that the function should try to minimize the
number of rectangles returned to represent the changed areas of the display. The function may
combine adjacent rectangles within a larger bounding rectangle, which may include unmodified
areas of the display.

Available in Mac OS X v10.4 and later.

Declared in CGRemoteOperation.h.

Discussion
For information about how these constants are used, see the function CGWaitForScreenUpdateRects (page
1538).

Window Level Keys
Keys that represent the standard window levels in Mac OS X. Quartz includes these keys to support application
frameworks such as Carbon and Cocoa. Applications do not need to use them directly.

1560 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

enum _CGCommonWindowLevelKey {
 kCGBaseWindowLevelKey = 0,
 kCGMinimumWindowLevelKey,
 kCGDesktopWindowLevelKey,
 kCGBackstopMenuLevelKey,
 kCGNormalWindowLevelKey,
 kCGFloatingWindowLevelKey,
 kCGTornOffMenuWindowLevelKey,
 kCGDockWindowLevelKey,
 kCGMainMenuWindowLevelKey,
 kCGStatusWindowLevelKey,
 kCGModalPanelWindowLevelKey,
 kCGPopUpMenuWindowLevelKey,
 kCGDraggingWindowLevelKey,
 kCGScreenSaverWindowLevelKey,
 kCGMaximumWindowLevelKey,
 kCGOverlayWindowLevelKey,
 kCGHelpWindowLevelKey,
 kCGUtilityWindowLevelKey,
 kCGDesktopIconWindowLevelKey,
 kCGCursorWindowLevelKey,
 kCGNumberOfWindowLevelKeys
};
typedef int32_t CGWindowLevelKey;

Constants
kCGBaseWindowLevelKey

The base key used to define window levels. Do not use.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGMinimumWindowLevelKey
The lowest available window level.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGDesktopWindowLevelKey
The level for the desktop.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGBackstopMenuLevelKey
The level of the backstop menu.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGNormalWindowLevelKey
The level for normal windows.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGFloatingWindowLevelKey
The level for floating windows.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

Constants 1561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGTornOffMenuWindowLevelKey
The level for torn off menus.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGDockWindowLevelKey
The level for the dock.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGMainMenuWindowLevelKey
The level for the menus displayed in the menu bar.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGStatusWindowLevelKey
The level for status windows.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGModalPanelWindowLevelKey
The level for modal panels.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGPopUpMenuWindowLevelKey
The level for pop-up menus.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGDraggingWindowLevelKey
The level for a window being dragged.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGScreenSaverWindowLevelKey
The level for screen savers.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGMaximumWindowLevelKey
The highest allowed window level.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

kCGOverlayWindowLevelKey
The level for overlay windows.

Available in Mac OS X v10.1 and later.

Declared in CGWindowLevel.h.

1562 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGHelpWindowLevelKey
The level for help windows.

Available in Mac OS X v10.1 and later.

Declared in CGWindowLevel.h.

kCGUtilityWindowLevelKey
The level for utility windows.

Available in Mac OS X v10.1 and later.

Declared in CGWindowLevel.h.

kCGDesktopIconWindowLevelKey
The level for desktop icons.

Available in Mac OS X v10.1 and later.

Declared in CGWindowLevel.h.

kCGCursorWindowLevelKey
The level for the cursor.

Available in Mac OS X v10.2 and later.

Declared in CGWindowLevel.h.

kCGNumberOfWindowLevelKeys
The total number of window levels.

Available in Mac OS X v10.0 and later.

Declared in CGWindowLevel.h.

Window Server Session Properties
Specify keys for the standard properties in a window server session dictionary.

#define kCGSessionUserIDKey CFSTR("kCGSSessionUserIDKey")
#define kCGSessionUserNameKey CFSTR("kCGSSessionUserNameKey")
#define kCGSessionConsoleSetKey CFSTR("kCGSSessionConsoleSetKey")
#define kCGSessionOnConsoleKey CFSTR("kCGSSessionOnConsoleKey")
#define kCGSessionLoginDoneKey CFSTR("kCGSessionLoginDoneKey")

Constants
kCGSessionUserIDKey

Specifies a CFNumber 32-bit unsigned integer value that encodes a user ID for the session's current
user.

Available in Mac OS X v10.3 and later.

Declared in CGSession.h.

kCGSessionUserNameKey
Specifies a CFString value that encodes the session's short user name as set by the login operation.

Available in Mac OS X v10.3 and later.

Declared in CGSession.h.

Constants 1563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

kCGSessionConsoleSetKey
Specifies a CFNumber 32-bit unsigned integer value that represents a set of hardware composing a
console.

Available in Mac OS X v10.3 and later.

Declared in CGSession.h.

kCGSessionOnConsoleKey
Specifies a CFBoolean value indicating whether the session is on a console.

Available in Mac OS X v10.3 and later.

Declared in CGSession.h.

kCGSessionLoginDoneKey
Specifies a CFBoolean value indicating whether the login operation has been done.

Available in Mac OS X v10.3 and later.

Declared in CGSession.h.

Discussion
To learn how to use these keys to access the values in a session dictionary, see CFDictionary Reference.

Result Codes

This table lists the result codes returned by functions in Quartz Display Services.

DescriptionValueResult Code

The requested operation was completed successfully.0kCGErrorSuccess

Available in Mac OS X v10.0 and later.

A general failure occurred.1000kCGErrorFailure

Available in Mac OS X v10.0 and later.

One or more of the parameters passed to a function are invalid.
Check for NULL pointers.

1001kCGErrorIllegalArgument

Available in Mac OS X v10.0 and later.

The parameter representing a connection to the window server
is invalid.

1002kCGErrorInvalidConnection

Available in Mac OS X v10.0 and later.

The CPSProcessSerNum or context identifier parameter is not
valid.

1003kCGErrorInvalidContext

Available in Mac OS X v10.0 and later.

The requested operation is inappropriate for the parameters
passed in, or the current system state.

1004kCGErrorCannotComplete

Available in Mac OS X v10.0 and later.

1564 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

DescriptionValueResult Code

A parameter, typically a C string, is too long to be used without
truncation.

1005kCGErrorNameTooLong

Available in Mac OS X v10.0 and later.

Return value from obsolete function stubs present for binary
compatibility, but not normally called.

1006kCGErrorNotImplemented

Available in Mac OS X v10.0 and later.

A parameter passed in has a value that is inappropriate, or which
does not map to a useful operation or value.

1007kCGErrorRangeCheck

Available in Mac OS X v10.0 and later.

A data type or token was encountered that did not match the
expected type or token.

1008kCGErrorTypeCheck

Available in Mac OS X v10.0 and later.

An operation relative to a known point or coordinate could not
be done, as there is no known point.

1009kCGErrorNoCurrentPoint

Available in Mac OS X v10.0 and later.

The requested operation is not valid for the parameters passed
in, or the current system state.

1010kCGErrorInvalidOperation

Available in Mac OS X v10.0 and later.

The requested operation could not be completed as the
indicated resources were not found.

1011kCGErrorNoneAvailable

Available in Mac OS X v10.0 and later.

Result Codes 1565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

1566 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

Quartz Display Services Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGEvent.h
CGEventSource.h
CGEventTypes.h
CGRemoteOperation.h

Overview

This document describes the C API for event taps, which are filters used to observe and alter the stream of
low-level user input events in Mac OS X. Event taps make it possible to monitor and filter input events from
several points within the system, prior to their delivery to a foreground application. Event taps complement
and extend the capabilities of the Carbon event monitor mechanism, which allows an application to observe
input events delivered to other processes (see the function GetEventMonitorTarget).

Event taps are designed to serve as a Section 508 enabling technology. For example, consider a software
system to assist a person with language impairments, designed to perform keyboard filtering with spoken
review. Such a system could use an event tap to monitor all keystrokes, perform dictionary checks and
matches, and recite the assembled word back to the user on detection of a word break in the input stream.
If acceptable to the user, as indicated by an additional input keystroke or other gesture, the events would
be posted into the system for delivery to the foreground application.

Introduced in Mac OS X version 10.4, event taps provide functionality similar to the Win32 functions
SetWinEventHook when used to establish an out-of-context event hook, and SendInput. Quartz Event
Services also includes an older set of event-related functions declared in the file CGRemoteOperation.h.
These functions are still supported, but they are not recommended for new development.

Functions by Task

Working With Quartz Events

CGEventGetTypeID (page 1579)
Returns the type identifier for the opaque type CGEventRef.

CGEventCreate (page 1571)
Returns a new Quartz event.

CGEventCreateData (page 1572)
Returns a flattened data representation of a Quartz event.

Overview 1567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventCreateFromData (page 1573)
Returns a Quartz event created from a flattened data representation of the event.

CGEventCreateMouseEvent (page 1574)
Returns a new Quartz mouse event.

CGEventCreateKeyboardEvent (page 1573)
Returns a new Quartz keyboard event.

CGEventCreateScrollWheelEvent (page 1575)
Returns a new Quartz scrolling event.

CGEventCreateCopy (page 1572)
Returns a copy of an existing Quartz event.

CGEventCreateSourceFromEvent (page 1576)
Returns a Quartz event source created from an existing Quartz event.

CGEventSetSource (page 1585)
Sets the event source of a Quartz event.

CGEventGetType (page 1579)
Returns the event type of a Quartz event (left mouse down, for example).

CGEventSetType (page 1586)
Sets the event type of a Quartz event (left mouse down, for example).

CGEventGetTimestamp (page 1578)
Returns the timestamp of a Quartz event.

CGEventSetTimestamp (page 1585)
Sets the timestamp of a Quartz event.

CGEventGetLocation (page 1578)
Returns the location of a Quartz mouse event.

CGEventGetUnflippedLocation (page 1579)
Returns the location of a Quartz mouse event.

CGEventGetFlags (page 1577)
Returns the event flags of a Quartz event.

CGEventSetFlags (page 1583)
Sets the event flags of a Quartz event.

CGEventKeyboardGetUnicodeString (page 1580)
Returns the Unicode string associated with a Quartz keyboard event.

CGEventKeyboardSetUnicodeString (page 1581)
Sets the Unicode string associated with a Quartz keyboard event.

CGEventGetIntegerValueField (page 1577)
Returns the integer value of a field in a Quartz event.

CGEventSetIntegerValueField (page 1584)
Sets the integer value of a field in a Quartz event.

CGEventGetDoubleValueField (page 1576)
Returns the floating-point value of a field in a Quartz event.

CGEventSetDoubleValueField (page 1583)
Sets the floating-point value of a field in a Quartz event.

CGEventSetLocation (page 1584) Deprecated in Mac OS X v10.5
Sets the location of a Quartz mouse event.

1568 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Working With Quartz Event Taps

CGEventTapCreate (page 1595)
Creates an event tap.

CGEventTapCreateForPSN (page 1597)
Creates an event tap for a specified process.

CGEventTapEnable (page 1598)
Enables or disables an event tap.

CGEventTapIsEnabled (page 1598)
Returns a Boolean value indicating whether an event tap is enabled.

CGEventTapPostEvent (page 1599)
Posts a Quartz event from an event tap into the event stream.

CGEventPost (page 1582)
Posts a Quartz event into the event stream at a specified location.

CGEventPostToPSN (page 1582)
Posts a Quartz event into the event stream for a specific application.

CGGetEventTapList (page 1599)
Gets a list of currently installed event taps.

CGEventMaskBit (page 1581)
Generates an event mask for a single type of event.

Working With Quartz Event Sources

CGEventSourceGetTypeID (page 1591)
Returns the type identifier for the opaque type CGEventSourceRef.

CGEventSourceCreate (page 1587)
Returns a Quartz event source created with a specified source state.

CGEventSourceGetKeyboardType (page 1588)
Returns the keyboard type to be used with a Quartz event source.

CGEventSourceSetKeyboardType (page 1593)
Sets the keyboard type to be used with a Quartz event source.

CGEventSourceGetSourceStateID (page 1590)
Returns the source state associated with a Quartz event source.

CGEventSourceButtonState (page 1586)
Returns a Boolean value indicating the current button state of a Quartz event source.

CGEventSourceKeyState (page 1592)
Returns a Boolean value indicating the current keyboard state of a Quartz event source.

CGEventSourceFlagsState (page 1588)
Returns the current flags of a Quartz event source.

CGEventSourceSecondsSinceLastEventType (page 1592)
Returns the elapsed time since the last event for a Quartz event source.

CGEventSourceCounterForEventType (page 1587)
Returns a count of events of a given type seen since the window server started.

Functions by Task 1569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventSourceGetUserData (page 1591)
Returns the 64-bit user-specified data for a Quartz event source.

CGEventSourceSetUserData (page 1595)
Sets the 64-bit user-specified data for a Quartz event source.

CGEventSourceGetLocalEventsFilterDuringSuppressionState (page 1589)
Returns the mask that indicates which classes of local hardware events are enabled during event
suppression.

CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593)
Sets the mask that indicates which classes of local hardware events are enabled during event
suppression.

CGEventSourceSetLocalEventsSuppressionInterval (page 1594)
Sets the interval that local hardware events may be suppressed following the posting of a Quartz
event.

CGEventSourceGetPixelsPerLine (page 1590)
Gets the scale of pixels per line in a scrolling event source.

CGEventSourceSetPixelsPerLine (page 1594)
Sets the scale of pixels per line in a scrolling event source.

CGEventSourceGetLocalEventsSuppressionInterval (page 1589) Deprecated in Mac OS X v10.4
Returns the interval that local hardware events may be suppressed following the posting of a Quartz
event.

Obsolete Functions

CGPostKeyboardEvent (page 1600)
Synthesizes a low-level keyboard event on the local machine.

CGPostMouseEvent (page 1601)
Synthesizes a low-level mouse-button event on the local machine.

CGPostScrollWheelEvent (page 1602)
Synthesizes a low-level scrolling event on the local machine.

CGEnableEventStateCombining (page 1571)
Enables or disables the merging of actual key and mouse state with the application-specified state
in a synthetic event.

CGInhibitLocalEvents (page 1600)
Turns off local hardware events in the current session.

CGSetLocalEventsFilterDuringSuppressionState (page 1603)
Filters local hardware events from the keyboard and mouse during the short interval after a synthetic
event is posted.

CGSetLocalEventsSuppressionInterval (page 1603)
Sets the time interval in seconds that local hardware events are suppressed after posting a synthetic
event.

CGEventGetSource (page 1578) Deprecated in Mac OS X v10.4
Returns a Quartz event source created from an existing Quartz event. (Deprecated. Use
CGEventCreateSourceFromEvent (page 1576) instead.)

1570 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Functions

CGEnableEventStateCombining
Enables or disables the merging of actual key and mouse state with the application-specified state in a
synthetic event.

CGError CGEnableEventStateCombining (
 boolean_t doCombineState
);

Parameters
doCombineState

Pass true to specify that the actual key and mouse state are merged with the application-specified
state in a synthetic event; otherwise, pass false.

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
By default, the flags that indicate modifier key state (Command, Option, Shift, Control, and so on) from the
system's keyboard and from other event sources are ORed together as an event is posted into the system,
and current key and mouse button state is considered in generating new events. This function allows your
application to enable or disable the merging of event state. When combining is turned off, the event state
propagated in the events posted by your application reflect state built up only by your application. The state
within your application’s generated event will not be combined with the system's current state, so the
system-wide state reflecting key and mouse button state will remain unchanged. When called with
doCombineState equal to false, this function initializes local (per application) state tracking information
to a state of all keys, modifiers, and mouse buttons up. When called with doCombineState equal to true,
the current global state of keys, modifiers, and mouse buttons are used in generating events.

This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is to use Quartz events and Quartz event sources.
This allows you to control exactly which, if any, external event sources will contribute to the state used to
create an event.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CGRemoteOperation.h

CGEventCreate
Returns a new Quartz event.

Functions 1571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventRef CGEventCreate (
 CGEventSourceRef source
);

Parameters
source

The event source, or NULL to use a default source.

Return Value
A new event to be filled in, or NULL if the event could not be created. When you no longer need the event,
you should release it using the function CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateCopy
Returns a copy of an existing Quartz event.

CGEventRef CGEventCreateCopy (
 CGEventRef event
);

Parameters
event

The event being copied.

Return Value
A copy of the specified event. When you no longer need the copy, you should release it using the function
CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateData
Returns a flattened data representation of a Quartz event.

CFDataRef CGEventCreateData (
 CFAllocatorRef allocator,
 CGEventRef event
);

Parameters
allocator

The allocator to use to allocate memory for the data object. To use the current default allocator, pass
NULL or kCFAllocatorDefault.

1572 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

event
The event to flatten.

Return Value
The flattened data representation of the event, or NULL if the event parameter is invalid. When you no longer
need the data object, you should release it using the function CFRelease.

Discussion
You can use this function to flatten an event for network transport to another system.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateFromData
Returns a Quartz event created from a flattened data representation of the event.

CGEventRef CGEventCreateFromData (
 CFAllocatorRef allocator,
 CFDataRef eventData
);

Parameters
allocator

The allocator to use to allocate memory for the event object. To use the current default allocator, pass
NULL or kCFAllocatorDefault.

eventData
The flattened data representation of the event to reconstruct.

Return Value
An event built from the flattened data representation, or NULL if the eventData parameter is invalid.

Discussion
You can use this function to reconstruct a Quartz event received by network transport from another system.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateKeyboardEvent
Returns a new Quartz keyboard event.

Functions 1573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventRef CGEventCreateKeyboardEvent (
 CGEventSourceRef source,
 CGKeyCode virtualKey,
 bool keyDown
);

Parameters
source

An event source taken from another event, or NULL.

virtualKey
The virtual key code for the event.

keyDown
Pass true to specify that the key position is down. To specify that the key position is up, pass false.
This value is used to determine the type of the keyboard event—see “Event Types” (page 1623).

Return Value
A new keyboard event, or NULL if the event could not be created. When you no longer need the event, you
should release it using the function CFRelease.

Discussion
All keystrokes needed to generate a character must be entered, including modifier keys. For example, to
produce a 'Z', the SHIFT key must be down, the 'z' key must go down, and then the SHIFT and 'z' key must
be released:

CGEventRef event1, event2, event3, event4;
event1 = CGEventCreateKeyboardEvent (NULL, (CGKeyCode)56, true);
event2 = CGEventCreateKeyboardEvent (NULL, (CGKeyCode)6, true);
event3 = CGEventCreateKeyboardEvent (NULL, (CGKeyCode)6, false);
event4 = CGEventCreateKeyboardEvent (NULL, (CGKeyCode)56, false);

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateMouseEvent
Returns a new Quartz mouse event.

CGEventRef CGEventCreateMouseEvent (
 CGEventSourceRef source,
 CGEventType mouseType,
 CGPoint mouseCursorPosition,
 CGMouseButton mouseButton
);

Parameters
source

An event source taken from another event, or NULL.

mouseType
A mouse event type. Pass one of the constants listed in “Event Types” (page 1623).

1574 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

mouseCursorPosition
The position of the mouse cursor in global coordinates.

mouseButton
The button that’s changing state. Pass one of the constants listed in “Mouse Buttons” (page 1626). This
parameter is ignored unless the mouseType parameter is kCGEventOtherMouseDown,
kCGEventOtherMouseDragged, or kCGEventOtherMouseUp.

Return Value
A new mouse event, or NULL if the event could not be created. When you no longer need the event, you
should release it using the function CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventCreateScrollWheelEvent
Returns a new Quartz scrolling event.

CGEventRef CGEventCreateScrollWheelEvent (
 CGEventSourceRef source,
 CGScrollEventUnit units,
 CGWheelCount wheelCount,
 int32_t wheel1,

);

Parameters
source

An event source taken from another event, or NULL.

units
The unit of measurement for the scrolling event. Pass one of the constants listed in “Scrolling Event
Units” (page 1627).

wheelCount
The number of scrolling devices on the mouse, up to a maximum of 3.

wheel1
A value that reflects the movement of the primary scrolling device on the mouse. Scrolling movement
is generally represented by small signed integer values, typically in a range from -10 to +10. Large
values may have unexpected results, depending on the application that processes the event.

...
Up to two values that reflect the movements of the other scrolling devices on the mouse, if any.

Return Value
A new scrolling event, or NULL if the event could not be created. When you no longer need the event, you
should release it using the function CFRelease.

Discussion
This function allows you to create a scrolling event and customize the event before posting it to the event
system.

Functions 1575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGEvent.h

CGEventCreateSourceFromEvent
Returns a Quartz event source created from an existing Quartz event.

CGEventSourceRef CGEventCreateSourceFromEvent (
 CGEventRef event
);

Parameters
event

The event to access.

Return Value
An event source created from the specified event, or NULL if the event was generated with a private event
source owned by another process. When you no longer need this event source, you should release it using
the function CFRelease.

Discussion
Event filters may use the event source to generate events that are compatible with an event being filtered.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventGetDoubleValueField
Returns the floating-point value of a field in a Quartz event.

double CGEventGetDoubleValueField (
 CGEventRef event,
 CGEventField field
);

Parameters
event

The event to access.

field
A field in the specified event. Pass one of the constants listed in “Event Fields” (page 1610).

Return Value
A floating point representation of the current value of the specified field.

Discussion
In cases where the field value is represented within the event by a fixed point number or an integer, the
result is scaled to the appropriate range as part of creating the floating point representation.

1576 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventGetFlags
Returns the event flags of a Quartz event.

CGEventFlags CGEventGetFlags (
 CGEventRef event
);

Parameters
event

The event to access.

Return Value
The current flags of the specified event. For more information, see “Event Flags” (page 1618).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventGetIntegerValueField
Returns the integer value of a field in a Quartz event.

int64_t CGEventGetIntegerValueField (
 CGEventRef event,
 CGEventField field
);

Parameters
event

The event to access.

field
A field in the specified event. Pass one of the constants listed in “Event Fields” (page 1610).

Return Value
A 64-bit integer representation of the current value of the specified field.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

Functions 1577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventGetLocation
Returns the location of a Quartz mouse event.

CGPoint CGEventGetLocation (
 CGEventRef event
);

Parameters
event

The mouse event to locate.

Return Value
The current location of the specified mouse event in global display coordinates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventGetSource
Returns a Quartz event source created from an existing Quartz event. (Deprecated in Mac OS X v10.4. Use
CGEventCreateSourceFromEvent (page 1576) instead.)

CGEventSourceRef CGEventGetSource (
 CGEventRef event
);

Availability
Available in Mac OS X v10.4 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
CGEvent.h

CGEventGetTimestamp
Returns the timestamp of a Quartz event.

CGEventTimestamp CGEventGetTimestamp (
 CGEventRef event
);

Parameters
event

The event to access.

Return Value
The current timestamp of the specified event.

Availability
Available in Mac OS X v10.4 and later.

1578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEvent.h

CGEventGetType
Returns the event type of a Quartz event (left mouse down, for example).

CGEventType CGEventGetType (
 CGEventRef event
);

Parameters
event

The event to access.

Return Value
The current event type of the specified event. The return value is one of the constants listed in “Event
Types” (page 1623).

Availability
Available in Mac OS X v10.4 and later.

See Also
CGEventSetType (page 1586)

Declared In
CGEvent.h

CGEventGetTypeID
Returns the type identifier for the opaque type CGEventRef.

CFTypeID CGEventGetTypeID (
 void
);

Return Value
The Core Foundation type identifier for the opaque type CGEventRef (page 1606).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventGetUnflippedLocation
Returns the location of a Quartz mouse event.

Functions 1579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGPoint CGEventGetUnflippedLocation (
 CGEventRef event
);

Parameters
event

The mouse event whose location you wish to obtain.

Return Value
The current location of the specified mouse event relative to the lower-left corner of the main display.

Discussion
This function returns the location of the mouse cursor associated with the event. The coordinate system used
is relative to the lower-left corner of the main display, and is compatible with the global coordinate system
used by the Application Kit.

Note that the y-coordinate of the returned location is off by one from an idealized coordinate system
originating at the lower-left corner of the main display. Effectively, the function is defined as follows:

CGPoint p = CGEventGetLocation(event);
p.y = main_display_height - p.y;
/* not p.y = (main_display_height - 1) - p.y */
return p;

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGEvent.h

CGEventKeyboardGetUnicodeString
Returns the Unicode string associated with a Quartz keyboard event.

void CGEventKeyboardGetUnicodeString (
 CGEventRef event,
 UniCharCount maxStringLength,
 UniCharCount *actualStringLength,
 UniChar unicodeString[]
);

Parameters
event

The keyboard event to access.

maxStringLength
The length of the array you provide in the unicodeString parameter.

actualStringLength
A pointer to a UniCharCount variable. On return, the variable contains the actual count of Unicode
characters in the event data.

unicodeString
A pointer to a UniChar array. You are responsible for allocating storage for the array. On return, your
array contains the Unicode string associated with the specified event.

1580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Discussion
When you call this function and specify a NULL string or a maximum string length of 0, the function still
returns the actual count of Unicode characters in the event data.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventKeyboardSetUnicodeString
Sets the Unicode string associated with a Quartz keyboard event.

void CGEventKeyboardSetUnicodeString (
 CGEventRef event,
 UniCharCount stringLength,
 const UniChar unicodeString[]
);

Parameters
event

The keyboard event to access.

stringLength
The length of the array you provide in the unicodeString parameter.

unicodeString
An array that contains the new Unicode string associated with the specified event.

Discussion
By default, the system translates the virtual key code in a keyboard event into a Unicode string based on the
keyboard ID in the event source. This function allows you to manually override this string. Note that application
frameworks may ignore the Unicode string in a keyboard event and do their own translation based on the
virtual keycode and perceived event state.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventMaskBit
Generates an event mask for a single type of event.

CGEventMask CGEventMaskBit (
 CGEventType eventType
);

Parameters
eventType

An event type constant. Pass one of the constants listed in “Event Types” (page 1623).

Functions 1581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Return Value
An event mask that represents the specified event.

Discussion
This macro converts an event type constant into a mask. You can use this mask to specify that an event tap
should observe the event. For more information, see CGEventMask (page 1606).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventPost
Posts a Quartz event into the event stream at a specified location.

void CGEventPost (
 CGEventTapLocation tap,
 CGEventRef event
);

Parameters
tap

The location at which to post the event. Pass one of the constants listed in “Event Tap Locations” (page
1621).

event
The event to post.

Discussion
This function posts the specified event immediately before any event taps instantiated for that location, and
the event passes through any such taps.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventPostToPSN
Posts a Quartz event into the event stream for a specific application.

void CGEventPostToPSN (
 void *processSerialNumber,
 CGEventRef event
);

Parameters
processSerialNumber

The process to receive the event.

event
The event to post.

1582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Discussion
This function makes it possible for an application to establish an event routing policy, for example, by tapping
events at the kCGAnnotatedSessionEventTap location and then posting the events to another desired
process.

This function posts the specified event immediately before any event taps instantiated for the specified
process, and the event passes through any such taps.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetDoubleValueField
Sets the floating-point value of a field in a Quartz event.

void CGEventSetDoubleValueField (
 CGEventRef event,
 CGEventField field,
 double value
);

Parameters
event

The event to access.

field
A field in the specified event. Pass one of the constants listed in “Event Fields” (page 1610).

value
The new value of the specified field.

Discussion
Before calling this function, the event type must be set using a typed event creation function such as
CGEventCreateMouseEvent (page 1574), or by calling CGEventSetType (page 1586).

In cases where the field’s value is represented within the event by a fixed point number or integer, the value
parameter is scaled as needed and converted to the appropriate type.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetFlags
Sets the event flags of a Quartz event.

Functions 1583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

void CGEventSetFlags (
 CGEventRef event,
 CGEventFlags flags
);

Parameters
event

The event to access.

location
The new flags of the specified event. See “Event Flags” (page 1618).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetIntegerValueField
Sets the integer value of a field in a Quartz event.

void CGEventSetIntegerValueField (
 CGEventRef event,
 CGEventField field,
 int64_t value
);

Parameters
event

The event to access.

field
A field in the specified event. Pass one of the constants listed in “Event Fields” (page 1610).

value
The new value of the specified field.

Discussion
Before calling this function, the event type must be set using a typed event creation function such as
CGEventCreateMouseEvent (page 1574), or by calling CGEventSetType (page 1586).

If you are creating a mouse event generated by a tablet, call this function and specify the field
kCGMouseEventSubtype with a value of kCGEventMouseSubtypeTabletPoint or
kCGEventMouseSubtypeTabletProximity before setting other parameters.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetLocation
Sets the location of a Quartz mouse event.

1584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

void CGEventSetLocation (
 CGEventRef event,
 CGPoint location
);

Parameters
event

The mouse event whose location to set.

location
The new location of the specified mouse event in global display coordinates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetSource
Sets the event source of a Quartz event.

void CGEventSetSource (
 CGEventRef event,
 CGEventSourceRef source
);

Parameters
event

The event to access.

source
The new event source of the specified event.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetTimestamp
Sets the timestamp of a Quartz event.

void CGEventSetTimestamp (
 CGEventRef event,
 CGEventTimestamp timestamp
);

Parameters
event

The event to access.

timestamp
The new timestamp of the specified event.

Functions 1585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventSetType
Sets the event type of a Quartz event (left mouse down, for example).

void CGEventSetType (
 CGEventRef event,
 CGEventType type
);

Parameters
event

The event to access.

type
The new event type of the specified event. The return value is one of the constants listed in “Event
Types” (page 1623).

Availability
Available in Mac OS X v10.4 and later.

See Also
CGEventGetType (page 1579)

Declared In
CGEvent.h

CGEventSourceButtonState
Returns a Boolean value indicating the current button state of a Quartz event source.

bool CGEventSourceButtonState (
 CGEventSourceStateID sourceState,
 CGMouseButton button
);

Parameters
sourceState

The source state to access. Pass one of the constants listed in “Event Source States” (page 1619).

button
The mouse button to test. Pass one of the constants listed in “Mouse Buttons” (page 1626).

Return Value
If true, the button is down. If false, the button is up.

Availability
Available in Mac OS X v10.4 and later.

1586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEventSource.h

CGEventSourceCounterForEventType
Returns a count of events of a given type seen since the window server started.

uint32_t CGEventSourceCounterForEventType (
 CGEventSourceStateID source,
 CGEventType evType
);

Parameters
sourceState

The source state to access. Pass one of the constants listed in “Event Source States” (page 1619).

eventType
The event type to access. To get the count of input events—keyboard, mouse, or tablet—specify
kCGAnyInputEventType.

Return Value
The count of events of the specified type seen since the window server started.

Discussion
Quartz provides these counters for applications that monitor user activity. For example, an application could
prompt a typist to take a break to reduce repetitive stress injuries.

Modifier keys produce kCGEventFlagsChanged events, not kCGEventKeyDown events, and do so both on
press and release. The volume, brightness, and CD eject keys on some keyboards (both desktop and laptop)
do not generate key up or key down events.

For various reasons, the number of key up and key down events may not be the same when all keyboard
keys are up. As a result, a mismatch does not necessarily indicate that some keys are down.

Key autorepeat events are not counted.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceCreate
Returns a Quartz event source created with a specified source state.

CGEventSourceRef CGEventSourceCreate (
 CGEventSourceStateID sourceState
);

Parameters
sourceState

The event state table to use for this event source. Pass one of the constants listed in “Event Source
States” (page 1619).

Functions 1587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Return Value
A new event source, or NULL if the specified source state is not valid. When you no longer need the event
source, you should release it using the function CFRelease.

Discussion
If two or more event sources are using the same source state and one of them is released, the remaining
event sources will behave as if all keys and buttons on input devices are up in generating new events from
this source.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceFlagsState
Returns the current flags of a Quartz event source.

CGEventFlags CGEventSourceFlagsState (
 CGEventSourceStateID sourceState
);

Parameters
sourceState

The source state to access. Pass one of the constants listed in “Event Source States” (page 1619).

Return Value
The current flags of the specified event source. For more information, see “Event Flags” (page 1618).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceGetKeyboardType
Returns the keyboard type to be used with a Quartz event source.

CGEventSourceKeyboardType CGEventSourceGetKeyboardType (
 CGEventSourceRef source
);

Parameters
source

The event source to access. Pass one of the constants listed in “Event Source States” (page 1619).

Return Value
The keyboard type to be used with the specified event source.

Availability
Available in Mac OS X v10.4 and later.

1588 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEventSource.h

CGEventSourceGetLocalEventsFilterDuringSuppressionState
Returns the mask that indicates which classes of local hardware events are enabled during event suppression.

CGEventFilterMask CGEventSourceGetLocalEventsFilterDuringSuppressionState (
 CGEventSourceRef source,
 CGEventSuppressionState state
);

Parameters
source

The event source to access.

state
The type of event suppression interval during which the filter is applied. Pass one of the constants
listed in “Event Suppression States” (page 1621).

Return Value
A mask that specifies the categories of local hardware events to enable during the event suppression interval.
See “Event Filter Masks” (page 1618).

Discussion
You can configure the system to suppress local hardware events from the keyboard or mouse during a short
interval after a Quartz event is posted or during a synthetic mouse drag (mouse movement with the left or
only mouse button down). For information about setting this local events filter, see
CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593).

This function lets you specify an event source and a suppression state (event suppression interval or mouse
drag), and returns a filter mask of event categories to be passed through during suppression.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceGetLocalEventsSuppressionInterval
Returns the interval that local hardware events may be suppressed following the posting of a Quartz event.

CFTimeInterval CGEventSourceGetLocalEventsSuppressionInterval (
 CGEventSourceRef source
);

Parameters
source

The event source to access.

Discussion
By default, the system does not suppress local hardware events from the keyboard or mouse during a short
interval after a Quartz event is posted. You can use the function
CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593) to modify this behavior.

Functions 1589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

This function gets the period of time in seconds that local hardware events may be suppressed after posting
a Quartz event created with the specified event source. You can use the function
CGEventSourceSetLocalEventsSuppressionInterval (page 1594) to change this time interval.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceGetPixelsPerLine
Gets the scale of pixels per line in a scrolling event source.

double CGEventSourceGetPixelsPerLine (
 CGEventSourceRef source
);

Parameters
source

The event source to access.

Return Value
The scale of pixels per line in a scrolling event.

Discussion
This function returns the scale of pixels per line in the specified event source. For example, if the scale in the
event source is 10.5 pixels per line, this function would return 10.5. Every scrolling event can be interpreted
to be scrolling by pixel or by line. By default, the scale is about ten pixels per line. You can alter the scale
with the function CGEventSourceSetPixelsPerLine.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGEventSourceSetPixelsPerLine (page 1594)

Declared In
CGEventSource.h

CGEventSourceGetSourceStateID
Returns the source state associated with a Quartz event source.

CGEventSourceStateID CGEventSourceGetSourceStateID (
 CGEventSourceRef source
);

Parameters
source

The event source to access.

Return Value
The source state associated with the specified event source.

1590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Discussion
This function returns the ID of the source state table associated with an event source.

For event sources created with the kCGEventSourceStatePrivate source state, this function returns the
ID of the private source state table created for the event source. This unique ID may be passed to the
CGEventSourceCreate function to create a second event source sharing the same state table. This may
be useful, for example, in creating separate mouse and keyboard sources which share a common private
state.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceGetTypeID
Returns the type identifier for the opaque type CGEventSourceRef.

CFTypeID CGEventSourceGetTypeID (
 void
);

Return Value
The Core Foundation type identifier for the opaque type CGEventSourceRef (page 1607).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceGetUserData
Returns the 64-bit user-specified data for a Quartz event source.

int64_t CGEventSourceGetUserData (
 CGEventSourceRef source
);

Parameters
source

The event source to access.

Return Value
The user-specified data.

Discussion
Each input event includes 64 bits of user-specified data. This function gets the user-specified data for all
events created by the specified event source. This data may also be obtained per event using the
CGEventGetIntegerValueField (page 1577) function.

Availability
Available in Mac OS X v10.4 and later.

Functions 1591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEventSource.h

CGEventSourceKeyState
Returns a Boolean value indicating the current keyboard state of a Quartz event source.

bool CGEventSourceKeyState (
 CGEventSourceStateID sourceState,
 CGKeyCode key
);

Parameters
sourceState

The source state to access. Pass one of the constants listed in “Event Source States” (page 1619).

key
The virtual key code to test.

Return Value
If true, the key is down. If false, the key is up.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceSecondsSinceLastEventType
Returns the elapsed time since the last event for a Quartz event source.

CFTimeInterval CGEventSourceSecondsSinceLastEventType (
 CGEventSourceStateID source,
 CGEventType eventType
);

Parameters
source

The source state to access. Pass one of the constants listed in “Event Source States” (page 1619).

eventType
The event type to access. To get the elapsed time since the previous input event—keyboard, mouse,
or tablet—specify kCGAnyInputEventType.

Return Value
The time in seconds since the previous input event of the specified type.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

1592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventSourceSetKeyboardType
Sets the keyboard type to be used with a Quartz event source.

void CGEventSourceSetKeyboardType (
 CGEventSourceRef source,
 CGEventSourceKeyboardType keyboardType
);

Parameters
source

The event source to access.

keyboardType
The keyboard type to be used with the specified event source.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceSetLocalEventsFilterDuringSuppressionState
Sets the mask that indicates which classes of local hardware events are enabled during event suppression.

void CGEventSourceSetLocalEventsFilterDuringSuppressionState (
 CGEventSourceRef source,
 CGEventFilterMask filter,
 CGEventSuppressionState state
);

Parameters
source

The event source to access.

filter
A mask that specifies the categories of local hardware events to enable during the event suppression
interval. See “Event Filter Masks” (page 1618).

state
The type of event suppression interval during which the filter is applied. Pass one of the constants
listed in “Event Suppression States” (page 1621).

Discussion
By default, the system does not suppress local hardware events from the keyboard or mouse during a short
interval after a Quartz event is posted—seeCGEventSourceSetLocalEventsSuppressionInterval (page
1594)—and during a synthetic mouse drag (mouse movement with the left or only mouse button down).

Some applications may want to disable events from some of the local hardware during this interval. For
example, if you post mouse events only, you may wish to suppress local mouse events and permit local
keyboard events to pass through. This function lets you specify an event source, a suppression state (event
suppression interval or mouse drag), and a filter mask of event classes to be passed through. The new local
events filter takes effect with the next Quartz event you post using this event source.

Availability
Available in Mac OS X v10.4 and later.

Functions 1593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEventSource.h

CGEventSourceSetLocalEventsSuppressionInterval
Sets the interval that local hardware events may be suppressed following the posting of a Quartz event.

void CGEventSourceSetLocalEventsSuppressionInterval (
 CGEventSourceRef source,
 CFTimeInterval seconds
);

Parameters
source

The event source to access.

seconds
The period of time in seconds that local hardware events (keyboard or mouse) are suppressed after
posting a Quartz event created with the specified event source. The value should be a number in the
range [0.0, 10.0].

Discussion
By default, the system does not suppress local hardware events from the keyboard or mouse during a short
interval after a Quartz event is posted. You can use the function
CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593) to modify this behavior.

This function sets the period of time in seconds that local hardware events may be suppressed after posting
a Quartz event created with the specified event source. The default suppression interval is 0.25 seconds.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventSourceSetPixelsPerLine
Sets the scale of pixels per line in a scrolling event source.

void CGEventSourceSetPixelsPerLine (
 CGEventSourceRef source,
 double pixelsPerLine
);

Parameters
source

The event source to access.

pixelsPerLine
The scale of pixels per line in the specified event source.

1594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Discussion
This function sets the scale of pixels per line in the specified event source. For example, if you pass the value
12.0 in the pixelsPerLine parameter, the scale of pixels per line in the event source would be changed to
12.0. Every scrolling event can be interpreted to be scrolling by pixel or by line. By default, the scale is about
ten pixels per line. You can retrieve the scale with the function CGEventSourceGetPixelsPerLine.

Availability
Available in Mac OS X v10.5 and later.

See Also
CGEventSourceGetPixelsPerLine (page 1590)

Declared In
CGEventSource.h

CGEventSourceSetUserData
Sets the 64-bit user-specified data for a Quartz event source.

void CGEventSourceSetUserData (
 CGEventSourceRef source,
 int64_t userData
);

Parameters
source

The event source to access.

userData
The user-specified data. For example, you could specify a vendor hardware ID.

Discussion
Each input event includes 64 bits of user-specified data. This function sets the user-specified data for all
events created by the specified event source. This data may also be set per event using the
CGEventGetIntegerValueField (page 1577) function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventSource.h

CGEventTapCreate
Creates an event tap.

Functions 1595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CFMachPortRef CGEventTapCreate (
 CGEventTapLocation tap,
 CGEventTapPlacement place,
 CGEventTapOptions options,
 CGEventMask eventsOfInterest,
 CGEventTapCallBack callback,
 void *refcon
);

Parameters
tap

The location of the new event tap. Pass one of the constants listed in “Event Tap Locations” (page
1621). Only processes running as the root user may locate an event tap at the point where HID events
enter the window server; for other users, this function returns NULL.

place
The placement of the new event tap in the list of active event taps. Pass one of the constants listed
in “Event Tap Placement” (page 1622).

options
A constant that specifies whether the new event tap is a passive listener or an active filter.

eventsOfInterest
A bit mask that specifies the set of events to be observed. For a list of possible events, see “Event
Types” (page 1623). For information on how to specify the mask, see CGEventMask (page 1606). If the
event tap is not permitted to monitor one or more of the events specified in the eventsOfInterest
parameter, then the appropriate bits in the mask are cleared. If that action results in an empty mask,
this function returns NULL.

callback
An event tap callback function that you provide. Your callback function is invoked from the run loop
to which the event tap is added as a source. The thread safety of the callback is defined by the run
loop’s environment. To learn more about event tap callbacks, see CGEventTapCallBack (page 1604).

refcon
A pointer to user-defined data. This pointer is passed into the callback function specified in the
callback parameter.

Return Value
A Core Foundation mach port that represents the new event tap, or NULL if the event tap could not be
created. When you are finished using the event tap, you should release the mach port using the function
CFRelease. Releasing the mach port also releases the tap.

Discussion
Event taps receive key up and key down events if one of the following conditions is true:

 ■ The current process is running as the root user.

 ■ Access for assistive devices is enabled. In Mac OS X v10.4, you can enable this feature using System
Preferences, Universal Access panel, Keyboard view.

After creating an event tap, you can add it to a run loop as follows:

1. Pass the event tap to the CFMachPortCreateRunLoopSource function to create a run loop event
source.

2. Call the CFRunLoopAddSource function to add the source to the appropriate run loop.

1596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventTapCreateForPSN
Creates an event tap for a specified process.

CFMachPortRef CGEventTapCreateForPSN (
 void *processSerialNumber,
 CGEventTapPlacement place,
 CGEventTapOptions options,
 CGEventMask eventsOfInterest,
 CGEventTapCallBack callback,
 void *refcon
);

Parameters
processSerialNumber

The process to monitor.

place
The placement of the new event tap in the list of active event taps. Pass one of the constants listed
in “Event Tap Placement” (page 1622).

options
A constant that specifies whether the new event tap is a passive listener or an active filter.

eventsOfInterest
A bit mask that specifies the set of events to be observed. For a list of possible events, see “Event
Types” (page 1623). For information on how to specify the mask, see CGEventMask (page 1606). If the
event tap is not permitted to monitor one or more of the events specified in the eventsOfInterest
parameter, then the appropriate bits in the mask are cleared. If that action results in an empty mask,
this function returns NULL.

callback
An event tap callback function that you provide. Your callback function is invoked from the run loop
to which the event tap is added as a source. The thread safety of the callback is defined by the run
loop’s environment. To learn more about event tap callbacks, see CGEventTapCallBack (page 1604).

refcon
A pointer to user-defined data. This pointer is passed into the callback function specified in the
callback parameter.

Return Value
A Core Foundation mach port that represents the new event tap, or NULL if the event tap could not be
created. When you are finished using the event tap, you should release the mach port using the function
CFRelease. Releasing the mach port also releases the tap.

Discussion
This function creates an event tap that receives events being routed by the window server to the specified
process. For more information about creating event taps, see CGEventTapCreate (page 1595).

Availability
Available in Mac OS X v10.4 and later.

Functions 1597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGEvent.h

CGEventTapEnable
Enables or disables an event tap.

void CGEventTapEnable (
 CFMachPortRef myTap,
 bool enable
);

Parameters
myTap

The event tap to enable or disable.

enable
Pass true to enable the event tap. To disable it, pass false.

Discussion
Event taps are normally enabled when created. If an event tap becomes unresponsive, or if a user requests
that event taps be disabled, then a kCGEventTapDisabled event is passed to the event tap callback function.
Event taps may be re-enabled by calling this function.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGEventTapIsEnabled
Returns a Boolean value indicating whether an event tap is enabled.

bool CGEventTapIsEnabled (
 CFMachPortRef myTap
);

Parameters
myTap

The event tap to test.

Return Value
If true, the specified event tap is enabled; otherwise, false.

Discussion
For more information, see the function CGEventTapEnable (page 1598).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

1598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventTapPostEvent
Posts a Quartz event from an event tap into the event stream.

void CGEventTapPostEvent (
 CGEventTapProxy proxy,
 CGEventRef event
);

Parameters
proxy

A proxy that identifies the event tap posting the event. Your event tap callback function is passed
this proxy when it is invoked.

event
The event to post.

Discussion
You can use this function to post a new event at the same point to which an event returned from an event
tap callback function would be posted. The new event enters the system before the event returned by the
callback enters the system. Events posted into the system will be seen by all taps placed after the tap posting
the event.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGGetEventTapList
Gets a list of currently installed event taps.

CGError CGGetEventTapList (
 CGTableCount maxNumberOfTaps,
 CGEventTapInformation tapList[],
 CGTableCount *eventTapCount
);

Parameters
maxNumberOfTaps

The length of the array you provide in the tapList parameter.

tapList
An array of event tap information structures. You are responsible for allocating storage for the array.
On return, your array contains a list of currently installed event taps. If you pass NULL in this parameter,
the maxNumberOfTaps parameter is ignored, and the eventTapCount variable is filled in with the
number of event taps that are currently installed.

eventTapCount
A pointer to a CGTableCount variable. On return, the variable contains actual number of array
elements filled in.

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Functions 1599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Discussion
Each call to this function has the side effect of resetting the minimum and maximum latency values in the
tapList parameter to the corresponding average values. Values reported in these fields reflect the minimum
and maximum values seen since the preceding call, or the instantiation of the tap. This allows a monitoring
tool to evaluate the best and worst case latency over time and under various operating conditions.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEvent.h

CGInhibitLocalEvents
Turns off local hardware events in the current session.

CGError CGInhibitLocalEvents (
 boolean_t doInhibit
);

Parameters
doInhibit

Pass true to specify that local hardware events on the remote system should be inhibited; otherwise,
pass false.

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
This function is typically used during remote operation of a system to disconnect the keyboard and mouse
for a short period of time, as in automated system testing or telecommuting applications.

The CGInhibitLocalEvents function is not recommended for general use because of undocumented
special cases and undesirable side effects. For example, this function can permanently disable the keyboard
and mouse, rendering the system unusable. The recommended replacement for this function is
CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593).

Special Considerations

In Mac OS X v10.2 and earlier, this function inhibits local events only after a synthetic keyboard or mouse
event is posted by the calling application. In Mac OS X v10.3 and later, event inhibition takes effect immediately.
If your application terminates for any reason, event inhibition on the remote system is immediately turned
off.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGPostKeyboardEvent
Synthesizes a low-level keyboard event on the local machine.

1600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGError CGPostKeyboardEvent (
 CGCharCode keyChar,
 CGKeyCode virtualKey,
 boolean_t keyDown
);

Parameters
keyChar

The value of the character to generate, or 0 to specify that the system should guess an appropriate
value based on the default key mapping.

virtualKey
The virtual key code for the event. See CGKeyCode (page 1609).

keyDown
Pass true to specify that the key position is down; otherwise, pass false.

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is CGEventCreateKeyboardEvent (page 1573),
which allows you to create a keyboard event and customize the event before posting it to the event system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGPostMouseEvent
Synthesizes a low-level mouse-button event on the local machine.

CGError CGPostMouseEvent (
 CGPoint mouseCursorPosition,
 boolean_t updateMouseCursorPosition,
 CGButtonCount buttonCount,
 boolean_t mouseButtonDown,
 ...
);

Parameters
mouseCursorPosition

The new coordinates of the mouse in global display space.

updateMouseCursorPosition
Pass true if the on-screen cursor should be moved to the location specified in the
mouseCursorPosition parameter; otherwise, pass false.

buttonCount
The number of mouse buttons, up to a maximum of 32.

mouseButtonDown
Pass true to specify that the primary or left mouse button is down; otherwise, pass false.

Functions 1601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

...
Zero or more Boolean values that specify whether the remaining mouse buttons are down (true) or
up (false). The second value, if any, should specify the state of the secondary mouse button (right).
A third value would specify the state of the center button, and the remaining buttons would be in
USB device order.

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
Based on the arguments you pass to this function, the function generates the appropriate mouse-down,
mouse-up, mouse-move, or mouse-drag events by comparing the new state with the current state.

This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is CGEventCreateMouseEvent (page 1574),
which allows you to create a mouse event and customize the event before posting it to the event system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGPostScrollWheelEvent
Synthesizes a low-level scrolling event on the local machine.

CGError CGPostScrollWheelEvent (
 CGWheelCount wheelCount,
 int32_t wheel1,
 ...
);

Parameters
wheelCount

The number of scrolling devices, up to a maximum of 3.

wheel1
A value that reflects the movement of the primary scrolling device on the mouse.

...
Up to two values that reflect the movements of the other scrolling devices on the mouse (if any).

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
Scrolling movement is generally represented by small signed integer values, typically in a range from -10 to
+10. Large values may have unexpected results, depending on the application that processes the event.

This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is CGEventCreateScrollWheelEvent (page
1575), which allows you to create a scrolling event and customize the event before posting it to the event
system.

Availability
Available in Mac OS X v10.0 and later.

1602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGRemoteOperation.h

CGSetLocalEventsFilterDuringSuppressionState
Filters local hardware events from the keyboard and mouse during the short interval after a synthetic event
is posted.

CGError CGSetLocalEventsFilterDuringSuppressionState (
 CGEventFilterMask filter,
 CGEventSuppressionState state
);

Parameters
filter

The class of local hardware events to enable after a synthetic event is posted. Pass one of the constants
listed in “Event Filter Masks” (page 1618).

state
The type of interval during which the filter is applied. Pass one of the constants listed in “Event
Suppression States” (page 1621).

Return Value
A result code. See the result codes described in Quartz Display Services Reference.

Discussion
By default, the system suppresses local hardware events from the keyboard and mouse during a short interval
after a synthetic event is posted and during a synthetic mouse drag (mouse movement with the left or only
mouse button down).

Some applications may want to enable events from some of the local hardware. For example, if you post
mouse events only, you may wish to permit local keyboard hardware events to pass through.

This function lets you specify a state (event suppression interval or mouse drag), and a mask of event categories
to be passed through. The new filter state takes effect with the next synthetic event you post.

This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is
CGEventSourceSetLocalEventsFilterDuringSuppressionState (page 1593), which allows the filter
behavior to be associated only with events created from a specific event source.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CGRemoteOperation.h

CGSetLocalEventsSuppressionInterval
Sets the time interval in seconds that local hardware events are suppressed after posting a synthetic event.

Functions 1603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGError CGSetLocalEventsSuppressionInterval (
 CFTimeInterval seconds
);

Parameters
seconds

The desired time interval in seconds. The value should be a number in the range [0.0, 10.0].

Return Value
A result code. If the seconds parameter is outside the allowed range, returns kCGErrorRangeCheck.

Discussion
This function determines how long local events matching an event filter are to be suppressed following the
posting of a synthetic event. The default time interval for event suppression is 0.25 seconds.

This function is not recommended for general use because of undocumented special cases and undesirable
side effects. The recommended replacement for this function is
CGEventSourceSetLocalEventsSuppressionInterval (page 1594), which allows the suppression interval
to be adjusted for a specific event source, affecting only events posted using that event source.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

Callbacks

CGEventTapCallBack
A client-supplied callback function that’s invoked whenever an associated event tap receives a Quartz event.

typedef CGEventRef (*CGEventTapCallBack) (
 CGEventTapProxy proxy,
 CGEventType type,
 CGEventRef event,
 void *refcon
);

If you name your function MyEventTapCallBack, you would declare it like this:

CGEventRef MyEventTapCallBack (
 CGEventTapProxy proxy,
 CGEventType type,
 CGEventRef event,
 void *refcon
);

Parameters
proxy

A proxy for the event tap. See CGEventTapProxy (page 1609). This callback function may pass this
proxy to other functions such as the event-posting routines.

1604 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

type
The event type of this event. See “Event Types” (page 1623).

event
The incoming event. This event is owned by the caller, and you do not need to release it.

refcon
A pointer to user-defined data. You specify this pointer when you create the event tap. Several different
event taps could use the same callback function, each tap with its own user-defined data.

Discussion
If the event tap is an active filter, your callback function should return one of the following:

 ■ The (possibly modified) event that is passed in. This event is passed back to the event system.

 ■ A newly-constructed event. After the new event has been passed back to the event system, the new
event will be released along with the original event.

 ■ NULL if the event passed in is to be deleted.

If the event tap is an passive listener, your callback function may return the event that is passed in, or NULL.
In either case, the event stream is not affected.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

Data Types

CGButtonCount
Represents the number of buttons being set in a synthetic mouse event.

typedef uint32_t CGButtonCount;

Discussion
In mouse events, the button count parameter ranges from 0 to 31. See the function CGPostMouseEvent (page
1601).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGCharCode
Represents a character generated by pressing one or more keys on a keyboard.

Data Types 1605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

typedef uint16_t CGCharCode;

Discussion
This data type represents a 16-bit character code. Values of this type may or may not correspond to UTF-16
character codes. See the function CGPostKeyboardEvent (page 1600).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

CGEventMask
Defines a mask that identifies the set of Quartz events to be observed in an event tap.

typedef uint64_t CGEventMask;

Discussion
When you call either CGEventTapCreate (page 1595) or CGEventTapCreateForPSN (page 1597) to register
an event tap, you supply a bit mask that identifies the set of events to be observed. You specify each event
using one of the event type constants listed in “Event Types” (page 1623). To form the bit mask, use the
CGEventMaskBit macro to convert each constant into an event mask and then OR the individual masks
together. For example:

CGEventMask mask = CGEventMaskBit(kCGEventLeftMouseDown) |
 CGEventMaskBit(kCGEventLeftMouseUp);

You can also supply a mask to observe all events:

CGEventMask mask = kCGEventMaskForAllEvents;

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventRef
Defines an opaque type that represents a low-level hardware event.

typedef struct __CGEvent *CGEventRef;

Discussion
Low-level hardware events of this type are referred to as Quartz events. A typical event in Mac OS X originates
when the user manipulates an input device such as a mouse or a keyboard. The device driver associated with
that device, through the I/O Kit, creates a low-level event, puts it in the window server’s event queue, and
notifies the window server. The window server creates a Quartz event, annotates the event, and dispatches
the event to the appropriate run-loop port of the target process. There the event is picked up by the Carbon
Event Manager and forwarded to the event-handling mechanism appropriate to the application environment.
You can use event taps to gain access to Quartz events at several different steps in this process.

1606 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

This opaque type is derived from CFType and inherits the properties that all Core Foundation types have in
common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventSourceKeyboardType
Defines a code that represents the type of keyboard used with a specified event source.

typedef uint32_t CGEventSourceKeyboardType;

Discussion
This code is the same keyboard type identifier used with the UCKeyTranslate function to drive keyboard
translation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventSourceRef
Defines an opaque type that represents the source of a Quartz event.

typedef struct __CGEventSource * CGEventSourceRef;

Discussion
A Quartz event source is an object that contains accumulated state related to event generation and event
posting. Every event source has an associated global event state table called a source state. When you call
CGEventSourceCreate (page 1587) to create an event source, you specify which source state to use. For
more information about source states, see “Event Source States” (page 1619).

A typical use of an event source would be to obtain the source from a Quartz event received by an event tap
callback function, and then to use that source for any new events created as a result of the received event.
This has the effect of marking the events as being related.

This opaque type is derived from CFType and inherits the properties that all Core Foundation types have in
common. For more information, see CFType Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventTapInformation
Defines the structure used to report information about event taps.

Data Types 1607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

typedef struct CGEventTapInformation
{
 uint32_t eventTapID;
 CGEventTapLocation tapPoint;
 CGEventTapOptions options;
 CGEventMask eventsOfInterest;
 pid_t tappingProcess;
 pid_t processBeingTapped;
 bool enabled;
 float minUsecLatency;
 float avgUsecLatency;
 float maxUsecLatency;
} CGEventTapInformation;

Fields
eventTapID

The unique identifier for the event tap.

tapPoint
The location of the event tap. See “Event Tap Locations” (page 1621).

options
The type of event tap (passive listener or active filter).

eventsOfInterest
The mask that identifies the set of events to be observed.

tappingProcess
The process ID of the application that created the event tap.

processBeingTapped
The process ID of the target application (non-zero only if the event tap was created using the function
CGEventTapCreateForPSN (page 1597).

enabled
TRUE if the event tap is currently enabled; otherwise FALSE.

minUsecLatency
Minimum latency in microseconds. In this data structure, latency is defined as the time in microseconds
it takes for an event tap to process and respond to an event passed to it.

avgUsecLatency
Average latency in microseconds. This is a weighted average that gives greater weight to more recent
events.

maxUsecLatency
Maximum latency in microseconds.

Discussion
To learn how to obtain information about event taps, see the function CGGetEventTapList (page 1599).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

1608 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

CGEventTapProxy
Defines an opaque type that represents state within the client application that’s associated with an event
tap.

typedef struct __CGEventTapProxy * CGEventTapProxy;

Discussion
An event tap proxy object is passed to your event tap callback function when it receives a new Quartz event.
Your callback function needs the proxy to post Quartz events using the function CGEventTapPostEvent (page
1599).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGEventTimestamp
Defines the elapsed time in nanoseconds since startup that a Quartz event occurred.

typedef uint64_t CGEventTimestamp;

Discussion
An event timestamp is a big, unsigned, 64-bit number. That's big, really big. You just won't believe how
vastly, hugely, mind-bogglingly big it is. You may think your application has been running for a long time,
but that's just peanuts to an event timestamp.

For information about how event timestamps are used, see the functions CGEventGetTimestamp (page
1578) and CGEventSetTimestamp (page 1585).

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGEventTypes.h

CGKeyCode
Represents the virtual key codes used in keyboard events.

typedef uint16_t CGKeyCode;

Discussion
In Mac OS X, the hardware scan codes generated by keyboards are mapped to a set of virtual key codes that
are hardware-independent. Pressing a given key always generates the same virtual key code on any supported
keyboard.

As keys are pressed, the system uses the virtual key codes to create low-level keyboard events. For information
on how to simulate a keyboard event, see the function CGEventCreateKeyboardEvent (page 1573).

Availability
Available in Mac OS X v10.0 and later.

Data Types 1609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Declared In
CGRemoteOperation.h

CGWheelCount
Represents the number of wheels being set in a scroll wheel event.

typedef uint32_t CGWheelCount;

Discussion
See the function CGPostScrollWheelEvent (page 1602).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGRemoteOperation.h

Constants

Event Fields
Constants used as keys to access specialized fields in low-level events.

1610 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

enum _CGEventField {
 kCGMouseEventNumber = 0,
 kCGMouseEventClickState = 1,
 kCGMouseEventPressure = 2,
 kCGMouseEventButtonNumber = 3,
 kCGMouseEventDeltaX = 4,
 kCGMouseEventDeltaY = 5,
 kCGMouseEventInstantMouser = 6,
 kCGMouseEventSubtype = 7,
 kCGKeyboardEventAutorepeat = 8,
 kCGKeyboardEventKeycode = 9,
 kCGKeyboardEventKeyboardType = 10,
 kCGScrollWheelEventDeltaAxis1 = 11,
 kCGScrollWheelEventDeltaAxis2 = 12,
 kCGScrollWheelEventDeltaAxis3 = 13,
 kCGScrollWheelEventFixedPtDeltaAxis1 = 93,
 kCGScrollWheelEventFixedPtDeltaAxis2 = 94,
 kCGScrollWheelEventFixedPtDeltaAxis3 = 95,
 kCGScrollWheelEventPointDeltaAxis1 = 96,
 kCGScrollWheelEventPointDeltaAxis2 = 97,
 kCGScrollWheelEventPointDeltaAxis3 = 98,
 kCGScrollWheelEventInstantMouser = 14,
 kCGTabletEventPointX = 15,
 kCGTabletEventPointY = 16,
 kCGTabletEventPointZ = 17,
 kCGTabletEventPointButtons = 18,
 kCGTabletEventPointPressure = 19,
 kCGTabletEventTiltX = 20,
 kCGTabletEventTiltY = 21,
 kCGTabletEventRotation = 22,
 kCGTabletEventTangentialPressure = 23,
 kCGTabletEventDeviceID = 24,
 kCGTabletEventVendor1 = 25,
 kCGTabletEventVendor2 = 26,
 kCGTabletEventVendor3 = 27,
 kCGTabletProximityEventVendorID = 28,
 kCGTabletProximityEventTabletID = 29,
 kCGTabletProximityEventPointerID = 30,
 kCGTabletProximityEventDeviceID = 31,
 kCGTabletProximityEventSystemTabletID = 32,
 kCGTabletProximityEventVendorPointerType = 33,
 kCGTabletProximityEventVendorPointerSerialNumber = 34,
 kCGTabletProximityEventVendorUniqueID = 35,
 kCGTabletProximityEventCapabilityMask = 36,
 kCGTabletProximityEventPointerType = 37,
 kCGTabletProximityEventEnterProximity = 38,
 kCGEventTargetProcessSerialNumber = 39,
 kCGEventTargetUnixProcessID = 40,
 kCGEventSourceUnixProcessID = 41,
 kCGEventSourceUserData = 42,
 kCGEventSourceUserID = 43,
 kCGEventSourceGroupID = 44,
 kCGEventSourceStateID = 45,
 kCGScrollWheelEventIsContinuous = 88
};
typedef uint32_t CGEventField;

Constants

Constants 1611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGMouseEventNumber
Key to access an integer field that contains the mouse button event number. Matching mouse-down
and mouse-up events will have the same event number.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventClickState
Key to access an integer field that contains the mouse button click state. A click state of 1 represents
a single click. A click state of 2 represents a double-click. A click state of 3 represents a triple-click.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventPressure
Key to access a double field that contains the mouse button pressure. The pressure value may range
from 0 to 1, with 0 representing the mouse being up. This value is commonly set by tablet pens
mimicking a mouse.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventButtonNumber
Key to access an integer field that contains the mouse button number. For information about the
possible values, see “Mouse Buttons” (page 1626).

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventDeltaX
Key to access an integer field that contains the horizontal mouse delta since the last mouse movement
event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventDeltaY
Key to access an integer field that contains the vertical mouse delta since the last mouse movement
event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventInstantMouser
Key to access an integer field. The value is non-zero if the event should be ignored by the Inkwell
subsystem.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseEventSubtype
Key to access an integer field that encodes the mouse event subtype as a kCFNumberIntType.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGKeyboardEventAutorepeat
Key to access an integer field, non-zero when this is an autorepeat of a key-down, and zero otherwise.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

1612 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGKeyboardEventKeycode
Key to access an integer field that contains the virtual keycode of the key-down or key-up event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGKeyboardEventKeyboardType
Key to access an integer field that contains the keyboard type identifier.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventDeltaAxis1
Key to access an integer field that contains scrolling data. This field typically contains the change in
vertical position since the last scrolling event from a Mighty Mouse scroller or a single-wheel mouse
scroller.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventDeltaAxis2
Key to access an integer field that contains scrolling data. This field typically contains the change in
horizontal position since the last scrolling event from a Mighty Mouse scroller.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventDeltaAxis3
This field is not used.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventFixedPtDeltaAxis1
Key to access a field that contains scrolling data. The scrolling data represents a line-based or
pixel-based change in vertical position since the last scrolling event from a Mighty Mouse scroller or
a single-wheel mouse scroller. The scrolling data uses a fixed-point 16.16 signed integer format. For
example, if the field contains a value of 1.0, the integer 0x00010000 is returned by
CGEventGetIntegerValueField. If this key is passed to CGEventGetDoubleValueField, the
fixed-point value is converted to a double value.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventFixedPtDeltaAxis2
Key to access a field that contains scrolling data. The scrolling data represents a line-based or
pixel-based change in horizontal position since the last scrolling event from a Mighty Mouse scroller.
The scrolling data uses a fixed-point 16.16 signed integer format. For example, if the field contains a
value of 1.0, the integer 0x00010000 is returned by CGEventGetIntegerValueField. If this key is
passed to CGEventGetDoubleValueField, the fixed-point value is converted to a double value.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventFixedPtDeltaAxis3
This field is not used.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

Constants 1613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGScrollWheelEventPointDeltaAxis1
Key to access an integer field that contains pixel-based scrolling data. The scrolling data represents
the change in vertical position since the last scrolling event from a Mighty Mouse scroller or a
single-wheel mouse scroller.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventPointDeltaAxis2
Key to access an integer field that contains pixel-based scrolling data. The scrolling data represents
the change in horizontal position since the last scrolling event from a Mighty Mouse scroller.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventPointDeltaAxis3
This field is not used.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventInstantMouser
Key to access an integer field that indicates whether the event should be ignored by the Inkwell
subsystem. If the value is non-zero, the event should be ignored.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventPointX
Key to access an integer field that contains the absolute X coordinate in tablet space at full tablet
resolution.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventPointY
Key to access an integer field that contains the absolute Y coordinate in tablet space at full tablet
resolution.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventPointZ
Key to access an integer field that contains the absolute Z coordinate in tablet space at full tablet
resolution.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventPointButtons
Key to access an integer field that contains the tablet button state. Bit 0 is the first button, and a set
bit represents a closed or pressed button. Up to 16 buttons are supported.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

1614 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGTabletEventPointPressure
Key to access a double field that contains the tablet pen pressure. A value of 0.0 represents no pressure,
and 1.0 represents maximum pressure.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventTiltX
Key to access a double field that contains the horizontal tablet pen tilt. A value of 0.0 represents no
tilt, and 1.0 represents maximum tilt.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventTiltY
Key to access a double field that contains the vertical tablet pen tilt. A value of 0.0 represents no tilt,
and 1.0 represents maximum tilt.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventRotation
Key to access a double field that contains the tablet pen rotation.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventTangentialPressure
Key to access a double field that contains the tangential pressure on the device. A value of 0.0
represents no pressure, and 1.0 represents maximum pressure.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventDeviceID
Key to access an integer field that contains the system-assigned unique device ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventVendor1
Key to access an integer field that contains a vendor-specified value.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventVendor2
Key to access an integer field that contains a vendor-specified value.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletEventVendor3
Key to access an integer field that contains a vendor-specified value.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Constants 1615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGTabletProximityEventVendorID
Key to access an integer field that contains the vendor-defined ID, typically the USB vendor ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventTabletID
Key to access an integer field that contains the vendor-defined tablet ID, typically the USB product
ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventPointerID
Key to access an integer field that contains the vendor-defined ID of the pointing device.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventDeviceID
Key to access an integer field that contains the system-assigned device ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventSystemTabletID
Key to access an integer field that contains the system-assigned unique tablet ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventVendorPointerType
Key to access an integer field that contains the vendor-assigned pointer type.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventVendorPointerSerialNumber
Key to access an integer field that contains the vendor-defined pointer serial number.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventVendorUniqueID
Key to access an integer field that contains the vendor-defined unique ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventCapabilityMask
Key to access an integer field that contains the device capabilities mask.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTabletProximityEventPointerType
Key to access an integer field that contains the pointer type.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

1616 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGTabletProximityEventEnterProximity
Key to access an integer field that indicates whether the pen is in proximity to the tablet. The value
is non-zero if the pen is in proximity to the tablet and zero when leaving the tablet.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTargetProcessSerialNumber
Key to access a field that contains the event target process serial number. The value is a 64-bit long
word.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTargetUnixProcessID
Key to access a field that contains the event target Unix process ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceUnixProcessID
Key to access a field that contains the event source Unix process ID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceUserData
Key to access a field that contains the event source user-supplied data, up to 64 bits.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceUserID
Key to access a field that contains the event source Unix effective UID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceGroupID
Key to access a field that contains the event source Unix effective GID.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceStateID
Key to access a field that contains the event source state ID used to create this event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGScrollWheelEventIsContinuous
Key to access an integer field that indicates whether a scrolling event contains continuous, pixel-based
scrolling data. The value is non-zero when the scrolling data is pixel-based and zero when the scrolling
data is line-based.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

Discussion
These constants are used as keys to access certain specialized event fields when using low-level accessor
functions such as CGEventGetIntegerValueField (page 1577), CGEventSetIntegerValueField (page
1584), CGEventGetDoubleValueField (page 1576), and CGEventSetDoubleValueField (page 1583).

Constants 1617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Event Filter Masks
Specify masks for classes of low-level events that can be filtered during event suppression states.

enum CGEventFilterMask {
 kCGEventFilterMaskPermitLocalMouseEvents = 0x00000001,
 kCGEventFilterMaskPermitLocalKeyboardEvents = 0x00000002,
 kCGEventFilterMaskPermitSystemDefinedEvents = 0x00000004,
 kCGEventFilterMaskPermitAllEvents = kCGEventFilterMaskPermitLocalMouseEvents
 | kCGEventFilterMaskPermitLocalKeyboardEvents |
kCGEventFilterMaskPermitSystemDefinedEvents
};
typedef uint32_t CGEventFilterMask;

Event Flags
Constants that indicate the modifier key state at the time an event is created, as well as other event-related
states.

enum _CGEventFlags {
 kCGEventFlagMaskAlphaShift = NX_ALPHASHIFTMASK,
 kCGEventFlagMaskShift = NX_SHIFTMASK,
 kCGEventFlagMaskControl = NX_CONTROLMASK,
 kCGEventFlagMaskAlternate = NX_ALTERNATEMASK,
 kCGEventFlagMaskCommand = NX_COMMANDMASK,
 kCGEventFlagMaskHelp = NX_HELPMASK,
 kCGEventFlagMaskSecondaryFn = NX_SECONDARYFNMASK,
 kCGEventFlagMaskNumericPad = NX_NUMERICPADMASK,
 kCGEventFlagMaskNonCoalesced = NX_NONCOALSESCEDMASK
};
typedef uint64_t CGEventFlags;

Constants
kCGEventFlagMaskAlphaShift

Indicates that the Caps Lock key is down for a keyboard, mouse, or flag-changed event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskShift
Indicates that the Shift key is down for a keyboard, mouse, or flag-changed event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskControl
Indicates that the Control key is down for a keyboard, mouse, or flag-changed event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskAlternate
Indicates that the Alt or Option key is down for a keyboard, mouse, or flag-changed event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

1618 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGEventFlagMaskCommand
Indicates that the Command key is down for a keyboard, mouse, or flag-changed event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskHelp
Indicates that the Help modifier key is down for a keyboard, mouse, or flag-changed event. This key
is not present on most keyboards, and is different than the Help key found in the same row as Home
and Page Up.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskSecondaryFn
Indicates that the Fn (Function) key is down for a keyboard, mouse, or flag-changed event. This key
is found primarily on laptop keyboards.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskNumericPad
Identifies key events from the numeric keypad area on extended keyboards.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagMaskNonCoalesced
Indicates that mouse and pen movement events are not being coalesced.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
These constants specify masks for the bits in an event flags bit mask. Event flags indicate the modifier key
state at the time an event is created, as well as other event-related states. Event flags are used in accessor
functions such as CGEventGetFlags (page 1577), CGEventSetFlags (page 1583), and
CGEventSourceFlagsState (page 1588).

Event Source States
Constants that specify the possible source states of an event source.

enum {
 kCGEventSourceStatePrivate = -1,
 kCGEventSourceStateCombinedSessionState = 0,
 kCGEventSourceStateHIDSystemState = 1
};
typedef uint32_t CGEventSourceStateID;

Constants
kCGEventSourceStatePrivate

Specifies that an event source should use a private event state table.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Constants 1619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGEventSourceStateCombinedSessionState
Specifies that an event source should use the event state table that reflects the combined state of all
event sources posting to the current user login session.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventSourceStateHIDSystemState
Specifies that an event source should use the event state table that reflects the combined state of all
hardware event sources posting from the HID system.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
A source state refers to a global event state table. These tables contain accumulated information on modifier
flag state, keyboard key state, mouse button state, and related internal parameters placed in effect by posting
events with associated sources.

Two pre-existing event state tables are defined:

 ■ The kCGEventSourceStateCombinedSessionState table reflects the combined state of all event
sources posting to the current user login session. If your program is posting events from within a login
session, you should use this source state when you create an event source.

 ■ The kCGEventSourceStateHIDSystemState table reflects the combined state of all hardware event
sources posting from the HID system. If your program is a daemon or a user space device driver
interpreting hardware state and generating events, you should use this source state when you create
an event source.

Specialized applications such as remote control programs may want to generate and track event source state
independent of other processes. These programs should use the kCGEventSourceStatePrivate value in
creating their event source. An independent state table and unique source state ID (CGEventSourceStateID)
are created to track the event source's state. This independent state table is owned by the creating event
source and released with it.

Event Source Token
Specifies any input event type.

#define kCGAnyInputEventType ((CGEventType)(~0))

Constants
kCGAnyInputEventType

A constant that specifies any input event type.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
This constant is typically used with the function CGEventSourceSecondsSinceLastEventType (page 1592)
to specify that you want the elapsed time since the last input event of any type.

1620 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Event Suppression States
Specify the event suppression states that can occur after posting an event.

enum CGEventSuppressionState {
 kCGEventSuppressionStateSuppressionInterval = 0,
 kCGEventSuppressionStateRemoteMouseDrag = 1,
 kCGNumberOfEventSuppressionStates = 2
};
typedef uint32_t CGEventSuppressionState;

Constants
kCGEventSuppressionStateSuppressionInterval

Specifies that certain local hardware events may be suppressed for a short interval after posting an
event.

Available in Mac OS X v10.3 and later.

Declared in CGRemoteOperation.h.

kCGEventSuppressionStateRemoteMouseDrag
Specifies that certain local hardware events may be suppressed during a mouse drag operation (mouse
movement with the left or only mouse button down).

Available in Mac OS X v10.3 and later.

Declared in CGRemoteOperation.h.

Discussion
These constants specify the types of event suppression intervals during which an event filter is applied after
posting an event.

Event Tap Locations
Constants that specify possible tapping points for events.

enum _CGEventTapLocation {
 kCGHIDEventTap = 0,
 kCGSessionEventTap,
 kCGAnnotatedSessionEventTap
};
typedef uint32_t CGEventTapLocation;

Constants
kCGHIDEventTap

Specifies that an event tap is placed at the point where HID system events enter the window server.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGSessionEventTap
Specifies that an event tap is placed at the point where HID system and remote control events enter
a login session.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Constants 1621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGAnnotatedSessionEventTap
Specifies that an event tap is placed at the point where session events have been annotated to flow
to an application.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
In addition to the three tapping points described above, an event tap may also be placed where annotated
events are delivered to a specific application. For more information, see the function
CGEventTapCreateForPSN (page 1597).

Event Tap Options
Constants that specify whether a new event tap is an active filter or a passive listener.

enum _CGEventTapOptions {
 kCGEventTapOptionDefault = 0x00000000,
 kCGEventTapOptionListenOnly = 0x00000001
};
typedef uint32_t CGEventTapOptions;

Constants
kCGEventTapOptionDefault

Specifies that a new event tap is an active filter. (Applications targeting Mac OS X v10.4 should use
the literal value to create an active filter event tap, as this constant was omitted from the header.)

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGEventTapOptionListenOnly
Specifies that a new event tap is a passive listener.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
When you create an event tap, you indicate whether it is a passive listener or active event filter. A passive
listener receives events but cannot modify or divert them. An active filter may pass an event through
unmodified, modify an event, or discard an event.

Event Tap Placement
Constants that specify where a new event tap is inserted into the list of active event taps.

1622 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

enum _CGEventTapPlacement {
 kCGHeadInsertEventTap = 0,
 kCGTailAppendEventTap
};
typedef uint32_t CGEventTapPlacement;

Constants
kCGHeadInsertEventTap

Specifies that a new event tap should be inserted before any pre-existing event taps at the same
location.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGTailAppendEventTap
Specifies that a new event tap should be inserted after any pre-existing event taps at the same location.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
Event taps may be inserted at a specified location at the head of pre-existing filters, or appended after any
pre-existing filters.

Event Types
Constants that specify the different types of input events.

enum _CGEventType {
 kCGEventNull = NX_NULLEVENT,
 kCGEventLeftMouseDown = NX_LMOUSEDOWN,
 kCGEventLeftMouseUp = NX_LMOUSEUP,
 kCGEventRightMouseDown = NX_RMOUSEDOWN,
 kCGEventRightMouseUp = NX_RMOUSEUP,
 kCGEventMouseMoved = NX_MOUSEMOVED,
 kCGEventLeftMouseDragged = NX_LMOUSEDRAGGED,
 kCGEventRightMouseDragged = NX_RMOUSEDRAGGED,
 kCGEventKeyDown = NX_KEYDOWN,
 kCGEventKeyUp = NX_KEYUP,
 kCGEventFlagsChanged = NX_FLAGSCHANGED,
 kCGEventScrollWheel = NX_SCROLLWHEELMOVED,
 kCGEventTabletPointer = NX_TABLETPOINTER,
 kCGEventTabletProximity = NX_TABLETPROXIMITY,
 kCGEventOtherMouseDown = NX_OMOUSEDOWN,
 kCGEventOtherMouseUp = NX_OMOUSEUP,
 kCGEventOtherMouseDragged = NX_OMOUSEDRAGGED,
 kCGEventTapDisabledByTimeout = 0xFFFFFFFE,
 kCGEventTapDisabledByUserInput = 0xFFFFFFFF
};
typedef uint32_t CGEventType;

Constants
kCGEventNull

Specifies a null event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Constants 1623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGEventLeftMouseDown
Specifies a mouse down event with the left button.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventLeftMouseUp
Specifies a mouse up event with the left button.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventRightMouseDown
Specifies a mouse down event with the right button.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventRightMouseUp
Specifies a mouse up event with the right button.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventMouseMoved
Specifies a mouse moved event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventLeftMouseDragged
Specifies a mouse drag event with the left button down.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventRightMouseDragged
Specifies a mouse drag event with the right button down.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventKeyDown
Specifies a key down event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventKeyUp
Specifies a key up event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventFlagsChanged
Specifies a key changed event for a modifier or status key.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

1624 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

kCGEventScrollWheel
Specifies a scroll wheel moved event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTabletPointer
Specifies a tablet pointer event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTabletProximity
Specifies a tablet proximity event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventOtherMouseDown
Specifies a mouse down event with one of buttons 2-31.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventOtherMouseUp
Specifies a mouse up event with one of buttons 2-31.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventOtherMouseDragged
Specifies a mouse drag event with one of buttons 2-31 down.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTapDisabledByTimeout
Specifies an event indicating the event tap is disabled because of timeout.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventTapDisabledByUserInput
Specifies an event indicating the event tap is disabled because of user input.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
These constants are used:

 ■ In the functionsCGEventTapCreate (page 1595) andCGEventTapCreateForPSN (page 1597) to specify
the events of interest for the new event tap.

 ■ To indicate the event type passed to your event tap callback function.

 ■ In the function CGEventCreateMouseEvent (page 1574) to specify the type of mouse event.

 ■ In the functions CGEventGetType (page 1579) and CGEventSetType (page 1586) to identify the event
type.

 ■ In the functions CGEventSourceCounterForEventType (page 1587) and
CGEventSourceSecondsSinceLastEventType (page 1592) to indicate the event type.

Constants 1625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Note that tablet devices may generate mouse events with embedded tablet data, or tablet pointer and
proximity events. Tablet mouse events allow tablets to be used with applications that are not tablet-aware.

Event Type Mask
Specifies an event mask that represents all event types.

#define kCGEventMaskForAllEvents (~(CGEventMask)0)

Constants
kCGEventMaskForAllEvents

An event mask that specifies all event types.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
This constant is typically used with the functions CGEventTapCreate (page 1595) and
CGEventTapCreateForPSN (page 1597) to register an event tap that observes all input events.

Mouse Buttons
Constants that specify buttons on a one, two, or three-button mouse.

enum _CGMouseButton {
 kCGMouseButtonLeft = 0,
 kCGMouseButtonRight = 1,
 kCGMouseButtonCenter = 2
};
typedef uint32_t CGMouseButton;

Constants
kCGMouseButtonLeft

Specifies the only mouse button on a one-button mouse, or the left mouse button on a two-button
or three-button mouse.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseButtonRight
Specifies the right mouse button on a two-button or three-button mouse.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGMouseButtonCenter
Specifies the center mouse button on a three-button mouse.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
Quartz supports up to 32 mouse buttons. The first three buttons are specified using these three constants.
Additional buttons are specified in USB order using the integers 3 to 31.

These constants are used:

1626 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

 ■ In the function CGEventCreateMouseEvent (page 1574) to specify the button that’s changing state.

 ■ In the function CGEventSourceButtonState (page 1586) to specify the button that’s being tested.

 ■ To specify the value of the kCGMouseEventButtonNumber event field when modifying an event.

Mouse Subtypes
Constants used with the kCGMouseEventSubtype event field.

enum _CGEventMouseSubtype {
 kCGEventMouseSubtypeDefault = 0,
 kCGEventMouseSubtypeTabletPoint = 1,
 kCGEventMouseSubtypeTabletProximity = 2
};
typedef uint32_t CGEventMouseSubtype;

Constants
kCGEventMouseSubtypeDefault

Specifies that the event is an ordinary mouse event, and does not contain additional tablet device
information.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventMouseSubtypeTabletPoint
Specifies that the mouse event originated from a tablet device, and that the various kCGTabletEvent
field selectors may be used to obtain tablet-specific data from the mouse event.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

kCGEventMouseSubtypeTabletProximity
Specifies that the mouse event originated from a tablet device with the pen in proximity but not
necessarily touching the tablet, and that the various kCGTabletProximity field selectors may be
used to obtain tablet-specific data from the mouse event. This is often used with mouse move events
originating from a tablet.

Available in Mac OS X v10.4 and later.

Declared in CGEventTypes.h.

Discussion
Tablets may generate specially annotated mouse events that contain values associated with the
kCGMouseEventSubtype event field. To learn how to set these values, see the function
CGEventSetIntegerValueField (page 1584).

Scrolling Event Units
Constants that specify the unit of measurement for a scrolling event.

Constants 1627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

enum {
 kCGScrollEventUnitPixel = 0,
 kCGScrollEventUnitLine = 1
};
typedef uint32_t CGScrollEventUnit;

Constants
kCGScrollEventUnitPixel

Specifies that the unit of measurement is pixels.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

kCGScrollEventUnitLine
Specifies that the unit of measurement is lines.

Available in Mac OS X v10.5 and later.

Declared in CGEventTypes.h.

Discussion
You may pass one of these constants to the function CGEventCreateScrollWheelEvent (page 1575) to
specify the unit of measurement for the event. The constant kCGScrollEventUnitPixel produces an
event that most applications interpret as a smooth scrolling event. By default, the scale is about ten pixels
per line. You can alter the scale with the function CGEventSourceSetPixelsPerLine (page 1594).

1628 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

Quartz Event Services Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in SpeechSynthesis.h

Overview

The Speech Synthesis Manager, formerly called the Speech Manager, is the part of the Mac OS that provides
a standardized method for Macintosh applications to generate synthesized speech. For example, you may
want your application to incorporate the capability to speak its dialog box messages to the user. A
word-processing application might use the Speech Synthesis Manager to implement a command that speaks
a selected section of a document to the user. Because sound samples can take up large amounts of room on
disk, using text in place of sampled sound is extremely efficient, and so a multimedia application might use
the Speech Synthesis Manager to provide a narration of a QuickTime movie instead of including sampled-sound
data on a movie track.

Mac OS X v10.5 introduces native support for performing speech synthesis tasks using Core Foundation-based
objects, such as speaking text represented as CFString objects and managing speech channel properties
using a CFDictionary-based property dictionary. You should begin using the new, Core Foundation-based
programming interfaces as soon as it’s convenient, because future synthesizers will accept Core Foundation
strings and data structures directly through the speech synthesis framework. In the meantime, existing
buffer-based clients and synthesizers will continue to work as before, with strings and other data structures
getting automatically converted as necessary.

Functions by Task

Changing Speech Attributes

SetSpeechInfo (page 1650)
Changes a setting of a particular speech channel.

SetSpeechProperty (page 1651)
Sets the value of the specified speech-channel property.

SetSpeechPitch (page 1651)
Sets the speech pitch on a designated speech channel.

SetSpeechRate (page 1652)
Sets the speech rate of a designated speech channel.

Overview 1629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Converting Text To Phonemes

TextToPhonemes (page 1659)
Converts a buffer of textual data into phonemic data.

CopyPhonemesFromText (page 1633) Deprecated in Mac OS X v10.4
Converts the specified text string into its equivalent phonemic representation.

Installing a Pronunciation Dictionary

UseDictionary (page 1660)
Installs the designated dictionary into a speech channel.

UseSpeechDictionary (page 1661)
Registers a speech dictionary with a speech channel.

Managing Speech Channels

DisposeSpeechChannel (page 1635)
Disposes of an existing speech channel.

NewSpeechChannel (page 1646)
Creates a new speech channel.

Obtaining Information About Speech and Speech Channels

CopySpeechProperty (page 1634)
Gets the value associated with the specified property of a speech channel.

GetSpeechInfo (page 1638)
Gets information about a designated speech channel.

GetSpeechPitch (page 1639)
Gets a speech channel’s current speech pitch.

GetSpeechRate (page 1640)
Gets a speech channel’s current speech rate.

SpeechBusy (page 1656)
Determines whether any channels of speech are currently synthesizing speech.

SpeechBusySystemWide (page 1656)
Determines if any speech is currently being synthesized in your application or elsewhere on the
computer.

SpeechManagerVersion (page 1657)
Determines the current version of the Speech Synthesis Manager installed in the system.

Getting Information About Voices

CountVoices (page 1634)
Determines how many voices are available.

1630 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

GetIndVoice (page 1638)
Gets a voice specification structure for a voice by passing an index to the GetIndVoice function.

GetVoiceDescription (page 1640)
Gets a description of a voice by using the GetVoiceDescription function.

GetVoiceInfo (page 1641)
Gets the same information about a voice that the GetVoiceDescription function provides, or to
determine in which file and resource a voice is stored.

MakeVoiceSpec (page 1645)
Sets the fields of a voice specification structure.

Starting, Stopping, and Pausing Speech

ContinueSpeech (page 1632)
Resumes speech paused by the PauseSpeechAt function.

PauseSpeechAt (page 1649)
Pauses speech on a speech channel.

SpeakBuffer (page 1652)
Speaks a buffer of text, using certain flags to control speech behavior.

SpeakString (page 1654)
Begins speaking a text string.

SpeakText (page 1655)
Begins speaking a buffer of text.

StopSpeech (page 1657)
Terminates speech immediately on the specified channel.

StopSpeechAt (page 1658)
Terminates speech delivery on a specified channel either immediately or at the end of the current
word or sentence.

SpeakCFString (page 1653) Deprecated in Mac OS X v10.5
Begins speaking a string represented as a CFString object.

Creating, Invoking, and Disposing Universal Procedure Pointers

DisposeSpeechDoneUPP (page 1635)
Disposes of a universal procedure pointer (UPP) to a speech-done callback function.

DisposeSpeechErrorUPP (page 1636)
Disposes of a universal procedure pointer (UPP) to an error callback function.

DisposeSpeechPhonemeUPP (page 1636)
Disposes of a universal procedure pointer (UPP) to a phoneme callback function.

DisposeSpeechSyncUPP (page 1637)
Disposes of a universal procedure pointer (UPP) to a synchronization callback function.

DisposeSpeechTextDoneUPP (page 1637)
Disposes of a universal procedure pointer (UPP) to a text-done callback function.

DisposeSpeechWordUPP (page 1637)
Disposes of a universal procedure pointer (UPP) to a word callback function.

Functions by Task 1631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

InvokeSpeechDoneUPP (page 1642)
Invokes your speech-done callback function.

InvokeSpeechErrorUPP (page 1643)
Invokes your error callback function.

InvokeSpeechPhonemeUPP (page 1643)
Invokes your phoneme callback function.

InvokeSpeechSyncUPP (page 1644)
Invokes your synchronization callback function.

InvokeSpeechTextDoneUPP (page 1644)
Invokes your text-done callback function.

InvokeSpeechWordUPP (page 1645)
Invokes your word callback function.

NewSpeechDoneUPP (page 1646)
Creates a new universal procedure pointer (UPP) to a speech-done callback function.

NewSpeechErrorUPP (page 1647)
Creates a new universal procedure pointer to an error callback function.

NewSpeechPhonemeUPP (page 1647)
Disposes of a universal procedure pointer (UPP) to a phoneme callback function.

NewSpeechSyncUPP (page 1648)
Creates a new universal procedure pointer (UPP) to a synchronization callback function.

NewSpeechTextDoneUPP (page 1648)
Creates a new universal procedure pointer (UPP) to a text-done callback function.

NewSpeechWordUPP (page 1649)
Creates a new universal procedure pointer (UPP) to a word callback function.

Functions

ContinueSpeech
Resumes speech paused by the PauseSpeechAt function.

OSErr ContinueSpeech (
 SpeechChannel chan
);

Parameters
chan

The paused speech channel on which speech is to be resumed.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

1632 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
At any time after the PauseSpeechAt function is called, the ContinueSpeech function can be called to
continue speaking from the beginning of the word in which speech paused. Calling ContinueSpeech on a
channel that is not currently in a paused state has no effect on the speech channel or on future calls to the
PauseSpeechAt function. If you call ContinueSpeech on a channel before a pause is effective,
ContinueSpeech cancels the pause.

If the PauseSpeechAt function stopped speech in the middle of a word, the Speech Synthesis Manager will
start speaking that word from the beginning when you call ContinueSpeech.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

CopyPhonemesFromText
Converts the specified text string into its equivalent phonemic representation.

OSErr CopyPhonemesFromText (
 SpeechChannel chan,
 CFStringRef text,
 CFStringRef * phonemes
);

Parameters
chan

A speech channel whose associated synthesizer and properties are to be used in the conversion
process.

text
The text from which to extract phonemic data.

phonemes
On return, a CFString object that contains the extracted phonemic data. The caller is responsible
for releasing this object.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The CopyPhonemesFromText function is the Core Foundation-based equivalent of the
TextToPhonemes (page 1659) function.

Converting textual data into phonemic data is particularly useful during application development, when you
might wish to adjust phrases that your application generates to produce smoother speech. By first converting
the target phrase into phonemes, you can see what the synthesizer will try to speak. Then you need correct
only the parts that would not have been spoken the way you want.

The data the CopyPhonemesFromText function stores in the phonemes parameter corresponds precisely
to the phonemes that would be spoken had the input text been sent to SpeakCFString instead. All current
property settings for the speech channel specified by chan are applied to the converted speech. No callbacks
are generated while the CopyPhonemesFromText function is generating its output.

Functions 1633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

CopySpeechProperty
Gets the value associated with the specified property of a speech channel.

OSErr CopySpeechProperty (
 SpeechChannel chan,
 CFStringRef property,
 CFTypeRef * object
);

Parameters
chan

The speech channel with which the specified property is associated.

property
A speech-channel property about which information is being requested. See “Speech-Channel
Properties” (page 1692) for information on the properties you can specify.

object
On return, a pointer to a Core Foundation object that holds the value of the specified property. The
type of the object depends on the specific property passed in. For some properties, the value of
object can beNULL. When the returned object is aCFDictionary object, you can useCFDictionary
functions, such as CFDictionaryGetValue, to retrieve the values associated with the keys that are
associated with the specified property.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The CopySpeechProperty function is the Core Foundation-based equivalent of the GetSpeechInfo (page
1638) function.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

CountVoices
Determines how many voices are available.

OSErr CountVoices (
 SInt16 *numVoices
);

Parameters
numVoices

On exit, a pointer to the number of voices that the application can use.

1634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The CountVoices function returns, in the numVoices parameter, the number of voices available. The
application can then use this information to call the GetIndVoice function to obtain voice specification
structures for one or more of the voices.

Each time CountVoices is called, the Speech Synthesis Manager searches for new voices.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechChannel
Disposes of an existing speech channel.

OSErr DisposeSpeechChannel (
 SpeechChannel chan
);

Parameters
chan

The speech channel to dispose of.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The DisposeSpeechChannel function disposes of the speech channel specified in the chan parameter and
releases all memory the channel occupies. If the speech channel specified is producing speech, then the
DisposeSpeechChannel function immediately stops speech before disposing of the channel. If you have
defined a text-done callback function or a speech-done callback function, the function will not be called
before the channel is disposed of.

The Speech Synthesis Manager releases any speech channels that have not been explicitly disposed of by
an application when the application quits. In general, however, your application should dispose of any speech
channels it has created whenever it receives a suspend event. This ensures that other applications can take
full advantage of Speech Synthesis Manager and Sound Manager capabilities.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechDoneUPP
Disposes of a universal procedure pointer (UPP) to a speech-done callback function.

Functions 1635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

void DisposeSpeechDoneUPP (
 SpeechDoneUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechErrorUPP
Disposes of a universal procedure pointer (UPP) to an error callback function.

void DisposeSpeechErrorUPP (
 SpeechErrorUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechPhonemeUPP
Disposes of a universal procedure pointer (UPP) to a phoneme callback function.

void DisposeSpeechPhonemeUPP (
 SpeechPhonemeUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

1636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

DisposeSpeechSyncUPP
Disposes of a universal procedure pointer (UPP) to a synchronization callback function.

void DisposeSpeechSyncUPP (
 SpeechSyncUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechTextDoneUPP
Disposes of a universal procedure pointer (UPP) to a text-done callback function.

void DisposeSpeechTextDoneUPP (
 SpeechTextDoneUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

DisposeSpeechWordUPP
Disposes of a universal procedure pointer (UPP) to a word callback function.

void DisposeSpeechWordUPP (
 SpeechWordUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Functions 1637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

GetIndVoice
Gets a voice specification structure for a voice by passing an index to the GetIndVoice function.

OSErr GetIndVoice (
 SInt16 index,
 VoiceSpec *voice
);

Parameters
index

The index of the voice for which to obtain a voice specification structure. This number must range
from 1 to the total number of voices, as returned by the CountVoices function.

voice
A pointer to the voice specification structure whose fields are to be filled in.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The GetIndVoice function returns, in the voice specification structure pointed to by the voice parameter,
a specification of the voice whose index is provided in the index parameter. Your application should make
no assumptions about the order in which voices are indexed.

Your application should not add, remove, or modify a voice and then call the GetIndVoice function with
an index value other than 1. To allow the Speech Synthesis Manager to update its information about voices,
your application should always either call the CountVoices function or call the GetIndVoice function with
an index value of 1 after adding, removing, or modifying a voice or after a time at which the user might have
done so.

If you specify an index value beyond the number of available voices, the GetIndVoice function returns a
voiceNotFound error.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

GetSpeechInfo
Gets information about a designated speech channel.

1638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr GetSpeechInfo (
 SpeechChannel chan,
 OSType selector,
 void *speechInfo
);

Parameters
chan

The speech channel about which information is being requested.

selector
A speech information selector that indicates the type of information being requested.

For a complete list of speech information selectors, see “Speech-Channel Information Constants” (page
1685). This list indicates how your application should set the speechInfo parameter for each selector.

speechInfo
A pointer whose meaning depends on the speech information selector specified in the selector
parameter.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The GetSpeechInfo function returns, in the data structure pointed to by the speechInfo parameter, the
type of information requested by the selector parameter as it applies to the speech channel specified in
the chan parameter.

The format of the data structure specified by the speechInfo parameter depends on the selector you choose.
For example, a selector might require that your application allocate a block of memory of a certain size and
pass a pointer to that block. Another selector might require that speechInfo be set to the address of a
handle variable. In this case, the GetSpeechInfo function would allocate a relocatable block of memory
and change the handle variable specified to reference the block.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

GetSpeechPitch
Gets a speech channel’s current speech pitch.

OSErr GetSpeechPitch (
 SpeechChannel chan,
 Fixed *pitch
);

Parameters
chan

The speech channel whose pitch you wish to determine.

pitch
On return, a pointer to the current pitch of the voice in the speech channel, expressed as a fixed-point
frequency value.

Functions 1639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
Typical voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps 300 hertz for
a high-pitched child’s voice. These frequencies correspond to approximate pitch values in the ranges of
30.000 to 40.000 and 55.000 to 65.000, respectively.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

GetSpeechRate
Gets a speech channel’s current speech rate.

OSErr GetSpeechRate (
 SpeechChannel chan,
 Fixed *rate
);

Parameters
chan

The speech channel whose rate you wish to determine.

rate
On return, a pointer to the speech channel’s speech rate in words per minute, expressed as an integer
value.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

GetVoiceDescription
Gets a description of a voice by using the GetVoiceDescription function.

1640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr GetVoiceDescription (
 const VoiceSpec *voice,
 VoiceDescription *info,
 long infoLength
);

Parameters
voice

A pointer to the voice specification structure identifying the voice to be described, or NULL to obtain
a description of the system default voice.

info
A pointer to a voice description structure. If this parameter is NULL, the function does not fill in the
fields of the voice description structure; instead, it simply determines whether the voice parameter
specifies an available voice and, if not, returns a voiceNotFound error.

infoLength
The length, in bytes, of the voice description structure. In the current version of the Speech Synthesis
Manager, the voice description structure contains 362 bytes. However, you should always use the
SizeOf function to determine the length of this structure.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
TheGetVoiceDescription function fills out the voice description structure pointed to by theinfoparameter
with the correct information for the voice specified by the voice parameter. It fills in the length field of
the voice description structure with the number of bytes actually copied. This value will always be less than
or equal to the value that your application passes in infoLength before calling GetVoiceDescription.
This scheme allows applications targeted for the current version of the Speech Synthesis Manager to work
on future versions that might have longer voice description structures; it also allows you to write code for
future versions of the Speech Synthesis Manager that will also run on computers that support only the current
version.

If the voice specification structure does not identify an available voice, GetVoiceDescription returns a
voiceNotFound error.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

GetVoiceInfo
Gets the same information about a voice that the GetVoiceDescription function provides, or to determine
in which file and resource a voice is stored.

Functions 1641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr GetVoiceInfo (
 const VoiceSpec *voice,
 OSType selector,
 void *voiceInfo
);

Parameters
voice

A pointer to the voice specification structure identifying the voice about which your application
requires information, or NULL to obtain information on the system default voice.

selector
A specification of the type of data being requested. For current versions of the Speech Synthesis
Manager, you should set this field either to soVoiceDescription, if you would like to use the
GetVoiceInfo function to mimic the GetVoiceDescription function, or to soVoiceFile, if you
would like to obtain information about the location of a voice on disk.

voiceInfo
A pointer to the appropriate data structure. If the selector is soVoiceDescription, then voiceInfo
should be a pointer to a voice description structure, and the length field of the structure should be
set to the length of the voice description structure. If the selector is soVoiceFile, then voiceInfo
should be a pointer to a voice file information structure.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
This function is intended primarily for use by synthesizers, but an application can call it too.

The GetVoiceInfo function accepts a selector in the selector parameter that determines the type of
information you wish to obtain about the voice specified in the voice parameter. The function then fills the
fields of the data structure appropriate to the selector you specify in the voiceInfo parameter.

If the voice specification is invalid, GetVoiceInfo returns a voiceNotFound error. If there is not enough
memory to load the voice into memory to obtain information about it, GetVoiceInfo returns the result
code memFullErr.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

InvokeSpeechDoneUPP
Invokes your speech-done callback function.

1642 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

void InvokeSpeechDoneUPP (
 SpeechChannel chan,
 SRefCon refCon,
 SpeechDoneUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechDoneUPP function, because the system calls your speech-done
callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

InvokeSpeechErrorUPP
Invokes your error callback function.

void InvokeSpeechErrorUPP (
 SpeechChannel chan,
 SRefCon refCon,
 OSErr theError,
 long bytePos,
 SpeechErrorUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechErrorUPP function, because the system calls your error
callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

InvokeSpeechPhonemeUPP
Invokes your phoneme callback function.

void InvokeSpeechPhonemeUPP (
 SpeechChannel chan,
 SRefCon refCon,
 SInt16 phonemeOpcode,
 SpeechPhonemeUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechPhonemeUPP function, because the system calls your phoneme
callback function for you.

Functions 1643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

InvokeSpeechSyncUPP
Invokes your synchronization callback function.

void InvokeSpeechSyncUPP (
 SpeechChannel chan,
 SRefCon refCon,
 OSType syncMessage,
 SpeechSyncUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechSyncUPP function, because the system calls your
synchronization callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

InvokeSpeechTextDoneUPP
Invokes your text-done callback function.

void InvokeSpeechTextDoneUPP (
 SpeechChannel chan,
 SRefCon refCon,
 const void **nextBuf,
 unsigned long *byteLen,
 SInt32 *controlFlags,
 SpeechTextDoneUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechTextDoneUPP function, because the system calls your
text-done callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

1644 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

InvokeSpeechWordUPP
Invokes your word callback function.

void InvokeSpeechWordUPP (
 SpeechChannel chan,
 SRefCon refCon,
 unsigned long wordPos,
 UInt16 wordLen,
 SpeechWordUPP userUPP
);

Discussion
You should not need to call the InvokeSpeechWordUPP function, because the system calls your word
callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

MakeVoiceSpec
Sets the fields of a voice specification structure.

OSErr MakeVoiceSpec (
 OSType creator,
 OSType id,
 VoiceSpec *voice
);

Parameters
creator

The ID of the synthesizer that your application requires.

id
The ID of the voice on the synthesizer specified by the creator parameter.

voice
A pointer to the voice specification structure whose fields are to be filled in.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
A voice specification structure is a unique voice ID used by the Speech Synthesis Manager. Most voice
management functions expect to be passed a pointer to a voice specification structure. When you already
know the creator and ID for a voice, you should use the MakeVoiceSpec function to create such a structure
rather than filling in the fields of one directly. On exit, the voice specification structure pointed to by the
voice parameter contains the appropriate values. You should never set the fields of such a structure directly.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

NewSpeechChannel
Creates a new speech channel.

OSErr NewSpeechChannel (
 VoiceSpec *voice,
 SpeechChannel *chan
);

Parameters
voice

A pointer to the voice specification structure corresponding to the voice to be used for the new speech
channel. Pass NULL to create a speech channel using the system default voice. Specifying a voice
means the initial speaking rate is determined by the synthesizer’s default speaking rate; passing NULL
means the speaking rate is automatically set to the rate the user specifies in Speech preferences.

chan
On return, a pointer to a valid speech channel.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The NewSpeechChannel function allocates memory for a speech channel structure and sets the speech
channel variable pointed to by the chan parameter to point to this speech channel structure. The Speech
Synthesis Manager automatically locates and opens a connection to the proper synthesizer for the voice
specified by the voice parameter.

There is no predefined limit to the number of speech channels an application can create. However, system
constraints on available RAM, processor loading, and number of available sound channels limit the number
of speech channels actually possible.

Your application should not attempt to manipulate the data pointed to by a variable of type SpeechChannel.
The internal format that the Speech Synthesis Manager uses for speech channel data is not documented and
may change in future versions of system software.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

NewSpeechDoneUPP
Creates a new universal procedure pointer (UPP) to a speech-done callback function.

1646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

SpeechDoneUPP NewSpeechDoneUPP (
 SpeechDoneProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your speech-done callback function.

Return Value
A UPP to the speech-done callback function. See the description of the SpeechDoneUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

NewSpeechErrorUPP
Creates a new universal procedure pointer to an error callback function.

SpeechErrorUPP NewSpeechErrorUPP (
 SpeechErrorProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your error callback function.

Return Value
A UPP to the error callback function. See the description of the SpeechErrorUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

NewSpeechPhonemeUPP
Disposes of a universal procedure pointer (UPP) to a phoneme callback function.

SpeechPhonemeUPP NewSpeechPhonemeUPP (
 SpeechPhonemeProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your phoneme callback function.

Return Value
A UPP to the phoneme callback function. See the description of the SpeechPhonemeUPP data type.

Functions 1647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

NewSpeechSyncUPP
Creates a new universal procedure pointer (UPP) to a synchronization callback function.

SpeechSyncUPP NewSpeechSyncUPP (
 SpeechSyncProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your synchronization callback function.

Return Value
A UPP to the synchronization callback function. See the description of the SpeechSyncUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

NewSpeechTextDoneUPP
Creates a new universal procedure pointer (UPP) to a text-done callback function.

SpeechTextDoneUPP NewSpeechTextDoneUPP (
 SpeechTextDoneProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your text-done callback function.

Return Value
A UPP to the text-done callback function. See the description of the SpeechTextDoneUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

1648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

NewSpeechWordUPP
Creates a new universal procedure pointer (UPP) to a word callback function.

SpeechWordUPP NewSpeechWordUPP (
 SpeechWordProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your word callback function.

Return Value
A UPP to the word callback function. See the description of the SpeechWordUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

PauseSpeechAt
Pauses speech on a speech channel.

OSErr PauseSpeechAt (
 SpeechChannel chan,
 SInt32 whereToPause
);

Parameters
chan

The speech channel on which speech is to be paused.

whereToPause
A constant indicating when speech processing should be paused. Pass the constant kImmediate to
pause immediately, even in the middle of a word. Pass kEndOfWord or kEndOfSentence to pause
speech at the end of the current word or sentence, respectively.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
ThePauseSpeechAt function makes speech production pause at a specified point in the text.PauseSpeechAt
returns immediately, although speech output will continue until the specified point.

You can determine whether your application has paused speech output on a speech channel by obtaining
a speech status information structure through the GetSpeechInfo function. While a speech channel is
paused, the speech status information structure indicates that outputBusy and outputPaused are both
TRUE.

If the end of the input text buffer is reached before the specified pause point, speech output pauses at the
end of the buffer.

Functions 1649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

ThePauseSpeechAt function differs from theStopSpeech andStopSpeechAt functions in that a subsequent
call to ContinueSpeech, described next, causes the contents of the current text buffer to continue being
spoken.

If you plan to continue speech synthesis from a paused speech channel, the text buffer being processed
must remain available at all times and must not move while the channel is in a paused state.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SetSpeechInfo
Changes a setting of a particular speech channel.

OSErr SetSpeechInfo (
 SpeechChannel chan,
 OSType selector,
 const void *speechInfo
);

Parameters
chan

The speech channel for which your application wishes to change a setting.

selector
A speech information selector that indicates the type of information being changed.

For a complete list of speech information selectors, see “Speech-Channel Information Constants” (page
1685). This list indicates how your application should set the speechInfo parameter for each selector.

speechInfo
A pointer whose meaning depends on the speech information selector specified in the selector
parameter.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SetSpeechInfo function changes the type of setting indicated by the selector parameter in the
speech channel specified by the chan parameter, based on the data your application provides via the
speechInfo parameter.

The format of the data structure specified by the speechInfo parameter depends on the selector you choose.
Ordinarily, a selector requires that speechInfo be a pointer to a data structure that specifies a new setting
for the speech channel.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

1650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

SetSpeechPitch
Sets the speech pitch on a designated speech channel.

OSErr SetSpeechPitch (
 SpeechChannel chan,
 Fixed pitch
);

Parameters
chan

The speech channel whose pitch you wish to set.

pitch
The new pitch for the speech channel, expressed as a fixed-point frequency value.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SetSpeechPitch function changes the current speech pitch on the speech channel specified by the
chan parameter to the pitch specified by the pitch parameter. Typical voice frequencies range from around
90 hertz for a low-pitched male voice to perhaps 300 hertz for a high-pitched child’s voice. These frequencies
correspond to approximate pitch values in the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively.
Although fixed-point values allow you to specify a wide range of pitches, not all synthesizers will support
the full range of pitches. If your application specifies a pitch that a synthesizer cannot handle, it may adjust
the pitch to fit within an acceptable range.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SetSpeechProperty
Sets the value of the specified speech-channel property.

OSErr SetSpeechProperty (
 SpeechChannel chan,
 CFStringRef property,
 CFTypeRef object
);

Parameters
chan

The speech channel whose property to set.

property
The speech-channel property to set to the specified value.

object
The value to which the specified speech-channel property should be set. For some properties, this
value can be NULL.

Functions 1651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SetSpeechProperty function is the Core Foundation-based equivalent of the SetSpeechInfo (page
1650) function.

See “Speech-Channel Properties” (page 1692) for information on the properties you can specify.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

SetSpeechRate
Sets the speech rate of a designated speech channel.

OSErr SetSpeechRate (
 SpeechChannel chan,
 Fixed rate
);

Parameters
chan

The speech channel whose rate you wish to set.

rate
The new speech rate in words per minute, expressed as an integer value.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SetSpeechRate function adjusts the speech rate on the speech channel specified by the chan parameter
to the rate specified by the rate parameter. As a general rule, speaking rates range from around 150 words
per minute to around 220 words per minute. It is important to keep in mind, however, that users will differ
greatly in their ability to understand synthesized speech at a particular rate based upon their level of experience
listening to the voice and their ability to anticipate the types of utterances they will encounter.

Note: the new speech rate should be expressed as an integer (not a fixed point decimal number as the data
type implies).

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeakBuffer
Speaks a buffer of text, using certain flags to control speech behavior.

1652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr SpeakBuffer (
 SpeechChannel chan,
 const void *textBuf,
 unsigned long textBytes,
 SInt32 controlFlags
);

Parameters
chan

The speech channel through which speech is to be spoken.

textBuf
A pointer to the first byte of text to spoken.

textBytes
The number of bytes of text to spoken.

controlFlags
Control flags to customize speech behavior.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SpeakBuffer function behaves identically to the SpeakText function, but allows control of several
speech parameters by setting values of the controlFlags parameter. The controlFlags parameter relies
on specific constants, which may be applied additively. See “Control Flags Constants” (page 1680).

Each constant specifies a flag bit of the controlFlags parameter, so by passing the constants additively
you can enable multiple capabilities of SpeakBuffer. If you pass 0 in the controlFlags parameter,
SpeakBuffer works just like SpeakText. By passing kNoEndingProsody + kNoSpeechInterrupt in
the controlFlags parameter, SpeakBuffer works like SpeakText except that the kNoEndingProsody
and kNoSpeechInterrupt features have been selected. Future versions of the Speech Synthesis Manager
may define additional constants.

When the controlFlags parameter is set to 0, SpeakBuffer behaves identically to SpeakText.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeakCFString
Begins speaking a string represented as a CFString object.

Functions 1653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr SpeakCFString (
 SpeechChannel chan,
 CFStringRef aString,
 CFDictionaryRef options
);

Parameters
chan

The speech channel through which speech is to be spoken.

aString
The string to be spoken, represented as a CFString object.

options
An optional dictionary of key-value pairs used to customize speech behavior. See “Synthesizer
Option Keys” (page 1698) for the available keys.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The SpeakCFString function is the Core Foundation-based equivalent of the SpeakBuffer (page 1652)
function.

The SpeakCFString function converts the text string specified in aString into speech, using the voice and
control settings in effect for the speech channel specified in chan. (Before you use SpeakCFString, therefore,
be sure you’ve created a speech channel with the NewSpeechChannel (page 1646) function.) The
SpeakCFString function generates speech asynchronously, which means that control is returned to your
application before speech has finished, perhaps even before the speech is first audible.

If SpeakCFString is called while the speech channel is currently speaking the contents of another text
string, the speech stops immediately and the new text string is spoken as soon as possible.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

SpeakString
Begins speaking a text string.

OSErr SpeakString (
 ConstStr255Param textToBeSpoken
);

Parameters
textToBeSpoken

The string to be spoken.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

1654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
The SpeakString function attempts to speak the Pascal-style text string contained in the string
textToBeSpoken. Speech is produced asynchronously using the default system voice. When an application
calls this function, the Speech Synthesis Manager makes a copy of the passed string and creates any structures
required to speak it. As soon as speaking has begun, control is returned to the application. The synthesized
speech is generated asynchronously to the application so that normal processing can continue while the
text is being spoken. No further interaction with the Speech Synthesis Manager is required at this point, and
the application is free to release the memory that the original string occupied.

If SpeakString is called while a prior string is still being spoken, the sound currently being synthesized is
interrupted immediately. Conversion of the new text into speech is then begun. If you pass a zero-length
string (or, in C, a null pointer) to SpeakString, the Speech Synthesis Manager stops any speech previously
being synthesized by SpeakString without generating additional speech. If your application uses
SpeakString, it is often a good idea to stop any speech in progress whenever your application receives a
suspend event. Calling SpeakString with a zero-length string has no effect on speech channels other than
the one managed internally by the Speech Synthesis Manager for the SpeakString function.)

The text passed to the SpeakString function may contain embedded speech commands.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeakText
Begins speaking a buffer of text.

OSErr SpeakText (
 SpeechChannel chan,
 const void *textBuf,
 unsigned long textBytes
);

Parameters
chan

The speech channel through which speech is to be spoken.

textBuf
A pointer to the first byte of text to spoken.

textBytes
The number of bytes of text to spoken.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
Like SpeakString, the SpeakText function also generates speech, but through a speech channel through
which you can exert control over the generated speech.

Functions 1655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

The SpeakText function converts the text stream specified by the textBuf and textBytes parameters
into speech using the voice and control settings for the speech channel chan, which should be created with
the NewSpeechChannel function. The speech is generated asynchronously. This means that control is
returned to your application before the speech has finished (and probably even before it has begun). The
maximum length of the text buffer that can be spoken is limited only by the available RAM.

If SpeakText is called while the channel is currently busy speaking the contents of a prior text buffer, it
immediately stops speaking from the prior buffer and begins speaking from the new text buffer as soon as
possible. If you pass a zero-length string (or, in C, a null pointer) to SpeakText, the Speech Synthesis
Manager stops all speech currently being synthesized by the speech channel specified in the chan parameter
without generating additional speech.

The text buffer must be locked in memory and must not move while the Speech Synthesis Manager processes
it. This buffer is read at interrupt time, and moving it could cause a system crash. If your application defines
a text-done callback function, then it can move the text buffer or dispose of it once the callback function is
executed.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeechBusy
Determines whether any channels of speech are currently synthesizing speech.

SInt16 SpeechBusy (
 void
);

Return Value
The number of speech channels that are currently synthesizing speech in the application. This is useful when
you want to ensure that an earlier speech request has been completed before having the system speak again.
Paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Synthesis Manager allocates internally in response to calls to the
SpeakString function is counted in the number returned by SpeechBusy. Thus, if you use just SpeakString
to initiate speech, SpeechBusy always returns 1 as long as speech is being produced. When SpeechBusy
returns 0, all speech has finished.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeechBusySystemWide
Determines if any speech is currently being synthesized in your application or elsewhere on the computer.

1656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

SInt16 SpeechBusySystemWide (
 void
);

Return Value
The total number of speech channels currently synthesizing speech on the computer, whether they were
initiated by your application or process’s code or by some other process executing concurrently. Paused
speech channels are counted among those channels that are synthesizing speech.

Discussion
This function is useful when you want to ensure that no speech is currently being produced anywhere on
the Macintosh computer before initiating speech. Although the Speech Synthesis Manager allows different
applications to produce speech simultaneously, this can be confusing to the user. As a result, it is often a
good idea for your application to check that no other process is producing speech before producing speech
itself. If the difference between the values returned by SpeechBusySystemWide and the SpeechBusy
function is 0, no other process is producing speech.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

SpeechManagerVersion
Determines the current version of the Speech Synthesis Manager installed in the system.

NumVersion SpeechManagerVersion (
 void
);

Return Value
The version of the Speech Synthesis Manager installed in the system, in the format of the first 4 bytes of a
'vers' resource.

Discussion
Use this call to determine whether your program can access features of the Speech Synthesis Manager that
are included in some Speech Synthesis Manager releases but not in earlier ones.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

StopSpeech
Terminates speech immediately on the specified channel.

Functions 1657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

OSErr StopSpeech (
 SpeechChannel chan
);

Parameters
chan

The speech channel on which speech is to be stopped.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The StopSpeech function immediately terminates speech on the channel specified by the chan parameter.
After returning from StopSpeech, your application can safely release any text buffer that the speech
synthesizer has been using. You can call StopSpeech for an already idle channel without ill effect.

You can also stop speech by passing a zero-length string (or, in C, a null pointer) to one of the SpeakString,
SpeakText, or SpeakBuffer functions. Doing this stops speech only in the specified speech channel (or,
in the case of SpeakString, in the speech channel managed internally by the Speech Synthesis Manager).

Before calling the StopSpeech function, you can use the SpeechBusy function, which is described in
SpeechBusy (page 1656), to determine if a synthesizer is still speaking. If you are working with multiple speech
channels, you can use the status selector with the function GetSpeechInfo which is described in
GetSpeechInfo (page 1638), to determine if a specific channel is still speaking.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

StopSpeechAt
Terminates speech delivery on a specified channel either immediately or at the end of the current word or
sentence.

OSErr StopSpeechAt (
 SpeechChannel chan,
 SInt32 whereToStop
);

Parameters
chan

The speech channel on which speech is to be stopped.

whereToStop
A constant indicating when speech processing should stop. Pass the constant kImmediate to stop
immediately, even in the middle of a word. Pass kEndOfWord or kEndOfSentence to stop speech
at the end of the current word or sentence, respectively.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

1658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
The StopSpeechAt function halts the production of speech on the channel specified by chan at a specified
point in the text. This function returns immediately, although speech output continues until the specified
point has been reached.

If you call the StopSpeechAt function before the Speech Synthesis Manager finishes processing input text,
then the function might return before some input text has yet to be spoken. Thus, before disposing of the
text buffer, your application should wait until its text-done callback function has been called (if one has been
defined), or until it can determine (by, for example obtaining a speech status information structure) that the
Speech Synthesis Manager is no longer processing input text.

If the end of the input text buffer is reached before the specified stopping point, the speech synthesizer
stops at the end of the buffer without generating an error.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

TextToPhonemes
Converts a buffer of textual data into phonemic data.

OSErr TextToPhonemes (
 SpeechChannel chan,
 const void *textBuf,
 unsigned long textBytes,
 Handle phonemeBuf,
 long *phonemeBytes
);

Parameters
chan

A speech channel whose associated synthesizer and voice are to be used for the conversion process.

textBuf
A pointer to a buffer of text to be converted.

textBytes
The number of bytes of text to be converted.

phonemeBuf
A handle to a buffer to be used to store the phonemic data. The TextToPhonemes function may
resize the relocatable block referenced by this handle.

phonemeBytes
On return, a pointer to the number of bytes of phonemic data written to the handle.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Functions 1659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
Converting textual data into phonemic data is particularly useful during application development, when you
might wish to adjust phrases that your application generates to produce smoother speech. By first converting
the target phrase into phonemes, you can see what the synthesizer will try to speak. Then you need correct
only the parts that would not have been spoken the way you want.

The TextToPhonemes function converts the textBytes bytes of textual data pointed to by the textBuf
parameter to phonemic data, which it writes into the relocatable block specified by the phonemeBuf
parameter. If necessary, TextToPhonemes resizes this relocatable block. The TextToPhonemes function sets
the phonemeBytes parameter to the number of bytes of phonemic data actually written.

If the textual data is contained in a relocatable block, a handle to that block must be locked before the
TextToPhonemes function is called.

The data returned by TextToPhonemes corresponds precisely to the phonemes that would be spoken had
the input text been sent to SpeakText instead. All current mode settings for the speech channel specified
by chan are applied to the converted speech. No callbacks are generated while the TextToPhonemes function
is generating its output.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

UseDictionary
Installs the designated dictionary into a speech channel.

OSErr UseDictionary (
 SpeechChannel chan,
 Handle dictionary
);

Parameters
chan

The speech channel into which a dictionary is to be installed.

dictionary
A handle to the dictionary data. This is often a handle to a resource of type 'dict'.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The UseDictionary function attempts to install the dictionary data referenced by the dictionaryparameter
into the speech channel referenced by the chan parameter. The synthesizer will use whatever elements of
the dictionary resource it considers useful to the speech conversion process. Some speech synthesizers might
ignore certain types of dictionary entries.

After the UseDictionary function returns, your application is free to release any storage allocated for the
dictionary handle. The search order for application-provided dictionaries is last-in, first-searched.

1660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

All details of how an application-provided dictionary is represented within the speech synthesizer are
dependent on the specific synthesizer implementation and are private to the synthesizer.

Pronunciation dictionaries allow your application to override the default Speech Synthesis Manager
pronunciations of individual words, such as names with unusual spellings.

Availability
Available in CarbonLib 1.0 and later when Text to Speech 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechSynthesis.h

UseSpeechDictionary
Registers a speech dictionary with a speech channel.

OSErr UseSpeechDictionary (
 SpeechChannel chan,
 CFDictionaryRef speechDictionary
);

Parameters
chan

The speech channel with which the specified speech dictionary is to be registered.

speechDictionary
A speech dictionary to be registered with the specified speech channel, represented as a
CFDictionary object. See “Speech Dictionary Keys” (page 1704) for the keys you can use in the
dictionary.

Return Value
A result code. See “Speech Synthesis Manager Result Codes” (page 1705).

Discussion
The UseSpeechDictionary function is the Core Foundation-based equivalent of the UseDictionary (page
1660) function.

The UseSpeechDictionary function registers the CFDictionary object referenced by the
speechDictionary parameter with the speech channel referenced by the chan parameter. Speech
dictionaries allow your application to override a synthesizer's default pronunciations of individual words,
such as names with unusual spellings. A synthesizer will use whatever elements of the dictionary it considers
useful in the speech conversion process. Some speech synthesizers might ignore certain types of dictionary
entries.

Multiple dictionaries can be registered with a synthesizer. If the same word appears in multiple dictionaries,
the synthesizer will use the one from the dictionary with the most recent date.

Note that because a speech dictionary is a CFDictionary object, it can be loaded from an XML-based
property list file. An example of such a file is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

Functions 1661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

 <key>LocaleIdentifier</key>
 <string>en_US</string>
 <key>ModificationDate</key>
 <string>2006-12-21 11:59:25 -0800</string>
 <key>Pronunciations</key>
 <array>
 <dict>
 <key>Phonemes</key>
 <string>_hEY_yUW</string>
 <key>Spelling</key>
 <string>Hello</string>
 </dict>
 </array>
 <key>Abbreviations</key>
 <array>
 <dict>
 <key>Phonemes</key>
 <string>_OW_sAEkz</string>
 <key>Spelling</key>
 <string>OSAX</string>
 </dict>
 </array>
</dict>
</plist>

After the UseSpeechDictionary function returns, your application is free to release the CFDictionary
object referenced by the speechDictionary parameter.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

Callbacks

SpeechDoneProcPtr
Defines a pointer to a speech-done callback function which is called when the Speech Synthesis Manager
finishes speaking a buffer of text.

typedef void (*SpeechDoneProcPtr) (
 SpeechChannel chan,
 SRefCon refCon
);

If you name your function MySpeechDoneProc, you would declare it like this:

void MySpeechDoneProc (
 SpeechChannel chan,
 long refCon
);

1662 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Parameters
chan

The speech channel that has finished processing input text.

refCon
The reference constant associated with the speech channel.

Discussion
If a speech-done callback function is installed in a speech channel, then the Speech Synthesis Manager calls
this function when it finishes speaking a buffer of text.

You can specify a speech-done callback function by passing the soSpeechDoneCallBack selector to the
SetSpeechInfo function.

You might use a speech-done callback function if you need to update some visual indicator that shows what
text is currently being spoken. For example, suppose your application passes text buffers to the Speech
Synthesis Manager one paragraph at a time. Your speech-done callback function might set a global flag
variable to indicate to the application that the Speech Synthesis Manager has finished speaking a paragraph.
When a function called by your application’s main event loop checks the global flag variable and determines
that it has been set, the function might ensure that the next paragraph of text is visible.

You might use a speech-done callback function to set a flag variable that alerts the application that it should
pass a new buffer of text to the Speech Synthesis Manager. If you do so, however, there might be a noticeable
pause as the Speech Synthesis Manager switches from processing one text buffer to another. Ordinarily, it
is easier to achieve this goal by using a text-done callback function, as described earlier.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechErrorCFProcPtr
Defines a pointer to an error callback function that handles syntax errors within commands embedded in a
CFString object being processed by the Speech Synthesis Manager.

typedef void (*SpeechErrorCFProcPtr) (
 SpeechChannel chan,
 SRefCon refCon,
 CFErrorRef theError
);

If you name your function MySpeechErrorCFProc, you would declare it like this:

void MySpeechErrorCFProc (
 SpeechChannel chan,
 long refCon,
 CFErrorRef theError
);

Parameters
chan

The speech channel that has finished processing input text.

Callbacks 1663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

refCon
The reference constant associated with the speech channel.

theError
The error that occurred in processing an embedded command.

Discussion
An error callback function defined by the SpeechErrorCFProcPtr is the Core Foundation-based equivalent
of an error callback function defined by SpeechErrorProcPtr (page 1664). The Speech Synthesis Manager
calls a speech channel’s error callback function whenever it encounters a syntax error within a command
embedded in a CFString object it is processing. This can be useful during application debugging, to detect
problems with commands that you have embedded in strings that your application speaks. It can also be
useful if your application allows users to embed commands within strings. Your application might display
an alert indicating that the Speech Synthesis Manager encountered a problem in processing an embedded
command.

Ordinarily, the error information that the Speech Synthesis Manager provides the error callback function
should be sufficient. However, if your application needs information about errors that occurred before the
error callback function was enabled, the application (including the error callback function) can call the
CopySpeechProperty (page 1634) function with the kSpeechErrorsProperty property.

You can specify an error callback function by passing the kSpeechErrorCFCallback property to the
SetSpeechProperty (page 1651) function.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

SpeechErrorProcPtr
Defines a pointer to an error callback function that handles syntax errors within commands embedded in a
text buffer being processed by the Speech Synthesis Manager.

typedef void (*SpeechErrorProcPtr) (
 SpeechChannel chan,
 SRefCon refCon,
 OSErr theError,
 long bytePos
);

If you name your function MySpeechErrorProc, you would declare it like this:

void MySpeechErrorProc (
 SpeechChannel chan,
 long refCon,
 OSErr theError,
 long bytePos
);

Parameters
chan

The speech channel that has finished processing input text.

1664 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

refCon
The reference constant associated with the speech channel.

theError
The error that occurred in processing an embedded command.

bytePos
The number of bytes from the beginning of the text buffer being spoken to the error encountered.

Discussion
The Speech Synthesis Manager calls a speech channel’s error callback function whenever it encounters a
syntax error within a command embedded in a text buffer it is processing. This can be useful during application
debugging, to detect problems with commands that you have embedded in text buffers that your application
speaks. It can also be useful if your application allows users to embed commands within text buffers. Your
application might display an alert indicating that the Speech Synthesis Manager encountered a problem in
processing an embedded command.

Ordinarily, the error information that the Speech Synthesis Manager provides the error callback function
should be sufficient. However, if your application needs information about errors that occurred before the
error callback function was enabled, the application (including the error callback function) can call the
GetSpeechInfo function with the soErrors selector.

You can specify an error callback function by passing the soErrorCallBack selector to the SetSpeechInfo
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechPhonemeProcPtr
Defines a pointer to a phoneme callback function that is called by the Speech Synthesis Manager before it
pronounces a phoneme.

typedef void (*SpeechPhonemeProcPtr)
(
 SpeechChannel chan,
 SRefCon refCon,
 short phonemeOpcode
);

If you name your function MySpeechPhonemeProc, you would declare it like this:

void MySpeechPhonemeProc (
 SpeechChannel chan,
 long refCon,
 short phonemeOpcode
);

Parameters
chan

The speech channel that has finished processing input text.

Callbacks 1665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

refCon
The reference constant associated with the speech channel.

phonemeOpcode
The phoneme about to be pronounced.

Discussion
The Speech Synthesis Manager calls a speech channel’s phoneme callback function just before it pronounces
a phoneme. For example, your application might use such a callback function to enable mouth synchronization.
In this case, the callback function would set a global flag variable to indicate that the phoneme being
pronounced is changing and another global variable to phonemeOpcode. A function called by your
application’s main event loop could detect that the phoneme being pronounced is changing and update a
picture of a mouth to reflect the current phoneme. In practice, providing a visual indication of the
pronunciation of a phoneme requires several consecutive pictures of mouth movement to be rapidly displayed.
Consult the linguistics literature for information on mouth movements associated with different phonemes.

You can specify a phoneme callback function by passing the soPhonemeCallBack selector to the
SetSpeechInfo function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechSyncProcPtr
Defines a pointer to a synchronization callback function that is called when the Speech Synthesis Manager
encounters a synchronization command embedded in a text buffer.

typedef void (*SpeechSyncProcPtr) (
 SpeechChannel chan,
 SRefCon refCon,
 OSType syncMessage
);

If you name your function MySpeechSyncProc, you would declare it like this:

void MySpeechSyncProc (
 SpeechChannel chan,
 long refCon,
 OSType syncMessage
);

Parameters
chan

The speech channel that has finished processing input text.

refCon
The reference constant associated with the speech channel.

syncMessage
The synchronization message passed in the embedded command. Usually, you use this message to
distinguish between several different types of synchronization commands, but you can use it any
way you wish.

1666 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
The Speech Synthesis Manager calls a speech channel’s synchronization callback function whenever it
encounters a synchronization command embedded in a text buffer. You might use the synchronization
callback function to provide a callback not ordinarily provided. For example, you might inset synchronization
commands at the end of every sentence in a text buffer, or you might enter synchronization commands after
every numeric value in the text. However, to synchronize your application with phonemes or words, it makes
more sense to use the built-in phoneme and word callback functions, defined in
SpeechPhonemeProcPtr (page 1665).

You can specify a synchronization callback function by passing the soSyncCallBack selector to the
SetSpeechInfo function and embedding a synchronization command within a text buffer passed to the
SpeakText or SpeakBuffer function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechTextDoneProcPtr
Defines a pointer to a text-done callback function that is called when the Speech Synthesis Manager has
finished processing a buffer of text.

typedef void (*SpeechTextDoneProcPtr)
(
 SpeechChannel chan,
 SRefCon refCon,
 void ** nextBuf,
 unsigned long * byteLen,
 long * controlFlags
);

If you name your function MySpeechTextDoneProc, you would declare it like this:

void MySpeechTextDoneProc (
 SpeechChannel chan,
 long refCon,
 void ** nextBuf,
 unsigned long * byteLen,
 long * controlFlags
);

Parameters
chan

The speech channel that has finished processing input text.

refCon
The reference constant associated with the speech channel.

nextBuf
On return, a pointer to the next buffer of text to process or NULL if your application has no additional
text to be spoken. This parameter is mostly for internal use by the Speech Synthesis Manager.

Callbacks 1667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

byteLen
On return, a pointer to the number of bytes of the text buffer pointed to by the nextBuf parameter.

controlFlags
On return, a pointer to the control flags to be used in generating the next buffer of text.

Discussion
If a text-done callback function is installed in a speech channel, then the Speech Synthesis Manager calls this
function when it finishes processing a buffer of text. The Speech Synthesis Manager might not yet have
completed finishing speaking the text and indeed might not have started speaking it.

You can specify a text-done callback function by passing the soTextDoneCallBack selector to the
SetSpeechInfo function.

A common use of a text-done callback function is to alert your application once the text passed to the
SpeakText or SpeakBuffer function can be disposed of (or, when the text is contained within a locked
relocatable block, when the relocatable block can be unlocked). The Speech Synthesis Manager copies the
text you pass to the SpeakText or SpeakBuffer function into an internal buffer. Once it has finished
processing the text, you may dispose of the original text buffer, even if speech is not yet complete. However,
if you wish to write a callback function that executes when speech is completed, see the definition of a
speech-done callback function below.

Although most applications will not need to, your callback function can indicate to the Speech Synthesis
Manager whether there is another buffer of text to speak. If there is another buffer, your callback function
should reference it by setting the nextBuf and byteLen parameters to appropriate values. (Your callback
function might also change the control flags to be used to process the speech by altering the value in the
controlFlags parameter.) Setting these parameters allows the Speech Synthesis Manager to generate
uninterrupted speech. If there is no more text to speak, your callback function should set nextBuf to NULL.
In this case, the Speech Synthesis Manager ignores the byteLen and controlFlags parameters.

If your text-done callback function does not change the values of the nextBuf and byteLen parameters,
the text buffer just spoken will be spoken again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechWordCFProcPtr
Defines a pointer to a Core Foundation-based word callback function that is called by the Speech Synthesis
Manager before it pronounces a word.

typedef void (*SpeechWordCFProcPtr) (
 SpeechChannel chan,
 SRefCon refCon,
 CFStringRef aString,
 CFRange wordRange
);

If you name your function MySpeechWordCFProc, you would declare it like this:

void MySpeechWordCFProc (
 SpeechChannel chan,
 SRefCon refCon,

1668 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

 CFStringRef aString,
 CFRange wordRange
);

Parameters
chan

The speech channel that has finished processing input text.

refCon
The reference constant associated with the speech channel.

aString
The original string passed to the speech synthesizer in the SpeakCFString (page 1653) call.

wordRange
The range of characters in aString that corresponds to the word.

Discussion
A word callback function defined by the SpeechWordCFProcPtr is the Core Foundation-based equivalent
of a word callback function defined by SpeechWordProcPtr (page 1669). The Speech Synthesis Manager calls
a speech channel’s word callback function just before it pronounces a word. You might use such a callback
function, for example, to highlight the word about to be spoken in a window.

You can specify a word callback function by passing the kSpeechWordCFCallBack property to
theSetSpeechProperty (page 1651) function.

Availability
Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

SpeechWordProcPtr
Defines a pointer to a word callback function that is called by the Speech Synthesis Manager before it
pronounces a word.

typedef void (*SpeechWordProcPtr) (
 SpeechChannel chan,
 SRefCon refCon,
 unsigned long wordPos,
 unsigned short wordLen
);

If you name your function MySpeechWordProc, you would declare it like this:

void MySpeechWordProc (
 SpeechChannel chan,
 long refCon,
 unsigned long wordPos,
 unsigned short wordLen
);

Callbacks 1669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Parameters
chan

The speech channel that has finished processing input text.

refCon
The reference constant associated with the speech channel.

wordPos
The number of bytes between the beginning of the text buffer and the beginning of the word about
to be pronounced.

wordLen
The length in bytes of the word about to be pronounced.

Discussion
The Speech Synthesis Manager calls a speech channel’s word callback function just before it pronounces a
word. You might use such a callback function, for example, to draw the word about to be spoken in a window.
In this case, the callback function would set a global flag variable to indicate that the word being spoken is
changing and another two global variables to wordPos and wordLen. A function called by your application’s
main event loop could detect that the word being spoken is changing and draw the word in a window.

You can specify a word callback function by passing the soWordCallBack selector to the SetSpeechInfo
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

Data Types

DelimiterInfo
Defines a delimiter information structure.

struct DelimiterInfo {
 Byte startDelimiter[2];
 Byte endDelimiter[2];
};
typedef struct DelimiterInfo DelimiterInfo;

Fields
startDelimiter

The start delimiter for an embedded command. By default, the start delimiter is “[[”.

endDelimiter
The end delimiter for an embedded command. By default, the end delimiter is “]]”.

Discussion
A delimiter information structure defines the characters used to indicate the beginning and end of a command
embedded in text. A delimiter can be one or two characters.

1670 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Ordinarily, applications that support embedded speech commands should not change the start or end
delimiters. However, if for some reason you must change the delimiters, you can use the SetSpeechInfo
function with the soCommandDelimiter selector. For example, you might do this if a text buffer naturally
includes the delimiter strings. Before passing such a buffer to the Speech Synthesis Manager, you can change
the delimiter strings to some two-character sequences not used in the buffer and then change the delimiter
strings back once processing of the buffer is complete.

If a single-byte delimiter is desired, it should be followed by a NULL (0) byte. If the delimiter strings both
consist of two NULL bytes, embedded command processing is disabled.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

PhonemeDescriptor
Defines a phoneme descriptor structure.

struct PhonemeDescriptor {
 SInt16 phonemeCount;
 PhonemeInfo thePhonemes[1];
};
typedef struct PhonemeDescriptor PhonemeDescriptor;

Fields
phonemeCount

The number of phonemes that the current synthesizer defines. Typically, this will correspond to the
number of phonemes in the language supported by the synthesizer.

thePhonemes
An array of phoneme information structures.

Discussion
By calling the GetSpeechInfo (page 1638) function with the soPhonemeSymbols selector, you can obtain a
phoneme descriptor structure, which describes all phonemes defined for the current synthesizer.

A common use for a phoneme descriptor structure is to provide a graphical display to the user of all available
phonemes. Such a list is used only for a user entering phonemic data directly rather than just entering text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

PhonemeInfo
Defines a structure that stores information about a phoneme.

Data Types 1671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

struct PhonemeInfo {
 SInt16 opcode;
 Str15 phStr;
 Str31 exampleStr;
 SInt16 hiliteStart;
 SInt16 hiliteEnd;
};
typedef struct PhonemeInfo PhonemeInfo;

Fields
opcode

The opcode for the phoneme.

phStr
The string used to represent the phoneme. The string does not necessarily have a phonetic connection
to the phoneme, but might simply be an abstract textual representation of it.

exampleStr
An example word that illustrates use of the phoneme.

hiliteStart
The number of characters in the example word that precede the portion of that word representing
the phoneme.

hiliteEnd
The number of characters between the beginning of the example word and the end of the portion
of that word representing the phoneme.

Discussion
Ordinarily, you use a phoneme information structure to show the user how to enter text to represent a
particular phoneme when the 'PHON' input mode is activated.

You might use the information contained in the hiliteStart and hiliteEnd fields to highlight the
characters in the example word that represent the phoneme.

To obtain a phoneme information structure for an individual phoneme, you must obtain a list of phonemes
through a phoneme descriptor structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechChannelRecord
Represents a speech channel.

struct SpeechChannelRecord {
 long data[1];
};
typedef struct SpeechChannelRecord SpeechChannelRecord;
typedef SpeechChannelRecord * SpeechChannel;

Availability
Available in Mac OS X v10.0 and later.

1672 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

SpeechDoneUPP
Defines a universal procedure pointer (UPP) to a speech-done callback function.

typedef SpeechDoneProcPtr SpeechDoneUPP;

Discussion
For more information, see the description of the SpeechDoneProcPtr (page 1662) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechErrorInfo
Defines a speech error information structure.

struct SpeechErrorInfo {
 SInt16 count;
 OSErr oldest;
 long oldPos;
 OSErr newest;
 long newPos;
};
typedef struct SpeechErrorInfo SpeechErrorInfo;

Fields
count

The number of errors that have occurred in processing the current text buffer since the last call to
the GetSpeechInfo function with the soErrors selector. Of these errors, you can find information
about only the first and last error that occurred.

oldest
The error code of the first error that occurred after the previous call to the GetSpeechInfo function
with the soErrors selector.

oldPos
The character position within the text buffer being processed of the first error that occurred after the
previous call to the GetSpeechInfo function with the soErrors selector.

newest
The error code of the most recent error.

newPos
The character position within the text buffer being processed of the most recent error.

Discussion
By calling the GetSpeechInfo (page 1638) function with the soErrors selector, you can obtain a speech
error information structure, which shows what Speech Synthesis Manager errors occurred while processing
a text buffer on a given speech channel.

Data Types 1673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Speech error information structures never include errors that are returned by Speech Synthesis Manager
functions. Instead, they reflect only errors encountered directly in the processing of text, and, in particular,
in the processing of commands embedded within text.

The speech error information structure keeps track of only the most recent error and the first error that
occurred after the previous call to the GetSpeechInfo function with the soErrors selector. If your application
needs to keep track of all errors, then you should install an error callback function,
SpeechErrorProcPtr (page 1664).

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechErrorUPP
Defines a universal procedure pointer (UPP) to an error callback function.

typedef SpeechErrorProcPtr SpeechErrorUPP;

Discussion
For more information, see the description of the SpeechErrorProcPtr (page 1664) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechPhonemeUPP
Defines a universal procedure pointer (UPP) to a phoneme callback function.

typedef SpeechPhonemeProcPtr SpeechPhonemeUPP;

Discussion
For more information, see the description of the SpeechPhonemeProcPtr (page 1665) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechStatusInfo
Defines a a speech status information structure, which stores information about the status of a speech channel.

1674 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

struct SpeechStatusInfo {
 Boolean outputBusy;
 Boolean outputPaused;
 long inputBytesLeft;
 SInt16 phonemeCode;
};
typedef struct SpeechStatusInfo SpeechStatusInfo;

Fields
outputBusy

Whether the speech channel is currently producing speech. A speech channel is considered to be
producing speech even at some times when no audio data is being produced through the Macintosh
speaker. This occurs, for example, when the Speech Synthesis Manager is processing an input buffer
but has not yet initiated speech or when speech output is paused.

outputPaused
Whether speech output in the speech channel has been paused by a call to the PauseSpeechAt (page
1649) function.

inputBytesLeft
The number of input bytes of the text that the speech channel must still process. When
inputBytesLeft is 0, the buffer of input text passed to one of the SpeakText or SpeakBuffer
functions may be disposed of. When you call the SpeakString function, the Speech Synthesis
Manager stores a duplicate of the string to be spoken in an internal buffer; thus, you may delete the
original string immediately after calling SpeakString.

phonemeCode
The opcode for the phoneme that the speech channel is currently processing.

Discussion
By calling the GetSpeechInfo (page 1638) function with the soStatus selector, you can find out information
about the status of a speech channel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechSyncUPP
Defines a universal procedure pointer (UPP) to a synchronization callback function.

typedef SpeechSyncProcPtr SpeechSyncUPP;

Discussion
For more information, see the description of the SpeechSyncProcPtr (page 1666) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

Data Types 1675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

SpeechTextDoneUPP
Defines a universal procedure pointer (UPP) to a text-done callback function.

typedef SpeechTextDoneProcPtr SpeechTextDoneUPP;

Discussion
For more information, see the description of the SpeechTextDoneProcPtr (page 1667) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechVersionInfo
Defines a speech version information structure.

struct SpeechVersionInfo {
 OSType synthType;
 OSType synthSubType;
 OSType synthManufacturer;
 SInt32 synthFlags;
 NumVersion synthVersion;
};
typedef struct SpeechVersionInfo SpeechVersionInfo;

Fields
synthType

The general type of the synthesizer. For the current version of the Speech Synthesis Manager, this
field always contains the value kTextToSpeechSynthType, indicating that the synthesizer converts
text into speech.

synthSubType
The specific type of the synthesizer. Currently, no specific types of synthesizer are defined. If you
define a new type of synthesizer, you should register the four-character code for your type with
Developer Technical Support.

synthManufacturer
A unique identification of a synthesizer engine. If you develop synthesizers, then you should register
a different four-character code for each synthesizer you develop with Developer Technical Support.
The creatorID field of the voice specification structure and the synthCreator field of a speech
extension data structure should each be set to the value stored in this field for the desired synthesizer.

synthFlags
A set of flags indicating which synthesizer features are activated. Specific constants define the bits in
this field whose meanings are defined for all synthesizers.

synthVersion
The version number of the synthesizer.

Discussion
By calling the GetSpeechInfo (page 1638) function with the soSynthType selector, you can obtain a speech
version information structure, which provides information about the speech synthesizer currently being used.

Availability
Available in Mac OS X v10.0 and later.

1676 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

SpeechWordUPP
Defines a universal procedure pointer (UPP) to a word callback function.

typedef SpeechWordProcPtr SpeechWordUPP;

Discussion
For more information, see the description of the SpeechWordProcPtr (page 1669) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

SpeechXtndData
Defines a speech extension data structure.

struct SpeechXtndData {
 OSType synthCreator;
 Byte synthData[2];
};
typedef struct SpeechXtndData SpeechXtndData;

Fields
synthCreator

The synthesizer’s creator ID, identical to the value stored in the synthManufacturer field of a speech
version information structure. You should set this field to the appropriate value before calling
GetSpeechInfo or SetSpeechInfo.

synthData
Synthesizer-specific data. The size and format of the data in this field may vary.

Discussion
The speech extension data structure allows you to use the GetSpeechInfo (page 1638) and
SetSpeechInfo (page 1650) functions with selectors defined by particular synthesizers. By requiring that you
pass to one of these functions a pointer to a speech extension data structure, synthesizers can permit the
exchange of data in any format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

VoiceDescription
Defines a voice description structure.

Data Types 1677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

struct VoiceDescription {
 SInt32 length;
 VoiceSpec voice;
 SInt32 version;
 Str63 name;
 Str255 comment;
 SInt16 gender;
 SInt16 age;
 SInt16 script;
 SInt16 language;
 SInt16 region;
 SInt32 reserved[4];
};
typedef struct VoiceDescription VoiceDescription;

Fields
length

The size of the voice description structure, in bytes.

voice
A voice specification structure that uniquely identifies the voice.

version
The version number of the voice.

name
The name of the voice, preceded by a length byte. Names must be 63 characters or less.

comment
Additional text information about the voice. Some synthesizers use this field to store a phrase that
can be spoken.

gender
The gender of the individual represented by the voice. See “Gender Constants” (page 1681).

age
The approximate age in years of the individual represented by the voice.

script
In Mac OS X v10.4.7 and later, the encoding code of the text that the voice can process.

Note that this field contains a 16-bit value. You can use any of the 16-bit values described in
External_String_Encodings or CFStringBuiltInEncodings. However, if you need to use a
32-bit value, such as kCFStringEncodingUTF8, you pass the value in the first array element of the
reserved field, and you also specify -1 or kCFStringEncodingInvalidId in the script field.

language
A code that indicates the language of voice output.

region
A code that indicates the region represented by the voice.

reserved
Reserved. May be used to hold a 32-bit encoding value, if necessary (see the description of the script
field for more information).

Discussion
By calling the GetVoiceDescription (page 1640) function, you can obtain information about a voice in a
voice description structure.

Availability
Available in Mac OS X v10.0 and later.

1678 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

VoiceFileInfo
Defines a voice file information structure.

struct VoiceFileInfo {
 FSSpec fileSpec;
 SInt16 resID;
};
typedef struct VoiceFileInfo VoiceFileInfo;

Fields
fileSpec

A file system specification structure that contains the volume, directory, and name of the file containing
the voice. Generally, files containing a single voice are of type kTextToSpeechVoiceFileType, and
files containing multiple voices are of type kTextToSpeechVoiceBundleType.

resID
The resource ID of the voice in the file. Voices are stored in resources of type
kTextToSpeechVoiceType.

Discussion
A voice file information structure specifies the file in which a voice is stored and the resource ID of the voice
within that file. Use the GetVoiceInfo (page 1641) function to obtain a voice file information structure for a
voice.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

VoiceSpec
Defines a voice specification structure.

struct VoiceSpec {
 OSType creator;
 OSType id;
};
typedef struct VoiceSpec VoiceSpec;
typedef VoiceSpec * VoiceSpecPtr;

Fields
creator

The synthesizer that is required to use the voice. This is equivalent to the value contained in the
synthManufacturer field of a speech version information structure and that contained in the
synthCreator field of a speech extension data structure. The set of OSType values specified entirely
by space characters and lowercase letters is reserved.

id
The voice ID of the voice for the synthesizer. Every voice on a synthesizer has a unique ID.

Data Types 1679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Discussion
A voice specification structure provides a unique specification that you must use to obtain information about
a voice. You also must use a voice specification structure if you wish to create a speech channel that generates
speech in a voice other than the current system default voice.

To ensure compatibility with future versions of the Speech Synthesis Manager, you should never fill in the
fields of a voice specification structure yourself. Instead, you should create a voice specification structure by
using the MakeVoiceSpec (page 1645) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechSynthesis.h

Constants

Control Flags Constants
Flags that indicate which synthesizer features are active.

enum {
 kNoEndingProsody = 1,
 kNoSpeechInterrupt = 2,
 kPreflightThenPause = 4
};

Constants
kNoEndingProsody

Disables prosody at end of sentences. The kNoEndingProsody flag bit is used to control whether or
not the speech synthesizer automatically applies ending prosody, the speech tone and cadence that
normally occur at the end of a statement. Under normal circumstances (for example, when the flag
bit is not set), ending prosody is applied to the speech when the end of the textBuf data is reached.
This default behavior can be disabled by setting the kNoEndingProsody flag bit.

Some synthesizers do not speak until the kNoEndingProsody flag bit is reset, or they encounter a
period in the text, or textBuf is full.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

1680 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kNoSpeechInterrupt
Does not interrupt current speech. The kNoSpeechInterrupt flag bit is used to control the behavior
of SpeakBuffer when called on a speech channel that is still busy. When the flag bit is not set,
SpeakBuffer behaves similarly to SpeakString and SpeakText. Any speech currently being
produced on the specified speech channel is immediately interrupted, and then the new text buffer
is spoken. When the kNoSpeechInterrupt flag bit is set, however, a request to speak on a channel
that is still busy processing a prior text buffer will result in an error. The new buffer is ignored and
the error synthNotReady is returned. If the prior text buffer has been fully processed, the new buffer
is spoken normally. One way of achieving continuous speech without using callback functions is to
continually call SpeakBuffer with the kNoSpeechInterrupt flag bit set until the function returns
noErr. The function will then execute as soon as the first text buffer has been processed.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kPreflightThenPause
Computes speech without generating.The kPreflightThenPause flag bit is used to minimize the
latency experienced when the speech synthesizer is attempting to speak. Ordinarily, whenever a call
to SpeakString, SpeakText, or SpeakBuffer is made, the speech synthesizer must perform a
certain amount of initial processing before speech output is heard. This startup latency can vary from
a few milliseconds to several seconds depending upon which speech synthesizer is being used.
Recognizing that larger startup delays might be detrimental to certain applications, a mechanism
exists to allow the synthesizer to perform any necessary computations at noncritical times. Once the
computations have been completed, the speech is able to start instantly. When the
kPreflightThenPause flag bit is set, the speech synthesizer will process the input text as necessary
to the point where it is ready to begin producing speech output. At this point, the synthesizer will
enter a paused state and return to the caller. When the application is ready to produce speech, it
should call the ContinueSpeech function to begin speaking.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Discussion
These constants are used in the controlFlags parameter of the SpeakBuffer (page 1652) function and in
the synthFlagsl field of the SpeechVersionInfo (page 1676) structure.

Declared In
SpeechSynthesis.h

Gender Constants
Constants that indicate the gender of the individual represented by a voice.

enum {
 kNeuter = 0,
 kMale = 1,
 kFemale = 2
};

Constants
kNeuter

Neuter voice.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Constants 1681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kMale
Male voice.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kFemale
Female voice.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Discussion
These constants are used in the gender field of the VoiceDescription (page 1677) structure.

Declared In
SpeechSynthesis.h

Stop Speech Locations
Locations that indicate where speech should be paused or stopped.

enum {
 kImmediate = 0,
 kEndOfWord = 1,
 kEndOfSentence = 2
};

Constants
kImmediate

Speech should be paused or stopped immediately.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kEndOfWord
Speech should be paused or stopped at the end of the word.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kEndOfSentence
Speech should be paused or stopped at the end of the sentence.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Discussion
See the functions PauseSpeechAt (page 1649) and StopSpeechAt (page 1658) for more information.

Declared In
SpeechSynthesis.h

Speech Synthesis Manager Operating System Types
The OSType definitions used by the Speech Synthesis Manager.

1682 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

enum {
 kTextToSpeechSynthType = 'ttsc',
 kTextToSpeechVoiceType = 'ttvd',
 kTextToSpeechVoiceFileType = 'ttvf',
 kTextToSpeechVoiceBundleType = 'ttvb'
};

Constants
kTextToSpeechSynthType

The type of a synthesizer component.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kTextToSpeechVoiceType
The type of a voice resource.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kTextToSpeechVoiceFileType
The type of a voice file. Typically. files containing a single voice are of type
kTextToSpeechVoiceFileType.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

kTextToSpeechVoiceBundleType
The type of a voice bundle file. Typically, files containing multiple voices are of type
kTextToSpeechVoiceBundleType.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Speech-Channel Modes
The available text-processing and number-processing modes for a speech channel.

enum {
 modeText = 'TEXT',
 modePhonemes = 'PHON',
 modeNormal = 'NORM',
 modeLiteral = 'LTRL'
};

Constants
modeText

Indicates that the speech channel is in text-processing mode.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Constants 1683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

modePhonemes
Indicates that the speech channel is in phoneme-processing mode. When in phoneme-processing
mode, a text buffer is interpreted to be a series of characters representing various phonemes and
prosodic controls.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

modeNormal
Indicates that the synthesizer assembles digits into numbers (so that “12” is spoken as "twelve").

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

modeLiteral
Indicates that each digit is spoken literally (so that “12” is spoken as "one, two").

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Speech-Channel Modes for Core Foundation-based Functions
The available text-processing and number-processing modes for a speech channel.

CFStringRef kSpeechModeText = CFSTR("TEXT");
CFStringRef kSpeechModePhoneme = CFSTR("PHON");
CFStringRef kSpeechModeNormal = CFSTR("NORM");
CFStringRef kSpeechModeLiteral = CFSTR("LTRL");

Constants
kSpeechModeText

Indicates that the speech channel is in text-processing mode.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechModePhoneme
Indicates that the speech channel is in phoneme-processing mode. When in phoneme-processing
mode, a text buffer is interpreted to be a series of characters representing various phonemes and
prosodic controls.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechModeNormal
Indicates that the synthesizer assembles digits into numbers (so that “12” is spoken as "twelve").

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechModeLiteral
Indicates that each digit is spoken literally (so that “12” is spoken as "one, two").

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

1684 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

Voice Information Selectors
The types of voice data that can be requested by the GetVoiceInfo function.

enum {
 soVoiceDescription = 'info',
 soVoiceFile = 'fref'
};

Constants
soVoiceDescription

Get basic voice information.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soVoiceFile
Get voice file reference information.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Speech-Channel Information Constants
Selectors that can be passed to the GetSpeechInfo or SetSpeechInfo functions.

Constants 1685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

enum {
 soStatus = 'stat',
 soErrors = 'erro',
 soInputMode = 'inpt',
 soCharacterMode = 'char',
 soNumberMode = 'nmbr',
 soRate = 'rate',
 soPitchBase = 'pbas',
 soPitchMod = 'pmod',
 soVolume = 'volm',
 soSynthType = 'vers',
 soRecentSync = 'sync',
 soPhonemeSymbols = 'phsy',
 soCurrentVoice = 'cvox',
 soCommandDelimiter = 'dlim',
 soReset = 'rset',
 soCurrentA5 = 'myA5',
 soRefCon = 'refc',
 soTextDoneCallBack = 'tdcb',
 soSpeechDoneCallBack = 'sdcb',
 soSyncCallBack = 'sycb',
 soErrorCallBack = 'ercb',
 soPhonemeCallBack = 'phcb',
 soWordCallBack = 'wdcb',
 soSynthExtension = 'xtnd',
 soSoundOutput = 'sndo',
 soOutputToFileWithCFURL = 'opaf'
};

Constants
soStatus

Get a speech status information structure for the speech channel. The speechInfo parameter is a
pointer to a speech status information structure, described in SpeechStatusInfo (page 1674).

This selector works with the GetSpeechInfo (page 1638) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soErrors
Get saved error information for the speech channel and clear its error registers. This selector lets you
poll for various run-time errors that occur during speaking, such as the detection of badly formed
embedded commands. Errors returned directly by Speech Synthesis Manager functions are not
reported here. If your application defines an error callback function, the callback should use the
soErrors selector to obtain error information. The speechInfo parameter is a pointer to a speech
error information structure, described in SpeechErrorInfo (page 1673).

This selector works with the GetSpeechInfo (page 1638) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

1686 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soInputMode
Get or set the speech channel’s current text-processing mode. The returned value specifies whether
the channel is currently in text input mode or phoneme input mode. The speechInfo parameter is
a pointer to a variable of type OSType, which specifies a text-processing mode. The constants modeText
and modePhonemes specify the available text-processing modes.

The modeText constant indicates that the speech channel is in text-processing mode. The
modePhonemes constant indicates that the speech channel is in phoneme-processing mode. When
in phoneme-processing mode, a text buffer is interpreted to be a series of characters representing
various phonemes and prosodic controls. Some synthesizers might support additional input-processing
modes and define constants for these modes.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soCharacterMode
Get or set the speech channel’s character-processing mode. Two constants are currently defined for
the processing mode, modeNormal and modeLiteral. When the character-processing mode is
modeNormal, input characters are spoken as you would expect to hear them. When the mode is
modeLiteral, each character is spoken literally, so that the word “cat” would be spoken “C–A–T”.
The speechInfo parameter points to a variable of type OSType, which is the character-processing
mode.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soNumberMode
Get or set the speech channel’s current number-processing mode. Two OSType constants are currently
defined, modeNormal and modeLiteral. When the number-processing mode is modeNormal, the
synthesizer assembles digits into numbers (so that 12 is spoken as “twelve”). When the mode is
modeLiteral, each digit is spoken literally (so that 12 is spoken as “one, two”). The speechInfo
parameter is a pointer to a variable of type OSType, which specifies the number-processing mode.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soRate
Get or set a speech channel’s speech rate. The speechInfo parameter is a pointer to a variable of
type Fixed. The possible range of speech rates is from 0.000 to 65535.65535. The range of supported
rates is not predefined by the Speech Synthesis Manager; each speech synthesizer provides its own
range of speech rates. Average human speech occurs at a rate of 180 to 220 words per minute.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Constants 1687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soPitchBase
Get or set the speech channel’s baseline speech pitch. This selector is intended for use by the Speech
Synthesis Manager; ordinarily, an application uses the GetSpeechPitch (page 1639) and
SetSpeechPitch (page 1651) functions. The speechInfo parameter is a pointer to a variable of type
Fixed.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soPitchMod
Get or set a speech channel’s pitch modulation. The speechInfo parameter is a pointer to a variable
of type Fixed. Pitch modulation is also expressed as a fixed-point value in the range of 0.000 to
127.000. These values correspond to MIDI note values, where 60.000 is equal to middle C on a piano
scale. The most useful speech pitches fall in the range of 40.000 to 55.000. A pitch modulation value
of 0.000 corresponds to a monotone in which all speech is generated at the frequency corresponding
to the speech pitch. Given a speech pitch value of 46.000, a pitch modulation of 2.000 would mean
that the widest possible range of pitches corresponding to the actual frequency of generated text
would be 44.000 to 48.000.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soVolume
Get or set the speech volume for a speech channel. The speechInfo parameter is a pointer to a
variable of type Fixed. Volumes are expressed in fixed-point units ranging from 0.0 through 1.0. A
value of 0.0 corresponds to silence, and a value of 1.0 corresponds to the maximum possible volume.
Volume units lie on a scale that is linear with amplitude or voltage. A doubling of perceived loudness
corresponds to a doubling of the volume.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soSynthType
Get a speech version information structure for the speech synthesizer being used on the specified
speech channel. The speechInfo parameter is a pointer to a speech version information structure,
described in SpeechVersionInfo (page 1676).

This selector works with the GetSpeechInfo (page 1638) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soRecentSync
Get the message code for the most recently encountered synchronization command. If no
synchronization command has been encountered, 0 is returned. The speechInfo parameter is a
pointer to a variable of type OSType.

This selector works with the GetSpeechInfo (page 1638) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

1688 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soPhonemeSymbols
Get a list of phoneme symbols and example words defined for the speech channel’s synthesizer. Your
application might use this information to show the user what symbols to use when entering phonemic
text directly. The speechInfo parameter is a pointer to a variable of type Handle that, on exit from
the GetSpeechInfo function, is a handle to a phoneme descriptor structure, described in
PhonemeDescriptor (page 1671).

This selector works with the GetSpeechInfo (page 1638) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soCurrentVoice
Set the current voice on the current speech channel to the specified voice. The speechInfo parameter
is a pointer to a voice specification structure. Your application should create the structure by calling
MakeVoiceSpec (page 1645).SetSpeechInfowill return anincompatibleVoice error if the specified
voice is incompatible with the speech synthesizer associated with the speech channel. If you have a
speech channel open using a voice from a particular synthesizer and you try to switch to a voice that
works with a different synthesizer, you receive an incompatibleVoice error. You need to create a
new channel to use with the new voice.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soCommandDelimiter
Set the embedded speech command delimiter characters to be used for the speech channel. By
default the opening delimiter is “[[” and the closing delimiter is “]]”. Your application might need
to change these delimiters temporarily if those character sequences occur naturally in a text buffer
that is to be spoken. Your application can also disable embedded command processing by passing
empty delimiters (2 NULL bytes). The speechInfo parameter is a pointer to a delimiter information
structure, described in DelimiterInfo (page 1670).

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soReset
Set a speech channel back to its default state. For example, speech pitch and speech rate are set to
default values. The speechInfo parameter should be set to NULL.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soCurrentA5
Set the value that the Speech Synthesis Manager assigns to the A5 register before invoking any
application-defined callback functions for the speech channel. The A5 register must be set correctly
if the callback functions are to be able to access application global variables. The speechInfo
parameter should be set to the pointer contained in the A5 register at a time when the application
is not executing interrupt code or to NULL if your application wishes to clear a value previously set
with the soCurrentA5 selector.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Constants 1689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soRefCon
Set a speech channel’s reference constant value. The reference constant value is passed to
application-defined callback functions and might contain any value convenient for the application.
The speechInfo parameter is a long integer containing the reference constant value. In contrast
with other selectors, this selector does not require that the speechInfo parameter’s value be a
pointer value. Typically, however, an application does use this selector to pass a pointer or handle
value to callback functions.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soTextDoneCallBack
Set the callback function to be called when the Speech Synthesis Manager has finished processing
speech being generated on the speech channel. The speechInfo parameter is a pointer to an
application-defined text-done callback function, whose syntax is described in
SpeechTextDoneProcPtr (page 1667). Passing NULL in speechInfo disables the text-done callback
function.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soSpeechDoneCallBack
Set the callback function to be called when the Speech Synthesis Manager has finished generating
speech on the speech channel. The speechInfo parameter is a pointer to an application-defined
speech-done callback function, whose syntax is described inSpeechDoneProcPtr (page 1662). Passing
NULL in speechInfo disables the speech-done callback function.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soSyncCallBack
Set the callback function to be called when the Speech Synthesis Manager encounters a synchronization
command within an embedded speech command in text being processed on the speech channel.
The speechInfo parameter is a pointer to an application-defined synchronization callback function,
whose syntax is described in SpeechSyncProcPtr (page 1666). Passing NULL in speechInfo disables
the synchronization callback function.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

1690 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soErrorCallBack
Set the callback function to be called when an error is encountered during the processing of an
embedded command. The callback function might also be called if other conditions (such as insufficient
memory) arise during the speech conversion process. When a Speech Synthesis Manager function
returns an error directly, the error callback function is not called. The callback function is passed
information about the most recent error; it can determine information about the oldest pending error
by using the speech information selector soErrors. The speechInfo parameter is a pointer to an
application-defined error callback function. Passing NULL in speechInfo disables the error callback
function, SpeechErrorProcPtr (page 1664).

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soPhonemeCallBack
Set the callback function to be called every time the Speech Synthesis Manager is about to generate
a phoneme on the speech channel. The speechInfo parameter is a pointer to an application-defined
phoneme callback function, whose syntax is described inSpeechPhonemeProcPtr (page 1665). Passing
NULL in speechInfo disables the phoneme callback function.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soWordCallBack
Set the callback function to be called every time the Speech Synthesis Manager is about to generate
a word on the speech channel. The speechInfo parameter is a pointer to an application-defined
word callback function, whose syntax is described in SpeechWordProcPtr (page 1669). Passing NULL
in speechInfo disables the word callback function.

This selector works with the SetSpeechInfo (page 1650) function.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soSynthExtension
Get or set synthesizer-specific information or settings. The speechInfo parameter is a pointer to a
speech extension data structure, described in SpeechXtndData (page 1677). Your application should
set the synthCreator field of this structure before calling GetSpeechInfo (page 1638) or
SetSpeechInfo (page 1650). Ordinarily, your application must pass additional information to the
synthesizer in the synthData field.

This selector works with both theGetSpeechInfo (page 1638) andSetSpeechInfo (page 1650) functions.

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

soSoundOutput

Get or set the speech channel’s current output channel. (Deprecated. Use
soOutputToFileWithCFURL (page 1692) instead.)

Available in Mac OS X v10.0 and later.

Declared in SpeechSynthesis.h.

Constants 1691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

soOutputToFileWithCFURL
Pass a CFURLRef to write to this file, NULL to generate sound.

This selector works with the SetSpeechInfo (page 1650) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Discussion
See the GetSpeechInfo (page 1638) and SetSpeechInfo (page 1650) functions.

Declared In
SpeechSynthesis.h

Speech-Channel Properties
Properties used withCopySpeechProperty (page 1634) orSetSpeechProperty (page 1651) to get or set the
characteristics of a speech channel.

CFStringRef kSpeechStatusProperty = CFSTR("stat");
CFStringRef kSpeechErrorsProperty = CFSTR("erro");
CFStringRef kSpeechInputModeProperty = CFSTR("inpt");
CFStringRef kSpeechCharacterModeProperty = CFSTR("char");
CFStringRef kSpeechNumberModeProperty = CFSTR("nmbr");
CFStringRef kSpeechRateProperty = CFSTR("rate");
CFStringRef kSpeechPitchBaseProperty = CFSTR("pbas");
CFStringRef kSpeechPitchModProperty = CFSTR("pmod");
CFStringRef kSpeechVolumeProperty = CFSTR("volm");
CFStringRef kSpeechSynthesizerInfoProperty = CFSTR("vers");
CFStringRef kSpeechRecentSyncProperty = CFSTR("sync");
CFStringRef kSpeechPhonemeSymbolsProperty = CFSTR("phsy");
CFStringRef kSpeechCurrentVoiceProperty = CFSTR("cvox");
CFStringRef kSpeechCommandDelimiterProperty = CFSTR("dlim");
CFStringRef kSpeechResetProperty = CFSTR("rset");
CFStringRef kSpeechOutputToFileURLProperty = CFSTR("opaf");
CFStringRef kSpeechRefConProperty = CFSTR("refc");
CFStringRef kSpeechTextDoneCallBack = CFSTR("tdcb");
CFStringRef kSpeechSpeechDoneCallBack = CFSTR("sdcb");
CFStringRef kSpeechSyncCallBack = CFSTR("sycb");
CFStringRef kSpeechPhonemeCallBack = CFSTR("phcb");
CFStringRef kSpeechErrorCFCallBack = CFSTR("eccb");
CFStringRef kSpeechWordCFCallBack = CFSTR("wccb");

Constants
kSpeechStatusProperty

Get speech-status information for the speech channel.

The value associated with this property is a CFDictionary object that contains speech-status
information for the speech channel. See “Speech Status Keys” (page 1699) for a description of the
keys present in the dictionary.

This property works with the CopySpeechProperty (page 1634) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

1692 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechErrorsProperty
Get speech-error information for the speech channel.

The value associated with this property is a CFDictionary object that contains speech-error
information. See “Speech Error Keys” (page 1700) for a description of the keys present in the
dictionary.

This property lets you get information about various run-time errors that occur during speaking, such
as the detection of badly formed embedded commands. Errors returned directly by the Speech
Synthesis Manager are not reported here. If your application defines an error callback function, the
function can use this property to get error information.

This property works with the CopySpeechProperty (page 1634) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechInputModeProperty
Get or set the speech channel’s current text-processing mode.

The value associated with this property is a CFString object that specifies whether the channel is
currently in text input mode or phoneme input mode. The constants kSpeechModeText and
kSpeechModePhoneme (defined in “Speech-Channel Modes for Core Foundation-based
Functions” (page 1684)) are the possible values of this string.

When in phoneme-processing mode, a text string is interpreted to be a series of characters representing
various phonemes and prosodic controls. Some synthesizers might support additional input-processing
modes and define constants for these modes.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechCharacterModeProperty
Get or set the speech channel’s current character-processing mode.

The value associated with this property is a CFString object that specifies whether the speech
channel is currently in normal or literal character-processing mode. The constantskSpeechModeNormal
and kSpeechModeLiteral (defined in “Speech-Channel Modes for Core Foundation-based
Functions” (page 1684)) are the possible values of this string.

When the character-processing mode is kSpeechModeNormal, input characters are spoken as you
would expect to hear them. When the mode is kSpeechModeLiteral, each character is spoken
literally, so that the word “cat” is spoken “C–A–T”.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Constants 1693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechNumberModeProperty
Get or set the speech channel’s current number-processing mode.

The value associated with this property is a CFString object that specifies whether the speech
channel is currently in normal or literal number-processing mode. The constants kSpeechModeNormal
and kSpeechModeLiteral (defined in “Speech-Channel Modes for Core Foundation-based
Functions” (page 1684)) are the possible values of this string.

When the number-processing mode is kSpeechModeNormal, the synthesizer assembles digits into
numbers (so that “12” is spoken as “twelve”). When the mode is kSpeechModeLiteral, each digit
is spoken literally (so that “12” is spoken as “one, two”).

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechRateProperty
Get or set a speech channel’s speech rate.

The value associated with this property is a CFNumber object that specifies the speech channel’s
speaking rate.

The range of supported rates is not predefined by the Speech Synthesis Manager; each speech
synthesizer provides its own range of speech rates. Average human speech occurs at a rate of 180 to
220 words per minute.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechPitchBaseProperty
Get or set the speech channel’s baseline speech pitch.

The value associated with this property is a CFNumber object that specifies the speech channel’s
baseline speech pitch.

Typical voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps 300
hertz for a high-pitched child’s voice. These frequencies correspond to approximate pitch values in
the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

1694 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechPitchModProperty
Get or set a speech channel’s pitch modulation.

The value associated with this property is a CFNumber object that specifies the speech channel’s pitch
modulation.

Pitch modulation is also expressed as a floating-point value in the range of 0.000 to 127.000. These
values correspond to MIDI note values, where 60.000 is equal to middle C on a piano scale. The most
useful speech pitches fall in the range of 40.000 to 55.000. A pitch modulation value of 0.000
corresponds to a monotone in which all speech is generated at the frequency corresponding to the
speech pitch. Given a speech pitch value of 46.000, a pitch modulation of 2.000 would mean that the
widest possible range of pitches corresponding to the actual frequency of generated text would be
44.000 to 48.000.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechVolumeProperty
Get or set the speech volume for a speech channel.

The value associated with this property is a CFNumber object that specifies the speech channel’s
speech volume.

Volumes are expressed in floating-point values ranging from 0.0 through 1.0. A value of 0.0 corresponds
to silence, and a value of 1.0 corresponds to the maximum possible volume. Volume units lie on a
scale that is linear with amplitude or voltage. A doubling of perceived loudness corresponds to a
doubling of the volume.

This property works with theCopySpeechProperty (page 1634) andSetSpeechProperty (page 1651)
functions.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechSynthesizerInfoProperty
Get information about the speech synthesizer being used on the specified speech channel.

The value associated with this property is a CFDictionary object that contains information about
the speech synthesizer being used on the specified speech channel. See “Speech Synthesizer
Information Keys” (page 1701) for a description of the keys present in the dictionary.

This property works with the CopySpeechProperty (page 1634) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechRecentSyncProperty
Get the message code for the most recently encountered synchronization command.

The value associated with this property is a CFNumber object that specifies the most recently
encountered synchronization command. This property works with the CopySpeechProperty (page
1634) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Constants 1695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechPhonemeSymbolsProperty
Get a list of phoneme symbols and example words defined for the speech channel’s synthesizer.

The value associated with this property is a CFDictionary object that contains the phoneme symbols
and example words defined for the current synthesizer. Your application might use this information
to show the user what symbols to use when entering phonemic text directly. See “Phoneme Symbols
Keys” (page 1702) for a description of the keys present in the dictionary.

This property works with the CopySpeechProperty (page 1634) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechCurrentVoiceProperty
Set the current voice on the current speech channel to the specified voice.

The value associated with this property is a CFDictionary object that contains the phoneme symbols
and example words defined for the current synthesizer. Your application might use this information
to show the user what symbols to use when entering phonemic text directly. See “Phoneme Symbols
Keys” (page 1702) for the keys you can use to specify values in this dictionary.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechCommandDelimiterProperty
Set the embedded speech command delimiter characters to be used for the speech channel.

By default, the opening delimiter is “[[” and the closing delimiter is “]]”. Your application might
need to change these delimiters temporarily if those character sequences occur naturally in a text
buffer that is to be spoken. Your application can also disable embedded command processing by
passing empty delimiters (as empty strings). The value associated with this property is a CFDictionary
object that contains the delimiter information. See “Command Delimiter Keys” (page 1703) for the
keys you can use to specify values in this dictionary.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechResetProperty
Set a speech channel back to its default state.

You can use this function to, for example, set speech pitch and speech rate to default values. There
is no value associated with this property; to reset the channel to its default state, set the string to
NULL.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechOutputToFileURLProperty
Set the speech output destination to a file or to the computer’s speakers.

The value associated with this property is a CFURL object. To write the speech output to a file, use
the file’s CFURLRef; to generate the sound through the computer’s speakers, use NULL.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

1696 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechRefConProperty
Set a speech channel’s reference constant value.

The reference constant value is passed to application-defined callback functions and might contain
any value convenient for the application. The value associated with this property is a CFNumber object
that contains an integer value. For example, an application might set the value of the CFNumber
object to an address in memory that contains a reference to an object or a pointer to a function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechTextDoneCallBack
Set the callback function to be called when the Speech Synthesis Manager has finished processing
speech being generated on the speech channel.

The value associated with this property is a CFNumber object whose value is a pointer to an
application-defined text-done callback function, whose syntax is described in
SpeechTextDoneProcPtr (page 1667). Passing a CFNumber object that contains the value NULL
disables the text-done callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechSpeechDoneCallBack
Set the callback function to be called when the Speech Synthesis Manager has finished generating
speech on the speech channel.

The value associated with this property is CFNumber object whose value is a pointer to an
application-defined speech-done callback function, whose syntax is described in
SpeechDoneProcPtr (page 1662). PassingNULL for the value of this property disables the speech-done
callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechSyncCallBack
Set the callback function to be called when the Speech Synthesis Manager encounters a synchronization
command within an embedded speech command in text being processed on the speech channel.

The value associated with this property is CFNumber object whose value is a pointer to an
application-defined synchronization callback function, whose syntax is described in
SpeechSyncProcPtr (page 1666). Passing a CFNumber object that contains the value NULL for the
value of this property disables the synchronization callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Constants 1697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechPhonemeCallBack
Set the callback function to be called every time the Speech Synthesis Manager is about to generate
a phoneme on the speech channel.

The value associated with this property is CFNumber object whose value is a pointer to an
application-defined phoneme callback function, whose syntax is described in
SpeechPhonemeProcPtr (page 1665). Passing a CFNumber object that contains the value NULL for
the value of this property disables the phoneme callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechErrorCFCallBack
Set the callback function to be called when an error is encountered during the processing of an
embedded command.

When a Speech Synthesis Manager function returns an error directly, the error callback function is
not called. The callback function is passed information about the most recent error; it can determine
information about the oldest pending error by using the speech information property
kSpeechErrorsProperty. The value associated with this property is CFNumber object whose value
is a pointer to an application-defined error callback function, whose syntax is described in
SpeechErrorCFProcPtr (page 1663). Passing a CFNumber object that contains the value NULL for
the value of this property disables the error callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechWordCFCallBack
Set the callback function to be called every time the Speech Synthesis Manager is about to generate
a word on the speech channel.

The value associated with this property is CFNumber object whose value is a pointer to an
application-defined word callback function, whose syntax is described inSpeechWordCFProcPtr (page
1668). Passing a CFNumber object that contains the value NULL for the value of this property disables
the word callback function.

This property works with the SetSpeechProperty (page 1651) function.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

Synthesizer Option Keys
Keys used to specify synthesizer options.

1698 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

CFStringRef kSpeechNoEndingProsody = CFSTR("NoEndingProsody");
CFStringRef kSpeechNoSpeechInterrupt = CFSTR("NoSpeechInterrupt");
CFStringRef kSpeechPreflightThenPause = CFSTR("PreflightThenPause");

Constants
kSpeechNoEndingProsody

Disable prosody at the end of sentences.

The kSpeechNoEndingProsody key is used to indicate whether the speech synthesizer should
automatically apply ending prosody, which is the speech tone and cadence that normally occur at
the end of a sentence. When the key is not specified, ending prosody is applied to the speech at the
end of aString. This behavior can be disabled by specifying the kSpeechNoEndingProsody key
in the options dictionary.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechNoSpeechInterrupt
Do not interrupt current speech.

The kSpeechNoSpeechInterrupt key is used to control the behavior of SpeakCFString (page
1653) when it is called on a speech channel that is busy. When kSpeechNoSpeechInterrupt is not
specified in the options dictionary, SpeakCFString immediately interrupts the speech currently
being produced on the specified speech channel and the new aString text is spoken. When
kSpeechNoSpeechInterrupt is specified in the options dictionary, the request to speak on a
speech channel that is already busy causes the new aString text to be ignored and the
synthNotReady error to be returned. As soon as the prior string has been fully processed, the new
string is then spoken.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechPreflightThenPause
Compute speech without generating it.

The kSpeechPreflightThenPause key is used to minimize the latency experienced when the
speech synthesizer is attempting to speak.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

Declared In
SpeechSynthesis.h

Speech Status Keys
Keys used with the kSpeechStatusProperty property to specify the status of the speech channel.

Constants 1699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

CFStringRef kSpeechStatusOutputBusy = CFSTR("OutputBusy");
CFStringRef kSpeechStatusOutputPaused = CFSTR("OutputPaused");
CFStringRef kSpeechStatusNumberOfCharactersLeft = CFSTR("NumberOfCharactersLeft");
CFStringRef kSpeechStatusPhonemeCode = CFSTR("PhonemeCode");

Constants
kSpeechStatusOutputBusy

Indicates whether the speech channel is currently producing speech.

A speech channel is considered to be producing speech even at some times when no audio data is
being produced through the computer’s speaker. This occurs, for example, when the Speech Synthesis
Manager is processing input, but has not yet initiated speech or when speech output is paused.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechStatusOutputPaused
Indicates whether speech output in the speech channel has been paused by a call to the
PauseSpeechAt (page 1649) function.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechStatusNumberOfCharactersLeft
The number of characters left in the input string of text.

When the value of this constant is zero, you can destroy the input string.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechStatusPhonemeCode
The opcode for the phoneme that the speech channel is currently processing.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Speech Error Keys
Keys used with the kSpeechErrorsProperty property to describe errors encountered during speech
processing and production.

1700 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

CFStringRef kSpeechErrorCount = CFSTR("Count");
CFStringRef kSpeechErrorOldest = CFSTR("OldestCode");
CFStringRef kSpeechErrorOldestCharacterOffset = CFSTR("OldestCharacterOffset");
CFStringRef kSpeechErrorNewest = CFSTR("NewestCode");
CFStringRef kSpeechErrorNewestCharacterOffset = CFSTR("NewestCharacterOffset");

Constants
kSpeechErrorCount

The number of errors that have occurred in processing the current text string, since the last call to
the CopySpeechProperty (page 1634) function with the kSpeechErrorsProperty property.

Using the kSpeechErrorOldest keys and the kSpeechErrorNewest keys, you can get information
about the oldest and most recent errors that occurred since the last call to
CopySpeechProperty (page 1634), but you cannot get information about any intervening errors.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechErrorOldest
The error code of the first error that occurred since the last call to the CopySpeechProperty (page
1634) function with the kSpeechErrorsProperty property.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechErrorOldestCharacterOffset
The position in the text string of the first error that occurred since the last call to the
CopySpeechProperty (page 1634) function with the kSpeechErrorsProperty property.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechErrorNewest
The error code of the most recent error that occurred since the last call to the
CopySpeechProperty (page 1634) function with the kSpeechErrorsProperty property.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechErrorNewestCharacterOffset
The position in the text string of the most recent error that occurred since the last call to the
CopySpeechProperty (page 1634) function with the kSpeechErrorsProperty property.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Speech Synthesizer Information Keys
Keys used with the kSpeechSynthesizerInfoProperty property to get information about the synthesizer.

Constants 1701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

CFStringRef kSpeechSynthesizerInfoIdentifier = CFSTR("Identifier");
CFStringRef kSpeechSynthesizerInfoVersion = CFSTR("Version");

Constants
kSpeechSynthesizerInfoIdentifier

The identifier of the speech synthesizer.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechSynthesizerInfoVersion
The version of the speech synthesizer.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Phoneme Symbols Keys
Keys used with the kSpeechPhonemeSymbolsPropertyproperty to provide information about the phoneme
being processed.

CFStringRef kSpeechPhonemeInfoOpcode = CFSTR("Opcode");
CFStringRef kSpeechPhonemeInfoSymbol = CFSTR("Symbol");
CFStringRef kSpeechPhonemeInfoExample = CFSTR("Example");
CFStringRef kSpeechPhonemeInfoHiliteStart = CFSTR("HiliteStart");
CFStringRef kSpeechPhonemeInfoHiliteEnd = CFSTR("HiliteEnd");

Constants
kSpeechPhonemeInfoOpcode

The opcode of the phoneme.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechPhonemeInfoSymbol
The symbol used to represent the phoneme.

The symbol does not necessarily have a phonetic connection to the phoneme, but might simply be
an abstract textual representation of it.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechPhonemeInfoExample
An example word that illustrates the use of the phoneme.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechPhonemeInfoHiliteStart
The character offset into the example word that identifies the location of the beginning of the
phoneme.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

1702 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

kSpeechPhonemeInfoHiliteEnd
The character offset into the example word that identifies the location of the end of the phoneme.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Current Voice Keys
Keys used with the kSpeechCurrentVoiceProperty property to specify information about the current
voice.

CFStringRef kSpeechVoiceCreator = CFSTR("Creator");
CFStringRef kSpeechVoiceID = CFSTR("ID");

Constants
kSpeechVoiceCreator

The synthesizer that is required to use the voice.

Declared in SpeechSynthesis.h.

Available in Mac OS X v10.5 and later.

kSpeechVoiceID
The voice ID of the voice for the synthesizer (every voice on a synthesizer has a unique ID).

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Command Delimiter Keys
Keys used with the kSpeechCommandDelimiterProperty property to specify information about the
command delimiter strings.

CFStringRef kSpeechCommandPrefix = CFSTR("Prefix");
CFStringRef kSpeechCommandSuffix = CFSTR("Suffix");

Constants
kSpeechCommandPrefix

The command delimiter string that prefixes a command (by default, this is [[).

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechCommandSuffix
The command delimiter string that suffixes a command (by default, this is]]).

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Availability
Available in Mac OS X v10.5 and later.

Constants 1703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Declared In
SpeechSynthesis.h

Speech Dictionary Keys
Keys used in a speech dictionary to override the synthesizer’s default pronunciation of a word.

CFStringRef kSpeechDictionaryLocaleIdentifier = CFSTR("LocaleIdentifier");
CFStringRef kSpeechDictionaryModificationDate = CFSTR("ModificationDate");
CFStringRef kSpeechDictionaryPronunciations = CFSTR("Pronunciations");
CFStringRef kSpeechDictionaryAbbreviations = CFSTR("Abbreviations");
CFStringRef kSpeechDictionaryEntrySpelling = CFSTR("Spelling");
CFStringRef kSpeechDictionaryEntryPhonemes = CFSTR("Phonemes");

Constants
kSpeechDictionaryLocaleIdentifier

The locale associated with the pronunciation.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechDictionaryModificationDate
The date the dictionary was last modified.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechDictionaryPronunciations
The set of custom pronunciations.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechDictionaryAbbreviations
The set of custom pronunciations for abbreviations.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechDictionaryEntrySpelling
The spelling of an entry.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

kSpeechDictionaryEntryPhonemes
The phonemic representation of an entry.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Discussion
The keys in a speech dictionary can determine how a synthesizer pronounces a word. After you’ve created
a speech dictionary, you register it with a speech channel with the UseSpeechDictionary (page 1661)
function.

Declared In
SpeechSynthesis.h

1704 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Error Callback User-Information String
Specifies the string to speak to the user when an error occurs.

CFStringRef kSpeechErrorCallbackSpokenString = CFSTR("SpokenString");

Constants
kSpeechErrorCallbackSpokenString

The string to speak to the user when an error occurs.

Available in Mac OS X v10.5 and later.

Declared in SpeechSynthesis.h.

Declared In
SpeechSynthesis.h

Result Codes

The most common result codes returned by Speech Synthesis Manager are listed below.

DescriptionValueResult Code

Could not find the specified speech synthesizer-240noSynthFound

Available in Mac OS X v10.0 and later.

Could not open another speech synthesizer channel-241synthOpenFailed

Available in Mac OS X v10.0 and later.

Speech synthesizer is still busy speaking-242synthNotReady

Available in Mac OS X v10.0 and later.

Output buffer is too small to hold result-243bufTooSmall

Available in Mac OS X v10.0 and later.

Voice resource not found-244voiceNotFound

Available in Mac OS X v10.0 and later.

Specified voice cannot be used with synthesizer-245incompatibleVoice

Available in Mac OS X v10.0 and later.

Pronunciation dictionary format error-246badDictFormat

Available in Mac OS X v10.0 and later.

Raw phoneme text contains invalid characters-247badInputText

Available in Mac OS X v10.0 and later.

Result Codes 1705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Speech Synthesis Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

1706 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Speech Synthesis Manager Reference

Framework: ApplicationServices/ApplicationServices.h, Carbon/Carbon.h

Declared in PMTemplate.h
PMTicket.h

Overview

Ticket Services provides the functions and data types used to communicate printing information (page format
and print settings) among the various modules in the printing system. Developers who write printing dialog
extensions and printer modules need to use the functions described in this reference and also need to consult
the Printing Plug-in Interfaces Reference. Developers who write applications do not need this reference; see
the Carbon Printing Manager Reference instead.

Functions by Task

Managing Tickets

PMTicketCreate (page 1749)
Creates a new ticket.

PMTicketValidate (page 1795)
Validates a ticket against the constraint values specified in a job template.

PMTicketRetain (page 1774)
Increments the retention count of a ticket object.

PMTicketRemoveTicket (page 1773)
Removes a subticket from a ticket.

PMTicketRelease (page 1772)
Decrements the retention count of a ticket object.

PMTicketReleaseAndClear (page 1772)
Decrements the retention count of a ticket and sets the ticket reference to NULL.

PMTicketCopy (page 1747)
Copies a ticket.

PMTicketCreateTemplate (page 1749)
Retrieves a template from a ticket.

PMTicketCopyItem (page 1748)
Copies an item from one ticket to another ticket.

Overview 1707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketReleaseItem (page 1773)
Removes an item from a ticket.

PMTicketDeleteItem (page 1750)
Makes an item in a ticket unavailable.

PMTicketLockItem (page 1770)
Locks an item in a ticket.

PMTicketUnlockItem (page 1794)
Unlocks an item in a ticket.

PMTicketIsItemLocked (page 1770)
Checks to see if an item in a ticket is locked.

PMTicketConfirmTicket (page 1746)
Checks whether a ticket appears to be valid.

PMTicketContainsItem (page 1746)
Checks whether an item exists in a ticket.

PMTicketContainsTicket (page 1747)
Checks whether a ticket is contained in another ticket.

PMTicketFillFromArray (page 1751)
Adds items defined in an array of ticket item structures to a ticket.

Setting Ticket Items

PMTicketSetBoolean (page 1774)
Writes an item of type Boolean to a ticket.

PMTicketSetBytes (page 1775)
Writes an item that’s an array of type UInt8 to a ticket.

PMTicketSetCFArray (page 1776)
Writes an item of type CFArray to a ticket.

PMTicketSetCFBoolean (page 1776)
Writes an item of type CFBoolean to a ticket.

PMTicketSetCFData (page 1777)
Writes an item of type CFData to a ticket.

PMTicketSetCFDate (page 1778)
Writes an item of type CFDate to a ticket.

PMTicketSetCFDictionary (page 1779)
Writes an item of type CFDictionary to a ticket.

PMTicketSetCFNumber (page 1779)
Writes an item of type CFNumber to a ticket.

PMTicketSetCFString (page 1780)
Writes an item of type CFString to a ticket.

PMTicketSetCString (page 1781)
Writes an item that’s a C-style string to a ticket.

PMTicketSetCStringArray (page 1782)
Writes an item that’s an array of C-style strings to a ticket.

1708 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketSetDouble (page 1782)
Writes an item of type double to a ticket.

PMTicketSetDoubleArray (page 1783)
Writes an item that’s an array of values of type double to a ticket.

PMTicketSetItem (page 1784)
Writes an item of type CFType to a ticket.

PMTicketSetPMRect (page 1785)
Writes an item of type PMRect to a ticket.

PMTicketSetPMRectArray (page 1786)
Writes an item that’s an array of values of type PMRect to a ticket.

PMTicketSetPMResolution (page 1787)
Writes an item of type PMResolution to a ticket.

PMTicketSetPMResolutionArray (page 1788)
Writes an item that’s an array of data of type PMResolution to a ticket.

PMTicketSetPString (page 1789)
Writes an item that’s a Pascal-style string to a ticket.

PMTicketSetSInt32 (page 1789)
Writes an item of type SInt32 to a ticket.

PMTicketSetSInt32Array (page 1790)
Writes an item that’s an array of data of type SInt32 to a ticket.

PMTicketSetTemplate (page 1791)
Writes an item that’s a job template to a ticket.

PMTicketSetTicket (page 1791)
Writes a subticket to a ticket.

PMTicketSetUInt32 (page 1792)
Writes an item of type UInt32 to a ticket.

PMTicketSetUInt32Array (page 1793)
Writes an item that’s an array of data of type UInt32 to a ticket.

Getting Ticket Items

PMTicketGetAllocator (page 1751)
Obtains the allocator object used for allocating memory for a ticket.

PMTicketGetAPIVersion (page 1752)
Obtains the version of the application programming interface (API) used to created a ticket.

PMTicketGetBoolean (page 1752)
Obtains data for a ticket item of type Boolean.

PMTicketGetBytes (page 1753)
Obtains data for a ticket item that’s an array of UInt8 values.

PMTicketGetCFArray (page 1754)
Obtains data for a ticket item that’s a Core Foundation array.

PMTicketGetCFBoolean (page 1755)
Obtains data for a ticket item that’s an array of CFBoolean values.

Functions by Task 1709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketGetCFData (page 1755)
Obtains data for a ticket item of type CFData.

PMTicketGetCFDate (page 1756)
Obtains data for a ticket item of type CFDate.

PMTicketGetCFDictionary (page 1757)
Obtains data for a ticket item of type CFDictionary.

PMTicketGetCFNumber (page 1758)
Obtains data for a ticket item of type CFNumber.

PMTicketGetCFString (page 1758)
Obtains data for a ticket item of type CFString.

PMTicketGetCString (page 1759)
Obtains data for a ticket item of that’s a C-style string.

PMTicketGetDouble (page 1760)
Obtains data for a ticket item of type double.

PMTicketGetEnumType (page 1760)
Obtains a ticket’s ticket type (job, paper, converter, and so on).

PMTicketGetIndexPMResolution (page 1761)
Obtains an indexed resolution for a ticket item that’s an array of type PMResolution.

PMTicketGetItem (page 1762)
Obtains data for a ticket item of type CFType.

PMTicketGetLockedState (page 1762)
Obtains the lock state of a ticket.

PMTicketGetPMRect (page 1764)
Obtains data for a ticket item of type PMRect.

PMTicketGetPMResolution (page 1764)
Obtains data for a ticket item of type PMResolution.

PMTicketGetPPDDict (page 1765)
Obtains data for a ticket item that’s a PostScript printer description (PPD) dictionary.

PMTicketGetPString (page 1766)
Obtains data for a ticket item that’s a Pascal-style string.

PMTicketGetRetainCount (page 1767)
Obtains the retention count for a ticket.

PMTicketGetSInt32 (page 1767)
Obtains data for a ticket item of type SInt32.

PMTicketGetTicket (page 1768)
Obtains a subticket from a ticket.

PMTicketGetType (page 1769)
Obtains a value that specifies the ticket’s type.

PMTicketGetUInt32 (page 1769)
Obtains an item of type UInt32 from a ticket.

1710 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Managing Templates

PMTemplateCreate (page 1714)
Creates a new job template.

PMTemplateDelete (page 1715)
Deletes an existing job template.

PMTemplateMakeEntry (page 1731)
Creates a new entry in a job template.

PMTemplateMakeFullEntry (page 1731)
Creates a new entry in a job template and sets the default and constraint values for the entry.

PMTemplateMergeTemplates (page 1732)
Merges the entries from one job template with entries from another job template.

PMTemplateRemoveEntry (page 1733)
Removes an entry from a job template.

PMTemplateValidateItem (page 1745)
Validates an item in a job template.

PMTemplateIsLocked (page 1729)
Checks to see if a job template is locked.

Setting Template Items

PMTemplateSetBooleanDefaultValue (page 1733)
Sets the default value for a job template entry of type Boolean.

PMTemplateSetCFArrayConstraintValue (page 1734)
Sets the constraint values for a job template entry of type CFArray.

PMTemplateSetCFDataDefaultValue (page 1734)
Sets the default value for a job template entry of type CFDataRef.

PMTemplateSetCFDefaultValue (page 1735)
Sets the default value for a job template entry of type CFTypeRef.

PMTemplateSetCFRangeConstraint (page 1735)
Sets a range of constraint values for a job template entry of type CFTypeRef.

PMTemplateSetDoubleDefaultValue (page 1736)
Sets the default value for a job template entry of type double.

PMTemplateSetDoubleListConstraint (page 1736)
Sets constraint values for a job template entry of type double.

PMTemplateSetDoubleRangeDefaultValue (page 1738)
Sets the default range of values for a job template entry of type double.

PMTemplateSetDoubleRangeConstraint (page 1737)
Sets a range of constraint values for a job template entry of type double.

PMTemplateSetDoubleRangesConstraint (page 1738)
Sets a range of constraint values for a job template entry that is a range of type double.

PMTemplateSetPMRectDefaultValue (page 1739)
Sets the default value for a job template entry of type PMRect.

Functions by Task 1711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateSetPMRectListConstraint (page 1740)
Sets constraint values for a job template entry of type PMRect.

PMTemplateSetPMTicketDefaultValue (page 1741)
Sets the default value for a job template entry of type PMTicketRef.

PMTemplateSetPMTicketListConstraint (page 1741)
Sets constraint values for a job template entry of type PMTicketRef.

PMTemplateSetSInt32DefaultValue (page 1742)
Sets the default value for a job template entry of type SInt32.

PMTemplateSetSInt32ListConstraint (page 1742)
Sets constraint values for a job template entry of type SInt32.

PMTemplateSetSInt32RangeDefaultValue (page 1744)
Sets the default range of values for a job template entry of type SInt32.

PMTemplateSetSInt32RangeConstraint (page 1743)
Sets a range of constraint values for a job template entry of type SInt32.

PMTemplateSetSInt32RangesConstraint (page 1744)
Sets a range of constraint values for a job template entry that is a range of type SInt32.

Getting Template Items

PMTemplateGetValueType (page 1729)
Obtains the data type of a job template entry.

PMTemplateGetConstraintType (page 1718)
Obtains the constraint type for a job template entry.

PMTemplateGetBooleanDefaultValue (page 1715)
Obtains the default value for a job template entry of type Boolean.

PMTemplateGetCFArrayConstraintValue (page 1716)
Obtains an array of constraint values for a job template entry of type CFArrayRef.

PMTemplateGetCFDataDefaultValue (page 1716)
Obtains the default value for a job template entry of type CFDataRef.

PMTemplateGetCFDefaultValue (page 1717)
Obtains the default value for a job template entry of type CFTypeRef.

PMTemplateGetCFRangeConstraintValue (page 1717)
Obtains the range of constraint values for a job template entry of type CFTypeRef.

PMTemplateGetDoubleDefaultValue (page 1719)
Obtains the default value for a job template entry of type double.

PMTemplateGetDoubleRangeDefaultValue (page 1721)
Obtains the default range values for a job template entry of type double.

PMTemplateGetDoubleListConstraintValue (page 1719)
Obtains constraint values for a job template entry of type double.

PMTemplateGetDoubleRangeConstraintValue (page 1720)
Obtains the default range of values for a job template entry of type double.

PMTemplateGetDoubleRangesConstraintValue (page 1722)
Obtains a range for the minimum and maximum constraint values for a job template entry that is a
range of type double.

1712 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateGetPMRectDefaultValue (page 1723)
Obtains the default value for a job template entry of type PMRect.

PMTemplateGetPMRectListConstraintValue (page 1724)
Obtains constraint values for a job template entry of type PMRect.

PMTemplateGetPMTicketDefaultValue (page 1724)
Obtains the default value for a job template entry of type PMTicket.

PMTemplateGetListTicketConstraintValue (page 1722)
Obtains the constraint value for a job template entry that of type PMTicketRef.

PMTemplateGetSInt32DefaultValue (page 1725)
Obtains the default value for a job template entry of type SInt32.

PMTemplateGetSInt32RangeDefaultValue (page 1727)
Obtains the default range values for a job template entry of type SInt32.

PMTemplateGetSInt32ListConstraintValue (page 1726)
Obtains constraint values for a job template entry of type SInt32.

PMTemplateGetSInt32RangeConstraintValue (page 1726)
Obtains the default range of values for a job template entry of type SInt32.

PMTemplateGetSInt32RangesConstraintValue (page 1728)
Obtains a range of constraint values for a job template entry that is a range of type SInt32.

Converting To and From XML

PMTemplateCreateXML (page 1714)
Converts the data in a job template to data represented as XML.

PMTicketToXML (page 1794)
Converts the data in a ticket to XML.

PMTicketWriteXML (page 1795)
Converts a ticket to XML and then writes it to a file stream.

PMTicketWriteXMLToFile (page 1796)
Converts a ticket to XML and then writes it to a file.

PMXMLToTicket (page 1796)
Converts a ticket saved as XML to a ticket.

PMTemplateLoadFromXML (page 1730)
Restores a job template that was previously converted to XML.

PMTicketReadXMLFromFile (page 1771)
Restores a ticket previously converted to XML and saved as a file.

Deprecated Functions

PMTicketSetMetaItem (page 1785)
Writes an item that does not need to be stored in an XML-representation of a ticket.

PMTicketGetMetaItem (page 1763)
Obtains data for a item added with the function PMTicketSetMetaItem.

Functions by Task 1713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Functions

PMTemplateCreate
Creates a new job template.

OSStatus PMTemplateCreate (
 PMTemplateRef *newTemplate
);

Parameters
newTemplate

On return, points to a job template data structure allocated by the function.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateCreateXML
Converts the data in a job template to data represented as XML.

OSStatus PMTemplateCreateXML (
 PMTemplateRef srcTemplate,
 CFDataRef *xmlData
);

Parameters
srcTemplate

A reference to a job template created by calling the function PMTemplateCreate.

xmlData
On return, points to a reference to an XML representation of the data in the job template specified
by the srcTemplate parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

1714 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateDelete
Deletes an existing job template.

OSStatus PMTemplateDelete (
 PMTemplateRef *oldTemplate
);

Parameters
oldTemplate

On input, a reference to a job template created by calling the function PMTemplateCreate. On
return, points to NULL.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetBooleanDefaultValue
Obtains the default value for a job template entry of type Boolean.

OSStatus PMTemplateGetBooleanDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 Boolean *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to the default value for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

Functions 1715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateGetCFArrayConstraintValue
Obtains an array of constraint values for a job template entry of type CFArrayRef.

OSStatus PMTemplateGetCFArrayConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFArrayRef *constraintValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

constraintValue
On return, a poinrter to a Core Foundation array reference for the constraint values for the template
entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetCFDataDefaultValue
Obtains the default value for a job template entry of type CFDataRef.

OSStatus PMTemplateGetCFDataDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFDataRef *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to a Core Foundation data reference that specfies the default data for the template
entry specified by the key parameter.

1716 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetCFDefaultValue
Obtains the default value for a job template entry of type CFTypeRef.

OSStatus PMTemplateGetCFDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFTypeRef *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to a Core Foundation type reference that specifies the default data for the template
entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetCFRangeConstraintValue
Obtains the range of constraint values for a job template entry of type CFTypeRef.

Functions 1717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateGetCFRangeConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFTypeRef *min,
 CFTypeRef *max
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

min
On return, points to a Core Foundation type reference that specifies the minimum value to which the
template entry specified by the key parameter is constrained.

max
On return, points to a Core Foundation type reference that specifies the maximum value to which
the template entry specified by the key parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetConstraintType
Obtains the constraint type for a job template entry.

OSStatus PMTemplateGetConstraintType (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMConstraintType *constraintType
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data whose constraint type you want
to retrieve from the template.

1718 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

constraintType
On return, points to the constraint type for the data specified by the key parameter. See “Constraint
Types” (page 1802) for a list of the constraint types that can be returned.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetDoubleDefaultValue
Obtains the default value for a job template entry of type double.

OSStatus PMTemplateGetDoubleDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to the default double value for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetDoubleListConstraintValue
Obtains constraint values for a job template entry of type double.

Functions 1719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateGetDoubleListConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int *listSize,
 double *doubleList
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

listSize
A pointer to the number of items in the array specified by the parameter doubleList.

doubleList
On return, points to an array of double values to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
You need to call the function PMTemplateGetDoubleListConstraintValue twice. First, call the function
to get the number of items in the array specified by the parameter doubleList. You should call the function
again after you allocate space for the array.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetDoubleRangeConstraintValue
Obtains the default range of values for a job template entry of type double.

OSStatus PMTemplateGetDoubleRangeConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double *min,
 double *max
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

1720 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

min
On return, points to the minimum value to which the template entry specified by the key parameter
is constrained.

max
On return, points to the maximum value to which the template entry specified by the key parameter
is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetDoubleRangeDefaultValue
Obtains the default range values for a job template entry of type double.

OSStatus PMTemplateGetDoubleRangeDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double *min,
 double *max
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

min
On return, points to the minimum value to which the range is constrained for the template entry
specified by the key parameter.

max
On return, points to the maximum value to which the range is constrained for the template entry
specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Functions 1721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTemplate.h

PMTemplateGetDoubleRangesConstraintValue
Obtains a range for the minimum and maximum constraint values for a job template entry that is a range of
type double.

OSStatus PMTemplateGetDoubleRangesConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double *minForMin,
 double *maxForMin,
 double *minForMax,
 double *maxForMax
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

minForMin
On return, points to the minimum value to which the minimum of the range is constrained for the
template entry specified by the key parameter.

maxForMin
On return, points to the maximum value to which the minimum of the range is constrained for the
template entry specified by the key parameter.

minForMax
On return, points to the minimum value to which the maximum of the range is constrained for the
template entry specified by the key parameter.

maxForMax
On return, points to the maximum value to which the maximum of the range is constrained for the
template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetListTicketConstraintValue
Obtains the constraint value for a job template entry that of type PMTicketRef.

1722 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateGetListTicketConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMTicketRef *listTicket
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

listTicket
On return, points to a reference to the list ticket to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetPMRectDefaultValue
Obtains the default value for a job template entry of type PMRect.

OSStatus PMTemplateGetPMRectDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMRect *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to the default PMRect data for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Functions 1723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetPMRectListConstraintValue
Obtains constraint values for a job template entry of type PMRect.

OSStatus PMTemplateGetPMRectListConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int *listSize,
 PMRect *rectList
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

listSize
A pointer to the number of items in the array specified by the parameter rectList.

rectList
On return, points to an array of PMRect values to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
You need to call the function PMTemplateGetPMRectListConstraintValue twice. First, call the function
to get the number of items in the array specified by the parameter rectList. You should call the function
again after you allocate space for the array.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetPMTicketDefaultValue
Obtains the default value for a job template entry of type PMTicket.

1724 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateGetPMTicketDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMTicketRef *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to a reference to the default ticket for the template entry specified by the key
parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetSInt32DefaultValue
Obtains the default value for a job template entry of type SInt32.

OSStatus PMTemplateGetSInt32DefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 *defaultValue
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

defaultValue
On return, points to the default value for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Functions 1725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetSInt32ListConstraintValue
Obtains constraint values for a job template entry of type SInt32.

OSStatus PMTemplateGetSInt32ListConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int *listSize,
 SInt32 *sint32List
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

listSize
On return, points to the number of items in the array specified by the parameter sint32List.

sint32List
On return, points to an array of SInt32 values to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
You need to call the function PMTemplateGetSInt32ListConstraintValue twice. First, call the function
to get the number of items in the array specified by the parameter sint32List. You should call the function
again after you allocate space for the array.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetSInt32RangeConstraintValue
Obtains the default range of values for a job template entry of type SInt32.

1726 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateGetSInt32RangeConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 *min,
 SInt32 *max
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

min
On return, points to the minimum value to which the template entry specified by the key parameter
is constrained.

max
On return, points to the maximum value to which the template entry specified by the key parameter
is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetSInt32RangeDefaultValue
Obtains the default range values for a job template entry of type SInt32.

OSStatus PMTemplateGetSInt32RangeDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 *min,
 SInt32 *max
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

Functions 1727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

min
On return, points to the minimum value to which the range is constrained for the template entry
specified by the key parameter.

max
On return, points to the maximum value to which the range is constrained for the template entry
specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetSInt32RangesConstraintValue
Obtains a range of constraint values for a job template entry that is a range of type SInt32.

OSStatus PMTemplateGetSInt32RangesConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 *minForMin,
 SInt32 *maxForMin,
 SInt32 *minForMax,
 SInt32 *maxForMax
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

minForMin
On return, points to the minimum value to which the minimum of the range is constrained for the
template entry specified by the key parameter.

maxForMin
On return, points to the maximum value to which the minimum of the range is constrained for the
template entry specified by the key parameter.

minForMax
On return, points to the minimum value to which the maximum of the range is constrained for the
template entry specified by the key parameter.

maxForMax
On return, points to the maximum value to which the maximum of the range is constrained for the
template entry specified by the key parameter.

1728 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateGetValueType
Obtains the data type of a job template entry.

OSStatus PMTemplateGetValueType (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMValueType *valueType
);

Parameters
pmTemplate

A reference to a job template. You can call the function PMSessionGetDataFromSession with the
ticket type set to kPDE_PMJobTemplateRef to get a value that you can then cast to a job template
reference.

key
A reference to a CFString object that uniquely identifies the data you want to retrieve from the
template.

valueType
On return, points to the value type for the template entry specified by the key parameter. See
“PMTicketItemType” (page 1800) for a list of values that can be returned.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateIsLocked
Checks to see if a job template is locked.

Functions 1729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateIsLocked (
 PMTemplateRef srcTemplate,
 Boolean *locked
);

Parameters
srcTemplate

A reference to a job template created by calling the function PMTemplateCreate.

locked
On return, points to true if the job template is locked and false if the template is not locked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
A job template cannot be modified unless it is unlocked.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateLoadFromXML
Restores a job template that was previously converted to XML.

OSStatus PMTemplateLoadFromXML (
 CFDataRef srcData,
 PMTemplateRef *destTemplate
);

Parameters
srcData

A reference to CFData that represents job template data. You obtain a CFDataRef by calling the
function PMTemplateCreateXML.

destTemplate
A reference to a job template created by calling the function PMTemplateCreate. On return, the job
template contains the entries specified by the XML data.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

1730 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateMakeEntry
Creates a new entry in a job template.

OSStatus PMTemplateMakeEntry (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMValueType valueType,
 PMConstraintType constraintType
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the entry. You use the key to set and obtain
the data for this entry.

valueType
The data type of the value associated with the entry. See “PMValueType” (page 1801) for a list of constants
you can use to specify the data type.

constraintType
The type of constraint you want applied to the data associated with the entry. See “Constraint
Types” (page 1802) for a list of constants you can use to specify the constraint type.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
After you call the function PMTemplateMakeEntry, you should set default and constraint values for the
entry by calling the appropriate PMTemplateSet functions for the data type of the entry.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateMakeFullEntry
Creates a new entry in a job template and sets the default and constraint values for the entry.

OSStatus PMTemplateMakeFullEntry (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMValueType valueType,
 PMConstraintType constraintType,
 CFTypeRef defaultValue,
 CFTypeRef constraintValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

Functions 1731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the entry. You use the key to set and obtain
the data for this entry.

valueType
The data type of the value associated with the entry. See “PMValueType” (page 1801) for a list of constants
you can use to specify the data type.

constraintType
The type of constraint you want applied to the data associated with the entry. See “Constraint
Types” (page 1802) for a list of constants you can use to specify the constraint type.

defaultValue
A reference to the default value for this entry.

constraintValue
A reference to the values used to constrain the data associated with this entry.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateMergeTemplates
Merges the entries from one job template with entries from another job template.

OSStatus PMTemplateMergeTemplates (
 PMTemplateRef sourceTemplate,
 PMTemplateRef destTemplate
);

Parameters
sourceTemplate

A reference to the job template whose entries you want to merge with the destination template.

destTemplate
A reference to the job template into which you want to merge entries from the source template. Any
entry in the destination template that has the same key as an entry in the source template is overwritten
by the data from the source template.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

1732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateRemoveEntry
Removes an entry from a job template.

OSStatus PMTemplateRemoveEntry (
 PMTemplateRef pmTemplate,
 CFStringRef key
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the entry you want to remove.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetBooleanDefaultValue
Sets the default value for a job template entry of type Boolean.

OSStatus PMTemplateSetBooleanDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 Boolean defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A Boolean value that specifies the default value for template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

Functions 1733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateSetCFArrayConstraintValue
Sets the constraint values for a job template entry of type CFArray.

OSStatus PMTemplateSetCFArrayConstraintValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFArrayRef constraintValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

constraintValue
A reference to a Core Foundation array that contains the values to which the template entry specified
by the key parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetCFDataDefaultValue
Sets the default value for a job template entry of type CFDataRef.

OSStatus PMTemplateSetCFDataDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFDataRef defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A reference to the default data for template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.

1734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetCFDefaultValue
Sets the default value for a job template entry of type CFTypeRef.

OSStatus PMTemplateSetCFDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFTypeRef defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A reference to the default data for template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetCFRangeConstraint
Sets a range of constraint values for a job template entry of type CFTypeRef.

OSStatus PMTemplateSetCFRangeConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFTypeRef min,
 CFTypeRef max
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose range of constraint values
you want to set.

Functions 1735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

min
A reference to the minimum value to which the template entry specified by the key parameter is
constrained.

max
A reference to the maximum value to which the template entry specified by the key parameter is
constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetDoubleDefaultValue
Sets the default value for a job template entry of type double.

OSStatus PMTemplateSetDoubleDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A double value that specifies the default value for template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetDoubleListConstraint
Sets constraint values for a job template entry of type double.

1736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateSetDoubleListConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int listSize,
 double *doubleList
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

listSize
The size of the array specified by the parameter doubleList.

doubleList
A pointer to an array of double values to which the template entry specified by the key parameter
is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetDoubleRangeConstraint
Sets a range of constraint values for a job template entry of type double.

OSStatus PMTemplateSetDoubleRangeConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double min,
 double max
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

min
A double value that specifies the minimum value to which the template entry specified by the key
parameter is constrained.

Functions 1737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

max
A double value that specifies the maximum value to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetDoubleRangeDefaultValue
Sets the default range of values for a job template entry of type double.

OSStatus PMTemplateSetDoubleRangeDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double min,
 double max
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default values you want
to set.

min
A double value that specifies the default minimum value for the template entry specified by the key
parameter.

max
A double value that specifies the default maximum value for template entry specified by the key
parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetDoubleRangesConstraint
Sets a range of constraint values for a job template entry that is a range of type double.

1738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTemplateSetDoubleRangesConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 double minForMin,
 double maxForMin,
 double minForMax,
 double maxForMax
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose range of constraint values
you want to set.

minForMin
A double value that specifies the minimum value to which the minimum of the range is constrained
for the template entry specified by the key parameter.

maxForMin
A double value that specifies the maximum value to which the minimum of the range is constrained
for the template entry specified by the key parameter.

minForMax
A double value that specifies the minimum value to which the maximum of the range is constrained
for the template entry specified by the key parameter.

maxForMax
A double value that specifies the maximum value to which the maximum of the range is constrained
for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetPMRectDefaultValue
Sets the default value for a job template entry of type PMRect.

OSStatus PMTemplateSetPMRectDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMRect *defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

Functions 1739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A pointer to a PMRect that specifies the default rectangle for the template entry specified by the key
parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetPMRectListConstraint
Sets constraint values for a job template entry of type PMRect.

OSStatus PMTemplateSetPMRectListConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int listSize,
 PMRect *rectList
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

listSize
The size of the array specified by the parameter rectList.

rectList
A pointer to an array of PMRect values to which the template entry specified by the key parameter
is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

1740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateSetPMTicketDefaultValue
Sets the default value for a job template entry of type PMTicketRef.

OSStatus PMTemplateSetPMTicketDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMTicketRef defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
A reference to a ticket that specifies the default ticket for the template entry specified by the key
parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetPMTicketListConstraint
Sets constraint values for a job template entry of type PMTicketRef.

OSStatus PMTemplateSetPMTicketListConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 PMTicketRef listTicket
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

listTicket
A reference to a ticket that specifies the default list ticket for the template entry specified by the key
parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Functions 1741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetSInt32DefaultValue
Sets the default value for a job template entry of type SInt32.

OSStatus PMTemplateSetSInt32DefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 defaultValue
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default value you want to
set.

defaultValue
An SInt32 value that specifies the default value for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetSInt32ListConstraint
Sets constraint values for a job template entry of type SInt32.

OSStatus PMTemplateSetSInt32ListConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 int listSize,
 SInt32 *sint32List
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

1742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

listSize
The size of the array specified by the parameter sint32List.

sint32List
A pointer to an array of SInt32 values to which the template entry specified by the key parameter
is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetSInt32RangeConstraint
Sets a range of constraint values for a job template entry of type SInt32.

OSStatus PMTemplateSetSInt32RangeConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 min,
 SInt32 max
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose constraint values you want
to set.

min
An SInt32 value that specifies the minimum value to which the template entry specified by the key
parameter is constrained.

max
An SInt32 value that specifies the maximum value to which the template entry specified by the key
parameter is constrained.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

Functions 1743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTemplateSetSInt32RangeDefaultValue
Sets the default range of values for a job template entry of type SInt32.

OSStatus PMTemplateSetSInt32RangeDefaultValue (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 min,
 SInt32 max
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose default values you want
to set.

min
An SInt32 value that specifies the default minimum value for the template entry specified by the
key parameter.

max
An SInt32 value that specifies the default maximum value for the template entry specified by the
key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateSetSInt32RangesConstraint
Sets a range of constraint values for a job template entry that is a range of type SInt32.

OSStatus PMTemplateSetSInt32RangesConstraint (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 SInt32 minForMin,
 SInt32 maxForMin,
 SInt32 minForMax,
 SInt32 maxForMax
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the data whose range of constraint values
you want to set.

1744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

minForMin
An SInt32 value that specifies the minimum value to which the minimum of the range is constrained
for the template entry specified by the key parameter.

maxForMin
An SInt32 value that specifies the maximum value to which the minimum of the range is constrained
for the template entry specified by the key parameter.

minForMax
An SInt32 value that specifies the minimum value to which the maximum of the range is constrained
for the template entry specified by the key parameter.

maxForMax
An SInt32 value that specifies the maximum value to which the maximum of the range is constrained
for the template entry specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTemplate.h

PMTemplateValidateItem
Validates an item in a job template.

OSStatus PMTemplateValidateItem (
 PMTemplateRef pmTemplate,
 CFStringRef key,
 CFTypeRef item,
 Boolean *validationResults
);

Parameters
pmTemplate

A reference to a job template created by calling the function PMTemplateCreate.

key
A reference to a CFString object that uniquely identifies the job template entry you want to validate.

item
A reference to the data you want to validate.

validationResults
On return, points to true is the item is validated and false if it is not validated.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Functions 1745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTemplate.h

PMTicketConfirmTicket
Checks whether a ticket appears to be valid.

OSStatus PMTicketConfirmTicket (
 PMTicketRef ticket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Return Value
A result code. Returns noErr if the ticket appears to be valid. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketContainsItem
Checks whether an item exists in a ticket.

Boolean PMTicketContainsItem (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item you want to check.

Return Value
Returns true if the item exists.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

1746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTicket.h

PMTicketContainsTicket
Checks whether a ticket is contained in another ticket.

OSStatus PMTicketContainsTicket (
 PMTicketRef ticket,
 CFStringRef requestedType,
 UInt32 index,
 Boolean *exists
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

requestedType
A reference to a CFString object that specfies the ticket type of the ticket for which you want to
check. See “Ticket Type Strings” (page 1831) for a list of constants you can pass.

index
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

exists
On return, points to true if the ticket contains a subticket of the ticket type specified by the
requestedType parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketCopy
Copies a ticket.

OSStatus PMTicketCopy (
 CFAllocatorRef allocator,
 PMTicketRef sourceTicket,
 PMTicketRef *destinationTicket
);

Parameters
allocator

A reference to the allocator object to be used for allocating memory. Pass a reference to a valid
allocator or kCFAllocatorDefault to request the default allocator.

Functions 1747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

sourceTicket
A reference to a ticket created by calling the function PMTicketCreate. This is the ticket you want
to copy.

destinationTicket
A pointer to a ticket reference. On return, points to a copy of the source ticket.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketCopyItem
Copies an item from one ticket to another ticket.

OSStatus PMTicketCopyItem (
 PMTicketRef sourceTicket,
 PMTicketRef destTicket,
 CFStringRef clientID,
 CFStringRef key,
 Boolean locked
);

Parameters
sourceTicket

A reference to a ticket created by calling the function PMTicketCreate. This is the ticket from which
you want to copy an item.

destTicket
A reference to a ticket created by calling the function PMTicketCreate. This is the ticket to which
the item is copied.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to copy.

locked
A Boolean value. Pass true to lock the copied item or false to set the item’s lock state to unlock.
Locking the item prevents any subsequent modification of this item.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
If an item must be copied from one ticket to another, call the function PMTicketCopyItem to make the
simple transfer. This updates the modification date and client ID for the item. The locked field determines
if subsequent updates can be made.

1748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketCreate
Creates a new ticket.

OSStatus PMTicketCreate (
 CFAllocatorRef allocator,
 CFStringRef ticketType,
 PMTicketRef *newTicket
);

Parameters
allocator

A reference to the allocator object to be used for allocating memory. Pass a reference to a valid
allocator or kCFAllocatorDefault to request the default allocator.

ticketType
A reference to a CFString object that specfies the ticket type of the ticket you want to create. See
“Ticket Type Strings” (page 1831) for a list of constants you can pass.

newTicket
On return, a reference to a ticket.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketCreateTemplate
Retrieves a template from a ticket.

OSStatus PMTicketCreateTemplate (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 PMTemplateRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Functions 1749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the template you want to retrieve.

item
On return, points to the template reference specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
The function PMTicketCreateTemplate retrieves the template data associated with the specified key. The
template is stored in the ticket as flattened data. The function creates a template object from the flattened
data.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketDeleteItem
Makes an item in a ticket unavailable.

OSStatus PMTicketDeleteItem (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to make unavailable.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

1750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Discussion
After an item is deleted by calling the function PMTicketDeleteItem, the result code kPMInvalidItem
is returned when anyone tries to access the item. The function PMTicketDeleteItem actually makes the
item unavailable rather than deleting the item. The function adds information to the item's dictionary to
record the history of the item and to indicate the item is unavailable. You should call the function
PMTicketReleaseItem if you want to completely remove the item from the ticket.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketFillFromArray
Adds items defined in an array of ticket item structures to a ticket.

OSStatus PMTicketFillFromArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 const PMTicketItemStruct *items,
 UInt32 itemCount
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

items
A pointer to an array of ticket item structures.

itemCount
The number of items in the items array.

Return Value
A result code. If the result code is anything other than noErr, it’s possible that not all of the items were
added successfully. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetAllocator
Obtains the allocator object used for allocating memory for a ticket.

Functions 1751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetAllocator (
 PMTicketRef ticket,
 CFAllocatorRef *allocator
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

allocator
On return, a reference to the CFAllocator object associated with the ticket.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetAPIVersion
Obtains the version of the application programming interface (API) used to created a ticket.

OSStatus PMTicketGetAPIVersion (
 PMTicketRef ticket,
 CFStringRef *apiVersion
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

apiVersion
On return, a reference to a CFString object that specifies the version of the API used to create the
ticket.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetBoolean
Obtains data for a ticket item of type Boolean.

1752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetBoolean (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 Boolean *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain. See the Base Services documentation for a description of the CFStringRef data type.

value
On return, points to the Boolean value for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetBytes
Obtains data for a ticket item that’s an array of UInt8 values.

OSStatus PMTicketGetBytes (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 UInt8 *data,
 UInt32 *size
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

Functions 1753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

data
On return, points to an array of data of type UInt8 for the item specified by the key parameter.

size
On input, pass the size of the buffer pointed to by the data parameter. On return, points to the
number of bytes in the array.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
If you don’t know the size of the data buffer, you need to call the function PMTicketGetBytes twice. First,
call the function to get the number of items in the array specified by the parameter data. You should call
the function again after you allocate space for the array.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFArray
Obtains data for a ticket item that’s a Core Foundation array.

OSStatus PMTicketGetCFArray (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFArrayRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation array reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

1754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFBoolean
Obtains data for a ticket item that’s an array of CFBoolean values.

OSStatus PMTicketGetCFBoolean (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFBooleanRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation Boolean reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFData
Obtains data for a ticket item of type CFData.

Functions 1755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetCFData (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFDataRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation data reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFDate
Obtains data for a ticket item of type CFDate.

OSStatus PMTicketGetCFDate (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFDateRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

1756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation date reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFDictionary
Obtains data for a ticket item of type CFDictionary.

OSStatus PMTicketGetCFDictionary (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFDictionaryRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation dictionary reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

Functions 1757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketGetCFNumber
Obtains data for a ticket item of type CFNumber.

OSStatus PMTicketGetCFNumber (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFNumberRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation number reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCFString
Obtains data for a ticket item of type CFString.

OSStatus PMTicketGetCFString (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFStringRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

1758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, points to a Core Foundation string reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetCString
Obtains data for a ticket item of that’s a C-style string.

OSStatus PMTicketGetCString (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 UInt32 bufferSize,
 CFStringEncoding encoding,
 char *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

bufferSize
The size of the string specified by the value parameter.

encoding
The encoding of the string. You should supply one of the CFStringBuiltInEncodings constants
defined in Core Foundation String Services.

value
On return, points to the C-style string for the item specified by the key parameter.

Functions 1759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetDouble
Obtains data for a ticket item of type double.

OSStatus PMTicketGetDouble (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 double *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

value
On return, points to the double value for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetEnumType
Obtains a ticket’s ticket type (job, paper, converter, and so on).

1760 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetEnumType (
 PMTicketRef ticket,
 PMTicketType *ticketType
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

ticketType
On return, points to a value of type PMTicketType that specifies a ticket’s type.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetIndexPMResolution
Obtains an indexed resolution for a ticket item that’s an array of type PMResolution.

OSStatus PMTicketGetIndexPMResolution (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 UInt32 index,
 PMResolution *res
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

index
The index of the resolution you want to obtain.

res
On return, points to the resolution (PMResolution) specified by the index parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Functions 1761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetItem
Obtains data for a ticket item of type CFType.

OSStatus PMTicketGetItem (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 CFTypeRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, point to a Core Foundation type reference for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetLockedState
Obtains the lock state of a ticket.

1762 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetLockedState (
 PMTicketRef ticket,
 Boolean *lockedState
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

lockedState
On return, points to true if the ticket is locked and false if the ticket is unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
Tickets can be locked by the printing system. If you try to modify a locked ticket the result code
kPMTicketLocked is returned. You can call the function PMTicketGetLockedState before you call any
other function that modifies the ticket.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketGetMetaItem
Obtains data for a item added with the function PMTicketSetMetaItem.

Not recommended.

OSStatus PMTicketGetMetaItem (
 PMTicketRef ticket,
 CFStringRef key,
 CFTypeRef *item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

item
On return, a reference to the data for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Functions 1763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketGetPMRect
Obtains data for a ticket item of type PMRect.

OSStatus PMTicketGetPMRect (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 PMRect *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

value
On return, points to the PMRect data for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetPMResolution
Obtains data for a ticket item of type PMResolution.

1764 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketGetPMResolution (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 PMResolution *res
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

res
On return, points to the PMResolution data for the item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetPPDDict
Obtains data for a ticket item that’s a PostScript printer description (PPD) dictionary.

OSStatus PMTicketGetPPDDict (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFMutableDictionaryRef *dict
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

Functions 1765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

dict
On return, points to a reference to the PostScript printer description (PPD) dictionary associated with
the specified ticket. The dictionary holds pairs of PPD main and option keywords. The main keywords
are specified as keys in the dictionary and the options keywords specify the value.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketGetPString
Obtains data for a ticket item that’s a Pascal-style string.

OSStatus PMTicketGetPString (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 UInt32 bufferSize,
 CFStringEncoding encoding,
 StringPtr value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

bufferSize
The size of the value parameter.

encoding
The encoding of the string. You should supply one of the CFStringBuiltInEncodings constants
defined in Core Foundation String Services.

value
On return, points to the Pascal-style string value for the ticket item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

1766 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetRetainCount
Obtains the retention count for a ticket.

OSStatus PMTicketGetRetainCount (
 PMTicketRef ticket,
 CFIndex *retainCount
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

retainCount
On return, points to the retention count for the ticket.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
The function PMTicketGetRetainCount behaves similarly to the Core Foundation function
CFGetRetainCount.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetSInt32
Obtains data for a ticket item of type SInt32.

OSStatus PMTicketGetSInt32 (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 SInt32 *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

Functions 1767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

value
On return, points to the SInt32 value for the ticket item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetTicket
Obtains a subticket from a ticket.

OSStatus PMTicketGetTicket (
 PMTicketRef ticket,
 CFStringRef requestedType,
 UInt32 index,
 PMTicketRef *retrievedTicket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

requestedType
A string that specifies the ticket type of the ticket you want to obtain. See “Ticket Type Strings” (page
1831) for a list of strings you can pass.

index
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

retrievedTicket
On return, points to the ticket reference whose type you specified.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

1768 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketGetType
Obtains a value that specifies the ticket’s type.

OSStatus PMTicketGetType (
 PMTicketRef ticket,
 CFStringRef *ticketType
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

ticketType
On return, points to a string value that specifies the ticket’s type. See “PMTicketType” (page 1801) for
a list of constants that can be returned

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketGetUInt32
Obtains an item of type UInt32 from a ticket.

OSStatus PMTicketGetUInt32 (
 PMTicketRef ticket,
 UInt32 nodeIndex1,
 UInt32 nodeIndex2,
 CFStringRef key,
 UInt32 *value
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

nodeIndex1
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

nodeIndex2
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

key
A reference to a CFString object that uniquely identifies the ticket item whose value you want to
obtain.

value
On return, points to UInt32 value for the ticket item specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Functions 1769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketIsItemLocked
Checks to see if an item in a ticket is locked.

OSStatus PMTicketIsItemLocked (
 PMTicketRef ticket,
 CFStringRef key,
 Boolean *locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

key
A reference to a CFString object that uniquely identifies the ticket item you want to check.

locked
On return, points to true if the item is locked or false if the item is not locked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
The function PMTicketIsItemLocked checks only those items stored in the top-level of the ticket. It does
not check items in subtickets.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketLockItem
Locks an item in a ticket.

1770 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketLockItem (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to lock.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
The function PMTicketLockItem locks only those items stored in the top-level of the ticket. It does not lock
items in sub-tickets.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketReadXMLFromFile
Restores a ticket previously converted to XML and saved as a file.

OSStatus PMTicketReadXMLFromFile (
 CFAllocatorRef allocator,
 const char *path,
 PMTicketRef *ticket,
 CFStringRef *errorString
);

Parameters
allocator

A reference to the allocator object to be used for allocating memory. Pass a reference to a valid
allocator or kCFAllocatorDefault to request the default allocator.

path
A string that specifies the path name of the XML file you want to read.

ticket
A reference to a ticket created by calling the function PMTicketCreate. On return, the ticket contains
the entries specified by the XML file.

Functions 1771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

errorString
On return, a reference to a CFString object that contains an error message if an error occurred.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketRelease
Decrements the retention count of a ticket object.

OSStatus PMTicketRelease (
 PMTicketRef ticket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketReleaseAndClear
Decrements the retention count of a ticket and sets the ticket reference to NULL.

OSStatus PMTicketReleaseAndClear (
 PMTicketRef *ticket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

1772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTicket.h

PMTicketReleaseItem
Removes an item from a ticket.

OSStatus PMTicketReleaseItem (
 PMTicketRef ticket,
 CFStringRef key
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

key
A reference to a CFString object that uniquely identifies the ticket item you want to remove.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
An item can only be released if it is not locked. The function PMTicketReleaseItem works differently than
the function PMTicketDeleteItem. The function PMTicketDeleteItem makes the item unavailable, but
keeps information about the item in the ticket. The function PMTicketReleaseItem removes the item from
the ticket.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketRemoveTicket
Removes a subticket from a ticket.

OSStatus PMTicketRemoveTicket (
 PMTicketRef ticket,
 CFStringRef typeToRemove,
 UInt32 index
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

typeToRemove
A reference to a CFString object that specfies the ticket type of the ticket you want to create. See
“Ticket Type Strings” (page 1831) for a list of constants you can pass.

index
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

Functions 1773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketRetain
Increments the retention count of a ticket object.

OSStatus PMTicketRetain (
 PMTicketRef ticket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetBoolean
Writes an item of type Boolean to a ticket.

OSStatus PMTicketSetBoolean (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 Boolean value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

1774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
The Boolean value to which you want to set the ticket item entry specified by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetBytes
Writes an item that’s an array of type UInt8 to a ticket.

OSStatus PMTicketSetBytes (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const UInt8 *data,
 UInt32 size,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

data
A pointer to the data to which you want to set the ticket item entry specified by the key parameter.

size
The size of the data, in bytes.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.

Functions 1775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFArray
Writes an item of type CFArray to a ticket.

OSStatus PMTicketSetCFArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFArrayRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the Core Foundation array to which you want to set the ticket item entry specified by
the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFBoolean
Writes an item of type CFBoolean to a ticket.

1776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketSetCFBoolean (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFBooleanRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the CFBoolean value to which you want to set the ticket item entry specified by the
key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFData
Writes an item of type CFData to a ticket.

OSStatus PMTicketSetCFData (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFDataRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

Functions 1777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the CFData to which you want to set the ticket item entry specified by the key
parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFDate
Writes an item of type CFDate to a ticket.

OSStatus PMTicketSetCFDate (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFDateRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the CFDate value to which you want to set the ticket item entry specified by the key
parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

1778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTicket.h

PMTicketSetCFDictionary
Writes an item of type CFDictionary to a ticket.

OSStatus PMTicketSetCFDictionary (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFDictionaryRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the Core Foundation dictionary to which you want to set the ticket item entry specified
by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFNumber
Writes an item of type CFNumber to a ticket.

Functions 1779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketSetCFNumber (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFNumberRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the CFNumber value to which you want to set the ticket item entry specified by the
key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCFString
Writes an item of type CFString to a ticket.

OSStatus PMTicketSetCFString (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFStringRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

1780 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the CFString object to which you want to set the ticket item entry specified by the
key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetCString
Writes an item that’s a C-style string to a ticket.

OSStatus PMTicketSetCString (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const char *value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
The C-style string to which you want to set the ticket item entry specified by the key parameter. The
string must use UTF-8 encoding.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Functions 1781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Declared In
PMTicket.h

PMTicketSetCStringArray
Writes an item that’s an array of C-style strings to a ticket.

OSStatus PMTicketSetCStringArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const char **cStringArray,
 UInt32 count,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

cStringArray
The array of C-style strings to which you want to set the ticket item entry specified by the key
parameter. The strings must use UTF-8 encoding.

count
The number of characters in the C-style string array.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetDouble
Writes an item of type double to a ticket.

1782 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketSetDouble (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 double value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
The double value to which you want to set the ticket item entry specified by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetDoubleArray
Writes an item that’s an array of values of type double to a ticket.

OSStatus PMTicketSetDoubleArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const double *array,
 UInt32 count,
 Boolean changeable
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

Functions 1783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

doubleArray
A pointer to an array of double values to which you want to set the ticket item entry specified by
the key parameter.

count
The number of values in the array specified by the doubleArray parameter.

changeable
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetItem
Writes an item of type CFType to a ticket.

OSStatus PMTicketSetItem (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 CFTypeRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the generic Core Foundation data to which you want to set the ticket item entry
specified by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.

1784 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetMetaItem
Writes an item that does not need to be stored in an XML-representation of a ticket.

Not recommended.

OSStatus PMTicketSetMetaItem (
 PMTicketRef ticket,
 CFStringRef key,
 CFTypeRef item
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to the generic Core Foundation data to which you want to set the ticket item entry
specified by the key parameter.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
You can use the function PMTicketSetMetaItem to add an item to a ticket when you don’t want that item
o be written to an XML-representation of the ticket. In other words, when you want to temporarily add an
item to a ticket. Items added with this function cannot be locked.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketSetPMRect
Writes an item of type PMRect to a ticket.

Functions 1785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketSetPMRect (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 PMRect *value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
A pointer to the PMRect value to which you want to set the ticket item entry specified by the key
parameter. A PMRect data type is an array of four double values.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetPMRectArray
Writes an item that’s an array of values of type PMRect to a ticket.

OSStatus PMTicketSetPMRectArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 PMRect *pmRectArray,
 UInt32 count,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

1786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

pmRectArray
A pointer to an array of PMRect values to which you want to set the ticket item entry specified by
the key parameter. A PMRect data type is an array of four double values.

count
The number of values in the array specified by the pmRectArray parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetPMResolution
Writes an item of type PMResolution to a ticket.

OSStatus PMTicketSetPMResolution (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 PMResolution *value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
A pointer to the PMResolution value to which you want to set the ticket item entry specified by the
key parameter. A PMResolution data type is an array of two double values.

locked
Pass true to set the item to locked; false to set it to unlocked.

Functions 1787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetPMResolutionArray
Writes an item that’s an array of data of type PMResolution to a ticket.

OSStatus PMTicketSetPMResolutionArray (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 PMResolution *pmResolutionArray,
 UInt32 count,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

pmResolutionArray
A pointer to an array of the PMResolution values to which you want to set the ticket item entry
specified by the key parameter. A PMResolution data type is an array of two double values.

count
The number of items in the array specified by the pmResolutionArray parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

1788 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketSetPString
Writes an item that’s a Pascal-style string to a ticket.

OSStatus PMTicketSetPString (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 ConstStringPtr value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
A pointer to the Pascal-style string to which you want to set the ticket item entry specified by the
key parameter. The string must use MacRoman encoding.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetSInt32
Writes an item of type SInt32 to a ticket.

OSStatus PMTicketSetSInt32 (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 SInt32 value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

Functions 1789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
The SInt32 value to which you want to set the ticket item entry specified by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetSInt32Array
Writes an item that’s an array of data of type SInt32 to a ticket.

OSStatus PMTicketSetSInt32Array (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const SInt32 *sInt32Array,
 UInt32 count,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

sInt32Array
A pointer to an array of SInt32 values to which you want to set the ticket item entry specified by
the key parameter.

count
The number of values in the array specified by the sInt32Array parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

1790 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetTemplate
Writes an item that’s a job template to a ticket.

OSStatus PMTicketSetTemplate (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 PMTemplateRef item,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

item
A reference to a job template created by calling the function PMTemplateCreate.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetTicket
Writes a subticket to a ticket.

Functions 1791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketSetTicket (
 PMTicketRef ticket,
 PMTicketRef ticketToAdd,
 UInt32 index
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate. This is the ticket to which
you want to add a subticket. Any ticket can contain another ticket.

ticketToAdd
A reference to a ticket created by calling the function PMTicketCreate. This is the ticket you want
to be a subticket.

index
Reserved for future use. Currently, you must pass the constant kPMTopLevel.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetUInt32
Writes an item of type UInt32 to a ticket.

OSStatus PMTicketSetUInt32 (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 UInt32 value,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

value
The UInt32 value to which you want to set the ticket item entry specified by the key parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

1792 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketSetUInt32Array
Writes an item that’s an array of data of type UInt32 to a ticket.

OSStatus PMTicketSetUInt32Array (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key,
 const UInt32 *uInt32Array,
 UInt32 count,
 Boolean locked
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to set.

uInt32Array
A pointer to the array of UInt32 values to which you want to set the ticket item entry specified by
the key parameter.

count
The number of values in the array specified by the uInt32Array parameter.

locked
Pass true to set the item to locked; false to set it to unlocked.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

Functions 1793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketToXML
Converts the data in a ticket to XML.

OSStatus PMTicketToXML (
 PMTicketRef ticket,
 CFDataRef *anXMLTicket
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

anXMLTicket
On return, points to a Core Foundation data reference that represents job template data. You are
responsible for releasing the CFData reference.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
If you want to write the XML data is to a file, use the function PMTicketWriteXMLToFile.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketUnlockItem
Unlocks an item in a ticket.

OSStatus PMTicketUnlockItem (
 PMTicketRef ticket,
 CFStringRef clientID,
 CFStringRef key
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

clientID
A reference to a CFString object that uniquely identifies your application. The string should be in
a format similar to a Java-style package name (think of it as a reverse URL), such as
CFSTR("com.myvendorname.myprintingcode").

key
A reference to a CFString object that uniquely identifies the ticket item you want to unlock.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

1794 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Discussion
The function PMTicketUnlockItem unlocks only those items stored in the top-level of the ticket. It does
not unlock items in subtickets.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
PMTicketDeprecated.h

PMTicketValidate
Validates a ticket against the constraint values specified in a job template.

OSStatus PMTicketValidate (
 PMTicketRef ticket,
 PMTemplateRef verifyingTemplate,
 CFArrayRef *invalidItems
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

verifyingTemplate
A reference to the job template against which you want to validate the ticket.

invalidItems
On return, points to an array of invalid items, should there be any. If there are no invalid items, and
the function returns noErr, then the value of invalidItems is undefined.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Discussion
Only those items in the ticket that have corresponding entries in the job template are checked. In other
words, a ticket item’s key must match a template item’s key for the ticket item to be validated.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketWriteXML
Converts a ticket to XML and then writes it to a file stream.

Functions 1795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMTicketWriteXML (
 PMTicketRef ticket,
 FILE *file
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

xmlFile
On input, the file to which you want the XML data to be written.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMTicketWriteXMLToFile
Converts a ticket to XML and then writes it to a file.

OSStatus PMTicketWriteXMLToFile (
 PMTicketRef ticket,
 const char *path
);

Parameters
ticket

A reference to a ticket created by calling the function PMTicketCreate.

path
On input, the path of the file to which you want the XML data to be written. The function opens the
file or creates one if one doesn’t exist.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

PMXMLToTicket
Converts a ticket saved as XML to a ticket.

1796 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

OSStatus PMXMLToTicket (
 CFAllocatorRef allocator,
 CFDataRef anXMLTicket,
 PMTicketRef *ticket,
 CFStringRef *conversionError
);

Parameters
allocator

A reference to the allocator object to be used for allocating memory. Pass a reference to a valid
allocator or kCFAllocatorDefault to request the default allocator.

anXMLTicket
A reference to Core Foundation data that contains previously-converted job template data.

ticket
On return, a reference to a ticket that contains the data converted from the XML data specified by
the anXMLTicket parameter.

conversionError
On return, a reference to a CFString object that specifies errors during the conversion process, if
any. Pass NULL if you are not interested in getting the errors.

Return Value
A result code. See “Ticket Services Result Codes” (page 1832).

Availability
Not available in CarbonLib.
Available in Mac OS X 10.0 and later.

Declared In
PMTicket.h

Data Types

ConstCStrList
Represents a static list of C-string pointers.

typedef CStrList ConstCStrList;

Discussion
For more information see “CStrList” (page 1798).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

ConstPMRectList
Represents a static list of PMRect data structures.

Data Types 1797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef PMRectList ConstPMRectList;

Discussion
For more information see “PMRectList” (page 1799).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

ConstSInt32List
Represents a static list of SInt32List data structures.

typedef SInt32List ConstSInt32List;

Discussion
Form more information see “SInt32List” (page 1801).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

CStrList
Contains an array of CString pointers and the number of pointers in the array.

struct CStrList {
 SInt32 count;
 char **strArray;
};
typedef struct CStrList CStrList;

Fields
count

The number of CString pointers in the array.

strArray
A pointer to an array of CString pointers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMPrintingPhaseType
Represents printing phases.

1798 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef UInt16 PMPrintingPhaseType;

Discussion
For more information see “Printing Phase Types” (page 1824).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
PMTicket.h

PMRectList
Contains a list of PMRect data structures.

struct PMRectList {
 SInt32 count;
 PMRect **pmRectArray;
};
typedef struct PMRectList PMRectList;

Fields
count

The number of PMRect pointers in the array.

pmRectArray
A pointer to a list of PMRect data structures.

Discussion
A PMRect data structure contains a set of four double values (top, left, bottom, and right). This structure is
used to specify page and paper rectangles.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMTemplateRef
Refers to a template object that contains private variables and functions necessary to represent a job template.

typedef struct OpaquePMTemplateRef* PMTemplateRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMTicketErrors
Represents values that indicate error conditions.

Data Types 1799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef SInt16 PMTicketErrors;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMTicketItemStruct
Contains information about a ticket item.

struct PMTicketItemStruct {
 char *key;
 PMTicketItemType itemType;
 Boolean locked;
 union {
 const void *GenericData;
 const char *cString;
 SInt32 sInt32;
 UInt32 boolean;
 ConstCStrList *cStrlist;
 PMRect *rect;
 ConstSInt32List *sInt32List;
 ConstPMRectList *pmRectList;
 } value;
};

Fields
key

A string that uniquely identifies the item.

itemType
The type of item defined in the union.

locked
The lock state of the item.

value
The data associated with the item.

Discussion
You can use this structure to define a static ticket item. An array of these structures can then be converted
to a ticket by calling the function PMTicketFillFromArray.

PMTicketItemType
Represents a ticket item type.

typedef UInt16 PMTicketItemType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

1800 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PMTicketRef
Refers to a ticket object that contains private variables and functions necessary to represent a ticket.

typedef struct OpaquePMTicketRef* PMTicketRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMTicketType
Represents a ticket type.

typedef SInt16 PMTicketType;

Discussion
For more information see “PMTicketType” (page 1801).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

PMValueType
Represents a value type.

typedef SInt32 PMValueType;

Discussion
For more information see “Item Value Types” (page 1808).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTemplate.h

SInt32List
Contains an array of SInt32 values.

Data Types 1801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

struct SInt32List {
 SInt32 count;
 const SInt32 *sInt32Array;
};
typedef struct SInt32List SInt32List;

Fields
count

The number of signed 32-bit values in the array.

sInt32Array
A pointer to the array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMTicket.h

Constants

ColorSync Options
Defines strings and keys for items related to ColorSync options.

#define kPMColorDeviceIDStr kPMPrinterInfoPrelude "PMColorDeviceID"
#define kPMColorDeviceIDKey CFSTR(kPMColorDeviceIDStr)
#define kPMColorSyncProfilesStr kPMPrinterInfoPrelude "PMColorSyncProfiles"
#define kPMColorSyncProfilesKey CFSTR(kPMColorSyncProfilesStr)

Constants
kPMColorDeviceIDStr

The color device ID string.

kPMColorDeviceIDKey
The value of this key is a CFString representing a CFUUID; it must be unique per device.

kPMColorSyncProfilesStr
The ColorSync profiles sting.

kPMColorSyncProfilesKey
The value of this key is a CFArray of CFDictionary data structures, one CFDictionary data
structure for each factory profile.

Constraint Types
Specify a constraint type for a job template entry.

1802 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef SInt32 PMConstraintType;
enum {
 kPMConstraintUndefined = 0,
 kPMConstraintRange = 1,
 kPMConstraintList = 2,
 kPMConstraintPrivate = 3
};

Constants
kPMConstraintUndefined

Values are not constrained.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMConstraintRange
Values are constrained by a range of two values, both of type CFTypeRef.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMConstraintList
Values are constrained by an array.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMConstraintPrivate
Values are constrained privately, and should not be checked by the system.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

Converter Setup Ticket Keys
Defines strings and keys for items related to a converter setup ticket.

Constants 1803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

#define kPMConverterSetupPrelude "com.apple.print.ConverterSetup."
#define kPMBandingRequestedStr kPMConverterSetupPrelude "PMBandingRequested"
#define kPMBandingRequestedKey CFSTR(kPMBandingRequestedStr)
#define kPMRequiredBandHeightStr kPMConverterSetupPrelude "PMRequiredBandHeight"
#define kPMRequiredBandHeightKey CFSTR(kPMRequiredBandHeightStr)
#define kPMDepthSwitchingEnabledStr kPMConverterSetupPrelude "PMDepthSwitching"
#define kPMDepthSwitchingEnabledKey CFSTR(kPMDepthSwitchingEnabledStr)
#define kPMWhiteSkippingEnabledStr kPMConverterSetupPrelude "PMWhiteSpaceSkipping"
#define kPMWhiteSkippingEnabledKey CFSTR(kPMWhiteSkippingEnabledStr)
#define kPMConverterResHorizontalStr kPMConverterSetupPrelude
"PMConversionResHorizontal"
#define kPMConverterResHorizontalKey CFSTR(kPMConverterResHorizontalStr)
#define kPMConverterResVerticalStr kPMConverterSetupPrelude "PMConversionResVertcial"
#define kPMConverterResVerticalKey CFSTR(kPMConverterResVerticalStr)
#define kPMRequestedPixelFormatStr kPMConverterSetupPrelude "PMPixelFormat"
#define kPMRequestedPixelFormatKey CFSTR(kPMRequestedPixelFormatStr)
#define kPMRequestedPixelLayoutStr kPMConverterSetupPrelude "PMPixelLayout"
#define kPMRequestedPixelLayoutKey CFSTR(kPMRequestedPixelLayoutStr)
#define kPMCVColorSyncProfileIDKey CFSTR(kPMCVColorSyncProfileIDStr)

Constants
kPMConverterSetupPrelude

The converter-setup prelude sting.

kPMBandingRequestedStr
The banding-requested string.

kPMBandingRequestedKey
The value of this key is a CFBoolean; turns banding on if it's available.

kPMRequiredBandHeightStr
The banding-height string.

kPMRequiredBandHeightKey
The value of this key is a CFNumber value; specifies the number of scan lines needed for each band.
If it specifies the whole page, banding is disabled.

kPMDepthSwitchingEnabledStr
The depth-switching-enabled string.

kPMDepthSwitchingEnabledKey
The value of this key is a CFBoolean value; true specifies the printer module requests the converter
to switch between black & white and color bands when possible.

kPMWhiteSkippingEnabledStr
The white-skipping-enabled string.

kPMWhiteSkippingEnabledKey
The value of this key is a CFBoolean; true specifies the printer module requests the converter to
skip over white space if possible.

kPMConverterResHorizontalStr
The horizontal rendering resolution string.

kPMConverterResHorizontalKey
The value of this key is a CFNumber of type CFNumberDoubleType; specifies the final horizontal
rendering resolution.

kPMConverterResVerticalStr
The vertical resolution string.

1804 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMConverterResVerticalKey
The value of this key is a CFNumber of type CFNumberDoubleType; specifies the final vertical rendering
resolution.

kPMRequestedPixelFormatStr
The pixel format string.

kPMRequestedPixelFormatKey
The value of this key is a CFNumber of type CFNumberLongType; specifies the pixel format requested
of the converter.

kPMRequestedPixelLayoutStr
The pixel layout string.

kPMRequestedPixelLayoutKey
The value of this key is a CFNumber of type CFNumberLongType; specifies the pixel layout requested
of the converter.

kPMCVColorSyncProfileIDKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies the profile ID for the
ColorSync profile to be used with the print job.

Data Transmission Keys
Defines strings and keys for items related to data transmission.

#define kPMIsBinaryOKStr kPMPrinterInfoPrelude "PMIsBinaryOK"
#define kPMIsBinaryOKKey CFSTR(kPMIsBinaryOKStr)
#define kPM8BitCommStr kPMPrinterInfoPrelude "PM8BitComm"
#define kPM8BitCommKey CFSTR(kPM8BitCommStr)
#define kPMTransparentCommStr kPMPrinterInfoPrelude "PMTransparentComm"
#define kPMTransparentCommKey CFSTR(kPMTransparentCommStr)

Constants
kPMIsBinaryOKStr

The binary is okay string.

kPMIsBinaryOKKey
The value of this key is a CFBoolean representing the result of querying the PostScript printer about
its ability to accept binary data. It is possible for the underlying communications to support binary
data, both high bit characters and control characters, but for a spooler on the other end of the channel
to not accept binary data. This value represents the spooler/printer's abilities.

kPM8BitCommStr
The 8-bit communication string.

kPM8BitCommKey
The value of this key is a CFBoolean indicating whether the communications channel can transmit
characters in the range 0x80 -)xFF inclusive without them being damaged or interpreted as channel
control characters.

kPMTransparentCommStr
The transparent communication string.

kPMTransparentCommKey
The value of this key is a CFBoolean indicating whether the communications channel can transmit
characters in the range 0x00 - 0x1F inclusive without them being damaged or interpreted as channel
control characters.

Constants 1805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Document Ticket Keys
Defines strings and keys for items in a document ticket; currently not used.

#define kPMDocumentTicketPrelude "com.apple.print.DocumentTicket."
#define kPMSpoolFormatStr kPMDocumentTicketPrelude "PMSpoolFormat"
#define kPMSpoolFormatKey CFSTR(kPMSpoolFormatStr)
#define kPMPrinterModuleFormatStr kPMDocumentTicketPrelude "PMDocPMInputFormat"
#define kPMPrinterModuleFormatKey CFSTR(kPMPrinterModuleFormatStr)

Constants
kPMDocumentTicketPrelude

Currently not used.

kPMSpoolFormatStr
Currently not used.

kPMSpoolFormatKey
Currently not used.

kPMPrinterModuleFormatStr
Currently not used.

kPMPrinterModuleFormatKey
Currently not used.

Drawing Resolution Keys
Defines strings and keys for items in related to drawing resolution.

#define kPMPrinterSuggestedResStr kPMPrinterInfoPrelude
"PMPrinterSuggestedRes"
#define kPMPrinterSuggestedResKey CFSTR(kPMPrinterSuggestedResStr
 #define kPMPrinterMinResStr kPMPrinterInfoPrelude "PMPrinterMinRes"
#define kPMPrinterMinResKey CFSTR(kPMPrinterMinResStr)
#define kPMPrinterMaxResStr kPMPrinterInfoPrelude "PMPrinterMaxRes"
#define kPMPrinterMaxResKey CFSTR(kPMPrinterMaxResStr)

Constants
kPMPrinterSuggestedResStr

The suggested application drawing resolutions string.

kPMPrinterSuggestedResKey
The value of this key is the suggested application drawing resolutions key.

kPMPrinterMinResStr
The minimum drawing resolution string.

kPMPrinterMinResKey
The value of this key is the minimum range of resolutions for the printer; specified as a CFArray of
two CFNumber values of type kCFNumberDoubleType.

kPMPrinterMaxResStr
The maximum printer resolution string.

kPMPrinterMaxResKey
The value of this key is the maximum range of resolutions for the printer; specified as a CFArray of
two CFNumber values of type kCFNumberDoubleType.

1806 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Duplex Options
Specify values for the duplex options key (kPMDuplexingKey.)

enum {
 kPMDuplexNone = 1,
 kPMDuplexNoTumble = 2,
 kPMDuplexTumble = 3,
 kPMSimplexTumble = 4,
 kPMDuplexDefault = 1
};

Constants
kPMDuplexNone

Don’t use duplex.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDuplexNoTumble
Print on both sides of the paper; flip pages from left to right.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDuplexTumble
Print on both sides of the paper; tumbling so pages flip top to bottom.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMSimplexTumble
Print on only one side of the paper, but tumble the images while printing.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDuplexDefault
Don’t use duplex; this option is the same as kPMDuplexNone.

Error Handling Options
Specify whether or not an error handler is available.

enum {
 kPSNoErrorHandler = 0,
 kPSErrorHandler = 1
};

Constants
kPSNoErrorHandler

Specifies that an error handler is not available.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Constants 1807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPSErrorHandler
Specifies that an error handler is available.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Fetch options
Specifies whether an item should be fetched.

#define kPMDontFetchItem NULL

Constants
kPMDontFetchItem

Don’t fetch the item.

Installable Options
Defines a string and key for installable printer options.

#define kPMInstallableOptionStr kPMPrinterInfoPrelude
"PMInstallableOption"
#define kPMInstallableOptionKey CFSTR(kPMInstallableOptionStr)

Constants
kPMInstallableOptionStr

The installable options string.

kPMInstallableOptionKey
The value of this key is a packed array of Pascal strings that specifies the installable options in the
PostScript printer description (PPD) file. The strings are as key-value pairs of PPD main and option
keywords.

Item Value Types
Specify the data type of a ticket or template item.

1808 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef UInt16 PMTicketItemType;
enum {
 kPMItemInvalidType = 0,
 kPMItemCStringType = 1,
 kPMItemSInt32Type = 2,
 kPMItemBooleanType = 3,
 kPMItemCStrListType = 4,
 kPMItemPMRectType = 5,
 kPMItemSInt32ListType = 6,
 kPMItemPMRectListType = 7
};

Constants
kPMItemInvalidType

The type is not valid.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemCStringType
A C-style string pointer.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemSInt32Type
A signed 32-bit integer.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemBooleanType
A Boolean value.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemCStrListType
A list of C-style strings

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemPMRectType
A pointer to a PMRect data structure.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemSInt32ListType
A pointer to an SInt32List data structure.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMItemPMRectListType
A pointer to a PMRectList data structure.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Constants 1809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Job Ticket Keys
Defines strings and keys for items in a job ticket.

#define kPMJobTicketPrelude "com.apple.print.JobInfo."
#define kPMJobNameStr kPMJobTicketPrelude "PMJobName"
#define kPMJobNameKey CFSTR(kPMJobNameStr)
#define kPMApplicationNameStr kPMJobTicketPrelude "PMApplicationName"
#define kPMApplicationNameKey CFSTR(kPMApplicationNameStr)
#define kPMUserLanguageStr kPMJobTicketPrelude "PMUserLanguage"
#define kPMUserLanguageKey CFSTR(kPMUserLanguageStr)
#define kPMJobOwnerStr kPMJobTicketPrelude "PMJobOwner"
#define kPMJobOwnerKey CFSTR(kPMJobOwnerStr)
#define kPMJobTemplateStr kPMJobTicketPrelude "PMJobTemplate"
#define CFSTR(kPMJobTemplateStr)
#define kPMPhaseStr kPMJobTicketPrelude "PMPrintingPhase"
#define kPMPhaseKey CFSTR(kPMPhaseStr)
#define kPMOutputTypeStr kPMJobTicketPrelude "PMOutputType"
#define kPMOutputTypeKey CFSTR(kPMOutputTypeStr)

Constants
kPMJobTicketPrelude

The job ticket prelude string.

kPMJobNameStr
The job name string.

kPMJobNameKey
The value of this key is a CFString that specifies the name of the job to be displayed in the print
queue dialog.

kPMApplicationNameStr
The application name string.

kPMApplicationNameKey
The value of this key is a CFString that specifies the application's name.

kPMUserLanguageStr
The user language string.

kPMUserLanguageKey
The value of this key is a CFNumber of type kCFNumberSInt32Type.

kPMJobOwnerStr
The job owner string.

kPMJobOwnerKey
The value of this key is a CFString that specifies the name of the user who submitted the job.

kPMJobTemplateStr
The job template string.

kPMJobTemplateKey
The value of this key is a CFDictionary that is actually a PMTemplateRef.

kPMPhaseStr
The printing phase string.

kPMPhaseKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an
enumeration—Spooling, RIPing, and so forth.

kPMOutputTypeStr
The output type string.

1810 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMOutputTypeKey
The value of this key is a CFString that specifies a Mime type from the kPMOutputTypeListKey
array generated by the printer module.

Default Copy/Collate Value
Specifies the default value for copy/collate.

enum {
 kPMCopyCollateDefault = 1
};

Constants
kPMCopyCollateDefault

Use the default value for copy/collate.

List Ticket Keys
Defines strings and keys for items in a list ticket.

#define kPMTicketListPrelude "com.apple.print.TicketList."

Constants
kPMTicketListPrelude

The list ticket prelude string.

Lock State
Specifies whether an item is locked or unlocked.

enum {
 kPMUnlocked = 0,
 kPMLocked = 1
};

Constants
kPMUnlocked

Indicates items is unlocked.

Available in Mac OS X v10.2 and later.

Declared in PMDefinitions.h.

kPMLocked
Indicates items is locked.

Available in Mac OS X v10.2 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

Constants 1811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Memory Keys
Defines strings and keys for items related to printer memory.

#define kPMTotalMemInstalledStr kPMPrinterInfoPrelude
"PMTotalMemInstalled" #define kPMTotalMemInstalledKey
CFSTR(kPMTotalMemInstalledStr)
#define kPMTotalMemAvailableStr kPMPrinterInfoPrelude "PMTotalMemAvailable"
#define kPMTotalMemAvailableKey CFSTR(kPMTotalMemAvailableStr)

Constants
kPMTotalMemInstalledStr

The memory installed string.

kPMTotalMemInstalledKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies the memory installed
in the printer.

kPMTotalMemAvailableStr
The total memory available string.

kPMTotalMemAvailableKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies the remaining memory
available for use.

Page Format Ticket Keys
Defines strings and keys for items in a page format ticket.

#define kPMPageFormatPrelude "com.apple.print.PageFormat."
#define kPMAdjustedPaperRectStr kPMPageFormatPrelude "PMAdjustedPaperRect"
#define kPMAdjustedPaperRectKey CFSTR(kPMAdjustedPaperRectStr)
#define kPMAdjustedPageRectStr kPMPageFormatPrelude "PMAdjustedPageRect"
#define kPMAdjustedPageRectKey CFSTR(kPMAdjustedPageRectStr)
#define kPMDrawingResHorizontalStr kPMPageFormatPrelude "PMHorizontalRes"
#define kPMDrawingResHorizontalKey CFSTR(kPMDrawingResHorizontalStr)
#define kPMDrawingResVerticalStr kPMPageFormatPrelude "PMVerticalRes"
#define kPMDrawingResVerticalKey CFSTR(kPMDrawingResVerticalStr)
#define kPMPageScalingHorizontalStr kPMPageFormatPrelude "PMScaling"
#define kPMPageScalingHorizontalKey CFSTR(kPMPageScalingHorizontalStr)
#define kPMPageScalingVerticalStr kPMPageFormatPrelude "PMVerticalScaling"
#define kPMPageScalingVerticalKey CFSTR(kPMPageScalingVerticalStr)
#define kPMPageOrientationStr kPMPageFormatPrelude "PMOrientation"
#define kPMPageOrientationKey CFSTR(kPMPageOrientationStr)
#define kPMPageBackupRecordHdlStr kPMPageFormatPrelude "BackupPrintRecordHandle"
#define kPMPageBackupRecordHdlKey CFSTR(kPMPageBackupRecordHdlStr)
#define kPMPageBackupRecordDataStr kPMPageFormatPrelude "BackupPrintRecord"
#define kPMPageBackupRecordDataKey CFSTR kPMPageBackupRecordDataStr)
#define kPMPageCustomDialogHdlStr kPMPageFormatPrelude "CustomDialogRecord"
#define kPMPageCustomDialogHdlKey CFSTR(kPMPageCustomDialogHdlStr)
#define kPMFormattingPrinterStr kPMPageFormatPrelude "FormattingPrinter"
#define kPMFormattingPrinterKey CFSTR(kPMFormattingPrinterStr)

Constants
kPMPageFormatPrelude

The page format ticket prelude string.

1812 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMAdjustedPaperRectStr
The adjusted paper rectangle string.

kPMAdjustedPaperRectKey
The value of this key is a CFArray of four CFNumbers of type kCFNumberDoubleType for the adjusted
paper rectangle, in points.

kPMAdjustedPageRectStr
The adjusted page rectangle string.

kPMAdjustedPageRectKey
The value of this key is a CFArray of four CFNumbers of type kCFNumberDoubleType for the adjusted
page rectangle, in points.

kPMDrawingResHorizontalStr
The horizontal drawing resolution string.

kPMDrawingResHorizontalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; the drawing resolution in
horizontal direction.

kPMDrawingResVerticalStr
The vertical drawing resolution string.

kPMDrawingResVerticalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; the drawing resolution in vertical
direction.

kPMPageScalingHorizontalStr
The horizontal page scaling string.

PMPageScalingHorizontalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; the horizontal scaling factor
applied to original page size.

kPMPageScalingVerticalStr
The vertical page scaling string.

kPMPageScalingVerticalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; the vertical scaling factor applied
to original page size.

kPMPageOrientationStr
The page orientation string.

kPMPageOrientationKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; PMOrientation, 1 = portrait,
2 = landscape, 3 = reverse portrait, 4 = reverse landscape.

kPMPageBackupRecordHdlStr
The page backup record handle string.

kPMPageBackupRecordHdlKey
The value of this key is a print record handle (CFData); not used when data is flattened. (Mac OS 8
and 9 only)

kPMPageBackupRecordDataStr
The page backup record data string.

kPMPageBackupRecordDataKey
The value of this key is a print record (CFData) stored in complete form; used when flattening ticket
with the print record. ((Mac OS 8 and 9 only)

kPMPageCustomDialogHdlStr
The page custom dialog handle string.

Constants 1813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMPageCustomDialogHdlKey
The value of this key is a handle (CFData) to the print record using for custom dialog calls; not stored
when flattened. (Mac OS 8 and 9 only)

kPMFormattingPrinterStr
The formatting printer string.

kPMFormattingPrinterKey
The value of this key is a CFString that specifies name of the formatting printer.

Page Ticket Key
Defines strings and keys for items in a page ticket; currently not used.

#define kPMPageTicketPrelude "com.apple.print.PageTicket."

Constants
kPMPageTicketPrelude

Currently not used.

Paper Info Ticket Keys
Defines strings and keys for items in a paper info ticket.

#define kPMPaperInfoPrelude "com.apple.print.PaperInfo."
#define kPMPaperNameStr kPMPaperInfoPrelude "PMPaperName"
#define kPMPaperNameKey CFSTR(kPMPaperNameStr)
#define kPMUnadjustedPaperRectStr kPMPaperInfoPrelude "PMUnadjustedPaperRect"
#define kPMUnadjustedPaperRectKey CFSTR(kPMUnadjustedPaperRectStr)
#define kPMUnadjustedPageRectStr kPMPaperInfoPrelude "PMUnadjustedPageRect"
#define kPMUnadjustedPageRectKey CFSTR(kPMUnadjustedPageRectStr)
#define kPMMatchPaperStr kPMPaperInfoPrelude "PMMatchPaper"
#define kPMMatchPaperKey CFSTR(kPMMatchPaperStr)

Constants
kPMPaperInfoPrelude

The paper info ticket prelude string.

kPMPaperNameStr
The paper name string.

kPMPaperNameKey
The paper name key specifies the name of the paper displayed in the user interface.

kPMUnadjustedPaperRectStr
The unadjusted paper rectangle string.

kPMUnadjustedPaperRectKey
The unadjusted paper rectangle key specifies the unadjusted paper rectangle.

kPMUnadjustedPageRectStr
The unadjusted page rectangle string.

kPMUnadjustedPageRectKey
The unadjusted page rectangle key specifies the unadjusted page rectangle.

kPMMatchPaperStr
The paper match string.

1814 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMMatchPaperKey
The paper match key specifies how closely the printing system must match the specified paper.

PostScript Language Level Targets
Specify language-level targets for PostScript printing.

enum {
 kPMPSTargetLanguageLevel2and3 = -3,
 kPMPSTargetLanguageLevel1and2 = -2,
 kPMPSTargetLanguageLevelUnknown = -1,
 kPMPSTargetLanguageLevel1 = 1,
 kPMPSTargetLanguageLevel2 = 2,
 kPMPSTargetLanguageLevel3 = 3,
 kPMPSTargetLanguageLevelDefault = -1
};

Constants
kPMPSTargetLanguageLevel2and3

Level 2 compatible, may take advantage of Level 3 features.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevel1and2
Level 1 compatible, may take advantage of Lever 2 and 3 features.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevelUnknown
Language level of target is unknown.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevel1
Level 1.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevel2
Level 2.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevel3
Level 3.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

kPMPSTargetLanguageLevelDefault
Same as kPMPSTargetLanguageLevelUnknown.

Available in Mac OS X v10.1 and later.

Declared in PMTicket.h.

Constants 1815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

PostScript Printer Description Tags
Defines strings and keys for items related to PostScript printer description files.

#define kPMDescriptionFileStr kPMPrinterInfoPrelude
"PMDescriptionFile"
#define kPMDescriptionFileKey CFSTR(kPMDescriptionFileStr)
#define kPMCompiledPPDStr kPMPrinterInfoPrelude "PMCompiledPPD"
#define kPMCompiledPPDKey CFSTR(kPMCompiledPPDStr)

Constants
kPMDescriptionFileStr

The printer description file string.

kPMDescriptionFileKey
The value of this key is a CFString; specifies the PostScript printer description file name or other
description file.

kPMCompiledPPDStr
The compiled PostScript printer description string.

kPMCompiledPPDKey
The value of this key is a compiled PostScript printer description (CFData).

PostScript Printer Driver Keys
Defines a string and key for a PostScript printer driver.

#define kPMPrinterIsPostScriptDriverStr kPMPrinterInfoPrelude "PMIsPostScriptDriver"
#define kPMPrinterIsPostScriptDriverKey CFSTR(kPMPrinterIsPostScriptDriverStr)

Constants
kPMPrinterIsPostScriptDriverStr

The PostScript printer driver string.

kPMPrinterIsPostScriptDriverKey
The value of this key is a CFBoolean value.

Print Settings Ticket Keys
Defines strings and keys for items in a print settings ticket.

1816 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

#define kPMBorderStr kPMPrintSettingsPrelude "PMBorder"
#define kPMBorderKey CFSTR(kPMBorderStr)
#define kPMBorderTypeStr kPMPrintSettingsPrelude "PMBorderType"
#define kPMBorderTypeKey CFSTR(kPMBorderTypeStr)
#define kPMLayoutNUpStr kPMPrintSettingsPrelude "PMLayoutNUp"
#define kPMLayoutNUpKey CFSTR(kPMLayoutNUpStr
#define kPMLayoutRowsStr kPMPrintSettingsPrelude "PMLayoutRows"
#define kPMLayoutRowsKey CFSTR(kPMLayoutRowsStr)
#define kPMLayoutColumnsStr kPMPrintSettingsPrelude "PMLayoutColumns"
#define kPMLayoutColumnsKey CFSTR(kPMLayoutColumnsStr)
#define kPMLayoutDirectionStr kPMPrintSettingsPrelude "PMLayoutDirection"
#define kPMLayoutDirectionKey CFSTR(kPMLayoutDirectionStr)
#define kPMLayoutTileOrientationStr kPMPrintSettingsPrelude "PMLayoutTileOrientation"
#define kPMLayoutTileOrientationKey CFSTR(kPMLayoutTileOrientationStr)
#define kPMQualityStr kPMPrintSettingsPrelude "PMQuality"
#define kPMQualityKey CFSTR(kPMQualityStr)
#define kPMPaperTypeStr kPMPrintSettingsPrelude "PMPaperType"
#define kPMPaperTypeKey CFSTR(kPMPaperTypeStr)
#define kPMJobStateStr kPMPrintSettingsPrelude "PMJobState"
#define kPMJobStateKey CFSTR(kPMJobStateStr)
#define kPMJobHoldUntilTimeStr kPMPrintSettingsPrelude "PMJobHoldUntilTime"
#define kPMJobHoldUntilTimeKey CFSTR(kPMJobHoldUntilTimeStr)
#define kPMJobPriorityStr kPMPrintSettingsPrelude "PMJobPriority"
#define kPMJobPriorityKey CFSTR(kPMJobPriorityStr)
#define kPMPaperSourceStr kPMPrintSettingsPrelude "PMPaperSource"
#define kPMPaperSourceKey CFSTR(kPMPaperSourceStr)
#define kPMDuplexingStr kPMPrintSettingsPrelude "PMDuplexing"
#define kPMDuplexingKey CFSTR(kPMDuplexingStr)
#define kPMColorModeStr kPMPrintSettingsPrelude "PMColorMode"
#define kPMColorModeKey CFSTR(kPMColorModeStr)
#define kPMColorSyncProfileIDStr kPMPrintSettingsPrelude "PMColorSyncProfileID"
#define kPMColorSyncProfileIDKey CFSTR(kPMColorSyncProfileIDStr)
#define kPMColorSyncSystemProfilePathStr kPMPrintSettingsPrelude
"PMColorSyncSystemProfilePath"
#define kPMColorSyncSystemProfilePathKey CFSTR(kPMColorSyncSystemProfilePathStr)
#define kPMPrintScalingHorizontalStr kPMPrintSettingsPrelude "PMScaling"
#define kPMPrintScalingHorizontalKey CFSTR(kPMPrintScalingHorizontalStr)
#define kPMPrintScalingVerticalStr kPMPrintSettingsPrelude "PMVerticalScaling"
#define kPMPrintScalingVerticalKey CFSTR(kPMPrintScalingVerticalStr)
#define kPMPrintScalingAlignmentStr kPMPrintSettingsPrelude "PMScalingAlignment"
#define kPMPrintScalingAlignmentKey CFSTR(kPMPrintScalingAlignmentStr)
#define kPMPrintOrientationStr kPMPrintSettingsPrelude "PMOrientation"
#define kPMPrintOrientationKey CFSTR(kPMPrintOrientationStr)
#define kPMPreviewStr kPMPrintSettingsPrelude "PMPreview"
#define kPMPreviewKey CFSTR(kPMPreviewStr
#define kPMPrintBackupRecordHdlStr kPMPrintSettingsPrelude "BackupPrintRecordHandle"
#define kPMPrintBackupRecordHdlKey CFSTR(kPMPrintBackupRecordHdlStr)
#define kPMPrintBackupRecordDataStr kPMPrintSettingsPrelude "BackupPrintRecord"
#define kPMPrintBackupRecordDataKey CFSTR(kPMPrintBackupRecordDataStr)
#define kPMPrintCustomDialogHdlStr kPMPrintSettingsPrelude "CustomDialogRecord"
#define kPMPrintCustomDialogHdlKey CFSTR(kPMPrintCustomDialogHdlStr)
#define kPMPrimaryPaperFeedStr kPMPrintSettingsPrelude
"PMPrimaryPaperFeed"
#define kPMPrimaryPaperFeedKey CFSTR(kPMPrimaryPaperFeedStr)
#define kPMSecondaryPaperFeedStr kPMPrintSettingsPrelude
"PMSecondaryPaperFeed"
#define kPMSecondaryPaperFeedKey CFSTR(kPMSecondaryPaperFeedStr)
#define kPMPSErrorHandlerStr kPMPrintSettingsPrelude

Constants 1817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

"PMPSErrorHandler"
#define kPMPSErrorHandlerKey CFSTR(kPMPSErrorHandlerStr)
#define kPMPSErrorOnScreenStr kPMPrintSettingsPrelude
"PMPSErrorOnScreen"
#define kPMPSErrorOnScreenKey CFSTR(kPMPSErrorOnScreenStr)
#define kPMPSTraySwitchStr kPMPrintSettingsPrelude
"PMPSTraySwitch"
#define kPMPSTraySwitchKey CFSTR(kPMPSTraySwitchStr)
#define kPMPPDDictStr kPMPrintSettingsPrelude "kPMPPDDictStr"
#define kPMPPDDictKey CFSTR(kPMPPDDictStr)

Constants
kPMPrintSettingsPrelude

The print settings ticket prelude string.

kPMDestinationTypeStr
The destination type string.

kPMDestinationTypeKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; can be
kPMDestinationPrinter, kPMDestinationFile, or kPMDestinationFax.

kPMOutputFilenameStr
The output filename string.

kPMOutputFilenameKey
The value of this key is a CFString; a URL that specifies the output filename.

kPMCopiesStr
The copies string.

kPMCopiesKey
The value of this key is a CFNumber of type kCFNumberSInt32Type that specifies number of copies
to print.

kPMCopyCollateStr
The copy/collate string.

kPMCopyCollateKey
The value of this key is a CFBoolean value; used to turn collating on.

kPMReverseOrderStr
The reverse order string.

kPMReverseOrderKey
The value of this key is a CFBoolean value; true specifies to print sheets back to front. All layout
options are unaffected by reverse order.

kPMPageRangeStr
The page range string.

kPMPageRangeKey
The value of this key is a CFArray of type kCFNumberSInt32Type; indicates valid range of pages
that the application is able to print.

kPMFirstPageStr
The first page string.

kPMFirstPageKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; the first page selected by user
to print.

kPMLastPageStr
The last page string.

1818 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMLastPageKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; the last page selected by user
to print.

kPMBorderStr
The border string.

kPMBorderKey
The value of this key is a CFBoolean; true specifies to use borders.

kPMBorderTypeStr
The border type string.

kPMBorderTypeKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration
(PMBorderType).

kPMLayoutNUpStr
The layout string.

kPMLayoutNUpKey
The value of this key is a CFBoolean value; turns N-Up layout on.

kPMLayoutRowsStr
The layout rows string.

kPMLayoutRowsKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; indicates number of layout
rows.

kPMLayoutColumnsStr
The layout columns string.

kPMLayoutColumnsKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; indicates number of layout
columns.

kPMLayoutDirectionStr
The layout direction string.

kPMLayoutDirectionKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration
(PMLayoutDirection).

kPMLayoutTileOrientationStr
The layout tile orientation string.

kPMLayoutTileOrientationKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; PMOrientation, 1 = portrait,
2 = landscape, etc.

kPMQualityStr
The print quality string.

kPMQualityKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specfies an enumeration—draft,
normal, best.

kPMPaperTypeStr
The paper type string.

kPMPaperTypeKey
The value of this key is a CFNumber of type kCFNumberSInt32Type.

kPMJobStateStr
The job state string.

Constants 1819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMJobStateKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration—active
= 0, pending, hold until, hold indefinitely, aborted, finished.

kPMJobHoldUntilTimeStr
The job hold until string.

kPMJobHoldUntilTimeKey
The value of this key is a CFDate; specifies time to print the job.

kPMJobPriorityStr
The job priority string.

kPMJobPriorityKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration—Low
= 0, normal, urgent.

kPMPaperSourceStr
The paper source string.

kPMPaperSourceKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration of
paper sources.

kPMDuplexingStr
The duplexing string.

kPMDuplexingKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an
enumeration—kPMDuplexNone, kPMDuplexNoTumble, kPMDuplexTumble, kPMSimplexTumble.

kPMColorModeStr
The color mode string.

kPMColorModeKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration—Black
and White, Grayscale, Color, HiFi Color.

kPMColorSyncProfileIDStr
The ColorSync Profile ID string.

kPMColorSyncProfileIDKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies the ID of the ColorSync
profile to use.

kPMColorSyncSystemProfilePathStr
The ColorSync system profile path string.

kPMColorSyncSystemProfilePathKey
The value of this key is a CFString; specifies the path of system profile.

kPMPrintScalingHorizontalStr
The horizontal print scaling string.

kPMPrintScalingHorizontalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; specifies the horizontal scaling
factor applied to original page size.

kPMPrintScalingVerticalStr
The vertical print scaling string.

kPMPrintScalingVerticalKey
The value of this key is a CFNumber of type kCFNumberDoubleType; specifies the vertical scaling
factor applied to original page size.

1820 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMPrintScalingAlignmentStr
The print scaling alignment string.

kPMPrintScalingAlignmentKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies an enumeration
(PMScalingAlignment).

kPMPrintOrientationStr
The print orientation string.

kPMPrintOrientationKey
The value of this key is a CFNumber of type kCFNumberSInt32Type; specifies and
enumeration—PMOrientation, 1 = portrait, 2 = landscape, etc.

kPMPreviewStr
The print preview string.

kPMPreviewKey
The value of this key is a CFString; “YES” indicates the user clicked the Preview button.

kPMPrintBackupRecordHdlStr
The print backup record handle string.

kPMPrintBackupRecordHdlKey
The value of this key is a print record handle (CFData); not used when data is flattened. (Mac OS 8
and 9 only)

kPMPrintBackupRecordDataStr
The print backup record data string.

kPMPrintBackupRecordDataKey
The value of this key is a print record (CFData) stored in complete form; used when flattening a ticket
with the print record. (Mac OS 8 and 9 only)

kPMPrintCustomDialogHdlStr
The print custom dialog handle string.

kPMPrintCustomDialogHdlKey
The value of this key is a handle (CFData) to the print record using for custom dialog calls; not stored
when data is flattened. (Mac OS 8 and 9 only)

kPMPrimaryPaperFeedStr
The primary paper feed string.

kPMPrimaryPaperFeedKey
The value of this key is a CFArray; the main and option PPD keywords for input paper feed.

kPMSecondaryPaperFeedStr
The secondary paper feed string.

kPMSecondaryPaperFeedKey
The value of this key is a CFArray; the main and option PPD keywords for input paper feed.

kPMPSErrorHandlerStr
The PostScript error handle string.

kPMPSErrorHandlerKey
The value of this key is a CFNumber of type kCFNumberSInt32Type.

kPMPSErrorOnScreenStr
The PostScript error on screen string.

kPMPSErrorOnScreenKey
The value of this key is a CFBoolean; turns PostScript error onscreen notification on.

Constants 1821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMPSTraySwitchStr
The PostScript tray switch string.

kPMPSTraySwitchKey
The value of this key is a CFArray; the main and option PostScript printer description file keywords
for tray switching.

kPMPPDDictStr
The PostScript printer description file string.

kPMPPDDictKey
The value of this key is a CFDictionary; the main and option PostScript printer description file
keywords for additional features.

Printer Driver Creator Code Key
Defines a string and key for the printer driver creator code.

#define kPMDriverCreatorStr kPMPrinterInfoPrelude
"PMDriverCreator "
#define kPMDriverCreatorKey CFSTR(kPMDriverCreatorStr)

Constants
kPMDriverCreatorStr

The printer driver creator string.

kPMDriverCreatorKey
The value of this key is a CFNumber of type kCFNumberSInt32Type that specifies the creator code
for the printer driver.

Printer Font Keys
Defines a string and key for the printer fonts.

#define kPMPrinterFontStr kPMPrinterInfoPrelude "Printer
Fonts "
#define kPMPrinterFontKey CFSTR(kPMPrinterFontStr)

Constants
kPMPrinterFontStr

The printer font string.

kPMPrinterFontKey
The value of this key is CFData that specifies the printer resident fonts.

Printer Info Ticket Keys
Defines strings and keys for items in a printer info ticket.

1822 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

#define kPMPrinterInfoPrelude "com.apple.print.PrinterInfo."
#define kPMPrinterLongNameStr kPMPrinterInfoPrelude "PMPrinterLongName"
#define kPMPrinterLongNameKey CFSTR(kPMPrinterLongNameStr)
#define kPMPrinterShortNameStr kPMPrinterInfoPrelude "PMPrinterShortName"
#define kPMPrinterShortNameKey CFSTR(kPMPrinterShortNameStr)
#define kPMMakeAndModelNameStr kPMPrinterInfoPrelude "PMMakeAndModelName"
#define kPMMakeAndModelNameKey CFSTR(kPMMakeAndModelNameStr)
#define kPMPrinterAddressStr kPMPrinterInfoPrelude "PMPrinterAddress"
#define kPMPrinterAddressKey CFSTR(kPMPrinterAddressStr)
#define kPMSupportsColorStr kPMPrinterInfoPrelude "PMSupportsColor"
#define kPMSupportsColorKey CFSTR(kPMSupportsColorStr)
#define kPMDoesCopiesStr kPMPrinterInfoPrelude "PMDoesCopies"
#define kPMDoesCopiesKey CFSTR(kPMDoesCopiesStr)
#define kPMDoesCopyCollateStr kPMPrinterInfoPrelude "PMDoesCopyCollate"
#define kPMDoesCopyCollateKey CFSTR(kPMDoesCopyCollateStr)
#define kPMDoesReverseOrderStr kPMPrinterInfoPrelude "PMDoesReverseOrderK"
#define kPMDoesReverseOrderKey CFSTR(kPMDoesReverseOrderStr)
#define kPMInputFileTypeListStr kPMPrinterInfoPrelude "PMInputFileTypeList"
#define kPMInputFileTypeListKey CFSTR(kPMInputFileTypeListStr)
#define kPMOutputTypeListStr kPMPrinterInfoPrelude "PMOutputTypeList"
#define kPMOutputTypeListKey CFSTR(kPMOutputTypeListStr)

Constants
kPMPrinterInfoPrelude

The printer info ticket prelude string.

kPMPrinterLongNameStr
The printer long name string.

kPMPrinterLongNameKey
The value of this key is a CFString; specifies the full name of the printer.

kPMPrinterShortNameStr
The printer short name string.

kPMPrinterShortNameKey
The value of this key is a CFString; specifies a shortened version of the printer name.

kPMMakeAndModelNameStr
The printer make and model string.

kPMMakeAndModelNameKey
The value of this key is a CFString; specifies the product name used for the printer

kPMPrinterAddressStr
The printer address string.

kPMPrinterAddressKey
The value of this key is the product address (CFData).

kPMSupportsColorStr
The color supported string.

kPMSupportsColorKey
The value of this key is a CFBoolean; true if the printer supports color printing.

kPMDoesCopiesStr
The copies string.

kPMDoesCopiesKey
The value of this key is a CFBoolean; true if the printer supports copies.

kPMDoesCopyCollateStr
The collation string.

Constants 1823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMDoesCopyCollateKey
The value of this key is a CFBoolean; true if the printer supports collation.

kPMDoesReverseOrderStr
The reverse-order string.

kPMDoesReverseOrderKey
The value of this key is a CFBoolean; true if the printer can print in reverse order.

kPMInputFileTypeListStr
The file type list string.

kPMInputFileTypeListKey
The value of this key is a CFArray of CFString data that indicates file types.

kPMOutputTypeListStr
The output type list string.

kPMOutputTypeListKey
The value of this key is a CFArray of CFString data that indicates the MIME types for the data that
can be sent to an I/O module.

Printing Phase Types
Specify the phase of the printing process.

typedef UInt16 PMPrintingPhaseType;
enum {
 kPMPhaseUnknown = 0,
 kPMPhasePreDialog = 1,
 kPMPhaseDialogsUp = 2,
 kPMPhasePostDialogs = 3,
 kPMPhasePreAppDrawing = 4,
 kPMPhaseAppDrawing = 5,
 kPMPhasePostAppDrawing = 6,
 kPMPhasePreConversion = 7,
 kPMPhaseConverting = 8,
 kPMPhasePostConversion = 9,
 kPMPhasePrinting = 10
};

Constants
kPMPhaseUnknown

Phase unknown.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePreDialog
Just before the code to open the dialog.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhaseDialogsUp
A printing dialogs is open.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

1824 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMPhasePostDialogs
The printing dialogs have been opened and are now closed, but the job is not yet spooling.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePreAppDrawing
The job is just about to spool.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhaseAppDrawing
Drawing commands are now being spooled from the application.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePostAppDrawing
Spooling is finished, not the job is not yet rendered or converted.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePreConversion
The job is just about to be converted to its final format (PostScript, Raster, or other).

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhaseConverting
The job is being converted from the spool file to the final format.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePostConversion
The data is ready for the printer and waiting for completion.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

kPMPhasePrinting
The job is waiting for the printer.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in PMTicket.h.

Discussion
Printing phase types signal a shift from one printing phase to the next and are set by many parts of the
printing system. You can check the phase by testing for greater-than and less-than conditions.

Rasterizer Options
Specify options for rasterizing.

Constants 1825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

enum {
 kPMPSTTRasterizerUnknown = 0,
 kPMPSTTRasterizerNone = 1,
 kPMPSTTRasterizerAccept68K = 2,
 kPMPSTTRasterizerType42 = 3
};

Constants
kPMPSTTRasterizerUnknown

Rasterizer unknown.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPSTTRasterizerNone
No rasterizer.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPSTTRasterizerAccept68K
Accepts 68 K.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPSTTRasterizerType42
Uses type 42.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Template Entry Data Types
Specify the data type of a job template entry.

1826 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

typedef SInt32 PMValueType;
enum {
 kPMValueUndefined = 0,
 kPMValueBoolean = 1,
 kPMValueData = 2,
 kPMValueString = 3,
 kPMValueSInt32 = 4,
 kPMValueSInt32Range = 5,
 kPMValueUInt32 = 6,
 kPMValueUInt32Range = 7,
 kPMValueDouble = 8,
 kPMValueDoubleRange = 9,
 kPMValuePMRect = 10,
 kPMValueDate = 11,
 kPMValueArray = 12,
 kPMValueDict = 13,
 kPMValueTicket = 14
};

Constants
kPMValueUndefined

Template entry is unknown or undefined.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueBoolean
A CFBoolean value.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueData
A CFData value. This is generic data converted to Core Foundation data. Template entries of this type
should have a default value, but no other constraints.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueString
A CFString value. Template entries of this type should have a default value, but no other constraints.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueSInt32
A CFNumber value.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueSInt32Range
A pair of CFNumber values (SInt32 data type).

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

Constants 1827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMValueUInt32
A CFNumber value (unsigned long data types).

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueUInt32Range
A pair of CFNumber values (UInt32 values).

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueDouble
A CFNumber value (double data type.)

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueDoubleRange
A pair of CFNumber values (double data types).

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValuePMRect
A Core Foundation array that contains four CFNumbers values (double data types).

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueDate
A CFDate value.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueArray
A Core Foundation array.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueDict
A CFDictionary data structure. Template entries of this type should have a default value, but no
other constraints.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

kPMValueTicket
A ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTemplate.h.

Discussion
A template entry data type determines what other fields and functions are available for the entry.

Template Strings
Define a string associated with a template.

1828 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

#define kPMTemplatePrelude "com.apple.print.TemplateSpecific."
#define kPMPaperInfoListStr "PMTemplatePaperInfoTicket"
#define kPMPaperInfoList CFSTR(kPMPaperInfoListStr)

Constants
kPMTemplatePrelude

A template prelude string.

kPMPaperInfoListStr
A paper info list string.

kPMPaperInfoList
A paper info list.

Ticket Levels
Specify the level of an item within a ticket.

enum {
 kPMTopLevel = 0
};

Constants
kPMTopLevel

Specifies the top level ticket.

Discussion
You should pass the constant kPMTopLevel to any function that has parameters to specify ticket level calls.
No other options are currently available.

Ticket Types
Specify a ticket type, that is, a ticket kind.

typedef SInt16 PMTicketType;
enum {
 kPMTicketTypeUnknown = -1,
 kPMJobTicketType = 1,
 kPMDocumentTicketType = 2,
 kPMPageTicketType = 3,
 kPMPageFormatTicketType = 4,
 kPMPrintSettingsTicketType = 5,
 kPMPrinterInfoTicketType = 6,
 kPMDestinationTicketType = 7,
 kPMConverterSetupTicketType = 8,
 kPMModuleInfoTicketType = 9,
 kPMTicketListType = 10,
 kPMPaperInfoTicketType = 11
};

Constants
kPMTicketTypeUnknown

Specifies the ticket type is not know.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Constants 1829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMJobTicketType
Specifies a job ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMDocumentTicketType
Specifies a document ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPageTicketType
Specifies a page ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPageFormatTicketType
Specifies a page format ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPrintSettingsTicketType
Specifies a print settings ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMPrinterInfoTicketType
Specifies a printer info ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMDestinationTicketType
Specifies a destination ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMConverterSetupTicketType
Specifies a converter setup ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMModuleInfoTicketType
Specifies a printer module info ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

kPMTicketListType
Specifies a list ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

1830 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

kPMPaperInfoTicketType
Specifies a paper info ticket.

Available in Mac OS X v10.0 and later.

Declared in PMTicket.h.

Ticket Type Strings
Specify ticket types.

#define kPMJobTicket CFSTR("com.apple.print.JobTicket")
#define kPMDocumentTicket CFSTR("com.apple.print.DocumentTicket")
#define kPMPageTicket CFSTR("com.apple.print.PageTicket")
#define kPMPageFormatTicket CFSTR("com.apple.print.PageFormatTicket")
#define kPMPrintSettingsTicket CFSTR("com.apple.print.PrintSettingsTicket")
#define kPMDestinationTicket CFSTR("com.apple.print.DestinationTicket")
#define kPMConverterSetupTicket CFSTR("com.apple.print.ConverterSetupTicket")
#define kPMPrinterInfoTicket CFSTR("com.apple.print.PrinterInfoTicket")
#define kPMModuleInfoTicket CFSTR("com.apple.print.ModuleInfoTicket")
#define kPMTicketList CFSTR("com.apple.print.TicketList")
#define kPMPaperInfoTicket CFSTR("com.apple.print.PaperInfoTicket")

Constants
kPMJobTicket

Specifies a job ticket; the top-level ticket for a print job.

kPMDocumentTicket
Specifies a document ticket.

kPMPageTicket
Specifies a page ticket.

kPMPageFormatTicket
Specifies a page format ticket.

kPMPrintSettingsTicket
Specifies a print settings ticket.

kPMDestinationTicket
Specifies a destination ticket.

kPMConverterSetupTicket
Specifies a converter setup ticket.

kPMPrinterInfoTicket
Specifies a printer info ticket.

kPMModuleInfoTicket
Specifies a module info ticket.

kPMTicketList
Specifies a list ticket.

kPMPaperInfoTicket
Specifies a paper info ticket.

Discussion
Use these ticket type strings of ticket types to create a ticket.

Constants 1831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

Result Codes

This table lists result codes defined for Ticket Services.

DescriptionValueResult Code

The ticket type was not found.-9580kPMTicketTypeNotFound

Available in Mac OS X v10.0 and later.

Could not update the ticket.-9581kPMUpdateTicketFailed

Available in Mac OS X v10.0 and later.

Could not validate the ticket.-9582kPMValidateTicketFailed

Available in Mac OS X v10.0 and later.

Could not find the subticket.-9583kPMSubTicketNotFound

Available in Mac OS X v10.0 and later.

The subticket is invalid.-9584kPMInvalidSubTicket

Available in Mac OS X v10.0 and later.

Could not delete the subticket.-9585kPMDeleteSubTicketFailed

Available in Mac OS X v10.0 and later.

The item is locked.-9586kPMItemIsLocked

Available in Mac OS X v10.0 and later.

The ticket is locked.-9587kPMTicketIsLocked

Available in Mac OS X v10.0 and later.

The job template is locked.-9588kPMTemplateIsLocked

Available in Mac OS X v10.0 and later.

Could not find the key.-9589kPMKeyNotFound

Available in Mac OS X v10.0 and later.

The key is not unique.-9590kPMKeyNotUnique

Available in Mac OS X v10.0 and later.

The data type is unknown.-9591kPMUnknownDataType

Available in Mac OS X v10.0 and later.

1832 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Ticket Services Reference

1833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

1834
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: ApplicationServices/ApplicationServices.h

Declared in ATSUnicode.h
ATSUnicodeDirectAccess.h
ATSUnicodeDrawing.h
ATSUnicodeFlattening.h
ATSUnicodeFonts.h
ATSUnicodeGlyphs.h
ATSUnicodeObjects.h
ATSUnicodeTypes.h
ATSLayoutTypes.h

Overview

Apple Type Services for Unicode Imaging (ATSUI) enables the rendering of Unicode-encoded text with
advanced typographic features. It automatically handles many of the complexities inherent in text layout,
including the correct rendering of text in bidirectional and vertical script systems.

ATSUI may be useful to developers who are writing new text editors or word processing applications that
render Unicode-encoded text. You can also use ATSUI if you want to modify your existing application to
support Unicode text rendering.

This document describes the ATSUI application programming interface (API) through version 2.4. If you are
a font designer or want more information about fonts, see the Apple font site: http://developer.ap-
ple.com/fonts/

Functions by Task

Creating and Initializing Style Objects

ATSUCreateStyle (page 1865)
Creates an opaque style object containing only default style attributes, font features, and font variations.

ATSUCreateAndCopyStyle (page 1863)
Creates a copy of a style object.

ATSUCompareStyles (page 1855)
Compares the attribute values of two style objects.

ATSUClearStyle (page 1854)
Restores default values to a style object.

Overview 1835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

http://developer.apple.com/fonts/
http://developer.apple.com/fonts/

ATSUStyleIsEmpty (page 1968)
Indicates whether a style object contains only default values.

ATSUSetStyleRefCon (page 1961)
Sets application-specific data for a style object.

ATSUGetStyleRefCon (page 1918)
Obtains application-specific data for a style object.

ATSUDisposeStyle (page 1876)
Disposes of the memory associated with a style object.

Manipulating Style Attributes

ATSUSetAttributes (page 1950)
Sets style attribute values in a style object.

ATSUCopyAttributes (page 1856)
Copies all style attribute settings from a source style object to a destination style object.

ATSUOverwriteAttributes (page 1944)
Copies to a destination style object the nondefault style attribute settings of a source style object.

ATSUUnderwriteAttributes (page 1972)
Copies to a destination style object only those nondefault style attribute settings of a source style
object that are at default settings in the destination object.

ATSUGetAllAttributes (page 1886)
Obtains an array of style attribute tags and value sizes for a style object.

ATSUGetAttribute (page 1892)
Obtains a style attribute value for a style object.

ATSUGetContinuousAttributes (page 1893)
Obtains the style attribute values that are continuous over a given text range.

ATSUClearAttributes (page 1848)
Restores default values to the specified style attributes of a style object.

Manipulating Font Features

ATSUSetFontFeatures (page 1952)
Sets font features in a style object.

ATSUGetAllFontFeatures (page 1887)
Obtains the font features of a style object that are not at default settings.

ATSUGetFontFeature (page 1895)
Obtains the font feature corresponding to an index into an array of font features for a style object.

ATSUClearFontFeatures (page 1849)
Restores default settings to the specified font features of a style object.

ATSUGetFontFeatureTypes (page 1898)
Obtains the available feature types of a font.

ATSUCountFontFeatureTypes (page 1860)
Obtains the number of available feature types in a font.

1836 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUGetFontFeatureSelectors (page 1897)
Obtains the available feature selectors for a given feature type in a font.

ATSUCountFontFeatureSelectors (page 1859)
Obtains the number of available feature selectors for a given feature type in a font.

Manipulating Font Variations

ATSUSetVariations (page 1967)
Sets font variation axes and values in a style object.

ATSUGetAllFontVariations (page 1888)
Obtains a style object’s font variation values that are not at default settings.

ATSUGetFontVariationValue (page 1903)
Obtains the current value for a font variation axis in a style object.

ATSUClearFontVariations (page 1850)
Restores default values to the specified font variation axes of a style object.

ATSUGetIndFontVariation (page 1911)
Obtains a variation axis and its value range for a font.

ATSUCountFontVariations (page 1862)
Obtains the number of defined variation axes in a font.

ATSUGetFontInstance (page 1900)
Obtains the font variation axis values for a font instance.

ATSUCountFontInstances (page 1860)
Obtains the number of defined font instances in a font.

Creating and Initializing Text Layout Objects

ATSUCreateTextLayout (page 1866)
Creates an opaque text layout object containing only default text layout attributes.

ATSUCreateTextLayoutWithTextPtr (page 1869)
Creates an opaque text layout object containing default text layout attributes as well as associated
text and text styles.

ATSUCreateAndCopyTextLayout (page 1863)
Creates a copy of a text layout object.

ATSUSetTextPointerLocation (page 1965)
Associates text with a text layout object or updates previously associated text.

ATSUGetTextLocation (page 1921)
Obtains information about the text associated with a text layout object.

ATSUSetRunStyle (page 1959)
Defines a style run by associating style information with a run of text.

ATSUGetRunStyle (page 1916)
Obtains style run information for a character offset in a run of text.

ATSUSetTextLayoutRefCon (page 1964)
Sets application-specific data for a text layout object.

Functions by Task 1837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUGetTextLayoutRefCon (page 1921)
Obtains application-specific data for a text layout object.

ATSUDisposeTextLayout (page 1876)
Disposes of the memory associated with a text layout object.

Manipulating Text Layout Attributes

ATSUSetLayoutControls (page 1955)
Sets layout control attribute values in a text layout object.

ATSUCopyLayoutControls (page 1857)
Copies all layout control attribute settings from a source text layout object to a destination text layout
object.

ATSUGetAllLayoutControls (page 1890)
Obtains an array of layout control attribute tags and value sizes for a text layout object.

ATSUGetLayoutControl (page 1912)
Obtains a layout control attribute value for a text layout object.

ATSUClearLayoutControls (page 1852)
Restores default values to the specified layout control attributes of a text layout object.

Manipulating Line Attributes

ATSUSetLineControls (page 1956)
Sets layout control attribute values for a single line in a text layout object.

ATSUCopyLineControls (page 1857)
Copies line control attribute settings from a line in a source text layout object to a line in a destination
text layout object.

ATSUGetAllLineControls (page 1891)
Obtains an array of line control attribute tags and value sizes for a line in a text layout object.

ATSUGetLineControl (page 1913)
Obtains a line control attribute value for a line in a text layout object.

ATSUClearLineControls (page 1853)
Restores default values to the specified line control attributes of a line in a text layout object.

Manipulating Line Breaks

ATSUBreakLine (page 1846)
Calculates and, optionally, sets a soft line break in a range of text.

ATSUBatchBreakLines (page 1844)
Calculates soft line breaks for the text associated with a text layout object.

ATSUSetSoftLineBreak (page 1961)
Sets a soft line break that you specify.

ATSUGetSoftLineBreaks (page 1917)
Obtains soft line breaks in a range of text.

1838 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUClearSoftLineBreaks (page 1854)
Removes soft line breaks from a range of text.

Substituting Fonts

ATSUMatchFontsToText (page 1936)
Examines a text range for characters that cannot be drawn with the current font and suggests a
substitute font, if necessary.

ATSUSetTransientFontMatching (page 1967)
Turns automatic font substitution on or off for a text layout object.

ATSUGetTransientFontMatching (page 1922)
Obtains whether ATSUI automatically performs font substitution for a text layout object.

ATSUCreateFontFallbacks (page 1864)
Creates an opaque object that can be set to contain a font list and a font-search method.

ATSUSetObjFontFallbacks (page 1958)
Assigns a font list and a font-search method to a font fallback object.

ATSUGetObjFontFallbacks (page 1914)
Obtains the font list and font-search method associated with a font fallback object.

ATSUDisposeFontFallbacks (page 1875)
Disposes of the memory associated with a font fallback object.

Identifying Fonts

ATSUGetFontIDs (page 1899)
Obtains a list of all the ATSUI-compatible fonts installed on the user’s system.

ATSUFontCount (page 1885)
Obtains the number of ATSUI-compatible fonts installed on a user’s system.

ATSUFindFontName (page 1880)
Obtains a name string and index value for the first font in a name table that matches the specified
ATSUI font ID, name code, platform, script, and/or language.

ATSUFindFontFromName (page 1879)
Obtains an ATSUI font ID for the first entry in a name table that matches the specified name string,
name code, platform, script, and/or language.

ATSUGetIndFontName (page 1908)
Obtains a name string, name code, platform, script, and language for the font that matches an ATSUI
font ID and name table index value.

ATSUCountFontNames (page 1861)
Obtains the number of font names that correspond to a given ATSUI font ID.

ATSUGetIndFontTracking (page 1910)
Obtains the name code and tracking value for the font tracking that matches an ASTUI font ID, glyph
orientation, and tracking table index.

ATSUCountFontTracking (page 1861)
Obtains the number of entries in the font tracking table that correspond to a given ATSUI font ID and
glyph orientation.

Functions by Task 1839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUGetFontFeatureNameCode (page 1896)
Obtains the name code for a font’s feature type or selector that matches an ASTUI font ID, feature
type, and feature selector.

ATSUGetFontVariationNameCode (page 1902)
Obtains the name code for the font variation that matches an ASTUI font ID and font variation axis.

ATSUGetFontInstanceNameCode (page 1901)
Obtains the name code for the font instance that matches an ASTUI font ID and font instance index
value.

Drawing and Highlighting Text

ATSUDrawText (page 1877)
Renders a range of text at a specified location in a QuickDraw graphics port or Quartz graphics context.

ATSUHighlightText (page 1931)
Renders a highlighted range of text at a specified location in a QuickDraw graphics port or Quartz
graphics context.

ATSUUnhighlightText (page 1974)
Renders a previously highlighted range of text in an unhighlighted state.

ATSUSetHighlightingMethod (page 1953)
Sets the method ATSUI uses to highlight and unhighlight text for a text layout object.

ATSUGetTextHighlight (page 1919)
Obtains the highlight region for a range of text.

ATSUHighlightInactiveText (page 1930)
Highlights previously selected text using an alpha value of 0.5.

ATSUClearLayoutCache (page 1851)
Clears the layout cache of a line or an entire text layout object.

Supporting User Interaction With Onscreen Text

ATSUTextInserted (page 1970)
Informs ATSUI of the location and length of a text insertion.

ATSUTextDeleted (page 1969)
Informs ATSUI of the location and length of a text deletion.

ATSUTextMoved (page 1971)
Informs ATSUI of the new memory location of relocated text.

ATSUPositionToOffset (page 1946)
Obtains the memory offset for the glyph edge nearest a mouse-down event.

ATSUOffsetToPosition (page 1942)
Obtains the caret position(s) corresponding to a memory offset.

ATSUNextCursorPosition (page 1940)
Obtains the memory offset for the insertion point that follows the current insertion point in storage
order, as determined by a move of the specified length.

1840 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUPreviousCursorPosition (page 1948)
Obtains the memory offset for the insertion point that precedes the current insertion point in storage
order, as determined by a move of the specified length.

ATSURightwardCursorPosition (page 1949)
Obtains the memory offset for the insertion point to the right of the high caret position, as determined
by a move of the specified length at a line direction boundary.

ATSULeftwardCursorPosition (page 1933)
Obtains the memory offset for the insertion point to the left of the high caret position, as determined
by a move of the specified length at a line direction boundary.

ATSUPositionToCursorOffset (page 1945)
Obtains the memory offset for the glyph edge nearest a mouse-down event, after a move of the
specified length.

ATSUOffsetToCursorPosition (page 1941)
Obtains the caret position(s) corresponding to a memory offset, after a move of the specified length.

Obtaining Text Metrics

ATSUMeasureTextImage (page 1938)
Obtains the image bounding rectangle for a line of text after final layout.

ATSUGetUnjustifiedBounds (page 1923)
Obtains the typographic bounding rectangle for a line of text prior to final layout.

ATSUGetGlyphBounds (page 1904)
Obtains the typographic bounds of a line of glyphs after final layout.

ATSUCalculateBaselineDeltas (page 1847)
Obtains the optimal baseline positions for glyphs in a style run.

ATSUGlyphGetIdealMetrics (page 1927)
Obtains resolution-independent font metric information for glyphs associated with a given style
object.

ATSUGlyphGetScreenMetrics (page 1929)
Obtains device-adjusted font metric information for glyphs associated with a given style object.

ATSUGetNativeCurveType (page 1914)
Obtains the type of outline path used for glyphs associated with a given style object.

ATSUGlyphGetCurvePaths (page 1926)
Obtains the outline paths for a glyph associated with a given style object.

ATSUGlyphGetCubicPaths (page 1925)
Obtains the cubic outline paths for a glyph.

ATSUGlyphGetQuadraticPaths (page 1928)
Obtains the quadratic outline paths for a glyph.

Working With Tabs

ATSUSetTabArray (page 1962)
Sets a tab ruler for a text layout object.

Functions by Task 1841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUGetTabArray (page 1918)
Retrieves the tab ruler associated with a text layout object.

Accessing Glyph Data

ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872)
Obtains the glyph data specified by a direct-data selector and for a specific line of text.

ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873)
Obtains a copy of the glyph data specified by a direct-data selector and for a specific line of text in a
text layout object.

ATSUDirectReleaseLayoutDataArrayPtr (page 1874)
Releases a pointer to a direct-data array.

ATSUDirectAddStyleSettingRef (page 1871)
Looks up, and if necessary, adds a style setting to a line of text.

Flattening and Parsing Style Data

ATSUFlattenStyleRunsToStream (page 1882)
Flattens ATSUI style-run data so that it can be saved to disk or passed (through the pasteboard) to
another application.

ATSUUnflattenStyleRunsFromStream (page 1972)
Unflattens previously-flattened ATSUI style run data so that it can be read from disk or accepted
(through the pasteboard) from another application.

Creating, Calling, and Deleting Universal Procedure Pointers

NewATSUDirectLayoutOperationOverrideUPP (page 1989)
Creates a new universal procedure pointer (UPP) to a layout operation override callback.

InvokeATSUDirectLayoutOperationOverrideUPP (page 1984)
Calls your layout operation override callback.

DisposeATSUDirectLayoutOperationOverrideUPP (page 1979)
Disposes of a universal procedure pointer (UPP) to a layout operation override callback.

NewRedrawBackgroundUPP (page 1989)
Creates a new universal procedure pointer (UPP) to a redraw background callback.

InvokeRedrawBackgroundUPP (page 1984)
Invokes your redraw background callback.

DisposeRedrawBackgroundUPP (page 1980)
Disposes of a new universal procedure pointer (UPP) to a redraw background callback.

NewATSCubicMoveToUPP (page 1986)
Creates a new universal procedure pointer (UPP) to a cubic move-to callback.

InvokeATSCubicMoveToUPP (page 1981)
Calls your cubic move-to callback.

1842 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

DisposeATSCubicMoveToUPP (page 1977)
Disposes of a universal procedure pointer (UPP) to a cubic move-to callback.

NewATSCubicLineToUPP (page 1986)
Creates a new universal procedure pointer (UPP) to a cubic line-to callback.

InvokeATSCubicLineToUPP (page 1981)
Calls your cubic line-to callback.

DisposeATSCubicLineToUPP (page 1977)
Disposes of a universal procedure pointer (UPP) to a cubic line-to callback.

NewATSCubicCurveToUPP (page 1985)
Creates a new universal procedure pointer (UPP) to a cubic curve-to callback.

InvokeATSCubicCurveToUPP (page 1980)
Calls your cubic curve-to callback.

DisposeATSCubicCurveToUPP (page 1976)
Disposes of a universal procedure pointer (UPP) to a cubic curve-to callback.

NewATSCubicClosePathUPP (page 1985)
Creates a new universal procedure pointer (UPP) to a cubic close-path callback.

InvokeATSCubicClosePathUPP (page 1980)
Calls your cubic close-path callback.

DisposeATSCubicClosePathUPP (page 1976)
Disposes of a universal procedure pointer (UPP) to a cubic close-path callback.

NewATSQuadraticNewPathUPP (page 1988)
Creates a new universal procedure pointer (UPP) to a quadratic new-path callback.

InvokeATSQuadraticNewPathUPP (page 1983)
Calls your quadratic new-path callback.

DisposeATSQuadraticNewPathUPP (page 1979)
Disposes of a universal procedure pointer (UPP) to a quadratic new-path callback.

NewATSQuadraticLineUPP (page 1988)
Creates a new universal procedure pointer (UPP) to a quadratic line callback.

InvokeATSQuadraticLineUPP (page 1983)
Calls your quadratic line callback.

DisposeATSQuadraticLineUPP (page 1978)
Disposes of a universal procedure pointer (UPP) to a quadratic line callback.

NewATSQuadraticCurveUPP (page 1987)
Creates a new universal procedure pointer (UPP) to a quadratic curve callback.

InvokeATSQuadraticCurveUPP (page 1982)
Calls your quadratic curve callback.

DisposeATSQuadraticCurveUPP (page 1978)
Disposes of a universal procedure pointer (UPP) to a quadratic curve callback.

NewATSQuadraticClosePathUPP (page 1987)
Creates a new universal procedure pointer (UPP) to a quadratic close-path callback.

InvokeATSQuadraticClosePathUPP (page 1982)
Calls your quadratic close-path callback.

DisposeATSQuadraticClosePathUPP (page 1978)
Disposes of a universal procedure pointer (UPP) to a quadratic close-path callback.

Functions by Task 1843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Not Recommended

ATSUFONDtoFontID (page 1884)
Finds the ATSUI font ID that corresponds to a font family number, if one exists. (Deprecated. There is
no replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

ATSUFontIDtoFOND (page 1885)
Finds the font family number that corresponds to an ATSUI font ID, if one exists. (Deprecated. There
is no replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

ATSUMeasureText (page 1938)
(Deprecated. Use ATSUGetUnjustifiedBounds (page 1923) instead.)

ATSUDrawGlyphInfo (page 1877) Deprecated in Mac OS X v10.3
Draws glyphs at the specified location, based on style and layout information specified for each glyph.
(Deprecated. Use functions from “Accessing Glyph Data” (page 1842) instead.)

ATSUGetFontFallbacks (page 1894) Deprecated in Mac OS X v10.3
Obtains the global font list and search order that ATSUI uses when a font does not have the glyph
needed to image a character. (Deprecated. Use font fallback objects instead.)

ATSUGetGlyphInfo (page 1906) Deprecated in Mac OS X v10.3
Obtains a copy of the style and layout information for each glyph in a line. (Deprecated. Use functions
from “Accessing Glyph Data” (page 1842) instead.)

ATSUSetFontFallbacks (page 1952) Deprecated in Mac OS X v10.3
Sets, on a global scope, the font list and search order for ATSUI to use when a font does not have the
glyph needed to image a character. (Deprecated. Use font fallback objects instead.)

ATSUCopyToHandle (page 1858) Deprecated in Mac OS X v10.1
Copies an ATSUI style to a handle. (Deprecated. Use ATSUFlattenStyleRunsToStream (page 1882)
instead.)

ATSUCreateTextLayoutWithTextHandle (page 1867) Deprecated in Mac OS X v10.0
Creates an opaque text layout object containing default text layout attributes as well as associated
text and text styles. (Deprecated. Use ATSUCreateTextLayoutWithTextPtr (page 1869) instead.
See the Discussion for more details.)

ATSUIdle (page 1933) Deprecated in Mac OS X v10.0
Performs background processing. (Deprecated. There is no replacement because this function does
nothing in Mac OS X.)

ATSUSetTextHandleLocation (page 1963) Deprecated in Mac OS X v10.0
Associates text with a text layout object. (Deprecated. Use ATSUSetTextPointerLocation (page
1965) instead. See the Discussion for more details.)

Functions

ATSUBatchBreakLines
Calculates soft line breaks for the text associated with a text layout object.

1844 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUBatchBreakLines (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength,
 ATSUTextMeasurement iLineWidth,
 ItemCount *oBreakCount
);

Parameters
iTextLayout

The ATSUTextLayout for which you want to determine soft line breaks.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To specify the beginning of the text
buffer, pass the constant kATSUFromTextBeginning.

iRangeLength
The number of characters in which to consider in the determination of the soft line breaks.

iLineWidth
An ATSUTextMeasurement value specifying the line width for the text, as measured from the offset
provided in the iLineStart parameter. You must pass a nonzero value. You should use the same
width as the width layout control set for the text layout object since the final layout of each line is
based on the controls set for the line or the entire text layout object. If no line width has been set for
the line, ATSUBatchBreakLines uses the line width set for the text layout object; if this value is not
set, ATSUBatchBreakLines returns paramErr.

Note that the value you pass for the iLineWidth parameter is used only for the line-breaking
operation. For justification, flushness, and other operations to work properly you must also use this
value as the line width for the text layout object. You can set the line width for the text layout object
by calling the function ATSUSetLineControls or ATSUSetLayoutControls with the
kATSULineWidthTag and the line width value.

oBreakCount
The number of soft line breaks found and set from the call. If you do not want to obtain the number
of soft line breaks, then set this parameter to NULL.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUBatchBreakLines function is equivalent to repeatedly calling the ATSUBreakLine function with
the parameter iUseAsSoftLineBreak set to true. However the ATSUBatchBreakLines function performs
more efficiently than repeated call to the ATSUBreakLine function.

You must call the ATSUGetSoftLineBreaks function to obtain the actual soft line breaks that were
determined and set by the ATSUBatchBreakLines function.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

Functions 1845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUBreakLine
Calculates and, optionally, sets a soft line break in a range of text.

OSStatus ATSUBreakLine (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUTextMeasurement iLineWidth,
 Boolean iUseAsSoftLineBreak,
 UniCharArrayOffset *oLineBreak
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To specify the beginning of the text
buffer, pass the constant kATSUFromTextBeginning. When calling ATSUBreakLine repeatedly to
obtain all the soft line breaks for a given text range, in each subsequent call pass the value produced
in the oLineBreak parameter by the immediately prior call to ATSUBreakLine.

iLineWidth
An ATSUTextMeasurement value specifying the line width for the text, as measured from the offset
provided in the iLineStart parameter. You must pass a nonzero value. You can pass
kATSUUseLineControlWidth to indicate that ATSUBreakLine should use the previously set line
width attribute for the current line to determine how many characters can fit on the line. If no line
width has been set for the line, ATSUBreakLine uses the line width set for the text layout object; if
this value is not set, ATSUBreakLine returns paramErr.

Note that the value you pass for the iLineWidth parameter is used only for the line-breaking
operation. For justification, flushness, and other operations to work properly you must also use this
value as the line width for the text layout object. You can set the line width for the text layout object
by calling the function ATSUSetLineControls or ATSUSetLayoutControls with the
kATSULineWidthTag and the line width value.

iUseAsSoftLineBreak
A Boolean value indicating whether ATSUBreakLine should automatically set the line break produced
in the oLineBreak parameter. If true, ATSUBreakLine sets the line break and clears any
previously-set soft line breaks that precede the new break in the line but lie after the offset specified
by iLineStart.

oLineBreak
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text layout object’s text buffer to the location of the calculated soft line break. If the value
produced is the same value as specified in iLineStart, you have made an input parameter error.
In this case, check to make sure that the line width specified in iLineWidth is big enough for
ATSUBreakLine to perform line breaking. ATSUBreakLine does not return an error in this case.
ATSUI usually calculates a soft line break to be at the beginning of the first word that does not fit on
the line. But if ATSUBreakLine calculates the most optimal line break to be in the middle of a word,
it returns the result code kATSULineBreakInWord. Note that ATSUI produces a line break in the
middle of a word only as a last resort.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1846 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
When the user inserts or deletes text or changes text layout attributes that affect how glyphs are laid out,
you must determine whether the affected range of text still fits in the set line width, that is, whether the text
needs to be rewrapped. You can use the ATSUBreakLine function to calculate a soft line break, based on
the line width and text range you specify. If you pass true for iUseAsSoftLineBreak, ATSUBreakLine
sets the soft line break it calculates and performs line layout on the characters.

If you need to calculate and set soft line breaks for a range of text and you want to use the same width for
all lines in this range, you should call the function ATSUBatchBreakLines (page 1844). Calling
ATSUBatchBreakLines is equivalent to repeatedly calling the ATSUBreakLine function with the parameter
iUseAsSoftLineBreak set to true. However, the ATSUBatchBreakLines function performs more efficiently
than repeated calls to the ATSUBreakLine function.

If you do choose to call the ATSUBreakLine function repeatedly to obtain all possible line breaks for a range
of text it will produce the previously set soft line break(s) if there are no additional line breaks to be found,
or if the user has altered the text range or its attributes in a way that does not affect glyph layout.

The ATSUBreakLine function suggests a soft line break each time it encounters a hard line break character
such as a carriage return, line feed, form feed, line separator, or paragraph separator. If ATSUBreakLine
does not encounter a hard line break, it uses the line width you specify to determine how many characters
fit on a line and suggests soft line breaks accordingly.

If you pass true for iUseAsSoftLineBreak, ATSUBreakLine uses the soft line break it calculates to perform
line layout on the characters. ATSUBreakLine then determines whether the characters still fit within the
line, which is necessary due to end-of-line effects such as swashes. When ATSUBreakLine sets a soft line
break, it clears any previously-set soft line breaks that precede the new break in the line but lie after the
offset specified by iLineStart.

Before calculating soft line breaks, ATSUBreakLine turns off any previously set line justification, rotation,
width, alignment, descent, and ascent values and treats the text as a single line. Additionally, ATSUBreakLine
examines the text layout object to ensure that each of the characters in the range is assigned to a style run.
If there are gaps between style runs, ATSUBreakLine assigns the characters in the gap to the style run that
precedes (in storage order) the gap. If there is no style run at the beginning of the text range, ATSUBreakLine
assigns these characters to the first style run it finds. If there no style run at the end of the text range,
ATSUBreakLine assigns the remaining characters to the last style run it finds.

For optimal performance, you should use ATSUBreakLine or ATSUBatchBreakLines to both calculate
and set soft line breaks in your text. You should typically only call the function ATSUSetSoftLineBreak (page
1961) to set soft line breaks when you are using your own line-breaking algorithm to calculate soft line breaks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUCalculateBaselineDeltas
Obtains the optimal baseline positions for glyphs in a style run.

Functions 1847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUCalculateBaselineDeltas (
 ATSUStyle iStyle,
 BslnBaselineClass iBaselineClass,
 BslnBaselineRecord oBaselineDeltas
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iBaselineClass
A BslnBaselineClass constant identifying the primary baseline from which to measure other
baselines. See SFNTLayoutTypes.h for an enumeration of possible values. Pass the constant
kBSLNNoBaselineOverride to use the standard baseline value from the current font.

oBaselineDeltas
A BslnBaselineRecord array consisting of Fixed values. On return, the array contains baseline
offsets, specifying distances measured in points, from the default baseline to each of the other baseline
types in the style object. Positive values indicate baselines above the default baseline and negative
values indicate baselines below it. See SFNTLayoutTypes.h for a description of the
BslnBaselineRecord type.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
Depending on the writing system, a baseline may be above, below, or through the centers of glyphs. In
general, a style run has a default baseline, to which all glyphs are visually aligned when the text is laid out.
For example, in a run of Roman text, the default baseline is the Roman baseline, upon which glyphs sit (except
for descenders, which extend below the baseline).

You can call the ATSUCalculateBaselineDeltas function to obtain the distances from a specified baseline
type to that of other baseline types for a given style object. ATSUCalculateBaselineDeltas takes into
account font and text size when performing these calculations. ATSUI uses these distances to determine the
cross-stream shifting to apply when aligning glyphs in a style run. You can use the resulting array to set or
obtain the optimal baseline positions of glyphs in a style run. You can also set various baseline values to
create special effects such as drop capitals.

The functions ATSUSetLineControls (page 1956) and ATSUSetLayoutControls (page 1955) allow you to
set baseline offset values at the line or layout level, respectively, using the kATSULineBaselineValuesTag
control attribute tag. For more information on kATSULineBaselineValuesTag, see “Attribute Tags” (page
2030).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearAttributes
Restores default values to the specified style attributes of a style object.

1848 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUClearAttributes (
 ATSUStyle iStyle,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default style attribute values.

iTagCount
An ItemCount value specifying the number of attributes to restore to default values. This value
should correspond to the number of elements in the iTag array. To restore all style attributes in the
specified style object, pass the constant kATSUClearAll in this parameter. In this case, the value in
the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a style attribute to restore to its default value. See “Attribute Tags” (page 2030) for a description
of the Apple-defined style attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearAttributes function removes those style attribute values identified by the tag constants
in the iTag array and replaces them with the default values described in “Attribute Tags” (page 2030). If you
specify that any currently unset attribute values be removed, the function does not return an error.

To remove all previously set style attribute, font feature, and font variation values from a style object, call
the function ATSUClearStyle (page 1854).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearFontFeatures
Restores default settings to the specified font features of a style object.

OSStatus ATSUClearFontFeatures (
 ATSUStyle iStyle,
 ItemCount iFeatureCount,
 const ATSUFontFeatureType iType[],
 const ATSUFontFeatureSelector iSelector[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default font feature settings.

Functions 1849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iFeatureCount
An ItemCount value specifying the number of font features to restore to default settings. This value
should correspond to the number of elements in the iType and iSelector arrays. To restore default
settings to all the font features in the specified style object, pass the constant kATSUClearAll in
this parameter. In this case, the values in the iType and iSelector parameters are ignored.

iType
A pointer to the initial ATSUFontFeatureType value in an array of feature types. Each value should
identify a font feature to restore to its default setting. To obtain all previously set font features for a
given style object, you can call the function ATSUGetAllFontFeatures (page 1887).

iSelector
A pointer to the initial ATSUFontFeatureSelector value in an array of feature selectors. Each
element in the array must contain a valid feature selector corresponding to a font feature you provide
in the iType parameter. To obtain all previously set feature selectors for a given style object, you can
call the function ATSUGetAllFontFeatures (page 1887).

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearFontFeatures function removes those font features that are identified by the feature
selector and type constants in the iSelector and iType arrays and replaces them with their font-defined
default values. Note that if you pass ATSUClearFontFeatures a font feature and selector that are already
at default settings, the function does not return an error.

To restore default font variations to a style object, call the function ATSUClearFontVariations (page 1850).
To restore default style attributes to a style object, call ATSUClearAttributes (page 1848). To restore all
default settings to a style object (for font features, variations, and style attributes), call the function
ATSUClearStyle (page 1854).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUClearFontVariations
Restores default values to the specified font variation axes of a style object.

OSStatus ATSUClearFontVariations (
 ATSUStyle iStyle,
 ItemCount iAxisCount,
 const ATSUFontVariationAxis iAxis[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default font variation axis settings.

1850 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iAxisCount
An ItemCount value specifying the number of font variation axes to restore to default settings. This
value should correspond to the number of elements in the iAxis array. To restore default values to
all the font variation axes in the style object, pass the constant kATSUClearAll in this parameter. If
you pass kATSUClearAll the value in the iAxis parameter is ignored.

iAxis
A pointer to the initial ATSUFontVariationAxis tag in an array of font variation axes. Each element
in the array must contain a valid tag that corresponds to a font variation axis to restore to its default
setting. You can obtain variation axis tags for a style object from the function
ATSUGetAllFontVariations (page 1888).

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearFontVariations function removes those font variation axis values identified by variation
axis tags in the iAxis array and replaces them with their font-defined default values. You can remove unset
font variation values from a style object without a function error.

To restore default font features to a style object, call the function ATSUClearFontFeatures (page 1849). To
restore default style attributes, call ATSUClearAttributes (page 1848). To restore all default settings to a
style object (for font features, variations, and style attributes), call the function ATSUClearStyle (page 1854).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUClearLayoutCache
Clears the layout cache of a line or an entire text layout object.

OSStatus ATSUClearLayoutCache (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to clear a layout cache.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
beginning of the line for which to discard the layout cache. If the range of text spans multiple lines,
you should call ATSUClearLayoutCache for each line, passing the offset corresponding to the
beginning of the new line to draw with each call. To clear the layout cache of the entire text layout
object, you can pass the constant kATSUFromTextBeginning.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Functions 1851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The layout cache contains all the layout information ATSUI calculates and needs to draw a range of text in a
text layout object. This includes caret positions, the memory locations of glyphs, and other information
needed to lay out the glyphs. ATSUI uses information in the layout cache to avoid laying out the text again,
thereby improving performance. When you clear the layout cache of a line or block of text, ATSUI takes longer
to redraw a line, since it must perform the calculations that support glyph layout again.

You should call the function ATSUClearLayoutCache when you need to decrease the amount of memory
your application uses. This function reclaims memory at the cost of optimal performance.

By default, the ATSUClearLayoutCache function removes the layout cache of a single line. To clear the
layout cache for multiple lines, you should call ATSUClearLayoutCache for each line. To clear the layout
cache of an entire text layout object, pass the constant kATSUFromTextBeginning in the iLineStart
parameter. Note that ATSUClearLayoutCache does not produce a function error if lines do not have a
layout cache.

The ATSUClearLayoutCache function flushes the layout cache but does not alter previously set text layout
attributes, soft line break positions, or the text memory location. If you do not want to retain these values,
you should dispose of the text layout object by calling the ATSUDisposeTextLayout (page 1876) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUClearLayoutControls
Restores default values to the specified layout control attributes of a text layout object.

OSStatus ATSUClearLayoutControls (
 ATSUTextLayout iTextLayout,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to restore default layout control
attribute values.

iTagCount
An ItemCount value specifying the number of layout control attributes to restore to default values.
This value should correspond to the number of elements in the iTag array. To restore all layout control
attributes in the specified text layout object, pass the constant kATSUClearAll in this parameter.
In this case, the value in the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a layout control attribute to restore to its default value. See “Attribute Tags” (page 2030) for a
description of the Apple-defined layout control attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1852 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUClearLayoutControls function removes those layout control attribute values identified by the
tag constants in the iTag array and replaces them with the default values described in “Attribute Tags” (page
2030). If you specify that any currently unset attribute values be removed, the function does not return an
error.

To restore default values to line control attributes in a text layout object, call the function
ATSUClearLineControls (page 1853).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearLineControls
Restores default values to the specified line control attributes of a line in a text layout object.

OSStatus ATSUClearLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the line for which to restore
default line control attribute values.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to restore attribute values.

iTagCount
An ItemCount value specifying the number of line control attributes to restore to default values.
This value should correspond to the number of elements in the iTag array. To restore all line control
attributes of the specified line, pass the constant kATSUClearAll in this parameter. In this case, the
value in the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a line control attribute to restore to its default value. See “Attribute Tags” (page 2030) for a
description of the Apple-defined line control attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearLineControls function removes those line control attribute values identified by the tag
constants in the iTag array and replaces them with the default values described in “Attribute Tags” (page
2030). If you specify that any currently unset attribute values be removed, the function does not return an
error.

Functions 1853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

To restore default values to layout control attributes in a text layout object, call the function
ATSUClearLayoutControls (page 1852).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearSoftLineBreaks
Removes soft line breaks from a range of text.

OSStatus ATSUClearSoftLineBreaks (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to remove line breaks.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range. To indicate that the specified text range starts at
the beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify
the entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in
the iRangeLength parameter.

iRangeLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearSoftLineBreaks function clears all previously set soft line breaks for the specified text
range and clears any associated layout caches as well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUClearStyle
Restores default values to a style object.

1854 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUClearStyle (
 ATSUStyle iStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default values.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUClearStyle function clears a style object of all style attributes (including any application-defined
attributes), font features, and font variations and returns these values to their default settings. Default font
variations and font features are defined by the font; default style attribute values are described in “Attribute
Tags” (page 2030). ATSUClearStyle does not remove reference constants.

To restore only default style attributes to a style object, you should call the function
ATSUClearAttributes (page 1848). To restore only font variations to a style object, call
ATSUClearFontVariations (page 1850). To restore only font features, call ATSUClearFontFeatures (page
1849).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCompareStyles
Compares the attribute values of two style objects.

OSStatus ATSUCompareStyles (
 ATSUStyle iFirstStyle,
 ATSUStyle iSecondStyle,
 ATSUStyleComparison *oComparison
);

Parameters
iFirstStyle

An ATSUStyle value specifying the first style object to compare.

iSecondStyle
An ATSUStyle value specifying the second style object to compare.

oComparison
A pointer to an ATSUStyleComparison value. On return, the value contains the results of the
comparison and indicates whether the two style objects are the same, different, or one a subset of
the another. See “Style Comparison Options” (page 2063) for a description of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Functions 1855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUCompareStyles function compares the contents of two style objects, including their style attributes,
font features, and font variations. It does not consider reference constants or application-defined style
attributes in the comparison.

You can call ATSUCompareStyles, in conjunction with the function ATSUGetAllAttributes (page 1886),
to implement style sheets and tables of style runs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCopyAttributes
Copies all style attribute settings from a source style object to a destination style object.

OSStatus ATSUCopyAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object to set style attributes to.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCopyAttributes function copies all style attributes to a destination style object from a source
style object, including any default values (those values not set by your application) in the source object.
Default values for style attributes are described in “Attribute Tags” (page 2030).

The ATSUCopyAttributes function does not copy the contents of memory referenced by pointers within
custom style attributes or within reference constants. You are responsible for ensuring that this memory
remains valid until both the source and destination style objects are disposed of.

To copy style attributes that are explicitly set in the source but not in the destination style object, call the
function ATSUUnderwriteAttributes (page 1972). To copy all style attributes that are explicitly set in the
source object into the destination object, whether or not the destination object has its own settings for these
values, call the function ATSUOverwriteAttributes (page 1944).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

1856 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUCopyLayoutControls
Copies all layout control attribute settings from a source text layout object to a destination text layout object.

OSStatus ATSUCopyLayoutControls (
 ATSUTextLayout iSourceTextLayout,
 ATSUTextLayout iDestTextLayout
);

Parameters
iSourceTextLayout

An ATSUTextLayout value specifying the text layout object from which to copy layout control
attributes.

iDestTextLayout
An ATSUTextLayout value specifying the text layout object for which to set layout control attributes.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCopyLayoutControls function copies all layout control attribute values to a destination text
layout object from a source text layout object, including any default (unset) values in the source object.
Default values for unset layout control attributes are described in “Attribute Tags” (page 2030).

ATSUCopyLayoutControls does not copy the contents of memory referenced by pointers within reference
constants. You are responsible for ensuring that this memory remains valid until both the source and
destination text layout objects are disposed.

To copy line control attribute values from one text layout object to another, call the function
ATSUCopyLineControls (page 1857).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCopyLineControls
Copies line control attribute settings from a line in a source text layout object to a line in a destination text
layout object.

OSStatus ATSUCopyLineControls (
 ATSUTextLayout iSourceTextLayout,
 UniCharArrayOffset iSourceLineStart,
 ATSUTextLayout iDestTextLayout,
 UniCharArrayOffset iDestLineStart
);

Parameters
iSourceTextLayout

An ATSUTextLayout value specifying the text layout object from which to copy line control attributes.

Functions 1857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iSourceLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line from which to copy control attributes.

iDestTextLayout
An ATSUTextLayout value specifying the text layout object for which to set line control attributes.
This can be the same text layout object passed in the iSourceTextLayout parameter if you want
to copy line control attributes from one line to another within a text layout object.

iDestLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to set control attributes.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCopyLineControls function copies all line control attribute values to a line in a destination text
layout object from a line in a source text layout object, including any default (unset) values in the source line.
Unset line control attributes are assigned the default values described in “Attribute Tags” (page 2030).

ATSUCopyLineControls does not copy the contents of memory referenced by pointers within reference
constants. You are responsible for ensuring that this memory remains valid until the source text layout object
is disposed.

To copy layout control attributes from one text layout object to another, call the function
ATSUCopyLayoutControls (page 1857).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCopyToHandle
Copies an ATSUI style to a handle. (Deprecated in Mac OS X v10.1. Use
ATSUFlattenStyleRunsToStream (page 1882) instead.)

Not Recommended

OSStatus ATSUCopyToHandle (
 ATSUStyle iStyle,
 Handle oStyleHandle
);

Parameters
iStyle

An ATSUStyle value.

oStyleHandle
A valid handle.

Return Value
A result code.

1858 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUCopyToHandle function is not recommended for use, as this function does not produce the correct
data format for the display of ATSUI style data. You should instead use the function
ATSUFlattenStyleRunsToStream to flatten style data and the function
ATSUUnflattenStyleRunsFromStream to unflatten style data. These functions read and write data using
the ustl data specification. You can use a data block format of this type to copy and paste Unicode-encoded
styled text between applications or within your application. The ustl data structure contains flattened text
layout data, flattened style run data, and flattened style list data. For more information on the ustl data
structure see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.1.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

ATSUCountFontFeatureSelectors
Obtains the number of available feature selectors for a given feature type in a font.

OSStatus ATSUCountFontFeatureSelectors (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ItemCount *oSelectorCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iType
An ATSUFontFeatureType value specifying one of the font’s supported feature types. To obtain the
available feature types for a font, call the function ATSUGetFontFeatureTypes (page 1898).

oSelectorCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature selectors
defined for the feature type by the font.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCountFontFeatureSelectors function obtains the total number of feature selectors defined for
a given feature type in the font. You can use the count produced by ATSUCountFontFeatureSelectors
to determine how much memory to allocate for the oSelectors array in the function
ATSUGetFontFeatureSelectors (page 1897).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

Functions 1859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUCountFontFeatureTypes
Obtains the number of available feature types in a font.

OSStatus ATSUCountFontFeatureTypes (
 ATSUFontID iFontID,
 ItemCount *oTypeCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oTypeCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature types
defined for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCountFontFeatureTypes function obtains the total number of feature types defined for a font.
You can use the count produced by ATSUCountFontFeatureTypes to determine how much memory to
allocate for the oTypes array in the function ATSUGetFontFeatureTypes (page 1898).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontInstances
Obtains the number of defined font instances in a font.

OSStatus ATSUCountFontInstances (
 ATSUFontID iFontID,
 ItemCount *oInstances
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oInstances
A pointer to an ItemCount value. On return, the value specifies the number of font instances defined
for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCountFontInstances function obtains the total number of font instances defined in a font. You
can use an index value derived from this count to get information about a specific font instance by calling
the function ATSUGetFontInstance (page 1900).

1860 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontNames
Obtains the number of font names that correspond to a given ATSUI font ID.

OSStatus ATSUCountFontNames (
 ATSUFontID iFontID,
 ItemCount *oFontNameCount
);

Parameters
iFontID

An ATSUFontID value specifying the font to examine.

oFontNameCount
A pointer to an ItemCount value. On return, the value specifies the number of entries in the font
name table corresponding to the given ATSUI font ID.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCountFontNames function obtains the number of font names defined in a font name table for a
given ATSUI font ID. This number includes repetitions of the same name in different platforms, languages,
and scripts; names of font features, variations, tracking settings, and instances for the font; and font names
identified by name code constants.

You can pass an index value based on this count to the function ATSUGetIndFontName (page 1908) to obtain
a name string, name code, platform, script, and language for a given ATSUI font ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontTracking
Obtains the number of entries in the font tracking table that correspond to a given ATSUI font ID and glyph
orientation.

Functions 1861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUCountFontTracking (
 ATSUFontID iFontID,
 ATSUVerticalCharacterType iCharacterOrientation,
 ItemCount *oTrackingCount
);

Parameters
iFont

An ATSUFontID value specifying the font to examine.

iCharacterOrientation
An ATSUVerticalCharacterType constant identifying the glyph orientation of the font tracking
entries, for example kATSUStronglyHorizontal or kATSUStronglyVertical. See “Vertical
Character Types” (page 2068) for a description of possible values.

oTrackingCount
A pointer to an ItemCount value. On return, the value specifies the number of entries in the font
tracking table corresponding to the given ATSUI font ID and glyph orientation.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCountFontTracking function obtains the number of font tracking entries defined in a font tracking
table for a given ATSUI font ID and glyph orientation. You can pass an index value based on this count to
the function ATSUGetIndFontTracking (page 1910) to obtain the name code and tracking value of a font
tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontVariations
Obtains the number of defined variation axes in a font.

OSStatus ATSUCountFontVariations (
 ATSUFontID iFontID,
 ItemCount *oVariationCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oVariationCount
A pointer to an ItemCount value. On return, the value specifies the number of variation axes defined
for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1862 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUCountFontVariations function obtains the total number of variation axes defined for a font.
You can use the count produced by ATSUCountFontVariations to get information about a specific font
variation axis from the function ATSUGetIndFontVariation (page 1911).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCreateAndCopyStyle
Creates a copy of a style object.

OSStatus ATSUCreateAndCopyStyle (
 ATSUStyle iStyle,
 ATSUStyle *oStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object to copy.

oStyle
A pointer to an ATSUStyle value. On return, the pointer refers to a newly created style object. This
style object contains the same values for style attributes, font features, and font variations as those
of the style object passed in the iStyle parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateAndCopyStyle function creates a new style object with values obtained from the source
style object’s style attributes, font features, and font variations. ATSUCreateAndCopyStyle does not copy
reference constants.

To create a new style object without copying a source object, you can call the function
ATSUCreateStyle (page 1865). Alternately, to copy the contents of a source style object into an existing style
object, call the function ATSUCopyAttributes (page 1856).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateAndCopyTextLayout
Creates a copy of a text layout object.

Functions 1863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUCreateAndCopyTextLayout (
 ATSUTextLayout iTextLayout,
 ATSUTextLayout *oTextLayout
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to copy.

oTextLayout
A pointer to an ATSUTextLayout value. On return, the pointer refers to a newly created text layout
object containing the contents of the text layout object in the iTextLayout parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateAndCopyTextLayout function creates a copy of the source text layout object’s style runs
(including references to the associated text buffer and style objects), line attributes, layout attributes, and
layout caches. ATSUCreateAndCopyTextLayout does not copy reference constants.

To create a text layout object without copying a source object, you can the function
ATSUCreateTextLayout (page 1866) or the function ATSUCreateTextLayoutWithTextPtr (page 1869).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateFontFallbacks
Creates an opaque object that can be set to contain a font list and a font-search method.

OSStatus ATSUCreateFontFallbacks (
 ATSUFontFallbacks *oFontFallback
);

Parameters
oFontFallback

A pointer to an ATSUFontFallbacks value. On return, the pointer refers to a newly created font
fallback object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateFontFallbacks function creates an “empty” font fallback object, which can be used to
define ATSUI’s search behavior when seeking substitute fonts for a text layout object. Font fallback objects
are thread safe and can be shared among threads.

1864 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

You set the font list and search method for the font fallback object by calling the function
ATSUSetObjFontFallbacks (page 1958). To associate the font fallback object with a text layout object, call
either of the functions ATSUSetLayoutControls (page 1955) or ATSUSetLineControls (page 1956). You
pass these functions the control attribute value kATSULineFontFallbacksTag to set the font fallback
object.

Similarly to a style object, a font fallback object can be used with any number of text layout objects. While
it is innately more efficient to reuse font fallback objects, instead of repeatedly creating (and destroying)
them, there is another reason to share a given font fallback object among text layout objects. That is, as a
font fallback object is used, it continues to amass data about the system’s fonts and which are best applied
to the various ranges of Unicode. Therefore, for best performance, once you create a font fallback object,
you should keep it and use it as often as needed.

You should dispose of a font fallback object only when it is no longer needed in your application. To dispose
of the memory associated with a font fallback object, call the function ATSUDisposeFontFallbacks (page
1875).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateStyle
Creates an opaque style object containing only default style attributes, font features, and font variations.

OSStatus ATSUCreateStyle (
 ATSUStyle *oStyle
);

Parameters
oStyle

A pointer to an ATSUStyle value. On return, the pointer refers to an empty style object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateStyle function creates a style object containing only default values for style attributes,
font features, and font variations. The default values for the font features and variations are assigned by the
font. The default style attribute values are described in “Attribute Tags” (page 2030).

To make changes to the default style attribute values, you can call the function ATSUSetAttributes (page
1950). To set font features and font variations, call the functions ATSUSetFontFeatures (page 1952) and
ATSUSetVariations (page 1967), respectively. You can also use the function
ATSUCreateAndCopyStyle (page 1863) to create a new style object by copying all the settings from an
existing one.

For ATSUI to apply your selected character-style information, you must associate the style object with a text
run in a text layout object. A text run consists of one or more characters that are contiguous in memory. If
you associate these characters with a distinct style, you define a style run. You can use the function
ATSUSetRunStyle (page 1959) to define a style run by associating a style object with a run of text in a text

Functions 1865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

layout object. Or, to create a text layout object and associate style objects with it at the same time, you can
call the function ATSUCreateTextLayoutWithTextPtr (page 1869). In either case, each text run in a text
layout object must be assigned a style object, which may or may not differ from other style objects assigned
to other text runs in the text layout object.

Style objects are readily reusable and should be cached for later use, if possible. You can create a style object
once and then use it for as many text layout objects as appropriate. Style objects are thread-safe starting
with ATSUI version 2.3.

Note that you are responsible for disposing of the memory allocated for the style object. However, you should
dispose of any text layout objects with which the style object is associated prior to disposing of the style
object itself. To dispose of a style object, call the function ATSUDisposeStyle (page 1876).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUCreateTextLayout
Creates an opaque text layout object containing only default text layout attributes.

OSStatus ATSUCreateTextLayout (
 ATSUTextLayout *oTextLayout
);

Parameters
oTextLayout

A valid pointer to an ATSUTextLayout value. On return, the value refers to an empty text layout
object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateTextLayout function creates a text layout object containing only the default text layout
attributes described in “Attribute Tags” (page 2030). The resulting text layout object is associated with neither
text nor style objects. However, most ATSUI functions that operate on text layout objects require that the
objects be associated with style information and text. To associate style objects and text with an empty text
layout object, you can call the functions ATSUSetRunStyle (page 1959) and
ATSUSetTextPointerLocation (page 1965). Or, to create a text layout object and associate style objects
and text with it at the same time, you can call the function ATSUCreateTextLayoutWithTextPtr (page
1869).

To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 1956) or ATSUSetLayoutControls (page 1955). After setting text attributes,
call ATSUDrawText (page 1877) to draw the text.

Text layout objects are readily reusable and should be cached for later use, if possible. You can reuse a text
layout object even if the text associated with it is altered. Call the functions
ATSUSetTextPointerLocation (page 1965),ATSUTextDeleted (page 1969), orATSUTextInserted (page
1970) to manage the altered text.

1866 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateTextLayoutWithTextHandle
Creates an opaque text layout object containing default text layout attributes as well as associated text and
text styles. (Deprecated in Mac OS X v10.0. Use ATSUCreateTextLayoutWithTextPtr (page 1869) instead.
See the Discussion for more details.)

Not recommended.

OSStatus ATSUCreateTextLayoutWithTextHandle (
 UniCharArrayHandle iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength,
 ItemCount iNumberOfRuns,
 const UniCharCount iRunLengths[],
 ATSUStyle iStyles[],
 ATSUTextLayout *oTextLayout
);

Parameters
iText

A handle of type UniCharArrayHandle referring to a text buffer containing UTF-16–encoded text.
ATSUI associates this buffer with the new text layout object and analyzes the entire text of the buffer
when obtaining the layout context for the current text range. Thus, for paragraph-format text, if you
specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are not
guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can neither
reliably obtain the context for bidirectional processing nor reliably generate accent attachments and
ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Functions 1867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iNumberOfRuns
An ItemCount value specifying the number of text style runs you want to define within the text
range. The number of style objects and style run lengths passed in the iStyles and iRunLengths
parameters, respectively, should each be equal to the number of runs specified here.

iRunLengths
A pointer to a UniCharCount array specifying the lengths of each style run in the text layout object.
You can pass kATSUToTextEnd for the last style run length if you want the style run to extend to the
end of the text range. If the sum of the style run lengths is less than the total length of the text range,
the remaining characters are assigned to the last style run.

iStyles
A pointer to the first element in an ATSUStyle array. Each element in the array must contain a valid
style object that corresponds to a style run defined by the iRunLengths array.

oTextLayout
A valid pointer to an ATSUTextLayout value. On return, the value refers to the newly created text
layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should use the functionATSUCreateTextLayoutWithTextPtr (page 1869) instead of using the function
ATSUCreateTextLayoutWithTextHandle.

The ATSUCreateTextLayoutWithTextHandle function creates a text layout object associated with style
objects and text and containing the default text layout attributes described in “Attribute Tags” (page 2030).
To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 1956) or ATSUSetLayoutControls (page 1955). After setting text attributes,
call ATSUDrawText (page 1877) to draw the text.

Because the only way that ATSUI interacts with text is via the memory references you associate with a text
layout object, you are responsible for keeping these references updated, as in the following cases:

1. When the user deletes or inserts a subrange within a text buffer (but the buffer itself is not relocated),
you should call the functions ATSUTextDeleted (page 1969) and ATSUTextInserted (page 1970),
respectively.

2. When you relocate the entire text buffer (but no other changes have occurred that would affect the
buffer’s current subrange), you should call the function ATSUTextMoved (page 1971).

3. When both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted (that
is, a combination of cases 1 and 2, above), you must use either the function
ATSUSetTextHandleLocation (page 1963) or the functionATSUSetTextPointerLocation (page 1965)
to inform ATSUI.

4. When you are associating an entirely different buffer with a text layout object, you must call either the
function ATSUSetTextHandleLocation (page 1963) or the function
ATSUSetTextPointerLocation (page 1965).

Note that, because ATSUI objects retain state information, doing superfluous calling can degrade performance.
For example, you could call ATSUSetTextHandleLocation rather than ATSUTextInsertedwhen the user
inserts text, but there would be a performance penalty, as all the layout caches are flushed when you call
ATSUSetTextHandleLocation, rather than just the affected ones.

1868 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Text layout objects are readily reusable and should themselves be cached for later use, if possible.

The ATSUCreateTextLayoutWithTextHandle function associates text with a text layout object via a
handle, but ATSUI functions that need to access the text return the handle to its original state upon completion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateTextLayoutWithTextPtr
Creates an opaque text layout object containing default text layout attributes as well as associated text and
text styles.

OSStatus ATSUCreateTextLayoutWithTextPtr (
 ConstUniCharArrayPtr iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength,
 ItemCount iNumberOfRuns,
 const UniCharCount iRunLengths[],
 ATSUStyle iStyles[],
 ATSUTextLayout *oTextLayout
);

Parameters
iText

A pointer of type ConstUniCharArrayPtr, referring to a text buffer containing UTF-16–encoded
text. ATSUI associates this buffer with the new text layout object and analyzes the complete text of
the buffer when obtaining the layout context for the current text range. Thus, for paragraph-format
text, if you specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results
are not guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can
neither reliably obtain the context for bidirectional processing nor reliably generate accent attachments
and ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Functions 1869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iNumberOfRuns
An ItemCount value specifying the number of text style runs you want to define within the overall
text range. The number of style objects and style run lengths passed in the iStyles and iRunLengths
parameters, respectively, should be equal to the number of runs specified here.

iRunLengths
A pointer to the first element in a UniCharCount array. This array provides ATSUI with the lengths
of each of the text’s style runs. You can pass kATSUToTextEnd for the last style run length if you
want the style run to extend to the end of the text range. If the sum of the style run lengths is less
than the total length of the text range, the remaining characters are assigned to the last style run.

iStyles
A pointer to the first element in an ATSUStyle array. Each element in the array must contain a valid
style object that corresponds to a style run defined by the iRunLengths array.

oTextLayout
A valid pointer to an ATSUTextLayout value. On return, the value refers to the newly created text
layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUCreateTextLayoutWithTextPtr function creates a text layout object associated with style
objects and text and containing the default text layout attributes described in “Attribute Tags” (page 2030).
To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 1956) or ATSUSetLayoutControls (page 1955). After setting text attributes,
call ATSUDrawText (page 1877) to draw the text.

Because the only way that ATSUI interacts with text is via the memory references you associate with a text
layout object, you are responsible for keeping these references updated, as in the following cases:

1. When the user deletes or inserts a subrange within a text buffer (but the buffer itself is not relocated),
you should call the functions ATSUTextDeleted (page 1969) and ATSUTextInserted (page 1970),
respectively.

2. When you relocate the entire text buffer (but no other changes have occurred that would affect the
buffer’s current subrange), you should call the function ATSUTextMoved (page 1971).

3. When both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted (that
is, a combination of cases 1 and 2, above), you must use the function
ATSUSetTextPointerLocation (page 1965) to inform ATSUI.

4. When you are associating an entirely different buffer with a text layout object, you must call the function
ATSUSetTextPointerLocation (page 1965).

Note that, because ATSUI objects retain state information, doing superfluous calling can degrade performance.
For example, you could call ATSUSetTextPointerLocation rather than ATSUTextInserted when the
user inserts text, but there would be a performance penalty, as all the layout caches are flushed when you
call ATSUSetTextPointerLocation, rather than just the affected ones.

Text layout objects are readily reusable and should themselves be cached for later use, if possible. Text objects
are thread-safe starting with ATSUI version 2.4.

Availability
Available in Mac OS X v10.0 and later.

1870 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeObjects.h

ATSUDirectAddStyleSettingRef
Looks up, and if necessary, adds a style setting to a line of text.

OSStatus ATSUDirectAddStyleSettingRef (
 ATSULineRef iLineRef,
 ATSUStyleSettingRef iStyleSettingRef,
 UInt16 *oStyleIndex
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text to which you want to add a style setting. You
should pass the same reference provided as a parameter to your
ATSUDirectLayoutOperationOverrideProcPtr (page 1998) callback function.

iStyleSettingRef
An ATSUStyleSettingRef value that specifies the style setting you want ATSUI to look up or add
to the text layout object referenced by the line starting at the offset iLineOffset.

oStyleIndex
On return, points to the index of the ATSUStyleSettingRef passed in iStyleSettingRef for the
line referenced by iLineRef. If the ATSUStyleSettingRef does not exist in that context, ATSUI
adds it and returns the index value.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The function ATSUDirectAddStyleSettingRef checks to see if a line of text has a specified style setting
reference associated with it. If the style setting reference is not associated with the line of text, ATSUI adds
the style setting reference.

You must call this function from within an ATSUDirectLayoutOperationOverrideProcPtr (page 1998)
callback function. You can use the function ATSUDirectAddStyleSettingRef to replace or substitute
glyphs. For example, you can check a line of text for a specific character, such as a whitespace character.
When your application finds a whitespace character, it can call the function
ATSUDirectAddStyleSettingRef to set style attributes that achieve the desired effect.

Do not call this function if you obtained an ATSUStyleSettingRef array for the line specified by iLineRef
and have not yet disposed of the pointer to this array by calling the function
ATSUDirectReleaseLayoutDataArrayPtr (page 1874), as the pointer is not guaranteed to be valid after
you call the function ATSUDirectAddStyleSettingRef.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDirectAccess.h

Functions 1871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUDirectGetLayoutDataArrayPtrFromLineRef
Obtains the glyph data specified by a direct-data selector and for a specific line of text.

OSStatus ATSUDirectGetLayoutDataArrayPtrFromLineRef (
 ATSULineRef iLineRef,
 ATSUDirectDataSelector iDataSelector,
 Boolean iCreate,
 void *oLayoutDataArrayPtr[],
 ItemCount *oLayoutDataCount
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text whose data you want to obtain. You should
pass the same ATSULineRef value passed to the
ATSUDirectLayoutOperationOverrideProcPtr (page 1998) callback function from which you are
calling this function.

iDataSelector
A direct-data selector constant that specifies the data you want to obtain. You can pass any of the
constants described in “Direct Data Selectors” (page 2044).

iCreate
A Boolean value that specifies whether to create an array if one does not already exist. Pass true if
you want an array created. If the line referenced by the iLineRef parameter does not already have
an array created that contains the data specified by the iDataSelector parameter, then ATSUI
creates a zero-filled array and returns the array in the oLayoutDataArray parameter. The iCreate
parameter has no effect for some data specified by the direct-data selector. See “Direct Data
Selectors” (page 2044) for details.

oLayoutDataArrayPtr[]
On return, points to an array that contains the data specified by the iDataSelector parameter. The
data is for the line of text referenced by the iLineRef parameter. If an array for the specified data
does not exist, and if the iCreate is set to false, ATSUI returns NULL. If an array for the specified
data does not exist, and if the iCreate is set to true, ATSUI creates a zero-filled array. You can pass
NULL if you only want to obtain the number of entries in the array returned in the oLayoutDataArray
array.

oLayoutDataCount
On return, the number of entries in the array returned in the oLayoutDataArray array.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The function ATSUDirectGetLayoutDataArrayPtrFromLineRef returns the data pointer specified by
the iDataSelector parameter and referenced by the iLineRef parameter. You must call this function
from within an ATSUDirectLayoutOperationOverrideProcPtr (page 1998) callback function. You must
only release the data pointer by calling the function ATSUDirectReleaseLayoutDataArrayPtr (page
1874). When you call this function, it signals ATSUI that you are done with the data and that ATSUI can merge
your modifications with the font’s data. If you do not properly free the data by calling the function
ATSUDirectReleaseLayoutDataArrayPtr, a memory leak may result.

The data you obtain is the actual data used by ATSUI in its layout process; it is not a copy. This function is
very efficient because ATSUI does not need to allocate memory and copy data. Furthermore, because you
obtain a pointer to the data that ATSUI uses for its layout, any modifications you make to the data effect the
final layout.

1872 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Many of the data arrays you can request are created by ATSUI only when necessary. If you plan to alter the
data in an array, make sure you set the iCreate parameter to true. This ensures that the array is created. If
an arrays are not created, ATSUI assumes all entries in the array are zero.

The pointer returned by this function is only valid within the context of the
ATSUDirectLayoutOperationOverrideProcPtr callback function. You must not retain it for later use.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUDirectGetLayoutDataArrayPtrFromTextLayout
Obtains a copy of the glyph data specified by a direct-data selector and for a specific line of text in a text
layout object.

OSStatus ATSUDirectGetLayoutDataArrayPtrFromTextLayout (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 ATSUDirectDataSelector iDataSelector,
 void *oLayoutDataArrayPtr[],
 ItemCount *oLayoutDataCount
);

Parameters
iTextLayout

An ATSUTextLayout value that specifies the text layout object whose data you want to obtain.

iLineOffset
The edge offset that corresponds to the beginning of the line of text whose data you want to obtain.

iDataSelector
A direct-data selector constant that specifies the data you want to obtain. You can pass any of the
constants described in “Direct Data Selectors” (page 2044).

oLayoutDataArrayPtr[]
On return, points to an array that contains the data specified by the iDataSelector parameter. The
data is for the line of text referenced by the iLineOffset parameter. If an array for the specified
data does not exist, ATSUI returns NULL. You can pass NULL if you only want to obtain the number
of entries in the array in the oLayoutDataArray array.

oLayoutDataCount
On return, the number of entries in the array oLayoutDataArray.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The functionATSUDirectGetLayoutDataArrayPtrFromTextLayout returns a pointer to the data specified
by iDataSelector and referenced by iTextLayout for the line starting at iLineOffset. You must not
call this function from within an ATSUDirectLayoutOperationOverrideProcPtr (page 1998)callback
function.

Functions 1873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

You should only release the data pointer by calling the function ATSUDirectReleaseLayoutDataArrayPtr.
When you call this function, it signals ATSUI that you are done with the data and that ATSUI can merge your
modifications with the font’s data. If you do not properly free the data by calling the function
ATSUDirectReleaseLayoutDataArrayPtr, a memory leak may result.

The data you obtain is a copy of the data ATSUI uses for its layout processes. This means the following:

 ■ Obtaining data through a copy operation takes more time than obtaining the actual data. This function
returns in order-n time instead of in a constant time.

 ■ Changing any of the data values has no effect on the layout.

Before you use this function, you should consider using the
functionATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) with the
kATSULayoutOperationPostLayoutAdjustment selector.

If you use the function ATSUDirectGetLayoutDataArrayPtrFromTextLayout to obtain the
ATSUStyleSettingRef array, the structures referenced by each element of the array are invalid after you
call the function ATSUDirectReleaseLayoutDataArrayPtr to release the array. If want to retain one or
more of the elements in the ATSUStyleSettingRef array for later use, you must not call the function
ATSUDirectReleaseLayoutDataArrayPtr until all operations that use the elements in the
ATSUStyleSettingRef in the array are complete. The elements in the ATSUStyleSettingRef array are
valid only within the context of the callback from which they were obtained

Many of the requested data arrays are created by ATSUI only when necessary. This means that it's possible
for the function ATSUDirectGetLayoutDataArrayPtrFromTextLayout to return a NULL pointer and a
count of 0. If this is case and if the function does not return an error, the array doesn't exist. You should
interpret this result to mean that all values in the array are 0.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDirectAccess.h

ATSUDirectReleaseLayoutDataArrayPtr
Releases a pointer to a direct-data array.

OSStatus ATSUDirectReleaseLayoutDataArrayPtr (
 ATSULineRef iLineRef,
 ATSUDirectDataSelector iDataSelector,
 void *iLayoutDataArrayPtr[]
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text whose data is pointed to by the
iLayoutDataArrayPtr parameter. Pass NULL if you did not obtain the layout data array pointer
using a lineRef.

1874 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iDataSelector
A direct-data selector constant that specifies the data pointed to by the iLayoutDataArrayPtr
parameter. You can pass any of the constants described in “Direct Data Selectors” (page 2044).

iLayoutDataArrayPtr[]
A pointer to the layout data array of which you want to dispose.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You must call the function ATSUDirectReleaseLayoutDataArrayPtr when you no longer need the
direct-data pointer you obtained from the ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) functions. You must dispose of the
pointer to inform ATSUI you no longer need the data and to allow for ATSUI to make any internal adjustments
prior to completing the layout process.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUDisposeFontFallbacks
Disposes of the memory associated with a font fallback object.

OSStatus ATSUDisposeFontFallbacks (
 ATSUFontFallbacks iFontFallbacks
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object to dispose. See the
ATSUFontFallbacks data type.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUDisposeFontFallbacks function frees the memory associated with the specified font fallback
object and its internal structures.

For best performance, once you create a font fallback object, you should keep it and use it as often as needed.
You should dispose of the font fallback object only when it is no longer needed in your application.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

Functions 1875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUDisposeStyle
Disposes of the memory associated with a style object.

OSStatus ATSUDisposeStyle (
 ATSUStyle iStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object to dispose of.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUDisposeStyle function frees the memory associated with the specified style object and its internal
structures, including style run attributes. It does not dispose of the memory pointed to by application-defined
style run attributes or reference constants. You are responsible for doing so.

You should call this function after calling the function ATSUDisposeTextLayout (page 1876) to dispose of
any text layout objects associated with the style object.

For best performance, once you create a style object, you should keep it and use it as often as needed. You
should dispose of the style object only when it is no longer needed in your application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUDisposeTextLayout
Disposes of the memory associated with a text layout object.

OSStatus ATSUDisposeTextLayout (
 ATSUTextLayout iTextLayout
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to dispose of.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUDisposeTextLayout function frees the memory associated with the specified text layout object
and its internal structures, including line and layout control attributes, style runs, and soft line breaks.
ATSUDisposeTextLayout does not dispose of any memory that may be allocated for reference constants
or style objects associated with the text layout object. You are responsible for doing so.

1876 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

For best performance, text layout objects are readily reusable and should be cached for later use, if possible.
You can reuse a text layout object even if the text associated with it is altered. Call the functions
ATSUSetTextPointerLocation (page 1965),ATSUTextDeleted (page 1969), orATSUTextInserted (page
1970) to manage the altered text, rather than disposing of the text layout object and creating a new one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUDrawGlyphInfo
Draws glyphs at the specified location, based on style and layout information specified for each glyph.
(Deprecated in Mac OS X v10.3. Use functions from “Accessing Glyph Data” (page 1842) instead.)

Not recommended.

OSStatus ATSUDrawGlyphInfo (
 ATSUGlyphInfoArray *iGlyphInfoArray,
 Float32Point iLocation
);

Parameters
iGlyphInfoArray

A pointer to an ATSUGlyphInfoArray structure containing the glyph information to draw. You can
obtain an ATSUGlyphInfoArray structure from the function ATSUGetGlyphInfo (page 1906).

iLocation
A Float32Point data structure that contains the x and y coordinates at which to draw the glyph(s).
Each coordinate in the Float32Point data structure is a Float32 value.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You must use ATSUDrawGlyphInfo to draw glyphs if you have previously called the function
ATSUGetGlyphInfo (page 1906), and you have modified the glyph information. However, if you want to
modify the glyph information you should use the functions ATSUGlyphGetQuadraticPaths (page 1928) or
ATSUGlyphGetCubicPaths (page 1925) instead of calling the function ATSUGetGlyphInfo.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUDrawText
Renders a range of text at a specified location in a QuickDraw graphics port or Quartz graphics context.

Functions 1877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUDrawText (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 UniCharCount iLineLength,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render text.

iLineOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to render. The function ATSUDrawText renders text to the first soft line break
it encounters. If the range of text spans multiple lines, you should call ATSUDrawText for each line,
passing the offset corresponding to the beginning of the new line to draw with each call. To indicate
that the specified text range starts at the beginning of the text buffer, you can pass the constant
kATSUFromTextBeginning. To specify the entire text buffer, pass kATSUFromTextBeginning in
this parameter and kATSUToTextEnd in the iLineLength parameter.

iLineLength
A UniCharCount value specifying the length of the text range to render. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd. Keep in
mind that the function ATSUDrawText renders text one line at a time. If the range of text spans
multiple lines, you must call ATSUDrawText for each line.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
QuickDraw graphics port or in a Quartz graphics context) of the line containing the text range to
render. Note that the ATSUTextMeasurement type is defined as a Fixed value, so you must ensure
that your coordinates are converted to Fixed values before passing them to this function. Pass the
constant kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw
relative to the current pen location in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or Quartz graphics context) of the line containing the text range to render. Note that
the ATSUTextMeasurement type is defined as a Fixed value, so you must ensure that your coordinates
are converted to Fixed values before passing them to this function. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw relative to
the current pen location in the current graphics port.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUDrawText function renders a range of text at a specified location in a QuickDraw graphics port or
Quartz graphics context. This function renders text to the first soft line break it encounters. If you draw into
a QuickDraw graphics port you get the best performance by using a bit depth of 16 bits. If you use bit depths
of 1, 4, or 8, your application incurs a performance penalty.

You typically call the ATSUDrawText function every time you need to draw or redraw unhighlighted text.
To draw highlighted text, call the function ATSUHighlightText (page 1931).

1878 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUDrawText uses the transfer mode and resolution that are set in the graphics port or graphics context.
If you explicitly set in the style object, then text color is taken from the style object, and the value in the
graphics port/context is ignored. If the text color was not explicitly set in the style object, ATSUDrawText
uses the graphics port/context setting.

ATSUDrawText examines the text layout object to ensure that each of the characters in the range is assigned
to a style run. If there are gaps between style runs, ATSUI assigns the characters in the gap to the style run
that precedes (in storage order) the gap. If there is no style run at the beginning of the text range, ATSUI
assigns these characters to the first style run it finds. If there is no style run at the end of the text range, ATSUI
assigns the remaining characters to the last style run it finds.

If you want to draw a range of text that spans multiple lines, you should call ATSUDrawText for each line of
text to draw, even if all the lines are in the same text layout object. You should adjust the iLineOffset
parameter to reflect the beginning of each line to be drawn.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

ATSUFindFontFromName
Obtains an ATSUI font ID for the first entry in a name table that matches the specified name string, name
code, platform, script, and/or language.

OSStatus ATSUFindFontFromName (
 const void *iName,
 ByteCount iNameLength,
 FontNameCode iFontNameCode,
 FontPlatformCode iFontNamePlatform,
 FontScriptCode iFontNameScript,
 FontLanguageCode iFontNameLanguage,
 ATSUFontID *oFontID
);

Parameters
iName

A string that specifies the font name whose ATSUI font ID you want to obtain. The string that you
pass must be appropriate for the value you pass in the iFontNameCode parameter. For example, if
the iFontNameCode parameter is kFontPostscriptName, then you would supply a string that
specifies the PostScript name of the font.

iNameLength
A ByteCount value specifying the length of the font name string provided in the iName parameter.

iFontNameCode
The FontNameCode value of the font name for which to obtain an ATSUI font ID. The FontNameCode
is a UInt32 data type, and it is defined in the SFNTTypes.h header file. You can supply any of the
following constants, kFontCopyrightName, kFontFamilyName, kFontStyleName,
kFontUniqueName, kFontFullName, kFontVersionName, kFontPostscriptName,
kFontTrademarkName,kFontManufacturerName,kFontDesignerName,kFontDescriptionName,
kFontVendorURLName, kFontDesignerURLName, kFontLicenseDescriptionName,or
kFontLicenseInfoURLName.

Functions 1879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iFontNamePlatform
A FontPlatformCode value specifying the encoding of the font name, for example,
kFontUnicodePlatform (for UTF-16), kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. If you pass the kFontNoPlatformCode
constant, ATSUFindFontFromName produces the first font in the name table matching the other
specified parameters. See the SFNTTypes.h header file for a definition of the FontPlatformCode
type and a list of possible values.

iFontNameScript
A FontScriptCode value specifying the script code of the font name, for example,
kFontRomanScript. Pass kFontNoScriptCode if you supplied the kFontUnicodePlatform
constant for the iFontNamePlatform parameter. If you pass the kFontNoScriptCode constant,
ATSUFindFontFromName produces the first font in the name table matching the other specified
parameters. See the SFNTTypes.h header file for a definition of the FontScriptCode type and a
list of possible values.

iFontNameLanguage
A FontLanguageCode value specifying the language of the font name, for example,
kFontNorwegianLanguage. Pass kFontNoLanguageCode if you supplied the
kFontUnicodePlatform constant for the iFontNamePlatform parameter. If you pass the
kFontNoLanguageCode constant, ATSUFindFontFromName produces the first font in the name
table matching the other specified parameters. See the SFNTTypes.h header file for a definition of
the FontLanguageCode type and a list of possible values.

oFontID
On return, points to the unique identifier for the specified font that matches the specified name string,
name code, platform, script, and/or language. Note that because Apple Type Services assigns
ATSUFontID values systemwide at runtime, font IDs can change across system restarts.

Return Value
A result code. If no installed font matches the specified parameters, ATSUFindFontFromName produces the
constant kATSUInvalidFontID and returns the result code kATSUInvalidFontErr. See “ATSUI Result
Codes” (page 2068).

Discussion
The ATSUFindFontFromName function obtains an ATSUI font ID for the first font that matches the specified
name string, name code, platform, script, and/or language. Because ATSUI cannot guarantee the uniqueness
of names among installed fonts, ATSUFindFontFromName does not necessarily find the only font ID that
matches these parameters. As a result, you may want to create a more sophisticated name-matching algorithm
or guarantee the uniqueness of names among installed fonts.

To find a name string and index value for the first font in a name table that matches an ATSUI font ID and
the specified font parameters, call the function ATSUFindFontName (page 1880).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFindFontName
Obtains a name string and index value for the first font in a name table that matches the specified ATSUI
font ID, name code, platform, script, and/or language.

1880 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUFindFontName (
 ATSUFontID iFontID,
 FontNameCode iFontNameCode,
 FontPlatformCode iFontNamePlatform,
 FontScriptCode iFontNameScript,
 FontLanguageCode iFontNameLanguage,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 ItemCount *oFontNameIndex
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain a name string. Note that because Apple Type
Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

iFontNameCode
The FontNameCode value of the font for which to obtain a name string. The FontNameCode is a
UInt32 data type, and it is defined in the SFNTTypes.h header file.

iFontNamePlatform
A FontPlatformCode value specifying the encoding of the font, for example,
kFontUnicodePlatform, kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. If you pass the kFontNoPlatformCode
constant, ATSUFindFontName produces the first font in the name table matching the other specified
parameters. See the SFNTTypes.h header file for a definition of the FontPlatformCode type and
a list of possible values.

iFontNameScript
A FontScriptCode value specifying the script code of the font, for example, kFontRomanScript.
If you pass the kFontNoScriptCode constant, ATSUFindFontName produces the first font in the
name table matching the other specified parameters. See the SFNTTypes.h header file for a definition
of the FontScriptCode type and a list of possible values.

iFontNameLanguage
A FontLanguageCode value specifying the language of the font, for example,
kFontNorwegianLanguage. If you pass the kFontNoLanguageCode constant, ATSUFindFontName
produces the first font in the name table matching the other specified parameters. See the
SFNTTypes.h header file for a definition of the FontLanguageCode type and a list of possible values.

iMaximumNameLength
A ByteCount value specifying the maximum length of the font name to obtain. Typically, this is
equivalent to the size of the buffer that you have allocated in the oName parameter. To determine
this length, see the Discussion.

oName
A pointer to a buffer. On return, the buffer contains the name string of the first font in the font name
table matching your specified parameters. If the buffer you allocate is not large enough,
ATSUFindFontName produces a partial string.

oActualNameLength
A pointer to a ByteCount value. On return, the value specifies the actual length of the complete
name string. This may be greater than the value passed in the iMaximumNameLength parameter.
You should check this value to ensure that you have allocated sufficient memory and therefore
obtained the complete name string for the font.

Functions 1881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oFontNameIndex
A pointer to an ItemCount value. On return, the value provides a 0-based index to the font name in
the font name table.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUFindFontName function obtains a name string and index value for the first font in a name table
that matches the specified ATSUI font ID, name code, platform, script, and/or language.

Typically you use the ATSUFindFontName function by calling it twice, as follows:

1. Pass NULL for the oName and oFontNameIndex parameters, 0 for the iMaximumNameLength parameter,
and valid values for the other parameters. ATSUFindFontName returns the length of the font name
string in the oActualNameLength parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oName parameter. On return, the buffer contains the font name string.

To obtain an ATSUI font ID for the first font in a name table that matches the specified name string, name
code, platform, script, and/or language, call the function ATSUFindFontFromName (page 1879). To obtain the
font name string, name code, platform, script, and language for the font that matches an ATSUI font ID and
name table index, call the function ATSUGetIndFontName (page 1908).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFlattenStyleRunsToStream
Flattens ATSUI style-run data so that it can be saved to disk or passed (through the pasteboard) to another
application.

OSStatus ATSUFlattenStyleRunsToStream (
 ATSUFlattenedDataStreamFormat iStreamFormat,
 ATSUFlattenStyleRunOptions iFlattenOptions,
 ItemCount iNumberOfRunInfo,
 const ATSUStyleRunInfo iRunInfoArray[],
 ItemCount iNumberOfStyleObjects,
 const ATSUStyle iStyleArray[],
 ByteCount iStreamBufferSize,
 void *oStreamBuffer,
 ByteCount *oActualStreamBufferSize
);

Parameters
iStreamFormat

The format of the flattened data. There is only one format supported at this time, 'ustl' so you
must pass the constant kATSUDataStreamUnicodeStyledText.

1882 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iFlattenOptions
The options you want to use to flatten the data. There are no options supported at this time, so you
must pass the constant kATSUFlattenOptionsNoOptionsMask.

iNumberOfRunInfo
The number of style run information structures passed in the iRunInfoArray parameter. If you pass
0, ATSUI assumes there is only one style for the entire text block passed in the oStreamBuffer
parameter. The flattened data format passed to the iStreamFormat parameter must support the
use of one style.

iRunInfoArray[]
An array of ATSUStyleRunInfo structures that describes the style runs to be flattened. This array
must contain iNumberOfRunInfo entries. An ATSUStyleRunInfo structure contains an index into
an array of unique ATSUI style objects (ATSUStyle) and the length of the run to which the style object
applies. Each index in the ATSUStyleRunInfo structure must reference a valid ATSUStyle object
passed in the iStyleArray parameter. You can pass NULL, only if iNumberOfRunInfo is set to zero.

iNumberOfStyleObjects
The number of ATSUStyle objects in the array passed to the iStyleArray parameter. You must
pass a value that is greater than 0.

iStyleArray[]
An array of ATSUStyle objects to be flattened. You cannot pass NULL.

iStreamBufferSize
The size of the stream buffer, pointed to by the oStreamBuffer parameter. You can pass 0 only if
the iStreamBufferSize parameter is set to NULL. If you are uncertain of the size of the array, see
the Discussion.

oStreamBuffer
On input, a pointer to the data you want to flatten. On return, points to the flattened data. If you pass
NULL for this parameter, no data is flattened. Instead, the size of the buffer is calculated by ATSUI and
returned in oActualStreamSize parameter. See the Discussion for more details. You are responsible
for allocating the text buffer passed in the oStreamBuffer parameter.

oActualStreamBufferSize
On return, the size of the data written to the oStreamBuffer parameter. You can pass NULL only if
the oStreamBuffer parameter is not NULL.

Return Value
A result code. See “ATSUI Result Codes” (page 2068). This function can also return paramErr if you pass invalid
values for any of the parameters.

Discussion
The function ATSUFlattenStyleRunsToStream takes an array of ATSUStyle objects and style run
information and flattens the data to the specified format. The style runs must all reference the same block
of Unicode text (usually passed separately as text in the 'utxt' format). The style runs must also be in
ascending order relative to the text in the text block.

Typically you use the function ATSUFlattenStyleRunsFromStream by calling it twice, as follows:

1. Provide appropriate values for the iStreamFormat, iFlattenOptions, iNumberOfRunInfo,
iRunInfoArray, iNumberOfStyleObjects, and iStyleArrayparameters. Set iStreamBufferSize
to 0, oStreamBuffer to NULL, and pass a valid reference to a ByteCount variable in the
oActualStreamBufferSize parameter. Call the function ATSUFlattenStyleRunsToStream. On
return, oActualStreamBufferSize points to the size needed for the buffer.

Functions 1883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

2. Allocate an appropriately-sized buffer for the oStreamBuffer parameter and then call the function
ATSUFlattenStyleRunsToStream a second time.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

ATSUFONDtoFontID
Finds the ATSUI font ID that corresponds to a font family number, if one exists. (Deprecated. There is no
replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

Not recommended.

OSStatus ATSUFONDtoFontID (
 short iFONDNumber,
 Style iFONDStyle,
 ATSUFontID *oFontID
);

Parameters
iFONDNumber

The font family number of the ATSUI-compatible font for which to obtain an ATSUI font ID.

iFONDStyle
The font family style of the font, if any. Style identifiers exist only for fonts that split a font family into
subgroups.

oFontID
A pointer to a ATSUFontID value. On return, the value provides a unique identifier for the specified
font family number and style.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The function ATSUFONDtoFontID is not recommended for use. Instead, use the Font Manager functions
that translate font family numbers to FMFont values, which are equivalent to ATSUFontID values. Font family
numbers were used by QuickDraw to represent fonts to the Font Manager. Some of these fonts, even if
compatible with ATSUI, may not have font IDs.

Note that Apple Type Services assigns ATSUFontID values systemwide at runtime. As a result, these font IDs
can change when the system is restarted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

1884 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUFontCount
Obtains the number of ATSUI-compatible fonts installed on a user’s system.

OSStatus ATSUFontCount (
 ItemCount *oFontCount
);

Parameters
oFontCount

A pointer to an ItemCount value. On return, the value specifies the current number of
ATSUI-compatible fonts installed on the user’s system.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUFontCount function obtains the number of fonts on a user’s system that are compatible with ATSUI.
Incompatible fonts include those that cannot be used to represent Unicode, the missing-character glyph
font, and fonts whose names begin with a period or a percent sign. You can use the count produced in the
oFontCount parameter to determine the amount of memory to allocate for the oFontIDs array in the
function ATSUGetFontIDs (page 1899).

It is important to note that the set of installed ATSUI-compatible fonts may change while your application is
running. In Mac OS X, the set of installed fonts may change at any time. Although in Mac OS 9, fonts cannot
be removed from the Fonts folder while an application other than the Finder is running, they can be removed
from other locations, and it is possible for fonts to be added.

Additionally, just because the number of fonts stays the same between two successive calls to ATSUFontCount,
this does not mean that the font lists are the same. It is possible for a font to be added and another removed
between two successive calls to ATSUFontCount, leaving the total number unchanged.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFontIDtoFOND
Finds the font family number that corresponds to an ATSUI font ID, if one exists. (Deprecated. There is no
replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

Not recommended.

Functions 1885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUFontIDtoFOND (
 ATSUFontID iFontID,
 short *oFONDNumber,
 Style *oFONDStyle
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain a font family number. Note that because Apple
Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

oFONDNumber
A pointer to a signed sixteen-bit integer. On return, the value identifies the font family number
corresponding to the specified ATSUI font ID.

oFONDStyle
A pointer to a Style value. On return, the value identifies the font family style of the font, if any. Style
identifiers exist only for fonts that split a font family into subgroups.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The function ATSUFontIDtoFOND is not recommended for use. Instead, use the Font Manager functions
that translate FMFont values, which are equivalent to ATSUFontID values, to font family numbers. Font
family numbers were used by QuickDraw to represent fonts to the Font Manager. Some of these fonts, even
if compatible with ATSUI, may not have font IDs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllAttributes
Obtains an array of style attribute tags and value sizes for a style object.

OSStatus ATSUGetAllAttributes (
 ATSUStyle iStyle,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for any of the object’s style attributes that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

1886 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
style object. Typically, this is equivalent to the number of ATSUAttributeInfo structures for which
you have allocated memory in the oAttributeInfoArray parameter. To determine this value, see
the Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the style object. This may be greater than the value you specified
in the iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetAllAttributes function obtains all nondefault style attribute tags and values sizes for a style
object. You can pass a tag and value-size pair obtained from ATSUGetAllAttributes to the function
ATSUGetAttribute (page 1892) to determine the corresponding attribute value.

Typically you use the function ATSUGetAllAttributes by calling it twice, as follows:

1. Pass a reference to the style object to examine in the iStyle parameter, a valid pointer to an ItemCount
value in the oTagValuePairCount parameter, NULL for the oAttributeInfoArray parameter, and
0 for the iTagValuePairArraySize parameter. ATSUGetAllAttributes returns the size of the tag
and value-size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllAttributes function
again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer refers
to an array of the style attribute tag and value-size pairs contained in the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAllFontFeatures
Obtains the font features of a style object that are not at default settings.

OSStatus ATSUGetAllFontFeatures (
 ATSUStyle iStyle,
 ItemCount iMaximumFeatureCount,
 ATSUFontFeatureType oFeatureType[],
 ATSUFontFeatureSelector oFeatureSelector[],
 ItemCount *oActualFeatureCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

Functions 1887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iMaximumFeatureCount
An ItemCount value specifying the maximum number of feature types and selectors to obtain for
the style object. Typically, this is equivalent to the number of ATSUFontFeatureType and
ATSUFontFeatureSelector values for which you have allocated memory in the oFeatureType
and oFeatureSelector parameters, respectively. To determine this value, see the Discussion.

oFeatureType
A pointer to memory you have allocated for an array of ATSUFontFeatureType values. On return,
the array contains constants identifying each type of font feature that is at a nondefault setting in
the style object. If you are uncertain of how much memory to allocate for this array, see the Discussion.

oFeatureSelector
A pointer to memory you have allocated for an array of ATSUFontFeatureSelector values. On
return, the array contains constants identifying the feature selectors that are at nondefault settings
in the style object. Each selector determines the setting for a corresponding feature type produced
in the oFeatureType parameter. If you are uncertain of how much memory to allocate for this array,
see the Discussion.

oActualFeatureCount
A pointer to an ItemCount value. On return, the value specifies the actual number of font feature
types and selectors in the style object. This may be greater than the value you specified in the
iMaximumFeatureCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetAllFontFeatures function obtains all of a style object’s font features that are not at default
settings. Font features are grouped into categories called feature types, within which individual feature
selectors define particular feature settings. The arrays produced by ATSUGetAllFontFeatures contain
constants identifying the object’s font types and their corresponding font selectors.

Typically you use the function ATSUGetAllFontFeatures by calling it twice, as follows:

1. Pass a reference to the style object to examine in the iStyle parameter, a valid pointer to an ItemCount
value in the oActualFeatureCount parameter, NULL for the oFeatureType and oFeatureSelector
parameters, and 0 for the iMaximumFeatureCount parameter. ATSUGetAllFontFeatures returns
the size in the oActualFeatureCount parameter to use for the feature type and selector arrays.

2. Allocate enough space for arrays of the returned size, then call ATSUGetAllFontFeatures again,
passing a pointer to the arrays in the oFeatureType and oFeatureSelector parameters. On return,
the arrays contain the font feature types and selectors, respectively, for the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllFontVariations
Obtains a style object’s font variation values that are not at default settings.

1888 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetAllFontVariations (
 ATSUStyle iStyle,
 ItemCount iVariationCount,
 ATSUFontVariationAxis oVariationAxes[],
 ATSUFontVariationValue oFontVariationValues[],
 ItemCount *oActualVariationCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iVariationCount
An ItemCount value specifying the maximum number of font variation values to obtain for the style
object. Typically, this is equivalent to the number of ATSUFontVariationAxis and
ATSUFontVariationValue values for which you have allocated memory in the oVariationAxes
and oFontVariationValues parameters, respectively. To determine this value, see the Discussion.

oVariationAxes
A pointer to memory you have allocated for an array of ATSUFontVariationAxis values. On return,
the array contains tags identifying those font variation axes in the style object that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

oFontVariationValues
A pointer to memory you have allocated for an array of ATSUFontVariationValue values. On return,
the array contains the current font variation values for the font variation axes produced in the
oVariationAxes array. If you are uncertain of how much memory to allocate for this array, see the
Discussion.

oActualVariationCount
A pointer to an ItemCount value. On return, the value specifies the actual number of nondefault font
variation values in the style object. This may be greater than the value you passed in the
iVariationCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetAllFontVariations function obtains all of a style object’s font variation axes that are not at
default settings, as well as the current values for the axes.

Typically you use the function ATSUGetAllFontVariations by calling it twice, as follows:

1. Pass a reference to the style object to examine in the iStyle parameter, a pointer to an ItemCount
value in the oActualVariationCount parameter, NULL for the oVariationAxes and
oFontVariationValues parameters, and 0 for the iVariationCount parameter.
ATSUGetAllFontVariations returns the size to use for the variation axes and value arrays in the
oActualVariationCount parameter.

2. Allocate enough space for arrays of the returned size, then call ATSUGetAllFontVariations again,
passing a pointer to the arrays in the oVariationAxes and oFontVariationValues parameters. On
return, the arrays contain the font variation axes and their corresponding values, respectively, for the
style object.

Availability
Available in Mac OS X v10.0 and later.

Functions 1889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllLayoutControls
Obtains an array of layout control attribute tags and value sizes for a text layout object.

OSStatus ATSUGetAllLayoutControls (
 ATSUTextLayout iTextLayout,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for the object’s layout control attributes that are not at
default values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
text layout object. Typically, this is equivalent to the number of ATSUAttributeInfo structures for
which you have allocated memory in the oAttributeInfoArray parameter. To determine this value,
see the Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the text layout object. This may be greater than the value you
specified in the iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetAllLayoutControls function obtains all nondefault layout control attribute tags and their
values sizes for a text layout object. You can pass a tag and value size pair obtained from
ATSUGetAllLayoutControls to the function ATSUGetLayoutControl (page 1912) to determine the
corresponding attribute value.

Typically you use the function ATSUGetAllLayoutControls by calling it twice, as follows:

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, NULL for the
oAttributeInfoArray parameter, a pointer to an ItemCount value in the oTagValuePairCount
parameter, and 0 for the iTagValuePairArraySize parameter. ATSUGetAllLayoutControls returns
the size of the tag and value size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllLayoutControls
function again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer
refers to an array of the layout control attribute tag and value size pairs contained in the text layout
object.

1890 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

To obtain the nondefault line control attribute tags and value sizes for a text layout object, call the function
ATSUGetAllLineControls (page 1891).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAllLineControls
Obtains an array of line control attribute tags and value sizes for a line in a text layout object.

OSStatus ATSUGetAllLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to obtain line control attribute values.

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for the object’s line control attributes that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
line. Typically, this is equivalent to the number of ATSUAttributeInfo structures for which you
have allocated memory in the oAttributeInfoArray parameter. To determine this value, see the
Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the line. This may be greater than the value you specified in the
iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetAllLineControls function obtains all nondefault line control attribute tags and their values
sizes for a line in a text layout object. You can pass a tag and value size pair obtained from
ATSUGetAllLineControls to the functionATSUGetLineControl (page 1913) to determine the corresponding
attribute value.

Typically you use the function ATSUGetAllLineControls by calling it twice, as follows:

Functions 1891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, the appropriate
UniCharArrayOffset value in the iLineStart parameter, NULL for the oAttributeInfoArray
parameter, a pointer to an ItemCount value in the oTagValuePairCount parameter, and 0 for the
iTagValuePairArraySize parameter. ATSUGetAllLineControls returns the size of the tag and
value size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllLineControls
function again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer
refers to an array of the line control attribute tag and value size pairs contained in the specified line.

To obtain the nondefault layout control attribute tags and value sizes for a text layout object, call the function
ATSUGetAllLayoutControls (page 1890).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAttribute
Obtains a style attribute value for a style object.

OSStatus ATSUGetAttribute (
 ATSUStyle iStyle,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to obtain an attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
2030) for a description of the Apple-defined style attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain. To determine the size of an application-defined
style attribute value, see the Discussion.

oValue
An ATSUAttributeValuePtr value, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value.

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained, as in the case of custom style run attributes.

1892 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 2068). Note that if the attribute value you want to obtain is not
set, ATSUGetAttribute produces the default value in the oValue parameter and returns the result code
kATSUNotSetErr.

Discussion
The ATSUGetAttribute function obtains the value of a specified style attribute for a given style object.

Before calling ATSUGetAttribute, you should call the function ATSUGetAllAttributes (page 1886) to
obtain an array of nondefault style attribute tags and value sizes for the style object. You can then pass
ATSUGetAttribute the tag and value size for the attribute value to obtain.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetContinuousAttributes
Obtains the style attribute values that are continuous over a given text range.

OSStatus ATSUGetContinuousAttributes (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 UniCharCount iLength,
 ATSUStyle oStyle
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text range to examine. To indicate that the specified text range starts at the beginning
of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text
buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLength
parameter.

iLength
A UniCharCount value specifying the length of the text range to examine. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oStyle
An ATSUStyle value. On return, the style object contains those attributes that are the same for the
entire text range specified by the iOffset and iLength parameters.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Functions 1893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUGetContinuousAttributes function examines the specified text range to obtain the style attribute
values (including those at default values) that remain consistent for the entire text range. You should call
ATSUGetContinuousAttributes to determine the style information that remains constant over text that
has been selected by the user.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetFontFallbacks
Obtains the global font list and search order that ATSUI uses when a font does not have the glyph needed
to image a character. (Deprecated in Mac OS X v10.3. Use font fallback objects instead.)

Not recommended.

OSStatus ATSUGetFontFallbacks (
 ItemCount iMaxFontFallbacksCount,
 ATSUFontID oFontIDs[],
 ATSUFontFallbackMethod *oFontFallbackMethod,
 ItemCount *oActualFallbacksCount
);

Parameters
iMaxFontFallbacksCount

An ItemCount value specifying the maximum number of fonts that you want to obtain. Typically,
this is equivalent to the size of the array allocated in the oFontIDs parameter. To determine this
value, see the Discussion.

oFontIDs
A pointer to memory you have allocated for an array of ATSUFontID values. If you are uncertain of
how much memory to allocate, see the Discussion. On return, the array contains font IDs identifying
the fonts ATSUI searches when seeking a substitute font.

oFontFallbackMethod
A pointer to an ATSUFontFallbackMethod value. On return, the value identifies the order in which
ATSUI searches fonts. See “Font Fallback Methods” (page 2048) for a description of possible values.

oActualFallbacksCount
A pointer to an ItemCount value. On return, the value specifies the actual number of fonts that ATSUI
searches. This value may be greater than that passed in the iMaxFontFallbacksCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not use this function because it operates on a global scope and may not be available in future
versions of ATSUI. You should instead use the function ATSUGetObjFontFallbacks (page 1914) with a font
fallback object that has been associated with a text layout object. See InsideMacOS X: Rendering Unicode Text
With ATSUI for step-by-step instructions on creating a font fallback object and associating it with a text layout
object.

1894 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Special Considerations

Global font fallback settings can be changed by any ATSUI client, so they can be changed unexpectedly. The
only way to ensure that ATSUI uses your preferred font fallback settings for your text is to create a font fallback
object and associated it with a text layout object. See the Discussion for more details.

Version Notes
Available beginning with ATSUI 1.1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetFontFeature
Obtains the font feature corresponding to an index into an array of font features for a style object.

OSStatus ATSUGetFontFeature (
 ATSUStyle iStyle,
 ItemCount iFeatureIndex,
 ATSUFontFeatureType *oFeatureType,
 ATSUFontFeatureSelector *oFeatureSelector
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iFeatureIndex
An ItemCount value specifying an index into the array of font features for the style object. This index
identifies the font feature to examine. Because this index is zero-based, you must pass a value between
0 and one less than the value produced in the oActualFeatureCount parameter of the function
ATSUGetAllFontFeatures (page 1887).

oFeatureType
A pointer to memory you have allocated for an ATSUFontFeatureType value. On return, the value
identifies the font feature type corresponding to the index passed in the iFeatureIndex parameter.

oFeatureSelector
A pointer to memory you have allocated for an ATSUFontFeatureSelector value. On return, the
value identifies the font feature selector that corresponds to the feature type produced in the
oFeatureType parameter.

Return Value
A result code. Note that if the index specifies a font feature that is not set, ATSUGetFontFeature produces
the font-specified default value for the feature and returns the result code kATSUNotSetErr. See “ATSUI
Result Codes” (page 2068).

Functions 1895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUGetFontFeature function obtains the setting for a specified font feature in a style object. You
might typically call ATSUGetFontFeature if you need to obtain one previously set feature after another
within your program’s processing loop. To obtain all previously set font features for a given style object, you
can call the function ATSUGetAllFontFeatures (page 1887).

Before calling ATSUGetFontFeature, you should call the function ATSUGetAllFontFeatures (page 1887)
to obtain a count of the font features that are set in the style object. You can then pass the index for the
feature whose setting you want to obtain in the iTag and iMaximumValueSize parameters of
ATSUGetFontFeature.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureNameCode
Obtains the name code for a font’s feature type or selector that matches an ASTUI font ID, feature type, and
feature selector.

OSStatus ATSUGetFontFeatureNameCode (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ATSUFontFeatureSelector iSelector,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain the name code for a feature type or selector.
Note that because Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs
can change across system restarts.

iType
An ATSUFontFeatureType constant identifying a valid feature type. To obtain the valid feature
types for a font, call the function ATSUGetFontFeatureTypes (page 1898).

iSelector
An ATSUFontFeatureSelector constant identifying a valid feature selector that corresponds to
the feature type passed in the iType parameter. If you pass the constant kATSUNoSelector, the
name code produced by ATSUGetFontFeatureNameCode is that of the feature type, not the feature
selector. To obtain the valid feature selectors for a font, call the
functionATSUGetFontFeatureSelectors (page 1897).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font feature
selector or type. The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h
header file.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1896 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUGetFontFeatureNameCode function obtains the name code for a font’s feature type or selector
that matches an ASTUI font ID, feature type and feature selector values. By default,
ATSUGetFontFeatureNameCode function obtains the name code of a feature selector. To determine the
name code of a feature type, pass the constant kATSUNoSelector in the iSelector parameter.

You can use the function ATSUFindFontName (page 1880) to obtain the localized name string for the name
code produced by ATSUGetFontFeatureNameCode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureSelectors
Obtains the available feature selectors for a given feature type in a font.

OSStatus ATSUGetFontFeatureSelectors (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ItemCount iMaximumSelectors,
 ATSUFontFeatureSelector oSelectors[],
 Boolean oSelectorIsOnByDefault[],
 ItemCount *oActualSelectorCount,
 Boolean *oIsMutuallyExclusive
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iType
An ATSUFontFeatureType value specifying one of the font’s supported feature types. To obtain the
available feature types for a font, call the function ATSUGetFontFeatureTypes (page 1898).

iMaximumSelectors
An ItemCount value specifying the maximum number of feature selectors to obtain for the font’s
specified feature type. Typically, this is equivalent to the number of elements in the oSelectors
array.

oSelectors
A pointer to memory you have allocated for an array of ATSUFontFeatureSelector values. You
can call the functionATSUCountFontFeatureSelectors (page 1859) to obtain the number of available
feature selectors for a given font feature type and thus determine the amount of memory to allocate.
On return, the array contains constants identifying each available feature selector for the given feature
type. The constants that represent font feature selectors are defined in the header file
SFNTLayoutTypes.h and are described in Inside Mac OS X: Rendering Unicode Text With ATSUI.

oSelectorIsOnByDefault
A pointer to memory you have allocated for an array of Boolean values. The number of elements in
this array should correspond to the number of elements in the oSelectors array. On return, the
array contains Boolean values indicating whether the corresponding feature selector in the
oSelectors array is on or off. If true, the feature selector is on by default; if false, off.

Functions 1897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oActualSelectorCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature selectors
defined for the given feature type. This value may be greater than the value you specify in the
iMaximumSelectors parameter.

oIsMutuallyExclusive
A pointer to a Boolean value. On return, the value indicates whether the feature selectors for the
given feature type are exclusive or nonexclusive. If a feature type is exclusive you can choose only
one of its available feature selectors at a time, such as whether to display numbers as proportional
or fixed-width. If a feature type is nonexclusive, you can enable any number of feature selectors at
once. If true, the feature type is exclusive and only one selector can be used at a time.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
A given font may not support all possible feature types and selectors. If you select features that are not
available in a font, you won’t see a change in the glyph’s appearance. To determine the available features
of a font, you can call the functions ATSUGetFontFeatureTypes (page 1898) and
ATSUGetFontFeatureSelectors.

The ATSUGetFontFeatureSelectors function reads the font data table for the specified font and obtains
its supported feature selectors for the given feature types. You can then use this information both to present
the user a list of font features from which to select and to call such functions as ATSUSetFontFeatures (page
1952) with more accuracy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureTypes
Obtains the available feature types of a font.

OSStatus ATSUGetFontFeatureTypes (
 ATSUFontID iFontID,
 ItemCount iMaximumTypes,
 ATSUFontFeatureType oTypes[],
 ItemCount *oActualTypeCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iMaximumTypes
An ItemCount value specifying the maximum number of feature types to obtain for the font. Typically,
this is equivalent to the number of elements in the oTypes array.

1898 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oTypes
A pointer to memory you have allocated for an array of ATSUFontFeatureType values. You can call
the function ATSUCountFontFeatureTypes (page 1860) to obtain the number of available feature
types for a given font and thus determine the amount of memory to allocate. On return, the array
contains constants identifying each type of feature that is defined for the font. The constants that
represent font feature types are defined in the header file SFNTLayoutTypes.h and are described
in Inside Mac OS X: Rendering Unicode Text With ATSUI.

oActualTypeCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature types
defined in the font. This may be greater than the value you specify in the iMaximumTypes parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
A given font may not support all possible feature types and selectors. If you select features that are not
available in a font, you won’t see a change in the glyph’s appearance. To determine the available features
of a font, you can call the functions ATSUGetFontFeatureTypes and
ATSUGetFontFeatureSelectors (page 1897).

The ATSUGetFontFeatureTypes function reads the font data table for the specified font and obtains its
supported feature types. You can then use this information both to present the user a list of font features
from which to select and to call such functions as ATSUSetFontFeatures (page 1952) with more accuracy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontIDs
Obtains a list of all the ATSUI-compatible fonts installed on the user’s system.

OSStatus ATSUGetFontIDs (
 ATSUFontID oFontIDs[],
 ItemCount iArraySize,
 ItemCount *oFontCount
);

Parameters
oFontIDs

A pointer to memory you have allocated for an array of ATSUFontID values. On return, the array
contains unique identifiers for each of the ATSUI-compatible fonts installed on the user’s system. You
should allocate enough memory to contain an array the size of the count produced by the function
ATSUFontCount (page 1885).

iArraySize
An ItemCount value specifying the maximum number of fonts to obtain. Typically, this is equivalent
to the number of ATSUFontID values for which you have allocated memory in the oFontIDs
parameter.

Functions 1899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oFontCount
A pointer to an ItemCount value. On return, the value specifies the actual number of ATSUI-compatible
fonts installed on the user’s system. This may be greater than the value you specified in the
iArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetFontIDs function obtains the IDs of all the fonts on the user’s system except for the last-resort
font. It is important to note that the set of installed ATSUI-compatible fonts may change while your application
is running. In Mac OS X, the set of installed fonts may change at any time. Although in Mac OS 9, fonts cannot
be removed from the Fonts folder while an application other than the Finder is running, they can be removed
from other locations, and it is possible for fonts to be added.

To ensure an accurate representation of the set of installed ATSUI-compatible fonts, you should call
ATSUGetFontIDs to rebuild your font menu each time your application is brought to the foreground.

Finally, note that Apple Type Services assigns ATSUFontID values systemwide at runtime. As a result, these
font IDs can change across system restarts.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontInstance
Obtains the font variation axis values for a font instance.

OSStatus ATSUGetFontInstance (
 ATSUFontID iFontID,
 ItemCount iFontInstanceIndex,
 ItemCount iMaximumVariations,
 ATSUFontVariationAxis oAxes[],
 ATSUFontVariationValue oValues[],
 ItemCount *oActualVariationCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iFontInstanceIndex
An ItemCount value specifying an index into an array of instances for the font. This index identifies
the font instance to examine. Because this index is zero-based, you must pass a value between 0 and
one less than the value produced in the oInstances parameter of the function
ATSUCountFontInstances (page 1860).

1900 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iMaximumVariations
An ItemCount value specifying the maximum number of font variation axes to obtain for the font
instance. Typically, this is equivalent to the number of ATSUFontVariationAxis and
ATSUFontVariationValue values for which you have allocated memory in the oAxes and oValues
parameters, respectively. To determine this value, see the Discussion.

oAxes
A pointer to memory you have allocated for an array of ATSUFontVariationAxis values. On return,
the array contains tags identifying the font variation axes that constitute the font instance. If you are
uncertain of how much memory to allocate for this array, see the Discussion.

oValues
A pointer to memory you have allocated for an array of ATSUFontVariationValue values. On return,
the array contains the defined values for the font variation axes produced in the oAxes array. If you
are uncertain of how much memory to allocate for this array, see the Discussion.

oActualVariationCount
A pointer to an ItemCount value. On return, the value specifies the actual number of font variation
axes that constitute the font instance. This may be greater than the value you passed in the
iMaximumVariations parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
A font instance consists of a named set of values for each variation axis in a font. For example, suppose a
font has the variation axis 'wght' with a minimum value of 0.0, a default of 0.5, and a maximum of 1.0.
Additionally, the variation axis 'wdth' is also defined for the font, with a similar value range. The type
designer can then choose to declare a font instance for a set of specific values within these axes, such as
“Demibold” for a value of 0.8 for the 'wght' axis and 0.5 for the 'wdth' axis. By calling the function
ATSUGetFontInstance, you can obtain the variation axis values for a given index into an array of font
instances.

Typically you use the function ATSUGetFontInstance by calling it twice, as follows:

1. Pass the ID of the font to examine in the iFont parameter, a valid pointer to an ItemCount value in
the oActualVariationCount parameter, NULL for the oAxes and oValues parameters, and 0 for the
other parameters. ATSUGetFontInstance returns the size to use for the oAxes and oValues arrays
in the oActualVariationCount parameter.

2. Allocate enough space for arrays of the returned size, then call the ATSUGetFontInstance again,
passing pointers to the arrays in the oAxes and oValues parameters. On return, the arrays contain the
font variation axes and their corresponding values, respectively, for the font instance.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontInstanceNameCode
Obtains the name code for the font instance that matches an ASTUI font ID and font instance index value.

Functions 1901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetFontInstanceNameCode (
 ATSUFontID iFontID,
 ItemCount iInstanceIndex,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain a font instance name code. Note that because
Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across
system restarts.

iInstanceIndex
An ItemCount value providing an index to the font instance for which to obtain a name code. Because
this index must be 0-based, you should pass a value between 0 and one less than the count produced
by the function ATSUCountFontInstances (page 1860).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font instance.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
A font instance consists of a named set of values for each variation axis in a font. The
ATSUGetFontInstanceNameCode function obtains the name code for the font instance that matches an
ASTUI font ID and font instance index value.

You can use the function ATSUFindFontName (page 1880) to obtain the localized name string for the name
code produced by ATSUGetFontInstanceNameCode. You can obtain the font variation axis values for a
font instance by calling the functionATSUGetFontInstance (page 1900).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontVariationNameCode
Obtains the name code for the font variation that matches an ASTUI font ID and font variation axis.

OSStatus ATSUGetFontVariationNameCode (
 ATSUFontID iFontID,
 ATSUFontVariationAxis iAxis,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain a font variation name code. Note that because
Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across
system restarts.

1902 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iAxis
An ATSUFontVariationAxis value representing a valid variation axis tag. To obtain a valid variation
axis tag for a font, you can call the functionsATSUGetIndFontVariation (page 1911) or
ATSUGetFontInstance (page 1900).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font variation.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetFontVariationNameCode function obtains the name code for the font variation that matches
an ASTUI font ID and font variation axis tag. You can use the function ATSUFindFontName (page 1880) to
obtain the localized name string for the name code produced by ATSUGetFontVariationNameCode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontVariationValue
Obtains the current value for a font variation axis in a style object.

OSStatus ATSUGetFontVariationValue (
 ATSUStyle iStyle,
 ATSUFontVariationAxis iFontVariationAxis,
 ATSUFontVariationValue *oFontVariationValue
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iFontVariationAxis
An ATSUFontVariationAxis tag specifying the style object’s variation axis to examine. You can
obtain variation axis tags for a style object from the function ATSUGetAllFontVariations (page
1888).

oFontVariationValue
A pointer to memory you have allocated for an ATSUFontVariationValue value. On return,
ATSUGetFontVariationValue produces the currently set value for the style object’s specified
variation axis. If this value has not been set, ATSUGetFontVariationValue produces the font-defined
default value.

Return Value
A result code. Note that if no value has been set for the specified variation axis, ATSUGetFontVariationValue
produces the font-defined default value and returns the result code kATSUNotSetErr. See “ATSUI Result
Codes” (page 2068).

Functions 1903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUGetFontVariationValue function obtains the setting for a specified font variation axis in a style
object. You might typically call ATSUGetFontVariationValue if you need to obtain one previously set
variation axis value after another within your program’s processing loop. To obtain all nondefault font variation
axis values for a given style object, you can call the function ATSUGetAllFontVariations (page 1888).

Before calling ATSUGetFontVariationValue, call the function ATSUGetAllFontVariations (page 1888) to
obtain the font variation axes that are set for the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetGlyphBounds
Obtains the typographic bounds of a line of glyphs after final layout.

OSStatus ATSUGetGlyphBounds (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iBoundsCharStart,
 UniCharCount iBoundsCharLength,
 UInt16 iTypeOfBounds,
 ItemCount iMaxNumberOfBounds,
 ATSTrapezoid oGlyphBounds[],
 ItemCount *oActualNumberOfBounds
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin of the line containing the
glyphs in the current graphics port or Quartz graphics context. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the glyph
bounds relative to the current pen location in the current graphics port or graphics context. You can
pass 0 to obtain only the dimensions of the bounds relative to one another, not their actual onscreen
position.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin of the line containing the
glyphs in the current graphics port or Quartz graphics context. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the glyph
bounds relative to the current pen location in the current graphics port or graphics context. You can
pass 0 to obtain only the dimensions of the bounds relative to one another, not their actual onscreen
position.

1904 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iBoundsCharStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
character corresponding to the first glyph to measure. To indicate that the text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning.

iBoundsCharLength
A UniCharCount value specifying the length of the text range to measure. If you want the range to
extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

iTypeOfBounds
A glyph bounds constant indicating whether the width of the resulting typographic glyph bounds is
determined using the caret origin (midway between two characters), the glyph origin in device space,
or the glyph origin in fractional absolute positions (uncorrected for device display). See “Glyph Origin
Selectors” (page 2049) for a description of possible values.

iMaxNumberOfBounds
An ItemCount value specifying the maximum number of bounding trapezoids to obtain. Typically,
this is equivalent to the number of bounds in the oGlyphBounds array. To determine this value, see
the Discussion.

oGlyphBounds
A pointer to memory you have allocated for an array of ATSTrapezoid values. On return, the array
contains a trapezoid representing the typographic bounds for glyphs in the text range. If the specified
range of text encloses nested bidirectional text, ATSUGetGlyphBounds produces multiple trapezoids
defining these regions.In ATSUI 1.1, the maximum number of enclosing trapezoids that can be returned
is 31; in ATSUI 1.2, the maximum number is 127. If you pass a range that covers an entire line,
ATSUGetGlyphBounds returns 1 trapezoid. If you are uncertain of how much memory to allocate for
this array, see the Discussion.

oActualNumberOfBounds
A pointer to an ItemCount value. On return, the value specifies the actual number of enclosing
trapezoids bounding the specified characters. This may be greater than the value you provide in the
iMaxNumberOfBounds parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
There are two kinds of bounds that your application may typically want to obtain for a block of text:
typographic bounds and image bounds. The image bounds define the smallest rectangle that completely
encloses the filled or framed parts of a block of text—that is, the text’s “inked” glyphs. Because of the potential
differences in glyph height in a text block, your application may instead need to determine the typographic
bounds. The typographic bounding rectangle contains the extra space above and below the image bounding
rectangle where characters with ascenders or descenders would be drawn (even if none currently are).

The ATSUGetGlyphBounds function produces the enclosing trapezoid(s) that represent the typographic
bounds for glyphs in a final, laid-out range of text. You typically call this function when you need to obtain
an enclosing trapezoid for a line, taking rotation and all other layout attributes into account.

ATSUI determines the height of each trapezoid by examining any line ascent and descent attribute values
you may have set for the line. If you have not set these attributes for the line, the ATSUGetGlyphBounds
function uses any line ascent and descent values you may have set for the text layout object containing the
line. If these are not set, ATSUGetGlyphBounds uses the font’s natural line ascent and descent values for
the line. If these are previously set, ATSUGetGlyphBounds uses the ATSUStyle ascent and or descent/leading
values.

Functions 1905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Depending on the value you pass in the iTypeOfBounds parameter, the width of the resulting trapezoid(s)
is determined using one of the following values:

 ■ the caret origin, located halfway between two characters, which should be used when performing your
own highlighting

 ■ the glyph origin in device space, which is useful for obtaining bounds adjusted for specific rendering
and device constraints

 ■ the glyph origin in fractional (or “ideal”) absolute positions, uncorrected for device display

Note that the coordinates produced for the trapezoid(s) are offset by the amount specified in the
iTextBasePointX and iTextBasePointY parameters. If your goal in calling the ATSUGetGlyphBounds
function is to obtain metrics for drawing the typographic bounds on the screen, pass the position of the
origin of the line in the current graphics port or graphics context in these parameters. This enables
ATSUGetGlyphBounds to match the trapezoids to their onscreen image.

Before calculating the typographic glyph bounds for the given text range, the ATSUGetGlyphBounds function
examines the text layout object to make sure that the style runs cover the entire range of text. If there are
gaps between style runs, ATSUGetGlyphBounds assigns the characters in the gap to the style run following
the gap. If there is no style run at the beginning of the range of text, ATSUGetGlyphBounds assigns these
characters to the first style run it can find. If there is no style run at the end of the range of text,
ATSUGetGlyphBounds assigns the remaining characters to the last style run it can find.

Typically you use the ATSUGetGlyphBounds function by calling it twice, as follows:

1. Pass NULL for the oGlyphBounds parameter, 0 for the iMaxNumberOfBounds parameter, and valid
values for the other parameters. The ATSUGetGlyphBounds function returns the actual number of
trapezoids needed to enclose the glyphs in the oActualNumberOfBounds parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oGlyphBounds parameter. On return, the buffer contains the trapezoids for
the glyphs’ typographic bounds.

To obtain the typographic bounds of a line of text prior to line layout, call the function
ATSUGetUnjustifiedBounds (page 1923). To calculate the image bounding rectangle for a final laid-out
line, call the function ATSUMeasureTextImage (page 1938).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

ATSUGetGlyphInfo
Obtains a copy of the style and layout information for each glyph in a line. (Deprecated in Mac OS X v10.3.
Use functions from “Accessing Glyph Data” (page 1842) instead.)

Not recommended.

1906 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetGlyphInfo (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 UniCharCount iLineLength,
 ByteCount *ioBufferSize,
 ATSUGlyphInfoArray *oGlyphInfoPtr
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line to examine. To indicate that the line starts at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

iLineLength
A UniCharCount value specifying the length of the line. If you want the line to extend to the end of
the text buffer, you can pass the constant kATSUToTextEnd.

ioBufferSize
A pointer to a ByteCount value specifying the size of the buffer you have allocated for the
ATSUGlyphInfoArray structure produced in the oGlyphInfoPtr parameter. On return, the value
specifies the actual size of the ATSUGlyphInfoArray structure.

oGlyphInfoPtr
A pointer to an ATSUGlyphInfoArray structure. On return, the structure contains values identifying
the text layout object, the number of glyphs in the specified line, and an array of ATSUGlyphInfo
structures for each of the glyphs. Each ATSUGlyphInfo structure contains information identifying
the glyph, the style object with which it is associated, and other related layout values.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetGlyphInfo function obtains a copy of the style and layout information for each glyph in a line
of text. Copying can be slow, so it’s best to use this function only if you do not plan to modify the glyph
information. If you do modify the glyph information, you can only draw the modified glyphs by calling the
function ATSUDrawGlyphInfo (page 1877). Because you are working with a copy of the glyph data and not
the actual data that ATSUI has, if you try to draw text by calling the ATSUDrawText (page 1877) function, none
of the changes you make to the glyph information will be reflected in the drawn text.

Note that is you obtain glyph information with the function ATSUGetGlyphInfo and then draw glyphs using
ATSUDrawGlyphInfo, ATSUI does not take synthetic styles into account when it draw. This means that font
substitution will not work.

If you want to modify glyph information you should instead use the ATSUI direct-access functions
ATSUGlyphGetQuadraticPaths (page 1928) or ATSUGlyphGetCubicPaths (page 1925). You use each of
these functions along with callback functions you supply for drawing the glyphs. When you modify and draw
glyphs using ATSUI’s direct-access functions, you obtain access to the same information as that supplied by
the function ATSUGetGlyphInfo, but in a way that allows font substitution to work. For more information
on retrieving and drawing glyph outlines, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

Functions 1907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

The Unicode characters in the text layout object (ATSUTextLayout) and the glyphs returned by the function
ATSUGetGlyphInfo do not necessarily have a one-to-one correspondence. For example, the accented Latin
character é can be represented by an e with a combining ´ accent. In this case, two characters map to one
glyph.

Common ligatures such as fi also form automatically for some fonts, causing two characters to map to one
glyph. Right-to-left scripts such as Arabic, and complex scripts such as Devanagari or Thai have even more
complicated mappings from characters to glyphs.

For this reason it's best to use the high level ATSUI functions whenever possible, and to associate a paragraph
of text with a text layout object. Your application is then completely insulated from such issues.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGetIndFontName
Obtains a name string, name code, platform, script, and language for the font that matches an ATSUI font
ID and name table index value.

OSStatus ATSUGetIndFontName (
 ATSUFontID iFontID,
 ItemCount iFontNameIndex,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 FontNameCode *oFontNameCode,
 FontPlatformCode *oFontNamePlatform,
 FontScriptCode *oFontNameScript,
 FontLanguageCode *oFontNameLanguage
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain information. Note that because Apple Type
Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

iFontNameIndex
An ItemCount value providing an index to the font for which to obtain information. Because this
index must be 0-based, you should pass a value between 0 and one less than the count produced by
the function ATSUCountFontNames (page 1861).

iMaximumNameLength
A ByteCount value specifying the maximum length of the font name string to obtain. Typically, this
is equivalent to the size of the buffer that you have allocated in the oName parameter. To determine
this length, see the Discussion.

1908 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oName
A pointer to a buffer. On return, the buffer contains the name string of the font matching the ATSUI
font ID and name table index value being passed. If the buffer you allocate is not large enough to
contain the name string, ATSUGetIndFontName produces a partial string.

oActualNameLength
A pointer to a ByteCount value. On return, the value specifies the actual length of the complete
name string. This may be greater than the value passed in the iMaximumNameLength parameter.
You should check this value to ensure that you have allocated sufficient memory and therefore
obtained the complete name string for the font.

oFontNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font. The
FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file. ATSUI can
return any of the following constants, kFontCopyrightName, kFontFamilyName, kFontStyleName,
kFontUniqueName, kFontFullName, kFontVersionName, kFontPostscriptName,
kFontTrademarkName,kFontManufacturerName,kFontDesignerName,kFontDescriptionName,
kFontVendorURLName, kFontDesignerURLName, kFontLicenseDescriptionName, or
kFontLicenseInfoURLName.

oFontNamePlatform
A pointer to a FontPlatformCode value. On return, this value specifies the encoding of the font, for
example, kFontUnicodePlatform, kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. See the SFNTTypes.h header file for a
definition of the FontPlatformCode type and a list of possible values.

oFontNameScript
A pointer to a FontScriptCode value. On return, this value specifies the script code of the font, for
example, kFontRomanScript. See the SFNTTypes.h header file for a definition of the
FontScriptCode type and a list of possible values.

oFontNameLanguage
A pointer to a FontLanguageCode value. On return, this value specifies the language of the font, for
example, kFontNorwegianLanguage. See the SFNTTypes.h header file for a definition of the
FontLanguageCode type and a list of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetIndFontName function obtains a name string, name code, language code, script code, and
platform code for the font that matches the specified ATSUI font ID and name table index value.

Typically you use the ATSUGetIndFontName function by calling it twice, as follows:

1. Pass valid values for the iFontID, iFontNameIndex, and oActualNameLength parameters, 0 for the
iMaximumNameLength parameter, and NULL for the other parameters. ATSUGetIndFontName returns
the length of the font name string in the oActualNameLength parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oName parameter. On return, the buffer contains the font name string.

To find a name string and index value for the first font in a name table that matches an ATSUI font ID and
the specified font parameters, call the function ATSUFindFontName (page 1880). To obtain an ATSUI font ID
for the first font in a name table that matches the specified name string, name code, platform, script, and/or
language, call the function ATSUFindFontFromName (page 1879).

Functions 1909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetIndFontTracking
Obtains the name code and tracking value for the font tracking that matches an ASTUI font ID, glyph
orientation, and tracking table index.

OSStatus ATSUGetIndFontTracking (
 ATSUFontID iFontID,
 ATSUVerticalCharacterType iCharacterOrientation,
 ItemCount iTrackIndex,
 Fixed *oFontTrackingValue,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font tracking for which to obtain a name code and tracking value. Note
that because Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can
change across system restarts.

iCharacterOrientation
An ATSUVerticalCharacterType constant identifying the glyph orientation of the font tracking
value to obtain, for example kATSUStronglyHorizontal or kATSUStronglyVertical. See “Vertical
Character Types” (page 2068) for a description of possible values.

iTrackIndex
An ItemCount value providing an index to the font tracking for which to obtain information. Because
this index must be 0-based, you should pass a value between 0 and one less than the count produced
by the function ATSUCountFontTracking (page 1861).

oFontTrackingValue
A pointer to a Fixed value. On return, the value contains the font tracking value.

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font tracking.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can call the ATSUGetIndFontTracking function to obtain the name code and tracking value that
matches the specified ATSUI font ID, glyph orientation, and tracking table index value.

You can use the function ATSUFindFontName (page 1880) to obtain the localized name string for the name
code produced by ATSUGetIndFontTracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1910 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeFonts.h

ATSUGetIndFontVariation
Obtains a variation axis and its value range for a font.

OSStatus ATSUGetIndFontVariation (
 ATSUFontID iFontID,
 ItemCount iVariationIndex,
 ATSUFontVariationAxis *oATSUFontVariationAxis,
 ATSUFontVariationValue *oMinimumValue,
 ATSUFontVariationValue *oMaximumValue,
 ATSUFontVariationValue *oDefaultValue
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iVariationIndex
An ItemCount value specifying an index into the array of variation axes for the font. This index
identifies the font variation axis to examine. Because this index is zero-based, you must pass a value
between 0 and one less than the value produced in the oVariationCount parameter of the function
ATSUCountFontVariations (page 1862).

oATSUFontVariationAxis
A pointer to an ATSUFontVariationAxis value. On return, the value provides a four-character code
identifying the font variation axis corresponding to the specified index.

oMinimumValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
minimum.

oMaximumValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
maximum.

oDefaultValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
default.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
By calling the function ATSUGetIndFontVariation, you can obtain a variation axis and its maximum,
minimum, and default values for a font.

If you supply font variation axes and values to the function ATSUSetVariations (page 1967), you can change
the appearance of a style object’s font accordingly.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 1911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeFonts.h

ATSUGetLayoutControl
Obtains a layout control attribute value for a text layout object.

OSStatus ATSUGetLayoutControl (
 ATSUTextLayout iTextLayout,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain a layout control
attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
2030) for a description of the Apple-defined attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain. To determine the size of an application-defined
style attribute value, see the Discussion.

oValue
An ATSUAttributeValuePtr pointer, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value. If the value is unset, ATSUGetLayoutControl
produces the default value in this parameter.

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetLayoutControl function obtains the value of a specified layout control attribute for a given
text layout object.

Before calling ATSUGetLayoutControl, you should call the function ATSUGetAllLayoutControls (page
1890) to obtain an array of nondefault layout control attribute tags and value sizes for the text layout object.
You can then pass the tag and value size for the attribute value to obtain to ATSUGetLayoutControl.

Typically you use the function ATSUGetLayoutControl by calling it twice, as follows:

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, NULL for the
oValue parameter, 0 for the iExpectedValueSize parameter. ATSUGetLayoutControl returns the
actual size of the attribute value in the oActualValueSize parameter.

1912 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

2. Allocate enough space for an array of the returned size, then call the ATSUGetLayoutControl function
again, passing a valid pointer in the oValue parameter. On return, the pointer refers to the actual attribute
value contained in the text layout object.

To obtain the value of a line control attribute value for a text layout object, call the function
ATSUGetLineControl (page 1913).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetLineControl
Obtains a line control attribute value for a line in a text layout object.

OSStatus ATSUGetLineControl (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain a line control attribute
value.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to obtain a line control attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
2030) for a description of the Apple-defined attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain.

oValue
An ATSUAttributeValuePtr pointer, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value. If the value is unset, ATSUGetLineControl
produces the default value in this parameter.

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Functions 1913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUGetLineControl function obtains the value of a specified line control attribute for a given line of
text in a text layout object.

Before calling ATSUGetLineControl, you should call the function ATSUGetAllLineControls (page 1891)
to obtain an array of nondefault line control attribute tags and value sizes for the line. You can then pass the
tag and value size for the attribute value to obtain to ATSUGetLineControl.

To obtain the value of a layout control attribute value for a text layout object, call the function
ATSUGetLayoutControl (page 1912).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetNativeCurveType
Obtains the type of outline path used for glyphs associated with a given style object.

OSStatus ATSUGetNativeCurveType (
 ATSUStyle iATSUStyle,
 ATSCurveType *oCurveType
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

oCurveType
A pointer to an ATSCurveType value. On return, the value provides a constant specifying the type
of outline path being used. Possible values include kATSCubicCurveType, kATSQuadCurveType,
and kATSOtherCurveType.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can call the ATSUGetNativeCurveType function to obtain the type of outline path used for glyphs
associated with a given style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGetObjFontFallbacks
Obtains the font list and font-search method associated with a font fallback object.

1914 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetObjFontFallbacks (
 ATSUFontFallbacks iFontFallbacks,
 ItemCount iMaxFontFallbacksCount,
 ATSUFontID oFonts[],
 ATSUFontFallbackMethod *oFontFallbackMethod,
 ItemCount *oActualFallbacksCount
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object to examine.

iMaxFontFallbacksCount
An ItemCount value specifying the maximum number of fonts that you want to obtain. Typically,
this is equivalent to the size of the array allocated in the oFonts parameter. To determine this value,
see the Discussion.

oFonts
A pointer to memory you have allocated for an array of ATSUFontID values. If you are uncertain of
how much memory to allocate, see the Discussion. On return, the array contains font IDs identifying
the fonts in the font list associated with the font fallback object.

oFontFallbackMethod
A pointer to an ATSUFontFallbackMethod value. On return, the value identifies the font-search
method associated with the font fallback object. See “Font Fallback Methods” (page 2048) for a
description of possible values.

oActualFallbacksCount
A pointer to an ItemCount value. On return, the value specifies the actual number of fonts in the
font list associated with the text layout object. This value may be greater than that passed in the
iMaxFontFallbacksCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetObjFontFallbacks function obtains the list of fonts and the search order associated with a
given font fallback object.

Typically you use the function ATSUGetObjFontFallbacks by calling it twice, as follows:

1. Pass valid values for the iFontFallbacks and oActualFallbacksCount parameters, NULL for the
oFonts and oFontFallbackMethod parameters and 0 for the iMaxFontFallbacksCount parameter.
ATSUGetObjFontFallbacks returns the size of the font array in the oActualFallbacksCount
parameter.

2. Allocate enough space for an array of the returned size, then call the function again, passing a valid
pointer in the oFonts parameter. On return, the array contains the font list associated with the font
fallback object.

You set the font list and search method for a font fallback object by calling the function
ATSUSetObjFontFallbacks (page 1958).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Functions 1915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeObjects.h

ATSUGetRunStyle
Obtains style run information for a character offset in a run of text.

OSStatus ATSUGetRunStyle (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 ATSUStyle *oStyle,
 UniCharArrayOffset *oRunStart,
 UniCharCount *oRunLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain style run information.

iOffset
A pointer to a UniCharArrayOffset value. This value should specify the offset from the beginning
of the text buffer to the character for which to obtain style run information. To specify the beginning
of the text buffer, you can pass the constant kATSUFromTextBeginning.

oStyle
A pointer to an ATSUStyle value. On return, the value specifies the style object assigned to the range
of text containing the character at iOffset. Note that if you pass an offset in the iOffset parameter
that is at a style run boundary, ATSUGetRunStyle produces style run information for the following,
not preceding, style run.

oRunStart
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text buffer to the first character of the style run containing the character at iOffset. Note that
the entire style run does not necessarily share the same unset attribute values as the character at
iOffset.

oRunLength
A pointer to a UniCharCount value. On return, the value specifies the length of the style run containing
the character at iOffset.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can use the ATSUGetRunStyle function to obtain the style object assigned to a given text offset.
ATSUGetRunStyle also produces the encompassing text range that shares the style object with the offset.

Note that the style object contains those previously set style attributes, font features, and font variations that
are continuous for the range of text that includes the specified text offset. If you want to obtain all shared
style information for a style run, including any unset attributes, call the function
ATSUGetContinuousAttributes (page 1893) instead.

If only one style run is set in the text layout object, and it does not cover the entire text layout object,
ATSUGetRunStyle uses the style run information for the iOffset parameter to set the style run information
for the remaining text.

1916 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetSoftLineBreaks
Obtains soft line breaks in a range of text.

OSStatus ATSUGetSoftLineBreaks (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength,
 ItemCount iMaximumBreaks,
 UniCharArrayOffset oBreaks[],
 ItemCount *oBreakCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To indicate that the specified text range
starts at the beginning of the text buffer, you can pass the constant kATSUFromTextBeginning, To
specify the entire text buffer, passkATSUFromTextBeginning in this parameter andkATSUToTextEnd
in the iRangeLength parameter.

iRangeLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

iMaximumBreaks
An ItemCount value specifying the maximum number of soft line breaks to obtain. Typically, this is
equivalent to the number of UniCharArrayOffset values for which you have allocated memory in
the oBreaks array. To determine this value, see the Discussion.

oBreaks
A pointer to memory you have allocated for an array of UniCharArrayOffset values. On return,
the array contains offsets from the beginning of the text buffer to each of the soft line breaks in the
text range. If you are uncertain of how much memory to allocate for this array, see the Discussion.

oBreakCount
A pointer to an ItemCount value. On return, the value specifies the actual number of soft line breaks
in the range of text. This may be greater than the value you specified in the iMaximumBreaks
parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetSoftLineBreaks function obtains the soft line breaks that are currently set in a given text
range.

Functions 1917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Typically you use the function ATSUGetSoftLineBreaks by calling it twice, as follows:

1. Pass valid values for the iTextLayout, iRangeStart, iRangeLength, and oBreakCount parameters.
Pass NULL for the oBreaks parameter and 0 for the iMaximumBreaks parameter. On return, the value
of the oBreakCount parameter specifies the number of items in the offset array.

2. Allocate enough space for an array of the appropriate size (number of items in the array multiplied by
4 bytes per item), then call the function again, passing a valid pointer in the oBreaks parameter. On
return, the pointer refers to an array containing the text range’s soft line breaks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGetStyleRefCon
Obtains application-specific data for a style object.

OSStatus ATSUGetStyleRefCon (
 ATSUStyle iStyle,
 URefCon *oRefCon
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to obtain application-specific data.

oRefCon
A pointer to a 32-bit value. On return, the value contains or refers to application-specific style data.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetStyleRefCon function obtains a reference constant (that is, application-specific data) associated
with a style object. To associate a reference constant with a style object, call the function
ATSUSetStyleRefCon (page 1961).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTabArray
Retrieves the tab ruler associated with a text layout object.

1918 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetTabArray (
 ATSUTextLayout iTextLayout,
 ItemCount iMaxTabCount,
 ATSUTab oTabs[],
 ItemCount *oTabCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object whose tab ruler you want to obtain.

iMaxTabCount
The maximum number of tabs that can be written to the iTabs array.

oTabs[]
An array of ATSUTab values. On return, this array contains the current tab values in order of position
along the line from left to right. Pass NULL if you want to retrieve the number of tabs, but not the tab
values.

oTabCount
The number of tabs set for the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
This function can be used to retrieve all the tabs that were previously set for a text layout object, using the
function ATSUSetTabArray. All the returned tabs will be in order of position along the line.Typically you
use the ATSUGetTabArray function by calling it twice, as follows:

1. Pass NULL for the oTabs parameter, 0 for the iMaxTabCount parameter, and valid values for the other
parameters. The ATSUGetTabArray function returns the actual number of tabs in the oTabCount
parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oTabs parameter. On return, the buffer contains the tab values in order of
position along the line from left to right.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTextHighlight
Obtains the highlight region for a range of text.

Functions 1919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetTextHighlight (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength,
 RgnHandle oHighlightRegion
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object containing the text range.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the highlight
region relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the highlight
region relative to the current pen location in the current graphics port.

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range. If the range of text spans multiple lines, you should call
ATSUGetTextHighlight for each line, passing the offset corresponding to the beginning of the
new line with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. If you want the text range to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oHighlightRegion
A valid RgnHandle value. On return, ATSUGetTextHighlight produces a MacRegion structure
containing the highlight region for the specified range of text. In the case of discontinuous highlighting,
the region consists of multiple components, with MacRegion.rgnBBox specifying the bounding box
around the entire area of discontinuous highlighting.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetTextHighlight function obtains the highlight region for a range of text. To highlight text,
call the function ATSUHighlightText (page 1931).

The ATSUGetTextHighlight function uses the previously set line ascent and descent values to calculate
the height of the highlight region. If these values have not been set for the line, ATSUGetTextHighlight
uses the line ascent and descent values set for the text layout object containing the line. If these are not set,
it uses the default values.

1920 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Version Notes
When there are discontinuous highlighting regions, the structure produced in the oHighlightRegion
parameter is made up of multiple components. In ATSUI 1.1, the maximum number of components that can
be produced is 31. In ATSUI 1.2, the maximum number of components is 127.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGetTextLayoutRefCon
Obtains application-specific data for a text layout object.

OSStatus ATSUGetTextLayoutRefCon (
 ATSUTextLayout iTextLayout,
 URefCon *oRefCon
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain application-specific
data.

oRefCon
A pointer to a 32-bit value. On return, the value contains or refers to application-specific text layout
data.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUGetTextLayoutRefCon function obtains a reference constant (that is, application-specific data)
associated with a text layout object. To associate a reference constant with a text layout object, call the
function ATSUSetTextLayoutRefCon (page 1964).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTextLocation
Obtains information about the text associated with a text layout object.

Functions 1921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetTextLocation (
 ATSUTextLayout iTextLayout,
 void **oText,
 Boolean *oTextIsStoredInHandle,
 UniCharArrayOffset *oOffset,
 UniCharCount *oTextLength,
 UniCharCount *oTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

oText
A pointer to data of any type. On return, the pointer is set to either a pointer or a handle that refers
to the text buffer for the specified text layout object.

oTextIsStoredInHandle
A pointer to a Boolean value. On return, the value is set to true if the text buffer in the oText
parameter is accessed by a handle; if false, a pointer.

oOffset
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text buffer to the first character of the layout’s current text range.

oTextLength
A pointer to a UniCharCount value. On return, the value specifies the length of the text range.

oTextTotalLength
A pointer to a UniCharCount value. On return, the value specifies the length of the entire text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When you call the ATSUGetTextLocation function for a given text layout object, ATSUI obtains the location
of the text layout object’s associated text in physical memory, the length of the text range and its text buffer,
and whether the text is accessed by a pointer or handle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTransientFontMatching
Obtains whether ATSUI automatically performs font substitution for a text layout object.

1922 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUGetTransientFontMatching (
 ATSUTextLayout iTextLayout,
 Boolean *oTransientFontMatching
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

oTransientFontMatching
A pointer to a Boolean value. On return, the value indicates whether ATSUI performs automatic font
substitution for the text layout object. If true, ATSUI automatically performs font substitution for the
text range associated with the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can call the ATSUGetTransientFontMatching function to find out whether ATSUI automatically
performs font substitution for a given text layout object when a character cannot be drawn with the assigned
font. To turn automatic font substitution on or off for a text layout object, call the function
ATSUSetTransientFontMatching (page 1967).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetUnjustifiedBounds
Obtains the typographic bounding rectangle for a line of text prior to final layout.

OSStatus ATSUGetUnjustifiedBounds (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 UniCharCount iLineLength,
 ATSUTextMeasurement *oTextBefore,
 ATSUTextMeasurement *oTextAfter,
 ATSUTextMeasurement *oAscent,
 ATSUTextMeasurement *oDescent
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line. To indicate that the line starts at the beginning of the text buffer, you can pass
the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

Functions 1923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iLineLength
A UniCharCount value specifying the length of the line. If you want the line to extend to the end of
the text buffer, you can pass the constant kATSUToTextEnd.

oTextBefore
A pointer to an ATSUTextMeasurement value. On return, the value specifies the starting point of
the typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. Note that the ATSUMeasureText function might produce negative values for
the typographic starting point of the line if, for example, the initial character of the line is allowed to
hang into the margin. For horizontal text, this value corresponds to the left side of the bounding
rectangle.

oTextAfter
A pointer to an ATSUTextMeasurement value. On return, the value specifies the end point of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the right side of the bounding
rectangle.

oAscent
A pointer to an ATSUTextMeasurement value. On return, the value specifies the ascent of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the top side of the bounding
rectangle.

oDescent
A pointer to an ATSUTextMeasurement value. On return, the value specifies the descent of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the bottom side of the bounding
rectangle.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
There are two kinds of bounds that your application may typically want to obtain for a block of text:
typographic bounds and image bounds. The image bounds define the smallest rectangle that completely
encloses the filled or framed parts of a block of text—that is, the text’s “inked” glyphs. Because of the potential
differences in glyph height in a text block, your application may instead need to determine the typographic
bounds. The typographic bounding rectangle contains the extra space above and below the image bounding
rectangle where characters with ascenders or descenders would be drawn (even if none currently are).

The ATSUGetUnjustifiedBounds function calculates the typographic bounds (in coordinates independent
of the rendering device) for a line of text. Note that ATSUGetUnjustifiedBounds calculates these bounds
prior to the text’s final layout, and therefore, the calculated bounds might not reflect those of the final laid-out
line. To obtain the typographic bounds of a line after it is laid out, you can call the function
ATSUGetGlyphBounds (page 1904).

The ATSUGetUnjustifiedBounds function ignores any previously set line attributes such as line rotation,
flushness, justification, ascent, and descent in its calculations. You typically only call
ATSUGetUnjustifiedBoundswhen you need to find out what the width of a line is without these attributes,
such as for determining your own line breaks or the leading and line spacing to impose on a line.

The ATSUGetUnjustifiedBounds function treats the specified text range as a single line. That is, if the
range of text you specify is less than a line, it nevertheless treats the initial character in the range as the start
of a line, for measuring purposes. If the range of text extends beyond a line, ATSUGetUnjustifiedBounds
ignores soft line breaks, again, treating the text as a single line.

1924 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Before calculating the typographic bounds for the text range, the ATSUGetUnjustifiedBounds function
examines the text layout object to ensure that each of the characters in the range is assigned to a style run.
If there are gaps between style runs, ATSUGetUnjustifiedBounds assigns the characters in the gap to the
style run that precedes (in storage order) the gap. If there is no style run at the beginning of the text range,
ATSUGetUnjustifiedBounds assigns these characters to the first style run it finds. If there is no style run
at the end of the text range, ATSUGetUnjustifiedBounds assigns the remaining characters to the last
style run it finds.

To obtain the image bounding rectangle of a laid-out line, call the function ATSUMeasureTextImage (page
1938).

Version Notes
As of ASTUI version 2.4, this function replaces the ATSUMeasureText function.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGlyphGetCubicPaths
Obtains the cubic outline paths for a glyph.

OSStatus ATSUGlyphGetCubicPaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ATSCubicMoveToUPP iMoveToProc,
 ATSCubicLineToUPP iLineToProc,
 ATSCubicCurveToUPP iCurveToProc,
 ATSCubicClosePathUPP iClosePathProc,
 void *iCallbackDataPtr,
 OSStatus *oCallbackResult
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

iMoveToProc
A pointer to your callback function for handling the pen move-to operation.

iLineToProc
A pointer to your callback function for handling the line-to operation.

iCurveToProc
A pointer to your callback function for handling the curve-to operation.

iClosePathProc
A pointer to your callback function for handling the close-path operation.

Functions 1925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iCallbackDataPtr
A pointer to any data your callback functions need. This pointer is passed through to your callback
functions.

oCallbackResult
On output, a value that indicates the status of your callback function. When a callback function returns
any value other than 0, the ATSGlyphGetCubicPaths function stops parsing the glyph path outline
and returns the result kATSOutlineParseAbortedErr.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The glyph outlines that are returned are the hinted outlines at the font size specified in the style object. If
you want to use unhinted outlines, set the font size to a very large size, (for example, 1000 points) and then
scale down the returned curves to the desired size.

As of Mac OS X version 10.1, the curves returned by this function are derived from quadratic curves, irrespective
of the native curve type of the font.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetCurvePaths
Obtains the outline paths for a glyph associated with a given style object.

OSStatus ATSUGlyphGetCurvePaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ByteCount *ioBufferSize,
 ATSUCurvePaths *oPaths
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

ioBufferSize
A pointer to a ByteCount value specifying the size of the buffer you have allocated for the
ATSUCurvePaths structure in the oPaths parameter. On return, the value provides the actual size
of buffer needed to contain the produced ATSUCurvePaths structure.

oPaths
A pointer to an ATSUCurvePaths structure. On return, the ATSUCurvePaths structure contains a
value specifying the number of contours that comprise the glyph’s outline, as well as an array of
ATSUCurvePath structures, each of which defines a contour.

1926 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 2068). If the font is a protected font, returns
kATSUInvalidFontErr.

Discussion
This function only returns quadratic paths. The glyph outlines that are returned are the hinted outlines at
the font size specified in the style object. If you want to obtain unhinted outlines, set the font size to a very
large size, (for example, 1000 points) and then scale down the returned curves to the desired size. More
typically, however, you would use the functions ATSUGlyphGetCubicPaths (page 1925) and
ATSUGlyphGetQuadraticPaths (page 1928) when drawing curves.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetIdealMetrics
Obtains resolution-independent font metric information for glyphs associated with a given style object.

OSStatus ATSUGlyphGetIdealMetrics (
 ATSUStyle iATSUStyle,
 ItemCount iNumOfGlyphs,
 GlyphID iGlyphIDs[],
 ByteOffset iInputOffset,
 ATSGlyphIdealMetrics oIdealMetrics[]
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iNumOfGlyphs
An ItemCount value specifying the number of glyphs to examine. This value should be the same as
the number of glyph IDs being passed in the iGlyphIDs parameter and the number of
ATSGlyphIdealMetrics structures for which memory is allocated in the oIdealMetricsparameter.

iGlyphIDs
A pointer to the first GlyphID value in an array of glyph IDs. Each ID should identify a glyph for which
to obtain font metric information.

iInputOffset
A ByteOffset value specifying the offset in bytes between glyph IDs in the iGlyphIDs array.

oIdealMetrics
A pointer to memory you have allocated for an array of ATSGlyphIdealMetrics structures. On
return, each structure contains advance and side-bearing values for a glyph.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The advance width is the full horizontal width of the glyph as measured from its origin to the origin of the
next glyph on the line, including the left-side and right-side bearings. For vertical text, the advance height
is the sum of the top-side bearing, the bounding-box height, and the bottom-side bearing.

Functions 1927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

You can call the ATSUGlyphGetIdealMetrics function to obtain an array of ATSGlyphIdealMetrics
structures containing values for the specified glyphs’ advance and side bearings.
ATSUGlyphGetIdealMetrics can analyze both horizontal and vertical text, automatically producing the
appropriate bearing values (oriented for width or height, respectively) for each.

You should call ATSUGlyphGetIdealMetrics to obtain resolution-independent glyph metrics. To obtain
device-adjusted (that is, resolution-dependent) glyph metrics, call the function
ATSUGlyphGetScreenMetrics (page 1929).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetQuadraticPaths
Obtains the quadratic outline paths for a glyph.

OSStatus ATSUGlyphGetQuadraticPaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ATSQuadraticNewPathUPP iNewPathProc,
 ATSQuadraticLineUPP iLineProc,
 ATSQuadraticCurveUPP iCurveProc,
 ATSQuadraticClosePathUPP iClosePathProc,
 void *iCallbackDataPtr,
 OSStatus *oCallbackResult
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

iNewPathProc
A pointer to your callback function for handling the new-path operation.

iLineProc
A pointer to your callback function for handling the line operation.

iCurveProc
A pointer to your callback function for handling the curve operation.

iClosePathProc
A pointer to your callback function for handling the close-path operation.

iCallbackDataPtr
A pointer to any data your callback functions need. This pointer is passed through to your callback
functions.

1928 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oCallbackResult
On output, a value that indicates the status of your callback function. When a callback function returns
any value other than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline
and returns the result kATSOutlineParseAbortedErr.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The glyph outlines that are returned are the hinted outlines at the font size specified in the style object. If
you want to use unhinted outlines, set the font size to a very large size, (for example, 1000 points) and then
scale down the returned curves to the desired size.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetScreenMetrics
Obtains device-adjusted font metric information for glyphs associated with a given style object.

OSStatus ATSUGlyphGetScreenMetrics (
 ATSUStyle iATSUStyle,
 ItemCount iNumOfGlyphs,
 GlyphID iGlyphIDs[],
 ByteOffset iInputOffset,
 Boolean iForcingAntiAlias,
 Boolean iAntiAliasSwitch,
 ATSGlyphScreenMetrics oScreenMetrics[]
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iNumOfGlyphs
An ItemCount value specifying the number of glyphs to examine. This value should be the same as
the number of glyph IDs being passed in the iGlyphIDs parameter and the number of
ATSGlyphScreenMetrics structures for which memory is allocated in the oScreenMetrics
parameter.

iGlyphIDs
A pointer to the first GlyphID value in an array of glyph IDs. Each ID should identify a glyph for which
to obtain font metric information.

iInputOffset
A ByteOffset value specifying the offset in bytes between glyph IDs in the iGlyphIDs array.

iForcingAntiAlias
A Boolean value indicating whether anti-aliasing is forced for the style object.

iAntiAliasSwitch
A Boolean value indicating whether anti-aliasing is currently on or off.

Functions 1929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oScreenMetrics
A pointer to memory you have allocated for an array of ATSGlyphScreenMetrics structures. On
return, each structure contains device-adjusted metrics for a glyph, including advance and side
bearings, but also values for the top left, height, and width of the glyph.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can call the ATSUGlyphGetScreenMetrics function to obtain an array of ATSGlyphScreenMetrics
structures containing values for the specified glyphs’ advance and side bearings, top left, height, and width.

You should call ATSUGlyphGetScreenMetrics to obtain device-adjusted (that is, resolution-dependent)
glyph metrics. To obtain resolution-independent glyph metrics, call the function
ATSUGlyphGetIdealMetrics (page 1927).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUHighlightInactiveText
Highlights previously selected text using an alpha value of 0.5.

OSStatus ATSUHighlightInactiveText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object containing the text range.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the highlight
region relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to obtain the highlight
region relative to the current pen location in the current graphics port.

1930 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range. If the range of text spans multiple lines, you should call
ATSUGetTextHighlight for each line, passing the offset corresponding to the beginning of the
new line with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. If you want the text range to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUHighlightText
Renders a highlighted range of text at a specified location in a QuickDraw graphics port or Quartz graphics
context.

OSStatus ATSUHighlightText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render highlighted text.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range to highlight. Pass
the constant kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw
relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range to highlight. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw relative to
the current pen location in the current graphics port.

Functions 1931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to highlight. If the range of text spans multiple lines, you should call
ATSUHighlightText for each line, passing the offset corresponding to the beginning of the new
line to draw with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range to highlight. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When the user selects a series of glyphs, the characters in memory corresponding to the glyphs make up the
selection range and should be highlighted to indicate where the next editing operation is to occur. The
characters in a selection range are always contiguous in memory, but their corresponding glyphs are not
necessarily so onscreen. If the selection range crosses a direction boundary, it is appropriate to display
discontinuous highlighting.

The ATSUHighlightText function renders a highlighted range of text at a specified location in a QuickDraw
graphics port or Quartz graphics context, using the highlight information in the graphics port or context.
ATSUHighlightText automatically produces discontinuous highlighting, if needed. You typically call the
ATSUHighlightText function every time you need to draw or redraw highlighted text.

If you provide your own CGContextRef (for example, one created by calling the function QDBeginCGContext)
for an ATSUTextLayout, highlighting performed by calling the function ATSUHighlightTextwill not work
unless you first call the function ATSUSetHighlightingMethod with the iMethod parameter set to
kRedrawHighlighting and a pointer to an ATSUUnhighlightData structure as the iUnhighlightData
parameter.

Before drawing the highlighted text, ATSUHighlightText examines the text layout object to ensure that
each of the characters in the range is assigned to a style run. If there are gaps between style runs, ATSUI
assigns the characters in the gap to the style run that precedes (in storage order) the gap. If there is no style
run at the beginning of the text range, ATSUI assigns these characters to the first style run it finds. If there is
no style run at the end of the text range, ATSUI assigns the remaining characters to the last style run it finds.

ATSUHighlightText uses the previously set line ascent and descent values to calculate the height of the
highlighted region. If these values have not been set for the line, ATSUHighlightText uses the line ascent
and descent values set for the text layout object containing the line. If these are not set, it uses the default
values.

To draw a highlighted text range that spans multiple lines, you should call ATSUHighlightText for each
line of the text range, even if all the lines are in the same text layout object. You should adjust the
iHighlightStart parameter to reflect the beginning of each line to be drawn.

After calling ATSUHighlightText, to properly redraw the unhighlighted text and background, you should
always call the function ATSUUnhighlightText (page 1974).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1932 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeDrawing.h

ATSUIdle
Performs background processing. (Deprecated in Mac OS X v10.0. There is no replacement because this
function does nothing in Mac OS X.)

Not recommended.

OSStatus ATSUIdle (
 ATSUTextLayout iTextLayout
);

Parameters
iTextLayout

A reference to the text layout object in which you want ATSUI to perform background processing.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The function ATSUIdle is not recommended. Current versions of ATSUI do not implement background
processing for text layout objects. In Mac OS X, the function ATSUIdle does nothing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSULeftwardCursorPosition
Obtains the memory offset for the insertion point to the left of the high caret position, as determined by a
move of the specified length at a line direction boundary.

OSStatus ATSULeftwardCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

Functions 1933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.
For bidirectional text, you can specify the previous layout by passing the constant
kATSUFromPreviousLayout and the following layout by passing the constant
kATSUFromFollowingLayout. See the Discussion for example code that shows how to use these
constants.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 2042) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the new insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The ATSURightwardCursorPosition function obtains the memory offset for the insertion point to the
left of the high caret position, as determined by a move of the specified length at a line direction boundary.

You should use the ATSULeftwardCursorPosition function or the function
ATSURightwardCursorPosition (page 1949) to determine caret position when the user presses the right
and left arrow keys.

Except in the case of Indic text (and other cases where the font rearranges the glyphs), for left-to-right text,
calling the function ATSULeftwardCursorPosition has the same effect as calling
ATSUPreviousCursorPosition (page 1948). For right-to-left text, calling the function
ATSULeftwardCursorPosition has the same effect as calling ATSUNextCursorPosition (page 1940).

The following code shows how to use the constants kATSUFromPreviousLayout and
kATSUFromFollowingLayout with the function ATSULeftwardCursorPosition:

typedef struct TLayoutWithEndOffset
{
 ATSUTextLayout layout;
 UInt32 endOffset;
};

typedef struct TLayoutsWithEndOffsets
{
 UInt32 count;
 TLayoutWithEndOffset layouts[];
}

1934 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

UniCharArrayOffset MyAbsoluteToRelativeOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UniCharArrayOffset iAbsoluteOffset);
UniCharArrayOffset MyRelativeToAbsoluteOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex,
 UniCharArrayOffset iRelativeOffset);
UniCharArrayOffset MyGetLayoutEndOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex);

/* Passing in current offset relative to the beginning of */
/* the entire text buffer (absolute), */
/* not just the current paragraph. This returns the new (absolute) */
/* offset relative to the beginning of the entire text buffer.*/
UniCharArrayOffset
MyLeftwardCursorPosition (TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex,
 UniCharArrayOffset iAbsoluteOffset,
 ATSUCursorMovementType iType)
{
 OSStatus status;
 UInt32 newLayoutIndex = iLayoutIndex;
 UniCharArrayOffset newRelativeOffset;

 status = ATSULeftwardCursorPosition(
 iLayouts->layouts[iLayoutIndex].layout,
 MyAbsoluteToRelativeOffset (iLayouts, iAbsoluteOffset),
 iType, &newRelativeOffset);

 if (status == noErr)
 {
 /* If the API returns the same value as */
 /* that passed in then we're at */
 /* the edge of the layout so need to move */
 /* to the adjacent layout. f */
 /* If that value is zero then we're moving to the previous layout. */
 /* (This is left-to-right text.) */
 if ((newRelativeOffset == iRelativeOffset) &&
 (iRelativeOffset == 0))
 {
 /* Don't want to move before the first layout! */
 if (iLayoutIndex != 0)
 {
 /* Pass kATSUFromFollowingLayout to the previous */
 /* ATSUTextLayout. */
 /* Note that the returned offset is relative to
 /* the ATSUTextLayout passed in here.*/
 newLayoutIndex--;
 status = ATSULeftwardCursorPosition(
 iLayouts[newLayoutIndex],
 kATSUFromFollowingLayout,
 iType &newRelativeOffset);
 }
 }
 else
 {

Functions 1935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

 UniCharArrayOffset endAbsoluteOffset = MyGetLayoutEndOffset(
 iLayouts, iLayoutIndex);

 /* We've moved to the very end of this layout */
 /* (past the trailing carriage return presumably) */
 /* so we're moving to the following layout. */
 /* Make sure we aren't at the */
 /* end of the text buffer. (This is right-to-left text.) */
 if ((newRelativeOffset == MyAbsoluteToRelativeOffset (
 iLayouts, endAbsoluteOffset)) &&
 (iLayoutIndex != iLayouts->count))
 {
 newLayoutIndex++;
 status = ATSULeftwardCursorPosition(
 iLayouts->layouts[newLayoutIndex],
 kATSUFromPreviousLayout, iType,
 &newRelativeOffset);

 /* If we're moving from one paragraph to the following one */
 /* and we aren't at the beginning of the layout means
 /* that we're moving to a left-to-right */
 /* paragraph and we must back up one so that*/
 /* we're just before the line ending whitespace
 /* (space or <CR>), unless the */
 /* following layout is the last one. */
 if ((newRelOffset > 0) && (newLayoutIndex !=
 iLayouts->count))
 newRelativeOffset--;
 }
 }
 }
 return MyRelativeToAbsoluteOffset(iLayouts, newLayoutIndex,
 newRelativeOffset);
}

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUMatchFontsToText
Examines a text range for characters that cannot be drawn with the current font and suggests a substitute
font, if necessary.

1936 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUMatchFontsToText (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iTextStart,
 UniCharCount iTextLength,
 ATSUFontID *oFontID,
 UniCharArrayOffset *oChangedOffset,
 UniCharCount *oChangedLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iTextStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the range to examine. To start at the beginning of the text buffer,
pass the constant kATSUFromTextBeginning.

iTextLength
A UniCharCount value specifying the length of the text range to examine. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oFontID
A pointer to a ATSUFontID value. On return, the value provides a font ID for the suggested substitute
font or kATSUInvalidFontID, if no substitute font is available.

oChangedOffset
A pointer to a UniCharArrayOffset value. On return, this value specifies the offset from the
beginning of the text buffer to the first character that cannot be drawn with the current font.

oChangedLength
A pointer to a UniCharCount value. On return, this value specifies the length of the text range that
cannot be drawn with the current font.

Return Value
A result code. See “ATSUI Result Codes” (page 2068). The result code noErr indicates that all the characters in
the given range can be rendered with their current font(s) and no font substitution is needed. If you receive
either of the result codes kATSUFontsMatched or kATSUFontsNotMatched, you should update the input
range and call ATSUMatchFontsToText again to ensure that all the characters in the range can be drawn.

Discussion
When you call the ATSUMatchFontsToText function, ATSUI scans the given range of text for characters
that cannot be drawn with the currently assigned font. When ATSUI finds such a character, it identifies a
substitute font for drawing the character. ATSUI then continues scanning the text range for subsequent
characters that cannot be drawn, stopping when it

 ■ finds a character that can be drawn with the currently assigned font, or

 ■ finds a character that cannot be drawn with either the currently assigned font or the substitute font, or

 ■ reaches the end of the text range you have specified

ATSUI’s default behavior for finding a substitute font is to recommend the first valid font that it finds when
scanning the fonts in the user’s system. ATSUI first searches in the standard application fonts for various
languages. If that fails, ATSUI searches through the remaining fonts on the system in the order in which the
Font Manager returns the fonts. After ATSUI has searched all the fonts in the system, any unmatched text is
drawn using the last-resort font. That is, missing glyphs are represented by and empty box to indicate to the

Functions 1937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

user that a valid font for that character is not installed on their system. You can alter ATSUI’s default search
behavior by calling the function ATSUCreateFontFallbacks (page 1864) and defining your own font fallback
settings for the text layout object.

So, for example, if the subrange of text for which you wanted to perform font substitution was the text
“abcde”, and the characters ‘c’ and ‘d’ could not be drawn with the current font, but could be drawn with
font X, and the character ‘e’ either could be drawn with the current font or could not be drawn with font X,
then ATSUMatchFontsToText produces the ID of font X in the oFont parameter and sets the
oChangedOffset parameter to 2 and the oChangedLength parameter to 2.

Because ATSUI does not necessarily completely scan the text range you specify with each call to
ATSUMatchFontsToText, if ATSUI does find any characters that cannot be rendered with their current font,
you should call ATSUMatchFontsToText again and update the input range to check that all the subsequent
characters in the range can be drawn. For that reason, you should call ATSUMatchFontsToText from within
a loop to assure that the entire range of text is checked.

Note that calling ATSUMatchFontsToText does not cause the suggested font substitution to be performed.
If you want ATSUI to perform font substitution for you, you can call the function
ATSUSetTransientFontMatching (page 1967).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUMeasureText
(Deprecated in Mac OS X v10.3. Use ATSUGetUnjustifiedBounds (page 1923) instead.)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUMeasureTextImage
Obtains the image bounding rectangle for a line of text after final layout.

1938 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUMeasureTextImage (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 UniCharCount iLineLength,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 Rect *oTextImageRect
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line to examine. To indicate that the specified line starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

iLineLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd. However, the image
bounds is restricted to the line in which iLineOffset resides.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the line’s origin in the current
graphics port or Quartz graphics context. Pass the constant kATSUUseGrafPortPenLoc, described
in “Convenience Constants” (page 2043), for the dimensions of the bounds relative to the current pen
location in the current graphics port or graphics context. You can pass 0 to obtain only the dimensions
of the bounding rectangle relative to one another, not their actual onscreen position.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the line’s origin in the current
graphics port or Quartz graphics context. Pass the constant kATSUUseGrafPortPenLoc, described
in “Convenience Constants” (page 2043), for the dimensions of the bounds relative to the current pen
location in the current graphics port or graphics context. You can pass 0 to obtain only the dimensions
of the bounding rectangle relative to one another, not their actual onscreen position.

oTextImageRect
A pointer to a Rect structure. On return, the structure contains the dimensions of the image bounding
rectangle for the text, offset by the values specified in the iLocationX and iLocationY parameters.
If the line is rotated, the sides of the rectangle are parallel to the coordinate axis.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUMeasureTextImage function obtains the image bounds of a laid-out line of text. These bounds
are described by the smallest rectangle that completely encloses the filled or framed parts of a block of
text—that is, the text’s “inked” glyphs.

In measuring the line, the ATSUMeasureTextImage function takes into account line rotation, alignment,
and justification, as well as other characteristics that affect layout, such as hanging punctuation. (If the line
is rotated, the sides of the rectangle are parallel to the coordinate axes and encompass the rotated line.) If
no attributes are set for the line, ATSUMeasureTextImage uses the global attributes set for the text layout
object.

Functions 1939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Because the height of the image bounding rectangle is determined by the actual device metrics,
ATSUMeasureTextImage ignores any previously set line ascent and descent values for the line it is measuring.

Before calculating the image bounds for the text range, the ATSUMeasureTextImage function examines
the text layout object to ensure that each of the characters in the range is assigned to a style run. If there
are gaps between style runs, ATSUMeasureTextImage assigns the characters in the gap to the style run
that precedes (in storage order) the gap. If there is no style run at the beginning of the text range, the
ATSUMeasureTextImage function assigns these characters to the first style run it finds. If there is no style
run at the end of the text range, ATSUMeasureTextImage assigns the remaining characters to the last style
run it finds.

To obtain the final typographic bounds of a line, call the function ATSUGetGlyphBounds (page 1904). To
calculate the unjustified typographic bounds of a line, call the function ATSUGetUnjustifiedBounds (page
1923).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUNextCursorPosition
Obtains the memory offset for the insertion point that follows the current insertion point in storage order,
as determined by a move of the specified length.

OSStatus ATSUNextCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 2042) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the following insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1940 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSUNextCursorPosition function obtains the memory offset for the insertion point that follows the
current insertion point in storage order, as determined by a move of the specified length.

You should use the ATSUNextCursorPosition function or the function
ATSUPreviousCursorPosition (page 1948) to determine caret position when the initial memory offset is
not at a line direction boundary. If the initial offset is at a line direction boundary, you should instead use
the functionsATSURightwardCursorPosition (page 1949) orATSULeftwardCursorPosition (page 1933).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOffsetToCursorPosition
Obtains the caret position(s) corresponding to a memory offset, after a move of the specified length.

OSStatus ATSUOffsetToCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 Boolean iIsLeading,
 ATSUCursorMovementType iMovementType,
 ATSUCaret *oMainCaret,
 ATSUCaret *oSecondCaret,
 Boolean *oCaretIsSplit
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the glyph edge nearest
the event, after a movement of the specified type. You can obtain this value by examining the offset
produced in theioPrimaryOffsetparameter of the functionATSUPositionToCursorOffset (page
1945).

iIsLeading
A Boolean value indicating whether the specified offset corresponds to the leading or trailing edge
of the glyph. You can obtain this information from the functionATSUPositionToCursorOffset (page
1945). This value is relevant if the offset occurs at a line direction boundary or within a glyph cluster.

iMovementType
An ATSUCursorMovementType constant identifying the unit of cursor movement. See “Caret
Movement Types” (page 2042) for a description of possible values (which range from a single Unicode
character to a Unicode word in length). Note that ATSUI may not be able to move the cursor by a
single Unicode character in some cases, since doing so might place the cursor in the middle of a
surrogate pair.

oMainCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the high caret if the value produced in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret.

Functions 1941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oSecondCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the low caret if the value passed back in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret (that
is, the same values as the oMainCaret parameter).

oCaretIsSplit
A pointer to a Boolean value. On return, the value indicates whether the offset specified in the
iOffset parameter occurs at a line direction boundary. If true, the offset occurs at a line direction
boundary; otherwise, false.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOffsetToPosition
Obtains the caret position(s) corresponding to a memory offset.

OSStatus ATSUOffsetToPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 Boolean iIsLeading,
 ATSUCaret *oMainCaret,
 ATSUCaret *oSecondCaret,
 Boolean *oCaretIsSplit
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the memory offset for which to obtain the corresponding
caret position. To respond to a mouse-down event, pass the offset produced in the ioPrimaryOffset
parameter of the function ATSUPositionToOffset (page 1946)—that is, the offset corresponding to
the glyph edge closest to the event.

iIsLeading
A Boolean value indicating whether the offset corresponds to the leading or trailing edge of the
glyph. You can obtain this information from the function ATSUPositionToOffset (page 1946). This
value is relevant if the offset occurs at a line direction boundary or within a glyph cluster.

oMainCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the high caret if the value produced in oCaretIsSplit is true. If the value is false,
the structure contains the starting and ending pen locations of the main caret.

1942 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oSecondCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the low caret if the value passed back in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret (that
is, the same values as the oMainCaret parameter).

oCaretIsSplit
A pointer to a Boolean value. On return, the value indicates whether the offset specified in the
iOffset parameter occurs at a line direction boundary. If true, the offset occurs at a line direction
boundary; otherwise, false.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The process of hit-testing text obtains the location of a mouse-down event relative both to the position of
onscreen glyphs and to the corresponding offset between character codes in memory. You can then use the
location information obtained by hit-testing to set the insertion point (that is, the caret) or selection range
(for highlighting).

Hit-testing text is complicated by the fact that a given line of text may be bidirectional. Therefore, the onscreen
order of glyphs may not readily correspond to the storage order of the corresponding character codes. And
the concept of which glyph comes “first” in a line of text cannot always be limited to the visual terms “left”
and “right.” Because of these complexities, it is more accurate to speak in terms of “leading” and “trailing”
edges to glyphs. A “leading edge” is defined as the edge of a glyph that you first encounter when you read
the text that includes that glyph. For example, when reading Roman text, you first encounter the left edge
of a Roman glyph. Similarly, the “trailing edge” is defined as the edge of the glyph encountered last.

ATSUI can translate the location of a mouse click into an onscreen position, as well as to a memory offset.
When you use ATSUI for hit-testing, ATSUI takes into account the glyph edge (whether leading or trailing)
nearest to where the click occurred, thus providing positional information in complex situations, such as at
line direction boundaries or within glyph clusters.

Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The first step in obtaining the caret position(s) for a mouse-down event is to pass the location (in local
coordinates, relative to the line origin) of the event to the function ATSUPositionToOffset (page 1946). The
ATSUPositionToOffset function produces the memory offset corresponding to the glyph edge nearest
the event. If the mouse-down event occurs at a line direction boundary or within a glyph cluster, the
ATSUPositionToOffset function produces two offsets. You can then provide the offset(s) to the
ATSUOffsetToPosition function, to obtain the actual caret position(s) for the event.

The ATSUOffsetToPosition function produces two structures of type ATSUCaret. These structures contain
the pen positioning information needed to draw the caret(s) for the event, specified relative to the origin of
the line in the current graphics port or graphics context. Specifically, the ATSUCaret structures contain x-y
coordinates for both the caret’s starting and ending pen positions (the latter taking into account line rotation,
caret slanting, and split-caret appearances).

Functions 1943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

If the memory offset you pass to ATSUOffsetToPosition is at a line boundary, the structure produced in
the oMainCaret parameter contains the starting and ending pen locations for the high caret, while the
oSecondCaret parameter contains the corresponding values for the low caret. If the offset is not at a line
boundary, both parameters contain the starting and ending pen locations of the main caret.

Because you provide the ATSUOffsetToPosition function an offset relative to the origin of the line where
the hit occurred, ATSUOffsetToPosition produces positioning information that is also relative. Therefore,
you must transform the positions produced by the ATSUOffsetToPosition function before drawing the
caret(s). To transform the caret location(s), add the starting and ending caret coordinates to the coordinates
of the origin of the line in which the hit occurred. For example, if ATSUOffsetToPosition produces starting
and ending pen locations of (25,0), (25,25) in the oMainCaret parameter (and the oSecondCaret parameter
contains the same coordinates, meaning that the caret was not split), you would add these to the position
of the origin of the line in the graphics port or context. If the position of the line origin was at (50,50), then
the starting and ending pen locations of the caret would be (75,50), (75,75).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOverwriteAttributes
Copies to a destination style object the nondefault style attribute settings of a source style object.

OSStatus ATSUOverwriteAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy nondefault style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object containing the style attributes to be overwritten.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUOverwriteAttributes function copies all nondefault style attribute values from a source style
object to a destination style object. The source object’s nondefault values are applied to the destination
object whether or not the destination object also has nondefault values for the copied attributes. All other
settings in the destination style object are left unchanged.

ATSUOverwriteAttributes does not copy the contents of memory referenced by pointers within custom
style attributes or within reference constants. You are responsible for ensuring that this memory remains
valid until both the source and destination style objects are disposed of.

1944 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

To create a style object that contains all the contents of another style object, call the function
ATSUCreateAndCopyStyle (page 1863). To copy all the style attributes (including any default settings) of a
style object into an existing style object, call the function ATSUCopyAttributes (page 1856). To copy style
attributes that are set in the source but not in the destination style object, call the function
ATSUUnderwriteAttributes (page 1972).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUPositionToCursorOffset
Obtains the memory offset for the glyph edge nearest a mouse-down event, after a move of the specified
length.

OSStatus ATSUPositionToCursorOffset (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *ioPrimaryOffset,
 Boolean *oIsLeading,
 UniCharArrayOffset *oSecondaryOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object in which the mouse-down event occurred.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the x-coordinate value,
you should subtract the x-coordinate of the line origin from the x-coordinate of the event (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 2043), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the y-coordinate value,
you should subtract the y-coordinate of the line origin from the y-coordinate of the event (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 2043), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 2042) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

Functions 1945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ioPrimaryOffset
A pointer to a UniCharArrayOffset value specifying the offset corresponding to the beginning of
the line where the event occurred. On return, the value specifies the offset corresponding to the glyph
edge nearest the event, after a movement of the specified type. This offset corresponds to where the
insertion point would be placed after the move. To determine whether this offset indicates the leading
or trailing edge of the glyph, you can examine the value produced in the oIsLeading parameter.

oIsLeading
A pointer to a Boolean value. On return, the value indicates whether the offset produced in the
ioPrimaryOffset parameter is leading or trailing. The ATSUPositionToOffset function produces
a value of true if the offset is leading (that is, more closely associated with the subsequent character
in memory). It produces a value of false if the offset is trailing (that is, more closely associated with
the preceding character in memory).

oSecondaryOffset
A pointer to a UniCharArrayOffset value. On return, the value typically specifies the same offset
as that produced in the ioPrimaryOffset parameter, unless the event occurred within a glyph
cluster or at a line direction boundary. If so, the value specifies the secondary offset, for the glyph
edge furthest from the event.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUPositionToCursorOffset function produces the memory offset for the glyph edge nearest a
mouse-down event, after a move of the specified length. This offset corresponds to where an insertion point
would be placed after the move.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUPositionToOffset
Obtains the memory offset for the glyph edge nearest a mouse-down event.

OSStatus ATSUPositionToOffset (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 UniCharArrayOffset *ioPrimaryOffset,
 Boolean *oIsLeading,
 UniCharArrayOffset *oSecondaryOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object in which the mouse-down event occurred.

1946 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the x-coordinate value,
you should subtract the x-coordinate of the line origin from the x-coordinate of the hit point (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 2043), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the y-coordinate value,
you should subtract the y-coordinate of the line origin from the y-coordinate of the hit point (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 2043), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

ioPrimaryOffset
A pointer to a UniCharArrayOffset value specifying the offset corresponding to the beginning of
the line where the event occurred. On return, the value specifies the offset corresponding to the glyph
edge that is visually closest to the event. To determine whether this offset indicates the leading or
trailing edge of the glyph, you can examine the value produced in the oIsLeading parameter.

oIsLeading
A pointer to a Boolean value. On return, the value indicates whether the offset produced in the
ioPrimaryOffset parameter is leading or trailing. The function ATSUPositionToOffset produces
a value of true if the offset is leading (that is, more closely associated with the subsequent character
in memory). It produces a value of false if the offset is trailing (that is, more closely associated with
the preceding character in memory).

oSecondaryOffset
A pointer to a UniCharArrayOffset value. On return, the value typically specifies the same offset
as that produced in the ioPrimaryOffset parameter, unless the event occurred within a glyph
cluster or at a line direction boundary. If so, the value specifies a secondary offset. The secondary
offset is associated with the glyph that has a different direction from the primary line direction.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The process of hit-testing text obtains the location of a mouse-down event relative both to the position of
onscreen glyphs and to the corresponding offset between character codes in memory. You can then use the
location information obtained by hit-testing to set the insertion point (that is, the caret) or selection range
(for highlighting).

Hit-testing text is complicated by the fact that a given line of text may be bidirectional. Therefore, the onscreen
order of glyphs may not readily correspond to the storage order of the corresponding character codes. And
the concept of which glyph comes “first” in a line of text cannot always be limited to the visual terms “left”
and “right.” Because of these complexities, it is more accurate to speak in terms of “leading” and “trailing”
edges to glyphs. A “leading edge” is defined as the edge of a glyph that you first encounter when you read
the text that includes that glyph. For example, when reading Roman text, you first encounter the left edge
of a Roman glyph. Similarly, the “trailing edge” is defined as the edge of the glyph encountered last.

ATSUI can translate the location of a mouse click into an onscreen position, as well as to a memory offset.
When you use ATSUI for hit-testing, ATSUI takes into account the glyph edge (whether leading or trailing)
nearest to where the click occurred, thus providing positional information in complex situations, such as at
line direction boundaries or within glyph clusters.

Functions 1947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

The first step in obtaining the caret position(s) for a mouse-down event is to pass the location (in local
coordinates, relative to the line origin) of the event to the function ATSUPositionToOffset. For example,
if you have a mouse-down event whose position in local coordinates is (75,50), you would subtract this value
from the position of the origin of the line in the current graphics port. If the position of the origin of the line
in the current graphics port is (50,50), then the relative position of the event that you would pass in the
iLocationX and iLocationY parameters is (25,0).

The ATSUPositionToOffset function produces the memory offset corresponding to the glyph edge nearest
the event. If the mouse-down event occurs at a line direction boundary or within a glyph cluster,
ATSUPositionToOffset produces two offsets. You can then provide the offset(s) to the
ATSUOffsetToPosition (page 1942) function, to obtain the actual caret position(s) for the event.

When you call the ATSUPositionToOffset function, ATSUI examines the Unicode directionality of the
character corresponding to the event location. The ATSUPositionToOffset function produces a value of
true in the oIsLeading parameter if the offset is leading (that is, more closely associated with the subsequent
character in memory and therefore indicative of a left-to-right line direction). It produces a value of false
if the offset is trailing (that is, more closely associated with the preceding character in memory and indicative
of a right-to-left line direction).

Finally, note that when the event occurs beyond the leftmost or rightmost caret positions of the line (not
taking into account line rotation), such that no glyph corresponds to the location of the hit, the
ATSUPositionToOffset function produces the primary offset of the closest edge of the line to the input
location. The oIsLeading flag depends on the directionality of the closest glyph and the side of the line to
which the input location is closest. In this case, the secondary offset is equal to the primary offset, since no
glyph was hit.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

ATSUPreviousCursorPosition
Obtains the memory offset for the insertion point that precedes the current insertion point in storage order,
as determined by a move of the specified length.

OSStatus ATSUPreviousCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning,

1948 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 2042) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the preceding insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUPreviousCursorPosition function obtains the memory offset for the insertion point that precedes
the current insertion point in storage order, as determined by a move of the specified length.

You should use the ATSUPreviousCursorPosition function or the function
ATSUNextCursorPosition (page 1940) to determine caret position when the initial offset is not at a line
direction boundary. If the initial offset is at a line direction boundary, you should instead use the functions
ATSURightwardCursorPosition (page 1949) or ATSULeftwardCursorPosition (page 1933).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSURightwardCursorPosition
Obtains the memory offset for the insertion point to the right of the high caret position, as determined by
a move of the specified length at a line direction boundary.

OSStatus ATSURightwardCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.
For bidirectional text, you can specify the previous layout by passing the constant
kATSUFromPreviousLayout and the following layout by passing the constant
kATSUFromFollowingLayout. See the Discussion for the function
ATSULeftwardCursorPosition (page 1933) for an example of how these constants can be used.

Functions 1949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 2042) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the new insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The ATSURightwardCursorPosition function obtains the memory offset for the insertion point to the
right of the high caret position, as determined by a move of the specified length at a line direction boundary.

You should use the ATSURightwardCursorPosition function or the function
ATSULeftwardCursorPosition (page 1933) to determine caret position when the user presses the right
and left arrow keys.

Except in the case of Indic text (and other cases where the font rearranges the glyphs), for left-to-right text,
calling the function ATSURightwardCursorPosition has the same effect as calling
ATSUNextCursorPosition (page 1940). For right-to-left text, calling the function
ATSURightwardCursorPosition has the same effect as calling ATSUPreviousCursorPosition (page
1948).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetAttributes
Sets style attribute values in a style object.

1950 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetAttributes (
 ATSUStyle iStyle,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of attribute tags. Each element in the
array must contain a valid style attribute tag that corresponds to the style attribute value to set. Note
that an attribute tag cannot be used in versions of the Mac OS that are earlier than the version in
which the tag was introduced. For example, a tag available in Mac OS version 10.2 cannot be used in
Mac OS version 10.1 or earlier. You can call the function Gestalt to check version information for ATSUI.
See “Attribute Tags” (page 2030) for a description of the Apple-defined style attribute tag constants
and for availability information.

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding style run attribute value being set.
ATSUSetAttributes sets style attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
pointer in the array must reference an attribute value corresponding to a tag in the iTag array. The
value referenced by the pointer must be legal for that tag.

Return Value
A result code. See “ATSUI Result Codes” (page 2068). If there is a function error, ATSUSetAttributes does
not set any attributes in the style object.

Discussion
Style attributes are a collection of values and settings that override the font-specified behavior for displaying
and formatting text in a style run. To specify a style attribute, ATSUI uses a “triple” consisting of (1) an attribute
tag, (2) a value for that tag, and (3) the size of the value.

The ATSUSetAttributes function enables you to set multiple style attribute values for a style object. When
you call ATSUSetAttributes, any style attributes that you do not set retain their previous values. To set
font features and font variations, call the functions ATSUSetFontFeatures (page 1952) and
ATSUSetVariations (page 1967), respectively.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

Functions 1951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUSetFontFallbacks
Sets, on a global scope, the font list and search order for ATSUI to use when a font does not have the glyph
needed to image a character. (Deprecated in Mac OS X v10.3. Use font fallback objects instead.)

Not recommended.

OSStatus ATSUSetFontFallbacks (
 ItemCount iFontFallbacksCount,
 const ATSUFontID iFontIDs[],
 ATSUFontFallbackMethod iFontFallbackMethod
);

Parameters
iFontFallbacksCount

An ItemCount value specifying the number of fonts to be searched. This value should be equivalent
to the number of elements in the iFontIDs array.

iFontIDs
A pointer to the first ATSUFontID value in the array of fonts to be searched.

iFontFallbackMethod
An ATSUFontFallbackMethod value specifying the order in which ATSUI is to search the fonts. See
“Font Fallback Methods” (page 2048) for a description of possible search orders.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When you call ATSUSetFontFallbacks, any settings you apply are global to the process and are used by
all ATSUI clients in the process. Therefore, any ATSUI clients in the process can change these global font
fallback settings unexpectedly. Other application threads can modify the font fallbacks settings, as well. The
only way to ensure that ATSUI uses your preferred font fallback settings for your text is to create a font fallback
object and associated it with a text layout object.

You create a font fallback object by calling the function ATSUCreateFontFallbacks (page 1864). You define
settings for the object by calling the function ATSUSetObjFontFallbacks (page 1958). To associate the font
fallback object with a text layout object, call either of the functions ATSUSetLayoutControls (page 1955)
or ATSUSetLineControls (page 1956). See InsideMacOSX: RenderingUnicodeTextWithATSUI for step-by-step
instructions on creating a font fallback object and associating it with a text layout object.

Special Considerations

You should not use this function because it operates on a global scope and may not be available in future
versions of ATSUI. Instead, use font fallback objects as described in the Discussion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetFontFeatures
Sets font features in a style object.

1952 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetFontFeatures (
 ATSUStyle iStyle,
 ItemCount iFeatureCount,
 const ATSUFontFeatureType iType[],
 const ATSUFontFeatureSelector iSelector[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set font features.

iFeatureCount
An ItemCount value specifying the number of font features to set. This value should correspond to
the number of elements in the iType and iSelector arrays.

iType
A pointer to the initial ATSUFontFeatureType value in an array of feature types. Each element in
the array must contain a valid feature type that corresponds to a feature selector in the iSelector
array. To obtain the valid feature types for a font, call the function ATSUGetFontFeatureTypes (page
1898).

iSelector
A pointer to the initial ATSUFontFeatureSelector value in an array of feature selectors. Each
element in the array must contain a valid feature selector that corresponds to a feature type in the
iType array. To obtain the valid feature selectors for a font, call the function
ATSUGetFontFeatureSelectors (page 1897).

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUSetFontFeatures function enables you to set multiple font features for a style object. Any unset
font features retain their font-defined default values. To set style attributes and font variations for a style
object, call the functionsATSUSetAttributes (page 1950) andATSUSetVariations (page 1967), respectively.

The constants that represent font feature types are defined in the header file SFNTLayoutTypes.h. When
you use ATSUI to access and set font features, you must use the constants defined in this header file, which
are described in Inside Mac OS X: Rendering Unicode Text With ATSUI. As feature types can be added at any
time, you should check Apple’s font feature registry website for the most up-to-date list of font feature types
and selectors: http://developer.apple.com/fonts/Registry/index.html.

Version Notes
Prior to ATSUI 1.2, ATSUSetFontFeatures does not remove contradictory font features. You are responsible
for maintaining your own list and removing contradictory settings when they occur. Beginning with ATSUI
1.2, ATSUSetFontFeatures removes contradictory font features if they are set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeFonts.h

ATSUSetHighlightingMethod
Sets the method ATSUI uses to highlight and unhighlight text for a text layout object.

Functions 1953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

http://developer.apple.com/fonts/Registry/index.html

OSStatus ATSUSetHighlightingMethod (
 ATSUTextLayout iTextLayout,
 ATSUHighlightMethod iMethod,
 const ATSUUnhighlightData *iUnhighlightData
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to set the highlighting method.

iMethod
An ATSUHighlightMethod value specifying the type of highlighting for ATSUI to use
(kInvertHighlighting or kRedrawHighlighting). The default highlighting method, if you do
not call ATSUSetHighlightingMethod, is inversion. See “Highlight Methods” (page 2053) for a
description of available values.

iUnhighlightData
A pointer to an ATSUUnhighlightData structure if you are setting the iMethod parameter to
kRedrawHighlighting or NULL if setting iMethod to kInvertHighlighting. Before calling
ATSUSetHighlightingMethod, you should set the ATSUUnhighlightData structure to contain
the data needed (either a color or a UPP for a background drawing callback) to redraw the background.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
In Mac OS 9 and by default in Mac OS X (except with Cocoa applications—see below), ATSUI highlights text
by “inverting” the region containing the text, that is, its background color. Although inversion provides
satisfactory highlighting in most cases, it does not always provide the best result for grayscale text. (Mac OS
X sets a lower threshold for antialiasing, while in Mac OS 9 grayscale text can be turned off by the user.)

In Mac OS X, when using a Quartz graphics context, you can instruct ATSUI to use the redraw method of
highlighting, rather than simple inversion. (Note that Cocoa applications always use the redraw method of
highlighting.) The redraw method allows for accurate highlighting of more complex backgrounds, such as
those containing multiple colors, patterns, or pictures. To set redrawing on, call the
ATSUSetHighlightingMethod function and specify that the redraw method be used (by passing
kRedrawHighlighting in the iMethod parameter).

If you specify the redraw method of highlighting when you call ATSUSetHighlightingMethod, then you
must also specify how the background is to be redrawn when the function ATSUUnhighlightText (page
1974) is called. ATSUI can restore the desired background in one of two ways, depending on the background’s
complexity:

 ■ When the background is a single color (such as white), ATSUI can readily unhighlight the background.
In such a case, you specify the background color that ATSUI uses by calling
ATSUSetHighlightingMethodand settingiUnhighlightData.dataType tokATSUBackgroundColor
and providing the background color in iUnhighlightData.unhighlightData. With these settings
defined, when you call ATSUUnhighlightText, ATSUI simply calculates the previously highlighted
area, repaints it with the specified background color, and then redraws the text.

 ■ When the background is more complex (containing, for example, multiple colors, patterns, or pictures),
you must provide a redraw background callback function when you call ATSUSetHighlightingMethod.
You do this by setting iUnhighlightData.dataType to kATSUBackgroundCallback and providing
a RedrawBackgroundUPP in iUnhighlightData.unhighlightData. Then when you call
ATSUUnhighlightText and ATSUI calls your callback, you are responsible for redrawing the background

1954 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

of the unhighlighted area. If you choose to also redraw the text, then your callback should return false
as a function result. If your callback returns true ATSUI redraws any text that needs to be redrawn. See
RedrawBackgroundProcPtr (page 1999) for additional information.

Version Notes
Mac OS 9 applications cannot use the redraw method of highlighting and must use the inversion method,
instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetLayoutControls
Sets layout control attribute values in a text layout object.

OSStatus ATSUSetLayoutControls (
 ATSUTextLayout iTextLayout,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set layout control attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of layout control attribute tags. Each
element in the array must contain a valid tag that corresponds to the layout control attribute to set.
See “Attribute Tags” (page 2030) for a description of the Apple-defined layout control attribute tag
constants.

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding layout control attribute being set.
ATSUSetLayoutControls sets layout attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
value in the array must correspond to a tag in the iTag array and be a legal value for that tag.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When you use ATSUI to image your text, you can control the text’s display and formatting at a number of
different levels.

Functions 1955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

One level is that of the entire text range associated with your text layout object, also known as the “layout
level.” To affect display and formatting on this level, you can specify various layout control attributes using
the ATSUSetLayoutControls function. These attributes affect the width of the text area from margin to
margin, the alignment of the text, its justification, rotation, and direction, as well as other layout options.

Another level is that of a single line of text, that is, the “line level.” To affect display and formatting on this
level, you specify various line control attributes via the function ATSUSetLineControls (page 1956). These
attributes are similar to those that you can apply on a full-layout basis, but each affects only an individual
text line.

Given that ATSUI allows you to control similar aspects of the display and formatting of your text at either the
line level or the layout level (or both, or neither), it is up to you to decide how much layout control to take.
However, you should note the following:

 ■ Setting layout control attributes overrides the corresponding default layout-level settings for a text
layout object. Any layout attributes that you do not set retain the default values described in “Attribute
Tags” (page 2030).

 ■ Setting line control attributes overrides the corresponding layout-level settings (whether set or at default
values) for a text layout object. This is true even if you set the layout-level attributes subsequently to the
line-level ones.

 ■ From a performance standpoint, it is preferable to work from the layout level and not specify layout line
by line unless necessary.

Finally, it is also possible to control the display and formatting of your text at the level of an individual
character or “run” of characters. At this level, you customize layout by manipulating style settings in a style
object. Among the character-level aspects you can control are style attributes (such as font size and color),
font features (such as ligatures), and font variations (such as continually varying font weights or widths).
However, there are certain line control attributes (specified via the ATSLineLayoutOptions flags) that can
override style attributes applied to the same text.

Similarly to style attributes, you use a “triple” to specify a line or layout control attribute. That is, an attribute
tag, the value of the attribute it sets, and the size (in bytes) of the attribute value. Attribute tags are constants
supplied by ATSUI. Attribute values may be a scalar, a structure, or a pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetLineControls
Sets layout control attribute values for a single line in a text layout object.

1956 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set line control attribute
values.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to set control attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of line control attribute tags. Each
element in the array must contain a valid tag that corresponds to the line control attribute to set. See
“Attribute Tags” (page 2030) for a description of the Apple-defined line control attribute tag constants.

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding line control attribute being set.
ATSUSetLineControls sets line attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
value in the array must correspond to a tag in the iTag array and be a legal value for that tag.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When you use ATSUI to image your text, you can control the text’s display and formatting at a number of
different levels. One level is that of the entire text range associated with your text layout object, also known
as the “layout level.” To affect display and formatting on this level, you can specify various layout control
attributes using the ATSUSetLayoutControls (page 1955) function. These attributes affect the width of the
text area from margin to margin, the alignment of the text, its justification, rotation, and direction, as well
as other layout options.

Another level is that of a single line of text, that is, the “line level.” To affect display and formatting on the
line level, you specify various line control attributes using the function ATSUSetLineControls. These
attributes are similar to those that you can apply on a full-layout basis, but each affects only an individual
text line.

You can break text into lines by calling the functions ATSUBatchBreakLines (page 1844) or
ATSUBreakLine (page 1846). You can define separate lines of text by specifying soft breaks either by

 ■ calling the function ATSUBatchBreakLines

 ■ calling the function ATSUBreakLine with the iUseAsSoftBreak parameter set to true

Functions 1957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

 ■ specifying the soft line breaks using the function ATSUSetSoftLineBreak

Given that ATSUI allows you to control similar aspects of the display and formatting of your text at either the
line level or the layout level (or both, or neither), it is up to you to decide how much layout control to take.
However, you should note the following:

 ■ Setting layout control attributes overrides the corresponding default layout-level settings for a text
layout object. Any layout attributes that you do not set retain the default values described in “Attribute
Tags” (page 2030).

 ■ Setting line control attributes overrides the corresponding layout-level settings (whether set or at default
values) for a text layout object. This is true even if you set the layout-level attributes subsequently to the
line-level ones. Any line attributes that you do not set retain their default values.

 ■ From a performance standpoint, it is preferable to work from the layout level and not specify layout line
by line unless necessary.

Finally, it is also possible to control the display and formatting of your text at the level of an individual
character or “run” of characters. At this level, you customize layout by manipulating style settings in a style
object. Among the character-level aspects you can control are style attributes (such as font size and color),
font features (such as ligatures), and font variations (such as continually varying font weights or widths).
However, there are certain line control attributes (specified via the ATSLineLayoutOptions flags) that can
override style attributes applied to the same text.

Similarly to style attributes, you use a “triple” to specify a line or layout control attribute. That is, an attribute
tag, the value of the attribute it sets, and the size (in bytes) of the attribute value. Attribute tags are constants
supplied by ATSUI. Attribute values may be a scalar, a structure, or a pointer.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetObjFontFallbacks
Assigns a font list and a font-search method to a font fallback object.

OSStatus ATSUSetObjFontFallbacks (
 ATSUFontFallbacks iFontFallbacks,
 ItemCount iFontFallbacksCount,
 const ATSUFontID iFonts[],
 ATSUFontFallbackMethod iFontFallbackMethod
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object for which to define settings.

iFontFallbacksCount
An ItemCount value specifying the number of fonts that ATSUI is to search. This value is typically
equal to the number of font IDs you are providing in the iFonts array.

1958 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iFonts
A pointer to the first ATSUFontID value in an array of font IDs identifying the fonts ATSUI is to search.

iFontFallbackMethod
An ATSUFontFallbackMethod value identifying the order in which ATSUI is to search. See “Font
Fallback Methods” (page 2048) for a description of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUSetObjFontFallbacks function defines the settings for a font fallback object. These settings
determine the font list and search order that ATSUI uses when seeking substitute fonts for the text layout
object with which the font fallback object is associated.

Creating, defining settings for, and associating a font fallback object with a text layout object is the only way
to ensure that ATSUI uses your preferred font fallback settings for your text. To create a font fallback object,
you first call the function ATSUCreateFontFallbacks (page 1864). You then define settings for the object
by calling the ATSUSetObjFontFallbacks function. To associate the font fallback object with a text layout
object call the function ATSUSetLayoutControls (page 1955). You pass these functions the control attribute
value kATSULineFontFallbacksTag to set the font fallback object.

If you do not call ATSUSetObjFontFallbacks to change ATSUI’s default search behavior, ATSUI searches
all the fonts on the system sequentially and uses the first valid font it finds for a substitute. If you are careful
in ordering the fonts that you supply to ATSUSetObjFontFallbacks, you can minimize the time ATSUI
needs to find a substitute font.

Font fallback settings affect the behavior of the function ATSUMatchFontsToText (page 1936) and of font
selection during layout and drawing when the function ATSUSetTransientFontMatching (page 1967) is
set to on.

To obtain the font list and font-search method associated with a font fallback object, call the function
ATSUGetObjFontFallbacks (page 1914).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetRunStyle
Defines a style run by associating style information with a run of text.

Functions 1959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetRunStyle (
 ATSUTextLayout iTextLayout,
 ATSUStyle iStyle,
 UniCharArrayOffset iRunStart,
 UniCharCount iRunLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying a text layout object with an associated text buffer.
ATSUSetRunStyle assigns a style object to a run of text in this buffer.

iStyle
An ATSUStyle value specifying the style object to associate with the text run.

iRunStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text run.

iRunLength
A UniCharCount value specifying the length of the text run.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
A text run consists of one or more characters that are contiguous in memory. If you associate these characters
with a distinct style, you define a style run. You can use the ATSUSetRunStyle function to define a style
run, by associating a style object with a run of text in a text layout object. There is a limit of 64K different
styles for each ATSUI text layout object. Each text run must be assigned its own style object, which may or
may not differ from other style objects assigned to other text runs in a given text layout object.

You can create a new style object containing only default settings by calling the function
ATSUCreateStyle (page 1865). To make changes to the default style attributes, you can call the function
ATSUSetAttributes (page 1950). To set font features and font variations, call the functions
ATSUSetFontFeatures (page 1952) and ATSUSetVariations (page 1967), respectively.

Note that if you call ATSUSetRunStyle on a text run that is already associated with a style object, the style
set by ATSUSetRunStyle overrides the previous style. Additionally, upon completion, ATSUSetRunStyle
adjusts the lengths of any style runs on either side of the affected style run.

For example, you may currently have a run of text, 40 characters long, that is assigned a single style, styleA.
If you call ATSUSetRunStyle, you can reassign characters at offset 10–29 to a new style, styleB. If you do
so, you would then have three style runs, where there once was one: characters at offset 0–9 (styleA), 10–29
(styleB), and 30–39 (styleA).

After calling ATSUSetRunStyle, you can call the function ATSUDrawText (page 1877) to display the styled
text. When you call ATSUDrawText, if you have not previously assigned styles to all the characters you request
to be drawn, ATSUI automatically does so. Specifically, ATSUI extends the first style it locates immediately
prior (in storage order) to the unstyled characters to include those unassigned characters. If the unstyled
characters are at the beginning of the text stream, ATSUI finds the first style run in the stream and extends
it backward to the first character.

You should call ATSUSetRunStyle whenever you create a new text layout object without any associated
styles, as by using the function ATSUCreateTextLayout (page 1866). You should also call ATSUSetRunStyle
to assign a style to a text run in response to a user action, such as when the user selects a run of text and
changes the font.

1960 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

You do not need to call ATSUSetRunStyle when you change style attributes or text layout attributes. In
such cases, ATSUI automatically updates the layout of the text as appropriate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetSoftLineBreak
Sets a soft line break that you specify.

OSStatus ATSUSetSoftLineBreak (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineBreak
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set a line break.

iLineBreak
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the line break to set.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUSetSoftLineBreak function enables you to set a soft line break in a text range. You should
typically only call ATSUSetSoftLineBreak to set line breaks when you are using your own line-breaking
algorithm to calculate these breaks. For optimal performance, you should use ATSUBatchBreakLines (page
1844) to both calculate and set soft line breaks in your text.

After calling ATSUSetSoftLineBreak, you should call the function ATSUGetUnjustifiedBounds (page
1923) to determine whether the characters still fit within the line, which is necessary due to end-of-line effects
such as swashes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetStyleRefCon
Sets application-specific data for a style object.

Functions 1961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetStyleRefCon (
 ATSUStyle iStyle,
 URefCon iRefCon
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set application-specific data.

iRefCon
A 32-bit value containing or referring to application-specific style data.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUSetStyleRefCon function associates a reference constant (that is, application-specific data) with
a style object. If you copy or clear a style object that contains a reference constant, the reference constant is
neither copied nor removed. To obtain application-specific data for a style object, call the function
ATSUGetStyleRefCon (page 1918).

When you dispose of a style object that contains a reference constant, you are responsible for freeing any
memory allocated for the reference constant. Calling the function ATSUDisposeStyle (page 1876) does not
do so.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTabArray
Sets a tab ruler for a text layout object.

OSStatus ATSUSetTabArray (
 ATSUTextLayout iTextLayout,
 const ATSUTab iTabs[],
 ItemCount iTabCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which you want to set a tab ruler.

iTabs[]
An array of the tab values you want applied to the text layout object. This tab ruler is applied to all
lines in the text layout object. You can pass NULL if iTabCount equals 0. Passing NULL effectively
deletes any tab ruler that was set previously.

iTabCount
The number of tabs in the given iTabs array. If value is 0, any previously-set tab ruler is cleared from
the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

1962 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
When a tab ruler is set for a text layout object, ATSUI automatically aligns text such that any tabs in the text
are laid out to follow the tab ruler’s specifications. If you want to use tabs in your text and you also want to
use the function ATSUBatchBreakLines, then you must set tabs by calling the function ATSUSetTabArray.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTextHandleLocation
Associates text with a text layout object. (Deprecated in Mac OS X v10.0. Use
ATSUSetTextPointerLocation (page 1965) instead. See the Discussion for more details.)

Not recommended.

OSStatus ATSUSetTextHandleLocation (
 ATSUTextLayout iTextLayout,
 UniCharArrayHandle iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object with which to associate text.

iText
A handle of type UniCharArrayHandle, referring to a text buffer containing UTF-16–encoded text.
ATSUI associates this buffer with the text layout object and analyzes the complete text of the buffer
when obtaining the layout context for the current text range. Thus, for paragraph-format text, if you
specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are not
guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can neither
reliably obtain the context for bidirectional processing nor reliably generate accent attachments and
ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning,. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

Functions 1963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should use the function ATSUSetTextPointerLocation (page 1965) instead of the function
ATSUSetTextHandleLocation.

For ATSUI to render your text, you must associate the text with both a text layout object and style information.
Some functions, such as ATSUCreateTextLayoutWithTextPtr (page 1869), create a text layout object and
associate text with it concurrently. However, if you use the function ATSUCreateTextLayout (page 1866) to
create a layout object, you must assign text to the text layout object prior to attempting most ATSUI operations.

You can use either of the functionsATSUSetTextHandleLocationorATSUSetTextPointerLocation (page
1965) to associate text with a text layout object. When you call these functions, you are both assigning a text
buffer to a text layout object and specifying the current text subrange within the buffer to include in the
layout.

If there is already text associated with a text layout object, calling ATSUSetTextHandleLocation or
ATSUSetTextPointerLocation overrides the previously associated text, as well as clearing the object’s
layout caches. You would typically only call these functions for a text layout object with existing associated
text if either (a) both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted
or (b) when associating an entirely different buffer with a text layout object.

Note that, because ATSUI objects retain state, doing superfluous calling can degrade performance. For
example, you could call ATSUSetTextHandleLocation rather than ATSUTextInserted (page 1970) when
the user simply inserts a subrange of text within a text buffer, but there would be a performance penalty, as
all the layout caches are flushed by ATSUSetTextHandleLocation, rather than just the affected ones.

Similarly, you should not call ATSUSetTextHandleLocation, when an entire text buffer associated with a
text layout object is relocated, but no other changes have occurred that would affect the buffer’s current
subrange. Instead, you should callATSUTextMoved (page 1971), which is a more focused function and therefore
more efficient.

After associating text with the text layout object, use ATSUSetRunStyle (page 1959) to associate style
information with the text. You can then call the function ATSUDrawText (page 1877) to display the text.

Note that while ATSUSetTextHandleLocation associates text with a text layout object via a handle, ATSUI
functions that need to access the text return the handle to its original state upon function completion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTextLayoutRefCon
Sets application-specific data for a text layout object.

1964 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetTextLayoutRefCon (
 ATSUTextLayout iTextLayout,
 URefCon iRefCon
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set application-specific
data.

iRefCon
A 32-bit value containing or referring to application-specific text layout data.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUSetTextLayoutRefCon function associates a reference constant (that is, application-specific data)
with a text layout object. You might typically use ATSUSetTextLayoutRefCon to track user preferences
that can effect layout, for example.

If you copy or clear a text layout object containing a reference constant, the reference constant is not copied
or removed. When you dispose of a text layout object that contains a reference constant, you are responsible
for freeing any memory allocated for the reference constant. Calling the function
ATSUDisposeTextLayout (page 1876) does not do so.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetTextPointerLocation
Associates text with a text layout object or updates previously associated text.

OSStatus ATSUSetTextPointerLocation (
 ATSUTextLayout iTextLayout,
 ConstUniCharArrayPtr iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set text.

iText
A pointer of type ConstUniCharArrayPtr, referring to a text buffer containing UTF-16–encoded
text. ATSUI associates this buffer with the text layout object and analyzes the complete text of the
buffer when obtaining the layout context for the current text range. Thus, for paragraph-format text,
if you specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are
not guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can
neither reliably obtain the context for bidirectional processing nor reliably generate accent attachments
and ligature formations.

Functions 1965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
For ATSUI to render your text, you must associate the text with both a text layout object and style information.
Some functions, such as ATSUCreateTextLayoutWithTextPtr (page 1869), create a text layout object and
associate text with it concurrently. However, if you use the function ATSUCreateTextLayout (page 1866) to
create a text layout object, you must assign text to the object prior to attempting most ATSUI operations.

You can use the function ATSUSetTextPointerLocation or to associate text with a text layout object.
When you call this function, you are both assigning a text buffer to a text layout object and specifying the
current text subrange within the buffer to include in the layout.

If there is already text associated with a text layout object, calling ATSUSetTextPointerLocation overrides
the previously associated text, as well as clearing the object’s layout caches. You would typically only call
this function for a text layout object with existing associated text if either (a) both the buffer itself is relocated
and a subrange of the buffer’s text is deleted or inserted or (b) when associating an entirely different buffer
with a text layout object.

Note that, because ATSUI objects retain state, doing superfluous calling can degrade performance. For
example, you could call ATSUSetTextPointerLocation rather than ATSUTextInserted (page 1970) when
the user simply inserts a subrange of text within a text buffer, but there would be a performance penalty, as
all the layout caches are flushed by ATSUSetTextPointerLocation, rather than just the affected ones.

Similarly, you should not call ATSUSetTextPointerLocation, when an entire text buffer associated with
a text layout object is relocated, but no other changes have occurred that would affect the buffer’s current
subrange. Instead, you should callATSUTextMoved (page 1971), which is a more focused function and therefore
more efficient.

After associating text with a text layout object, useATSUSetRunStyle (page 1959) to associate style information
with the text. You can then call the function ATSUDrawText (page 1877) to display the text or a subrange of
the text.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

1966 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUSetTransientFontMatching
Turns automatic font substitution on or off for a text layout object.

OSStatus ATSUSetTransientFontMatching (
 ATSUTextLayout iTextLayout,
 Boolean iTransientFontMatching
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set automatic font
substitution on or off.

iTransientFontMatching
A Boolean value indicating whether ATSUI is to perform automatic font substitution for the text
layout object. If you pass true, ATSUI performs automatic font substitution for the text range associated
with the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
Calling the ATSUSetTransientFontMatching function sets ATSUI’s automatic font substitution to on or
off for a given text layout object. When automatic font substitution is on, ATSUI scans the text range associated
with specified text layout object looking for undrawable characters whenever a layout is performed, for
example, when text is measured or drawn. When ATSUI finds a character that cannot be drawn with the
currently assigned font, it identifies a valid font for the character and draws the character. ATSUI continues
scanning the text range for characters in need of substitute fonts, replacing the font and redrawing the
characters as needed. ATSUI stops scanning when it reaches the end of the text range associated with the
text layout object.

ATSUI’s default behavior for finding a substitute font is to use the first valid font that it finds when sequentially
scanning the fonts in the user’s system. However, you can alter this behavior by calling the function
ATSUCreateFontFallbacks (page 1864) and defining your own font fallback settings for the text layout
object. If ATSUI cannot find any suitable replacement fonts, it substitutes the missing-character glyph—that
is, a glyph representing an empty box—to indicate to the user that a valid font is not installed on their system.

Note that when ATSUSetTransientFontMatching performs font substitution, it does not change the font
attribute in the associated style object. That is, the font attribute for the style object associated with the
redrawn character(s) remains set to the invalid font—not the valid substitute font— just as it was prior to
calling ATSUSetTransientFontMatching.

If you want ATSUI to identify a substitute font, but you do not want ATSUI to automatically perform the font
substitution, you can call the function ATSUMatchFontsToText (page 1936).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetVariations
Sets font variation axes and values in a style object.

Functions 1967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUSetVariations (
 ATSUStyle iStyle,
 ItemCount iVariationCount,
 const ATSUFontVariationAxis iAxes[],
 const ATSUFontVariationValue iValue[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set font variation values.

iVariationCount
An ItemCount value specifying the number of font variation values to set. This value should correspond
to the number of elements in the iAxes and iValue arrays.

iAxes
A pointer to the initial ATSUFontVariationAxis value in an array of font variation axes. Each element
in the array must represent a valid variation axis tag that corresponds to a variation value in the
iValue array. To obtain a valid variation axis tag for a font, you can call the functions
ATSUGetIndFontVariation (page 1911) or ATSUGetFontInstance (page 1900).

iValue
A pointer to the initial ATSUFontVariationValue value in an array of font variation values. Each
element in the array must contain a value that is valid for the corresponding variation axis in the
iAxes parameter. You can obtain a font’s maximum, minimum, and default values for a given variation
axis by calling the function ATSUGetIndFontVariation (page 1911). You can obtain the font variation
axis values for a font instance by calling ATSUGetFontInstance (page 1900).

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
If you supply font variation axes and values to the ATSUSetVariations function, you can change the
appearance of a style object’s font accordingly. You may specify any number of variation axes and values in
a style object. Any of the font’s variations that you do not set retain their font-defined default values.

You can also use the ATSUSetVariations function to supply your own value within any variation axes
defined for the font. However, if the font does not support the variation axis you specify, your custom variation
has no visual effect.

By calling the function ATSUGetIndFontVariation (page 1911), you can obtain a variation axis and its
maximum, minimum, and default values for a font.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUStyleIsEmpty
Indicates whether a style object contains only default values.

1968 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUStyleIsEmpty (
 ATSUStyle iStyle,
 Boolean *oIsClear
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

oIsClear
A pointer to a Boolean value. On return, the value is set to true if the style object contains only
default values for style attributes, font features, and font variations. If false, the style object contains
one or more nondefault values for style attributes, font features, or font variations.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You can call the ATSUStyleIsEmpty function to determine whether a style object contains only default
values for style attributes, font features, and font variations. ATSUStyleIsEmpty does not consider reference
constants in its evaluation.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextDeleted
Informs ATSUI of the location and length of a text deletion.

OSStatus ATSUTextDeleted (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iDeletedRangeStart,
 UniCharCount iDeletedRangeLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the deleted text.

iDeletedRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
memory location of the deleted text. To specify a deletion point at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning. To specify that the entire text buffer has
been deleted, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iDeletedRangeLength parameter.

iIDeletedRangeLength
A UniCharCount value specifying the length of the deleted text. To specify a deletion length extending
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Functions 1969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
When you call the ATSUTextDeleted function to inform ATSUI of a text deletion, it shortens the style run(s)
containing the deleted text by the amount of the deletion. If a style run corresponds entirely to a range of
deleted text, that style run is removed. If the deletion point is between two style runs, the first style run is
shortened (or removed).

The ATSUTextDeleted function also shortens the total length of the text buffer containing the deleted text
by the amount of the deletion. That is, it shifts the memory location of the text following the deleted text
by iDeletedRangeLength. ATSUTextDeleted also removes any soft line breaks that fall within the deleted
text and updates affected drawing caches.

The ATSUTextDeleted function does not change the actual memory location of the affected text. You are
responsible for deleting the corresponding text is from the text buffer. You are also responsible for calling
the function ATSUDisposeStyle (page 1876) to dispose of the memory associated with any style runs that
have been removed.

Note that calling the function ATSUTextDeleted automatically removes previously-set soft line breaks if
the line breaks are within the range of text that is deleted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextInserted
Informs ATSUI of the location and length of a text insertion.

OSStatus ATSUTextInserted (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iInsertionLocation,
 UniCharCount iInsertionLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the inserted text.

iInsertionLocation
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
memory location of the inserted text. To specify an insertion point at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning.

iInsertionLength
A UniCharCount value specifying the length of the inserted text.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
When you call the ATSUTextInserted function to inform ATSUI of a text insertion, it extends the style run
containing the insertion point by the amount of the inserted text. If the insertion point is between two style
runs, the first style run is extended to include the new text.

1970 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

The ATSUTextInserted function also extends the total length of the text buffer containing the inserted
text by the amount of the inserted text. That is, it shifts the memory location of the text following the inserted
text by iInsertionLength. ATSUTextInserted then updates drawing caches.

Note that the ATSUTextInserted function does not change the actual memory location of the inserted
text. You are responsible for placing the inserted text into the text buffer at the appropriate location.

The ATSUTextInserted function does not insert style runs or line breaks; to do so, call the functions
ATSUSetRunStyle (page 1959) andATSUSetSoftLineBreak (page 1961), respectively. Break line operations
should be redone after you call ATSUTextInserted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextMoved
Informs ATSUI of the new memory location of relocated text.

OSStatus ATSUTextMoved (
 ATSUTextLayout iTextLayout,
 ConstUniCharArrayPtr iNewLocation
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object associated with the relocated text.

iNewLocation
A ConstUniCharArrayPtr specifying the new memory location of the moved text.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should call the ATSUTextMoved function when a range of text consisting of less than an entire text
buffer has been moved. The ATSUTextMoved function informs ATSUI of the new memory location of the
text. You are responsible for moving the text. The text buffer should remain otherwise unchanged.

When a range of text consisting of an entire text buffer has been moved, you should:

 ■ Call the function ATSUSetTextPointerLocation (page 1965) to update the text buffer’s location.

 ■ Call the function ATSUSetRunStyle (page 1959) to update the corresponding style runs for the text
buffer.

 ■ Call the function ATSUDrawText (page 1877) to display the updated text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

Functions 1971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUUnderwriteAttributes
Copies to a destination style object only those nondefault style attribute settings of a source style object
that are at default settings in the destination object.

OSStatus ATSUUnderwriteAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy nondefault style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object containing style attribute values to be set.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUUnderwriteAttributes function copies to a destination style object only those nondefault style
attribute values of a source style object that are not currently set in a destination style object. Note that the
corresponding value in the destination object must not be set in order for a copied value to be applied. All
other quantities in the destination style object are left unchanged.

ATSUUnderwriteAttributesdoes not copy the contents of memory referenced by pointers within custom
style attributes or within reference constants. You are responsible for ensuring that this memory remains
valid until both the source and destination style objects are disposed of.

To create a style object that contains all the contents of another style object, call the function
ATSUCreateAndCopyStyle (page 1863). To copy all the style attributes (including any default settings) of a
style object into an existing style object, call the function ATSUCopyAttributes (page 1856). To copy style
attributes that are set in the source whether or not they are set in the destination style object, call the function
ATSUOverwriteAttributes (page 1944).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUUnflattenStyleRunsFromStream
Unflattens previously-flattened ATSUI style run data so that it can be read from disk or accepted (through
the pasteboard) from another application.

1972 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus ATSUUnflattenStyleRunsFromStream (
 ATSUFlattenedDataStreamFormat iStreamFormat,
 ATSUUnFlattenStyleRunOptions iUnflattenOptions,
 ByteCount iStreamBufferSize,
 const void *iStreamBuffer,
 ItemCount iNumberOfRunInfo,
 ItemCount iNumberOfStyleObjects,
 ATSUStyleRunInfo oRunInfoArray[],
 ATSUStyle oStyleArray[],
 ItemCount *oActualNumberOfRunInfo,
 ItemCount *oActualNumberOfStyleObjects
);

Parameters
iStreamFormat

The format of the flattened data. There is only one format supported at this time ('ustl') so you
must pass the constant kATSUDataStreamUnicodeStyledText.

iUnflattenOptions
The options you want to use to unflatten the data. There are no options supported at this time, so
you must pass the constant kATSUUnflattenOptionsNoOptionsMask.

iStreamBufferSize
The size of the buffer pointed to by the iStreamBuffer parameter. You must pass a value greater
than 0.

iStreamBuffer
A pointer to the buffer that contains the flattened data. The data must be of the format specified by
the iStreamFormat parameter and must be of size specified by the iStreamBufferSize parameter.
You cannot pass NULL.

iNumberOfRunInfo
The number of style run information structures passed in the iRunInfoArray parameter. If you are
uncertain of the number of style run information structures, see the Discussion.

iNumberOfStyleObjects
The number of ATSUStyle objects in the array passed into the iStyleArray parameter. If you are
uncertain of the number of ATSUStyle objects, see the Discussion.

oRunInfoArray[]
On return, points to an array of style run information structures. Each structure contains a style run
length and index into the oStyleArray array. If you are uncertain of how much memory to allocate
for this array, see the Discussion. You are responsible for disposing of the array when you no longer
need it.

oStyleArray[]
On return, a pointer to an array of the unique ATSUI style objects (ATSUStyle) obtained from the
flattened data. The indices returned in the array oRunInfoArray are indices into this array. If you
are uncertain of how much memory to allocate for this array, see the Discussion. You are responsible
for disposing of the array and the ATSUI style objects in the array when you no longer need the array.

oActualNumberOfRunInfo
On return, points to the actual number of ATSUStyleRunInfo structures obtained from the flattened
data. The actual number of structures is the number of entries added to the array oRunInfoArray.
You can pass NULL if you to not want to obtain this value.

Functions 1973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

oActualNumberOfStyleObjects
On return, points to the actual number of unique ATSUI style objects (ATSUStyle) obtained from the
flattened data. The actual number is the number of entries added to the oStyleArray array. You
can pass NULL if you do no want to obtain this value.

Return Value
A result code. See “ATSUI Result Codes” (page 2068). This function can also return paramErr if you pass invalid
values for any of the parameters.

Discussion
The function ATSUUnflattenStyleRunsFromStream extracts the ATSUI style run information from
previously-flattened data. The style objects and style run information structures are returned in two separate
arrays—the array oStyleArray and the array oRunInfoArray. These arrays are not parallel. Each ATSUStyle
object in the oStyleArray is a unique ATSUStyle object. To figure out which ATSUStyle object belongs
to which text run, the caller must parse the array of ATSUStyleRunInfo structures. These structures contain
the style run lengths and an index into the oStyleArray.

Typically you use the function ATSUUnflattenStyleRunsFromStream by calling it twice, as follows:

1. Provide appropriate values for the iStreamFormat, iUnflattenOptions, and iStreamBuffer
parameters. Pass 0 for the iNumberOfRunInfo and iNumberOfStyleObjects parameters, NULL for
the oRunInfoArray and oStyleArray, parameters and valid ItemCount references for the
oActualNumberOfRunInfo and oActualNumberOfStyleObjects parameters. On return,
oActualNumberOfRunInfo andoActualNumberOfStyleObjectspoint to the sizes needed to allocate
these arrays.

2. Allocate appropriately-sized arrays of ATSUStyleRunInfo data structures and ATSUStyle objects. Call
the function ATSUUnflattenStyleRunsFromStream a second time, passing the newly allocated arrays
in the oRunInfoArray and oStyleArray parameters, with the iNumberOfRunInfo and
iNumberOfStyleObjects parameters set to the values you obtained from the first call.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

ATSUUnhighlightText
Renders a previously highlighted range of text in an unhighlighted state.

OSStatus ATSUUnhighlightText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render unhighlighted text.

1974 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw relative to
the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 2043), to draw relative to
the current pen location in the current graphics port.

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text range. If the text range spans multiple lines, you should call
ATSUUnhighlightText for each line, passing the offset corresponding to the beginning of the new
line to draw with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. To indicate that the text range extends
to the end of the text buffer, pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
The ATSUUnhighlightText function renders a previously highlighted range of text in an unhighlighted
state. You should always call ATSUUnhighlightText after calling the function ATSUHighlightText (page
1931), to properly redraw the unhighlighted text and background.

If the inversion method of highlighting was used, when you call ATSUUnhighlightText, it merely undoes
the inversion and renders the text.

If the redraw method of highlighting was used, ATSUUnhighlightText turns off the highlighting and
restores the desired background. Depending on the complexity of the background, ATSUI restores the
background in one of two ways:

 ■ When the background is a single color (such as white), ATSUI can readily unhighlight the background.
In such a case, you specify the background color that ATSUI uses by calling the function
ATSUSetHighlightingMethod (page 1953) and setting iMethod to kRedrawHighlighting and
iUnhighlightData.dataType to kATSUBackgroundColor and providing the background color in
iUnhighlightData.unhighlightData. With these settings defined, when you call
ATSUUnhighlightText, ATSUI simply calculates the previously highlighted area, repaints it with the
specified background color, and then redraws the text.

 ■ When the background is more complex (containing, for example, multiple colors, patterns, or pictures),
you must provide a redraw background callback function when you call ATSUSetHighlightingMethod.
You do this by setting iUnhighlightData.dataType to kATSUBackgroundCallback and providing
a RedrawBackgroundUPP in iUnhighlightData.unhighlightData. When ATSUI calls your callback,
you are responsible for redrawing the background of the unhighlighted area. If you choose to also redraw
the text, then your callback should return false as a function result. If your callback returns true ATSUI
redraws any text that needs to be redrawn. See RedrawBackgroundProcPtr (page 1999) for additional
information.

Functions 1975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Before calculating the dimensions of the area to unhighlight, ATSUUnhighlightText examines the text
layout object to ensure that each of the characters in the range is assigned to a style run. If there are gaps
between style runs, ATSUI assigns the characters in the gap to the style run that precedes (in storage order)
the gap. If there is no style run at the beginning of the text range, ATSUI assigns these characters to the first
style run it finds. If there is no style run at the end of the text range, ATSUI assigns the remaining characters
to the last style run it finds.

The ATSUUnhighlightText function uses the previously set line ascent and descent values to calculate the
height of the region to unhighlight. If these values have not been set for the line, ATSUUnhighlightText
uses the line ascent and descent values set for the text layout object containing the line. If these are not set,
it uses the default values.

If you want to remove highlighting from a text range that spans multiple lines, you should call
ATSUUnhighlightText for each line of text that is being unhighlighted, even if all the lines belong to the
same text layout object. You should adjust the iHighlightStart parameter to reflect the beginning of
each line to be unhighlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

DisposeATSCubicClosePathUPP
Disposes of a universal procedure pointer (UPP) to a cubic close-path callback.

void DisposeATSCubicClosePathUPP (
 ATSCubicClosePathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicClosePathProcPtr (page 1990) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicCurveToUPP
Disposes of a universal procedure pointer (UPP) to a cubic curve-to callback.

1976 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

void DisposeATSCubicCurveToUPP (
 ATSCubicCurveToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicCurveToProcPtr (page 1991) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicLineToUPP
Disposes of a universal procedure pointer (UPP) to a cubic line-to callback.

void DisposeATSCubicLineToUPP (
 ATSCubicLineToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicLineToProcPtr (page 1992) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicMoveToUPP
Disposes of a universal procedure pointer (UPP) to a cubic move-to callback.

void DisposeATSCubicMoveToUPP (
 ATSCubicMoveToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicMoveToProcPtr (page 1993) for more information.

Availability
Available in Mac OS X v10.0 and later.

Functions 1977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticClosePathUPP
Disposes of a universal procedure pointer (UPP) to a quadratic close-path callback.

void DisposeATSQuadraticClosePathUPP (
 ATSQuadraticClosePathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticClosePathProcPtr (page 1994) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticCurveUPP
Disposes of a universal procedure pointer (UPP) to a quadratic curve callback.

void DisposeATSQuadraticCurveUPP (
 ATSQuadraticCurveUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticCurveProcPtr (page 1995) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticLineUPP
Disposes of a universal procedure pointer (UPP) to a quadratic line callback.

1978 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

void DisposeATSQuadraticLineUPP (
 ATSQuadraticLineUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticLineProcPtr (page 1996) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticNewPathUPP
Disposes of a universal procedure pointer (UPP) to a quadratic new-path callback.

void DisposeATSQuadraticNewPathUPP (
 ATSQuadraticNewPathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticNewPathProcPtr (page 1997) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSUDirectLayoutOperationOverrideUPP
Disposes of a universal procedure pointer (UPP) to a layout operation override callback.

void DisposeATSUDirectLayoutOperationOverrideUPP (
 ATSUDirectLayoutOperationOverrideUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSUDirectLayoutOperationOverrideProcPtr (page 1998) for more information.

Availability
Available in Mac OS X v10.2 and later.

Functions 1979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSLayoutTypes.h

DisposeRedrawBackgroundUPP
Disposes of a new universal procedure pointer (UPP) to a redraw background callback.

void DisposeRedrawBackgroundUPP (
 RedrawBackgroundUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback RedrawBackgroundProcPtr (page 1999) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

InvokeATSCubicClosePathUPP
Calls your cubic close-path callback.

OSStatus InvokeATSCubicClosePathUPP (
 void *callBackDataPtr,
 ATSCubicClosePathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSCubicClosePathUPP, as ATSUI calls your cubic close-path
callback for you. See the callback ATSCubicClosePathProcPtr (page 1990) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicCurveToUPP
Calls your cubic curve-to callback.

1980 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus InvokeATSCubicCurveToUPP (
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr,
 ATSCubicCurveToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSCubicCurveToUPP, as ATSUI calls your cubic curve-to
callback for you. See the callback ATSCubicCurveToProcPtr (page 1991) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicLineToUPP
Calls your cubic line-to callback.

OSStatus InvokeATSCubicLineToUPP (
 const Float32Point *pt,
 void *callBackDataPtr,
 ATSCubicLineToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSCubicLineToUPP, as ATSUI calls your cubic line-to
callback for you. See the callback ATSCubicLineToProcPtr (page 1992) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicMoveToUPP
Calls your cubic move-to callback.

Functions 1981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus InvokeATSCubicMoveToUPP (
 const Float32Point *pt,
 void *callBackDataPtr,
 ATSCubicMoveToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSCubicMoveToUPP, as ATSUI calls your cubic move-to
callback for you. See the callback ATSCubicMoveToProcPtr (page 1993) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticClosePathUPP
Calls your quadratic close-path callback.

OSStatus InvokeATSQuadraticClosePathUPP (
 void *callBackDataPtr,
 ATSQuadraticClosePathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSQuadraticClosePathUPP, as ATSUI calls your quadratic
close-path callback for you. See the callback ATSQuadraticClosePathProcPtr (page 1994) for more
information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticCurveUPP
Calls your quadratic curve callback.

1982 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus InvokeATSQuadraticCurveUPP (
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr,
 ATSQuadraticCurveUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSQuadraticCurveUPP, as ATSUI calls your quadratic
curve callback for you. See the callback ATSQuadraticCurveProcPtr (page 1995) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticLineUPP
Calls your quadratic line callback.

OSStatus InvokeATSQuadraticLineUPP (
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr,
 ATSQuadraticLineUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSQuadraticLineUPP, as ATSUI calls your quadratic line
callback for you. See the callback ATSQuadraticLineProcPtr (page 1996) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticNewPathUPP
Calls your quadratic new-path callback.

Functions 1983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

OSStatus InvokeATSQuadraticNewPathUPP (
 void *callBackDataPtr,
 ATSQuadraticNewPathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSQuadraticNewPathUPP, as ATSUI calls your quadratic
new-path callback for you. See the callbackATSQuadraticNewPathProcPtr (page 1997) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSUDirectLayoutOperationOverrideUPP
Calls your layout operation override callback.

OSStatus InvokeATSUDirectLayoutOperationOverrideUPP (
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 URefCon iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus,
 ATSUDirectLayoutOperationOverrideUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 2068).

Discussion
You should not need to use the function InvokeATSUDirectLayoutOperationOverrideUPP, as ATSUI
calls your layout operation override callback for your. See the callback
ATSUDirectLayoutOperationOverrideProcPtr (page 1998) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

InvokeRedrawBackgroundUPP
Invokes your redraw background callback.

1984 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Boolean InvokeRedrawBackgroundUPP (
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid iUnhighlightArea[],
 ItemCount iTrapezoidCount,
 RedrawBackgroundUPP userUPP
);

Return Value
A Boolean value that indicates whether or not the callback was invoked successfully .

Discussion
You should not need to use the function InvokeRedrawBackgroundUPP, as ATSUI calls your redraw
background callback for you. See the callback RedrawBackgroundProcPtr (page 1999) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

NewATSCubicClosePathUPP
Creates a new universal procedure pointer (UPP) to a cubic close-path callback.

ATSCubicClosePathUPP NewATSCubicClosePathUPP (
 ATSCubicClosePathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic close-path callback.

Return Value
On return, a UPP to the cubic close-path callback.

Discussion
See the callback ATSCubicClosePathProcPtr (page 1990) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicCurveToUPP
Creates a new universal procedure pointer (UPP) to a cubic curve-to callback.

Functions 1985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSCubicCurveToUPP NewATSCubicCurveToUPP (
 ATSCubicCurveToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic curve-to callback.

Return Value
On return, a UPP to the cubic curve-to callback.

Discussion
See the callback ATSCubicCurveToProcPtr (page 1991) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicLineToUPP
Creates a new universal procedure pointer (UPP) to a cubic line-to callback.

ATSCubicLineToUPP NewATSCubicLineToUPP (
 ATSCubicLineToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic line-to callback.

Return Value
On return, a UPP to the cubic line-to callback.

Discussion
See the callback ATSCubicLineToProcPtr (page 1992) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicMoveToUPP
Creates a new universal procedure pointer (UPP) to a cubic move-to callback.

ATSCubicMoveToUPP NewATSCubicMoveToUPP (
 ATSCubicMoveToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic move-to callback.

1986 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Return Value
On return, a UPP to the cubic move-to callback.

Discussion
See the callback ATSCubicMoveToProcPtr (page 1993) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticClosePathUPP
Creates a new universal procedure pointer (UPP) to a quadratic close-path callback.

ATSQuadraticClosePathUPP NewATSQuadraticClosePathUPP (
 ATSQuadraticClosePathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic close-path callback.

Return Value
On return, a UPP to the quadratic close-path callback.

Discussion
See the callback ATSQuadraticClosePathProcPtr (page 1994) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticCurveUPP
Creates a new universal procedure pointer (UPP) to a quadratic curve callback.

ATSQuadraticCurveUPP NewATSQuadraticCurveUPP (
 ATSQuadraticCurveProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic curve callback.

Return Value
On return, a UPP to the quadratic curve callback.

Discussion
See the callback ATSQuadraticCurveProcPtr (page 1995) for more information.

Functions 1987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticLineUPP
Creates a new universal procedure pointer (UPP) to a quadratic line callback.

ATSQuadraticLineUPP NewATSQuadraticLineUPP (
 ATSQuadraticLineProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic line callback.

Return Value
On return, a UPP to the quadratic line callback.

Discussion
See the callback ATSQuadraticLineProcPtr (page 1996) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticNewPathUPP
Creates a new universal procedure pointer (UPP) to a quadratic new-path callback.

ATSQuadraticNewPathUPP NewATSQuadraticNewPathUPP (
 ATSQuadraticNewPathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic new-path callback.

Return Value
On return, a UPP to the quadratic new-path callback.

Discussion
See the callback ATSQuadraticNewPathProcPtr (page 1997) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

1988 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

NewATSUDirectLayoutOperationOverrideUPP
Creates a new universal procedure pointer (UPP) to a layout operation override callback.

ATSUDirectLayoutOperationOverrideUPP NewATSUDirectLayoutOperationOverrideUPP (
 ATSUDirectLayoutOperationOverrideProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your layout operation override callback.

Return Value
On return, a UPP to the layout operation override callback.

Discussion
See the callback ATSUDirectLayoutOperationOverrideProcPtr (page 1998) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

NewRedrawBackgroundUPP
Creates a new universal procedure pointer (UPP) to a redraw background callback.

RedrawBackgroundUPP NewRedrawBackgroundUPP (
 RedrawBackgroundProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your redraw background callback.

Return Value
On return, a UPP to the redraw background callback.

Discussion
See the callback RedrawBackgroundProcPtr (page 1999) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Functions 1989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Callbacks

ATSCubicClosePathProcPtr
Defines a pointer to a cubic close-path callback for drawing glyphs that overrides ATSUI’s cubic close-path
operation for drawing glyphs.

typedef OSStatus(* ATSCubicClosePathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSCubicClosePathCallback, you would declare it like this:

OSStatus MyATSCubicClosePathCallback (
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 1926). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic close-path callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 1925).

To provide a pointer to your cubic close-path callback, you create a universal procedure pointer (UPP) of type
ATSCubicClosePathUPP, using the function NewATSCubicClosePathUPP (page 1985). You can do so with
code similar to the following:

ATSCubicClosePathUPP MyCubicClosePathUPP;
MyCubicClosePathUPP = NewATSCubicClosePathUPP (&MyATSCubicClosePathCallback);

When you no longer need to use your cubic close-path callback, you should use the function
DisposeATSCubicClosePathUPP (page 1976) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

1990 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSCubicCurveToProcPtr
Defines a pointer to a cubic curve-to callback for drawing glyphs that overrides ATSUI’s cubic curve-to
operation for drawing glyphs.

typedef OSStatus(* ATSCubicCurveToProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr
);

If you name your function MyATSCubicCurveToCallback, you would declare it like this:

OSStatus MyATSCubicCurveToCallback (
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the first off-curve point for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the second off-curve point for this segment of the glyph.

pt3
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the curve (an on-curve point) for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 1926). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic curve-to function as a parameter to the function
ATSUGlyphGetCubicPaths (page 1925).

To provide a pointer to your cubic curve-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicCurveToUPP, using the function NewATSCubicCurveToUPP (page 1985). You can do so with code
similar to the following:

ATSCubicCurveToUPP MyCubicCurveToUPP;
MyCubicCurveToUPP = NewATSCubicCurveToUPP (&MyATSCubicCurveToCallback);

Callbacks 1991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

When you no longer need to use your cubic curve-to callback, you should use the function
DisposeATSCubicCurveToUPP (page 1976) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicLineToProcPtr
Defines a pointer to a cubic line-to callback for drawing glyphs that overrides ATSUI’s cubic line-to operation
for drawing glyphs.

typedef OSStatus(* ATSCubicLineToProcPtr)
(
 const Float32Point *pt,
 void *callBackDataPtr
);

If you name your function MyATSCubicLineToCallback, you would declare it like this:

OSStatus MyATSCubicLineToCallback (
 const Float32Point *pt,
 void *callBackDataPtr
);

Parameters
pt

A Float32Point data structure that contains the x and y coordinates for the relative point to which
the pen should draw a line.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 1926). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic line-to callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 1925).

To provide a pointer to your cubic line-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicLineToUPP, using the function NewATSCubicLineToUPP (page 1986). You can do so with code
similar to the following:

ATSCubicLineToUPP MyCubicLineToUPP;
MyCubicLineToUPP = NewATSCubicLineToUPP (&MyATSCubicLineToCallback);

1992 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

When you no longer need to use your cubic line-to callback, you should use the function
DisposeATSCubicLineToUPP (page 1977) to dispose of the universal procedure pointer associated with the
callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicMoveToProcPtr
Defines a pointer to a cubic move-to function for drawing glyphs that overrides ATSUI’s cubic move-to
operation for drawing glyphs.

typedef OSStatus(* ATSCubicMoveToProcPtr)
(
 const Float32Point *pt,
 void *callBackDataPtr
);

If you name your function MyATSCubicMoveToCallback, you would declare it like this:

OSStatus MyATSCubicMoveToCallback (
 const Float32Point *pt,
 void *callBackDataPtr
);

Parameters
pt

A Float32Point data structure that contains the x and y coordinates for the relative point to which
the pen should move before it begins drawing this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 1926). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic move-to callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 1925).

To provide a pointer to your cubic move-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicMoveToUPP, using the function NewATSCubicMoveToUPP (page 1986). You can do so with code
similar to the following:

ATSCubicMoveToUPP MyCubicMoveToUPP;
MyCubicMoveToUPP = ATSCubicMoveToUPP (&MyATSCubicMoveToCallback);

Callbacks 1993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

When you no longer need to use your cubic move-to callback, you should use the function
DisposeATSCubicMoveToUPP (page 1977) to dispose of the universal procedure pointer associated with the
callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticClosePathProcPtr
Defines a pointer to a quadratic close-path callback for drawing glyphs that overrides ATSUI’s quadratic
close-path operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticClosePathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSQuadraticClosePathCallback, you would declare it like this:

OSStatus MyATSQuadraticClosePathCallback
(
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 1928). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic close-path callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 1928).

To provide a pointer to your quadratic close-path callback, you create a universal procedure pointer (UPP)
of type ATSQuadraticClosePathUPP, using the function NewATSQuadraticClosePathUPP (page 1987).
You can do so with code similar to the following:

ATSQuadraticClosePathUPP MyQuadraticClosePathUPP;
MyQuadraticClosePathUPP = NewATSQuadraticClosePathUPP
(&MyATSQuadraticClosePathCallback);

When you no longer need to use your quadratic close-path callback, you should use the function
DisposeATSQuadraticClosePathUPP (page 1978) to dispose of the universal procedure pointer associated
with the callback.

1994 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticCurveProcPtr
Defines a pointer to a quadratic curve callback for drawing glyphs that overrides ATSUI’s quadratic curve
operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticCurveProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr
);

If you name your function MyATSQuadraticCurveCallback, you would declare it like this:

OSStatus MyATSQuadraticCurveCallback (
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the start of the curve (an on-curve point) for this segment of the glyph.

controlPt
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the control point (an off-curve point) for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the curve (an on-curve point) for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 1928). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic curve callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 1928).

Callbacks 1995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

To provide a pointer to your quadratic curve callback, you create a universal procedure pointer (UPP) of type
ATSQuadraticCurveUPP, using the function NewATSQuadraticCurveUPP (page 1987). You can do so with
code similar to the following:

ATSQuadraticCurveUPP MyQuadraticCurveUPP;
MyQuadraticCurveUPP = NewATSQuadraticCurveUPP (&MyATSQuadraticCurveCallback);

When you no longer need to use your quadratic curve callback, you should use the function
DisposeATSQuadraticCurveUPP (page 1978) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticLineProcPtr
Defines a pointer to a quadratic line callback for drawing glyphs that overrides ATSUI’s quadratic line operation
for drawing glyphs.

typedef OSStatus(* ATSQuadraticLineProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr
);

If you name your function MyATSQuadraticLineCallback, you would declare it like this:

OSStatus MyATSQuadraticLineCallback (
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the start of the line for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the line for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 1928). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

1996 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
You supply a pointer to your customized quadratic line callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 1928).

To provide a pointer to your quadratic line callback, you create a universal procedure pointer (UPP) of type
ATSQuadraticLineUPP, using the function NewATSQuadraticLineUPP (page 1988). You can do so with
code similar to the following:

ATSQuadraticLineUPP MyQuadraticLineUPP;
MyQuadraticLineUPP = NewATSQuadraticLineUPP (&MyATSQuadraticLineCallback);

When you no longer need to use your quadratic line callback, you should use the function
DisposeATSQuadraticLineUPP (page 1978) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticNewPathProcPtr
Defines a pointer to a quadratic new-path callback for drawing glyphs that overrides ATSUI’s quadratic
new-path operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticNewPathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSQuadraticNewPathCallback, you would declare it like this:

OSStatus MyATSQuadraticNewPathCallback
(
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 1928). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic new-path callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 1928).

Callbacks 1997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

To provide a pointer to your quadratic new-path callback, you create a universal procedure pointer (UPP) of
type ATSQuadraticNewPathUPP, using the function NewATSQuadraticNewPathUPP (page 1988). You can
do so with code similar to the following:

ATSQuadraticNewPathUPP MyQuadraticNewPathUPP;
MyQuadraticNewPathUPP = NewATSQuadraticNewPathUPP
(&MyATSQuadraticNewPathCallback);

When you no longer need to use your quadratic new-path callback, you should use the function
DisposeATSQuadraticNewPathUPP (page 1979) to dispose of the universal procedure pointer associated
with the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSUDirectLayoutOperationOverrideProcPtr
Defines a pointer to a layout operation callback that overrides an ATSUI layout operation.

typedef CALLBACK_API_C (OSStatus, ATSUDirectLayoutOperationOverrideProcPtr
)
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 UInt32 iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus
);

If you name your function MyLayoutOperationOverrideCallback, you would declare it like this:

OSStatus MyLayoutOperationOverrideCallback
(
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 UInt32 iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus
);

Parameters
iCurrentOperation

The operation that triggered the callback. This value is passed to your callback by ATSUI. If you write
a callback that handles more than one layout operation, you can use this value to determine which
operation you should handle.

iLineRef
An ATSULineRef value that specifies the line of text on which your callback will operation. Your
callback gets called for each line of text associated with the text layout object on which you installed
the callback.

1998 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

iRefCon
An unsigned 32-bit integer. This is an optional value. You can use this value to specify any data your
application needs, such as user preference data.

iOperationCallbackParameterPtr
A pointer. This is currently unused and should be set to NULL.

oCallbackStatus
A layout callback status value. On output, you must supply a status value to indicate to ATSUI whether
or not your callback handled the operation. See “Layout Callback Status Values” (page 2055) for a list
of the constants you can supply.

Discussion
ATSUI calls your layout operation override function each time the layout operation you specify is invoked.
You associate a universal procedure pointer with a text layout object by treating the callback as a layout
attribute. That is, you set up a triple (tag, size, value) to specify the layout operation your callback handles,
then you call the function ATSUSetLayoutControls (page 1955) to associate the triple with the text layout
object whose layout operation you want to override. The attribute tag you specify is
kATSULayoutOperationOverrideTag. The attribute value you specify is an
ATSULayoutOperationOverrideSpecifier structure that contains a selector for a layout operation and
a pointer to your callback function.

To provide a pointer to your layout operation override callback, you create a universal procedure pointer
(UPP) of type ATSUDirectLayoutOperationOverrideUPP, using the function
NewATSUDirectLayoutOperationOverrideUPP (page 1989). You can do so with code similar to the following:

ATSUDirectLayoutOperationOverrideUPP MyLayoutOperationOverrideUPP;
MyLayoutOperationOverrideUPP = NewATSUDirectLayoutOperationOverrideUPP
 (&MyLayoutOperationOverrideCallback);

When your layout operation is completed, you should use the function
DisposeATSUDirectLayoutOperationOverrideUPP (page 1979) to dispose of the universal procedure
pointer associated with your layout operation override function. However, if you plan to use the same layout
operation override function in subsequent layout operations, you can reuse the same UPP, rather than dispose
of it and later create a new UPP.

You are limited to the ATSUI functions you can call from within your callback. You can call only those functions
that have do not trigger ATSUI to perform the layout operation again. Otherwise, you run the risk of causing
infinite recursion. Most functions that use “create”, “get”, or “copy” semantics are safe to use within your
callback. If you call one of the restricted functions, the function returns immediately with the error
kATSUInvalidCallInsideCallbackErr.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

RedrawBackgroundProcPtr
Defines a pointer to a redraw-background callback that overrides ATSUI’s highlighting method for drawing
backgrounds.

Callbacks 1999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef Boolean (* RedrawBackgroundProcPtr)
(
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid *iUnhighlightArea,
 ItemCount iTrapezoidCount
);

If you name your function MyRedrawBackgroundCallback, you would declare it like this:

Boolean MyRedrawBackgroundCallback (
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid *iUnhighlightArea,
 ItemCount iTrapezoidCount
);

Parameters
iLayout

An ATSUTextLayout value that specifies the text layout object on which your callback will operate.

iTextOffset
The offset of the text to be highlighted.

iTextLength
The length of the text to be highlighted.

iUnhighlightArea
An array of ATSTrapezoid data structures that describe the boundaries of the highlight area. The
boundary values in this array are always specified in QuickDraw coordinates.

iTrapezoidCount
The number of ATSTrapezoid data structures in the iUnhighlightArea array.

Return Value
A Boolean value that indicates whether ATSUI should redraw the text. If your function redraws the text, your
callback should return false, otherwise you callback should return true to have ATSUI redraw any text that
needs to be redrawn.

Discussion
ATSUI calls your customized redraw-background callback when it needs to redraw complex backgrounds
(and optionally the text as well). For ATSUI to use your callback, you must first call the
ATSUSetHighlightingMethod (page 1953) function with the iMethod parameter set to
kRedrawHighlighting. You must also pass an ATSUUnhighlightData data structure as a parameter to
the ATSUSetHighlightingMethod function. This structure should contain a pointer to your redraw
background callback.

To provide a pointer to your redraw background callback, you create a universal procedure pointer (UPP) of
type RedrawBackgroundUPP, using the function NewRedrawBackgroundUPP (page 1989). You can do so
with code similar to the following:

RedrawBackgroundUPP gMyRedrawBackgroundUPP;
gMyRedrawBackgroundUPP = NewRedrawBackgroundUPP
 (&MyRedrawBackgroundCallback);

2000 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

For ATSUI to invoke your callback function, you must also pass the RedrawBackgroundUPP in the
unhighlightData.backgroundUPP field of the iUnhighlightData parameter for the function
ATSUSetHighlightingMethod. When finished, you must call the function
DisposeRedrawBackgroundUPP (page 1980) to dispose of the RedrawBackgroundUPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Data Types

Core Data Types

ATSUAttributeInfo
Contains an attribute tag and the size of the attribute.

struct ATSUAttributeInfo {
 ATSUAttributeTag fTag;
 ByteCount fValueSize;
};

Fields
fTag

Identifies a particular style run or text attribute value. For a description of the Apple-defined style run
and text layout attribute tag constants, see “Attribute Tags” (page 2030).

fValueSize
The size (in bytes) of the style run or text layout attribute value.

Discussion
Several ATSUI functions pass back an array of structures of this type. The function
ATSUGetAllAttributes (page 1886) passes back an array of ATSUAttributeInfo structures to represent
the data sizes of all previously set style run attribute values and the corresponding style run attribute tags
that identify those style run attribute values. The function ATSUGetAllLayoutControls (page 1890) passes
back an array of ATSUAttributeInfo structures to represent the data sizes of all previously set text layout
attribute values for an entire text layout object and the corresponding text layout attribute tags that identify
those text layout attribute values. The function ATSUGetAllLineControls (page 1891) passes back an array
of ATSUAttributeInfo structures to represent the data sizes of all previously set text layout attribute values
for a single line in a text layout object and the corresponding text layout attribute tags that identify those
text layout attribute values.

ATSLayoutRecord
Contains basic layout information for a single glyph.

Data Types 2001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSLayoutRecord {
 ATSGlyphRef glyphID;
 ATSGlyphInfoFlags flags;
 ByteCount originalOffset;
 Fixed realPos;
};
typedef struct ATSLayoutRecord ATSLayoutRecord;

Fields
glyphID

A reference to a glyph ID.

flags
A flag that specifies the glyph’s properties. See “Glyph Property Flags” (page 2051) for the constants
you can use.

originalOffset
The byte offset of the character with which this glyph is associated.

realPos
A Fixed value that specifies the real position of the glyph. This is the x-coordinate of the glyph.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSUStyleSettingRef
A reference to an opaque style setting object.

typedef struct LLCStyleInfo* ATSUStyleSettingRef;

Discussion
You can obtain a style setting reference by calling the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) with the selector set to
kATSUDirectDataStyleSettingATSUStyleSettingRefArray. You can move a style setting reference
from one text layout object to another by calling the function ATSUDirectAddStyleSettingRef (page
1871).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUAttributeValuePtr
Represents a pointer to a style run or text layout attribute value of unknown size.

2002 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef void* ATSUAttributeValuePtr;

Discussion
Each attribute value pointed to by ATSUAttributeValuePtr is identified by an attribute tag and the size
(in bytes) of the attribute value.

You pass the ATSUAttributeValuePtr type to functions that set or clear attribute values in style and text
layout objects. The ATSUAttributeValuePtr type is passed back by functions that query style and text
layout objects for their attribute values. You must dereference this pointer and cast it to the appropriate data
type to obtain the actual attribute value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ConstATSUAttributeValuePtr
A pointer to a constant attribute value pointer (ATSUAttributeValuePtr).

typedef const void* ConstATSUAttributeValuePtr;

Discussion
An ATSUAttributeValuePtr data type provides generic access to storage of attribute values which vary
in size.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSURGBAlphaColor
Contains color information that includes alpha channel information.

struct ATSURGBAlphaColor {
 float red;
 float green;
 float blue;
 float alpha;
};
typedef struct ATSURGBAlphaColor ATSURGBAlphaColor;

Fields
red

A value that specifies the red component of the background color.

green
A value that specifies the green component of the background color.

blue
A value that specifies the blue component of the background color.

Data Types 2003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

alpha
A value that specifies thee alpha channel component of the background color.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSUBackgroundColor
Redefines the ATSUBackgroundColor data type to be an ATSURGBAlphaColor data type.

typedef ATSURGBAlphaColor ATSUBackgroundColor;

Discussion
Prior to Mac OS X version 10.2, the ATSUBackgroundColor data type did not include an alpha channel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUBackgroundData
A union that contains a background color or a universal procedure pointer to a callback that redraws the
background.

union ATSUBackgroundData {
 ATSUBackgroundColor backgroundColor;
 RedrawBackgroundUPP backgroundUPP;
};

Fields
backgroundColor

A structure that specifies the background color.

backgroundUPP
A universal procedure pointer to a callback function for redrawing complex backgrounds. See
RedrawBackgroundUPP (page 2030) for more information.

ATSUCaret
Contains the coordinates needed to draw a caret.

2004 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSUCaret {
 Fixed fX;
 Fixed fY;
 Fixed fDeltaX;
 Fixed fDeltaY;
};

Fields
fX

Represents the x-coordinate of the caret’s starting pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred.

fY
Represents the y-coordinate of the caret’s starting pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred.

fDeltaX
Represents the x-coordinate of the caret’s ending pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred. This position takes into account line
rotation. You do not have to rotate it yourself.

fDeltaY
Represents the y-coordinate of the caret’s ending pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred. This position takes into account line
rotation. You do not have to rotate it yourself.

Discussion
The functionATSUOffsetToPosition (page 1942) passes back two structures of typeATSUCaret to represent
the caret position relative to the origin of the line in the current graphics port, corresponding to a specified
edge offset. If the edge offset is at a line boundary, the structure passed back in oMainCaret contains the
starting and ending pen locations of the high caret, while oSecondCaret contains the low caret. If the offset
is not at a line boundary, both parameters contain the same structure. This structure contains the starting
and ending pen locations of the main caret.

You can use the information in this structure to draw a caret by calling the MoveTo and LineTo functions.
For example.

MoveTo (fX, fY);
LineTo (fDeltaX, fDeltaY);

ATSUFontFeatureType
Represents the attributes of a particular font feature.

typedef UInt16 ATSUFontFeatureType;

Discussion
Font features are typographic and layout capabilities that you can select or deselect and which control many
aspects of glyph selection, ordering, and positioning. Font features include fundamental controls such as
whether your text is drawn with contextual forms, as well as details of appearance such as whether you want
alternate forms of glyphs to be used at the beginning of a word. To a large extent, how text looks when it is
laid out is a function of the number and kinds of font features you choose.

Data Types 2005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Font vendors create tables that implement the specific set of features which are included in a font by the
font designer. Note that only a few feature types and selectors may be available with a given font. If you
select features that are not available in a font, you won’t see a change in the glyph’s appearance. To determine
the available features of a font, you can call the functions ATSUGetFontFeatureTypes (page 1898) and
ATSUGetFontFeatureSelectors (page 1897).

For a complete discussion of font features, the selectors you use to access them, and illustrations of the
features, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontFeatureSelector
Represents the state (on or off) of a particular feature type.

typedef UInt16 ATSUFontFeatureSelector;

Discussion
You pass the ATSUFontFeatureSelector type to functions that set or clear font feature selectors in a style
run. The ATSUFontFeatureSelector type is passed back by functions that obtain font feature selectors in
a style run. For a complete discussion of font feature selectors, see Inside Mac OS X: Rendering Unicode Text
With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontVariationAxis
Represents a stylistic attribute and the range of values that the font can use to express this attribute.

typedef FourCharCode ATSUFontVariationAxis;

Discussion
Font variations allow your application to produce a range of type styles algorithmically. You can obtain a a
variation axis and its maximum, minimum, and default values for a font by calling the function
ATSUGetIndFontVariation (page 1911). For a complete discussion of font variations, see Inside Mac OS X:
Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

2006 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUFontVariationValue
Represents the range of values that the font can use for a particular font variation.

typedef Fixed ATSUFontVariationValue;

Discussion
You pass the ATSUFontVariationValue type to functions that set and clear font variations in a style run.
The ATSUFontVariationValue type is passed back by functions that query a style run for font variations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontFallbacks
An opaque structure that contains a font fallback list and font fallback cache information.

typedef struct OpaqueATSUFontFallbacks *ATSUFontFallbacks;

Availability
Available in Mac OS X v10.1 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontID
Represents the unique identifier of a font to the font management system in ATSUI.

typedef FMFont ATSUFontID;

Discussion
You pass the ATSUFontID type with functions that set and obtain font information. The ATSUFontID type
is passed back by functions that count fonts installed on a user’s system. The ATSUFontID type can be also
used to set and get the font in a style run; see “Attribute Tags” (page 2030).

An ATSUFontID specifies a font family and instance. This value is not guaranteed to remain constant if the
system is restarted. You should obtain the font’s unique name and store that information in documents for
which you need persistent font information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUGlyphInfo
Contains information about a glyph.

Data Types 2007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSUGlyphInfo {
 GlyphID glyphID;
 UInt16 reserved;
 UInt32 layoutFlags;
 UniCharArrayOffset charIndex;
 ATSUStyle style;
 Float32 deltaY;
 Float32 idealX;
 SInt16 screenX;
 SInt16 caretX;
};

Fields
glyphID

A glyph ID. This is unique to the associated font.

reserved
Reserved for Apple’s use.

layoutFlags
The layout flags associated with this glyph.

charIndex
The index of the character in the Unicode character stream from which this glyph is derived.

style
An ATSUStyle value that specifies the style object associated with this glyph.

deltaY
The cross-stream shift value for this glyph.

idealX
The ideal with-stream offset from the origin of this layout.

screenX
The device-adjusted with-stream offset from the origin of this layout.

caretX
The position in device coordinates where a trailing caret for this glyph intersects the baseline.

Discussion
This data structure is used by ATSUI to return the glyph information associated with one glyph.

ATSUGlyphInfoArray
Contains text layout information for an array of glyphs.

struct ATSUGlyphInfoArray {
 ATSUTextLayout layout;
 ItemCount numGlyphs;
 ATSUGlyphInfo glyphs[1];
};

Fields
layout

An ATSUTextLayout value that specifies the text layout object associated with the glyphs.

numGlyphs
The number of glyphs associated with the text layout object.

2008 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

glyphs
An array of glyph information structures.

Discussion
This data structure is used by ATSUI to return the glyph information associated with the glyphs in a text
layout object.

ATSUGlyphSelector
Contains information that directs ATSUI to use a specific glyph instead of the one ATSUI normally derives.

struct ATSUGlyphSelector {
 GlyphCollection collection;
 GlyphID glyphID;
};
typedef struct ATSUGlyphSelector ATSUGlyphSelector;

Fields
collection

A value that represents the collection of glyphs you want ATSUI to use. See “Glyph Collection Types
” (page 2050) for possible values you can supply.

glyphID
A glyph ID value or a collection ID (CID) value. Supply a glyph ID when the collection type is
kGlyphCollectionGID. Otherwise supply a CID.

Discussion
The ATSUGlyphSelector structure along with the attribute tag kATSUGlyphSelectorTag allow display
of glyphs that do not have an explicit Unicode character. You can use the kATSUGlyphSelectorTag to
access characters in fonts that otherwise would not be accessible. You can choose the variant glyph by
font-specific glyph ID or CID. For more information on CID conventions, see go to http://www.adobe.com.
You can get the variant glyph information from an input method through the Text Services Manager using
the Carbon event key kEventParamTextInputGlyphInfoArray.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSJustPriorityWidthDeltaOverrides
Contains justification width delta override structures, one for each priority-level override.

typedef ATSJustWidthDeltaEntryOverride ATSJustPriorityWidthDeltaOverrides[4];

Discussion
For more information see ATSJustWidthDeltaEntryOverride (page 2010).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSLayoutTypes.h

Data Types 2009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

http://www.adobe.com

ATSJustWidthDeltaEntryOverride
Contains values that specify the amount of space that can be added to or removed from the right and left
sides of each of the glyphs of a given justification priority.

struct ATSJustWidthDeltaEntryOverride {
 Fixed beforeGrowLimit;
 Fixed beforeShrinkLimit;
 Fixed afterGrowLimit;
 Fixed afterShrinkLimit;
 JustificationFlags growFlags;
 JustificationFlags shrinkFlags;
};
typedef struct ATSJustWidthDeltaEntryOverride ATSJustWidthDeltaEntryOverride;

Fields
beforeGrowLimit

The proportion by which a glyph can expand on the left side (top side for vertical text). For example,
a value of 0.2 means that a 24-point glyph can have by no more than 4.8 points (0.2 x 24 = 4.8) of
extra space added on the left side (top side for vertical text).

beforeShrinkLimit
The proportion by which a glyph can shrink on the left side (top side for vertical text). If specified,
this value should be negative.

afterGrowLimit
The proportion by which a glyph can expand on the right side (bottom side for vertical text).

afterShrinkLimit
The proportion by which a glyph can shrink on the right side (bottom side for vertical text). If specified,
this value should be negative.

growFlags
Mask constants that indicate whether ATSUI should apply the limits defined in the beforeGrowLimit
and afterGrowLimit fields. See “Justification Override Mask Constants” in the Font Manager for a
description of possible values. These mask constants also control whether unlimited gap absorption
should be applied to the priority of glyphs specified in the given width delta override structure. You
can use these mask constants to selectively override the grow case only, while retaining default
behavior for other cases.

shrinkFlags
Mask constants that indicate whether ATSUI should apply the limits defined in the
beforeShrinkLimit and afterShrinkLimit fields. See “Justification Override Mask Constants”
in the Font Manager for a description of possible values. These mask constants also control whether
unlimited gap absorption should be applied to the priority of glyphs specified in the given width
delta override structure. You can use these mask constants to selectively override the shrink case
only, while retaining default behavior for other cases.

Discussion
The JustWidthDeltaEntryOverride structure specifies proportions for justification growth and shrinkage,
both on the left and the right sides. The growth and shrinkage values override the font-specified widths,
such as those specified by the font for kashidas.

It also contains justification flags. The ATSJustWidthDeltaEntryOverride data type can be used to set
and get justification behavior and priority override weighting; see “Attribute Tags” (page 2030).

If you need to access other 'just' table constants and structures from the 'sfnt' resource, see the header
file SFNTLayoutTypes.h.

2010 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSLayoutTypes.h

ATSULayoutOperationOverrideSpecifier
Contains an layout operation selector and a pointer to a layout operation override callback.

struct ATSULayoutOperationOverrideSpecifier {
 ATSULayoutOperationSelector operationSelector;
 ATSUDirectLayoutOperationOverrideUPP overrideUPP;
};
typedef struct ATSULayoutOperationOverrideSpecifier
ATSULayoutOperationOverrideSpecifier;

Fields
operationSelector

A layout operation selector that specifies the operation for which the callback should be invoked. See
“Layout Operation Selectors” (page 2055) for the selectors you can specify.

overrideUPP
A universal procedure pointer to a layout operation override callback.

Discussion
You can pass this structure as an attribute value for the layout attribute tag
kATSULayoutOperationOverrideTag.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSULineRef
Represents a reference to a structure that specifies a line of text.

typedef struct ATSGlyphVector *ATSULineRef;

Discussion
You get an ATSUI line reference from ATSUI when your layout operation override callback is invoked. The
line reference refers to the line that ATSUI is in the process of laying out.

From within your callback, you pass an ATSUI line reference to the function
ATSUDirectGetLayoutDataArrayPtrFromLineRef to obtain layout data for that line. The only way you
can obtain an ATSUI line reference is from inside your layout operation override callback. An ATSUI line
reference is not valid is outside of the callback.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

Data Types 2011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUStyle
Represents a reference to an opaque structure that contains information about a style object.

typedef struct OpaqueATSUStyle *ATSUStyle;

Discussion
A style object is an opaque structure encapsulating the following character-level style settings

 ■ style attributes: including font ID, font size, font color, kerning control, optical alignment, verticality, and
with-stream (left-right) and cross-stream (up-down) shifting (as for superscripts and subscripts)

 ■ font features: including ligatures, swashes, and alternate glyph forms

 ■ font variations: such as continually varying font weight, width, or slant

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUStyleRunInfo
Contains information for a style run.

struct ATSUStyleRunInfo {
 UniCharCount runLength;
 ItemCount styleObjectIndex;
};
typedef struct ATSUStyleRunInfo ATSUStyleRunInfo;

Fields
runLength

The length of the style run.

styleObjectIndex
An index into an array of unique style objects.

Discussion
This structure is used by the function ATSUUnflattenStyleRunsFromStream (page 1972) to return style
run information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSUTab
Contains tab settings.

2012 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSUTab {
 ATSUTextMeasurement tabPosition;
 ATSUTabType tabType;
};
typedef struct ATSUTab ATSUTab;

Fields
tabPosition

Specifies a tab position.

tabType
Specifies a type of tab stop. See “Tab Positioning Options” (page 2066).

Discussion
You can set tabs for a text layout object by calling the function ATSUSetTabArray (page 1962). You can obtain
tab settings by calling the function ATSUGetTabArray (page 1918).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSUTextLayout
Represents a reference to an opaque text layout structure that contains information about a text layout.

typedef struct OpaqueATSUTextLayout* ATSUTextLayout;

Discussion
The basic building block upon which ATSUI operates is a text layout object (ATSUTextLayout). A text layout
object ties one or more paragraphs of text together with style attributes that may apply to characters, lines,
or the entire layout. The text layout object itself contains information about line and layout attributes,
including justification, rotation, direction, and others. Character style information is contained in a style
object, which is only associated with, not contained by, a text layout object. For more information on text
layout objects, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUTextMeasurement
Represents measurements needed by ATSUI to lay out text, such as outline metrics and line width, ascent,
descent.

typedef Fixed ATSUTextMeasurement;

Discussion
The ATSUTextMeasurement type is defined as a Fixed value, with a limit of 32K. You must ensure that your
measurements are converted to Fixed values before passing them to ATSUI functions that use this type.

Data Types 2013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSUI uses fractional Fixed values instead of short values used in QuickDraw Text. Fractional Fixed values
provide exact outline metrics and line specifications such as line width, ascent, descent, and so on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSTrapezoid
Contains the coordinates of the typographic bounding trapezoid for the final layout of a line a text.

struct ATSTrapezoid {
 FixedPoint upperLeft;
 FixedPoint upperRight;
 FixedPoint lowerRight;
 FixedPoint lowerLeft;
};

Fields
upperLeft

A structure of type FixedPoint that contains the upper left coordinates (assuming a horizontal line
of text) of the typographic glyph bounds.

upperRight
A structure of type FixedPoint that contains the upper right coordinates (assuming a horizontal
line of text) of the typographic glyph bounds.

lowerRight
A structure of type FixedPoint that identifies the lower right coordinates (assuming a horizontal
line of text) of the typographic glyph bounds.

lowerLeft
A structure of type FixedPoint that identifies the lower left coordinates (assuming a horizontal line
of text) of the typographic glyph bounds.

Discussion
The dimensions of the resulting trapezoid are relative to the coordinates specified in the iTextBasePointX
and iTextBasePointY parameters. The width of the glyph bounds is determined based on the value passed
in the iTypeOfBounds parameter.

The function ATSUGetGlyphBounds (page 1904) passes back an array of structures of type ATSTrapezoid
to specify the enclosing trapezoid(s) of a final laid-out line of text. If the range of text spans directional
boundaries, ATSUGetGlyphBounds produces multiple trapezoids defining these regions.

Version Notes
In ATSUI 1.1, the function ATSUGetGlyphBounds can pass back a maximum of 31 bounding trapezoids. In
ATSUI 1.2, ATSUGetGlyphBounds can pass back as many as 127 bounding trapezoids.

ATSUUnhighlightData
Contains data needed to redraw the background.

2014 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSUUnhighlightData {
 ATSUBackgroundDataType dataType;
 ATSUBackgroundData unhighlightData;
};

Fields
dataType

The data type of the background—a color or a callback.

unhighlightData
A background color or a universal procedure pointer to a callback that redraws the background.

USTL Data Structure Data Types

The data types in this section define the 'ustl' data structure, which is the data structure used by ATSUI
to contain flattened data. The 'ustl' data structure has four blocks. The Block 1 structure defines is a header
for the entire 'ustl' data structure. Block 2 structures define flattened text layout data. (Note that Block 2
structures are not currently used by the functions ATSUFlattenStyleRunsToStream (page 1882) and
ATSUUnflattenStyleRunsFromStream (page 1972).) Block 3 structures define flattened style run data. Block
4 structures define flattened style data.

The 'ustl' data structure can accommodate any ATSUI text layout and style run data associated with a
document. That is, the 'ustl' data structure can contain data for multiple text layout objects, multiple style
runs, and multiple style objects. Within each block (text layout, style run, and style) you must specify the
number structures in that block.

ATSFlatDataMainHeaderBlock
Contains the 'ustl' data structure version and size and provides offsets to the text layout, style run, and
style list data blocks.

struct ATSFlatDataMainHeaderBlock {
 UInt32 version;
 ByteCount sizeOfDataBlock;
 ByteCount offsetToTextLayouts;
 ByteCount offsetToStyleRuns;
 ByteCount offsetToStyleList;
};
typedef struct ATSFlatDataMainHeaderBlock ATSFlatDataMainHeaderBlock;

Fields
version

The version number of the 'ustl' data structure. You must make sure this number is the first item
in the data block, otherwise the data may not be readable by code written to parse earlier versions
of 'ustl' data.

sizeOfDataBlock
The total size of the data in bytes, including the four bytes needed for the version number.

offsetToTextlayouts
The offset from the beginning of the data block to the flattened text layout data. You can set this
value to 0 if there is no text layout data. This value specifies the offset to the
ATSFlatDataTextLayoutDataHeader (page 2016) structure.

Data Types 2015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

offsetToStyleRuns
The offset from the beginning of the data to the flattened style run data. You can set this value to 0
if there is no flattened style run data. This value specifies the offset to the
ATSFlatDataStyleRunDataHeader (page 2020) structure.

offsetToStyleList
The offset to the flattened style list data. You can set this value to 0 if there is no flattened style list
data. This value specifies the offset to the ATSFlatDataStyleListHeader (page 2021) structure.

Discussion
The structure ATSFlatDataMainHeaderBlock is Block 1 of the 'ustl' data structure. This structure contains
information about the rest of the 'ustl' data structure and provides offsets to each of the other three data
blocks. Figure 46-1 illustrates the main header structure.

Figure 46-1 The main header for the ustl data structure

4

4

Header section of a 'ustl' resource Bytes

Offset to flattened text layout data

Offset to flattened style run data

Offset to flattened style list data

Resource data version

Size of resource data

4

4

4

Per the 'ustl' specification, all data blocks with the 'ustl' data structure must maintain 4-byte alignment.
For such items as font names, which have a variable width, you must add padding bytes to ensure the 4-byte
alignment is always maintained.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataTextLayoutDataHeader
Contains size, length, and offset information for a text layout data block.

2016 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSFlatDataTextLayoutDataHeader {
 ByteCount sizeOfLayoutData;
 ByteCount textLayoutLength;
 ByteCount offsetToLayoutControls;
 ByteCount offsetToLineInfo;
};
typedef struct ATSFlatDataTextLayoutDataHeader ATSFlatDataTextLayoutDataHeader;

Fields
sizeOfLayoutData

The size of the flattened text layout data. This value must include any bytes that have been added to
maintain the required 4-byte alignment.

textLayoutLength
The number of characters to which the flattened text layout data applies.

offsetLayoutControls
The offset to the flattened layout control data. This offset is relative to the start of the text layout data
block, and specifies the offset to theATSFlatDataLayoutControlsDataHeader (page 2019) structure.
The offset can be set to zero if there are no layout controls.

offsetToLineLength
The offset to the flattened line info data. This offset is relative to the start of the text layout data block,
and specifies the offset to the ATSFlatDataLineInfoHeader (page 2019) structure. The offset can
be set to zero if there is no line info in this layout.

Discussion
The ATSFlatDataTextLayoutDataHeader structure is a block 2 data structure and it is the main header
for text layout data. If you have text layout data to flatten or unflatten, you must have one of these structures.
for each text layout object whose data you want to flatten.

Note that the ATSFlatDataTextLayoutDataHeader data structure(s) must be preceded by an ItemCount
value that specifies the number of ATSFlatDataTextLayoutDataHeader data structures included in the
flattened data. Although the ItemCount value is not part of any 'ustl' data structure, you need to include
this 4-byte value when you flatten your text layout data so that you can successfully parse the flattened data
at a later time.

The offsetToTextLayouts field in the ATSFlatDataMainHeaderBlock (page 2015) structure specifies the
offset to the structure ATSFlatDataTextLayoutDataHeader.

Figure 46-2 depicts the flattened text layout data. At the top of the figure is the information contained in
the data header (ATSFlatDataTextLayoutDataHeader). Following the header are layout controls data
(see ATSFlatDataLayoutControlsDataHeader (page 2019)) and line length data (see
ATSFlatDataLineInfoHeader (page 2019) and ATSFlatDataLineInfoData (page 2020)).

Data Types 2017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Figure 46-2 Flattened text layout data

For each
text
layout
object

For each
previously
set text
layout
attribute

Flattened text layout data Bytes

4Number of text layout objects

Size of line and text layout attribute data 4

Number of characters covered by
text layout object 4

Offset to text layout attribute data 4

Offset to line attribute data 4

Number of previously set text layout attributes 4

Attribute value

4Attribute tag

Size of attribute value 4

Variable

Number of lines 4

Line length 4

Number of previously set line attributes 4

For
each
line

For each
previously
set line
attribute

Attribute tag 4

Size of attribute value 4

Attribute value Variable

If the offsetToLayoutControls value is not zero, there must be a
ATSFlatDataLayoutControlsDataHeader (page 2019) structure that contains a count of the number of
layout controls and an array of layout control attribute data.

If the offsetToLineInfo is not zero, then following the flattened layout controls data you must have an
ATSFlatDataLineInfoHeader (page 2019) structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 1882) and ATSUUnflattenStyleRunsFromStream (page 1972).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

2018 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSFlatDataLayoutControlsDataHeader
Contains the number of flattened layout controls and an array of layout control attribute data.

struct ATSFlatDataLayoutControlsDataHeader {
 ItemCount numberOfLayoutControls;
 ATSUAttributeInfo controlArray[1];
};typedef struct ATSFlatDataLayoutControlsDataHeader
ATSFlatDataLayoutControlsDataHeader;

Fields
numberOfLayoutControls

The number of flattened layout controls. There should be at least one layout control that specifies
the line direction of the layout.

controlArray[1]
The first entry in an array of ATSUI attribute information. There should be numberOfLayoutControls
entries in this array. If necessary, each ATSUI attribute info structure in the array should be followed
by padding bytes to maintain the required 4-byte alignment. The value in the fValueSize field of
each ATSUAttributeInfo structure must specify the size of the attribute value, and must not reflect
any padding bytes you added.

Discussion
The ATSFlatDataLayoutControlsDataHeader structure is the header for the flattened layout controls
structure. The offsetToLayoutControls field in the ATSFlatDataTextLayoutDataHeader (page 2016)
structure specifies the offset to the structure ATSFlatDataLayoutControlsDataHeader. If there are no
layout controls, you do not need the ATSFlatDataLayoutControlsDataHeader structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 1882) and ATSUUnflattenStyleRunsFromStream (page 1972).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataLineInfoHeader
Contains the number of lines and an array of line information data.

struct ATSFlatDataLineInfoHeader {
 ItemCount numberOfLines;
 ATSFlatDataLineInfoData lineInfoArray[1];
};
typedef struct ATSFlatDataLineInfoHeader ATSFlatDataLineInfoHeader;

Fields
numberOfLines

The number of flattened line info structures that are stored in this block. This value should be greater
than zero and equal to the number of soft line breaks in the layout plus one.

lineInfoArray[1]
The first entry in a array of ATSFlatDataLineInfoData (page 2020) structures. There should be
numberOfLines entries in this array.

Data Types 2019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The ATSFlatDataLineInfoHeader structure is the main data header for the flattened line info data. The
value offsetToLineInfo in the ATSFlatDataTextLayoutDataHeader (page 2016) specifies the offset to
the ATSFlatDataLineInfoHeader structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 1882) and ATSUUnflattenStyleRunsFromStream (page 1972).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataLineInfoData
Contains a line length and the number of line controls for a line of flattened text.

struct ATSFlatDataLineInfoData {
 UniCharCount lineLength;
 ItemCount numberOfLineControls;
};
typedef struct ATSFlatDataLineInfoData ATSFlatDataLineInfoData;

Fields
lineLength

The number of UniChars characters in the line.

numberOfLineControls
The number of line controls applied to the line. You can set this value to zero if there are no line
controls applied to this line.

Discussion
If the numberOfLineControls is not zero, then you must supply an array of ATSUAttributeInfo structures
that contains numberOfLineControls elements.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 1882) and ATSUUnflattenStyleRunsFromStream (page 1972).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleRunDataHeader
Contains the number of style runs and style run information for the style run data block.

2020 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSFlatDataStyleRunDataHeader {
 ItemCount numberOfStyleRuns;
 ATSUStyleRunInfo styleRunArray[1];
};
typedef struct ATSFlatDataStyleRunDataHeader ATSFlatDataStyleRunDataHeader;

Fields
numberOfStyleRuns

The number of style run data structures stored in this block.

styleRunArray[1]
The first entry in a array of ATSUStyleRunInfo structures. There should be numberOfStyleRuns
entries in this array.

Discussion
The ATSFlatDataStyleRunDataHeader structure precedes style run data structures. The
offsetToStyleRuns field in the ATSFlatDataMainHeaderBlock (page 2015) specifies the offset to the
structure ATSFlatDataStyleRunDataHeader.

Figure 46-3 Flattened style run data

Flattened style run data Bytes

Number of style runs

Style run length

4

4

For each style run
Index of style object

corresponding to this style run 4

This is a Block 3 structure. Block 3 structures are used by ATSUI style run flattening and parsing functions,
ATSUFlattenStyleRunsToStream (page 1882) and ATSUUnflattenStyleRunsFromStream (page 1972),
to represent flattened style run information. These structures work together with Block 4 structures.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListHeader
Contains the number of styles and the first item in the style list style data header.

Data Types 2021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSFlatDataStyleListHeader {
 ItemCount numberOfStyles;
 ATSFlatDataStyleListStyleDataHeader styleDataArray[1];
};
typedef struct ATSFlatDataStyleListHeader ATSFlatDataStyleListHeader;

Fields
numberOfStyles

The number of flattened style objects in this block.

styleDataArray[1]
The first item in an array of ATSFlatDataStyleListStyleDataHeader (page 2023) structures. There
should be numberOfStyles entries in this array. Note that the data stored in these structures can
be of variable sizes.

Discussion
The ATSFlatDataStyleListHeader structure is the main header for Block 4. The offsetToStyleList
field in the ATSFlatDataMainHeaderBlock (page 2015) specifies the offset to the structure
ATSFlatDataStyleListHeader.

Figure 46-4 Flattened style list data

Flattened style list data Bytes

Number of style objects 4

Size of attribute data 4

Number of previously set style run attributes 4

Number of previously set font features 4

Number of previously set font variations 4

For each
style object

For each
previously
set style
run attribute

Size of attribute value

Attribute tag 4

4

Attribute value Variable

Feature type 4

Feature selector 4

For each
previously
set font
feature

For each
previously
set font
variation

Variation axis 4

Variation value 4

Availability
Available in Mac OS X v10.2 and later.

2022 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListStyleDataHeader
Contains size information and the number of attributes, features, and variations for the style list data block.

struct ATSFlatDataStyleListStyleDataHeader {
 ByteCount sizeOfStyleInfo;
 ItemCount numberOfSetAttributes;
 ItemCount numberOfSetFeatures;
 ItemCount numberOfSetVariations;
};
typedef struct ATSFlatDataStyleListStyleDataHeader
ATSFlatDataStyleListStyleDataHeader;

Fields
sizeOfStyleInfo

The size of the flattened style object. This value should include the four bytes for this field
(sizeOfStyleInfo) and any padding bytes you add to end of the structure to maintain the required
4-byte alignment.

numberOfSetAttributes
The number of attributes in the flattened style object. You should have at least one attribute for the
font data, although you can set this value to 0 if you do not want to specify font data.

numberOfSetFeatures
The number of font features in the flattened style object. You can set this value to 0 if there are no
font features in the style object.

numberOfSetVariations
The number of font variations in the flattened style object. You can set this value to 0 if there are no
font variations in the style object.

Discussion
The ATSFlatDataStyleListStyleDataHeader structure forms the beginning of an individually flattened
ATSUStyle object. This structure precedes the following data:

1. If the value numberOfSetAttributes is non-zero, there must be an array of ATSUAttributeInfo
structures immediately following the ATSFlatDataStyleListStyleDataHeader structure to store
the style attributes. This is a variable-size array. The number of ATSUAttributeInfo structures must
be equal to the value numberOfSetAttributes, one structure for each attribute.

If the value numberOfSetAttributes is zero, you do not need an array of ATSUAttributeInfo
structures.

2. If the value numberOfSetFeatures is non-zero, there must be an array of
ATSFlatDataStyleListFeatureData structures. These structures must appear immediately following
the ATSUAttributeInfo array above (if there is such an array). The number of
ATSFlatDataStyleListFeatureData structures must be equal to the value numberOfSetFeatures,
one structure for each feature.

If the value numberOfSetFeatures is zero, you do not need an array of
ATSFlatDataStyleListFeatureData structures.

Data Types 2023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

3. If the value numberOfSetVariations is non-zero, there must be an array of
ATSFlatDataStyleListVariationData structures immediately following the
ATSFlatDataStyleListFeatureData array (if there is such an array). The number of
ATSFlatDataStyleListVariationData structures must be equal to the value
numberOfSetVariations, one structure for each variation.

This is a Block 4 structure. Block 4 structures store flattened ATSUStyle objects and are currently used by
the ATSUI style run flattening and parsing functions, ATSUFlattenStyleRunsToStream (page 1882) and
ATSUUnflattenStyleRunsFromStream (page 1972).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListFeatureData
Contains flattened font feature data.

struct ATSFlatDataStyleListFeatureData {
 ATSUFontFeatureType theFeatureType;
 ATSUFontFeatureSelector theFeatureSelector;
};
typedef struct ATSFlatDataStyleListFeatureData ATSFlatDataStyleListFeatureData;

Fields
theFeatureType

A font feature type.

theFeatureSelector
A font feature selector.

Discussion
This is a Block 4 structure. The structure ATSFlatDataStyleListFeatureData stores flattened font feature
data. If the value numberOfSetFeatures in the ATSFlatDataStyleListStyleDataHeader (page 2023)
structure is non-zero, an array of these structure must follow the array of font data attributes (if such an array
exists) if the numberOfSetFeatures is non-zero. The number of ATSFlatDataStyleListFeatureData
structures must be equal to the value numberOfSetFeatures.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListVariationData
Contains flattened font variation axis data.

2024 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSFlatDataStyleListVariationData {
 ATSUFontVariationAxis theVariationAxis;
 ATSUFontVariationValue theVariationValue;
};
typedef struct ATSFlatDataStyleListVariationData ATSFlatDataStyleListVariationData;

Fields
theVariationAxis

A font variation axis.

theVariationValue
A font variation value.

Discussion
This is a Block 4 structure. The structure ATSFlatDataStyleListVariationData stores flattened font
variation data. If the value numberOfSetVariations in the
ATSFlatDataStyleListStyleDataHeader (page 2023) structure is non-zero, an array of these structure
must follow the array of font features (if such an array exists) if the numberOfSetVariations is non-zero.
The number of ATSFlatDataStyleListVariationData structures must be equal to the value
numberOfSetVariations.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontNameDataHeader
Contains font name information.

struct ATSFlatDataFontNameDataHeader {
 ATSFlatDataFontSpeciferType nameSpecifierType;
 ByteCount nameSpecifierSize;
};
typedef struct ATSFlatDataFontNameDataHeader ATSFlatDataFontNameDataHeader;

Fields
nameSpecifierType

A font specifier for the type of the font name data you plan to supply. See “Flattened Data Font Type
Selectors” (page 2046) for a list of the font specifiers you can supply. The font name data must follow
the ATSFlatDataFontNameDataHeader structure.

nameSpecifierSize
The size of the flattened font name data. This value must not include any padding bytes that may be
necessary to achieve the required 4-byte alignment, unless the padding bytes are specified as part
of structure, such as with the ATSFlatDataFontSpecRawNameData structure.

Discussion
Font information can be recorded in an ATSUStyle object using the attribute tag kATSUFontTag and an
attribute value that is of type ATSUFontID. Unfortunately, a font ID can vary between systems or system
startups, which means you cannot ensure that the font used when the style is flattened is the same font that
will be used with the style is unflattened. To preserve font information, you must flatten font name data. You
specify font information using the structure ATSFlatDataFontNameDataHeader. You store this structure
as a style attribute value. You must make sure this structure maintains the required 4-byte alignment.

Data Types 2025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Following the ATSFlatDataFontNameDataHeader structure must be the flattened font name data of the
type specified by the nameSpecifierType field. For instance, if the value of the nameSpecType field is
kATSFlattenedFontNameSpecifierRawNameData, the structure that immediately follows should be a
ATSFlatDataFontSpecRawNameDataHeader (page 2026) structure.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontSpecRawNameDataHeader
Contains raw font name data.

struct ATSFlatDataFontSpecRawNameDataHeader {
 ItemCount numberOfFlattenedNames;
 ATSFlatDataFontSpecRawNameData nameDataArray[1];
};
typedef struct ATSFlatDataFontSpecRawNameDataHeader
ATSFlatDataFontSpecRawNameDataHeader;

Fields
numberOfFlattenedNames

The number of flattened font names. There must be at least one flattened font name, otherwise the
structure is malformed.

nameDataArray[1]
The first element in an array of raw font name data.

Discussion
The function ATSUUnflattenStyleRunsFromStream (page 1972) searches for fonts that match the font
data provides in the nameDataArray. ATSUI obtains matches for all the font name specifiers in the structure.
You must supply at least one entry in the nameDataArray, but you may want to supply more than one entry
to ensure a specific match. For example, the default ATSUI implementation is to use two name specifiers—the
full name of the font (kFontFullName) and the font manufacturer’s name (kFontManufacturerName).

The ATSFlatDataFontSpecRawNameDataHeader structure must be followed by one or more
ATSFlatDataFontSpecRawNameData structures. The number of structures must match the value specified
by the numberOfFlattenedName field.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontSpecRawNameData
Contains data for a font name.

2026 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

struct ATSFlatDataFontSpecRawNameData {
 FontNameCode fontNameType;
 FontPlatformCode fontNamePlatform;
 FontScriptCode fontNameScript;
 FontLanguageCode fontNameLanguage;
 ByteCount fontNameLength;
};
typedef struct ATSFlatDataFontSpecRawNameData ATSFlatDataFontSpecRawNameData;

Fields
fontNameType

The type of font name. You must supply this parameter.

fontNamePlatform
The platform type of the font name. You should specify this if you know it (Unicode, Mac, and so
forth). If you do not know the platform type, then specify kFontNoPlatform. In this case all matching
is done by ATSUI based on the first font in the name table that matches the other parameters in this
structure.

fontNameScript
The script code of the font name based on the platform specified in the fontNamePlatform field.
If you set this to kFontNoScript, the name is matched based on the first font in the name table that
matches the other font name parameters in this structure.

fontNameLanguage
The language of the font name. If you set this to kFontNoLanguage, the name is matched based on
the first font in the name table that matches the other font name parameters in this structure.

fontNameLength
The length of the font name. The length should include any padding bytes needed to maintain the
required 4-byte alignment.

Discussion
The ATSFlatDataFontSpecRawNameData structure is the structure in which raw font name data is actually
stored. This structure is used only when the value of the nameSpecifierType field in the
ATSFlatDataFontNameDataHeader (page 2025) structure iskATSFlattenedFontSpecifierRawNameData.
The structure stores multiple font name table entries for the purposes of reconstructing an ATSUFontID
value for the same font at some time in the future.

When the ATSUI parsing function ATSUUnflattenStyleRunsFromStream searches for fonts to match the
font data in this structure, it obtains matches for all the font name specifiers in the structure. The default
ATSUI implementation is to use two name specifiers—the full name of the font (kFontFullName) and the
font manufacturer’s name (kFontManufacturerName).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

Universal Procedure Pointers

ATSUDirectLayoutOperationOverrideUPP
Defines a universal procedure pointer to a layout operation callback.

Data Types 2027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef ATSUDirectLayoutOperationOverrideProcPtr
ATSUDirectLayoutOperationOverrideUPP;

Discussion
For more information, see the description of the ATSUDirectLayoutOperationOverrideProcPtr (page
1998) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSCubicClosePathUPP
Defines a universal procedure pointer to a cubic close-path callback.

typedef ATSCubicClosePathProcPtr ATSCubicClosePathUPP;

Discussion
For more information, see the description of the ATSCubicClosePathProcPtr (page 1990) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicCurveToUPP
Defines a universal procedure pointer to a cubic curve-to callback.

typedef ATSCubicCurveToProcPtr ATSCubicCurveToUPP;

Discussion
For more information, see the description of the ATSCubicCurveToProcPtr (page 1991) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicLineToUPP
Defines a universal procedure pointer to a cubic line-to callback.

typedef ATSCubicLineToProcPtr ATSCubicLineToProcUPP;

Discussion
For more information, see the description of the ATSCubicLineToProcPtr (page 1992) callback function.

2028 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

ATSCubicMoveToUPP
Defines a universal procedure pointer to a cubic move-to callback.

typedef ATSCubicMoveToProcPtr ATSCubicMoveToUPP;

Discussion
For more information, see the description of the ATSCubicMoveToProcPtr (page 1993) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticClosePathUPP
Defines a universal procedure pointer to a quadratic close-path callback.

typedef ATSQuadraticClosePathProcPtr ATSQuadraticClosePathUPP;

Discussion
For more information, see the description of the ATSQuadraticClosePathProcPtr (page 1994) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticCurveUPP
Defines a universal procedure pointer to a quadratic curve callback.

typedef ATSQuadraticCurveProcPtr ATSQuadraticCurveUPP;

Discussion
For more information, see the description of the ATSQuadraticCurveProcPtr (page 1995) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticLineUPP
Defines a universal procedure pointer to a quadratic line callback.

typedef ATSQuadraticLineProcPtr ATSQuadraticLineUPP;

Discussion
For more information, see the description of the ATSQuadraticLineProcPtr (page 1996) callback function.

Data Types 2029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticNewPathUPP
Defines a universal procedure pointer to a quadratic new-path callback.

typedef ATSQuadraticNewPathProcPtr ATSQuadraticNewPathUPP;

Discussion
For more information, see the description of the ATSQuadraticNewPathProcPtr (page 1997) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

RedrawBackgroundUPP
Defines a universal procedure pointer to a redraw-background callback.

typedef RedrawBackgroundProcPtr RedrawBackgroundUPP;

Discussion
For more information, see the description of the RedrawBackgroundProcPtr (page 1999) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Constants

Attribute Tags
Specify attributes that can be applied to a style object, a text layout object, or a line in a text layout object.

2030 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt32 ATSUAttributeTag;
enum {
 kATSULineWidthTag = 1L,
 kATSULineRotationTag = 2L,
 kATSULineDirectionTag = 3L,
 kATSULineJustificationFactorTag = 4L,
 kATSULineFlushFactorTag = 5L,
 kATSULineBaselineValuesTag = 6L,
 kATSULineLayoutOptionsTag = 7L,
 kATSULineAscentTag = 8L,
 kATSULineDescentTag = 9L,
 kATSULineLangRegionTag = 10L,
 kATSULineTextLocatorTag = 11L,
 kATSULineTruncationTag = 12L,
 kATSULineFontFallbacksTag = 13L,
 kATSULineDecimalTabCharacterTag = 14L,
 kATSULayoutOperationOverrideTag = 15L,
 kATSULineHighlightCGColorTag = 17L,
 kATSUMaxLineTag = 18L,
 kATSULineLanguageTag = 10L,
 kATSUCGContextTag = 32767L,
 kATSUQDBoldfaceTag = 256L,
 kATSUQDItalicTag = 257L,
 kATSUQDUnderlineTag = 258L,
 kATSUQDCondensedTag = 259L,
 kATSUQDExtendedTag = 260L,
 kATSUFontTag = 261L,
 kATSUSizeTag = 262L,
 kATSUColorTag = 263L,
 kATSULangRegionTag = 264L,
 kATSUVerticalCharacterTag = 265L,
 kATSUImposeWidthTag = 266L,
 kATSUBeforeWithStreamShiftTag = 267L,
 kATSUAfterWithStreamShiftTag = 268L,
 kATSUCrossStreamShiftTag = 269L,
 kATSUTrackingTag = 270L,
 kATSUHangingInhibitFactorTag = 271L,
 kATSUKerningInhibitFactorTag = 272L,
 kATSUDecompositionFactorTag = 273L,
 kATSUBaselineClassTag = 274L,
 kATSUPriorityJustOverrideTag = 275L,
 kATSUNoLigatureSplitTag = 276L,
 kATSUNoCaretAngleTag = 277L,
 kATSUSuppressCrossKerningTag = 278L,
 kATSUNoOpticalAlignmentTag = 279L,
 kATSUForceHangingTag = 280L,
 kATSUNoSpecialJustificationTag = 281L,
 kATSUStyleTextLocatorTag = 282L,
 kATSUStyleRenderingOptionsTag = 283L,
 kATSUAscentTag = 284L,
 kATSUDescentTag = 285L,
 kATSULeadingTag = 286L,
 kATSUGlyphSelectorTag = 287L,
 kATSURGBAlphaColorTag = 288L,
 kATSUFontMatrixTag = 289L,
 kATSUStyleUnderlineCountOptionTag = 290L,
 kATSUStyleUnderlineColorOptionTag = 291L,
 kATSUStyleStrikeThroughTag = 292L,

Constants 2031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

 kATSUStyleStrikeThroughCountOptionTag = 293L,
 kATSUStyleStrikeThroughColorOptionTag = 294L,
 kATSUStyleDropShadowTag = 295L,
 kATSUStyleDropShadowBlurOptionTag = 296L,
 kATSUStyleDropShadowOffsetOptionTag = 297L,
 kATSUStyleDropShadowColorOptionTag = 298L,
 kATSUMaxStyleTag = 299L,
 kATSULanguageTag = 264L,
 kATSUMaxATSUITagValue = 65535L
};

Constants
kATSULineWidthTag

Specifies the desired width of a line of text, in typographic points, of the line when drawn as justified
or right-aligned text. The associated value is of type ATSUTextMeasurement (page 2013) and has a
default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineRotationTag
Specifies the angle by which the entire line should be rotated. The associated value is a Fixed value
that specifies degrees in a right-hand coordinate system, and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDirectionTag
Specifies a left-to-right or right-to-left direction for the glyphs in a text layout object, regardless of
their natural direction as specified in the font. The associated value is Boolean
(kATSURightToLeftBaseDirection or kATSULeftToRightBaseDirection) and has a default
value of GetSysDirection(). See “Glyph Direction Selectors” (page 2051) for more information on
the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineJustificationFactorTag
Specifies how ATSUI should typographically fit a line of text to a given width (or height, in the case
of vertical text). The associated value is a Fract value between 0 and 1 and has a default value of
kATSUNoJustification. See “Line Justification Selectors” (page 2058) for information on the values
that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineFlushFactorTag
Specifies how ATSUI should place text in relation to one or both margins, which are the left and right
sides (or top and bottom sides) of the text area. The associated value is a Fract value between 0 and
1 and has a default value of kATSUStartAlignment. See “Line Alignment Selectors ” (page 2057) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

2032 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSULineBaselineValuesTag
Specifies the positions of different baseline types with respect to one another in a line of text. The
associated value is of type BslnBaselineRecord and contains default values all of which are 0. The
values are calculated from other style attributes such as font and point size.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLayoutOptionsTag
Specifies how ATSUI should manipulate basic attributes of a line or the text layout object, such as
whether a line should have optical hangers or whether the last line of a text layout object should be
justified. The associated value is of type ATSLineLayoutOptions and has a default value of
kATSLineNoLayoutOptions. See “Line Layout Attribute Tags” (page 2058) for information on the
values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineAscentTag
Specifies line ascent. The associated value is of type ATSUTextMeasurement (page 2013) and has a
default value of kATSUseLineHeight. See “Line Height and Font Tracking Selectors” (page 2057) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDescentTag
Specifies line descent. The associated value is of type ATSUTextMeasurement (page 2013) and has a
default value of kATSUseLineHeight. See “Line Height and Font Tracking Selectors” (page 2057) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLangRegionTag
Specifies line language region. The associated value is a region code (see the Script Manager reference
for a list of region codes) and has a default value of kTextRegionDontCare.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineTextLocatorTag
Specifies line text location. The associated value is of type TextBreakLocatorRef and has a default
value of NULL.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineTruncationTag
Specifies where in a line truncation should occur. The associated value is of type ATSULineTruncation
and has a default value of kATSUTruncateNone. See “Line Truncation Selectors” (page 2054) for the
values that can be associated with the line truncation tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 2033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSULineFontFallbacksTag
Specifies line font fallbacks. The associated value is of type ATSUFontFallbacks (page 2007). See
“Font Fallback Methods” (page 2048) for information on the values that can be associated with this tag.

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDecimalTabCharacterTag
Specifies the current setting for the decimal separator, and affects the behavior of decimal tabs for a
text layout (not an individual line). The associated value is of type CFStringRef. The CFString object
(CFStringRef) is retained by the style object in which it is set. The default value is the user setting
in System Preferences.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSULineHighlightCGColorTag
Specifies the current setting of the highlight color and opacity. The associated value is of type
CGColorRef. This can be set as a line or layout control. The CGColor object (CGColorRef) is retained
by the text layout object in which it is set.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSULayoutOperationOverrideTag
Specifies to override a layout operation. The associated value is of type
ATSULayoutOperationOverrideSpecifier and has a default value of NULL.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUMaxLineTag
A convenience tag that specifies the upper limit of the text layout attribute tags.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLanguageTag
Not recommended. Instead use kATSULineLangRegionTag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUCGContextTag
Specifies to use a Quartz context. When you use this tag to set up a Quartz context, ATSUI uses an
8-bit, sub-pixel rendering. This method of rendering positions glyph origins on fractional points, which
results in superior rendering compared to ATSUI’s default 4-bit pixel-aligned rendering. The attribute
has a default value of NULL; you must provide a pointer to a CGContext. The CGContext is not
retained by the text layout object; if the context is destroyed, the text layout contains an invalid
CGContext. Available only in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

2034 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUQDBoldfaceTag
Specifies a boldface text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated algorithmically. The associated value is of type
Boolean and has a default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDItalicTag
Specifies an italic text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDUnderlineTag
Specifies an underline text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDCondensedTag
Specifies a condensed text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDExtendedTag
Specifies an extended text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUFontTag
Specifies a unique value that identifies a font to the font management system. The associated value
is of type ATSUFontID (page 2007) and has a default value of GetScriptVariable
(smSystemScript, smScriptAppFond).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 2035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUSizeTag
Specifies the font size of the text in the style run. The associated value, in typographic points (72 per
inch), is of type Fixed and has a default value of GetScriptVariable (smSystemScript,
smScriptAppFondSize).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUColorTag
Specifies the color of the glyphs in a style run. The associated value is of type RGBColor and has a
default value of (0,0,0).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULangRegionTag
Specifies a language region. The associated value is a region code (see the Script Manager reference
for a list of region codes) and has a default value of GetScriptManagerVariable (smRegionCode).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUVerticalCharacterTag
Specifies which direction (vertical or horizontal) glyphs should be drawn. The associated value is of
type ATSUVerticalCharacterType and has a default value of kATSUStronglyHorizontal. See
“Vertical Character Types” (page 2068) for more information on the values that can be associated with
this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUImposeWidthTag
Specifies an imposed width. The associated value is of type ATSUTextMeasurement (page 2013) and
has a default value of 0; all glyphs use their own font defined advance widths.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBeforeWithStreamShiftTag
Specifies a uniform shift parallel to the baseline of the positions of individual pairs or sets of glyphs
in the style run that’s applied before (to the left) the glyphs of the style run. The associated value is
of type Fixed and has a default value of 0. Starting with Mac OS version 10.3, glyphs cannot be
negatively shifted such that later glyphs appear before earlier glyphs. In other words, ATSUI limits
the shift to a value that is, at most, the advance of the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUAfterWithStreamShiftTag
Specifies a uniform shift parallel to the baseline of the positions of individual pairs or sets of glyphs
in the style run that’s applied after (to the right) the glyphs of the style run. The associated value is
of type Fixed and has a default value of 0. Starting with Mac OS version 10.3, glyphs cannot be
negatively shifted such that later glyphs appear before earlier glyphs. In other words, ATSUI limits
the shift to a value that is, at most, the advance of the current glyph.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

2036 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUCrossStreamShiftTag
Specifies the distance to raise or lower glyphs in the style run perpendicular to the text stream. This
shift is vertical for horizontal text and horizontal for vertical text. The associated value (in points, 72
per inch) is of type Fixed and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTrackingTag
Specifies the relative proportion of font-defined adjustments to apply to interglyph positions. The
associated value is of type Fixed and has a default value of kATSNoTracking. See “Line Height and
Font Tracking Selectors” (page 2057) for information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUHangingInhibitFactorTag
Specifies to what degree punctuation glyphs can hang beyond the end of a line for justification
purposes. The associated value is a Fract value between 0 and 1 and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUKerningInhibitFactorTag
Specifies how much to inhibit kerning; that is, the increase or decrease the space between glyphs.
The associated value is a Fract value between 0 and 1 and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUDecompositionFactorTag
Specifies the fractional adjustment to the font-specified threshold at which ligature decomposition
occurs during justification. The associated value is a Fract value between -1.0 and 1.0 and has a
default value of 0 (no adjustment to the font-specified threshold).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBaselineClassTag
Specifies the preferred baseline (such as Roman, hanging, or ideographic centered) to use for text of
a given font in a style run. The associated value is of type BslnBaselineClass (see
SFNTLayoutTypes.h) and has a default value of kBSLNRomanBaseline. You can set the value to
kBSLNNoBaselineOverride to use intrinsic baselines.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUPriorityJustOverrideTag
Specifies the degree to which ATSUI should override justification behavior for glyphs in the style run.
The associated value is of type ATSJustWidthDeltaEntryOverride (page 2010). The default values
in this structure are all 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 2037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUNoLigatureSplitTag
Specifies whether or not ligatures and compound characters in a style have divisible components.
The associated value is a Boolean and has a default value of false; ligatures and compound characters
have divisible components.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoCaretAngleTag
Specifies whether the text caret or edges of a highlighted area are always parallel to the slant of the
style run’s text or always perpendicular to the baseline. The associated value is a Boolean and has a
default value of false; use the character's angularity to determine its boundaries.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUSuppressCrossKerningTag
Specifies whether or not to suppress cross kerning. The associated value is a Boolean and has a
default value of false; do not suppress automatic cross kerning (defined by font).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoOpticalAlignmentTag
Specifies the amount to which ATSUI should adjust glyph positions at the ends of lines to give a more
even visual appearance to margins. The associated value is a Boolean and has a default value of
false; do not suppress character's automatic optical positional alignment

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUForceHangingTag
Specifies to treat glyphs in a style run as hanging punctuation, whether or not the font designer
intended them to be. The associated value is a Boolean and has a default value of false; do not
force the character's to hang beyond the line boundaries

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoSpecialJustificationTag
Specifies whether processes (such as glyph stretching and ligature decomposition) that occur at the
end of the justification process should be applied. The associated value is a Boolean and has a default
value of false; perform post-compensation justification if needed

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleTextLocatorTag
Specifies style text locator. The associated value is of type TextBreakLocatorRef and has a default
value of NULL—region derived locator or the default Text Utilities locator.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

2038 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUStyleRenderingOptionsTag
Specifies style rendering options. The associated value is of type ATSUStyleRenderingOptions
and has a default value of kATSStyleApplyHints—ATS glyph rendering uses hinting. See “Style
Rendering Options” (page 2065) for more information on the values that can be associated with this
tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUAscentTag
Specifies the ascent value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 2013) and has a default value of the ascent value of the style object’s
font with the current point size.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUDescentTag
Specifies the descent value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 2013) and has a default value of the descent value of the style object’s
font with the current point size. The leading value is not included as par of the descent.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSULeadingTag
Specifies the leading value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 2013) and has a default value of the leading value of the style object’s
font with the current point size.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUGlyphSelectorTag
Specifies a glyph collection. The associated value is an address to an ATSUGlyphSelector (page
2009) data structure. Using this tag allows you access to characters in the fonts that otherwise would
not be accessible. You can choose the variant glyph by providing a font-specific glyph ID or a CID.
For more information on CID conventions, see http://www.adobe.com. You can get the variant glyph
information from an input method through the Text Services Manager using the Carbon event key,
kEventParamTextInputGlyphInfoArray.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSURGBAlphaColorTag
Specifies RGB color with an alpha channel. The associated value is of type ATSURGBAlphaColor and
has a default value of (0,0,0,1).

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

Constants 2039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

http://www.adobe.com

kATSUFontMatrixTag
Specifies a font transformation matrix. The associated value is of type CGAffineTransform. (See the
Quartz 2D reference documentation for more information on this data type.) You can use a font matrix
to achieve effects through ATSUI at a style-run level that were previously available only by changing
settings directly in a CGContext. When you use the tag kATSUFontMatrixTag, you associate a font
transformation matrix with an ATSUStyle object. You can set the values in the font transformation
matrix to achieve such effects as reversing glyphs across the X-axes and rotating glyphs Note that
ATSUI’s layout uses the transformed metrics so layout will be effected and in some cases the effects
might be unexpected. For example, for a transformation that mirrors the glyph across the Y-axes the
metrics are in reverse and glyphs are rendered on top of each other.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSUStyleUnderlineCountOptionTag
Specifies the number of strokes to be drawn for an underline. The associated value is of type
ATSUStyleLineCountType. The default value is kATSUStyleSingleLineCount. May be set as a
style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleUnderlineColorOptionTag
Specifies the color of the strokes to draw for an underlined run of text. The associated value is of type
CGColorRef. The default value is NULL. If NULL, the text color is used. The CGColor object
(CGColorRef) is retained by the style object in which it is set. May be set as a style attribute.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUStyleStrikeThroughTag
Specifies strikethrough style. The associated value is of type Boolean. The default value is false.
May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleStrikeThroughCountOptionTag
Specifies the number of strokes to be drawn for a strikethrough. The associated value is of type
ATSUStyleLineCountType. The default value is kATSUStyleSingleLineCount. May be set as a
style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleStrikeThroughColorOptionTag
Specifies the color of the strokes to draw for a strikethrough style. The associated value is of type
CGColorRef. The CGColor object (CGColorRef) is retained by the style object in which it is set. The
default value is NULL. If NULL, the text color is used. May be set as a style attribute.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

2040 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUStyleDropShadowTag
Specifies the text should be drawn with a drop shadow. The associated value is of type Boolean. The
default value is false. Only takes effect if a CGContext is used for drawing. If you set this style attribute,
you also need to set the drop shadow color using the tag kATSUStyleDropShadowColorOptionTag.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUStyleDropShadowBlurOptionTag
Specifies the amount of blur for a drop shadow. The associated value is of type float. The default
value is 0.0. May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDropShadowColorOptionTag
Specifies the color and opacity of a drop shadow. The associated value is of type CGColorRef. The
default value is NULL. You need to set the CGColorRef to a value other than NULL if you want to see
the drop shadow. May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDropShadowOffsetOptionTag
Specifies the amount of offset from the text to be used when drawing a drop shadow. The associated
value is of type CGSize. The default value is (3.0, -3.0). May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUMaxStyleTag
A convenience tag that specifies the upper limit of style attribute tags.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULanguageTag
This tag is obsolete. Instead use kATSULangRegionTag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUMaxATSUITagValue
Specifies this maximum Apple ATSUI reserved tag value. If you define a tag, it must have a value larger
than the value of this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
An attribute tag cannot be used in versions of the Mac OS that are earlier than the version in which the tag
was introduced. For example, a tag available in Mac OS version 10.2 cannot be used in Mac OS version 10.1
or earlier. You can call the function Gestalt to check version information for ATSUI.

Attribute tags indicates the particular type of attribute under consideration: font, size, color, and so on. Each
style run may have at most one attribute with a given attribute tag (that is, a style run can't have more than
one font or size) but may have none.

Constants 2041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Some of the constants specify attributes that are applied to a style run, while other attributes are applied to
an entire text layout object or to just a line in a text layout object. The constant descriptions assume horizontal
text. If you set or get the an attribute that has been set for vertical text, you should interpret the constant
descriptions accordingly.

Most of the constants in this section are described in further detail in Inside Mac OS X: Rendering Unicode Text
With ATSUI. Where appropriate, that document provides illustrations that show the effect of applying an
attribute. It also describes how to write code that sets style, line, and layout attributes.

A style run may have at most one style attribute with a given attribute tag. That is, a style run can't have
more than one font or size attribute set but the style run does not need to have any attribute set explicitly.

When you set an attribute value for a line, the value overrides the attribute value set for the text layout object
that contains the line. This is true even if you set line attributes before you set attributes for the entire text
layout object that contains the line.

You can create your own attribute tag as long as your tag is outside those values reserved by Apple— 0 to
65,535 (0 to 0x0000FFFF). See Rendering Unicode Text With ATSUI for information on creating and registering
your own attribute tags.

Background Data Types
Specify the data type of the background—a color or a callback.

typedef UInt32 ATSUBackgroundDataType;
enum {
 kATSUBackgroundColor = 0,
 kATSUBackgroundCallback = 1
};

Constants
kATSUBackgroundColor

Specifies the data type of the text background is a color.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBackgroundCallback
Specifies the data type of the text background is a callback.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Caret Movement Types
Specify the unit distance by which the caret moves.

2042 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt16 ATSUCursorMovementType;
enum {
 kATSUByCharacter = 0,
 kATSUByTypographicCluster = 1,
 kATSUByWord = 2,
 kATSUByCharacterCluster = 3,
 kATSUByCluster = 1
};

Constants
kATSUByCharacter

Specifies to move the caret by a units based on single characters.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByTypographicCluster
Specifies to move the caret by units of clusters based on characters or ligatures.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByWord
Specifies to move the caret by units based on words.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByCharacterCluster
Specifies to move the caret by units based only on clusters of characters.

Available only in Mac OS X and in CarbonLib versions 1.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUByCluster
An obsolete name for the constant kATSUByTypographicCluster.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
A caret movement type is used to indicate the unit (character, word, and so on) by which to move the caret.
You use these constants when you call the ATSUI caret movement functions. Functions that use caret
movement types use this information to calculate the edge offset in memory that corresponds to the resulting
cursor position.

Convenience Constants
Specify whether to clear values or whether drawing, measuring, or hit-testing should be done relative to the
current pen location in the current graphics port.

Constants 2043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

enum {
 kATSUUseGrafPortPenLoc = (unsigned long)0xFFFFFFFF,
 kATSUClearAll = (unsigned long)0xFFFFFFFF
};

Constants
kATSUUseGrafPortPenLoc

Indicates that drawing, measuring, or hit-testing should be done relative to the current pen location
in the current graphics port.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUClearAll
Removes all previously set values from a style object, a single line, or a text layout object.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass the kATSUUseGrafPortPenLoc constant to functions that operate on text layout objects to
indicate that drawing, measuring, or hit-testing should be done relative to the current pen location in the
current graphics port.

You can pass the kATSUClearAll constant to the following functions to remove previously set values from
a style object: to ATSUClearAttributes (page 1848) to remove style run attributes, to
ATSUClearFontFeatures (page 1849) to remove font features, and to ATSUClearFontVariations (page
1850) to remove font variations.

You can also use the kATSUClearAll constant to remove previously set text layout attributes: to
ATSUClearLineControls (page 1853), to remove text layout attributes from a single line of a text layout
object, and to ATSUClearLayoutControls (page 1852) to remove text layout attributes from every line in a
text layout object.

Direct Data Selectors
Specify the layout data to obtain when calling the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout.

2044 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt32 ATSUDirectDataSelector;
enum {
 kATSUDirectDataAdvanceDeltaFixedArray = 0L,
 kATSUDirectDataBaselineDeltaFixedArray = 1L,
 kATSUDirectDataDeviceDeltaSInt16Array = 2L,
 kATSUDirectDataStyleIndexUInt16Array = 3L,
 kATSUDirectDataStyleSettingATSUStyleSettingRefArray = 4L,
 kATSUDirectDataLayoutRecordATSLayoutRecordVersion1 = 100L,
 kATSUDirectDataLayoutRecordATSLayoutRecordCurrent =
 kATSUDirectDataLayoutRecordATSLayoutRecordVersion1
};

Constants
kATSUDirectDataAdvanceDeltaFixedArray

Specifies the parallel advance delta (delta X) array, which is an array of Fixed values. This array is
created only on demand. If you plan to modify the data in this array, you should set the iCreate
parameter to true when you call the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataBaselineDeltaFixedArray
Specifies the parallel baseline delta (delta Y) array, which is an array of Fixed values. This array is
created only on demand. If you plan to modify the data in this array, you should set the iCreate
parameter to true when you call the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataDeviceDeltaSInt16Array
Specifies the parallel device delta array, which is an array of SInt16 values used to adjust truncated
fractional values for devices that do not accept fractional positioning. The array specified by this
selector is also used to provide precise positioning for connected scripts. This array is created only
on demand. If you plan to modify the data in this array, you should set the iCreate parameter to
truewhen you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataStyleIndexUInt16Array
Specifies the parallel style index array, which is an array of (UInt16) values. The values in this array
are indexes into the style setting reference (ATSUStyleSettingRef) array. This array is created only
on demand. If you plan to modify the data in this array, you should set the iCreate parameter to
truewhen you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

Constants 2045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUDirectDataStyleSettingATSUStyleSettingRefArray
Specifies the style setting reference (ATSUStyleSettingRef) array. This array is always available if
the text layout object has any text associated with it. Setting the iCreate parameter when you call
the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array has no
effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataLayoutRecordATSLayoutRecordVersion1
Specifies the ATSLayoutRecord array, with the version 1 of the ATSLayoutRecord data structure.
You should not use this selector. Instead use the selector
kATSUDirectDataLayoutRecordATSLayoutRecordCurrent to ensure that your code uses the
most current version of the ATSLayoutRecord data structure. ATSUI performs the most efficient
processing only for the latest version of ATSLayoutRecord data structure. This array is always available
if the text layout object has any text associated with it. Setting the iCreate parameter when you
call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array has no
effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataLayoutRecordATSLayoutRecordCurrent
Specifies the ATSLayoutRecord array, with the current version of the ATSLayoutRecord data
structure. Always use this selector to get the array of ATSLayoutRecord data structures. This array
is always available if the text layout object has any text associated with it. Setting the iCreate
parameter when you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page
1872) orATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873) to obtain this array has
no effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

Discussion
You can provide direct data selectors to the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 1872) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 1873).

Flattened Data Font Type Selectors
Specifies the data type for flattened font name data.

typedef UInt32 ATSFlatDataFontSpeciferType;
enum {
 kATSFlattenedFontSpecifierRawNameData = 'namd'
};

Constants
kATSFlattenedFontSpecifierRawNameData

Specifies to use the font name as the flattened font name.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

2046 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Flattened Data Format Selectors
Specify the format to use when flattening or unflattening data.

typedef UInt32 ATSUFlattenedDataStreamFormat;
enum {
 kATSUDataStreamUnicodeStyledText = 'ustl'
};

Constants
kATSUDataStreamUnicodeStyledText

Specifies to use the 'ustl' data specification when flattening or unflattening data.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Flattened Style Run Data Options
Specify options to use when flattening ATSUI style run data.

typedef UInt32 ATSUFlattenStyleRunOptions;
enum {
 kATSUFlattenOptionNoOptionsMask = 0x00000000
};

Constants
kATSUFlattenOptionNoOptionsMask

Specifies that no options are to be used.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Discussion
Additional options may be added in the future.

Flattened Data Version Numbers
Specify versions of the 'ustl' specification.

enum {
 kATSFlatDataUstlVersion0 = 0,
 kATSFlatDataUstlVersion1 = 1,
 kATSFlatDataUstlVersion2 = 2,
 kATSFlatDataUstlCurrentVersion = kATSFlatDataUstlVersion2};

Constants
kATSFlatDataUstlVersion0

Specifies version 0. This version is obsolete.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Constants 2047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSFlatDataUstlVersion1
Specifies version 1. This version is obsolete.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

kATSFlatDataUstlVersion2
Specifies version 2.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

kATSFlatDataUstlCurrentVersion
Specifies the current version.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Discussion
The ATSUI functions ATSUFlattenStyleRunsToStream and ATSUUnflattenStyleRunsFromStream
operate on data that conform to version 2 of the 'ustl' specification.

Font Fallback Methods
Specify the method by which ATSUI tries to find an appropriate font for a character if the assigned font does
not contain the needed glyphs.

typedef UInt16 ATSUFontFallbackMethod;
enum {
 kATSUDefaultFontFallbacks = 0,
 kATSULastResortOnlyFallback = 1,
 kATSUSequentialFallbacksPreferred = 2,
 kATSUSequentialFallbacksExclusive = 3
};

Constants
kATSUDefaultFontFallbacks

Specifies to use ATSUI’s default font search method. ATSUI searches through all available fonts on
the system for one that matches any text that cannot be drawn with the font specified in the current
ATSU style object (ATSUStyle). ATSUI first searches in the standard application fonts for various
languages. If that fails, it searches through the remaining fonts on the system in whatever order the
Font Manager returns them. After ATSUI has searched all the fonts in the system, any unmatched text
is drawn with the last-resort font.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULastResortOnlyFallback
Specifies that ATSUI should use the last resort font if the assigned font does not contain the needed
glyphs.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

2048 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSUSequentialFallbacksPreferred
Specifies that ATSUI should first search sequentially through the list of supplied fonts before it searching
through all available fonts on the system.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUSequentialFallbacksExclusive
Specifies that ATSUI should search exclusively through the list of supplied fonts. ATSUI use the
last-resort font if it does not find a match in the list of supplied fonts.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Glyph Origin Selectors
Specify which glyph origin to use to determine the width of the typographic glyph bounds.

enum {
 kATSUseCaretOrigins = 0,
 kATSUseDeviceOrigins = 1,
 kATSUseFractionalOrigins = 2,
 kATSUseOriginFlags = 3
};

Constants
kATSUseCaretOrigins

Specifies to use the caret origin to determine the width of the typographic glyph bounds. The caret
origin is halfway between two characters.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseDeviceOrigins
Specifies to use the glyph origin in device space to determine the width of the typographic glyph
bounds. This is useful if you need to adjust text on the screen.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseFractionalOrigins
Specifies to use the glyph origin in fractional absolute positions (which are uncorrected for display
device) to determine the width of the typographic glyph bounds. This provides the ideal position of
laid-out text and is useful if you need to scale text on the screen. The glyph origin is also used to
obtain the width of the typographic bounding rectangle when you call the function
ATSUMeasureText.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseOriginFlags
The number of glyph origin selectors.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 2049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
You can pass a glyph bounds selector in the iTypeOfBounds parameter of the function
ATSUGetGlyphBounds (page 1904) to indicate whether the width of the resulting typographic glyph bounds
is determined using the caret origin, glyph origin in device space, or glyph origin in fractional absolute
positions.

Glyph Collection Types
Specify a character set.

typedef UInt16 GlyphCollection;
enum {
 kGlyphCollectionGID = 0,
 kGlyphCollectionAdobeCNS1 = 1,
 kGlyphCollectionAdobeGB1 = 2,
 kGlyphCollectionAdobeJapan1 = 3,
 kGlyphCollectionAdobeJapan2 = 4,
 kGlyphCollectionAdobeKorea1 = 5,
 kGlyphCollectionUnspecified = 0xFF
};

Constants
kGlyphCollectionGID

Indicates that the glyph value represents the actual glyph ID of a specific font.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeCNS1
Specifies Adobe CNS1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeGB1
Specifies Adobe GB1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeJapan1
Specifies Adobe Japan1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeJapan2
Specifies Adobe Japan2 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeKorea1
Specifies Adobe Korea1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

2050 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kGlyphCollectionUnspecified
Indicates that the glyph collection is not specified.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

Discussion
A CID-keyed font is a PostScript font that uses a font file format developed by Adobe for fonts that have large
character sets, such as Chinese, Japanese, and Korean fonts. For more information on CID-keyed fonts, see
the Adobe website:

http://partners.adobe.com/

Glyph Direction Selectors
Specify a glyph direction.

enum {
 kATSULeftToRightBaseDirection = 0,
 kATSURightToLeftBaseDirection = 1
};

Constants
kATSULeftToRightBaseDirection

Imposes left-to-right direction on glyphs in a line of horizontal text; for vertical text, imposes
top-to-bottom direction.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSURightToLeftBaseDirection
Imposes right-to-left direction on glyphs in a line of horizontal text; for vertical text, imposes
bottom-to-top direction.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
These constants specify values for the kATSULineDirectionTag attribute tag. You can use one of these
constants to set or obtain glyph direction in a line of text or an entire text layout object, regardless of their
font-specified direction; see the functions ATSUSetLayoutControls (page 1955),
ATSUSetLineControls (page 1956),ATSUGetLayoutControl (page 1912), andATSUGetLineControl (page
1913).

Glyph Property Flags
Specify properties for a glyph.

Constants 2051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

http://partners.adobe.com/

typedef UInt32 ATSGlyphInfoFlags;
enum {
 kATSGlyphInfoAppleReserved = 0x1FFBFFE8,
 kATSGlyphInfoIsAttachment = (unsigned long)0x80000000,
 kATSGlyphInfoIsLTHanger = 0x40000000,
 kATSGlyphInfoIsRBHanger = 0x20000000,
 kATSGlyphInfoTerminatorGlyph = 0x00080000,
 kATSGlyphInfoIsWhiteSpace = 0x00040000,
 kATSGlyphInfoHasImposedWidth = 0x00000010,
 kATSGlyphInfoByteSizeMask = 0x00000007
};

Constants
kATSGlyphInfoAppleReserved

This flag is reserved by Apple. If you try to use it you may get an invalid value error.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsAttachment
Specifies that the glyph attaches to another glyph.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsLTHanger
Specifies that the glyph can hang off the left or top edge of a line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsRBHanger
Specifies that the glyph can hang off the right or bottom edge of a line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoTerminatorGlyph
Specifies that the glyph is not truly a glyph, but an end-marker to allow the calculation of the previous
glyph's advance.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsWhiteSpace
Specifies that the glyph is a whitespace glyph.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoHasImposedWidth
Specifies that the glyph has an imposed width (that is, an advance width) specified by the style.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

2052 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSGlyphInfoByteSizeMask
Specifies the size of the character that spawned the glyph. This is a three-bit mask that you can use
to obtain the size of the original character that spawned a glyph. If you perform a logical and operation
between this mask and an ATSGlyphInfoFlags flag, you obtain the size in bytes of the original
character (0 - 7 bytes).

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Discussion
Glyph information flags are set in the individual ATSLayoutRecord structure and apply only to the
ATSGlyphRef reference in that structure. The flags are used by the ATSUI to tag a glyph with one or more
specific properties.

Highlight Methods
Specify a text highlighting method.

typedef UInt32 ATSUHighlightMethod;
enum {
 kInvertHighlighting = 0,
 kRedrawHighlighting = 1
};

Constants
kInvertHighlighting

Specifies to use inversion for highlighting. You can use this when the background is a single color.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kRedrawHighlighting
Specifies to use your callback for highlighting. You should use this when the background is complex
(containing, for example, multiple colors, patterns, or pictures).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You set the highlighting method by calling the function ATSUSetHighlightingMethod (page 1953).

Invalid Font ID Constant
Specifies a Font ID is not valid.

enum {
 kATSUInvalidFontID = 0
};

Constants
kATSUInvalidFontID

Indicates that the font ID is invalid.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 2053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
The functions ATSUFONDtoFontID (page 1884), ATSUFindFontFromName (page 1879), and
ATSUMatchFontsToText (page 1936) pass back this constant to indicate an invalid font ID. This constant is
available with ATSUI 1.0.

Line Truncation Selectors
Specify where in a line truncation should occur.

typedef UInt32 ATSULineTruncation;
enum {
 kATSUTruncateNone = 0,
 kATSUTruncateStart = 1,
 kATSUTruncateEnd = 2,
 kATSUTruncateMiddle = 3,
 kATSUTruncateSpecificationMask = 7,
 kATSUTruncFeatNoSquishing = 8
};

Constants
kATSUTruncateNone

Specifies not to truncate the line.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateStart
Specifies to truncate the line at the beginning.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateEnd
Specifies to truncate the line at the end.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateMiddle
Specifies to truncate the line in the middle

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateSpecificationMask
Reserved for the truncation specification (0 - 7).

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncFeatNoSquishing
Specifies not to perform any negative justification in lieu of truncation.

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

2054 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
Line truncation options specify values for the kATSULineTruncation attribute tag. You can add any line
truncation option to the option kATSUTruncateSpecificationMask. For example, adding
kATSUTruncateEnd andkATSUTruncFeatNoSquishing to the maskkATSUTruncateSpecificationMask
results in the value 0x0000000A.

Layout Callback Status Values
Specify the status of a layout operation override callback.

typedef UInt32 ATSULayoutOperationCallbackStatus;
enum {
 kATSULayoutOperationCallbackStatusHandled = 0x00000000,
 kATSULayoutOperationCallbackStatusContinue = 0x00000001
};

Constants
kATSULayoutOperationCallbackStatusHandled

Specifies that your callback function has handled the operation which triggered the callback. This
indicates to ATSUI that it does not need to perform any further processing for the layout operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationCallbackStatusContinue
Specifies that your callback function has not handled the operation which triggered the callback. This
indicates to ATSUI that needs to perform its own processing for the layout operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Discussion
You must return one of these status values from your
ATSUDirectLayoutOperationOverrideProcPtr (page 1998) callback function to indicate to ATSUI whether
or not your callback handled the layout operation.

Layout Operation Selectors
Specify a layout operation.

Constants 2055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt32 ATSULayoutOperationSelector;
enum {
 kATSULayoutOperationNone = 0x00000000,
 kATSULayoutOperationJustification = 0x00000001,
 kATSULayoutOperationMorph = 0x00000002,
 kATSULayoutOperationKerningAdjustment = 0x00000004,
 kATSULayoutOperationBaselineAdjustment = 0x00000008,
 kATSULayoutOperationTrackingAdjustment = 0x00000010,
 kATSULayoutOperationPostLayoutAdjustment = 0x00000020,
 kATSULayoutOperationAppleReserved = (unsigned long)0xFFFFFFC0
};

Constants
kATSULayoutOperationNone

Specifies that no layout operation is currently selected.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationJustification
Specifies the justification operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationMorph
Specifies the character-morphing operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationKerningAdjustment
Specifies the kerning-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationBaselineAdjustment
Specifies the baseline-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationTrackingAdjustment
Specifies the tracking-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationPostLayoutAdjustment
Specifies the period of time after ATSUI has completed its layout operations.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationAppleReserved
This selector is reserved for future use.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

2056 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
You can use layout operation selectors to specify to ATSUI which operations to override. These selectors can
also be passed from ATSUI to your application to indicate which operation is currently in progress.

Line Alignment Selectors
Specify the alignment of text relative to the margins in a line of text or in an entire text layout object.

#define kATSUStartAlignment ((Fract) 0x00000000L)
#define kATSUEndAlignment ((Fract) 0x40000000L)
#define kATSUCenterAlignment ((Fract) 0x20000000L)

Constants
kATSUStartAlignment

Specifies that horizontal text should be drawn to the right of the left margin (that is, its left edge
coincides with the text layout object’s position plus text width). Vertical text should be drawn below
the top margin.

kATSUEndAlignment
Specifies that horizontal text should be drawn to the left of the right margin. Vertical text should be
drawn above the bottom margin.

kATSUCenterAlignment
Specifies that horizontal text should be drawn between the left and right margins with an equal
amount of space on either side. Vertical text should be drawn between the top and bottom margins
with an equal amount of space on either side.

Discussion
You can use one of these constants to set or obtain the alignment of text relative to the margins in a line of
text or in an entire text layout object; see the functions ATSUSetLayoutControls (page 1955),
ATSUSetLineControls (page 1956),ATSUGetLayoutControl (page 1912), andATSUGetLineControl (page
1913), respectively.

Line Height and Font Tracking Selectors
Specify how to determine line height and whether to turn off font tracking.

enum {
 kATSUseGlyphAdvance = 0x7FFFFFFF,
 kATSUseLineHeight = 0x7FFFFFFF,
 kATSNoTracking = (long)0x80000000
};

Constants
kATSUseGlyphAdvance

Specifies that ATSUI use the natural glyph advance value in a line or entire text layout object.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSUseLineHeight
Specifies that ATSUI use the natural line ascent and descent values dictated by the font and pixel size
to determine line ascent and descent in a line or entire text layout object.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 2057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSNoTracking
A value of type negativeInfinity that indicates that font tracking should be off.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Discussion
You use line height selectors to set line ascent and descent text layout attributes. You can set the line ascent
text layout attribute for a line or an entire text layout object by passing the kATSULineAscentTag tag to
the functions ATSUSetLineControls (page 1956) and ATSUSetLayoutControls (page 1955), respectively.
You can set the line descent text layout attribute for a line or an entire text layout object by passing the
kATSULineDescentTag tag to the functions ATSUSetLineControls (page 1956) and
ATSUSetLayoutControls (page 1955), respectively.

Line Justification Selectors
Specify the degree of line justification for a single line or an entire text layout object.

#define kATSUNoJustification ((Fract) 0x00000000L)
#define kATSUFullJustification ((Fract) 0x40000000L)

Constants
kATSUNoJustification

Indicates no justification.

kATSUFullJustification
Full justification between the text margins. White space is “stretched” to make the line extend to both
text margins.

Discussion
You can set the line justification text layout attribute for a line or an entire text layout object by passing the
kATSULineJustificationFactorTag tag the functions ATSUSetLineControls (page 1956) and
ATSUSetLayoutControls (page 1955), respectively.

Line Layout Attribute Tags
Specify line layout attributes to be applied at the line level.

2058 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt32 ATSLineLayoutOptions;
enum {
 kATSLineNoLayoutOptions = 0x00000000,
 kATSLineIsDisplayOnly = 0x00000001,
 kATSLineHasNoHangers = 0x00000002,
 kATSLineHasNoOpticalAlignment = 0x00000004,
 kATSLineKeepSpacesOutOfMargin = 0x00000008,
 kATSLineNoSpecialJustification = 0x00000010,
 kATSLineLastNoJustification = 0x00000020,
 kATSLineFractDisable = 0x00000040,
 kATSLineImposeNoAngleForEnds = 0x00000080,
 kATSLineFillOutToWidth = 0x00000100,
 kATSLineTabAdjustEnabled = 0x00000200,
 kATSLineIgnoreFontLeading = 0x00000400,
 kATSLineApplyAntiAliasing = 0x00000800,
 kATSLineNoAntiAliasing = 0x00001000,
 kATSLineDisableNegativeJustification = 0x00002000,
 kATSLineDisableAutoAdjustDisplayPos = 0x00004000,
 kATSLineUseQDRendering = 0x00008000,
 kATSLineDisableAllJustification = 0x00010000,
 kATSLineDisableAllGlyphMorphing = 0x00020000,
 kATSLineDisableAllKerningAdjustments = 0x00040000,
 kATSLineDisableAllBaselineAdjustments = 0x00080000,
 kATSLineDisableAllTrackingAdjustments = 0x00100000,
 kATSLineDisableAllLayoutOperations = kATSLineDisableAllJustification
|
 kATSLineDisableAllGlyphMorphing |
 kATSLineDisableAllKerningAdjustments |
 kATSLineDisableAllBaselineAdjustments |
 kATSLineDisableAllTrackingAdjustments,
 kATSLineUseDeviceMetrics = 0x01000000,
 kATSLineBreakToNearestCharacter = 0x02000000,
 kATSLineAppleReserved = (unsigned long)0xFCE00000};

Constants
kATSLineNoLayoutOptions

Specifies not to apply any options.

Available i n ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineIsDisplayOnly
This line option is no longer used. Instead use kATSLineUseDeviceMetrics.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineHasNoHangers
Specifies not to form hanging punctuation on the line. If the bit specified by this mask is set, the
automatic hanging punctuation in the text layout object is overridden. The value in this bit overrides
any adjustment to hanging punctuation set for a style run inside the text layout object using the style
run attribute tags kATSUForceHangingTag or kATSUHangingInhibitFactorTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

Constants 2059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSLineHasNoOpticalAlignment
Specifies not to perform optical alignment on the line. Optical alignment adjusts characters at the
text margin so that they appear to be properly aligned; strict alignment can often cause the illusion
of a ragged edge. The value in this bit overrides any adjustment to optical alignment set for a style
run inside the text layout object using the style run attribute tag kATSUNoOpticalAlignmentTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

kATSLineKeepSpacesOutOfMargin
Specifies that the trailing white spaces at the end of a line of justified text should be placed outside
the margin.

Available in ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineNoSpecialJustification
Specifies not to perform post-compensation justification on the line, even if such processing is
necessary. This flag cannot be set for a single line of a text layout object. The value in this bit overrides
any adjustment to the postcompensation actions set for a style run using the style run attribute tag
kATSUNoSpecialJustificationTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

kATSLineLastNoJustification
Specifies not to justify a line if it is the last line of a justified text layout object. This flag is meaningless
when setting a line’s text layout attributes.

Available in ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineFractDisable
Specifies to position of the text in the line or text layout object relative to fractional absolute positions,
which are uncorrected for device display. This provides the ideal position of laid-out text and is useful
for scaling text onscreen. This origin is also used to get the width of the typographic bounding
rectangle when you call the function ATSUGetUnjustifiedBounds (page 1923).

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.1 and later.

kATSLineImposeNoAngleForEnds
Specifies to draw the carets on the far right and left sides of an unrotated line as vertical, no matter
what the angle of text.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

kATSLineFillOutToWidth
Specifies to extend highlighting to both ends of a line, regardless of caret locations. This option does
not effect the caret locations. This is provided for your convenience to extend your highlighting to
the full width of the line.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

2060 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSLineTabAdjustEnabled
Specifies to automatically adjust the tab character width so that it fits the specified line width. If you
are using ATSUI’s tab functions—ATSUSetTabArray (page 1962) and ATSUGetTabArray (page 1918)
to define a tab rule you do not need to use this selector. The selector is useful if you are handling
your own tabs and only applies if the tab is at the end of a line (backing store). You must set this bit
to ensure that highlighting is done correctly across tab stops. To ensure this, you should also set the
bit specified by the kATSLineImposeNoAngleForEnds mask constant.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.2 and later.

kATSLineIgnoreFontLeading
Specifies to ignore any leading value specified by a font.

Available in ATSUI 2.3 and later.

Declared in ATSLayoutTypes.h.

kATSLineApplyAntiAliasing
Specifies that Apple Type Services should produce antialiased glyph images even if system preferences
or Quartz settings indicate otherwise.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineNoAntiAliasing
Specifies that Apple Type Services should turn-off antialiasing glyph imaging even if system preferences
or Quartz settings indicate otherwise. This option negates the kATSLineApplyAntiAliasing bit if
it is set.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableNegativeJustification
Specifies to allow glyph positions to extend beyond the line's assigned width if the line width is not
sufficient to hold all its glyphs. This ensures that negative justification is not used.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAutoAdjustDisplayPos
Specifies not to automatically adjust individual character positions when rendering lines that have
any integer glyph positioning, whether the integer glyph positioning is due to non-antialiased
characters or though the use of the selector kATSLineFractDisable.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineUseQDRendering
Specifies to use QuickDraw to render a line of text instead of the default ATSUI rendering. With Mac
OS X version 10.2, ATSUI renders text through Quartz, even if you do not attach a CGContext to a
text layout object. In the default case, ATSUI retrieves the internal canonical CGContext of the current
port, and renders to that port using Quartz at an antialiasing setting that simulates QuickDraw
rendering. That is, a 4-bit pixel-aligned antialiasing. Because the default setting gives you simulated
QuickDraw rendering, you should use the tag kATSLineUseQDRendering only if you must have
backward compatibility. With Mac OS X version 10.3, this option no longer does anything different
from not declaring a CGContext.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Constants 2061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

kATSLineDisableAllJustification
Specifies not to perform any justification operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllGlyphMorphing
Specifies not to perform any glyph-morphing operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllKerningAdjustments
Specifies not to perform any kerning-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllBaselineAdjustments
Specifies not to perform any baseline-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllTrackingAdjustments
Specifies not to perform any tracking-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllLayoutOperations
Specifies to turn off all layout adjustments for this line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineUseDeviceMetrics
Specifies to used rounded device metrics instead of fractional path metrics. This optimizes display of
text and should be used only in cases in which the text is displayed onscreen as opposed to printed
or output to PDF. If you use this option to display text onscreen as well as to print or create a PDF,
you will get different results between the two types of output. This attribute is not recommended for
Quartz antialiased text.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineBreakToNearestCharacter
Specifies that line breaking should occur at the nearest character, not word. This could cause a word
to be split over multiple lines.

Available in Mac OS X version 10.3 and later.

Declared in ATSLayoutTypes.h.

kATSLineAppleReserved
This selector is reserved by Apple. If you try to use it, ATSUI returns the
kATSUInvalidAttributeValueEr result code.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

2062 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
You can use a constant of type ATSLineLayoutOptions to set or obtain the line layout options in a line of
text or for an entire text layout object; see the functions ATSUSetLineControls (page 1956) and
ATSUSetLayoutControls (page 1955), respectively.

Line Layout Width Selector
Specifies a line width.

enum {
 kATSUUseLineControlWidth = 0X7FFFFFFF
};

Constants
kATSUUseLineControlWidth

Indicates that the functions ATSUBreakLine or ATSUBatchBreakLines should use the previously
set line width attribute for the current line to determine how many characters can fit on the line. If
no line width has been set for the line, these functions use the line width set for the text layout object;
if not set, these functions use the default line width value.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass this constant to the functions ATSUBreakLine (page 1846) or ATSUBatchBreakLines (page
1844) to indicate that the function should use the line width previously set for that line to calculate the soft
line break. If no line width has been set for the line, these functions use the line width set for the text layout
object.

No Selectors Option
Specifies no selectors are chosen.

enum {
 kATSUNoSelector = 0x0000FFFF
};

Constants
kATSUNoSelector

Specifies no selectors are chosen.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Style Comparison Options
Specify how two style objects compare to each other.

Constants 2063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt16 ATSUStyleComparison;
enum {
 kATSUStyleUnequal = 0,
 kATSUStyleContains = 1,
 kATSUStyleEquals = 2,
 kATSUStyleContainedBy = 3
};

Constants
kATSUStyleUnequal

Specifies that styles are unequal.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleContains
Specifies that style 1 contains style 2 as a proper subset.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleEquals
Specifies that style 1 equals style 2.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleContainedBy
Specifies that style 1 is contained by style 2.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
The functionATSUCompareStyles (page 1855) returns a constant of typeATSUStyleComparison to indicate
whether two style objects are the same, different, or a subset of one another.

Style Line Count Types
Specifies how many lines to draw for a given style type.

typedef UInt16 ATSUStyleLineCountType;
enum {
 kATSUStyleSingleLineCount = 1,
 kATSUStyleDoubleLineCount = 2
};

Constants
kATSUStyleSingleLineCount

Specifies to use a single line.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDoubleLineCount
Specifies to use a double line.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

2064 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
These constants are available in Mac OS X version 10.3 and later. Currently only the underline and strike
through styles support this type.

Style Rendering Options
Specify rendering options for a style object.

typedef UInt32 ATSStyleRenderingOptions;
enum {
 kATSStyleNoOptions = 0x00000000,
 kATSStyleNoHinting = 0x00000001,
 kATSStyleApplyAntiAliasing = 0x00000002,
 kATSStyleNoAntiAliasing = 0x00000004,
 kATSStyleAppleReserved = (unsigned long)0xFFFFFFF8,
 kATSStyleApplyHints = kATSStyleNoOptions
};

Constants
kATSStyleNoOptions

Specifies no options are set.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSStyleNoHinting
Specifies that Apple Type Services (ATS) should produce unhinted glyph outlines. The default behavior
is for ATS to produce is hinted glyph outlines.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleApplyAntiAliasing
Specifies that Apple Type Services should produce antialiased glyph images even if system preferences
or Quartz 2D settings indicate otherwise.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleNoAntiAliasing
Specifies that Apple Type Services should turn-off antialiasing glyph imaging even if system preferences
or Quartz 2D settings indicate otherwise. This selector negates the kATSStyleApplyAntiAliasing
selector if is set.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleAppleReserved
This selector is reserved by Apple. If you try to use it, you will get an invalid value error.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSStyleApplyHints
Specifies that Apple Type Services should produce hinted glyph outlines. This selector is obsolete; do
not use it. It is listed here only for backwards compatibility.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 2065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Discussion
You can set style rendering attributes for a style object (ATSUStyle) by using the
kATSUStyleRenderingOptionsTag attribute tag and calling the function ATSUSetAttributes (page
1950). Style rendering options provide fine control over how a style is rendered.

Tab Positioning Options
Specify text positioning for ATSUI tab stops.

typedef UInt16 ATSUTabType;
enum {
 kATSULeftTab = 0,
 kATSUCenterTab = 1,
 kATSURightTab = 2,
 kATSUDecimalTab = 3,
 kATSUNumberTabTypes = 4
};

Constants
kATSULeftTab

Specifies that the left side of the tabbed text should be flush against the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSUCenterTab
Specifies that the tabbed text should be centered on the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSURightTab
Specifies that the right side of the tabbed text should be flush against the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSUDecimalTab
Specifies that the decimal point of a value should be centered on the tab stop. To set a decimal tab,
use the tag kATSULineDecimalTabCharacterTag. This tag specifies the current setting for the
decimal separator, and affects the behavior of decimal tabs for a text layout (not an individual line).
The default character that is used as a separator is set by the user in System Preferences.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUNumberTabTypes
Specifies the number of valid tab types.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can use tab type constants to set a tab ruler. The default value is the user setting in System Preferences.

2066 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Text Buffer Convenience Constants
Refer to the beginning or end of a text buffer.

enum {
 kATSUFromTextBeginning = (unsigned long)0xFFFFFFFF,
 kATSUToTextEnd = (unsigned long)0xFFFFFFFF,
 kATSUFromPreviousLayout = (unsigned long)0xFFFFFFFE,
 kATSUFromFollowingLayout = (unsigned long)0xFFFFFFFD
};

Constants
kATSUFromTextBeginning

Indicates that the range of text to be operated on should start at the beginning of the text layout
object’s text buffer.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUToTextEnd
Indicates that the range of text to be operated on should span to the end of the text layout object’s
text buffer.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUFromPreviousLayout
Used for bidirectional cursor movement between paragraphs in the functions
ATSURightwardCursorPosition and ATSULeftwardCursorPosition.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUFromFollowingLayout
Used for bidirectional cursor movement between paragraphs in the functions
ATSURightwardCursorPostion and ATSULeftwardCursorPosition.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

Discussion
Do not pass these constants to functions which do not explicitly state they will accept them.

ATSUI functions that draw, highlight, measure, or otherwise operate on text do so to a range of text, not the
entire text buffer (unless you specify the entire buffer). You specify the beginning of this range with an edge
offset of type UniCharArrayOffset, and demarcate the end of the range by indicating a length of type
UniCharCount.

If you want the range to start at the beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning. If you want the range to span the end of the text buffer, you should pass the
constant kATSUToTextEnd. If you want the range to span the entire text buffer, pass
kATSUFromTextBeginning in conjunction with the constant kATSUToTextEnd. For bidirectional text, you
can specify the previous layout by passing the constant kATSUFromPreviousLayout and the following
layout by passing the constant kATSUFromFollowingLayout.

Unflattened Style Run Data Options
Specify options to use when unflattening ATSUI style run data.

Constants 2067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

typedef UInt32 ATSUUnflattenStyleRunOptions;
enum {
 kATSUUnflattenOptionNoOptionsMask = 0x00000000
};

Constants
kATSUUnflattenOptionNoOptionsMask

Specifies that no options are to be used.

Discussion
Additional options may be added in the future.

Vertical Character Types
Specify the glyph orientation of font tracking settings or a style run.

typedef UInt16 ATSUVerticalCharacterType;
enum {
 kATSUStronglyHorizontal = 0,
 kATSUStronglyVertical = 1
};

Constants
kATSUStronglyHorizontal

Specifies a horizontal orientation.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStronglyVertical
Specifies a vertical orientation.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass a constant of type ATSUVerticalCharacterType to the functions
ATSUCountFontTracking (page 1861) and ATSUGetIndFontTracking (page 1910) to specify the glyph
orientation of font tracking settings, since font tracking settings differ depending upon glyph orientations.

You can also use one of these constants to set or obtain the glyph orientation of a style run; see the functions
ATSUSetAttributes (page 1950) and ATSUGetAttribute (page 1892), respectively.

Result Codes

The most common result codes returned by Apple Type Services for Unicode Imaging are listed below.

DescriptionValueResult Code

The ATSUI text layout object is not initialized or is in
an otherwise invalid state.

-8790kATSUInvalidTextLayoutErr

Available beginning with ATSUI 1.0.

2068 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

DescriptionValueResult Code

The ATSUI style object is not initialized or in an
otherwise invalid state.

-8791kATSUInvalidStyleErr

Available beginning with ATSUI 1.0.

The text range extends beyond the limits of the text
layout object’s text range.

-8792kATSUInvalidTextRangeErr

Available beginning with ATSUI 1.0.

One or more characters cannot be rendered with the
assigned font, but can be rendered with a substitute
font from among those currently active.

-8793kATSUFontsMatched

Available beginning with ATSUI 1.0.

One or more characters can neither be rendered with
the assigned font nor with any other currently active
font.

-8794kATSUFontsNotMatched

Available beginning with ATSUI 1.0.

The font ID corresponds to an existing font that isn’t
available to ATSUI.

-8795kATSUNoCorrespondingFontErr

Available beginning with ATSUI 1.0.

The font ID does not correspond to any installed font
or ATSUI is unable to obtain the font data (as in the
case of a protected font).

-8796kATSUInvalidFontErr

Available beginning with ATSUI 1.0.

The attribute value is invalid or undefined.-8797kATSUInvalidAttributeValueErr

Available beginning with ATSIU 1.0.

The allocated attribute value size is less than required.-8798kATSUInvalidAttributeSizeErr

Available beginning with ATSUI 1.0.

The tag is an ATSUI-reserved value or the wrong type
of attribute tag (that is, a style run attribute tag
instead of text layout attribute tag and vice versa).

-8799kATSUInvalidAttributeTagErr

Available beginning with ATSUI 1.0.

Indicates an attempt to read style data from an invalid
cache (that is, the format of the cached data does not
match that used by ATSUI or the cached data is
corrupt).

-8800kATSUInvalidCacheErr

Available beginning with ATSUI 1.0.

Result Codes 2069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

DescriptionValueResult Code

The ATSUI style object’s attribute, font feature, font
variation is not set; the ATSUI text layout object or
single line’s attribute is not set; or a font name is not
set.

-8801kATSUNotSetErr

Available beginning with ATSUI 1.0.

No style runs are assigned to the ATSUI text layout
object.

-8802kATSUNoStyleRunsAssignedErr

Available beginning with ATSUI 1.1.

The QuickDraw function DrawText encountered an
error rendering or measuring a line of text.

-8803kATSUQuickDrawTextErr

Available beginning with ATSUI 1.1.

Apple Type Services (ATS) encountered an error while
performing an operation requested by ATSUI.

-8804kATSULowLevelErr

Available beginning with ATSUI 1.1.

The 'CMAP' table cannot be accessed or synthesized
for a font.

-8805kATSUNoFontCmapAvailableErr

Available beginning with ATSUI 1.1.

There is no font scaler available for a font.-8806kATSUNoFontScalerAvailableErr

Available beginning with ATSUI 1.1.

The coordinate values passed to the function caused
a coordinate overflow (greater than 32 KB).

-8807kATSUCoordinateOverflowErr

Available beginning with ATSUI 1.1.

The function ATSUBreakLineperformed a line break
within a word.

-8808kATSULineBreakInWord

Available beginning with ATSUI 1.2.

An ATSUI object is being used by another thread.-8809kATSUBusyObjectErr

Available in Mac OS X v10.1 and later.

The ATSUFontFallback object is not initialized or
is otherwise in an in valid state.

-8900kATSUInvalidFontFallbacksErr

Available in Mac OS X v10.1 and later.

The data-flattening format is invalid or is not
supported by this version of ATSUI.

-8901kATSUUnsupportedStreamFormatErr

Available in Mac OS X v10.2 and later.

The data is not formatted as specified by the
data-flattening format constant, or the data is corrupt.

-8902kATSUBadStreamErr

Available in Mac OS X v10.2 and later.

2070 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

DescriptionValueResult Code

The output buffer is too small to contain the data
output by the function.

-8903kATSUOutputBufferTooSmallErr

Available in Mac OS X v10.2 and later.

Your callback is making a call that could cause an
infinite recursion.

-8904kATSUInvalidCallInsideCallbackErr

Available in Mac OS X v10.2 and later.

No ATSUI-related result codes may exceed this value.
Result code values between
kATSUInvalidTextLayoutErr andkATSULastErr
are reserved.

-8959kATSULastErr

Available beginning with ATSUI 1.0.

Gestalt Constants

You can check for version and feature availability information by using the ATSUI attribute and version
selectors defined in the Gestalt Manager. For more information see Gestalt Manager Reference.

Gestalt Constants 2071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

2072 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 46

ATSUI Reference

Framework: ApplicationServices/HIServices.h, Carbon/HIToolbox.h

Overview

This document describes the Carbon accessibility API. You use this API to make your Carbon application
accessible to assistive applications and technologies, a process called access enabling.

Who Should Read This Document?

All Carbon application developers should read this document for information on specific functions and
constants they may need to access-enable their applications. If you’re unsure which parts of the Carbon
accessibility API you need, or if you’re new to accessibility in Mac OS X, be sure to read the documents listed
in “See Also” (page 2073).

Organization of This Document

This document contains API reference in the following sections:

 ■ “Accessibility Object Functions” (page 2074) documents the functions some Carbon applications use to
create and manipulate accessibility objects.

 ■ “Accessibility Constants” (page 2081) documents accessibility Carbon events and the constants that define
the accessibility event parameters, object attributes, and notifications.

 ■ “Carbon Accessibility Result Codes” (page 2121) describes some of the error codes returned by the Carbon
accessibility implementation.

See Also

For more information on accessibility in general and access enabling Carbon applications in particular, you
should read the following documents:

 ■ Getting Started With Accessibility

 ■ Accessibility Overview

 ■ Accessibility Programming Guidelines for Carbon

Overview 2073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Functions

This section describes the functions some Carbon developers may need to use to access-enable their
applications.

AXNotificationHIObjectNotify
Posts a notification for an accessibility object.

void AXNotificationHIObjectNotify (
 CFStringRef inNotification,
 HIObjectRef inHIObject,
 UInt64 inIdentifier
);

Parameters
inNotification

The string containing the name of the notification to broadcast.

inHIObject
The HIObjectRef portion of the accessibility object for which this notification applies.

inIdentifier
The 64-bit identifier portion of the accessibility object for which this notification applies.

Discussion
You use the AXNotificationHIObjectNotify function to broadcast changes in an accessibility object to
assistive applications. For example, an accessibility object may want to broadcast that the window it represents
has moved, or that an attribute value has changed. See “Notifications” (page 2117) for a list of possible
notification constants. Note that accessibility objects representing standard user interface elements
automatically send out notifications. In general, you do not need to post your own notifications unless you
implement custom user interface elements.

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

AXUIElementCreateWithHIObjectAndIdentifier
Creates an accessibility object that represents a user interface element.

AXUIElementRef AXUIElementCreateWithHIObjectAndIdentifier (
 HIObjectRef inHIObject,
 UInt64 inIdentifier
);

Parameters
inHIObject

A reference to the user interface element this accessibility object represents. You must pass one of
the following reference types: WindowRef, ControlRef, MenuRef, or an HIObjectRef.

2074 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

inIdentifier
A 64-bit identifier to uniquely identify the accessibility object within the user interface element. Pass
0 to indicate the base object identified by the inHIObject parameter.

Return Value
The newly created accessibility object.

Discussion
If the accessibility object represents part of the substructure of a user interface element, then you must assign
it a unique, nonzero identifier value. If the accessibility object represents a complex user interface object as
a whole, you must give it the identifier value 0. For example, a segmented view containing five buttons can
have six accessibility objects associated with it:

 ■ The segmented view as a whole, identified by its control reference (ControlRef) and identifier value
0.

 ■ The five button elements, identified by the segmented view reference and identifiers 1 through 5,
respectively.

The accessibility object is a CFTypeRef object. You can use CFEqual to compare two accessibility objects.
You must call CFRelease on the accessibility object when you no longer need it.

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

AXUIElementGetHIObject
Gets the user interface element the given accessibility object represents.

HIObjectRef AXUIElementGetHIObject (
 AXUIElementRef inUIElement
);

Parameters
inHIAccObj

The accessibility object whose user interface element you want to get.

Return Value
A reference to the user interface element associated with the passed-in accessibility object (or NULL if
inHIAccObj is not a valid accessibility object).

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

Functions 2075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

AXUIElementGetIdentifier
Gets the unique identifier associated with an accessibility object.

void AXUIElementGetIdentifier (
 AXUIElementRef inUIElement,
 UInt64 *outIdentifier
);

Parameters
inHIAccObj

The accessibility object whose identifier you want to get.

outIdentifier
A pointer to a 64-bit integer. On return, outIdentifier contains the accessibility object’s identifier.
If inHIAccObj is not a valid accessibility object, this function returns 0. Note that 0 is a valid identifier
value, so you should not assume that inHIAccObj is invalid if you receive a 0 result.

Discussion
If you create your own accessibility objects to represent custom user interface elements or subviews, you
can use the identifier this function returns to identify which accessibility object is being referenced.

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HICopyAccessibilityActionDescription
Returns the system-defined action description string for a standard action.

CFStringRef HICopyAccessibilityActionDescription (
 CFStringRef inAction
);

Parameters
inAction

The action for which you want the system-defined description. See “Actions” (page 2115) for the action
strings you can use.

Return Value
The system-defined description for the action. When you are finished with the CFString containing the
description, you must use CFRelease to release it. If you pass in an unsupported action, the results are
undefined.

Discussion
The HICopyAccessibilityActionDescription function is a convenience function you can use to get
the current, system-defined action description for a given action. If you create an accessibility object that
supports an action, you must supply the action description. Using this function allows you to take advantage
of any changes or enhancements Apple might make.

Availability
Available in Mac OS X version 10.4 and later.
Not available to 64-bit applications.

2076 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Declared In
HIAccessibility.h

HICopyAccessibilityRoleDescription
Returns the system-defined role description string for a standard role or role-subrole pair.

CFStringRef HICopyAccessibilityRoleDescription (
 CFStringRef inRole,
 CFStringRef inSubrole
);

Parameters
inRole

The role for which you want the system-defined description. See “Roles” (page 2087) for the role strings
you can use.

inSubrole
The subrole for which you want the system-defined description. See “Subroles” (page 2093) for the
subrole strings you can use. Pass NULL if your accessible object does not have a subrole.

Return Value
The system-defined description for the role or role-subrole pair. When you are finished with the CFString
containing the description, you must use CFRelease to release it. If there is no system-defined role description
associated with the role or role-subrole pair you pass in, this function returns NULL. If you pass in an unknown
role or an unknown subrole, this function returns NULL.

Discussion
The HICopyAccessibilityRoleDescription function is a convenience function you can use if you have
to provide the role description for an accessibility object you create. Instead of hard-coding a role description
for an accessibility object, you should use this function to get the current, system-defined role description.
This allows you to take advantage of any changes or enhancements Apple might make.

Availability
Available in Mac OS X version 10.4 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectIsAccessibilityIgnored
Returns whether the given HIObject is marked as ignored for accessibility purposes.

Boolean HIObjectIsAccessibilityIgnored (
 HIObjectRef inObject
);

Parameters
inObject

The object whose accessibility ignored state you wish to query.

Return Value
A Boolean value indicating whether the HIObject is ignored for accessibility purposes.

Functions 2077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectOverrideAccessibilityContainment
Allows you to override the accessibility objects an HIObject would usually supply as the values of its
kAXParentAttribute, kAXWindowAttribute, and kAXTopLevelUIElementAttribute attributes.

OSStatus HIObjectOverrideAccessibilityContainment (
 HIObjectRef inHIObject,
 AXUIElementRef inDesiredParent,
 AXUIElementRef inDesiredWindow,
 AXUIElementRef inDesiredTopLevelUIElement
);

Parameters
inHIObject

The HIObjectRef whose parent attribute you want to override.

inDesiredParent
The AXUIElementRef that you want the given HIObject to return as the value of its
kAXParentAttribute attribute. This function makes a copy of the AXUIElementRef and you must
release the inDesiredParent parameter after you call this function. Passing NULL in this parameter
indicates you do not want the HIObject to override the value of its kAXParentAttribute attribute.

inDesiredWindow
The AXUIElementRef that you want the given HIObject to return as the value of its
kAXWindowAttribute attribute. This function makes a copy of the AXUIElementRef and you must
release the inDesiredWindow parameter after you call this function. Passing NULL in this parameter
indicates you do not want the HIObject to override the value of its kAXWindowAttribute attribute
(if the value exists).

inDesiredTopLevelUIElement
The AXUIElementRef that you want the given HIObject to return as the value of its
kAXTopLevelUIElementAttribute attribute. This function makes a copy of the AXUIElementRef
and you must release the inDesiredTopLevelUIElement parameter after you call this function.
Passing NULL in this parameter indicates you do not want the HIObject to override the value of its
kAXTopLevelUIElementAttribute attribute (if the value exists).

Return Value
An OSStatus result code. If the HIObjectRef is invalid, this function returns paramErr.

Discussion
This function allows you to change the parent that the given HIObject would usually supply to the accessibility
hierarchy. For example, you might call this function on the menu of a pop-up control to ensure that the menu
returns the pop-up control as its parent (rather than the application). Optionally, this function also allows
you to change the window and top-level accessibility object the given HIObject would supply.

If the input HIObject is a standard toolbox object, such as an HIView or a menu, the input HIObject will not
be included as an accessibility child of its normal parent. In all other cases, it is the client’s responsibility to
ensure that the input HIObject is not included as an accessibility child of its normal parent.

2078 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

If the desired AXUIElementRef parent represents an HIView, a menu, or a window, the input HIObject will
be included automatically as an accessibility child of the specified parent. In all other cases, it is the client’s
responsibility to manually include the input HIObject as an accessibility child of the specified parent. To
represent an HIView, a menu, or a window, an AXUIElementRefmust contain the appropriate HIObjectRef,
as well as an identifier value of 0.

Note that similar rules don’t apply to the handling of the window and top-level element attributes, because
those attributes don’t represent two-way relationships.

Not every type of HIObject supports a containment override; currently, HIViews, menus, and windows support
containment overrides.

Availability
Available in Mac OS X version 10.4 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectSetAccessibilityIgnored
Marks an HIObject as ignored or unignored for accessibility purposes.

OSStatus HIObjectSetAccessibilityIgnored (
 HIObjectRef inObject,
 Boolean inIgnored
);

Parameters
inObject

The object whose accessibility ignored state you wish to change.

inIgnored
A Boolean value indicating whether to ignore the object (TRUE) or not (FALSE).

Return Value
An OSStatus signifying success or failure.

Discussion
An ignored HIObject is not shown to an assistive application that uses the accessibility APIs to examine the
interface of your application. Your application’s accessibility implementation should still report an ignored
HIObject as usual. The Carbon accessibility implementation automatically hides ignored HIObjects from
assistive applications.

Note: By default, an HIObject is not ignored.

Availability
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

Functions 2079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

HIObjectSetAuxiliaryAccessibilityAttribute
Associates an additional accessibility attribute with an accessibility object (a UIElement) that is used to
represent a given HIObject or part thereof.

OSStatus HIObjectSetAuxiliaryAccessibilityAttribute (
 HIObjectRef inHIObject,
 UInt64 inIdentifier,
 CFStringRef inAttributeName,
 CFTypeRef inAttributeData
);

Parameters
inHIObject

The HIObjectRef portion of the object-identifier pair to which the attribute data is associated.

inIdentifier
The 64-bit identifier portion of the object-identifier pair to which the attribute data is associated. Pass
0 in this parameter when you want to associate the attribute data to the HIObject as a whole. You
might do this if, for example, you want to give a description attribute to the object representing a
button.

inAttributeName
A CFStringRef of the name of the attribute. This string is retained before it is added to the auxiliary
attribute storage area.

inAttributeData
A CFTypeRef containing the data supplied for the attribute’s value. This data is retained before it is
added to the auxiliary attribute storage area; you may release this data after calling this function. If
you pass NULL in this parameter, it indicates that the named auxiliary attribute should no longer be
associated with the object-identifier pair and any named attribute data previously associated with
the object-identifier pair will be released.

Return Value
An OSStatus result code. The function returns noErr if it was able to associate the attribute data with the
HIObject. If the HIObjectRef is invalid, paramErr is returned.

Discussion
This function allows your application to provide the name of and data for an accessibility attribute you want
to add to the UIElement that represents a given HIObject-identifier pair. Normally, accessibility attributes are
only supplied dynamically through Carbon events, but this function allows you to supply them statically.

This function only allows you to associate attributes whose values never change. If you need to supply
attribute whose values are determined dynamically or whose values are settable, you must install the necessary
Carbon accessibility event handlers. See Accessibility Programming Guidelines for Carbon for more information
about how this works.

This function is particularly useful for supplying the values of the kAXDescriptionAttribute,
kAXTitleUIElementAttribute, kAXServesAsTitleForUIElementsAttribute,
kAXLinkedUIElementsAttribute attributes and other attributes whose values are specific to the layout
and usage of your application.

The auxiliary attribute store (containing attribute values you supply using this function) is consulted during
the HIObject’s default handling of the Carbon accessibility attribute events. Therefore, any programmatic
handling of a given accessibility attribute has the opportunity to override or block the consultation of the
store. In general, if the toolbox or a Carbon event handler can provide the attribute value some other way,
the store is not consulted.

2080 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Availability
Available in Mac OS X version 10.4 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

Constants

This section describes the constants that define accessibility events and aspects of accessibility objects. The
accessibility event constants are defined in CarbonEvents.h in the Carbon framework. The accessibility
object constants are defined in header files in the ApplicationServices framework.

Accessibility Events

Accessibility Event Constants
Define accessibility events (kEventClassAccessibility).

enum
{
 kEventAccessibleGetChildAtPoint = 1,
 kEventAccessibleGetFocusedChild = 2,
 kEventAccessibleGetAllAttributeNames = 21,
 kEventAccessibleGetAllParameterizedAttributeNames = 25,
 kEventAccessibleGetNamedAttribute = 22,
 kEventAccessibleSetNamedAttribute = 23,
 kEventAccessibleIsNamedAttributeSettable = 24,
 kEventAccessibleGetAllActionNames = 41,
 kEventAccessiblePerformNamedAction = 42,
 kEventAccessibleGetNamedActionDescription = 44
};

Constants
kEventAccessibleGetChildAtPoint

A request sent by an assistive application to get the accessible child of the given accessibility object
that contains the given point. The kEventParamMouseLocation parameter contains the location
in global coordinates.

If you handle this event, you use the kEventParamAccessibleChild parameter to return an
accessible first-order child of the accessibility object receiving the event. If there is no child at the
given point, your handler should leave the kEventParamAccessibleChild parameter empty and
return noErr. You must not set the kEventParamAccessibleChild parameter to a grandchild or
more distant descendant of the accessible object receiving this event.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

Constants 2081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kEventAccessibleGetFocusedChild
A request sent by an assistive application to get the accessible child of the given accessibility object
that is part of the focus chain.

If you handle this event, you set the kEventParamAccessibleChild parameter to a first-order,
accessible child that is focused or is the ancestor of a focused object. If there is no child in the focus
chain, your handler should leave the kEventParamAccessibleChild parameter empty and return
noErr. You must not set the kEventParamAccessibleChild parameter to a grandchild or more
distant descendant of the accessible object receiving this event.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

kEventAccessibleGetAllAttributeNames
A request sent by an assistive application to get the names of all attributes the given accessibility
object supports.

If you handle this event, you create a CFString object for the name of each non-parameterized attribute
and add it to the mutable array in the kEventParamAccessibleAttributeNames parameter. If
the accessibility object receiving the event supports parameterized attributes, you return them in the
handler for the kEventAccessibleGetAllParameterizedAttributeNames event.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

kEventAccessibleGetAllParameterizedAttributeNames
A request sent by an assistive application to get the names of all parameterized attributes the given
accessibility object supports.

If you handle this event, you create a CFString object for the name of each parameterized attribute
and add it to the mutable array in the kEventParamAccessibleAttributeNames parameter. You
must not return any regular, non-parameterized attribute names with this event. Instead, return
regular attribute names in the handler for the kEventAccessibleGetAllAttributeNames event.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.3 and later.

kEventAccessibleGetNamedAttribute
A request sent by an assistive application to get the value of the given attribute.

If you handle this event, you determine if the given accessibility object supports the attribute named
in the kEventParamAccessibleAttributeName parameter. If it does, you return the attribute’s
value in the kEventParamAccessibleAttributeValue parameter. If the accessibility object does
not support the attribute, return the eventNotHandledErr error. The type of the
kEventParamAccessibleAttributeValue parameter varies with the type of the attribute’s value.

This event may also include the optionalkEventParamAccessibleAttributeParameterparameter
that describes the parameters of a parameterized attribute. Note that parameterized attributes were
introduced in Mac OS X version 10.3.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

2082 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kEventAccessibleSetNamedAttribute
A request sent by an assistive application to set the value of the given attribute to the passed-in value.

If you handle this event, you determine if the given accessibility object supports the attribute named
in the kEventParamAccessibleAttributeName parameter and if the attribute is settable. Then,
you set the named attribute’s value to the value supplied in the
kEventParamAccessibleAttributeValue parameter. If you cannot handle this event (because,
for example, the accessibility object does not support this attribute, the attribute is not settable, or
the value is not appropriate), return the eventNotHandledErr error.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

kEventAccessibleIsNamedAttributeSettable
A request sent by an assistive application to find out if the given attribute’s value can be changed.

If you handle this event, you determine if the accessibility object supports the given attribute. If it
does, you return a Boolean value in the kEventParamAccessibleAttributeSettable parameter
that indicates whether the attribute’s value can be changed.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

kEventAccessibleGetAllActionNames
Sent by an assistive application to find out which actions the given accessibility object supports.

If you handle this event, you create a CFString object for the name of each action the given accessibility
object supports and add it to the mutable array in the kEventParamAccessibleActionNames
parameter.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

kEventAccessiblePerformNamedAction
Sent by an assistive application when it wants the given accessibility object to perform the given
action.

If you handle this event, you determine if the accessibility object supports the action named in the
kEventParamAccessibleActionName parameter. If it does, you perform it.

In Mac OS X version 10.3 and later, this event includes the kEventParamAccessibilityEventQueued
parameter, which indicates whether the event was queued. You check the value of this parameter
before you perform an action that might result in a call to a routine that may not return immediately.
If the event is queued, you can perform such an action without the possibility of causing an assistive
application to receive a time-out error waiting for the action to complete. If the event is not queued,
your handler can return the eventDeferAccessibilityEventErr to request that it be queued
and sent to you later.

In versions of Mac OS X prior to 10.3, events are always directly dispatched and you should perform
a requested action even if it might cause an assistive application to receive a time-out error.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

Constants 2083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kEventAccessibleGetNamedActionDescription
Sent by an assistive application to get the human-intelligible name of the given action.

If you handle this event, you determine if the given accessibility object supports the given action. If
it does, you return the value of the action’s description property in the
kEventParamAccessibleActionDescription parameter. To do this, you do not create a CFString
object for the action description. Instead, you must modify the mutable string object in the
kEventParamAccessibleActionDescription parameter to contain the action description.

Declared in HIAccessibility.h.

Available in Mac OS X version 10.2 and later.

Discussion
Table 47-1 (page 2084) shows the parameters related to accessibility events.

Table 47-1 Parameter names and types for accessibility event kinds

Parameter typeParameter nameEvent kind

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessible-
GetChildAtPoint

typeHIPointkEventParamAccessibleMouse-
Location

typeCFTypeRefkEventParamAccessibleChild

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessible-
GetFocusedChild

typeCFTypeRefkEventParamAccessibleChild

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessibleGet-
AllAttributeNames

typeCFMutableArrayRefkEventParamAccessibleAttribute-
Names

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessibleGet-
AllParameterized-
AttributeNames

typeCFMutableArrayRefkEventParamAccessibleAttribute-
Names

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessibleGet-
NamedAttribute

typeCFStringRefkEventParamAccessibleAttribute-
Name

typeCFTypeRefkEventParamAccessibleAttribute-
Parameter (Optional; introduced in Mac
OS X version 10.3)

2084 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Parameter typeParameter nameEvent kind

typeCFTypeRef (Varies with the
type of the attribute value)

kEventParamAccessibleAttribute-
Value

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessibleSet-
NamedAttribute

typeCFStringRefkEventParamAccessibleAttribute-
Name

typeCFTypeRef (Varies with the
type of the attribute value)

kEventParamAccessibleAttribuute-
Value

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessible-
IsNamedAttribute-
Settable

typeCFStringRefkEventParamAccessibleAttribute-
Name

typeBooleankEventParamAccessibleAttribute-
Settable

typeCFTypeRefkEventParamAccessibleObjectkEventAccessibleGet-
AllActionNames

typeCFMutableArrayRefkEventParamAccessibleActionNames

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessible-
PerformNamedAction

typeCFStringRefkEventParamAccessibleActionName

typeBooleankEventParamAccessibleEventQueued
(Only in Mac OS X version 10.3 and later)

typeCFTypeRef (an
AXUIElementRef)

kEventParamAccessibleObjectkEventAccessible-
GetNamedAction-
Description

typeCFStringRefkEventParamAccessibleActionName

typeCFMutableStringRefkEventParamAccessibleAction-
Description

Accessibility Event Parameters
Define parameters related to accessibility events.

Constants 2085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

enum
{
 kEventParamAccessibleObject = ‘aojb’,
 kEventParamAccessibleChild = ‘achl’,
 kEventParamAccessibleAttributeName = ‘atnm’,
 kEventParamAccessibleAttributeNames = ‘atns’,
 kEventParamAccessibleAttributeValue = ‘atvl’,
 kEventParamAccessibleAttributeSettable = ‘atst’,
 kEventParamAccessibleAttributeParameter = ‘atpa’,
 kEventParamAccessibleActionName = ‘acnm’,
 kEventParamAccessibleActionNames = ‘acns’,
 kEventParamAccessibleActionDescription = ‘acds’,
 kEventParamAccessibleEventQueued = ‘aequ’
};

Constants
kEventParamAccessibleObject

Specifies an accessibility object. The parameter type is typeCFTypeRef, and the data must be of
type AXUIElementRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleChild
Specifies the child accessibility object. The parameter type is typeCFTypeRef, and the data must be
of type AXUIElementRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleAttributeName
Specifies an attribute name. The parameter type is typeCFStringRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleAttributeNames
Specifies an array of attribute names (each of type CFStringRef). The parameter type is
typeCFMutableArrayRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleAttributeValue
Specifies the value of an attribute. The parameter type varies according to the attribute. However,
this value must be one of the flat data types, such as point, rectangle, integer, float, or any CFType,
and must be able to be packaged in a CFPropertyList. In particular, the data should not be a pointer,
because you cannot be sure how long an assistive application will retain the value, or in what way it
will interpret the value.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleAttributeSettable
Specifies whether an attribute is settable. The parameter type is typeBoolean.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

2086 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kEventParamAccessibleAttributeParameter
Specifies the parameters of a parameterized attribute. The parameter type is typeCFTypeRef.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleActionName
Specifies an action name. The parameter type is typeCFStringRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleActionNames
Specifies an array of action names (each of type CFStringRef) . The parameter type is
typeCFMutableArrayRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleActionDescription
Specifes the description of an action. The parameter type is typeCFMutableStringRef.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAccessibleEventQueued
Specifies whether the event has been queued. The parameter type is typeBoolean.

Accessibility Event Class
Defines the event class for accessibility events.

enum
{
 kEventClassAccessibility = 'acce',
};

Constants
kEventClassAccessibility

Pass this value for the event class when registering for accessibility events.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Accessibility Object Constants

Roles
Define the values an accessibility object’s role attribute can have.

Constants 2087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

#define kAXApplicationRole CFSTR("AXApplication")
#define kAXSystemWideRole CFSTR("AXSystemWide")
#define kAXWindowRole CFSTR("AXWindow")
#define kAXSheetRole CFSTR("AXSheet")
#define kAXDrawerRole CFSTR("AXDrawer")
#define kAXGrowAreaRole CFSTR("AXGrowArea")
#define kAXImageRole CFSTR("AXImage")
#define kAXUnknownRole CFSTR("AXUnknown")
#define kAXButtonRole CFSTR("AXButton")
#define kAXRadioButtonRole CFSTR("AXRadioButton")
#define kAXCheckBoxRole CFSTR("AXCheckBox")
#define kAXPopUpButtonRole CFSTR("AXPopUpButton")
#define kAXMenuButtonRole CFSTR("AXMenuButton")
#define kAXTabGroupRole CFSTR("AXTabGroup")
#define kAXTableRole CFSTR("AXTable")
#define kAXColumnRole CFSTR("AXColumn")
#define kAXRowRole CFSTR("AXRow")
#define kAXOutlineRole CFSTR("AXOutline")
#define kAXBrowserRole CFSTR("AXBrowser")
#define kAXScrollAreaRole CFSTR("AXScrollArea")
#define kAXScrollBarRole CFSTR("AXScrollBar")
#define kAXRadioGroupRole CFSTR("AXRadioGroup")
#define kAXListRole CFSTR("AXList")
#define kAXGroupRole CFSTR("AXGroup")
#define kAXValueIndicatorRole CFSTR ("AXValueIndicator")
#define kAXComboBoxRole CFSTR("AXComboBox")
#define kAXSliderRole CFSTR("AXSlider")
#define kAXIncrementorRole CFSTR("AXIncrementor")
#define kAXBusyIndicatorRole CFSTR ("AXBusyIndicator")
#define kAXProgressIndicatorRole CFSTR("AXProgressIndicator")
#define kAXRelevanceIndicatorRole CFSTR("AXRelevanceIndicator")
#define kAXToolbarRole CFSTR("AXToolbar")
#define kAXDisclosureTriangleRole CFSTR("AXDisclosureTriangle")
#define kAXTextFieldRole CFSTR("AXTextField")
#definekAXTextAreaRole CFSTR("AXTextArea")
#define kAXStaticTextRole CFSTR("AXStaticText")
#define kAXMenuBarRole CFSTR("AXMenuBar")
#define kAXMenuBarItemRole CFSTR("AXMenuBarItem")
#define kAXMenuRole CFSTR("AXMenu")
#define kAXMenuItemRole CFSTR("AXMenuItem")
#define kAXSplitGroupRole CFSTR("AXSplitGroup")
#define kAXSplitterRole CFSTR("AXSplitter")
#define kAXColorWellRole CFSTR("AXColorWell")
#define kAXTimeFieldRole CFSTR("AXTimeField")
#define kAXDateFieldRole CFSTR("AXDateField")
#define kAXHelpTagRole CFSTR("AXHelpTag")
#define kAXMatteRole CFSTR("AXMatteRole")
#define kAXDockItemRole CFSTR("AXDockItem")

Constants
kAXApplicationRole

An application.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

2088 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXSystemWideRole
The system-wide accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXWindowRole
A window.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXSheetRole
A sheet.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXDrawerRole
A drawer.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXGrowAreaRole
A grow control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXImageRole
An image.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXUnknownRole
Generic role value for an unknown accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXButtonRole
A button.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXRadioButtonRole
A radio button.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXCheckBoxRole
A check box.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

Constants 2089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXPopUpButtonRole
A pop-up button.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXMenuButtonRole
A menu button.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXTabGroupRole
A tab view.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXTableRole
A table.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXColumnRole
A column.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXRowRole
A row.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXOutlineRole
An accessibility object that displays row-based, hierarchically structured data, such as the list view in
a Finder window.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXBrowserRole
An accessibility object that displays column-based, hierarchically structured data, such as the column
view in a Finder window.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXScrollAreaRole
An accessibility object that displays data managed by scrolling controls.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXScrollBarRole
A scroll bar control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

2090 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXRadioGroupRole
A set of radio buttons.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXListRole
A list view.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXGroupRole
A group box. This role can also be used to group other views without any visual indication of the
grouping.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXValueIndicatorRole
A control that indicates the value of an accessibility object, such as the scroller of a scroll bar control

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXComboBoxRole
A combo box control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXSliderRole
A slider control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXIncrementorRole
A stepper control (also known as the “little arrows”).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXBusyIndicatorRole
An asynchronous progress indicator.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXProgressIndicatorRole
A determinate or indeterminate progress indicator.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXRelevanceIndicatorRole
A relevance indicator.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

Constants 2091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXToolbarRole
A toolbar.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXDisclosureTriangleRole
A disclosure triangle control.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXTextFieldRole
A text field.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXTextAreaRole
The editable text area in a control or window.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXStaticTextRole
A string of static text displayed in a window that is not part of any control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXMenuBarRole
A menu bar.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXMenuBarItemRole
A menu bar item.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXMenuRole
A menu.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXMenuItemRole
A menu item.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXSplitGroupRole
A split view.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

2092 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXSplitterRole
A splitter bar control.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXColorWellRole
A color well.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXTimeFieldRole
A field that displays time.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXDateFieldRole
A field that displays dates.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXHelpTagRole
A help tag.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXMatteRole
The outer view that represents the entire contents, including the view through the matte hole, the
contents hidden by the matte frame, and the resizing and repositioning controls. An example of an
object with a matte role is the iChat icon scaling window.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXDockItemRole
An icon that represents an item in the Dock.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

Discussion
The value of the role attribute describes what the object is, not what it does. See the “Roles and Associated
Attributes” appendix in Accessibility Overview for more information on which attributes are associated with
each role.

Subroles
Define the values for an accessibility object’s subrole attribute.

Constants 2093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

#define kAXCloseButtonSubrole CFSTR("AXCloseButton")
#define kAXMinimizeButtonSubrole CFSTR("AXMinimizeButton")
#define kAXZoomButtonSubrole CFSTR("AXZoomButton")
#define kAXToolbarButtonSubrole CFSTR("AXToolbarButton")
#define kAXSecureTextFieldSubrole CFSTR("AXSecureTextField")
#define kAXTableRowSubrole CFSTR("AXTableRow")
#define kAXOutlineRowSubrole CFSTR("AXOutlineRow")
#define kAXUnknownSubrole CFSTR("AXUnknown")
#define kAXStandardWindowSubrole CFSTR("AXStandardWindow")
#define kAXDialogSubrole CFSTR("AXDialog")
#define kAXSystemDialogSubrole CFSTR("AXSystemDialog")
#define kAXFloatingWindowSubrole CFSTR("AXFloatingWindow")
#define kAXSystemFloatingWindowSubrole CFSTR("AXSystemFloatingWindow")
#define kAXIncrementArrowSubrole CFSTR("AXIncrementArrow")
#define kAXDecrementArrowSubrole CFSTR("AXDecrementArrow")
#define kAXIncrementPageSubrole CFSTR("AXIncrementPage")
#define kAXDecrementPageSubrole CFSTR("AXDecrementPage")
#define kAXSortButtonSubrole CFSTR("AXSortButton")
#define kAXSearchFieldSubrole CFSTR("AXSearchField")
#define kAXApplicationDockItemSubrole CFSTR("AXApplicationDockItem")
#define kAXDocumentDockItemSubrole CFSTR("AXDocumentDockItem")
#define kAXFolderDockItemSubrole CFSTR("AXFolderDockItem")
#define kAXMinimizedWindowDockItemSubrole CFSTR("AXMinimizedWindowDockItem")
#define kAXURLDockItemSubrole CFSTR("AXURLDockItem")
#define kAXDockExtraDockItemSubrole CFSTR("AXDockExtraDockItem")
#define kAXTrashDockItemSubrole CFSTR("AXTrashDockItem")
#define kAXProcessSwitcherListSubrole CFSTR("AXProcessSwitcherList")

Constants
kAXCloseButtonSubrole

A close button (that is, the red button in a window’s title bar that closes the window).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXMinimizeButtonSubrole
A minimize button (that is, the yellow button in a window’s title bar that minimizes the window into
the Dock).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXZoomButtonSubrole
A zoom button (that is, the green button in a window’s title bar that adjusts the window’s size).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXToolbarButtonSubrole
A toolbar button (that is, the button in a window’s title bar that hides and reveals the toolbar).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXSecureTextFieldSubrole
A text field intended to contain sensitive data and that displays the user’s input as a series of bullets.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

2094 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXTableRowSubrole
A row in a table.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXOutlineRowSubrole
A row in an outline view (see kAXOutlineRole for a description of an outline view).

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXUnknownSubrole
A subrole for an unknown type of window. A window should include a subrole to further define its
type. If your window does not conform to an existing subrole, you can use the unknown subrole.
Alternatively, you can return the eventNotHandledErr error when your window is asked for its
subrole.

Available in Mac OS X v10.2 and later.

Declared in AXRoleConstants.h.

kAXStandardWindowSubrole
A standard window that includes a title bar (that is, not an inspector window or a sheet).

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXDialogSubrole
A dialog window, such as an alert.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXSystemDialogSubrole
A system-generated dialog window that floats on the top layer, regardless of which application is
frontmost. Use this subrole only when a dialog or alert applies to the system as a whole, such as a
shutdown dialog.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXFloatingWindowSubrole
A utility window.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXSystemFloatingWindowSubrole
A system-generated utility window.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXIncrementArrowSubrole
The up arrow of a scroll bar.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

Constants 2095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXDecrementArrowSubrole
The down arrow of a scroll bar.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXIncrementPageSubrole
The increment area in the scroll track of a scroll bar.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXDecrementPageSubrole
The decrement area in the scroll track of a scroll bar.

Available in Mac OS X v10.3 and later.

Declared in AXRoleConstants.h.

kAXSortButtonSubrole
A column heading button in a list or column view.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXSearchFieldSubrole
A search field.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXApplicationDockItemSubrole
An icon in the Dock that represents an application.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXDocumentDockItemSubrole
An icon in the Dock that represents a document.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXFolderDockItemSubrole
An icon in the Dock that represents a folder.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXMinimizedWindowDockItemSubrole
An icon in the Dock that represents a minimized window.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXURLDockItemSubrole
An icon in the Dock that represents a URL.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

2096 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXDockExtraDockItemSubrole
An icon in the Dock that represents a Dock Extra.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXTrashDockItemSubrole
The icon in the Dock that represents the Trash.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

kAXProcessSwitcherListSubrole
The display of running applications (processes) that appears when a user presses Command-Tab.

Available in Mac OS X v10.4 and later.

Declared in AXRoleConstants.h.

Discussion
A subrole provides a more specific description of an accessibility object’s role. If an accessibility object is of
a well-defined subtype, it can include the subrole attribute to provide additional information to an assistive
application.

Attributes
Define the attributes available for accessibility objects.

//General attributes
#define kAXRoleAttribute CFSTR("AXRole")
#define kAXSubroleAttribute CFSTR("AXSubrole")
#define kAXRoleDescriptionAttribute CFSTR("AXRoleDescription")
#define kAXHelpAttribute CFSTR("AXHelp")
#define kAXTitleAttribute CFSTR("AXTitle")
#define kAXValueAttribute CFSTR("AXValue")
#define kAXMinValueAttribute CFSTR("AXMinValue")
#define kAXMaxValueAttribute CFSTR("AXMaxValue")
#define kAXValueIncrementAttribute CFSTR("AXValueIncrement")
#define kAXAllowedValuesAttribute CFSTR("AXAllowedValues")
#define kAXEnabledAttribute CFSTR("AXEnabled")
#define kAXFocusedAttribute CFSTR("AXFocused")
#define kAXParentAttribute CFSTR("AXParent")
#define kAXChildrenAttribute CFSTR("AXChildren")
#define kAXSelectedChildrenAttribute CFSTR("AXSelectedChildren")
#define kAXVisibleChildrenAttribute CFSTR("AXVisibleChildren")
#define kAXWindowAttribute CFSTR("AXWindow")
#define kAXTopLevelUIElementAttribute CFSTR("AXTopLevelUIElement")
#define kAXPositionAttribute CFSTR("AXPosition")
#define kAXSizeAttribute CFSTR("AXSize")
#define kAXOrientationAttribute CFSTR("AXOrientation")
#define kAXDescriptionAttribute CFSTR("AXDescription")

Constants 2097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

// Text-specific attributes
#define kAXSelectedTextAttribute CFSTR("AXSelectedText")
#define kAXVisibleCharacterRangeAttribute CFSTR("AXVisibleCharacterRange")
#define kAXSelectedTextRangeAttribute CFSTR("AXSelectedTextRange")
#define kAXNumberOfCharactersAttribute CFSTR("AXNumberOfCharacters")
#define kAXSharedTextUIElementsAttribute CFSTR("AXSharedTextUIElements")
#define kAXSharedCharacterRangeAttribute CFSTR("AXSharedCharacterRange")

// Window-specific attributes
#define kAXMainAttribute CFSTR("AXMain")
#define kAXMinimizedAttribute CFSTR("AXMinimized")
#define kAXCloseButtonAttribute CFSTR("AXCloseButton")
#define kAXZoomButtonAttribute CFSTR("AXZoomButton")
#define kAXMinimizeButtonAttribute CFSTR("AXMinimizeButton")
#define kAXToolbarButtonAttribute CFSTR("AXToolbarButton")
#define kAXGrowAreaAttribute CFSTR("AXGrowArea")
#define kAXProxyAttribute CFSTR("AXProxy")
#define kAXModalAttribute CFSTR("AXModal")
#define kAXDefaultButtonAttribute CFSTR("AXDefaultButton")
#define kAXCancelButtonAttribute CFSTR("AXCancelButton")

// Menu-specific attributes
#define kAXMenuItemCmdCharAttribute CFSTR("AXMenuItemCmdChar")
#define kAXMenuItemCmdVirtualKeyAttribute
 CFSTR("AXMenuItemCmdVirtualKey")
#define kAXMenuItemCmdGlyphAttribute CFSTR("AXMenuItemCmdGlyph")
#define kAXMenuItemCmdModifiersAttribute
 CFSTR("AXMenuItemCmdModifiers")
#define kAXMenuItemMarkCharAttribute CFSTR("AXMenuItemMarkChar")
#define kAXMenuItemPrimaryUIElementAttribute CFSTR("AXMenuItemPrimaryUIElement")

// Application-specific attributes
#define kAXMenuBarAttribute CFSTR("AXMenuBar")
#define kAXWindowsAttribute CFSTR("AXWindows")
#define kAXFrontmostAttribute CFSTR("AXFrontmost")
#define kAXHiddenAttribute CFSTR("AXHidden")
#define kAXMainWindowAttribute CFSTR("AXMainWindow")
#define kAXFocusedWindowAttribute CFSTR("AXFocusedWindow")
#define kAXFocusedUIElementAttribute CFSTR("AXFocusedUIElement")

2098 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

// Miscellaneous attributes
#define kAXHeaderAttribute CFSTR("AXHeader")
#define kAXEditedAttribute CFSTR("AXEdited")
#define kAXValueWrapsAttribute CFSTR("AXValueWraps")
#define kAXTabsAttribute CFSTR("AXTabs")
#define kAXTitleUIElementAttribute CFSTR("AXTitleUIElement")
#define kAXHorizontalScrollBarAttribute CFSTR("AXHorizontalScrollBar")
#define kAXVerticalScrollBarAttribute CFSTR("AXVerticalScrollBar")
#define kAXOverflowButtonAttribute CFSTR("AXOverflowButton")
#define kAXFilenameAttribute CFSTR("AXFilename")
#define kAXExpandedAttribute CFSTR("AXExpanded")
#define kAXSelectedAttribute CFSTR("AXSelected")
#define kAXSplittersAttribute CFSTR("AXSplitters")
#define kAXNextContentsAttribute CFSTR("AXNextContents")
#define kAXDocumentAttribute CFSTR("AXDocument")
#define kAXDecrementButtonAttribute CFSTR("AXDecrementButton")
#define kAXIncrementButtonAttribute CFSTR("AXIncrementButton")
#define kAXPreviousContentsAttribute CFSTR("AXPreviousContents")
#define kAXContentsAttribute CFSTR("AXContents")
#define kAXIncrementorAttribute CFSTR("AXIncrementor")
#define kAXHourFieldAttribute CFSTR("AXHourField")
#define kAXMinuteFieldAttribute CFSTR("AXMinuteField")
#define kAXSecondFieldAttribute CFSTR("AXSecondField")
#define kAXAMPMFieldAttribute CFSTR("AXAMPMField")
#define kAXDayFieldAttribute CFSTR("AXDayField")
#define kAXMonthFieldAttribute CFSTR("AXMonthField")
#define kAXYearFieldAttribute CFSTR("AXYearField")
#define kAXColumnTitleAttribute CFSTR("AXColumnTitles")
#define kAXURLAttribute CFSTR("AXURL")
#define kAXLabelUIElementsAttribute CFSTR("AXLabelUIElements")
#define kAXLabelValueAttribute CFSTR("AXLabelValue")
#define kAXShownMenuUIElementAttribute CFSTR("AXShownMenuUIElement")
#define kAXServesAsTitleForUIElementsAttribute
CFSTR("AXServesAsTitleForUIElements")
#define kAXLinkedUIElementsAttribute CFSTR("AXLinkedUIElements")

// Table and outline view attributes
#define kAXRowsAttribute CFSTR("AXRows")
#define kAXVisibleRowsAttribute CFSTR("AXVisibleRows")
#define kAXSelectedRowsAttribute CFSTR("AXSelectedRows")
#define kAXColumnsAttribute CFSTR("AXColumns")
#define kAXVisibleColumnsAttribute CFSTR("AXVisibleColumns")
#define kAXSelectedColumnsAttribute CFSTR("AXSelectedColumns")
#define kAXSortDirectionAttribute CFSTR("AXSortDirection")
#define kAXColumnHeaderUIElementsAttribute CFSTR("AXColumnHeaderUIElements")
#define kAXIndexAttribute CFSTR("AXIndex")
#define kAXDisclosingAttribute CFSTR("AXDisclosing")
#define kAXDisclosedRowsAttribute CFSTR("AXDisclosedRows")
#define kAXDisclosedByRowAttribute CFSTR("AXDisclosedByRow")

// Matte attributes
#define kAXMatteHoleAttribute CFSTR("AXMatteHole")
#define kAXMatteContentUIElementAttribute CFSTR("AXMatteContentUIElement")

// Dock attributes
#define kAXIsApplicationRunningAttribute CFSTR("AXIsApplicationRunning")

Constants 2099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

// System-wide attributes
#define kAXFocusedApplicationAttribute CFSTR("AXFocusedApplication")

Constants
kAXRoleAttribute

The role, or type, of this accessibility object (for example, AXButton). This string is for identification
purposes only and does not need to be localized. All accessibility objects must include this attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSubroleAttribute
The subrole of this accessibility object (for example, AXCloseButton). The subrole provides additional
information about the accessibility object to an assistive application. This string is for identification
purposes only and does not need to be localized. This attribute is necessary only for an accessibility
object whose AXRole attribute does not adequately describe its meaning.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXRoleDescriptionAttribute
A localized string describing the role (for example, “button”). This string must be readable by (or
speakable to) the user. All accessibility objects must include this attribute. To get the system-defined
role description string for a given role, use the HICopyAccessibilityRoleDescription (page
2077) function.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXHelpAttribute
A localized string containing help text for this accessibility object. An accessibility object that provides
help information should include this attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXTitleAttribute
The title associated with this accessibility object. A title is text that the object displays as part of its
visual interface, such as the text “OK” on an OK button. This string must be localizable and
human-intelligible. This attribute is required for all accessibility objects that display a string in their
visual interfaces.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXValueAttribute
The value associated with this accessibility object (for example, a scroller value). The value of an
accessibility object is user-modifiable and represents the setting of the associated user interface
element, such as the contents of an editable text field or the position of a scroller. This attribute is
required if an accessibility object’s value state conveys information to the user or if the user can define
the value of the object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

2100 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXMinValueAttribute
The minimum value this accessibility object can display (for example, the minimum value of a scroller
control). This attribute is used only in conjunction with the AXValue attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMaxValueAttribute
The maximum value this accessibility object can display (for example, the maximum value of a scroller
control). This attribute is used only in conjunction with the AXValue attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXValueIncrementAttribute
The amount an accessibility object’s value changes as the result of a single action (for example, how
far a scroller travels with one mouse click). This attribute is used only in conjunction with the AXValue
attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXAllowedValuesAttribute
An array of the allowed values for an accessibility object. This attribute indicates the subset of values
to which an accessibility object can be set. For example, a slider control displays a large range of
values, but the accessibility object representing the slider can be set to only a few specific values
within that range. This attribute is used only in conjunction with the AXValue attribute.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXEnabledAttribute
Indicates whether the user can interact with the accessibility object. For example, the AXEnabled
attribute of a disabled button is false. This attribute is required for accessibility objects that represent
views, menus, and menu items. This attribute is not required for accessibility objects that represent
windows.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXFocusedAttribute
Indicates whether the accessibility object currently has the keyboard focus. Note that you can set the
value of the AXFocused attribute to true to accept keyboard focus. This attribute is required for all
accessibility objects representing elements that can receive keyboard focus.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXParentAttribute
This accessibility object’s parent object in the accessibility hierarchy. This attribute is required for all
accessibility objects except the application-level accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

Constants 2101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXChildrenAttribute
An array of the first-order accessibility objects contained by this accessibility object. An accessibility
object may be a member of only one AXChildren array. This attribute is required for all accessibility
objects that contain accessible child objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSelectedChildrenAttribute
An array of selected first-order accessibility objects contained by this accessibility object. For example,
the selected subelements of a list view are contained in the AXSelectedChildren array of the list
view’s accessibility object. The members of the AXSelectedChildren array are a subset of the
members of this accessibility object’s AXChildren array. This attribute is required for accessibility
objects that contain selectable child objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXVisibleChildrenAttribute
An array of first-order accessibility objects contained by this accessibility object that are visible to a
sighted user. For example, a list view’s AXVisibleChildren array would contain the list’s subelements
that are currently scrolled into view. The members of the AXVisibleChildren array are a subset of
the members of this accessibility object’s AXChildren array. This attribute is recommended for
accessibility objects whose child objects can be scrolled out of view or otherwise obscured.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXWindowAttribute
The window element that contains this accessibility object. An accessibility object that is contained
in a window includes this attribute so an assistive application easily can find the window without
having to step through all intervening objects in the accessibility hierarchy. Note that the value of
the AXWindow attribute must be an accessibility object that represents a window, not a sheet or
drawer. For a similar attribute that is less restrictive, see kAXTopLevelUIElementAttribute. The
AXWindow attribute is required for all accessibility elements whose parent or more distant ancestor
represents a window.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXPositionAttribute
The global screen coordinates of the top-left corner of this accessibility object. Note that the coordinates
0,0 represent the top-left corner of the screen that displays the menu bar. All accessibility objects
that have a screen position (in other words, are visible on the screen) should include this attribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXTopLevelUIElementAttribute
The window, sheet, or drawer element that contains this accessibility object. An accessibility object
that is contained in a window, sheet, or drawer includes this attribute so an assistive application easily
can find that element without having to step through all intervening objects in the accessibility
hierarchy. This attribute is required for all accessibility objects whose parent or more distant ancestor
represents a window, drawer, or sheet.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

2102 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXSizeAttribute
The vertical and horizontal dimensions of this accessibility object. This attribute is required for all
accessibility objects that are visible on the screen.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXOrientationAttribute
Indicates whether this accessibility object is displayed or interacted with in a vertical or a horizontal
manner. The interpretation of an element, such as a slider, can change depending on whether it is
oriented vertically or horizontally. Using the value of this attribute, an assistive application can
communicate this information to the user. This attribute is required for any accessibility object, such
as a scroller or slider, whose semantic meaning varies with the object’s orientation.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXDescriptionAttribute
The purpose of this accessibility object. The description string must be localizable and
human-intelligible and it must be all lower case and include no punctuation. The string should briefly
describe this accessibility object’s purpose, without including the object’s role description. This
attribute is required for all accessibility objects that do not provide enough descriptive information
in the title attribute.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXSelectedTextAttribute
The currently selected text within this accessibility object. This attribute is required for all accessibility
objects that represent editable text elements.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSelectedTextRangeAttribute
Indicates the range of characters (not bytes) that defines the currently selected text within this
accessibility object. This attribute is required for all accessibility objects that represent editable text
elements.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXVisibleCharacterRangeAttribute
Indicates the range of characters (not bytes) that are scrolled into view within this accessibility object.
This attribute is required only for accessibility objects that represent an editable text area (objects of
role AXTextArea), not for any other text-related accessibility objects.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXNumberOfCharactersAttribute
The total number of characters (not bytes) in the editable text element represented by this accessibility
object. This attribute is required for all accessibility objects that represent editable text elements.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

Constants 2103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXSharedTextUIElementsAttribute
An array of accessibility objects with which the text of this accessibility object is shared. In a
multi-column document, for example, each column may be represented by a separate accessibility
object. However, the text in the document may flow from one column to the other. You get the value
of this attribute if you need to know with which accessibility object this accessibility object shares its
text. This attribute is recommended for sets of accessibility objects that share text in a single window.
(See kAXSharedCharacterRange for a related attribute.)

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXSharedCharacterRangeAttribute
The portion of shared text this accessibility object currently displays. In a multi-column document,
for example, each column may be represented by a separate accessibility object. However, the text
in the document may flow from one column to the other. Get the value of this attribute if you need
to know the specific range of characters this accessibility object currently displays. This attribute is
recommended for sets of accessibility objects that share text in a single window. (See
kAXSharedTextUIElementsAttribute for a related attribute.)

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXMainAttribute
Indicates whether the window represented by this accessibility object is the main application window.
Note that a window can be main even though it does not have keyboard focus. This attribute is
recommended for all accessibility objects that represent windows.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMinimizedAttribute
Indicates whether the window represented by this accessibility object is currently minimized in the
Dock. This attribute is recommended for all accessibility objects that represent windows that can be
minimized.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXCloseButtonAttribute
The close button of the window represented by this accessibility object. An accessibility object includes
this attribute to help an assistive application easily find a window’s close button, without having to
traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects that
represent windows that contain a close button.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXZoomButtonAttribute
The zoom button of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s zoom button, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that contain a zoom button.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

2104 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXMinimizeButtonAttribute
The minimize button of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s minimize button, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that contain a minimize button.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXToolbarButtonAttribute
The toolbar button of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s toolbar button, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that contain a toolbar button.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXGrowAreaAttribute
The grow area of the window represented by this accessibility object. An accessibility object includes
this attribute to help an assistive application easily find a window’s grow area, without having to
traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects that
represent windows that contain a grow area.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXProxyAttribute
The document proxy of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s document proxy, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that display a document proxy.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXModalAttribute
Indicates whether the window represented by this accessibility object is modal. This attribute is
recommended for all accessibility objects that represent windows.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXDefaultButtonAttribute
The default button of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s default button, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that contain a default button.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

Constants 2105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXCancelButtonAttribute
The cancel button of the window represented by this accessibility object. An accessibility object
includes this attribute to help an assistive application easily find a window’s cancel button, without
having to traverse the accessibility hierarchy. This attribute is recommended for all accessibility objects
that represent windows that contain a cancel button.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemCmdCharAttribute
The primary key in the keyboard shortcut for the command represented by this accessibility object.
For example, “O” is the primary key in the keyboard shortcut for the Open command.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemCmdVirtualKeyAttribute
The key code associated with the physical key in the keyboard shortcut for the command represented
by this accessibility object. For example, Return and Enter are different physical keys that can produce
the same character. If an assistive application needs to be able to distinguish between them, it can
view the virtual key codes.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemCmdGlyphAttribute
The glyph displayed for a physical key in the keyboard shortcut for the command represented by this
accessibility object, if it is different from the visible result of pressing the key. The Delete key, for
example, produces an invisible character, but it is associated with a visible glyph.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemCmdModifiersAttribute
An integer mask that represents the modifier keys held down in the keyboard shortcut for the command
represented by this accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemMarkCharAttribute
The symbol displayed to the left of the menu item represented by this accessibility object. For example,
in the Window menu, a checkmark appears next to the active document’s name. For more information
on the standard symbols that can appear next to menu items, see Apple Human Interface Guidelines.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMenuItemPrimaryUIElementAttribute
The accessibility object representing the primary menu item in a group of dynamic menu items.
Dynamic menu item are commands that change when the user presses a modifier key, such as Minimize
Window and Minimize All Windows. Within each group, each dynamic menu item’s accessibility object
includes this attribute and in each case the attribute’s value is the accessibility object representing
the primary menu item.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

2106 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXMenuBarAttribute
The accessibility object representing the menu bar of this application. The application-level accessibility
object includes this attribute to help an assistive application easily find the menu bar. This attribute
is recommended for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXWindowsAttribute
An array of accessibility objects representing this application’s windows. This attribute is recommended
for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXFrontmostAttribute
Indicates whether the application represented by this accessibility object is active. This attribute is
recommended for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXHiddenAttribute
Indicates whether the application represented by this accessibility object is hidden. This attribute is
recommended for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMainWindowAttribute
The accessibility object representing this application’s main window. This attribute is recommended
for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXFocusedWindowAttribute
The accessibility object that represents the currently focused window of this application. This attribute
is recommended for all application-level accessibility objects.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXFocusedUIElemenAttribute
The accessibility object that represents the currently focused user interface element in this application.
This attribute is recommended for all application-level accessibility objects.

kAXHeaderAttribute
The accessibility object representing the header element of this accessibility object. For example, a
table or an outline view can have a header element that displays column or row headers. An
accessibility object includes this attribute to help an assistive application easily find embedded header
information. This attribute is recommended for all accessibility objects that represent elements that
display header information.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

Constants 2107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXEditedAttribute
Indicates whether the user interface element represented by this accessibility object has been edited.
For example, a document window indicates it has been edited by displaying a black dot in its close
button. This attribute is recommended for all accessibility objects that represent editable user interface
elements.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXTitleUIElementAttribute
An accessibility object that represents a static text title associated with another accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXValueWrapsAttribute
Indicates whether the value displayed in the user interface element represented by this accessibility
object wraps around.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXTabsAttribute
An array of accessibility objects representing the tabs this accessibility object displays. An accessibility
object includes this attribute to help an assistive application easily distinguish a tab view’s tabs from
its other children. This attribute is recommended for all accessibility objects that represent tab views.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXHorizontalScrollBarAttribute
The horizontal scroll bar displayed by the user interface element this accessibility object represents.
This is a convenience attribute an assistive application can use easily to find the scroll bar without
traversing the accessibility hierarchy. This attribute is recommended for all accessibility objects that
display a horizontal scroll bar.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXVerticalScrollBarAttribute
The vertical scroll bar displayed by the user interface element this accessibility object represents. This
is a convenience attribute an assistive application can use easily to find the scroll bar without traversing
the accessibility hierarchy. This attribute is recommended for all accessibility objects that display a
vertical scroll bar.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXOverflowButtonAttribute
Identifies which child of an accessibility object representing a toolbar is the overflow button (if any).
This attribute is optional.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXFilenameAttribute
The filename associated with this accessibility object. This attribute is optional.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

2108 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXExpandedAttribute
Indicates whether the menu displayed by the combo box or pop-up menu represented by this
accessibility object is currently expanded. This attribute is recommended for all accessibility objects
that display a pop-up menu.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSelectedAttribute
Indicates whether the row or column element represented by this accessibility object is selected. This
attribute is recommended for all accessibility objects that represent selectable rows or columns.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSplittersAttribute
An array of views and splitter bar elements displayed by the split view represented by this accessibility
object. This is a convenience attribute that helps an assistive application easily find these elements.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXNextContentsAttribute
The group of accessibility objects representing the elements on one side of a splitter bar. (Which side
of the splitter bar is considered “next” is determined by the value of the splitter bar’s orientation
attribute.) This attribute is recommended for an accessibility object that represents the splitter bar in
a split view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXPreviousContentsAttribute
The group of accessibility objects representing the elements on one side of a splitter bar. (Which side
of the splitter bar is considered “previous” is determined by the value of the splitter bar’s orientation
attribute.) This attribute is recommended for an accessibility object that represents the splitter bar in
a split view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXDocumentAttribute
The URL of the open document represented by this accessibility object. This attribute represents the
URL as a string object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXIncrementButtonAttribute
The increment element associated with the user interface object this accessibility object represents.
This attribute can be used to provide convenient access to the increment area of a custom user
interface object. To refer to the increment button associated with a date or time field, see
kAXIncrementorAttribute.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

Constants 2109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXDecrementButtonAttribute
The decrement element associated with the user interface object this accessibility object represents.
This attribute can be used to provide convenient access to the decrement area of a custom user
interface object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXContentsAttribute
Content-containing accessibility objects that are children of this accessibility object. For example, a
tab view contains children that represent both the tab controls and the content displayed for each
tab. The accessibility object representing a tab view can include only the content-display children in
its AXContents attribute to help an assistive application provide more targeted information to the
user. This attribute is recommended for any accessibility object whose children represent both content
and control elements.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXIncrementorAttribute
The incrementor of a time or date field represented by this accessibility object. This attribute is required
for accessibility objects that represent time or date field elements that display an incrementor.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXHourFieldAttribute
The hour field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display hours.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXMinuteFieldAttribute
The minute field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display minutes.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXSecondFieldAttribute
The second field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display seconds.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXAMPMFieldAttribute
The AM/PM field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display AM/PM settings.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXDayFieldAttribute
The day field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display days.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

2110 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXMonthFieldAttribute
The month field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display months.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXYearFieldAttribute
The year field of a time field represented by this accessibility object. This attribute is required for
accessibility objects that represent time fields that display years.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXColumnTitleAttribute
The title of the column element represented by this accessibility object. Note that, because column
titles are sometimes the children of a separate header element, the value of this attribute can refer
to an element that is not a child of the column accessibility object.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXURLAttribute
The URL that describes the location of the document or application represented by this accessibility
object.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXLabelUIElementsAttribute
An array of accessibility objects representing the labels displayed near the control represented by
this accessibility object. For example, a slider control might display labels that indicate the range of
values the slider can represent. Because these labels are not displayed as part of the slider’s visual
interface, an assistive application does not know they are associated with the slider. By including
accessibility objects representing the labels in this attribute, you make this association explicit.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXLabelValueAttribute
The value of the label represented by this accessibility object. This attribute is required for all
accessibility objects that represent labels.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXShownMenuUIElementAttribute
An array of accessibility objects that represent the contextual or Dock menus provided by this
accessibility object.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

Constants 2111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXServesAsTitleForUIElementsAttribute
An array of accessibility objects for which this accessibility object serves as the title. For example, a
piece of static text can serve as a title for one or more user interface elements. Because this static text
string is not displayed as part of any user interface element’s visual interface, an assistive application
does not know the title is associated with user interface elements. By including this attribute in the
accessibility object representing the title, you specify the accessibility objects with which this title is
associated.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXLinkedUIElementsAttribute
An array of accessibility objects with which this accessibility object is related. For example, the contents
of a list item can be displayed in another pane or window. The list item and the separately displayed
contents are related, but this relationship may not be apparent to an assistive application. To make
such a relationship explicit, you include this attribute in the accessibility objects representing the
related user interface elements.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXRowsAttribute
An array of the accessibility objects representing the rows in this table or outline view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXVisibleRowsAttribute
An array of the accessibility objects representing the currently visible rows in this table or outline
view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSelectedRowsAttribute
An array of the accessibility objects representing the currently selected rows in this table or outline
view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXColumnsAttribute
An array of the accessibility objects representing the columns in this browser view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXVisibleColumnsAttribute
An array of the accessibility objects representing the currently visible columns in this browser view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXSelectedColumnsAttribute
An array of the accessibility objects representing the currently selected columns in this browser view.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

2112 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXSortDirectionAttribute
The sort direction of this accessibility object’s contents. For example, a list view’s contents may be
sorted in ascending or descending order.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXColumnHeaderUIElementsAttribute
An array of accessibility objects representing the column headers of this table or browser view.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXIndexAttribute
The index of the row or column represented by this accessibility object.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXDisclosingAttribute
Indicates whether a row in an outline view represented by this accessibility object has an open or
closed disclosure triangle. true indicates an open disclosure triangle; false indicates a closed
disclosure triangle.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXDisclosedRowsAttribute
An array of accessibility objects representing the disclosed rows of this user interface element.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXDisclosedByRowAttribute
The accessibility object representing the disclosing row.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXMatteHoleAttribute
The accessibility object that represents the area available to the user through the matte hole.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXMatteContentUIElementAttribute
The accessibility object clipped by the matte.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXIsApplicationRunningAttribute
Indicates if the application represented by the Dock icon this accessibility object represents is currently
running.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

Constants 2113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXFocusedApplicationAttribute
Indicates the application element that is currently accepting keyboard input. This attribute is supported
by the system-wide accessibility object to help an assistive application quickly determine the application
that is accepting keyboard input. After the assistive application gets the accessibility object representing
this application, it can send a message to the application asking for its focused accessibility object.

Available in Mac OS X v10.2 and later.

Declared in AXAttributeConstants.h.

kAXInsertionPointLineNumberAttribute
The line number of the insertion point in the text associated with this accessibility object.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

Discussion
See the “Roles and Associated Attributes” appendix in Accessibility Overview for more information on which
attributes are associated with a specific role.

Parameterized Attributes
Define the parameterized attributes an accessibility object can have.

// Text-suite parameterized attributes
#define kAXLineForIndexParameterizedAttribute CFSTR("AXLineForIndex")
#define kAXRangeForLineParameterizedAttribute CFSTR("AXRangeForLine")
#define kAXStringForRangeParameterizedAttribute CFSTR("AXStringForRange")
#define kAXRangeForPositionParameterizedAttribute CFSTR("AXRangeForPosition")
#define kAXRangeForIndexParameterizedAttribute CFSTR("AXRangeForIndex")
#define kAXBoundsForRangeParameterizedAttribute CFSTR("AXBoundsForRange")
#define kAXRTFForRangeParameterizedAttribute CFSTR("AXRTFForRange")
#define kAXAttributedStringForRangeParameterizedAttribute
CFSTR("AXAttributedStringForRange")
#define kAXStyleRangeForIndexParameterizedAttribute CFSTR("AXStyleRangeForIndex")
#define kAXInsertionPointLineNumberAttribute CFSTR("AXInsertionPointLineNumber")

Constants
kAXLineForIndexParameterizedAttribute

Given an indexed character, the line number of the text associated with this accessibility object that
contains the character.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXRangeForLineParameterizedAttribute
Given a line number, the range of characters of the text associated with this accessibility object that
contains the line number.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXStringForRangeParameterizedAttribute
A substring of the text associated with this accessibility object that is specified by the given character
range.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

2114 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXRangeForPositionParameterizedAttribute
The composed character range in the text associated with this accessibility object that is specified by
the given screen coordinates. This parameterized attribute returns the complete range of characters
(including surrogate pairs of multi-byte glyphs) at the given screen coordinates.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXRangeForIndexParameterizedAttribute
The composed character range in the text associated with this accessibility object that is specified by
the given index value. This parameterized attribute returns the complete range of characters (including
surrogate pairs of multi-byte glyphs) at the given index.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXBoundsForRangeParameterizedAttribute
The bounding rectangle of the text associated with this accessibility object that is specified by the
given range. This is the bounding rectangle a sighted user would see on the display screen, in pixels.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXRTFForRangeParameterizedAttribute
The RTF representation of the text associated with this accessibility object that is specified by the
given range.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

kAXAttributedStringForRangeParameterizedAttribute
The CFAttributedStringType representation of the text associated with this accessibility object that
is specified by the given range.

Available in Mac OS X v10.4 and later.

Declared in AXAttributeConstants.h.

kAXStyleRangeForIndexParameterizedAttribute
Given a character index, the range of text associated with this accessibility object over which the style
in effect at that character index applies.

Available in Mac OS X v10.3 and later.

Declared in AXAttributeConstants.h.

Discussion
Parameterized attributes allow you to pass in additional values to get more specific information about the
text associated with an accessibility object.

Availability
Available in Mac OS X version 10.3 and later.

Actions
Define the actions an accessibility object can perform.

Constants 2115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

// Accessibility actions.
#define kAXPressAction CFSTR("AXPress")
#define kAXIncrementAction CFSTR("AXIncrement")
#define kAXDecrementAction CFSTR("AXDecrement")
#define kAXConfirmAction CFSTR("AXConfirm")
#define kAXCancelAction CFSTR("AXCancel")
#define kAXRaiseAction CFSTR("AXRaise")
#define kAXShowMenuAction CFSTR("AXShowMenu")

Constants
kAXPressAction

Simulates a single click, such as on a button.

Available in Mac OS X v10.2 and later.

Declared in AXActionConstants.h.

kAXIncrementAction
Increments the value of the accessibility object. The amount the value is incremented by is determined
by the value of the kAXValueIncrementAttribute attribute.

Available in Mac OS X v10.2 and later.

Declared in AXActionConstants.h.

kAXDecrementAction
Decrements the value of the accessibility object. The amount the value is decremented by is determined
by the value of the kAXValueIncrementAttribute attribute.

Available in Mac OS X v10.2 and later.

Declared in AXActionConstants.h.

kAXConfirmAction
Simulates pressing the Return key.

Available in Mac OS X v10.2 and later.

Declared in AXActionConstants.h.

kAXCancelAction
Simulates pressing a Cancel button.

Available in Mac OS X v10.2 and later.

Declared in AXActionConstants.h.

kAXRaiseAction
Causes a window to become as frontmost as is allowed by the containing application’s circumstances.
Note that an application’s floating windows (such as inspector windows) might remain above a
window that performs the raise action.

Available in Mac OS X v10.3 and later.

Declared in AXActionConstants.h.

kAXShowMenuAction
Simulates the opening of a contextual menu in the element represented by this accessibility object.
This action can also be used to simulate the display of a menu that is preassociated with an element,
such as the menu that displays when a user clicks Safari’s back button slowly.

Available in Mac OS X v10.4 and later.

Declared in AXActionConstants.h.

2116 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Notifications
Define the notifications that can be broadcast by an accessibility object.

// Focus notifications
#define kAXMainWindowChangedNotification CFSTR("AXMainWindowChanged")
#define kAXFocusedWindowChangedNotification CFSTR("AXFocusedWindowChanged")
#define kAXFocusedUIElementChangedNotification
CFSTR("AXFocusedUIElementChanged")

// Application notifications
#define kAXApplicationActivatedNotification CFSTR("AXApplicationActivated")
#define kAXApplicationDeactivatedNotification CFSTR("AXApplicationDeactivated")
#define kAXApplicationHiddenNotification CFSTR("AXApplicationHidden")
#define kAXApplicationShownNotification CFSTR("AXApplicationShown")

// Window notifications
#define kAXWindowCreatedNotification CFSTR("AXWindowCreated")
#define kAXWindowMovedNotification CFSTR("AXWindowMoved")
#define kAXWindowResizedNotification CFSTR("AXWindowResized")
#define kAXWindowMiniaturizedNotification CFSTR("AXWindowMiniaturized")
#define kAXWindowDeminiaturizedNotification CFSTR("AXWindowDeminiaturized")

// New drawer, sheet, and help tag notifications
#define kAXDrawerCreatedNotification CFSTR("AXDrawerCreated")
#define kAXSheetCreatedNotification CFSTR("AXSheetCreated")
#define kAXHelpTagCreatedNotification CFSTR("AXHelpTagCreated")

// Element notifications
#define kAXValueChangedNotification CFSTR("AXValueChanged")
#define kAXUIElementDestroyedNotification CFSTR("AXUIElementDestroyed")

// Menu notifications
#define kAXMenuOpenedNotification CFSTR("AXMenuOpened")
#define kAXMenuClosedNotification CFSTR("AXMenuClosed")
#define kAXMenuItemSelectedNotification CFSTR("AXMenuItemSelected")

// Table and outline view notifications
#define kAXRowCountChangedNotification CFSTR("AXRowCountChanged")

// Miscellaneous notifications
#define kAXSelectedChildrenChangedNotification
CFSTR("AXSelectedChildrenChanged")
#define kAXResizedNotification CFSTR("AXResized")
#define kAXMovedNotification CFSTR("AXMoved")
#define kAXCreatedNotification CFSTR("AXCreated")

Constants
kAXMainWindowChangedNotification

The main window has changed.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXFocusedWindowChangedNotification
The focused window has changed.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

Constants 2117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXFocusedUIElementChangedNotification
The focused accessibility object has changed.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXApplicationActivatedNotification
The application was activated (that is, brought to front).

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXApplicationDeactivatedNotification
The application was deactivated.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXApplicationHiddenNotification
The application was hidden.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXApplicationShownNotification
The application was shown (that is, a hidden application is now visible).

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXWindowCreatedNotification
A window was created. Carbon automatically sends this notification when window is created, as long
as the window is implemented using Carbon window mechanisms.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXWindowMovedNotification
The window was moved (this notification is sent at the end of the window-move operation, not during
it).

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXWindowResizedNotification
The window was resized (this notification is sent at the end of the window-resize operation, not during
it).

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXWindowMiniaturizedNotification
The application was minimized (that is, moved into the Dock).

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXWindowDeminiaturizedNotification
The window was moved out of the Dock.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

2118 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXDrawerCreatedNotification
A drawer was created (that is, a drawer now extends from this window).

Available in Mac OS X v10.3 and later.

Declared in AXNotificationConstants.h.

kAXSheetCreatedNotification
A sheet was created (that is, a modal dialog now extends from this window).

Available in Mac OS X v10.3 and later.

Declared in AXNotificationConstants.h.

kAXHelpTagCreatedNotification
A help tag is now visible for this accessibility object.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

kAXValueChangedNotification
The value of an accessibility object’s value attribute was changed.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXUIElementDestroyedNotification
An accessibility object was disposed of.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXMenuOpenedNotification
A menu was opened.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXMenuClosedNotification
A menu was closed.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXMenuItemSelectedNotification
A menu item was selected.

Available in Mac OS X v10.2 and later.

Declared in AXNotificationConstants.h.

kAXRowCountChangedNotification
The number of rows in this table was changed.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

kAXSelectedChildrenChangedNotification
A different subset of this accessibility object’s children were selected.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

Constants 2119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXResizedNotification
The window has changed size.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

kAXMovedNotification
The position of this accessibility object was changed.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

kAXCreatedNotification
An accessibility object was created.

Available in Mac OS X v10.4 and later.

Declared in AXNotificationConstants.h.

Orientations and Sort Directions
Define the values for the orientation and sort-direction attributes of some accessibility objects.

// Orientations
#define kAXHorizontalOrientationValue CFSTR("AXHorizontalOrientation")
#define kAXVerticalOrientationValue CFSTR("AXVerticalOrientation")
#define kAXUnknownOrientationValue CFSTR("AXUnknownOrientation")

// Sort directions
#define kAXAscendingSortDirectionValue CFSTR("AXAscendingSortDirection")
#define kAXDescendingSortDirectionValue CFSTR("AXDescendingSortDirection")
#define kAXUnknownSortDirectionValue CFSTR("AXUnknownSortDirection")

Constants
kAXHorizontalOrientationValue

This object is oriented horizontally.

Available in Mac OS X v10.2 and later.

Declared in AXValueConstants.h.

kAXVerticalOrientationValue
This object is oriented vertically.

Available in Mac OS X v10.2 and later.

Declared in AXValueConstants.h.

kAXUnknownOrientationValue
The orientation of this object is unknown.

Available in Mac OS X v10.4 and later.

Declared in AXValueConstants.h.

kAXAscendingSortDirectionValue
This object’s contents are sorted in ascending order.

Available in Mac OS X v10.4 and later.

Declared in AXValueConstants.h.

AXDescendingSortDirection
This object’s contents are sorted in descending order.

2120 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

kAXUnknownSortDirectionValue
The sort order of this object is unknown.

Available in Mac OS X v10.4 and later.

Declared in AXValueConstants.h.

Discussion
SeekAXOrientationAttribute andkAXSortDirectionAttribute for more information on the attributes
for which you can use these values.

Result Codes

The result codes returned by the Carbon accessibility implementation are listed below. Other result codes
defined in AXError.h are of use only to assistive applications.

DescriptionValueResult Code

The value received in this event is an
invalid value for this attribute. This also
applies for invalid parameters in
parameterized attributes.

-25201kAXErrorIllegalArgument

Available in Mac OS X v10.2 and later.

The accessibility object received in this
event is invalid.

-25202kAXErrorInvalidUIElement

Available in Mac OS X v10.2 and later.

The observer for the accessibility object
received in this event is invalid.

-25203kAXErrorInvalidUIElementObserver

Available in Mac OS X v10.2 and later.

A fundamental error has occurred, such
as a failure to allocate memory during
processing.

-25204kAXErrorCannotComplete

Available in Mac OS X v10.2 and later.

The referenced attribute is not supported.
Alternatively, you can return the
eventNotHandledErr error.

-25205kAXErrorAttributeUnsupported

Available in Mac OS X v10.2 and later.

The referenced action is not supported.
Alternatively, you can return the
eventNotHandledErr error.

-25206kAXErrorActionUnsupported

Available in Mac OS X v10.2 and later.

Assistive applications are not enabled in
System Preferences.

-25211kAXErrorAPIDisabled

Available in Mac OS X v10.2 and later.

Result Codes 2121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

DescriptionValueResult Code

The parameterized attribute is not
supported. Alternatively, you can return
the eventNotHandledErr error.

-25213kAXErrorParameterizedAttributeUnsupported

Available in Mac OS X v10.3 and later.

2122 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 47

Carbon Accessibility Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in PMCore.h
PMCoreDeprecated.h
PMDefinitions.h
PMDefinitionsDeprecated.h

Overview

Core Printing is a C API that Mac OS X applications and command line tools can use to perform printing tasks
that don’t display a user interface. Core Printing defines a set of opaque types and a rich set of operations
on instances of these types. The Core Printing opaque types include:

 ■ PMPrintSession for general information about a print job

 ■ PMPrintSettings for print job parameters

 ■ PMPageFormat for the page format of a printed document

 ■ PMPaper for information about a type of paper

 ■ PMPrinter for information about a printer

In Carbon applications, Core Printing is used together with Carbon Printing to implement printing features.
For more information about Carbon Printing, see Carbon Printing Reference.

In Cocoa applications, Core Printing can be used to extend the functionality in the Cocoa printing classes.
The NSPrintInfo class provides direct access to some Core Printing objects.

Note: Core Printing is available to 64-bit applications, except for functions, data types, and constants that
have been deprecated.

Functions by Task

Releasing and Retaining Printing Objects

PMRelease (page 2214)
Releases a printing object by decrementing its reference count.

PMRetain (page 2215)
Retains a printing object by incrementing its reference count.

Overview 2123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Creating and Using Page Format Objects

PMCreatePageFormat (page 2143)
Creates a new page format object.

PMCreatePageFormatWithPMPaper (page 2144)
Creates a page format object with a specified paper.

PMCopyPageFormat (page 2141)
Copies the settings from one page format object into another.

PMSessionDefaultPageFormat (page 2225)
Assigns default parameter values to a page format object used in the specified printing session.

PMSessionValidatePageFormat (page 2248)
Updates the values in a page format object and validates them against the current formatting printer.

PMSessionCreatePageFormatList (page 2223)
Obtains a list of page format objects, each of which describes a paper size available on the specified
printer.

PMPageFormatCreateDataRepresentation (page 2174)
Creates a data representation of a page format object.

PMPageFormatCreateWithDataRepresentation (page 2175)
Creates a page format object from a data representation.

PMFlattenPageFormatToCFData (page 2149)
Flattens a page format object into a Core Foundation data object for storage in a user document.
(Deprecated. Use PMPageFormatCreateDataRepresentation (page 2174) instead.)

PMFlattenPageFormat (page 2149) Deprecated in Mac OS X v10.5
Flattens a page format object into a Memory Manager handle for storage in a user document.
(Deprecated. Use PMPageFormatCreateDataRepresentation (page 2174) instead.)

PMFlattenPageFormatToURL (page 2150) Deprecated in Mac OS X v10.5
Flattens a page format object into a file for storage in a user document. (Deprecated. Use
PMPageFormatCreateDataRepresentation (page 2174) and write the resulting data to your
destination.)

PMUnflattenPageFormat (page 2265) Deprecated in Mac OS X v10.5
Rebuilds a page format object from a Memory Manager handle that contains flattened page format
data. (Deprecated. Use PMPageFormatCreateWithDataRepresentation (page 2175) instead.)

PMUnflattenPageFormatWithCFData (page 2266) Deprecated in Mac OS X v10.5
Rebuilds a page format object from a Core Foundation data object that contains flattened page format
data. (Deprecated. Use PMPageFormatCreateWithDataRepresentation (page 2175) instead.)

PMUnflattenPageFormatWithURL (page 2266) Deprecated in Mac OS X v10.5
Rebuilds a page format object from a file system URL that contains flattened page format data.
(Deprecated. Instead read the data into a CFData object and use
PMPageFormatCreateWithDataRepresentation (page 2175).)

Accessing Data in Page Format Objects

PMGetPageFormatExtendedData (page 2164)
Obtains extended page format data previously stored by your application.

2124 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSetPageFormatExtendedData (page 2258)
Stores your application-specific data in a page format object.

PMGetPageFormatPaper (page 2164)
Obtains the paper associated with a page format object.

PMPageFormatGetPrinterID (page 2175)
Obtains the identifier of the formatting printer for a page format object.

PMGetOrientation (page 2163)
Obtains the current setting for page orientation.

PMSetOrientation (page 2257)
Sets the page orientation for printing.

PMGetScale (page 2170)
Obtains the scaling factor currently applied to the page and paper rectangles.

PMSetScale (page 2263)
Sets the scaling factor for the page and paper rectangles.

PMGetAdjustedPageRect (page 2153)
Obtains the imageable area or page rectangle, taking into account orientation, application drawing
resolution, and scaling settings.

PMGetAdjustedPaperRect (page 2154)
Obtains the rectangle defining the paper size, taking into account orientation, application drawing
resolution, and scaling settings.

PMGetUnadjustedPageRect (page 2170)
Obtains the imageable area or page rectangle, unaffected by orientation, resolution, or scaling.

PMGetUnadjustedPaperRect (page 2171)
Obtains the paper rectangle, unaffected by rotation, resolution, or scaling.

PMGetResolution (page 2169) Deprecated in Mac OS X v10.5
Obtains the current application’s drawing resolution. (Deprecated. Draw using Quartz 2D and call
CGContextScaleCTM (page 105) instead.)

PMSetAdjustedPageRect (page 2250) Deprecated in Mac OS X v10.5
Requests a particular page size, adjusted for the current rotation, resolution, or scaling settings.
(Deprecated. To set a particular paper size and margins, obtain or create a PMPaper (page 2275) object
and call PMCreatePageFormatWithPMPaper (page 2144).)

PMSetResolution (page 2263) Deprecated in Mac OS X v10.5
Sets the application drawing resolution. (Deprecated. Draw using Quartz 2D and call
CGContextScaleCTM (page 105) instead.)

PMSetUnadjustedPaperRect (page 2264) Deprecated in Mac OS X v10.5
Requests a particular paper size, unaffected by rotation, resolution, or scaling. (Deprecated. To set a
particular paper size, obtain or create a PMPaper (page 2275) object and call
PMCreatePageFormatWithPMPaper (page 2144).)

Creating and Using Print Settings Objects

PMCreatePrintSettings (page 2144)
Creates a new print settings object.

PMSessionDefaultPrintSettings (page 2225)
Assigns default parameter values to a print settings object for the specified printing session.

Functions by Task 2125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionValidatePrintSettings (page 2249)
Validates a print settings object within the context of the specified printing session.

PMPrintSettingsCreateDataRepresentation (page 2208)
Creates a data representation of a print settings object.

PMPrintSettingsCreateWithDataRepresentation (page 2209)
Creates a print settings object from a data representation.

PMCopyPrintSettings (page 2142)
Copies the settings from one print settings object into another.

PMPrintSettingsToOptions (page 2213)
Converts print settings into a CUPS options string.

PMPrintSettingsToOptionsWithPrinterAndPageFormat (page 2213)
Converts print settings and page format data into a CUPS options string for a specified printer.

PMFlattenPrintSettings (page 2150) Deprecated in Mac OS X v10.5
Flattens a print settings object into a Memory Manager handle for storage in a user document.
(Deprecated. Use PMPrintSettingsCreateDataRepresentation (page 2208) instead.)

PMFlattenPrintSettingsToCFData (page 2151) Deprecated in Mac OS X v10.5
Flattens a print settings object into a Core Foundation data object for storage in a user document.
(Deprecated. Use PMPrintSettingsCreateDataRepresentation (page 2208) instead.)

PMFlattenPrintSettingsToURL (page 2152) Deprecated in Mac OS X v10.5
Flattens a print settings object into a URL for storage in a user document. (Deprecated. Instead use
PMPrintSettingsCreateDataRepresentation (page 2208) and write the resulting data to your
destination.)

PMUnflattenPrintSettings (page 2267) Deprecated in Mac OS X v10.5
Rebuilds a print settings object from a Memory Manager handle that contains flattened print settings
data. (Deprecated. Use PMPrintSettingsCreateWithDataRepresentation (page 2209) instead.)

PMUnflattenPrintSettingsWithCFData (page 2268) Deprecated in Mac OS X v10.5
Rebuilds a print settings object from a Core Foundation data object that contains flattened print
settings data. (Deprecated. Use PMPrintSettingsCreateWithDataRepresentation (page 2209)
instead.)

PMUnflattenPrintSettingsWithURL (page 2268) Deprecated in Mac OS X v10.5
Rebuilds a print settings object from a file that contains flattened print settings data. (Deprecated.
Instead read the data into a CFData object and use
PMPrintSettingsCreateWithDataRepresentation (page 2209).)

Accessing Data in Print Settings Objects

PMGetPrintSettingsExtendedData (page 2168)
Obtains extended print settings data previously stored by your application.

PMSetPrintSettingsExtendedData (page 2261)
Stores your application-specific data in a print settings object.

PMGetFirstPage (page 2159)
Obtains the number of the first page to be printed.

PMSetFirstPage (page 2254)
Sets the default page number of the first page to be printed.

2126 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMGetLastPage (page 2162)
Obtains the number of the last page to be printed.

PMSetLastPage (page 2257)
Sets the page number of the last page to be printed.

PMGetPageRange (page 2165)
Obtains the valid range of pages that can be printed.

PMSetPageRange (page 2259)
Sets the valid range of pages that can be printed.

PMPrintSettingsGetJobName (page 2210)
Obtains the name of a print job.

PMPrintSettingsSetJobName (page 2211)
Specifies the name of a print job.

PMGetCopies (page 2155)
Obtains the number of copies that the user requests to be printed.

PMSetCopies (page 2252)
Sets the initial value for the number of copies to be printed.

PMGetCollate (page 2154)
Obtains a Boolean value that indicates whether the job collate option is selected.

PMSetCollate (page 2251)
Specifies whether the job collate option is selected.

PMGetDuplex (page 2158)
Obtains the selected duplex mode.

PMSetDuplex (page 2253)
Sets the duplex mode.

PMPrintSettingsGetValue (page 2210)
Obtains the value of a setting in a print settings object.

PMPrintSettingsSetValue (page 2212)
Stores the value of a setting in a print settings object.

PMPrintSettingsCopyAsDictionary (page 2207)
Creates a dictionary that contains the settings in a print settings object.

PMPrintSettingsCopyKeys (page 2207)
Obtains the keys for items in a print settings object.

PMGetJobNameCFString (page 2161) Deprecated in Mac OS X v10.5
Obtains the name of the print job. (Deprecated. Use PMPrintSettingsGetJobName (page 2210)
instead.)

PMSetJobNameCFString (page 2256) Deprecated in Mac OS X v10.5
Specifies the name of a print job. (Deprecated. UsePMPrintSettingsSetJobName (page 2211) instead.)

Creating Printing Session Objects

PMCreateSession (page 2145)
Creates and initializes a printing session object and creates a context for printing operations.

Functions by Task 2127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Accessing Data in Printing Session Objects

PMSessionGetDataFromSession (page 2231)
Obtains application-specific data previously stored in a printing session object.

PMSessionSetDataInSession (page 2242)
Stores your application-specific data in a printing session object.

PMSessionGetCurrentPrinter (page 2231)
Obtains the current printer associated with a printing session.

PMSessionSetCurrentPMPrinter (page 2241)
Changes the current printer for a printing session.

PMSessionGetCGGraphicsContext (page 2230)
Obtains the Quartz graphics context for the current page in a printing session.

PMSessionError (page 2229)
Obtains the result code for any error returned by the printing session.

PMSessionSetError (page 2246)
Sets the value of the current result code for the specified printing session.

PMSessionGetGraphicsContext (page 2234) Deprecated in Mac OS X v10.5
Obtains the graphics context for the current page in a printing session. (Deprecated. Use
PMSessionGetCGGraphicsContext (page 2230) instead.)

PMSessionGeneral (page 2229) Deprecated in Mac OS X v10.4
Maintains compatibility with the PrGeneral function in the classic Printing Manager. (Deprecated.
Use PMPrinterGetCommInfo (page 2190) instead.)

PMSessionGetDocumentFormatGeneration (page 2233) Deprecated in Mac OS X v10.4
Obtains the spool file formats that can be generated for the specified printing session. (Deprecated.
If you’re drawing using Quartz 2D instead of QuickDraw, use PMSessionBeginCGDocument or
PMSessionBeginCGDocumentNoDialog (page 2217); for submitting PostScript data, use
PMPrinterPrintWithFile (page 2203) orPMPrinterPrintWithProvider (page 2204); to draw EPS
data, use PMCGImageCreateWithEPSDataProvider (page 2139).)

PMSessionSetCurrentPrinter (page 2242) Deprecated in Mac OS X v10.4
Changes the current printer for a printing session to a printer specified by name. (Deprecated. Use
PMSessionSetCurrentPMPrinter (page 2241) instead.)

PMSessionSetDocumentFormatGeneration (page 2244) Deprecated in Mac OS X v10.4
Requests a specified spool file format and supplies the graphics context type to use for drawing pages
within the print loop. (Deprecated. If you’re drawing using Quartz 2D instead of QuickDraw, use
PMSessionBeginCGDocumentorPMSessionBeginCGDocumentNoDialog (page 2217); for submitting
PostScript data, usePMPrinterPrintWithFile (page 2203) orPMPrinterPrintWithProvider (page
2204); to draw EPS data, use PMCGImageCreateWithEPSDataProvider (page 2139).)

Using Printer Presets

PMPresetCopyName (page 2185)
Obtains the localized name for a preset.

PMPresetCreatePrintSettings (page 2186)
Creates a print settings object with settings that correspond to a preset.

PMPresetGetAttributes (page 2187)
Obtains the attributes of a preset.

2128 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Creating and Using Paper Objects

PMPaperCreate (page 2176)
Creates a paper object. (Deprecated. Use PMPrinterGetPaperList (page 2198) to find the built-in
papers available for a given printer or use PMPaperCreateCustom (page 2177) to create a custom
paper.)

PMPaperCreateCustom (page 2177)
Creates a custom paper object.

PMPaperIsCustom (page 2183)
Returns a Boolean value indicating whether a specified paper is a custom paper.

Accessing Data in Paper Objects

PMPaperGetID (page 2179)
Obtains the identifier of a paper object.

PMPaperGetName (page 2180)
Obtains the name for a given paper.

PMPaperGetWidth (page 2182)
Obtains the width of the sheet of paper represented by a paper object.

PMPaperGetHeight (page 2179)
Obtains the height of the sheet of paper represented by a paper object.

PMPaperGetMargins (page 2180)
Obtains the margins describing the unprintable area of the sheet represented by a paper object.

PMPaperCreateLocalizedName (page 2178)
Obtains the localized name for a given paper.

PMPaperGetPrinterID (page 2182)
Obtains the printer ID of the printer to which a given paper corresponds.

PMPaperGetPPDPaperName (page 2181)
Obtains the PPD paper name for a given paper.

Print Loop Functions

PMSessionBeginCGDocumentNoDialog (page 2217)
Begins a print job that draws into a Quartz graphics context and suppresses the printing status dialog.

PMSessionEndDocumentNoDialog (page 2227)
Ends a print job started by calling the function PMSessionBeginCGDocumentNoDialog (page 2217)
or PMSessionBeginDocumentNoDialog (page 2218).

PMSessionBeginPageNoDialog (page 2219)
Starts a new page for printing in the specified printing session and suppresses the printing status
dialog.

PMSessionEndPageNoDialog (page 2228)
Indicates the end of drawing the current page for the specified printing session.

Functions by Task 2129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionBeginDocumentNoDialog (page 2218) Deprecated in Mac OS X v10.5
Begins a print job that, by default, draws into a QuickDraw graphics port, and suppresses the printing
status dialog. (Deprecated. Use PMSessionBeginCGDocumentNoDialog (page 2217) instead.)

PMSessionSetIdleProc (page 2247) Deprecated in Mac OS X v10.4
Installs an idle callback function in your print loop. (Deprecated. There is no replacement; this function
was included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

Accessing the Print Job Destination

PMSessionSetDestination (page 2243)
Sets the destination location, format, and type for a print job.

PMSessionGetDestinationType (page 2232)
Obtains the output destination for a print job.

PMSessionCopyDestinationFormat (page 2221)
Obtains the destination format for a print job.

PMSessionCopyDestinationLocation (page 2221)
Obtains a destination location for a print job.

PMSessionCopyOutputFormatList (page 2222)
Obtains an array of destination formats supported by the current print destination.

Creating Printer Objects

PMServerLaunchPrinterBrowser (page 2216)
Launches the printer browser to browse the printers available for a print server.

PMServerCreatePrinterList (page 2215)
Creates a list of printers available to a print server.

PMSessionCreatePrinterList (page 2224)
Creates a list of printers available in the specified printing session.

PMPrinterCreateFromPrinterID (page 2190)
Creates a printer object from a print queue identifier.

PMCreateGenericPrinter (page 2143)
Creates a generic printer object.

Accessing Information About a Printer

PMPrinterCopyDescriptionURL (page 2187)
Obtains the URL of the description file for a given printer.

PMPrinterCopyDeviceURI (page 2188)
Obtains the device URI of a given printer.

PMPrinterCopyHostName (page 2188)
Obtains the name of the server hosting the print queue for a given printer.

PMPrinterCopyPresets (page 2189)
Obtains a list of print settings presets for a printer.

2130 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrinterGetCommInfo (page 2190)
Obtains information about the communication channel for a printer.

PMPrinterGetDeviceURI (page 2192)
Obtains a copy of a printer's device URI. (Deprecated. Use PMPrinterCopyDeviceURI (page 2188)
instead.)

PMPrinterGetDriverCreator (page 2192)
Obtains the creator of the driver associated with the specified printer.

PMPrinterGetDriverReleaseInfo (page 2193)
Obtains version information for the driver associated with the specified printer.

PMPrinterGetID (page 2193)
Returns the unique identifier of a printer.

PMPrinterGetLanguageInfo (page 2194)
Obtains information about the imaging language for the specified printer.

PMPrinterGetLocation (page 2195)
Returns the location of a printer.

PMPrinterGetMakeAndModelName (page 2195)
Obtains the manufacturer and model name of the specified printer.

PMPrinterGetMimeTypes (page 2196)
Obtains a list of MIME content types supported by a printer using the specified print settings.

PMPrinterGetName (page 2197)
Returns the human-readable name of a printer.

PMPrinterGetOutputResolution (page 2197)
Obtains the printer hardware output resolution for the specified print settings.

PMPrinterSetOutputResolution (page 2205)
Sets the print settings to reflect the specified printer hardware output resolution.

PMPrinterGetPaperList (page 2198)
Obtains the list of papers available for a printer.

PMPrinterGetPrinterResolutionCount (page 2199)
Obtains the number of resolution settings supported by the specified printer.

PMPrinterGetIndexedPrinterResolution (page 2194)
Obtains a resolution setting based on an index into the range of settings supported by the specified
printer.

PMPrinterGetState (page 2200)
Obtains the current state of the print queue for a printer.

PMPrinterSetDefault (page 2205)
Sets the default printer for the current user.

PMPrinterIsDefault (page 2200)
Returns a Boolean value indicating whether a printer is the default printer for the current user.

PMPrinterIsFavorite (page 2201)
Returns a Boolean value indicating whether a printer is in the user’s list of favorite printers.

PMPrinterIsPostScriptCapable (page 2201)
Returns a Boolean value indicating whether a printer is PostScript capable.

PMPrinterIsPostScriptPrinter (page 2202)
Determines whether a printer is a PostScript printer.

Functions by Task 2131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrinterIsRemote (page 2202)
Indicates whether a printer is hosted by a remote print server.

PMPrinterGetPrinterResolution (page 2199) Deprecated in Mac OS X v10.5
Obtains a resolution setting for the specified printer. (Deprecated. Use
PMPrinterGetPrinterResolutionCount (page 2199) and
PMPrinterGetIndexedPrinterResolution (page 2194) to examine the available printer resolutions.)

PMPrinterGetDescriptionURL (page 2191) Deprecated in Mac OS X v10.4
Obtains a reference to the specified printer’s description file. (Deprecated. Use
PMPrinterCopyDescriptionURL (page 2187) instead.)

Submitting a Print Job to a Printer

PMPrinterPrintWithFile (page 2203)
Submits a print job to a specified printer using a file that contains print data.

PMPrinterPrintWithProvider (page 2204)
Submits a print job to a specified printer using a Quartz data provider to obtain the print data.

Accessing PostScript Printer Description Files

PMCopyAvailablePPDs (page 2140)
Obtains the list of PostScript printer description (PPD) files in a PPD domain.

PMCopyLocalizedPPD (page 2140)
Obtains a localized PostScript printer description (PPD) file.

PMCopyPPDData (page 2142)
Obtains the uncompressed PPD data for a PostScript printer description (PPD) file.

Printing with PostScript Data

PMCGImageCreateWithEPSDataProvider (page 2139)
Creates an image that references both the PostScript contents of EPS data and a preview (proxy)
image for the data.

PMPrinterWritePostScriptToURL (page 2206)
Converts an input file of the specified MIME type to printer-ready PostScript for a destination printer.

PMSessionPostScriptBegin (page 2237) Deprecated in Mac OS X v10.4
Puts the current printer driver into PostScript mode, ready to accept PostScript data instead of
QuickDraw data. (Deprecated. Use PMPrinterPrintWithFile (page 2203),
PMPrinterPrintWithProvider (page 2204), or PMCGImageCreateWithEPSDataProvider (page
2139) instead.)

PMSessionPostScriptData (page 2238) Deprecated in Mac OS X v10.4
Passes PostScript data, referenced by a pointer, to the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

2132 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionPostScriptEnd (page 2239) Deprecated in Mac OS X v10.4
Restores the current driver to QuickDraw mode, ready to accept QuickDraw data instead of PostScript
data. (Deprecated. UsePMPrinterPrintWithFile (page 2203),PMPrinterPrintWithProvider (page
2204), or PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSessionPostScriptFile (page 2239) Deprecated in Mac OS X v10.4
Passes the PostScript data, contained in a file, to the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSessionPostScriptHandle (page 2240) Deprecated in Mac OS X v10.4
Passes the PostScript data, referenced by a Memory Manager handle, to the current printer driver.
(Deprecated. Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page
2204), or PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSessionSetPSInjectionData (page 2247) Deprecated in Mac OS X v10.4
Specifies a set of PostScript code injection points and the PostScript data to be injected. (Deprecated.
UsePMPrinterPrintWithFile (page 2203) orPMPrinterPrintWithProvider (page 2204) instead.)

Using PDF Workflow Items

PMWorkflowCopyItems (page 2270)
Obtains an array of the available PDF workflow items.

PMWorkflowSubmitPDFWithOptions (page 2271)
Submits a PDF file for workflow processing using the specified CUPS options string.

PMWorkflowSubmitPDFWithSettings (page 2272)
Submits a PDF file for workflow processing using the specified print settings.

Matching Color With ColorSync

PMSessionDisableColorSync (page 2226) Deprecated in Mac OS X v10.5
Disables use of a custom ColorSync profile previously enabled by the function
PMSessionEnableColorSync (page 2226). (Deprecated. There is no replacement; draw using Quartz
2D instead.)

PMSessionEnableColorSync (page 2226) Deprecated in Mac OS X v10.5
Enables use of a custom ColorSync profile previously set by the function PMSetProfile (page 2262).
(Deprecated. There is no replacement; draw using Quartz 2D instead.)

PMSetProfile (page 2262) Deprecated in Mac OS X v10.5
Embeds a color profile during printing. (Deprecated. There is no replacement; draw using Quartz 2D
instead.)

Converting and Saving Old Print Records

PMSessionConvertOldPrintRecord (page 2220) Deprecated in Mac OS X v10.4
Creates new page format and print settings objects from an old-style print record created for the
classic Printing Manager. (Deprecated. There is no replacement; during the transition from Mac OS 9
to Mac OS X, this function facilitated the migration of print records saved in documents created in
Mac OS 9, but the function no longer serves any useful purpose in Mac OS X.)

Functions by Task 2133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionMakeOldPrintRecord (page 2236) Deprecated in Mac OS X v10.4
Creates an old-style print record from page format and print settings objects. (Deprecated. There is
no replacement; old-style print records are obsolete and serve no useful purpose in Mac OS X.)

Creating, Calling, and Deleting Universal Procedure Pointers

DisposePMIdleUPP (page 2137) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to an idle callback. (Deprecated. There is no
replacement; this function was included to facilitate porting legacy applications to Mac OS X, but it
serves no useful purpose.)

InvokePMIdleUPP (page 2137) Deprecated in Mac OS X v10.4
Calls an idle callback. (Deprecated. There is no replacement; this function was included to facilitate
porting legacy applications to Mac OS X, but it serves no useful purpose.)

NewPMIdleUPP (page 2138) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to an idle callback. (Deprecated. There is no
replacement; this function was included to facilitate porting legacy applications to Mac OS X, but it
serves no useful purpose.)

Legacy Core Printing Functions

PMGetDestination (page 2156) Deprecated in Mac OS X v10.5
Obtains the output destination of a print job. (Deprecated. Use
PMSessionGetDestinationType (page 2232),PMSessionCopyDestinationFormat (page 2221), or
PMSessionCopyDestinationLocation (page 2221) instead.)

PMBegin (page 2138) Deprecated in Mac OS X v10.4
Prepares Core Printing for use. (Deprecated. Use PMCreateSession (page 2145) instead.)

PMConvertOldPrintRecord (page 2139) Deprecated in Mac OS X v10.4
Creates a new PMPageFormat object and a new PMPrintSettings object from a print record created
by the classic Printing Manager. (Deprecated. There is no replacement; during the transition from
Mac OS 9 to Mac OS X, this function facilitated the migration of print records saved in documents
created in Mac OS 9, but the function no longer serves any useful purpose in Mac OS X.)

PMDefaultPageFormat (page 2145) Deprecated in Mac OS X v10.4
Assigns default parameter values to an existing PMPageFormat object, for the current printer.
(Deprecated. Use PMSessionDefaultPageFormat (page 2225) instead.)

PMDefaultPrintSettings (page 2146) Deprecated in Mac OS X v10.4
Assigns default parameter values to a PMPrintSettings object. (Deprecated. Use
PMSessionDefaultPrintSettings (page 2225) instead.)

PMDisableColorSync (page 2146) Deprecated in Mac OS X v10.4
Disables ColorSync color matching for the current page. (Deprecated. There is no replacement; draw
using Quartz 2D instead.)

PMDisposePageFormat (page 2147) Deprecated in Mac OS X v10.4
Releases memory previously allocated for a PMPageFormat object. (Deprecated. Use PMRelease (page
2214) instead.)

PMDisposePrintSettings (page 2147) Deprecated in Mac OS X v10.4
Releases memory previously allocated for a PMPrintSettings object. (Deprecated. Use
PMRelease (page 2214) instead.)

2134 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMEnableColorSync (page 2148) Deprecated in Mac OS X v10.4
Enables ColorSync color matching for the current page. (Deprecated. There is no replacement; draw
using Quartz 2D instead.)

PMEnd (page 2148) Deprecated in Mac OS X v10.4
Closes Core Printing and releases its allocated memory. (Deprecated. Use PMRelease (page 2214) to
release a PMPrintSession (page 2277) object instead.)

PMError (page 2148) Deprecated in Mac OS X v10.4
Obtains the result code from the last printing function called by your application. (Deprecated. Use
PMSessionError (page 2229) instead.)

PMGeneral (page 2152) Deprecated in Mac OS X v10.4
Maintains compatibility with the PrGeneral function in the classic Printing Manager. (Deprecated.
Use PMPrinterGetCommInfo (page 2190) instead.)

PMGetColorMode (page 2155) Deprecated in Mac OS X v10.4
Obtains the color mode for the print job. (Deprecated. There is no replacement; this function was
included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

PMGetDriverCreator (page 2157) Deprecated in Mac OS X v10.4
Obtains the creator of the driver associated with the current printer. (Deprecated. Use
PMPrinterGetDriverCreator (page 2192) instead.)

PMGetDriverReleaseInfo (page 2157) Deprecated in Mac OS X v10.4
Obtains release information for the driver associated with the current printer. (Deprecated. Use
PMPrinterGetDriverReleaseInfo (page 2193) instead.)

PMGetGrafPtr (page 2159) Deprecated in Mac OS X v10.4
Obtains the printing port from an opaque printing context. (Deprecated. Use
PMSessionGetCGGraphicsContext (page 2230) instead.)

PMGetIndexedPrinterResolution (page 2160) Deprecated in Mac OS X v10.4
Obtains a resolution setting based on an index into the range of settings supported by the current
printer. (Deprecated. Use PMPrinterGetIndexedPrinterResolution (page 2194) instead.)

PMGetJobName (page 2160) Deprecated in Mac OS X v10.4
Obtains the name of the print job. (Deprecated. Use PMPrintSettingsGetJobName (page 2210)
instead.)

PMGetLanguageInfo (page 2162) Deprecated in Mac OS X v10.4
Obtains information about the current printer’s imaging language. (Deprecated. Use
PMPrinterGetLanguageInfo (page 2194) instead.)

PMGetPhysicalPageSize (page 2166) Deprecated in Mac OS X v10.4
Obtains the size of the imageable area in points, unaffected by rotation, resolution, or scaling.
(Deprecated. Use PMGetUnadjustedPageRect (page 2170) or examine the paper returned by
PMGetPageFormatPaper (page 2164).)

PMGetPhysicalPaperSize (page 2166) Deprecated in Mac OS X v10.4
Obtains the size of the paper in points, unaffected by rotation, resolution, or scaling. (Deprecated.
Use PMGetUnadjustedPaperRect (page 2171) or examine the paper returned by
PMGetPageFormatPaper (page 2164).)

PMGetPrinterResolution (page 2167) Deprecated in Mac OS X v10.4
Obtains the resolution setting for the current printer according to the tag parameter. (Deprecated.
Use PMPrinterGetPrinterResolutionCount (page 2199) and
PMPrinterGetIndexedPrinterResolution (page 2194) to examine the available printer resolutions.)

Functions by Task 2135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMGetPrinterResolutionCount (page 2168) Deprecated in Mac OS X v10.4
Obtains the number of resolution settings supported by the current printer. (Deprecated. Use
PMPrinterGetPrinterResolutionCount (page 2199) instead.)

PMIsPostScriptDriver (page 2172) Deprecated in Mac OS X v10.4
Reports whether the current printer driver supports the PostScript language. (Deprecated. Use
PMPrinterIsPostScriptCapable (page 2201) or PMPrinterIsPostScriptPrinter (page 2202)
instead.)

PMMakeOldPrintRecord (page 2172) Deprecated in Mac OS X v10.4
Creates an old-style print record from a PMPageFormat and a PMPrintSettings object. (Deprecated.
There is no replacement; old-style print records are obsolete and serve no useful purpose in Mac OS
X.)

PMNewPageFormat (page 2173) Deprecated in Mac OS X v10.4
Creates a new PMPageFormat object. (Deprecated. Use PMCreatePageFormat (page 2143) instead.)

PMNewPrintSettings (page 2173) Deprecated in Mac OS X v10.4
Creates a new PMPrintSettings object. (Deprecated. Use PMCreatePrintSettings (page 2144)
instead.)

PMPostScriptBegin (page 2183) Deprecated in Mac OS X v10.4
Puts the current driver into PostScript mode, ready to accept PostScript data instead of QuickDraw
data. (Deprecated. UsePMPrinterPrintWithFile (page 2203),PMPrinterPrintWithProvider (page
2204), or PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMPostScriptData (page 2183) Deprecated in Mac OS X v10.4
Passes PostScript data, referenced by a pointer, to the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMPostScriptEnd (page 2184) Deprecated in Mac OS X v10.4
Restores the current driver to QuickDraw mode, ready to accept QuickDraw data instead of PostScript
data. (Deprecated. UsePMPrinterPrintWithFile (page 2203),PMPrinterPrintWithProvider (page
2204), or PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMPostScriptFile (page 2184) Deprecated in Mac OS X v10.4
Passes PostScript data, contained in a file, to the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMPostScriptHandle (page 2185) Deprecated in Mac OS X v10.4
Passes PostScript data, referenced by a handle, to the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSessionGetDocumentFormatSupported (page 2234) Deprecated in Mac OS X v10.4
Obtains the spool file formats that are accepted by the current printer driver. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSessionIsDocumentFormatSupported (page 2235) Deprecated in Mac OS X v10.4
Reports whether the current printer driver supports a specified spool file format. (Deprecated. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

PMSetColorMode (page 2251) Deprecated in Mac OS X v10.4
Sets the desired color mode for the print job. (Deprecated. There is no replacement; this function was
included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

2136 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSetError (page 2253) Deprecated in Mac OS X v10.4
Sets the value of the current result code. (Deprecated. Use PMSessionSetError (page 2246) instead.)

PMSetIdleProc (page 2255) Deprecated in Mac OS X v10.4
Installs an idle callback function in your print loop. (Deprecated. There is no replacement; this function
was included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

PMSetJobName (page 2255) Deprecated in Mac OS X v10.4
Specifies the name of the print job. (Deprecated. Use PMPrintSettingsSetJobName (page 2211)
instead.)

PMSetPhysicalPaperSize (page 2260) Deprecated in Mac OS X v10.4
Requests a particular paper size, unaffected by rotation, resolution, or scaling. (Deprecated. Use
PMCreatePageFormatWithPMPaper (page 2144) instead.)

PMValidatePageFormat (page 2269) Deprecated in Mac OS X v10.4
Obtains a valid PMPageFormat object. (Deprecated. Use PMSessionValidatePageFormat (page
2248) instead.)

PMValidatePrintSettings (page 2270) Deprecated in Mac OS X v10.4
Obtains a valid PMPrintSettings object. (Deprecated. Use
PMSessionValidatePrintSettings (page 2249) instead.)

Functions

DisposePMIdleUPP
Disposes of a universal procedure pointer (UPP) to an idle callback. (Deprecated in Mac OS X v10.4. There is
no replacement; this function was included to facilitate porting legacy applications to Mac OS X, but it serves
no useful purpose.)

void DisposePMIdleUPP (
 PMIdleUPP userUPP
);

Discussion
You do not need this function in Mac OS X. Instead, use the standard idle proc. See the PMIdleProcPtr (page
2273) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

InvokePMIdleUPP
Calls an idle callback. (Deprecated in Mac OS X v10.4. There is no replacement; this function was included to
facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

Functions 2137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

void InvokePMIdleUPP (
 PMIdleUPP userUPP
);

Discussion
You do not need this function in Mac OS X. Instead, use the standard idle proc. See the PMIdleProcPtr (page
2273) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

NewPMIdleUPP
Creates a new universal procedure pointer (UPP) to an idle callback. (Deprecated in Mac OS X v10.4. There
is no replacement; this function was included to facilitate porting legacy applications to Mac OS X, but it
serves no useful purpose.)

PMIdleUPP NewPMIdleUPP (
 PMIdleProcPtr userRoutine
);

Discussion
You do not need this function in Mac OS X. Instead, use the standard idle proc. See the PMIdleProcPtr (page
2273) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMBegin
Prepares Core Printing for use. (Deprecated in Mac OS X v10.4. Use PMCreateSession (page 2145) instead.)

OSStatus PMBegin ();

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Do not nest calls to PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

2138 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMCGImageCreateWithEPSDataProvider
Creates an image that references both the PostScript contents of EPS data and a preview (proxy) image for
the data.

CGImageRef PMCGImageCreateWithEPSDataProvider (
 CGDataProviderRef epsDataProvider,
 CGImageRef epsPreview
);

Parameters
epsDataProvider

A Quartz data provider that supplies the PostScript contents of the EPS file. The EPS data must begin
with the EPSF required header and bounding box DSC (Document Structuring Conventions) comments.

epsPreview
A Quartz image that serves as the proxy image for the EPS file. When the image returned by this
function is rendered onscreen or sent to a printer that cannot render PostScript, this proxy image is
drawn instead.

Return Value
An image capable of rendering either the EPS content or the proxy image, depending upon the capabilities
of the destination printer.

Discussion
It is likely that data will not be read from the EPS data provider until after this function returns. You should
be careful not to free the underlying EPS data until the data provider's release function is invoked. Similarly,
do not free the preview image data until the image data provider's release function is invoked. You are
responsible for releasing the data providers for the EPS image and the EPS preview image.

Note that in Mac OS X v10.3 and later, Quartz can convert EPS data into PDF data. Using this feature and then
using Quartz to draw the resulting PDF data may produce superior results for your application. See
CGPSConverter Reference for details.

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMConvertOldPrintRecord
Creates a new PMPageFormat object and a new PMPrintSettings object from a print record created by
the classic Printing Manager. (Deprecated in Mac OS X v10.4. There is no replacement; during the transition
from Mac OS 9 to Mac OS X, this function facilitated the migration of print records saved in documents created
in Mac OS 9, but the function no longer serves any useful purpose in Mac OS X.)

OSStatus PMConvertOldPrintRecord (
 Handle printRecordHandle,
 PMPrintSettings *printSettings,
 PMPageFormat *pageFormat
);

Parameters
printRecordHandle

A handle to a print record created by the classic Printing Manager.

Functions 2139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

printSettings
On return, a validated PMPrintSettings object.

pageFormat
On return, a validated PMPageFormat object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMCopyAvailablePPDs
Obtains the list of PostScript printer description (PPD) files in a PPD domain.

OSStatus PMCopyAvailablePPDs (
 PMPPDDomain domain,
 CFArrayRef *ppds
);

Parameters
domain

The PPD domain to search. See “PostScript Printer Description File Domains” (page 2292) for a description
of the constants you can use to specify the domain.

ppds
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array of
PPD files in the specified domain. Each element in the array is a Core Foundation URL object that
specifies the location of a PPD file or a compressed PPD file. You are responsible for releasing the
array. If the specified domain is not valid, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMCopyLocalizedPPD
Obtains a localized PostScript printer description (PPD) file.

2140 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMCopyLocalizedPPD (
 CFURLRef ppd,
 CFURLRef *localizedPPD
);

Parameters
ppd

A Core Foundation URL object for a PPD file. You can obtain a PPD URL using the function
PMCopyAvailablePPDs (page 2140).

localizedPPD
A pointer to your CFURLRef variable. On return, the variable refers to a Core Foundation URL object.
The URL specifies the location of a PPD file or a compressed PPD file that has been localized for the
current user's language preference. You are responsible for releasing the URL. If the ppd parameter
is not valid, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
To access the data in the PPD file, you can use the function PMCopyPPDData (page 2142).

Special Considerations

In Mac OS X v10.5 and later, the printing system supports globalized PPD files as defined in CUPS version 1.2
and later. A globalized PPD file contains multiple localizations within a single file. If a globalized PPD file
exists, this function returns the URL to this file and it is up to the application to obtain the correct localized
data. For more information, see CUPS PPD Extensions.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMCopyPageFormat
Copies the settings from one page format object into another.

OSStatus PMCopyPageFormat (
 PMPageFormat formatSrc,
 PMPageFormat formatDest
);

Parameters
formatSrc

The page format object to duplicate.

formatDest
The page format object to receive the copied settings. On return, this object contains the same settings
as the formatSrc object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

Functions 2141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

http://www.cups.org/documentation.php/spec-ppd.html

Declared In
PMCore.h

PMCopyPPDData
Obtains the uncompressed PPD data for a PostScript printer description (PPD) file.

OSStatus PMCopyPPDData (
 CFURLRef ppd,
 CFDataRef *data
);

Parameters
ppd

A URL for a PPD or compressed PPD file. You can obtain a PPD URL using the function
PMCopyAvailablePPDs (page 2140) or PMCopyLocalizedPPD (page 2140).

data
A pointer to your CFDataRef variable. On return, the variable refers to a Core Foundation data object
containing the uncompressed PPD data from the specified PPD file. You are responsible for releasing
the data object. If the ppd parameter does not reference a PPD file, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMCopyPrintSettings
Copies the settings from one print settings object into another.

OSStatus PMCopyPrintSettings (
 PMPrintSettings settingSrc,
 PMPrintSettings settingDest
);

Parameters
settingSrc

The print settings object to duplicate.

settingDest
The print settings object to receive the copied settings. On return, this object contains the same
settings as the settingSrc object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

2142 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMCreateGenericPrinter
Creates a generic printer object.

OSStatus PMCreateGenericPrinter (
 PMPrinter *printer
);

Parameters
printer

A pointer to your PMPrinter (page 2276) variable. On return, the variable refers to a new printer object
that represents the generic formatting printer. You are responsible for releasing the printer object
with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function provides a way to create a PMPrinter object that represents the generic formatting printer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMCreatePageFormat
Creates a new page format object.

OSStatus PMCreatePageFormat (
 PMPageFormat *pageFormat
);

Parameters
pageFormat

A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a new page
format object. You are responsible for releasing the page format object with the function
PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function allocates memory for a new page format object in your application’s memory space and sets
its reference count to 1. The new page format object is empty and unusable until you call
PMSessionDefaultPageFormat (page 2225) or PMCopyPageFormat (page 2141).

Availability
Available in Mac OS X v10.0 and later.

Functions 2143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMCreatePageFormatWithPMPaper
Creates a page format object with a specified paper.

OSStatus PMCreatePageFormatWithPMPaper (
 PMPageFormat *pageFormat,
 PMPaper paper
);

Parameters
pageFormat

A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a new page
format object that represents the specified paper. You are responsible for releasing the page format
object with the function PMRelease (page 2214).

paper
The type of paper for the new page format object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMCreatePrintSettings
Creates a new print settings object.

OSStatus PMCreatePrintSettings (
 PMPrintSettings *printSettings
);

Parameters
printSettings

A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a new print
settings object. You are responsible for releasing the print settings object with the function
PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function allocates memory for a new print settings object in your application’s memory space and sets
its reference count to 1. The new print settings object is empty and unusable until you call
PMSessionDefaultPrintSettings (page 2225) or PMCopyPrintSettings (page 2142).

2144 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMCreateSession
Creates and initializes a printing session object and creates a context for printing operations.

OSStatus PMCreateSession (
 PMPrintSession *printSession
);

Parameters
printSession

A pointer to your PMPrintSession (page 2277) variable. On return, the variable refers to a new printing
session object. You are responsible for releasing the printing session object with the function
PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function allocates memory for a new printing session object in your application’s memory space and
sets its reference count to 1. The new printing session object is initialized with information that the printing
system uses for a print job.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMDefaultPageFormat
Assigns default parameter values to an existing PMPageFormat object, for the current printer. (Deprecated
in Mac OS X v10.4. Use PMSessionDefaultPageFormat (page 2225) instead.)

OSStatus PMDefaultPageFormat (
 PMPageFormat pageFormat
);

Parameters
pageFormat

On return, a PMPageFormat object containing default parameter values.

Functions 2145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a page format object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMDefaultPrintSettings
Assigns default parameter values to a PMPrintSettings object. (Deprecated in Mac OS X v10.4. Use
PMSessionDefaultPrintSettings (page 2225) instead.)

OSStatus PMDefaultPrintSettings (
 PMPrintSettings printSettings
);

Parameters
printSettings

A PMPrintSettings object. On return, the object contains default parameter values.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMDisableColorSync
Disables ColorSync color matching for the current page. (Deprecated in Mac OS X v10.4. There is no
replacement; draw using Quartz 2D instead.)

OSStatus PMDisableColorSync ();

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMBeginPage and PMEndPage.

Availability
Available in Mac OS X v10.0 and later.

2146 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMDisposePageFormat
Releases memory previously allocated for a PMPageFormat object. (Deprecated in Mac OS X v10.4. Use
PMRelease (page 2214) instead.)

OSStatus PMDisposePageFormat (
 PMPageFormat pageFormat
);

Parameters
pageFormat

On return, an invalidated PMPageFormat object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a page format object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMDisposePrintSettings
Releases memory previously allocated for a PMPrintSettings object. (Deprecated in Mac OS X v10.4. Use
PMRelease (page 2214) instead.)

OSStatus PMDisposePrintSettings (
 PMPrintSettings printSettings
);

Parameters
printSettings

On return, an invalidated PMPrintSettings reference.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCoreDeprecated.h

PMEnableColorSync
Enables ColorSync color matching for the current page. (Deprecated in Mac OS X v10.4. There is no
replacement; draw using Quartz 2D instead.)

OSStatus PMEnableColorSync ();

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMBeginPage and PMEndPage.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMEnd
Closes Core Printing and releases its allocated memory. (Deprecated in Mac OS X v10.4. Use PMRelease (page
2214) to release a PMPrintSession (page 2277) object instead.)

OSStatus PMEnd (void);

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMError
Obtains the result code from the last printing function called by your application. (Deprecated in Mac OS X
v10.4. Use PMSessionError (page 2229) instead.)

OSStatus PMError ();

Return Value
A result code. The result code kPMCancel indicates the user canceled the current print job.

Discussion
Valid after calling PMBegin.

2148 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMFlattenPageFormat
Flattens a page format object into a Memory Manager handle for storage in a user document. (Deprecated
in Mac OS X v10.5. Use PMPageFormatCreateDataRepresentation (page 2174) instead.)

OSStatus PMFlattenPageFormat (
 PMPageFormat pageFormat,
 Handle *flatFormat
);

Parameters
pageFormat

The page format object to flatten.

flatFormat
A pointer to your Handle variable. On return, the variable refers to a Memory Manager handle that
contains the flattened page format object. The handle is allocated by the function. You are responsible
for disposing of the handle.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMCoreDeprecated.h

PMFlattenPageFormatToCFData
Flattens a page format object into a Core Foundation data object for storage in a user document. (Deprecated
in Mac OS X v10.5. Use PMPageFormatCreateDataRepresentation (page 2174) instead.)

OSStatus PMFlattenPageFormatToCFData (
 PMPageFormat pageFormat,
 CFDataRef *flatFormat
);

Parameters
pageFormat

The page format object to flatten.

Functions 2149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

flatFormat
A pointer to your CFDataRef variable. On return, the variable refers to a Core Foundation data object
containing a flattened representation of the specified page format object. You are responsible for
releasing the data object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMUnflattenPageFormatWithCFData (page 2266)

Declared In
PMCoreDeprecated.h

PMFlattenPageFormatToURL
Flattens a page format object into a file for storage in a user document. (Deprecated in Mac OS X v10.5. Use
PMPageFormatCreateDataRepresentation (page 2174) and write the resulting data to your destination.)

OSStatus PMFlattenPageFormatToURL (
 PMPageFormat pageFormat,
 CFURLRef flattenFileURL
);

Parameters
pageFormat

The page format object to flatten.

flatFormat
A Core Foundation URL specifying a file to contain a flattened representation of the specified page
format object. If the file already exists, it is overwritten. Only file-based URLs are supported.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMUnflattenPageFormatWithURL (page 2266)

Declared In
PMCoreDeprecated.h

PMFlattenPrintSettings
Flattens a print settings object into a Memory Manager handle for storage in a user document. (Deprecated
in Mac OS X v10.5. Use PMPrintSettingsCreateDataRepresentation (page 2208) instead.)

2150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMFlattenPrintSettings (
 PMPrintSettings printSettings,
 Handle *flatSettings
);

Parameters
printSettings

The print settings object to flatten.

flatSettings
A pointer to your Handle variable. On return, the variable refers to a Memory Manager handle that
contains a flattened print settings object. The handle is allocated by the function. You are responsible
for disposing of the handle.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
There are no scoping requirements as to when you may use this function.

Apple recommends that you do not reuse the print settings information if the user prints the document
again. The information supplied by the user in the Print dialog should pertain to the document only while
the document prints, so there is no need to save the print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMFlattenPrintSettingsToCFData
Flattens a print settings object into a Core Foundation data object for storage in a user document. (Deprecated
in Mac OS X v10.5. Use PMPrintSettingsCreateDataRepresentation (page 2208) instead.)

OSStatus PMFlattenPrintSettingsToCFData (
 PMPrintSettings printSettings,
 CFDataRef *flatSetting
);

Parameters
printSettings

The print settings object to flatten.

flatSetting
A pointer to your CFDataRef variable. On return, the variable refers to a Core Foundation data object
that contains a flattened representation of the specified print settings object. You are responsible for
releasing the data object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.

Functions 2151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Deprecated in Mac OS X v10.5.

See Also
PMUnflattenPrintSettingsWithCFData (page 2268)

Declared In
PMCoreDeprecated.h

PMFlattenPrintSettingsToURL
Flattens a print settings object into a URL for storage in a user document. (Deprecated in Mac OS X v10.5.
Instead use PMPrintSettingsCreateDataRepresentation (page 2208) and write the resulting data to
your destination.)

OSStatus PMFlattenPrintSettingsToURL (
 PMPrintSettings printSettings,
 CFURLRef flattenFileURL
);

Parameters
printSettings

The print settings object to flatten.

flattenFileURL
A Core Foundation URL specifying a file to contain a flattened representation of the specified print
settings object. If the file already exists, it is overwritten. Only file-based URLs are supported.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMUnflattenPrintSettingsWithURL (page 2268)

Declared In
PMCoreDeprecated.h

PMGeneral
Maintains compatibility with the PrGeneral function in the classic Printing Manager. (Deprecated in Mac
OS X v10.4. Use PMPrinterGetCommInfo (page 2190) instead.)

OSStatus PMGeneral (
 Ptr pData
);

Parameters
pData

A pointer to a PrGeneral data structure.

2152 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetAdjustedPageRect
Obtains the imageable area or page rectangle, taking into account orientation, application drawing resolution,
and scaling settings.

OSStatus PMGetAdjustedPageRect (
 PMPageFormat pageFormat,
 PMRect *pageRect
);

Parameters
pageFormat

The page format object whose adjusted page rectangle you want to obtain.

pageRect
A pointer to your PMRect (page 2277) structure. On return, the structure contains the current imageable
area, in points, taking into account scaling, rotation, and application resolution settings. The page
rectangle is the area of the page to which an application can draw. The coordinates for the upper-left
corner of the page rectangle are (0,0). See Supporting Printing in Your Carbon Application for more
information on page and paper rectangles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Before using this function, you must call PMSessionValidatePageFormat (page 2248) to ensure that the
values for the adjusted page rectangle correctly account for scaling, rotation, and application resolution
settings.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

Functions 2153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMGetAdjustedPaperRect
Obtains the rectangle defining the paper size, taking into account orientation, application drawing resolution,
and scaling settings.

OSStatus PMGetAdjustedPaperRect (
 PMPageFormat pageFormat,
 PMRect *paperRect
);

Parameters
pageFormat

The page format object whose adjusted paper rectangle you want to obtain.

paperRect
A pointer to your PMRect (page 2277) structure. On return, the structure describes the current paper
size, in points, taking into account scaling, rotation, and application resolution settings. The coordinates
of the upper-left corner of the paper rectangle are specified relative to the page rectangle. The
coordinates of the upper-left corner of the page rectangle are always (0,0), which means the coordinates
of the upper-left corner of the paper rectangle are always negative or (0,0). See Supporting Printing
in Your Carbon Application for more information on page and paper rectangles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Before using this function, you must call the function PMSessionValidatePageFormat (page 2248) to ensure
that the values for the adjusted paper rectangle correctly account for scaling, rotation, and application
resolution settings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMGetCollate
Obtains a Boolean value that indicates whether the job collate option is selected.

OSStatus PMGetCollate (
 PMPrintSettings printSettings,
 Boolean *collate
);

Parameters
printSettings

The print settings object you’re querying to determine whether the job collate option is selected.

collate
A pointer to your Boolean variable. On return, true if the job collate option is selected; otherwise,
false.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

2154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
The Collated checkbox is displayed in the Copies & Pages pane of the Print dialog. This option determines
how printed material is organized. For example, if you have a document that is three pages long and you
are printing multiple copies with the Collated option selected, the job prints pages 1, 2, and 3 in that order
and then repeats. However, if the Collated option is not selected and you’re printing multiple copies of those
same three pages, the job prints copies of page 1, then copies of page 2, and finally copies of page 3.

Availability
Available in Mac OS X v10.2 and later.

See Also
PMSetCollate (page 2251)

Declared In
PMCore.h

PMGetColorMode
Obtains the color mode for the print job. (Deprecated in Mac OS X v10.4. There is no replacement; this function
was included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

OSStatus PMGetColorMode (
 PMPrintSettings printSettings,
 PMColorMode *colorMode
);

Parameters
printSettings

The print settings object whose color mode you want to obtain.

colorMode
On return, a pointer to a value that represents the color mode setting. See “Color Modes” (page 2298)
for a list of possible return values.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is not recommended. It doesn’t do anything in Mac OS X and in general is no longer appropriate
for applications to call.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetCopies
Obtains the number of copies that the user requests to be printed.

Functions 2155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMGetCopies (
 PMPrintSettings printSettings,
 UInt32 *copies
);

Parameters
printSettings

The print settings object whose number of copies you want to obtain.

copies
A pointer to your UInt32 variable. On return, the variable contains the number of copies requested
by the user.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetCopies (page 2252)

Declared In
PMCore.h

PMGetDestination
Obtains the output destination of a print job. (Deprecated in Mac OS X v10.5. Use
PMSessionGetDestinationType (page 2232), PMSessionCopyDestinationFormat (page 2221), or
PMSessionCopyDestinationLocation (page 2221) instead.)

OSStatus PMGetDestination (
 PMPrintSettings printSettings,
 PMDestinationType *destType,
 CFURLRef *fileURL
);

Parameters
printSettings

The print settings object whose destination you want to obtain.

destType
A pointer to your PMDestinationType variable. On return, the variable indicates the destination for
the print job. See “Destination Types” (page 2281).

fileURL
A pointer to your CFURLRef variable. On return, the variable refers to a Core Foundation URL that
contains the location of the print job destination.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
For print jobs that are sent to disk, as opposed a printer, you can use this function to obtain the location of
the destination file. Valid within a printing session after creating a print settings object.

2156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Before using this function you must call PMSessionValidatePrintSettings or
PMValidatePrintSettings to ensure that the print settings object is valid.

Special Considerations

This function does not take a print session parameter and therefore cannot indicate whether preview has
been selected as the destination.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetDriverCreator
Obtains the creator of the driver associated with the current printer. (Deprecated in Mac OS X v10.4. Use
PMPrinterGetDriverCreator (page 2192) instead.)

OSStatus PMGetDriverCreator (
 OSType *creator
);

Parameters
creator

On return, the 4-byte creator type of the driver (for example, 'APPL' for an Apple printer driver).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetDriverReleaseInfo
Obtains release information for the driver associated with the current printer. (Deprecated in Mac OS X v10.4.
Use PMPrinterGetDriverReleaseInfo (page 2193) instead.)

Functions 2157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMGetDriverReleaseInfo (
 VersRec *release
);

Parameters
release

On return, a pointer to a VersRec data structure containing the driver’s short and long version strings
and country code.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetDuplex
Obtains the selected duplex mode.

OSStatus PMGetDuplex (
 PMPrintSettings printSettings,
 PMDuplexMode *duplexSetting
);

Parameters
printSettings

The print settings object whose duplex mode you want to obtain.

duplexSetting
A pointer to your PMDuplexMode variable. On return, the variable contains the duplex mode setting
in the current print job. Possible values include:

 ■ kPMDuplexNone (one-sided printing)

 ■ kPMDuplexNoTumble (two-sided printing)

 ■ kPMDuplexTumble (two-sided printing with tumbling)

See “Duplex Modes” (page 2282) for a full description of the duplex mode constants.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Duplex printing is a print job that prints on both sides of the paper. The Two-Sided printing control is displayed
in the Layout pane of the Print dialog.

Availability
Available in Mac OS X v10.4 and later.

2158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMGetFirstPage
Obtains the number of the first page to be printed.

OSStatus PMGetFirstPage (
 PMPrintSettings printSettings,
 UInt32 *first
);

Parameters
printSettings

The print settings object whose first page number you want to obtain.

first
A pointer to your UInt32 variable. On return, the variable contains the page number of the first page
to print. The default first page number is 1.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can use this function to obtain the page number entered by the user in the From field of the Print dialog.
If the user selects the All button, the function returns a value of 1. If the user did not enter a value, the function
returns the value of the previous call to PMSetFirstPage, if any, or the default value of 1.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetFirstPage (page 2254)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMGetGrafPtr
Obtains the printing port from an opaque printing context. (Deprecated in Mac OS X v10.4. Use
PMSessionGetCGGraphicsContext (page 2230) instead.)

OSStatus PMGetGrafPtr (
 PMPrintContext printContext,
 GrafPtr *grafPort
);

Parameters
printContext

A PMPrintContext object.

Functions 2159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

grafPort
On return, a pointer to a grafPort defining the current printing port.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a printing context.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetIndexedPrinterResolution
Obtains a resolution setting based on an index into the range of settings supported by the current printer.
(Deprecated in Mac OS X v10.4. Use PMPrinterGetIndexedPrinterResolution (page 2194) instead.)

OSStatus PMGetIndexedPrinterResolution (
 UInt32 index,
 PMResolution *res
);

Parameters
index

An index into the range of resolution settings supported by the specified printer. Index values begin
at 1.

res
On return, the printer resolution setting.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin. You must first use the PMGetPrinterResolutionCount function to obtain
the number of resolution settings supported by the current printer.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetJobName
Obtains the name of the print job. (Deprecated in Mac OS X v10.4. Use PMPrintSettingsGetJobName (page
2210) instead.)

2160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMGetJobName (
 PMPrintSettings printSettings,
 StringPtr name
);

Parameters
printSettings

A PMPrintSettings object.

name
On return, the name of the print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a print settings object. Before using this function you must call
PMValidatePrintSettings to ensure that the print settings object is valid.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetJobNameCFString
Obtains the name of the print job. (Deprecated in Mac OS X v10.5. Use PMPrintSettingsGetJobName (page
2210) instead.)

OSStatus PMGetJobNameCFString (
 PMPrintSettings printSettings,
 CFStringRef *name
);

Parameters
printSettings

The print settings object whose job name you want to obtain.

name
A pointer to your CFStringRef variable. On return, the variable refers to a string that contains the
name of the print job. Despite what its name implies, the function PMGetJobNameCFString has
Create/Copy semantics which means your application must release the string returned to it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

See Also
PMSetJobNameCFString (page 2256)

Functions 2161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCoreDeprecated.h

PMGetLanguageInfo
Obtains information about the current printer’s imaging language. (Deprecated in Mac OS X v10.4. Use
PMPrinterGetLanguageInfo (page 2194) instead.)

OSStatus PMGetLanguageInfo (
 PMLanguageInfo *info
);

Parameters
info

On return, a pointer to a data structure containing the printer’s language level, version and release.
The format of the returned data is based on the PostScript language.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin. PMGetLanguageInfo is useful for PostScript printers but may be irrelevant for
other types of printers.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetLastPage
Obtains the number of the last page to be printed.

OSStatus PMGetLastPage (
 PMPrintSettings printSettings,
 UInt32 *last
);

Parameters
printSettings

The print settings object whose last page number you want to obtain.

last
A pointer to your UInt32 variable. On return, the variable contains the page number of the last page
to print.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You use this function to obtain the page number entered by the user in the To field of the Print dialog. If the
user did not enter a value, the function returns the value of the previous call to PMSetLastPage, if any, or
a default value.

2162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

You should not look for the constant kPMPrintAllPages. That constant is used only with the PMSetLastPage
and PMSetPageRange functions to specify a last page. It is not returned by the PMGetLastPage function.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetLastPage (page 2257)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMGetOrientation
Obtains the current setting for page orientation.

OSStatus PMGetOrientation (
 PMPageFormat pageFormat,
 PMOrientation *orientation
);

Parameters
pageFormat

The page format object whose orientation you want to obtain.

orientation
A pointer to your PMOrientation variable. On return, the variable contains a constant value indicating
the page orientation. Supported values are:

 ■ kPMPortrait

 ■ kPMLandscape

 ■ kPMReversePortrait (supported in Mac OS X v10.5 and later)

 ■ kPMReverseLandscape

See “Page Orientation Constants” (page 2283) for a complete description of the page orientation
constants.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetOrientation (page 2257)

Declared In
PMCore.h

Functions 2163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMGetPageFormatExtendedData
Obtains extended page format data previously stored by your application.

OSStatus PMGetPageFormatExtendedData (
 PMPageFormat pageFormat,
 OSType dataID,
 UInt32 *size,
 void *extendedData
);

Parameters
pageFormat

The page format object that contains your extended data.

dataID
A 4-character code that identifies your data. This is typically your application’s creator code. If your
creator code is outside the ASCII 7-bit character range 0x20–0x7F, you need to use a different
4-character code.

size
A pointer to a value that specifies the size of the buffer you have allocated for the extended page
format data. On return, this variable contains the number of bytes read into the buffer or the size of
the extended data. You can pass the constant kPMDontWantSize if you do not need this information.
(See “Data Not Wanted Constants” (page 2279) for more information.)

extendedData
A pointer to a buffer to receive the extended data. Pass the constant kPMDontWantData if you do
not want to read the data. (See “Data Not Wanted Constants” (page 2279) for more information.)

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Your application typically needs to call the function PMGetPageFormatExtendedData two times in order
to retrieve the extended page format data. The first time, pass the constant kPMDontWantData in the
parameter extendedData to obtain the buffer size required for the extended data. Then allocate the buffer
and call the function a second time to read the extended data into your buffer.

If you write a printing dialog extension for your application that stores data in the page format object, you
use the function PMGetPageFormatExtendedData to retrieve the data associated with it.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetPageFormatExtendedData (page 2258)

Declared In
PMCore.h

PMGetPageFormatPaper
Obtains the paper associated with a page format object.

2164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMGetPageFormatPaper (
 PMPageFormat format,
 PMPaper *paper
);

Parameters
pageFormat

The page format object whose paper you want to obtain.

paper
A pointer to your PMPaper (page 2275) variable. On return, the variable refers to a paper object that
represents the paper associated with the specified page format. You should not release the paper
object without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMGetPageRange
Obtains the valid range of pages that can be printed.

OSStatus PMGetPageRange (
 PMPrintSettings printSettings,
 UInt32 *minPage,
 UInt32 *maxPage
);

Parameters
printSettings

The print settings object whose page range you want to obtain.

minPage
A pointer to your UInt32 variable. On return, the variable contains the minimum page number
allowed.

maxPage
A pointer to your UInt32 variable. On return, the variable contains the maximum page number
allowed.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The page range returned by the function PMGetPageRange is independent of the first and last page values
returned by PMGetFirstPage (page 2159) and PMGetLastPage (page 2162). See PMSetPageRange for more
information.

Availability
Available in Mac OS X v10.0 and later.

Functions 2165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

See Also
PMSetPageRange (page 2259)

Declared In
PMCore.h

PMGetPhysicalPageSize
Obtains the size of the imageable area in points, unaffected by rotation, resolution, or scaling. (Deprecated
in Mac OS X v10.4. Use PMGetUnadjustedPageRect (page 2170) or examine the paper returned by
PMGetPageFormatPaper (page 2164).)

OSStatus PMGetPhysicalPageSize (
 PMPageFormat pageFormat,
 PMRect *pageSize
);

Parameters
pageFormat

A PMPageFormat object previously created by your application.

pageSize
On return, a rectangle describing the physical page size where your application can draw.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetPhysicalPaperSize
Obtains the size of the paper in points, unaffected by rotation, resolution, or scaling. (Deprecated in Mac OS
X v10.4. Use PMGetUnadjustedPaperRect (page 2171) or examine the paper returned by
PMGetPageFormatPaper (page 2164).)

OSStatus PMGetPhysicalPaperSize (
 PMPageFormat pageFormat,
 PMRect *paperSize
);

Parameters
pageFormat

A PMPageFormat object previously created by your application.

2166 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

paperSize
On return, a rectangle describing the physical size of the paper. Units are in 1/72 inch. Thus a 8.5 x
11 sheet of paper returns for its individual components:

top - 0.0

left - 0.0

bottom - 792.0

right - 612.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetPrinterResolution
Obtains the resolution setting for the current printer according to the tag parameter. (Deprecated in Mac OS
X v10.4. Use PMPrinterGetPrinterResolutionCount (page 2199) and
PMPrinterGetIndexedPrinterResolution (page 2194) to examine the available printer resolutions.)

OSStatus PMGetPrinterResolution (
 PMTag tag,
 PMResolution *res
);

Parameters
tag

Specifies the kind of resolution information required.

res
The printer resolution setting.

Return Value
A result code. . The result code kPMNotImplemented indicates that the printer driver does not support
multiple resolution settings.

Discussion
Valid after calling PMBegin.

The following resolution tag constants are recognized:

kPMMinRange
The minimum resolution supported by the printer.

kPMMaxRange
The maximum resolution supported by the printer.

kPMMinSquareResolution
The minimum resolution setting for which the horizontal and vertical resolutions are equal.

Functions 2167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMMaxSquareResolution
The maximum resolution setting for which the horizontal and vertical resolutions are equal.

kPMDefaultResolution
The default resolution setting for the printer (typically 72 dpi).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetPrinterResolutionCount
Obtains the number of resolution settings supported by the current printer. (Deprecated in Mac OS X v10.4.
Use PMPrinterGetPrinterResolutionCount (page 2199) instead.)

OSStatus PMGetPrinterResolutionCount (
 UInt32 *count
);

Parameters
count

On return, the number of supported printing resolutions.

Return Value
A result code. The result code kPMNotImplemented indicates that the printer driver does not support multiple
resolution settings.

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMGetPrintSettingsExtendedData
Obtains extended print settings data previously stored by your application.

OSStatus PMGetPrintSettingsExtendedData (
 PMPrintSettings printSettings,
 OSType dataID,
 UInt32 *size,
 void *extendedData
);

Parameters
printSettings

The print settings object whose extended data you want to obtain.

2168 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

dataID
The unique 4-character code of the data to retrieve. This is typically your application’s creator code.
However, if your creator code is outside the ASCII 7-bit character range 0x20–0x7F, you need to use
a different 4-character code.

size
A pointer to a value that specifies the size of the buffer you have allocated for the extended print
settings data. On return, this variable contains the number of bytes read into the buffer or the size of
the extended data. You can pass the constant kPMDontWantSize if you do not need this information.
(See “Data Not Wanted Constants” (page 2279) for more information.)

extendedData
A pointer to a buffer to receive the extended data. Pass the constant kPMDontWantData if you do
not want to read the data. (See “Data Not Wanted Constants” (page 2279) for more information.)

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Your application typically needs to call PMGetPrintSettingsExtendedData two times in order to retrieve
the extended print settings data. The first time, pass the constant kPMDontWantData in the extendedData
parameter to obtain the buffer size required for the extended data. Then allocate the buffer and call the
function a second time to read the extended data into your buffer.

You may find it easier to use the functions PMPrintSettingsSetValue (page 2212) and
PMPrintSettingsGetValue (page 2210) to store and retrieve user-defined data in a print settings object. If
you use these functions, make sure that the custom keys you define for your private data do not conflict with
other print settings keys.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetPrintSettingsExtendedData (page 2261)

Declared In
PMCore.h

PMGetResolution
Obtains the current application’s drawing resolution. (Deprecated in Mac OS X v10.5. Draw using Quartz 2D
and call CGContextScaleCTM (page 105) instead.)

OSStatus PMGetResolution (
 PMPageFormat pageFormat,
 PMResolution *res
);

Parameters
pageFormat

The page format object whose drawing resolution you want to obtain.

res
A pointer to your PMResolution (page 2278) structure. On return, the structure contains the drawing
resolution of the current application.

Functions 2169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function obtains the drawing resolution specified in the page format, not the resolution of the current
printer. You can use PMPrinterGetPrinterResolutionCount (page 2199) and
PMPrinterGetIndexedPrinterResolution (page 2194) to examine the available printer resolutions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMGetScale
Obtains the scaling factor currently applied to the page and paper rectangles.

OSStatus PMGetScale (
 PMPageFormat pageFormat,
 double *scale
);

Parameters
pageFormat

The page format object whose scaling factor you want to obtain.

scale
A pointer to your double-precision variable. On return, the variable contains the scaling factor expressed
as a percentage. For example, a value of 100.0 means 100 percent (that is, no scaling); a value of 50.0
means 50 percent scaling.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSetScale (page 2263)

Declared In
PMCore.h

PMGetUnadjustedPageRect
Obtains the imageable area or page rectangle, unaffected by orientation, resolution, or scaling.

2170 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMGetUnadjustedPageRect (
 PMPageFormat pageFormat,
 PMRect *pageRect
);

Parameters
pageFormat

The page format object whose unadjusted page rectangle you want to obtain.

pageRect
A pointer to your PMRect (page 2277) data structure. On return, the structure contains the size of the
page rectangle, in points. The page rectangle is the area of the page to which an application can
draw. The coordinates for the upper-left corner of the page rectangle are (0,0). See Supporting Printing
in Your Carbon Application for more information on page and paper rectangles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMGetUnadjustedPaperRect
Obtains the paper rectangle, unaffected by rotation, resolution, or scaling.

OSStatus PMGetUnadjustedPaperRect (
 PMPageFormat pageFormat,
 PMRect *paperRect
);

Parameters
pageFormat

The page format object whose unadjusted paper rectangle you want to obtain.

paperRect
A pointer to your PMRect (page 2277) data structure. On return, the structure contains the physical size
of the paper, in points. The coordinates of the upper-left corner of the paper rectangle are specified
relative to the page rectangle. The coordinates of the upper-left corner of the page rectangle are
always (0,0), which means the coordinates of the upper-left corner of the paper rectangle are always
negative or (0,0). See Supporting Printing in Your Carbon Application for more information on page
and paper rectangles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

Functions 2171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMIsPostScriptDriver
Reports whether the current printer driver supports the PostScript language. (Deprecated in Mac OS X v10.4.
Use PMPrinterIsPostScriptCapable (page 2201) or PMPrinterIsPostScriptPrinter (page 2202)
instead.)

OSStatus PMIsPostScriptDriver (
 Boolean *isPostScript
);

Parameters
isPostScript

Returns true if the current printer driver supports PostScript.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin. In Mac OS X, PMIsPostScriptDriver always returns false.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMMakeOldPrintRecord
Creates an old-style print record from a PMPageFormat and a PMPrintSettings object. (Deprecated in
Mac OS X v10.4. There is no replacement; old-style print records are obsolete and serve no useful purpose
in Mac OS X.)

OSStatus PMMakeOldPrintRecord (
 PMPrintSettings printSettings,
 PMPageFormat pageFormat,
 Handle *printRecordHandle
);

Parameters
printSettings

A PMPrintSettings object.

pageFormat
A PMPageFormat object.

printRecordHandle
On return, a handle to a an old-style print record. Your application must dispose of this handle.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a page format and print settings object. Use PMMakeOldPrintRecord
to create a print record to store with your documents for compatibility with pre-Carbon versions of your
application. Note that because the page format and print settings objects contain more information than
the old-style print record, some settings may be lost in conversion.

2172 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMNewPageFormat
Creates a new PMPageFormat object. (Deprecated in Mac OS X v10.4. Use PMCreatePageFormat (page 2143)
instead.)

OSStatus PMNewPageFormat (
 PMPageFormat *pageFormat
);

Parameters
pageFormat

On return, an initialized PMPageFormat object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin. The function PMNewPageFormat allocates memory for a new PMPageFormat
object in your application’s memory space. The new page format object is empty until you set its values, or
until you call PMDefaultPageFormat or PMValidatePageFormat.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMNewPrintSettings
Creates a new PMPrintSettings object. (Deprecated in Mac OS X v10.4. Use
PMCreatePrintSettings (page 2144) instead.)

OSStatus PMNewPrintSettings (
 PMPrintSettings *printSettings
);

Parameters
printSettings

On return, an initialized PMPrintSettings object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Functions 2173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
Valid after calling PMBegin. The function PMNewPrintSettings allocates memory for a new
PMPrintSettings object in your application’s memory space. The new print settings object is empty until
you set its values, or until you call PMDefaultPrintSettings or PMValidatePrintSettings.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPageFormatCreateDataRepresentation
Creates a data representation of a page format object.

OSStatus PMPageFormatCreateDataRepresentation (
 PMPageFormat pageFormat,
 CFDataRef *data,
 PMDataFormat format
);

Parameters
pageFormat

The page format object to convert.

data
A pointer to your CFDataRef variable. On return, the variable refers to a new Core Foundation data
object that contains a representation of the specified page format object in the specified data format.
You are responsible for releasing the data object.

format
A constant that specifies the format of the data representation. Supported values are:

 ■ kPMDataFormatXMLDefault (compatible with all Mac OS X versions)

 ■ kPMDataFormatXMLMinimal (approximately 3-5 times smaller; compatible with Mac OS X v10.5
and later)

 ■ kPMDataFormatXMLCompressed (approximately 20 times smaller; compatible with Mac OS X
v10.5 and later)

See “Data Representation Formats” (page 2280) for a full description of these formats.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is typically used to convert a page format object into a data representation suitable for storage
in a user document. For information about using a Core Foundation data object, see CFData Reference.

Before calling this function, you should call the function PMSessionValidatePageFormat (page 2248) to
make sure the page format object contains valid values.

Availability
Available in Mac OS X v10.5 and later.

2174 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

See Also
PMPageFormatCreateWithDataRepresentation (page 2175)

Declared In
PMCore.h

PMPageFormatCreateWithDataRepresentation
Creates a page format object from a data representation.

OSStatus PMPageFormatCreateWithDataRepresentation (
 CFDataRef data,
 PMPageFormat *pageFormat
);

Parameters
data

The data representation of a page format object. The data representation must have been previously
created with the function PMPageFormatCreateDataRepresentation (page 2174).

pageFormat
A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a new page
format object that contains the information stored in the specified data object. You are responsible
for releasing the page format object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is typically used to convert a data representation stored in a user document back into a page
format object. For information about creating a Core Foundation data object from raw data, see CFData
Reference.

After calling this function, you should call the function PMSessionValidatePageFormat (page 2248) to make
sure the page format object contains valid values.

Availability
Available in Mac OS X v10.5 and later.

See Also
PMPageFormatCreateDataRepresentation (page 2174)

Declared In
PMCore.h

PMPageFormatGetPrinterID
Obtains the identifier of the formatting printer for a page format object.

Functions 2175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPageFormatGetPrinterID (
 PMPageFormat pageFormat,
 CFStringRef *printerID
);

Parameters
pageFormat

The page format object whose printer identifier you want to obtain.

printerID
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
that contains the identifier of the formatting printer for the specified page format object. If the page
format object does not have that information, the variable is set to NULL. You should not release the
string without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Page format objects can be created a number of different ways and some of them do not require a specific
printer. If the printer ID is known, the printer is displayed in the Page Setup dialog’s Format for pop-up menu.
If the printer ID is not known, the default formatting printer is the generic Any Printer. The printing system
provides default page and paper sizes for the generic printer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPaperCreate
Creates a paper object. (Deprecated in Mac OS X v10.5. Use PMPrinterGetPaperList (page 2198) to find
the built-in papers available for a given printer or use PMPaperCreateCustom (page 2177) to create a custom
paper.)

OSStatus PMPaperCreate (
 PMPrinter printer,
 CFStringRef id,
 CFStringRef name,
 double width,
 double height,
 const PMPaperMargins *margins,
 PMPaper *paperP
);

Parameters
printer

A printer object for which the paper is appropriate.

id
A unique identifier for this paper.

name
The name to display to the user for this paper.

2176 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

width
The width of the paper, in points.

height
The height of the paper, in points.

margins
A pointer to a PMPaperMargins (page 2276) structure that specifies the unprintable margins of the
paper, in points. The four values in the structure specify the top, left, bottom, and right imageable
area margins of the paper.

paperP
A pointer to your PMPaper (page 2275) variable. On return, the variable refers to a new paper object
with the specified attributes. You are responsible for releasing the paper object with the function
PMRelease (page 2214). The variable is set to NULL if the object could not be created.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function creates a paper object appropriate for the specified printer. To obtain one of the available
built-in paper sizes for a given printer, you should use the function PMPrinterGetPaperList (page 2198).

Special Considerations

This function creates a paper object but does not mark it as a custom paper, so it appears to the printing
system as if it were a built-in paper. This can be produce unpredictable results, so this function is deprecated.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMPaperCreateCustom
Creates a custom paper object.

OSStatus PMPaperCreateCustom (
 PMPrinter printer,
 CFStringRef id,
 CFStringRef name,
 double width,
 double height,
 const PMPaperMargins *margins,
 PMPaper *paperP
);

Parameters
printer

A printer for which the specified paper size is appropriate.

id
A unique identifier for this custom paper. For example, you could create a UUID string and use it as
the unique identifier.

Functions 2177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

name
The name to display to the user for this custom paper.

width
The width of the paper, in points.

height
The height of the paper, in points.

margins
A pointer to a PMPaperMargins (page 2276) structure that specifies the unprintable margins of the
paper, in points. The four values in the structure specify the top, left, bottom, and right imageable
area margins of the paper.

paperP
A pointer to your PMPaper (page 2275) variable. On return, the variable refers to a new custom paper
object. You are responsible for releasing the paper object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function creates a custom paper object appropriate for the specified printer. Custom papers are treated
differently than built-in papers by the printing system. To obtain one of the available built-in papers for a
given printer, you can use the function PMPrinterGetPaperList (page 2198).

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPaperCreateLocalizedName
Obtains the localized name for a given paper.

OSStatus PMPaperCreateLocalizedName (
 PMPaper paper,
 PMPrinter printer,
 CFStringRef *paperName
);

Parameters
paper

The paper whose localized name you want to obtain.

printer
The printer for which the localization should be performed.

paperName
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
that contains the localized name of the paper. This name is appropriate to display in the user interface.
If an error occurs, the variable is set to NULL. You are responsible for releasing the string.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

2178 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
Not all printers have the same way of referring to a given paper. Generally, if you want to obtain the name
of a paper, you want to localize the paper name for a particular printer. For example, if you were displaying
a list of papers for a given printer, you would want the paper names to be localized for that printer.

Special Considerations

In Mac OS X v10.5 and later, Apple recommends using this function instead of PMPaperGetName (page 2180).

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPaperGetHeight
Obtains the height of the sheet of paper represented by a paper object.

OSStatus PMPaperGetHeight (
 PMPaper paper,
 double *paperHeight
);

Parameters
paper

The paper whose height you want to obtain.

paperHeight
A pointer to your double-precision variable. On return, the variable contains the height of the specified
paper, in points.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPaperGetID
Obtains the identifier of a paper object.

OSStatus PMPaperGetID (
 PMPaper paper,
 CFStringRef *paperID
);

Parameters
paper

The paper whose identifier you want to obtain.

Functions 2179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

paperID
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the unique identifier for this paper. You should not release the string without first retaining
it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPaperGetMargins
Obtains the margins describing the unprintable area of the sheet represented by a paper object.

OSStatus PMPaperGetMargins (
 PMPaper paper,
 PMPaperMargins *paperMargins
);

Parameters
paper

The paper whose margins you want to obtain.

paperMargins
A pointer to your PMPaperMargins (page 2276) structure. On return, the structure contains the
unprintable margins of the specified paper, in points. The four values in the structure specify the top,
left, bottom, and right imageable area margins of the paper.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPaperGetName
Obtains the name for a given paper.

OSStatus PMPaperGetName (
 PMPaper paper,
 CFStringRef *paperName
);

Parameters
paper

The paper whose name you want to obtain.

2180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

paperName
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the name for this paper. This name identifies the paper in the user interface. You should
not release the string without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Special Considerations

This function does not necessarily return a paper name that’s localized for a given printer. In Mac OS X v10.5
and later, instead of using this function, Apple recommends using the function
PMPaperCreateLocalizedName (page 2178).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPaperGetPPDPaperName
Obtains the PPD paper name for a given paper.

OSStatus PMPaperGetPPDPaperName (
 PMPaper paper,
 CFStringRef *paperName
);

Parameters
paper

The paper whose PPD paper name you want to obtain.

paperName
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
that contains the PPD paper name for the specified paper. If an error occurs, the variable is set to
NULL. You should not release the string without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The Mac OS X printing system uses a PostScript Printer Description (PPD) file to describe a given printer and
print queue for that printer. The PPD paper name is the name that uniquely identifies a given paper for the
printer to which the paper corresponds. To obtain a list of papers for a given printer, use the function
PMPrinterGetPaperList (page 2198).

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

Functions 2181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPaperGetPrinterID
Obtains the printer ID of the printer to which a given paper corresponds.

OSStatus PMPaperGetPrinterID (
 PMPaper paper,
 CFStringRef *printerID
);

Parameters
paper

The paper whose printer ID you want to obtain.

printerID
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
that contains the printer ID for the specified paper. If an error occurs, the variable is set to NULL. You
should not release the string without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Not all papers have a printer ID associated with them. If the printer ID is known, the printer is displayed in
the Page Setup dialog’s Format for pop-up menu. If the printer ID is not known, the default formatting printer
is the generic Any Printer. The printing system provides default paper sizes for the generic printer.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPaperGetWidth
Obtains the width of the sheet of paper represented by a paper object.

OSStatus PMPaperGetWidth (
 PMPaper paper,
 double *paperWidth
);

Parameters
paper

The paper whose width you want to obtain.

paperWidth
A pointer to your double-precision variable. On return, the variable contains the width of the specified
paper, in points.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

2182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPaperIsCustom
Returns a Boolean value indicating whether a specified paper is a custom paper.

Boolean PMPaperIsCustom (
 PMPaper paper
);

Parameters
paper

The paper you’re querying to determine whether it’s a custom paper.

Return Value
If true, the specified paper is a custom paper; otherwise, false.

Discussion
You can create a custom paper with the function PMPaperCreateCustom (page 2177).

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPostScriptBegin
Puts the current driver into PostScript mode, ready to accept PostScript data instead of QuickDraw data.
(Deprecated in Mac OS X v10.4. Use PMPrinterPrintWithFile (page 2203),
PMPrinterPrintWithProvider (page 2204), or PMCGImageCreateWithEPSDataProvider (page 2139)
instead.)

OSStatus PMPostScriptBegin ();

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMBeginPage and PMEndPage. Call PMIsPostScriptDriver before calling
PMPostScriptBegin to ensure that the current driver supports PostScript data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPostScriptData
Passes PostScript data, referenced by a pointer, to the current printer driver. (Deprecated in Mac OS X v10.4.
Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

Functions 2183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPostScriptData (
 Ptr psPtr,
 Size len
);

Parameters
psPtr

A pointer to PostScript data.

len
The number of bytes of PostScript data to pass to the current driver.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMPostScriptBegin and PMPostScriptEnd.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPostScriptEnd
Restores the current driver to QuickDraw mode, ready to accept QuickDraw data instead of PostScript data.
(Deprecated in Mac OS X v10.4. Use PMPrinterPrintWithFile (page 2203),
PMPrinterPrintWithProvider (page 2204), or PMCGImageCreateWithEPSDataProvider (page 2139)
instead.)

OSStatus PMPostScriptEnd ();

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMBeginPage and PMEndPage. Call PMPostScriptEnd to complete a PostScript
session started with PMPostScriptBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPostScriptFile
Passes PostScript data, contained in a file, to the current printer driver. (Deprecated in Mac OS X v10.4. Use
PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

2184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPostScriptFile (
 FSSpec *psFile
);

Parameters
psFile

A file specification.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMPostScriptBegin and PMPostScriptEnd.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPostScriptHandle
Passes PostScript data, referenced by a handle, to the current printer driver. (Deprecated in Mac OS X v10.4.
Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

OSStatus PMPostScriptHandle (
 Handle psHandle
);

Parameters
psHandle

A reference to PostScript data.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid between calls to PMPostScriptBegin and PMPostScriptEnd.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMPresetCopyName
Obtains the localized name for a preset.

Functions 2185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPresetCopyName (
 PMPreset preset,
 CFStringRef *name
);

Parameters
preset

The preset object whose localized name you want to obtain. You can use the function
PMPrinterCopyPresets (page 2189) to obtain the presets for a given printer.

paperID
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the localized name of the specified preset. You are responsible for releasing the string.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPresetCreatePrintSettings
Creates a print settings object with settings that correspond to a preset.

OSStatus PMPresetCreatePrintSettings (
 PMPreset preset,
 PMPrintSession session,
 PMPrintSettings *printSettings
);

Parameters
preset

The preset whose settings you want to obtain. You can use the function
PMPrinterCopyPresets (page 2189) to obtain the presets for a given printer.

session
The session you use to present the Print dialog.

printSettings
A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a print
settings object with settings that correspond to the specified preset. You are responsible for releasing
the print settings object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

2186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPresetGetAttributes
Obtains the attributes of a preset.

OSStatus PMPresetGetAttributes (
 PMPreset preset,
 CFDictionaryRef *attributes
);

Parameters
preset

The preset whose attributes you want to obtain. You can use the function
PMPrinterCopyPresets (page 2189) to obtain the presets for a given printer.

attributes
A pointer to your CFDictionaryRef variable. On return, the variable refers to a Core Foundation
dictionary containing the attributes of the specified preset, or NULL if the attributes could not be
obtained. For more information about these attributes, see the Discussion. You should not release
this dictionary without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
A preset has associated with it a dictionary containing the preset identifier, the localized name, and a
description of the environment for which the preset is intended. In addition to these standard attributes, the
preset you specify may contain additional attributes that reflect custom print settings.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPrinterCopyDescriptionURL
Obtains the URL of the description file for a given printer.

OSStatus PMPrinterCopyDescriptionURL (
 PMPrinter printer,
 CFStringRef descriptionType,
 CFURLRef *fileURL
);

Parameters
printer

The printer whose description file you want to obtain.

descriptionType
A constant that specifies the desired printer description file type. Currently, you must pass the constant
kPMPPDDescriptionType.

fileURL
A pointer to your CFURLRef variable. On return, the variable refers to a Core Foundation URL that
specifies the location of the file that contains a description of the specified printer. You are responsible
for releasing the URL. If an error occurs, the variable is set to NULL.

Functions 2187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can use this function to locate the PostScript printer description (PPD) file for a printer.

Availability
Available in Mac OS X v10.4 and later.

Declared In
PMCore.h

PMPrinterCopyDeviceURI
Obtains the device URI of a given printer.

OSStatus PMPrinterCopyDeviceURI (
 PMPrinter printer,
 CFURLRef *deviceURI
);

Parameters
printer

The printer whose device URI you want to obtain.

deviceURI
A pointer to your CFURLRef variable. On return, the variable refers to a Core Foundation URL that
specifies the printer's device URI. You are responsible for releasing the URL. If an error occurs, the
variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The device URI of a printer describes how to communicate with the device. For some devices, it also includes
a unique identifier for the device.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterCopyHostName
Obtains the name of the server hosting the print queue for a given printer.

2188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPrinterCopyHostName (
 PMPrinter printer,
 CFStringRef *hostNameP
);

Parameters
printer

The printer whose print queue host name you want to obtain.

hostNameP
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the name of the specified printer’s server. You are responsible for releasing the string.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is typically used to obtain the name of the computer that hosts a shared printer, possibly for
display in a user interface. In Mac OS X v10.5 and later, the typical way that users browse and communicate
with a shared printer creates a local print queue and PMPrinterCopyHostName for such a print queue will
return the name of the local host.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPrinterCopyPresets
Obtains a list of print settings presets for a printer.

OSStatus PMPrinterCopyPresets (
 PMPrinter printer,
 CFArrayRef *presetList
);

Parameters
printer

The printer whose presets you want to obtain.

presetList
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array
containing the presets for the specified printer. Each element in the array is an object of type
PMPreset (page 2276). You are responsible for releasing the array.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
A printer may have associated with it a list of preset settings. Each setting is optimized for a particular printing
situation. This function returns all of the presets for a given printer. To obtain more information about a
particular preset, you can use the function PMPresetGetAttributes (page 2187). To create a print settings
object that contains the settings of a preset, call PMPresetCreatePrintSettings (page 2186).

Availability
Available in Mac OS X v10.3 and later.

Functions 2189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMPrinterCreateFromPrinterID
Creates a printer object from a print queue identifier.

PMPrinter PMPrinterCreateFromPrinterID (
 CFStringRef printerID
);

Parameters
printerID

The unique identifier of a print queue.

Return Value
A new printer object, or NULL if no print queue is available with the specified identifier. You are responsible
for releasing the printer object with the function PMRelease (page 2214).

Discussion
This function is typically used to re-create a printer object using the print queue ID obtained by a call to
PMPrinterGetID at an earlier time. If the print queue is deleted after obtaining the ID, this function returns
NULL for that ID.

Availability
Available in Mac OS X v10.4 and later.

See Also
PMPrinterGetID (page 2193)

Declared In
PMCore.h

PMPrinterGetCommInfo
Obtains information about the communication channel for a printer.

OSStatus PMPrinterGetCommInfo (
 PMPrinter printer,
 Boolean *supportsTransparentP,
 Boolean *supportsEightBitP
);

Parameters
printer

The printer whose information you want to obtain.

supportsTransparentP
A pointer to your Boolean variable. On return, true indicates that the communication channel to the
specified printer supports bytes in the range 0x0–0x1F; otherwise, false.

supportsEightBitP
A pointer to your Boolean variable. On return, true indicates that the communication channel to the
specified printer supports bytes in the range 0x80–0xFF; otherwise, false.

2190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is typically relevant only to PostScript printers. All PostScript printers, regardless of what
communications channel is used to send data to them, support data in the range 0x20–0x7F. Many
communications channels can support data outside this range. You can use this function to determine
whether the communications channel to the specified printer also supports bytes in the ranges 0x0–0x1F
and 0x80–0xFF.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPrinterGetDescriptionURL
Obtains a reference to the specified printer’s description file. (Deprecated in Mac OS X v10.4. Use
PMPrinterCopyDescriptionURL (page 2187) instead.)

OSStatus PMPrinterGetDescriptionURL (
 PMPrinter printer,
 CFStringRef descriptionType,
 CFURLRef *fileURL
);

Parameters
printer

The printer whose description file you want to obtain.

descriptionType
A Core Foundation string that specifies the type of description file for the selected printer. Currently,
there is only one type defined—kPMPPDDescriptionType.

fileURL
A pointer to your CFURLRef variable. On return, the variable refers to a URL for the printer’s description
file. In spite of the name, the function PMPrinterGetDescriptionURL has Create/Copy semantics
which means the caller must release the returned URL if it is not NULL and the result code noErr is
returned.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can use this function to obtain a reference to the PostScript printer description (PPD) file for a PostScript
printer.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

Functions 2191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrinterGetDeviceURI
Obtains a copy of a printer's device URI. (Deprecated in Mac OS X v10.4. Use PMPrinterCopyDeviceURI (page
2188) instead.)

OSStatus PMPrinterGetDeviceURI (
 PMPrinter printer,
 CFURLRef *deviceURI
);

Parameters
printer

The printer whose device URI you want to obtain.

deviceURI
A pointer to your CFURLRef variable. On return, the variable refers to a URI for the location of the
printer device. In spite of the name, this function has Create/Copy semantics which means the caller
must release the returned URL if it is not NULL and the result code noErr is returned.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMPrinterGetDriverCreator
Obtains the creator of the driver associated with the specified printer.

OSStatus PMPrinterGetDriverCreator (
 PMPrinter printer,
 OSType *creator
);

Parameters
printer

The printer whose driver creator you want to obtain.

creator
On return, the 4-byte creator code of the driver (for example, 'APPL' for an Apple printer driver).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is not recommended because it makes your application driver-dependent.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

2192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrinterGetDriverReleaseInfo
Obtains version information for the driver associated with the specified printer.

OSStatus PMPrinterGetDriverReleaseInfo (
 PMPrinter printer,
 VersRec *release
);

Parameters
printer

The printer whose driver version you want to obtain.

release
A pointer to your VersRec data structure. On return, the structure contains the driver’s short and
long version strings and country code.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is not recommended because it makes your application driver-dependent. If you do use this
function, you must call it between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMPrinterGetID
Returns the unique identifier of a printer.

CFStringRef PMPrinterGetID (
 PMPrinter printer
);

Parameters
printer

The printer whose identifier you want to obtain.

Return Value
The identifier of the specified printer. You should not release the string without first retaining it. If the specified
printer is not valid, this function returns NULL.

Discussion
You can use the function PMPrinterGetID to capture information about a printer for later use. To create a
printer object from a printer ID returned by this function, use the function
PMPrinterCreateFromPrinterID (page 2190).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Functions 2193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMPrinterGetIndexedPrinterResolution
Obtains a resolution setting based on an index into the range of settings supported by the specified printer.

OSStatus PMPrinterGetIndexedPrinterResolution (
 PMPrinter printer,
 UInt32 index,
 PMResolution *resolutionP
);

Parameters
printer

The printer whose resolution you want to obtain.

index
An index into the range of resolution settings supported by the specified printer. Index values begin
at 1.

res
A pointer to your PMResolution (page 2278) data structure. On return, the structure contains the
printer resolution setting associated with the index value.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. Before you call this function,
you must call the function PMPrinterGetPrinterResolutionCount (page 2199) to obtain the number of
resolution settings supported by the specified printer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMPrinterGetLanguageInfo
Obtains information about the imaging language for the specified printer.

OSStatus PMPrinterGetLanguageInfo (
 PMPrinter printer,
 PMLanguageInfo *info
);

Parameters
printer

The printer whose imaging language information you want to obtain.

2194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

info
A pointer to your PMLanguageInfo (page 2274) data structure. On return, the structure contains the
printer’s language level, version, and release information. The format of the returned data uses the
syntax of the PostScript language.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The function PMPrinterGetLanguageInfo is useful only for PostScript printers. You must call this function
between the creation and release of a printing session.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMPrinterGetLocation
Returns the location of a printer.

CFStringRef PMPrinterGetLocation (
 PMPrinter printer
);

Parameters
printer

The printer whose location you want to obtain.

Return Value
The location of the specified printer. You should not release the string without first retaining it. If the printer
is not valid, this function returns NULL.

Discussion
The location of a printer is specified when a user creates a print queue for the printer. In some cases, the
printing system automatically determines the location. For example, the location may be set to “Local Zone”.
The user creating the print queue can also set the location.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterGetMakeAndModelName
Obtains the manufacturer and model name of the specified printer.

Functions 2195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPrinterGetMakeAndModelName (
 PMPrinter printer,
 CFStringRef *makeAndModel
);

Parameters
printer

The printer whose manufacturer and model name you want to obtain.

makeAndModel
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the manufacturer and model name of the specified printer. You should not release the
string without first retaining it. If an error occurs, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterGetMimeTypes
Obtains a list of MIME content types supported by a printer using the specified print settings.

OSStatus PMPrinterGetMimeTypes (
 PMPrinter printer,
 PMPrintSettings settings,
 CFArrayRef *mimeTypes
);

Parameters
printer

The printer whose supported MIME types you want to obtain.

settings
The print settings for the print job. The print settings object contains the job destination, which affects
the available types. This parameter may be NULL.

mimeTypes
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array
containing the MIME types supported by the specified printer. Each element in the array is a Core
Foundation string. You should not release the array without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function retrieves the types of data that can be submitted to a printer with the specified print settings;
for example, application/pdf. This function is typically used in conjunction with the function
PMPrinterPrintWithFile (page 2203).

2196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPrinterGetName
Returns the human-readable name of a printer.

CFStringRef PMPrinterGetName (
 PMPrinter printer
);

Parameters
printer

The printer whose name you want to obtain.

Return Value
The name of the specified printer. This name identifies the printer in the user interface. You should not release
the string without first retaining it.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterGetOutputResolution
Obtains the printer hardware output resolution for the specified print settings.

OSStatus PMPrinterGetOutputResolution (
 PMPrinter printer,
 PMPrintSettings printSettings,
 PMResolution *resolutionP
);

Parameters
printer

The printer whose output resolution you want to obtain.

printSettings
The print settings you want to use.

resolutionP
A pointer to your PMResolution (page 2278) structure. On return, the structure contains the output
resolution of the specified printer in pixels per inch.

Return Value
A result code. If the resolution cannot be reliably determined, this function returns an error.

Functions 2197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
Some printers allow programmatic control of their hardware output resolution on a print job basis. The
hardware resolution is determined by the combination of printer and print settings used for the print job.
This function returns the best guess as to what printer resolution setting will be used for the destination
print job.

Most applications do not need to use this function because they draw the same content regardless of the
destination device. For those few applications that do adjust their drawing based on the output device, they
should only do so when the print job destination is kPMDestinationPrinter or kPMDestinationFax.
You can use the function PMSessionGetDestinationType to determine the destination for a print job.

This function should be used after displaying the Print dialog to the user so that it correctly reflects changes
in print settings performed prior to printing.

Availability
Available in Mac OS X v10.5 and later.

See Also
PMPrinterSetOutputResolution (page 2205)

Declared In
PMCore.h

PMPrinterGetPaperList
Obtains the list of papers available for a printer.

OSStatus PMPrinterGetPaperList (
 PMPrinter printer,
 CFArrayRef *paperList
);

Parameters
printer

The printer whose paper list you want to obtain.

paperList
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array
containing the paper list for the specified printer. Each element in the array is an object of type
PMPaper (page 2275). You should not release the array without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function obtains a list of the papers that a given printer claims to support. The paper list does not include
any custom paper sizes that may be available.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

2198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrinterGetPrinterResolution
Obtains a resolution setting for the specified printer. (Deprecated in Mac OS X v10.5. Use
PMPrinterGetPrinterResolutionCount (page 2199) and
PMPrinterGetIndexedPrinterResolution (page 2194) to examine the available printer resolutions.)

OSStatus PMPrinterGetPrinterResolution (
 PMPrinter printer,
 PMTag tag,
 PMResolution *res
);

Parameters
printer

The printer whose resolution you want to obtain.

tag
A tag that specifies the kind of resolution information you want to obtain (minimum, maximum,
default, and so forth). See “Tag Constants” (page 2295) for a description of the constants you can pass
in this parameter.

res
A pointer to your PMResolution (page 2278) data structure. On return, the structure contains the
resolution setting associated with the tag value.

Return Value
A result code. The result code kPMNotImplemented indicates that the printer driver does not support multiple
resolution settings.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMPrinterGetPrinterResolutionCount
Obtains the number of resolution settings supported by the specified printer.

OSStatus PMPrinterGetPrinterResolutionCount (
 PMPrinter printer,
 UInt32 *countP
);

Parameters
printer

The printer whose number of resolution settings you want to obtain.

count
A pointer to your UInt32 variable. On return, the variable contains the number of resolutions that
are supported for the specified printer.

Return Value
A result code. The result code kPMNotImplemented indicates that the printer driver does not support multiple
resolution settings.

Functions 2199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMPrinterGetState
Obtains the current state of the print queue for a printer.

OSStatus PMPrinterGetState (
 PMPrinter printer,
 PMPrinterState *state
);

Parameters
printer

The printer whose queue state you want to obtain.

state
A pointer to your PMPrinterState variable. On return, the variable contains a constant that indicates
the current state of the print queue for the specified printer. Supported values are:

 ■ kPMPrinterIdle (queue is idle)

 ■ kPMPrinterProcessing (queue is processing a job)

 ■ kPMPrinterStopped (queue is stopped)

See “Print Queue States” (page 2294) for a complete description of these constants.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterIsDefault
Returns a Boolean value indicating whether a printer is the default printer for the current user.

Boolean PMPrinterIsDefault (
 PMPrinter printer
);

Parameters
printer

The printer you’re querying to determine whether it is the default printer.

Return Value
If true, the specified printer is the default printer for the current user; otherwise, false.

2200 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
The default printer is the printer selected by default in the Print dialog.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterIsFavorite
Returns a Boolean value indicating whether a printer is in the user’s list of favorite printers.

Boolean PMPrinterIsFavorite (
 PMPrinter printer
);

Parameters
printer

The printer you’re looking for in the favorite printer list.

Return Value
If true, the specified printer is in the user’s list of favorite printers; otherwise, false.

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterIsPostScriptCapable
Returns a Boolean value indicating whether a printer is PostScript capable.

Boolean PMPrinterIsPostScriptCapable (
 PMPrinter printer
);

Parameters
printer

The printer you’re querying to determine whether it’s PostScript capable.

Return Value
If true, the specified printer is a PostScript capable printer; otherwise, false.

Discussion
A printer that is PostScript capable is not necessarily a PostScript printer. The Mac OS X printing system can
render PostScript content on non-PostScript printers.

Functions 2201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
PMCore.h

PMPrinterIsPostScriptPrinter
Determines whether a printer is a PostScript printer.

OSStatus PMPrinterIsPostScriptPrinter (
 PMPrinter printer,
 Boolean *isPSPrinter
);

Parameters
printer

The printer you’re querying to determine whether it’s a PostScript printer.

isPSPrinter
A pointer to your Boolean variable. On return, true indicates that the specified printer is a PostScript
printer; otherwise, false.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
A printer is a PostScript printer if the printer driver takes PostScript directly.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPrinterIsRemote
Indicates whether a printer is hosted by a remote print server.

OSStatus PMPrinterIsRemote (
 PMPrinter printer,
 Boolean *isRemoteP
);

Parameters
printer

The printer you’re querying to determine whether it is hosted by a remote print server.

isRemoteP
A pointer to your Boolean variable. On return, true indicates that the printer is hosted by a remote
print server; otherwise, false.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

2202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
If this function returns true, the printer is hosted by a remote print server and the printer can be considered
a shared printer.

In Mac OS X, the typical way that users create a print queue for a shared printer is by browsing. Print queues
for shared printers that are created by browsing are marked as remote queues, and PMPrinterIsRemote
returns true for such printers. However, expert users can create a local queue for a remote printer manually,
and such a printer does not appear to be remote printer.

Whether a printer is remote is derived from the CUPS printer-type attribute for the print queue.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMPrinterPrintWithFile
Submits a print job to a specified printer using a file that contains print data.

OSStatus PMPrinterPrintWithFile (
 PMPrinter printer,
 PMPrintSettings settings,
 PMPageFormat format,
 CFStringRef mimeType,
 CFURLRef fileURL
);

Parameters
printer

The destination printer.

settings
The print settings for the print job.

format
The physical page size and orientation with which the document should be printed. This parameter
can be NULL.

mimeType
The MIME type of the data to be printed. If this parameter is NULL, the MIME type will be determined
automatically. You can obtain a list of the MIME types supported by a given printer using the function
PMPrinterGetMimeTypes (page 2196).

fileURL
The URL of the file that supplies the print data.

Return Value
A result code. See “Core Printing Result Codes” (page 2298). If the specified printer cannot handle the file's
MIME type, a non-zero error code is returned.

Functions 2203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
This function can fail if the specified printer cannot handle the file’s MIME type. Use the function
PMPrinterGetMimeTypes (page 2196) to check whether a MIME type is supported.

Availability
Available in Mac OS X v10.3 and later.

See Also
PMPrinterPrintWithProvider (page 2204)

Declared In
PMCore.h

PMPrinterPrintWithProvider
Submits a print job to a specified printer using a Quartz data provider to obtain the print data.

OSStatus PMPrinterPrintWithProvider (
 PMPrinter printer,
 PMPrintSettings settings,
 PMPageFormat format,
 CFStringRef mimeType,
 CGDataProviderRef provider
);

Parameters
printer

The destination printer.

settings
The print settings for the print job.

format
The physical page size and orientation with which the document should be printed. This parameter
can be NULL.

mimeType
The MIME type of the data to be printed. This parameter cannot be NULL. If you want automatic
typing, use the function PMPrinterPrintWithFile (page 2203) instead. You can obtain a list of the
MIME types supported by a given printer using the function PMPrinterGetMimeTypes (page 2196).

provider
The data provider that supplies the print data.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function can fail if the specified printer cannot handle the data provider’s MIME type. Use the function
PMPrinterGetMimeTypes (page 2196) to check whether a MIME type is supported.

Special Considerations

In Mac OS X v10.4 and earlier, this function is not implemented and returns the error code –1 when called.
You can write your print data to a file and use PMPrinterPrintWithFile instead.

Availability
Available in Mac OS X v10.3 and later.

2204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

See Also
PMPrinterPrintWithFile (page 2203)

Declared In
PMCore.h

PMPrinterSetDefault
Sets the default printer for the current user.

OSStatus PMPrinterSetDefault (
 PMPrinter printer
);

Parameters
printer

The printer to set as the default printer.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The default printer is the printer selected by default in the Print dialog.

This function is rarely used. Most applications do not set the default printer directly, but instead let the user
choose the default printer in the Print & Fax preference pane of System Preferences.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPrinterSetOutputResolution
Sets the print settings to reflect the specified printer hardware output resolution.

OSStatus PMPrinterSetOutputResolution (
 PMPrinter printer,
 PMPrintSettings printSettings,
 const PMResolution *resolutionP
);

Parameters
printer

The printer whose output resolution you want to change.

printSettings
The print settings object used for the print job.

resolutionP
A pointer to a PMResolution (page 2278) structure that specifies the desired resolution in pixels per
inch.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Functions 2205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
Some printers allow programmatic control of their hardware output resolution on a print job basis. The
hardware resolution is determined by the combination of printer and print settings used for the print job.
This function configures the print settings to the closest resolution setting that can be used for the destination
print job. Note that not all printers allow control of their resolution setting.

This function is rarely used. Most applications do not set the output resolution but instead use the setting
supplied by the user in the Print dialog.

Availability
Available in Mac OS X v10.5 and later.

See Also
PMPrinterGetOutputResolution (page 2197)

Declared In
PMCore.h

PMPrinterWritePostScriptToURL
Converts an input file of the specified MIME type to printer-ready PostScript for a destination printer.

OSStatus PMPrinterWritePostScriptToURL (
 PMPrinter printer,
 PMPrintSettings settings,
 PMPageFormat format,
 CFStringRef mimeType,
 CFURLRef sourceFileURL,
 CFURLRef destinationFileURL
);

Parameters
printer

The destination printer for which printer-ready PostScript will be generated.

settings
The print settings for the print job.

format
The page format specifying the physical page size and orientation on which the document should
be printed.

mimeType
The MIME type of the file to be printed. If you pass NULL, the file is typed automatically. You can
obtain a list of the MIME types supported by a given printer using the function
PMPrinterGetMimeTypes (page 2196).

sourceFileURL
A URL specifying the input file to be converted to printer-ready PostScript data. Only file-based URLs
are supported.

destinationFileURL
A URL specifying the destination file to be created. If the file already exists, it will be overwritten. Only
file-based URLs are supported.

2206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. If the printing system cannot convert the input MIME type to PostScript, this function fails and
returns an error.

Discussion
This function is synchronous; the conversion of the input file to PostScript is performed before the function
returns. This can take a significant amount of time for longer documents. You may want to perform this
operation on a thread other than the main application thread or fork a separate process for this purpose.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPrintSettingsCopyAsDictionary
Creates a dictionary that contains the settings in a print settings object.

OSStatus PMPrintSettingsCopyAsDictionary (
 PMPrintSettings printSettings,
 CFDictionaryRef *settingsDictionary
);

Parameters
printSettings

The print settings object with the desired settings.

settingsDictionary
A pointer to your CFDictionaryRef variable. On return, the variable refers to a Core Foundation
dictionary that contains the settings in the specified print settings object. Some of the keys in this
dictionary are currently defined in PMTicket.h; other keys are user-defined. You are responsible for
releasing the dictionary. If an error occurs, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Most developers have no need to use this function. However, one way this function might be useful would
be to enumerate all the entries in a print settings object for inspection.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPrintSettingsCopyKeys
Obtains the keys for items in a print settings object.

Functions 2207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPrintSettingsCopyKeys (
 PMPrintSettings printSettings,
 CFArrayRef *settingsKeys
);

Parameters
printSettings

The print settings object with the desired keys.

settingsKeys
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array that
contains the keys for items in the specified print settings object. Each of these keys may be passed
to the function PMPrintSettingsGetValue to obtain a value. You are responsible for releasing the
array. If an error occurs, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function provides an array of the keys in a print settings object. You could get the values for the keys in
the array with PMPrintSettingsGetValue (page 2210), or use the keys to look up the values in the dictionary
returned by PMPrintSettingsCopyAsDictionary (page 2207).

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMPrintSettingsCreateDataRepresentation
Creates a data representation of a print settings object.

OSStatus PMPrintSettingsCreateDataRepresentation (
 PMPrintSettings printSettings,
 CFDataRef *data,
 PMDataFormat format
);

Parameters
printSettings

The print settings object to convert.

data
A pointer to your CFDataRef variable. On return, the variable refers to a new Core Foundation data
object that contains a representation of the specified print settings object in the specified data format.
You are responsible for releasing the data object.

2208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

format
A constant that specifies the format of the data representation. Supported values are:

 ■ kPMDataFormatXMLDefault (compatible with all Mac OS X versions)

 ■ kPMDataFormatXMLMinimal (approximately 3-5 times smaller; compatible with Mac OS X v10.5
and later)

 ■ kPMDataFormatXMLCompressed (approximately 20 times smaller; compatible with Mac OS X
v10.5 and later)

See “Data Representation Formats” (page 2280) for a full description of these formats.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is typically used to convert a print settings object into a data representation suitable for storage
in a user document. For information about using a Core Foundation data object, see CFData Reference.

Before calling this function, you should call the function PMSessionValidatePrintSettings (page 2249)
to make sure the print settings object contains valid values.

Apple recommends that you do not reuse the print settings information if the user prints the document
again. The information supplied by the user in the Print dialog should pertain to the document only while
the document prints, so there is no need to save the print settings object.

Availability
Available in Mac OS X v10.5 and later.

See Also
PMPrintSettingsCreateWithDataRepresentation (page 2209)

Declared In
PMCore.h

PMPrintSettingsCreateWithDataRepresentation
Creates a print settings object from a data representation.

OSStatus PMPrintSettingsCreateWithDataRepresentation (
 CFDataRef data,
 PMPrintSettings *printSettings
);

Parameters
data

The data representation of a print settings object. The data representation must have been previously
created with the function PMPrintSettingsCreateDataRepresentation (page 2208).

printSettings
A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a new print
settings object that contains the printing information stored in the specified data object. You are
responsible for releasing the print settings object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Functions 2209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
This function is typically used to convert a data representation stored in a user document back into a print
settings object. For information about creating a Core Foundation data object from raw data, see CFData
Reference.

After calling this function, you should call the function PMSessionValidatePrintSettings (page 2249) to
make sure the print settings object contains valid values.

Availability
Available in Mac OS X v10.5 and later.

See Also
PMPrintSettingsCreateDataRepresentation (page 2208)

Declared In
PMCore.h

PMPrintSettingsGetJobName
Obtains the name of a print job.

OSStatus PMPrintSettingsGetJobName (
 PMPrintSettings printSettings,
 CFStringRef *name
);

Parameters
printSettings

The print settings for the current print job.

name
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
containing the name of the print job. This is the same job name you set using the function
PMPrintSettingsSetJobName (page 2211). You should not release the string without first retaining
it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.

See Also
PMPrintSettingsSetJobName (page 2211)

Declared In
PMCore.h

PMPrintSettingsGetValue
Obtains the value of a setting in a print settings object.

2210 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPrintSettingsGetValue (
 PMPrintSettings printSettings,
 CFStringRef key,
 CFTypeRef *value
);

Parameters
printSettings

The print settings object you want to access.

key
A string constant that specifies the key for the desired setting. Some keys are currently defined in
PMTicket.h; other keys are user-defined.

value
A pointer to your Core Foundation variable. On return, the variable refers to a Core Foundation object
that corresponds to the specified key. If no corresponding object exists, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function, together with the function PMPrintSettingsSetValue, makes it possible to access print
settings directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
PMPrintSettingsSetValue (page 2212)

Declared In
PMCore.h

PMPrintSettingsSetJobName
Specifies the name of a print job.

OSStatus PMPrintSettingsSetJobName (
 PMPrintSettings printSettings,
 CFStringRef name
);

Parameters
printSettings

The print settings object whose job name you want to set.

name
The new name for the print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Functions 2211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
If you’re using the Print dialog, you should call this function before presenting the dialog. You are strongly
encouraged to create a print job name that’s meaningful to the user and use this function to set the name;
this produces the best user experience. If you do not specify the print job name, the printing system creates
an appropriate job name for you.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.4 and later.

See Also
PMPrintSettingsGetJobName (page 2210)

Declared In
PMCore.h

PMPrintSettingsSetValue
Stores the value of a setting in a print settings object.

OSStatus PMPrintSettingsSetValue (
 PMPrintSettings printSettings,
 CFStringRef key,
 CFTypeRef value,
 Boolean locked
);

Parameters
printSettings

The print settings object you want to update.

key
A string constant that specifies the key for the desired setting. Some keys are currently defined in
PMTicket.h; other keys are user-defined.

value
A Core Foundation object that corresponds to the specified key. If you pass NULL, any existing setting
for the specified key is removed.

locked
If true, the item being set should be locked; otherwise, false. Currently, you should always pass
false.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function makes it possible to add, change, or remove print settings directly. Print settings are stored as
key-value pairs. The keys are Core Foundation strings and the corresponding values are Core Foundation
objects.

You can use this function to store user-defined data in a print settings object. You should make sure that the
custom keys you define for your private data do not conflict with any other keys in the object. Each data
item you store needs to be a Core Foundation object. You can use the function PMPrintSettingsGetValue
to retrieve your private data.

2212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

If you call this function after initiating a print job (for example, by calling PMSessionBeginCGDocument),
the change is ignored for the current job.

Availability
Available in Mac OS X v10.4 and later.

See Also
PMPrintSettingsGetValue (page 2210)

Declared In
PMCore.h

PMPrintSettingsToOptions
Converts print settings into a CUPS options string.

OSStatus PMPrintSettingsToOptions (
 PMPrintSettings settings,
 char **options
);

Parameters
settings

The print settings to convert.

options
A pointer to a C string. On return, a CUPS options string describing the print settings, or NULL if the
print settings could not be converted. The function allocates storage for the string. You are responsible
for freeing the storage.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function creates a CUPS options string that captures the data in the specified print settings object. In
Mac OS X v10.5 and later, Apple recommends that you use the
PMPrintSettingsToOptionsWithPrinterAndPageFormat (page 2213) function instead.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

PMPrintSettingsToOptionsWithPrinterAndPageFormat
Converts print settings and page format data into a CUPS options string for a specified printer.

Functions 2213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMPrintSettingsToOptionsWithPrinterAndPageFormat (
 PMPrintSettings settings,
 PMPrinter printer,
 PMPageFormat pageFormat,
 char **options
);

Parameters
settings

The print settings to convert.

printer
The printer to use for converting the print settings. This parameter must not be NULL.

pageFormat
The page format to convert, or NULL to specify default page format data.

options
A pointer to a C string. On return, a CUPS option string with the specified print settings and page
format data, or NULL if the data could not be converted. The function allocates storage for the string.
You are responsible for freeing the storage.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function creates a CUPS options string for the destination printer that captures the data in the specified
print settings and page format objects. For example, you could pass this string to the function
PMWorkflowSubmitPDFWithOptions (page 2271) to submit a PDF file for workflow processing. You could
also use the options string to run a CUPS filter directly.

Availability
Available in Mac OS X v10.5 and later.

Declared In
PMCore.h

PMRelease
Releases a printing object by decrementing its reference count.

OSStatus PMRelease (
 PMObject object
);

Parameters
object

The printing object you want to release.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Your application should use the PMRelease function to release any printing objects it creates or retains.
When an object’s reference count reaches 0, the object is deallocated.

2214 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

For example, to terminate a printing session created with the function PMCreateSession (page 2145), pass
the associated PMPrintSession (page 2277) object to PMRelease. To release printing objects created with
the functionsPMCreatePageFormat (page 2143) andPMCreatePrintSettings (page 2144), pass the associated
PMPageFormat and PMPrintSettings objects to PMRelease.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMRetain (page 2215)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMRetain
Retains a printing object by incrementing its reference count.

OSStatus PMRetain (
 PMObject object
);

Parameters
object

The printing object you want to retain.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You should retain a printing object when you receive it from elsewhere (that is, you did not create or copy
it) and you want it to persist. If you retain a printing object, you are responsible for releasing it. (See
PMRelease.) You can use the function PMRetain to increment a printing object’s reference count so that
multiple threads or routines can use the object without the risk of another thread or routine deallocating
the object.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMRelease (page 2214)

Declared In
PMCore.h

PMServerCreatePrinterList
Creates a list of printers available to a print server.

Functions 2215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMServerCreatePrinterList (
 PMServer server,
 CFArrayRef *printerList
);

Parameters
server

The print server whose printers you want to obtain. To specify the local print server, pass the constant
kPMServerLocal. Currently, you may specify only the local print server.

printerList
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array
containing the printers available to the specified print server. Each element in the array is a PMPrinter
object. You are responsible for releasing the array.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.2 and later.

Related Sample Code
PMPrinterTest

Declared In
PMCore.h

PMServerLaunchPrinterBrowser
Launches the printer browser to browse the printers available for a print server.

OSStatus PMServerLaunchPrinterBrowser (
 PMServer server,
 CFDictionaryRef options
);

Parameters
server

The print server to browse. Pass kPMServerLocal to specify the local print server. Currently, you
may specify only the local print server.

options
This parameter is reserved for future use. At the present time, pass NULL. Passing NULL presents the
printer browser in the default fashion.

Return Value
A result code. See “Core Printing Result Codes” (page 2298). If you specify a server whose printers cannot be
browsed, this function returns the error code kPMInvalidParameter.

Discussion
This function displays the standard printer browser to allow the user to create a new print queue.

Availability
Available in Mac OS X v10.5 and later.

2216 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMSessionBeginCGDocumentNoDialog
Begins a print job that draws into a Quartz graphics context and suppresses the printing status dialog.

OSStatus PMSessionBeginCGDocumentNoDialog (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat
);

Parameters
printSession

The printing session that provides a context for the new print job.

printSettings
The print settings to use for the new print job.

pageFormat
The page format to use for the new print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function starts a print job that draws directly into a Quartz graphics context and should be called within
your application’s print loop. This function is similar to the function PMSessionBeginCGDocument except
that the printing status dialog is suppressed.

You must call PMSessionBeginCGDocumentNoDialog between the creation and release of a printing
session. See the function PMCreateSession (page 2145). If you present a printing dialog before you call
PMSessionBeginCGDocumentNoDialog, when calling this function you should use the same
PMPrintSession (page 2277) object you used to present the dialog.

Before you call PMSessionBeginCGDocumentNoDialog, you should call
PMSessionValidatePrintSettings (page 2249) and PMSessionValidatePageFormat (page 2248) to
make sure the specified print settings and page format objects are updated and valid. After you call
PMSessionBeginCGDocumentNoDialog, if you call a function that changes the specified print settings or
page format object, the change is ignored for the current print job.

During the print job, the caller cannot obtain a Quickdraw graphics port for the printing session but can only
obtain a Quartz graphics context. As a result, this function should be used in conjunction with
PMSessionGetCGGraphicsContext (page 2230) instead ofPMSessionGetGraphicsContext (page 2234).

This function must be called before its correspondingEnd function (PMSessionEndDocumentNoDialog (page
2227)). If the function PMSessionBeginCGDocumentNoDialog returns noErr, you must later call the End
function, even if errors occur within the scope of the Begin and End functions.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Availability
Available in Mac OS X v10.4 and later.

Functions 2217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMSessionBeginDocumentNoDialog
Begins a print job that, by default, draws into a QuickDraw graphics port, and suppresses the printing status
dialog. (Deprecated in Mac OS X v10.5. Use PMSessionBeginCGDocumentNoDialog (page 2217) instead.)

OSStatus PMSessionBeginDocumentNoDialog (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat
);

Parameters
printSession

The printing session that provides a context for the new print job.

printSettings
The print settings to use for the new print job.

pageFormat
The page format to use for the new print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The function PMSessionBeginDocumentNoDialog starts a print job and should be called within your
application’s print loop. This function is similar to the function PMSessionBeginDocument except that the
printing status dialog is suppressed.

You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). If you present a printing dialog before you call
PMSessionBeginDocumentNoDialog, when calling this function you should use the same
PMPrintSession (page 2277) object you used to present the dialog.

Before you call PMSessionBeginDocumentNoDialog, you should call
PMSessionValidatePrintSettings (page 2249) and PMSessionValidatePageFormat (page 2248) to
make sure the specified print settings and page format objects are updated and valid. After you call
PMSessionBeginDocumentNoDialog, if you call a function that changes the specified print settings or
page format object, the change is ignored for the current print job.

This function must be called before its correspondingEnd function (PMSessionEndDocumentNoDialog (page
2227)). If the function PMSessionBeginDocumentNoDialog returns noErr, you must call the End function,
even if errors occur within the scope of the Begin and End functions.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Special Considerations

In Mac OS X v10.4 and later, Apple recommends using the function
PMSessionBeginCGDocumentNoDialog (page 2217) instead of this function. QuickDraw is deprecated and
your application should be using Quartz 2D for its rendering.

2218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionBeginPageNoDialog
Starts a new page for printing in the specified printing session and suppresses the printing status dialog.

OSStatus PMSessionBeginPageNoDialog (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 const PMRect *pageFrame
);

Parameters
printSession

The printing session that provides a context for the print job.

pageFormat
The page format for the new page. If you pass NULL, the printing system uses the page format you
passed to PMSessionBeginCGDocumentNoDialog (page 2217).

pageFrame
You should pass NULL, as this parameter is currently unsupported.

Return Value
A result code. If the user cancels the print job, this function returns kPMCancel.

Discussion
This function is similar to the function PMSessionBeginPage except that the function
PMSessionBeginPageNoDialog suppresses the printing status dialog. You must call this function between
the creation and release of a printing session. See the function PMCreateSession (page 2145). You must call
the functions PMSessionBeginPageNoDialog and PMSessionEndPageNoDialog (page 2228) within the
scope of calls to the Begin print job function (PMSessionBeginCGDocumentNoDialog (page 2217)) and the
End print job function (PMSessionEndDocumentNoDialog (page 2227)).

You should call the function PMSessionError (page 2229) immediately before you call
PMSessionBeginPageNoDialog. If PMSessionError returns an error, then you should not call the function
PMSessionBeginPageNoDialog. Because PMSessionBeginPage also initializes the printing graphics
context, your application should not make assumptions about the state of the context (for example, the
current font) between successive pages. After each call to PMSessionBeginPageNoDialog, your application
should call PMSessionGetCGGraphicsContext (page 2230) to obtain the current printing context.

If the function PMSessionBeginPageNoDialog returns noErr, you must later call the function
PMSessionEndPageNoDialog, even if errors occur within the scope of PMSessionBeginPageNoDialog
and PMSessionEndPageNoDialog.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Functions 2219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Special Considerations

Prior to Mac OS X v10.5, the pageFormat parameter is ignored. In Mac OS X v10.5 and later, the printing
system supports multiple orientations within a print job. When you call this function and supply a page
format, the orientation specified in the page format is used for the current page. Other settings in the page
format, such as paper size or scaling, are ignored.

Availability
Available in Mac OS X v10.2 and later.

Declared In
PMCore.h

PMSessionConvertOldPrintRecord
Creates new page format and print settings objects from an old-style print record created for the classic
Printing Manager. (Deprecated in Mac OS X v10.4. There is no replacement; during the transition from Mac
OS 9 to Mac OS X, this function facilitated the migration of print records saved in documents created in Mac
OS 9, but the function no longer serves any useful purpose in Mac OS X.)

OSStatus PMSessionConvertOldPrintRecord (
 PMPrintSession printSession,
 Handle printRecordHandle,
 PMPrintSettings *printSettings,
 PMPageFormat *pageFormat
);

Parameters
printSession

The current printing session.

printRecordHandle
A handle to an old-style print record created by the classic Printing Manager. You are responsible for
disposing of the handle.

printSettings
On return, a print settings object that contains values converted from the print record. You are
responsible for releasing the print settings object with the function PMRelease (page 2214).

pageFormat
On return, a page format object that contains values converted from the print record. You are
responsible for releasing the page format object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

You can use PMSessionConvertOldPrintRecord to create page format and print settings objects from
old-style print records stored in documents created by pre-Carbon versions of your application. You should
validate the page format and print settings objects returned to you by calling the functions
PMSessionValidatePageFormat and PMSessionValidatePrintSettings. Note that perfect translation
between the old and new style objects is not achievable.

In Mac OS X, the function assumes the print record to be converted is a LaserWriter 8 print record.

2220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Special Considerations

If you need to convert a Mac OS 9 print record into data you can use in Mac OS X, you should extract the
page size data from the print record and use the function PMCreatePageFormatWithPMPaper (page 2144)
to create a PMPageFormat object that corresponds to that data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionCopyDestinationFormat
Obtains the destination format for a print job.

OSStatus PMSessionCopyDestinationFormat (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 CFStringRef *destFormatP
);

Parameters
printSession

The printing session that provides a context for the print job.

printSettings
The print settings object for the print job whose destination format you want to obtain.

destFormatP
A pointer to your CFStringRef variable. On return, the variable refers to a Core Foundation string
that contains the destination format for the print job. You are responsible for releasing the string.
Currently, there are two possible values: kPMDocumentFormatPDF or
kPMDocumentFormatPostScript.

If an error occurs, the variable is set to NULL. If the function executes without error and the variable
is set to NULL, the print job is set to use the default destination format.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMSessionCopyDestinationLocation
Obtains a destination location for a print job.

Functions 2221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSessionCopyDestinationLocation (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 CFURLRef *destLocationP
);

Parameters
printSession

The printing session that provides a context for the print job.

printSettings
The print settings for the print job whose destination location you want to obtain.

destLocationP
A pointer to your CFURLRef variable. On return, the variable refers to a Core Foundation URL that
specifies the destination location of the print job. You are responsible for releasing the URL. If NULL
is returned and the function executes without error (result code is noErr), the print job uses the
default destination location for the current destination type. If an error occurs, the variable is set to
NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Some destination types define a specific kind of destination location for a print job. For example, the
destination type kPMDestinationFile uses a file system URL to specify where a new file should be created
for the print job’s output.

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMSessionCopyOutputFormatList
Obtains an array of destination formats supported by the current print destination.

OSStatus PMSessionCopyOutputFormatList (
 PMPrintSession printSession,
 PMDestinationType destType,
 CFArrayRef *documentFormatP
);

Parameters
printSession

The printing session that provides a context for the print job. The printer associated with this session
is queried for the MIME types it supports.

destType
A destination type that specifies the destination for which you want to obtain valid destination formats.
See “Destination Types” (page 2281) for a list of the possible destination types a print job can have.

2222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

documentFormatP
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array that
contains a list of destination formats that can be generated for the current print destination. See
“Document Format Strings” (page 2282) for a list of some of the output formats that can be returned.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMSessionCreatePageFormatList
Obtains a list of page format objects, each of which describes a paper size available on the specified printer.

OSStatus PMSessionCreatePageFormatList (
 PMPrintSession printSession,
 PMPrinter printer,
 CFArrayRef *pageFormatList
);

Parameters
printSession

The current printing session.

printer
The printer whose list of page sizes you want to enumerate.

pageFormatList
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array that
contains the page format (PMPageFormat) objects associated with the specified printer. You are
responsible for releasing the array. Each page format object describes a paper size available for the
specified printer. If the function fails, then on return the array is NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

You can use this function to find the available sheet sizes (and the imageable area for them) for a given
printer. After you obtain the page format list, you can call the function PMGetUnadjustedPaperRect (page
2171) for each page format object in the list to obtain the sheet rectangle size. Once you find the paper size
you want, call PMGetUnadjustedPageRect (page 2170) to obtain the imageable area for that paper size.

Availability
Available in Mac OS X v10.1 and later.

Functions 2223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMSessionCreatePrinterList
Creates a list of printers available in the specified printing session.

OSStatus PMSessionCreatePrinterList (
 PMPrintSession printSession,
 CFArrayRef *printerList,
 CFIndex *currentIndex,
 PMPrinter *currentPrinter
);

Parameters
printSession

The printing session whose printer list you want to obtain.

printerList
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array
containing a list of printers available in the specified printing session. Each element in the array is a
Core Foundation string that contains a printer’s name as shown in the user interface. You are
responsible for releasing the array.

currentIndex
A pointer to your CFIndex variable. On return, the variable contains a value specifying where the
current printer is in the printer list.

currentPrinter
A pointer to your PMPrinter (page 2276) variable. On return, the variable refers to a printer object
that represents the current printer. You should not release the printer object without first retaining
it. If the printer is the generic printer, the variable is set to NULL.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

You can call the function PMSessionCreatePrinterList to obtain a valid printer name to pass to the
function PMSessionSetCurrentPrinter.

Special Considerations

In Mac OS X v10.2 and later, Apple recommends using the function PMServerCreatePrinterList (page
2215) instead. PMServerCreatePrinterList doesn’t require a PMSession object; it can be called at any
time. It also works directly with PMPrinter objects.

Availability
Available in Mac OS X v10.1 and later.

See Also
PMServerCreatePrinterList (page 2215)

Declared In
PMCore.h

2224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionDefaultPageFormat
Assigns default parameter values to a page format object used in the specified printing session.

OSStatus PMSessionDefaultPageFormat (
 PMPrintSession printSession,
 PMPageFormat pageFormat
);

Parameters
printSession

The printing session for the specified page format object.

pageFormat
The page format object to which you want to assign default values.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call the function PMSessionDefaultPageFormat between the creation and release of the printing
session. See the function PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSessionDefaultPrintSettings
Assigns default parameter values to a print settings object for the specified printing session.

OSStatus PMSessionDefaultPrintSettings (
 PMPrintSession printSession,
 PMPrintSettings printSettings
);

Parameters
printSession

The printing session for the specified print settings object.

printSettings
The print settings object to which you want to assign default values.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call the function PMSessionDefaultPrintSettings between the creation and release of a
printing session. See the function PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

Functions 2225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSessionDisableColorSync
Disables use of a custom ColorSync profile previously enabled by the function PMSessionEnableColorSync
 (page 2226). (Deprecated in Mac OS X v10.5. There is no replacement; draw using Quartz 2D instead.)

OSStatus PMSessionDisableColorSync (
 PMPrintSession printSession
);

Parameters
printSession

The printing session whose page-specific ColorSync profile you want to disable.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call the PMSessionDisableColorSync function between the creation and release of a printing
session. See the function PMCreateSession (page 2145). You must call this function within the scope of calls
to the functions PMSessionBeginPage and PMSessionEndPage.

The function PMSessionDisableColorSync applies only to the current page. The function is useful only
if the graphics context is QuickDraw and the current port is the printing port.

Special Considerations

This function is deprecated because QuickDraw is deprecated. When drawing with Quartz, the current stroke
and fill color space and the color space associated with an image are used to characterize color. Quartz
provides ways to use ColorSync profiles to create color spaces, so you can characterize color using ColorSync
simply by drawing with Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionEnableColorSync
Enables use of a custom ColorSync profile previously set by the function PMSetProfile (page 2262).
(Deprecated in Mac OS X v10.5. There is no replacement; draw using Quartz 2D instead.)

2226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSessionEnableColorSync (
 PMPrintSession printSession
);

Parameters
printSession

The printing session whose page-specific ColorSync profile you want to enable.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must call this function within the scope of calls to the functions
PMSessionBeginPage and PMSessionEndPage.

The function PMSessionEnableColorSync applies only to the current page. The function is useful only if
the graphics context is QuickDraw and the current port is the printing port.

Special Considerations

This function is deprecated because QuickDraw is deprecated. When drawing with Quartz, the current stroke
and fill color space and the color space associated with an image are used to characterize color. Quartz
provides ways to use ColorSync profiles to create color spaces, so you can characterize color using ColorSync
simply by drawing with Quartz.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionEndDocumentNoDialog
Ends a print job started by calling the function PMSessionBeginCGDocumentNoDialog (page 2217) or
PMSessionBeginDocumentNoDialog (page 2218).

OSStatus PMSessionEndDocumentNoDialog (
 PMPrintSession printSession
);

Parameters
printSession

The current printing session. On return, the printing session is no longer valid; however, you must
still call the function PMRelease (page 2214) to release the object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is similar to the function PMSessionEndDocument except that the printing status dialog is
suppressed.

Functions 2227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

This function is used to end a print job, and it should be called within your application’s print loop after the
call to the function PMSessionEndPageNoDialog and before releasing the printing session. The same
printing session that is created by the function PMCreateSession for the Print dialog should be used for
the print loop.

The function PMSessionEndDocumentNoDialog must be called after its corresponding Begin function
(PMSessionBeginCGDocumentNoDialog (page 2217) orPMSessionBeginDocumentNoDialog (page 2218)).
If the Begin function returns noErr, the function PMSessionEndDocument must be called, even if errors
occur within the scope of the Begin and End functions. You should not call
PMSessionEndDocumentNoDialog if the Begin function returns an error.

Availability
Available in Mac OS X v10.2 and later.

Declared In
PMCore.h

PMSessionEndPageNoDialog
Indicates the end of drawing the current page for the specified printing session.

OSStatus PMSessionEndPageNoDialog (
 PMPrintSession printSession
);

Parameters
printSession

The printing session that provides a context for the print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is similar to the function PMSessionEndPage except that the printing status dialog is suppressed.

You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must call the functions PMSessionBeginPageNoDialog and
PMSessionEndPageNoDialog within the scope of calls to the Begin print job function
(PMSessionBeginCGDocumentNoDialog (page 2217)) and the End print job function
(PMSessionEndDocumentNoDialog (page 2227)).

If the function PMSessionBeginPageNoDialog returns noErr, you must later call the function
PMSessionEndPageNoDialog, even if errors occur within the scope of PMSessionBeginPageNoDialog
and PMSessionEndPageNoDialog. You should not call PMSessionEndPageNoDialog if
PMSessionBeginPageNoDialog returns an error.

Availability
Available in Mac OS X v10.2 and later.

Declared In
PMCore.h

2228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionError
Obtains the result code for any error returned by the printing session.

OSStatus PMSessionError (
 PMPrintSession printSession
);

Parameters
printSession

The printing session whose last error you want to obtain.

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The constant kPMCancel indicates the user
canceled the current print job.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

The PMSessionError function returns the last printing session error, not the last error from a printing
function (PMxxx). Because most printing functions return a result code, the PMSessionError function is
not required for general error checking. However, you can use PMSessionError in your print loop to
determine if the user cancels the current print job or if any other errors occur during printing that are not
explicitly returned by one of the other calls. For example, if the user clicks the Cancel button in the status
dialog or presses Command-period on the keyboard, this function returns the constant kPMCancel. If this
or any other error is encountered during the print loop, your application should call the appropriate functions
(for example,PMSessionEndPage andPMSessionEndDocument) to exit the print loop before your application
reports the error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSessionGeneral
Maintains compatibility with the PrGeneral function in the classic Printing Manager. (Deprecated in Mac
OS X v10.4. Use PMPrinterGetCommInfo (page 2190) instead.)

OSStatus PMSessionGeneral (
 PMPrintSession printSession,
 Ptr pData
);

Parameters
printSession

The printing session whose data you want to obtain.

pData
A pointer to a PrGeneral data structure.

Functions 2229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The function PMSessionGeneral is valid for the printing session passed to the function. In Mac OS X, the
function PMSessionGeneral makes an attempt to get the requested data if the opcode is getPSInfoOp.
Otherwise the result code kPMNotImplemented is returned.

For more information about using the function PMSessionGeneral, see Supporting Printing in Your Carbon
Application.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionGetCGGraphicsContext
Obtains the Quartz graphics context for the current page in a printing session.

OSStatus PMSessionGetCGGraphicsContext (
 PMPrintSession printSession,
 CGContextRef *context
);

Parameters
printSession

The printing session whose Quartz graphics context you want to obtain.

context
A pointer to your CGContextRef (page 137) variable. On return, the variable refers to the Quartz
graphics context for the current page in the specified printing session. The context’s origin is at the
lower-left corner of the sheet of paper, not the imageable area. You should not release the context
without first retaining it. The context is valid only for the current page; you should not retain it beyond
the end of the page.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
If you’re using Quartz 2D to draw the content for a print job, after each call to PMSessionBeginPage you
should call PMSessionGetCGGraphicsContext to obtain the Quartz graphics context for the current page.
Note that before you can use the function PMSessionGetCGGraphicsContext, you must have called
PMSessionBeginCGDocument or PMSessionBeginCGDocumentNoDialog (page 2217) instead of
PMSessionBeginDocument or PMSessionBeginDocumentNoDialog (page 2218).

Availability
Available in Mac OS X v10.4 and later.

Declared In
PMCore.h

2230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionGetCurrentPrinter
Obtains the current printer associated with a printing session.

OSStatus PMSessionGetCurrentPrinter (
 PMPrintSession printSession,
 PMPrinter *currentPrinter
);

Parameters
printSession

The printing session whose printer you want to obtain.

currentPrinter
A pointer to yourPMPrinter (page 2276) variable. On return, the variable refers to the printer associated
with the specified printing session. The printer object is valid as long as the printing session is valid
or the current printer hasn’t changed. You should not release this object without first retaining it.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSessionSetCurrentPMPrinter (page 2241)

Declared In
PMCore.h

PMSessionGetDataFromSession
Obtains application-specific data previously stored in a printing session object.

OSStatus PMSessionGetDataFromSession (
 PMPrintSession printSession,
 CFStringRef key,
 CFTypeRef *data
);

Parameters
printSession

The printing session whose data you want to obtain.

key
The key that uniquely identifies the data to be retrieved. You specify this key when you store the data
using the function PMSessionSetDataInSession (page 2242).

data
A pointer to your CFTypeRef variable. On return, the variable refers to the data retrieved from the
printing session.

Functions 2231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSessionSetDataInSession (page 2242)

Declared In
PMCore.h

PMSessionGetDestinationType
Obtains the output destination for a print job.

OSStatus PMSessionGetDestinationType (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMDestinationType *destTypeP
);

Parameters
printSession

The printing session that provides a context for the print job. This must be the same printing session
used for the Print dialog. The printing session contains the preview setting, which can override the
destination type in the print settings.

printSettings
The print settings for the print job whose destination you want to obtain.

destTypeP
A pointer to your PMDestinationType variable. On return, the variable contains the destination
type for the specified print job. Possible values include:

 ■ kPMDestinationPrinter (output to a printer)

 ■ kPMDestinationFile (output to a file)

 ■ kPMDestinationFax (output to a fax)

 ■ kPMDestinationPreview (output to print preview)

 ■ kPMDestinationProcessPDF (output to a PDF workflow option)

See “Destination Types” (page 2281) for a complete description of the destination type constants.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

2232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

All of the destination types are stored in the print settings object except for kPMDestinationPreview,
which is stored in the printing session object. If the destination type is set as preview, the preview setting
overrides the destination set in the print settings object.

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMSessionGetDocumentFormatGeneration
Obtains the spool file formats that can be generated for the specified printing session. (Deprecated in Mac
OS X v10.4. If you’re drawing using Quartz 2D instead of QuickDraw, use PMSessionBeginCGDocument or
PMSessionBeginCGDocumentNoDialog (page 2217); for submitting PostScript data, use
PMPrinterPrintWithFile (page 2203) or PMPrinterPrintWithProvider (page 2204); to draw EPS data,
use PMCGImageCreateWithEPSDataProvider (page 2139).)

OSStatus PMSessionGetDocumentFormatGeneration (
 PMPrintSession printSession,
 CFArrayRef *docFormats
);

Parameters
printSession

The printing session whose spool file formats you want to obtain.

docFormats
A pointer to your CFArrayRef variable. On return, the variable refers to a Core Foundation array that
contains the MIME types for the available spool file formats. Each element in the array is a Core
Foundation string. Despite what its name implies, the function
PMSessionGetDocumentFormatGeneration has Create/Copy semantics which means you are
responsible for releasing the array.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call the function PMSessionGetDocumentFormatGeneration between the creation and release
of a printing session. See the function PMCreateSession (page 2145). You should call
PMSessionGetDocumentFormatGeneration only after the Print dialog is dismissed.

The function PMSessionGetDocumentFormatGeneration determines the spool file formats that the
specific print job supports. Spool file formats are represented by MIME types. The Mac OS X print spooler
supports PDF and PICT + PS. The default spool file format is PDF. PICT + PS is supported only for printing to
a PostScript printer.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

See Also
PMSessionSetDocumentFormatGeneration (page 2244)

Declared In
PMCoreDeprecated.h

PMSessionGetDocumentFormatSupported
Obtains the spool file formats that are accepted by the current printer driver. (Deprecated in Mac OS X v10.4.
Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

OSStatus PMSessionGetDocumentFormatSupported (
 PMPrintSession printSession,
 CFArrayRef *docFormats,
 UInt32 limit
);

Parameters
printSession

The current printing session.

docFormats
On return, an array of CFString values containing MIME types specifying the spool file formats
supported by the current printer driver. See “Document Format Strings” for a description of possible
return values.

limit
The maximum number of supported document formats to be returned.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid within the context of a printing session.

Spool file formats are represented by MIME types. In Mac OS X, printer modules may support a wide range
of spool file formats. The first item in the list of supported spool file formats is the default for the current
printer driver.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionGetGraphicsContext
Obtains the graphics context for the current page in a printing session. (Deprecated in Mac OS X v10.5. Use
PMSessionGetCGGraphicsContext (page 2230) instead.)

2234 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSessionGetGraphicsContext (
 PMPrintSession printSession,
 CFStringRef graphicsContextType,
 void **graphicsContext
);

Parameters
printSession

The printing session whose current graphics context you want to obtain.

graphicsType
The desired graphics context type. This parameter is currently ignored.

graphicsContext
On return, a reference to the current graphics context. The graphics context returned is the one last
set by a call to the function PMSessionSetDocumentFormatGeneration or the default (QuickDraw)
if there was no call to the function. You must typecast the context to an appropriate graphics type,
either grafPtr or CGContextRef (page 137).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must also call the function PMSessionGetGraphicsContext within
the scope of the functions PMSessionBeginPage and PMSessionEndPage.

In Mac OS X v10.3 and earlier, you should call this function for each page you draw for a print job. After each
call to the function PMSessionBeginPage your application should call PMSessionGetGraphicsContext
to obtain the current graphics context. If that context is a QuickDraw context, then set the drawing port to
this port by calling the QuickDrawSetPort function. See the discussion of the functionPMSessionBeginPage
for more information.

Special Considerations

In Mac OS X v10.4 and later, Apple recommends using the functionPMSessionGetCGGraphicsContext (page
2230) instead of this function. QuickDraw is deprecated and your application should be using Quartz 2D for
its rendering.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMCoreDeprecated.h

PMSessionIsDocumentFormatSupported
Reports whether the current printer driver supports a specified spool file format. (Deprecated in Mac OS X
v10.4. Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

Functions 2235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSessionIsDocumentFormatSupported (
 PMPrintSession printSession,
 CFStringRef docFormat,
 Boolean *supported
);

Parameters
printSession

The current printing session.

docFormat
A spool file format represented by a MIME type.

supported
Returns true if the spool file format is supported by the current printer driver.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid within the context of a printing session.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionMakeOldPrintRecord
Creates an old-style print record from page format and print settings objects. (Deprecated in Mac OS X v10.4.
There is no replacement; old-style print records are obsolete and serve no useful purpose in Mac OS X.)

OSStatus PMSessionMakeOldPrintRecord (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat,
 Handle *printRecordHandle
);

Parameters
printSession

The current printing session.

printSettings
A print settings object. To create a print settings object you can call the function
PMCreatePrintSettings (page 2144) and then call the function
PMSessionDefaultPrintSettings (page 2225) to initialize the print settings object to default values.

pageFormat
A page format object. To create a page format object you can call the function
PMCreatePageFormat (page 2143) and then call the functionPMSessionDefaultPageFormat (page
2225) to initialize the page format object to default values.

2236 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

printRecordHandle
On return, a handle to an old-style print record. You are responsible for disposing of the handle.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

You can use PMSessionMakeOldPrintRecord to create an old-style print record to store with your
documents for compatibility with pre-Carbon versions of your application. Note that because the page format
and print settings objects contain more information than the old print record, some settings may be lost in
the conversion. That is, perfect translation between the old and new style objects is not achievable.

In Mac OS X, the function always creates a LaserWriter 8 compatible print record.

Special Considerations

The proper way to keep page format information for use in Mac OS X is with a flattened PMPageFormat
object. Typically applications don't keep print settings with a document but if that is appropriate for a given
application, the proper way to do so is to use a flattened PMPrintSettings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionPostScriptBegin
Puts the current printer driver into PostScript mode, ready to accept PostScript data instead of QuickDraw
data. (Deprecated in Mac OS X v10.4. Use PMPrinterPrintWithFile (page 2203),
PMPrinterPrintWithProvider (page 2204), or PMCGImageCreateWithEPSDataProvider (page 2139)
instead.)

OSStatus PMSessionPostScriptBegin (
 PMPrintSession printSession
);

Parameters
printSession

The current printing session.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call the function PMSessionPostScriptBegin between the creation and release of a printing
session. See the function PMCreateSession (page 2145). You must also call the function within the scope of
the functions PMSessionBeginPage and PMSessionEndPage.

Functions 2237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

To ensure that the current printer driver supports PostScript data, call
PMSessionGetDocumentFormatGenerationbefore you call the function PMSessionPostScriptBegin.
Check the list of supported spool file formats. If PICT + PS is one of them, select that format by calling the
function PMSessionSetDocumentFormatGeneration. The function
PMSessionSetDocumentFormatGenerationmust be called before you call PMSessionBeginDocument.

The function PMSessionPostScriptBegin is not useful unless the current port is the printing port. The
function returns true if the document format is not PICT + PS.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionPostScriptData
Passes PostScript data, referenced by a pointer, to the current printer driver. (Deprecated in Mac OS X v10.4.
Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

OSStatus PMSessionPostScriptData (
 PMPrintSession printSession,
 Ptr psPtr,
 Size len
);

Parameters
printSession

The current printing session.

psPtr
A pointer to the PostScript data you want to pass to the current printer driver.

len
The number of bytes of PostScript data.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). Typically you call this function with the scope of calls to the functions
PMSessionPostScriptBegin and PMSessionPostScriptEnd.

The function PMSessionPostScriptData is not useful unless the current port is the printing port and the
document format is PICT + PS.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

2238 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionPostScriptEnd
Restores the current driver to QuickDraw mode, ready to accept QuickDraw data instead of PostScript data.
(Deprecated in Mac OS X v10.4. Use PMPrinterPrintWithFile (page 2203),
PMPrinterPrintWithProvider (page 2204), or PMCGImageCreateWithEPSDataProvider (page 2139)
instead.)

OSStatus PMSessionPostScriptEnd (
 PMPrintSession printSession
);

Parameters
printSession

The current printing session.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must also call this function with the scope of calls to the functions
PMSessionBeginPage and PMSessionEndPage.

You call the function PMSessionPostScriptEnd to complete a PostScript block started with
PMSessionPostScriptBegin. The function PMSessionPostScriptEnd is not useful unless the current
port is the printing port and the document format is PICT + PS.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionPostScriptFile
Passes the PostScript data, contained in a file, to the current printer driver. (Deprecated in Mac OS X v10.4.
Use PMPrinterPrintWithFile (page 2203), PMPrinterPrintWithProvider (page 2204), or
PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

Functions 2239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSessionPostScriptFile (
 PMPrintSession printSession,
 FSSpec *psFile
);

Parameters
printSession

The current printing session.

psFile
A pointer to a variable that specifies a file location. The file should contain the PostScript data you
want to pass to the current printer driver.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You typically call this function within the scope of calls to the function
PMSessionPostScriptBegin and PMSessionPostScriptEnd.

The function PMSessionPostScriptFile is not useful unless the current port is the printing port and the
document format is PICT + PS.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionPostScriptHandle
Passes the PostScript data, referenced by a Memory Manager handle, to the current printer driver. (Deprecated
in Mac OS X v10.4. UsePMPrinterPrintWithFile (page 2203),PMPrinterPrintWithProvider (page 2204),
or PMCGImageCreateWithEPSDataProvider (page 2139) instead.)

OSStatus PMSessionPostScriptHandle (
 PMPrintSession printSession,
 Handle psHandle
);

Parameters
printSession

The current printing session.

psHandle
A handle to the PostScript data you want to pass to the current printer driver. You must make sure
the handle is of the appropriate size for the data, otherwise you risk corrupting the spool file.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

2240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must also call this function within the scope of calls to the function
PMSessionPostScriptBegin and PMSessionPostScriptEnd.

The function PMSessionPostScriptEnd is not useful unless the current port is the printing port and the
document format is PICT + PS.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionSetCurrentPMPrinter
Changes the current printer for a printing session.

OSStatus PMSessionSetCurrentPMPrinter (
 PMPrintSession session,
 PMPrinter printer
);

Parameters
session

The printing session whose printer you want to change.

printer
The new printer for the printing session.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.3 and later.

See Also
PMSessionGetCurrentPrinter (page 2231)

Declared In
PMCore.h

Functions 2241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMSessionSetCurrentPrinter
Changes the current printer for a printing session to a printer specified by name. (Deprecated in Mac OS X
v10.4. Use PMSessionSetCurrentPMPrinter (page 2241) instead.)

OSStatus PMSessionSetCurrentPrinter (
 PMPrintSession session,
 CFStringRef printerName
);

Parameters
session

The printing session whose printer you want to change.

printerName
The name of the printer you want to set as the current printer.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionSetDataInSession
Stores your application-specific data in a printing session object.

OSStatus PMSessionSetDataInSession (
 PMPrintSession printSession,
 CFStringRef key,
 CFTypeRef data
);

Parameters
printSession

The printing session in which you want to store application-specific data.

key
A key that uniquely identifies the data being added. This key is required to retrieve the data using
the function PMSessionGetDataFromSession (page 2231).

data
The data to be stored in the printing session.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

2242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

See Also
PMSessionGetDataFromSession (page 2231)

Declared In
PMCore.h

PMSessionSetDestination
Sets the destination location, format, and type for a print job.

OSStatus PMSessionSetDestination (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMDestinationType destType,
 CFStringRef destFormat,
 CFURLRef destLocation
);

Parameters
printSession

The printing session that provides a context for the print job.

printSettings
The print settings for the print job whose destination you want to set.

destType
The destination type for the print job associated with the specified printing session and print settings.
Possible values include:

 ■ kPMDestinationPrinter (output to a printer)

 ■ kPMDestinationFile (output to a file)

 ■ kPMDestinationFax (output to a fax)

 ■ kPMDestinationPreview (output to print preview)

 ■ kPMDestinationProcessPDF (output to a PDF workflow option)

See “Destination Types” (page 2281) for a complete description of destination types you can specify.

destFormat
The MIME type to be generated for the specified destination type. Pass NULL if you want to use the
default format for the specified destination type. To obtain a list of valid formats for a given destination
type, use the function PMSessionCopyOutputFormatList (page 2222).

destLocation
A reference to a Core Foundation URL that specifies a destination location. You can provide this if the
destination type supports a destination location. Otherwise, pass NULL. For example, if the destination
type is a file (kPMDestinationFile) you can supply a file system URL to specify where the file resides.

Functions 2243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can use the function PMSessionSetDestinationwhen you want to send print output to a file without
requiring user interaction. You must call this function between the creation and release of a printing session.
See the function PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.1 and later.

Declared In
PMCore.h

PMSessionSetDocumentFormatGeneration
Requests a specified spool file format and supplies the graphics context type to use for drawing pages within
the print loop. (Deprecated in Mac OS X v10.4. If you’re drawing using Quartz 2D instead of QuickDraw, use
PMSessionBeginCGDocument or PMSessionBeginCGDocumentNoDialog (page 2217); for submitting
PostScript data, usePMPrinterPrintWithFile (page 2203) orPMPrinterPrintWithProvider (page 2204);
to draw EPS data, use PMCGImageCreateWithEPSDataProvider (page 2139).)

OSStatus PMSessionSetDocumentFormatGeneration (
 PMPrintSession printSession,
 CFStringRef docFormat,
 CFArrayRef graphicsContextTypes,
 CFTypeRef options
);

Parameters
printSession

The printing session whose spool file format and graphics context type you want to specify.

docFormat
A Core Foundation string that specifies the desired spool file format as a MIME type. See “Document
Format Strings” (page 2282) for a description of the constants you can use to specify the document
format.

graphicsContexts
A reference to a Core Foundation array of graphics contexts to use for drawing pages within the print
loop. You can supply a QuickDraw graphics context (kPMGraphicsContextQuickDraw) or a Quartz
2D graphics context (kPMGraphicsContextCoreGraphics). An array of length 1 is the only length
that is supported, regardless of graphics context type. See “Graphics Context Types” (page 2283) for a
description of the constants you can use to specify a graphics context.

options
Reserved for future use.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You only need to call the function PMSessionSetDocumentFormatGeneration if you want to specify a
format other than the default format (PDF) or a graphics context other than the default context (QuickDraw).
If you want to use the default format for the operating system and to draw with QuickDraw, then you do not

2244 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

need to call this function. If you want to generate PICT + PS to use as one of the supported formats, then call
PMSessionSetDocumentFormatGeneration to set the graphics context to QuickDraw and the format to
PICT + PS. Note that the PICT + PS format is not available on Intel-based systems.

If you want to use a Quartz 2D graphics context to draw each page, you can call the following code to inform
the printing system in all versions of Mac OS X.

static OSStatus MyPMSessionBeginCGDocument (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat)
{
 OSStatus err = noErr;

 // Use the simpler call if it is present.
 if(&PMSessionBeginCGDocument != NULL) {
 err = PMSessionBeginCGDocument (printSession, printSettings, pageFormat);
 }
 else {
 CFStringRef s[1] = { kPMGraphicsContextCoreGraphics };
 CFArrayRef graphicsContextsArray = CFArrayCreate (
 kCFAllocatorDefault, (const void**)s, 1, &kCFTypeArrayCallBacks);
 err = PMSessionSetDocumentFormatGeneration (
 printSession, kPMDocumentFormatPDF, graphicsContextsArray, NULL);
 CFRelease (graphicsContextsArray);
 if(!err)
 err = PMSessionBeginDocument (
 printSession, printSettings, pageFormat);
 }
 return err;
}

The previous code informs the printing system that you want a Quartz graphics context, but you get the
actual context for your printing port only after you call the function PMSessionBeginPage and then call
the following code.

static OSStatus MyPMSessionGetCGGraphicsContext (
 PMPrintSession printSession,
 CGContextRef *printingContextP)
{
 OSStatus err = noErr;

 // Use the simpler call if it is present.
 if(&PMSessionGetCGGraphicsContext != NULL) {
 err = PMSessionGetCGGraphicsContext (printSession, printingContextP);
 }
 else {
 err = PMSessionGetGraphicsContext (
 printSession, kPMGraphicsContextCoreGraphics,
 (void**)printingContextP);
 }
 return err;
}

Functions 2245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

The printing context you get is a Quartz context into which you can draw. Note that the default coordinate
system for Quartz 2D is not the same as that used for QuickDraw. Quartz 2D defines the coordinates of the
lower-left corner of the sheet as (0,0) whereas the origin for the QuickDraw port is the upper-left corner of
the imageable area.

You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). You must call the function PMSessionSetDocumentFormatGeneration
before you call PMSessionBeginDocument or PMSessionBeginDocumentNoDialog (page 2218). Before
requesting a spool file format using this function, you should call the function
PMSessionGetDocumentFormatGeneration to get the list of supported formats.

Special Considerations

The PICT + PS spool file format is not available on Intel-based systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
PMSessionGetDocumentFormatGeneration (page 2233)

Related Sample Code
CarbonSketch

Declared In
PMCoreDeprecated.h

PMSessionSetError
Sets the value of the current result code for the specified printing session.

OSStatus PMSessionSetError (
 PMPrintSession printSession,
 OSStatus printError
);

Parameters
printSession

The printing session whose result code you want to set.

printError
The result code you want to set. This result code is returned by the PMSessionError function.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

You can use this function to terminate a printing session if your application encounters any errors inside the
print loop. Typically, this function is used by an application’s idle function. The idle function isn’t called in
Mac OS X, so this usage is not available.

2246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMCore.h

PMSessionSetIdleProc
Installs an idle callback function in your print loop. (Deprecated in Mac OS X v10.4. There is no replacement;
this function was included to facilitate porting legacy applications to Mac OS X, but it serves no useful
purpose.)

OSStatus PMSessionSetIdleProc (
 PMPrintSession printSession,
 PMIdleUPP idleProc
);

Parameters
printSession

The printing session that provides a context for the print job.

idleProc
A universal procedure pointer to your idle function. Your idle function is defined by the callback
PMIdleProcPtr (page 2273).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You do not need this function in Mac OS X. Instead, use the standard idle proc.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionSetPSInjectionData
Specifies a set of PostScript code injection points and the PostScript data to be injected. (Deprecated in Mac
OS X v10.4. Use PMPrinterPrintWithFile (page 2203) or PMPrinterPrintWithProvider (page 2204)
instead.)

OSStatus PMSessionSetPSInjectionData (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 CFArrayRef injectionDictArray
);

Parameters
printSession

The current printing session.

Functions 2247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

printSettings
The print settings object in which to place the specified injection points.

injectionDictArray
A reference to a Core Foundation array that contains one or more Core Foundation dictionary
(CFDictionary) entries. Each dictionary entry specifies PostScript injection data you want inserted
at a specific point in the print stream. See “PostScript Injection Dictionary Keys” (page 2285) for a
description of the constants you can use as keys for these dictionary entries.

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The result codekPMInvalidParameter is returned
if the injectionDictArray object contains any invalid entries. The result code kPMInvalidPrintSession
is returned if the document format has not been set to kPMDocumentFormatPICTPS for the specified printing
session.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145). Before calling PMSessionSetPSInjectionData, your application must set
the document format of the printing session to kPMDocumentFormatPICTPS using the function
PMSessionSetDocumentFormatGeneration (page 2244).

For applications that require extensive control over PostScript code generation, the function
PMSessionSetPSInjectionData provides the ability to insert PostScript code into specified places in the
print stream. It is intended for use by desktop publishing applications for which functions such as
PMSessionPostScriptData do not provide sufficient control.

You specify the injection points by creating an array of CFDictionary entries. Each dictionary consists of
key-value pairs in which the key specifies where to inject the PostScript and the value specifies the PostScript
data you want to inject. The function verifies that the injectionDictArray parameter is properly formed,
and returns the kPMInvalidParameter result code if the array does not contain valid entries.

If you call the function PMSessionSetPSInjectionData a second time for a given print settings object,
the injection points you specified previously are replaced with the new injection points.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSessionValidatePageFormat
Updates the values in a page format object and validates them against the current formatting printer.

OSStatus PMSessionValidatePageFormat (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 Boolean *result
);

Parameters
printSession

The printing session for the specified page format object.

2248 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

pageFormat
The page format object to validate.

result
A pointer to your Boolean variable. On return, true if the function set the page format object to
default values; otherwise, false.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of the printing session. See the function
PMCreateSession (page 2145).

The function PMSessionValidatePageFormat validates the page format object against the current
formatting printer. The formatting printer is displayed in the Format for pop-up menu in the Page Setup
dialog. The default formatting printer is the generic Any Printer. If the page format object contains values
that are not valid for the formatting printer, the page format object is set to default values and the result
parameter is set to true.

Validating a page format object also causes calculated fields (such as the adjusted paper and page rectangles)
to be updated based on the changed settings (such as resolution, scaling, and page orientation). If the page
format object contains values that are valid for the formatting printer but need to be updated, the result
parameter is set to false.

After you call any function that makes changes to a page format object (such as PMSetOrientation), you
should call the function PMSessionValidatePageFormat to validate the page format object before using
that object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSessionValidatePrintSettings
Validates a print settings object within the context of the specified printing session.

OSStatus PMSessionValidatePrintSettings (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 Boolean *result
);

Parameters
printSession

The printing session for the specified print settings object.

printSettings
The print settings object to validate.

Functions 2249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

result
A pointer to your Boolean variable. On return, true if any parameters changed, or false if no
parameters changed.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession (page 2145).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSetAdjustedPageRect
Requests a particular page size, adjusted for the current rotation, resolution, or scaling settings. (Deprecated
in Mac OS X v10.5. To set a particular paper size and margins, obtain or create a PMPaper (page 2275) object
and call PMCreatePageFormatWithPMPaper (page 2144).)

OSStatus PMSetAdjustedPageRect (
 PMPageFormat pageFormat,
 const PMRect *pageRect
);

Parameters
pageFormat

The page format object whose page rectangle you want to set.

pageRect
A pointer to your PMRect (page 2277) data structure that specifies the desired size of the page rectangle,
in points. The top-left coordinates should be (0,0). See Supporting Printing in Your Carbon Application
for more information on page and paper rectangles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
This function is not recommended. You should call this function only if your application provides desktop
publishing and the Page Setup dialog does not provide sufficient control. Typically, such applications display
their own specialized document format dialog.

If you decide to use this function, you must call the function between the creation and release of a printing
session. See the function PMCreateSession (page 2145). You can use PMSetAdjustedPageRect to set a
drawing rectangle without going through the Page Setup dialog or calling other page format accessor
functions. This function allows an application to specify the dimensions of the imageable area into which it
draws.

If you call this function after initiating a print job, the change is ignored for the current job.

2250 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetCollate
Specifies whether the job collate option is selected.

OSStatus PMSetCollate (
 PMPrintSettings printSettings,
 Boolean collate
);

Parameters
printSettings

The print settings object whose job collate option you want to set.

collate
If true, the job collate option is selected; if false the option is not selected.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The Collated checkbox is displayed in the Copies & Pages pane of the Print dialog. This option determines
how printed material is organized. For example, if you have a document that is three pages long and you
are printing multiple copies with the Collated option selected, the job prints pages 1, 2, and 3 in that order
and then repeats. However, if the Collated option is not selected and you’re printing multiple copies of those
same three pages, the job prints copies of page 1, then copies of page 2, and finally copies of page 3.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.2 and later.

See Also
PMGetCollate (page 2154)

Declared In
PMCore.h

PMSetColorMode
Sets the desired color mode for the print job. (Deprecated in Mac OS X v10.4. There is no replacement; this
function was included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

Functions 2251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetColorMode (
 PMPrintSettings printSettings,
 PMColorMode colorMode
);

Parameters
printSettings

The print settings object whose color mode you want to set.

colorMode
The desired color mode. See “Color Modes” (page 2298) for a list of possible values.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetCopies
Sets the initial value for the number of copies to be printed.

OSStatus PMSetCopies (
 PMPrintSettings printSettings,
 UInt32 copies,
 Boolean lock
);

Parameters
printSettings

The print settings object you want to initialize.

copies
The initial value of the number of copies to print.

lock
The lock state of the setting. Locking is not supported at this time.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetCopies (page 2155)

2252 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

PMSetDuplex
Sets the duplex mode.

OSStatus PMSetDuplex (
 PMPrintSettings printSettings,
 PMDuplexMode duplexSetting
);

Parameters
printSettings

The print settings object whose duplex mode you want to set.

duplexSetting
The new duplex mode setting. Possible values include:

 ■ kPMDuplexNone (one-sided printing)

 ■ kPMDuplexNoTumble (two-sided printing)

 ■ kPMDuplexTumble (two-sided printing with tumbling)

See “Duplex Modes” (page 2282) for a full description of the constants you can use to specify the new
setting.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Duplex printing is a print job that prints on both sides of the paper. Two-Sided printing controls are displayed
in the Layout pane of the Print dialog. Note that not all printers support duplex printing. This function specifies
a setting that might not be available on a given destination.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.4 and later.

See Also
PMGetDuplex (page 2158)

Declared In
PMCore.h

PMSetError
Sets the value of the current result code. (Deprecated in Mac OS X v10.4. Use PMSessionSetError (page
2246) instead.)

Functions 2253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetError (
 OSStatus printError
);

Parameters
printError

The result code you wish to set. This result code will be returned by the PMError function.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMSetFirstPage
Sets the default page number of the first page to be printed.

OSStatus PMSetFirstPage (
 PMPrintSettings printSettings,
 UInt32 first,
 Boolean lock
);

Parameters
printSettings

The print settings object whose first page number you want to set.

first
The page number of the first page to print. This value appears in the From field of the Print dialog.

lock
The lock state of the setting. Locking is not supported at this time.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Typically, this function isn’t used. In Mac OS X, if you call the function PMSetPageRange (page 2259) and then
call PMSetFirstPage or PMSetLastPage using the same page range you specified for PMSetPageRange,
then the Print dialog shows the From button selected. If you use the constant kPMPrintAllPages to set
the page range with the function PMSetPageRange, then the Print dialog opens with the All button selected
regardless of whether you also call PMSetFirstPage or PMSetLastPage.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.

2254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

See Also
PMGetFirstPage (page 2159)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSetIdleProc
Installs an idle callback function in your print loop. (Deprecated in Mac OS X v10.4. There is no replacement;
this function was included to facilitate porting legacy applications to Mac OS X, but it serves no useful
purpose.)

OSStatus PMSetIdleProc (
 PMIdleUPP idleProc
);

Parameters
idleProc

A universal procedure pointer to your idle function. Your idle function is defined by the callback
PMIdleProcPtr.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin. The printing system calls your idle function periodically during your print loop.

Special Considerations

Your idle function is not called in Mac OS X. It’s only called in Mac OS 8 and 9.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMSetJobName
Specifies the name of the print job. (Deprecated in Mac OS X v10.4. Use PMPrintSettingsSetJobName (page
2211) instead.)

OSStatus PMSetJobName (
 PMPrintSettings printSettings,
 StringPtr name
);

Parameters
printSettings

A PMPrintSettings object.

Functions 2255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

name
The name to assign to the print job. This string will be used to name the spool file.

Return Value
A result code. The result code kPMInvalidParameter is returned if you attempt to set the job name to an
invalid file name or a null string.

Discussion
Valid after calling PMBegin and creating a print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetJobNameCFString
Specifies the name of a print job. (Deprecated in Mac OS X v10.5. Use PMPrintSettingsSetJobName (page
2211) instead.)

OSStatus PMSetJobNameCFString (
 PMPrintSettings printSettings,
 CFStringRef name
);

Parameters
printSettings

The print settings object whose job name you want to set.

name
The new name for the print job.

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The result codekPMInvalidParameter is returned
if you pass NULL or an empty string in the name parameter.

Discussion
You should call this function before you open the Print dialog.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

See Also
PMGetJobNameCFString (page 2161)

Related Sample Code
CarbonSketch

2256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCoreDeprecated.h

PMSetLastPage
Sets the page number of the last page to be printed.

OSStatus PMSetLastPage (
 PMPrintSettings printSettings,
 UInt32 last,
 Boolean lock
);

Parameters
printSettings

The print settings object whose last page number you want to set.

last
The page number of the last page to print. This value appears in the To field of the Print dialog. Pass
the constant kPMPrintAllPages to print the entire document.

lock
The lock state of the setting. Locking is not supported at this time.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Typically, you call this function after the Print dialog is displayed to indicate the number of the last page
number to be printed. In Mac OS X, setting the last page provides information used by the progress dialog
that is shown during printing.

If you call the function PMSetPageRange (page 2259) and then call PMSetFirstPage or PMSetLastPage
using the same page range you specified for PMSetPageRange, then the Print dialog shows the From button
selected. If you use the constant kPMPrintAllPages to set the page range with the function
PMSetPageRange, then the Print dialog opens with the All button selected regardless of whether you also
call PMSetFirstPage or PMSetLastPage.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetLastPage (page 2162)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSetOrientation
Sets the page orientation for printing.

Functions 2257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetOrientation (
 PMPageFormat pageFormat,
 PMOrientation orientation,
 Boolean lock
);

Parameters
pageFormat

The page format object whose page orientation you want to set.

orientation
A constant specifying the desired page orientation. Supported values are:

 ■ kPMPortrait

 ■ kPMLandscape

 ■ kPMReversePortrait (Mac OS X v10.5 and later)

 ■ kPMReverseLandscape

See “Page Orientation Constants” (page 2283) for a full description of the values you can use to specify
page orientation.

lock
The lock state of the setting. You should pass kPMUnlocked. Locking is not supported at this time.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Special Considerations

In Mac OS X 10.4 and earlier, if you want to set the page orientation you need to call this function before
initiating the print job (for example, by calling PMSessionBeginCGDocument). The page orientation you
set applies to the entire print job. In Mac OS X 10.5 and later, you can use this function to change the
orientation of an individual page in a print job by passing the updated page format to PMSessionBeginPage
or PMSessionBeginPageNoDialog.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetOrientation (page 2163)

Declared In
PMCore.h

PMSetPageFormatExtendedData
Stores your application-specific data in a page format object.

2258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetPageFormatExtendedData (
 PMPageFormat pageFormat,
 OSType dataID,
 UInt32 size,
 void *extendedData
);

Parameters
pageFormat

The page format object in which to store your extended data.

dataID
A 4-character code that identifies your data. This is typically your application’s creator code. If your
creator code is outside the ASCII 7-bit character range 0x20–0x7F, you need to use a different
4-character code.

size
The size, in bytes, of the data to be stored in the page format object.

extendedData
A pointer to the application-specific data you want to store in the page format object.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can retrieve the data you store with the function PMSetPageFormatExtendedData by calling the
function PMGetPageFormatExtendedData.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetPageFormatExtendedData (page 2164)

Declared In
PMCore.h

PMSetPageRange
Sets the valid range of pages that can be printed.

OSStatus PMSetPageRange (
 PMPrintSettings printSettings,
 UInt32 minPage,
 UInt32 maxPage
);

Parameters
printSettings

The print settings object whose page range you want to set.

minPage
The minimum page number allowed. This value appears as the default in the From field of the Print
dialog.

Functions 2259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

maxPage
The maximum page number allowed. This value appears as the default in the To field of the Print
dialog. Pass the constant kPMPrintAllPages to allow the user to print the entire document. If the
first page is set to 1, then passing kPMPrintAllPages as the maximum page number causes the All
button to be selected.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The function PMSetPageRange allows applications to set the minimum and maximum page numbers that
can be printed for a document. If the user enters a value outside of this range in the Print dialog, the value
is set to the closest allowed value. You can use the PMGetFirstPage (page 2159) and PMGetLastPage (page
2162) functions to obtain the values entered by the user in the Print dialog.)

If you call the function PMSetPageRange to set the maximum page to a value other than the constant
kPMPrintAllPages, the function PMSetPageRange causes the page range in the Print dialog to be properly
restricted to the specified range. If you call the function PMSetPageRange without also calling the functions
PMSetFirstPage or PMSetLastPage, then the Print dialog shows the specified page range in the From
and To fields but with the All button selected. If you call the function PMSetPageRange and then call
PMSetFirstPage or PMSetLastPage using the same page range you specified for PMSetPageRange, then
the Print dialog shows the From button selected.

In all cases, if your application sets a range with PMSetPageRange and subsequently calls
PMSetFirstPage (page 2254) or PMSetLastPage (page 2257) with values outside of the specified range, Core
Printing returns a result code of kPMValueOutOfRange. Conversely, if your application calls PMSetPageRange
after calling PMSetFirstPage or PMSetLastPage (or after displaying the Print dialog), the page range
specified by PMSetPageRange takes precedence, and the first and last page values are adjusted accordingly.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetPageRange (page 2165)

Related Sample Code
CarbonSketch

Declared In
PMCore.h

PMSetPhysicalPaperSize
Requests a particular paper size, unaffected by rotation, resolution, or scaling. (Deprecated in Mac OS X v10.4.
Use PMCreatePageFormatWithPMPaper (page 2144) instead.)

2260 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetPhysicalPaperSize (
 PMPageFormat pageFormat,
 const PMRect *paperSize
);

Parameters
pageFormat

The PMPageFormat which will hold the new physical paper size.

paperSize
The desired paper size expressed as a PMRect. The units are 1/72 inch. A PMRect is a rectangle whose
individual components are doubles.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetPrintSettingsExtendedData
Stores your application-specific data in a print settings object.

OSStatus PMSetPrintSettingsExtendedData (
 PMPrintSettings printSettings,
 OSType dataID,
 UInt32 size,
 void *extendedData
);

Parameters
printSettings

The print settings object in which to store your application-specific data.

dataID
A 4-character code that will be used to identify your data. The 4-character code must not contain any
characters outside the standard ASCII 7-bit character range 0x20–0x7F. This is typically your application’s
creator code.

size
The size, in bytes, of the data to be stored in the print settings object.

extendedData
A pointer to a buffer that contains the extended data you want to store.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can retrieve the data you store with the function PMSetPrintSettingsExtendedData by calling the
function PMGetPrintSettingsExtendedData.

Functions 2261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

You may find it easier to use the functions PMPrintSettingsSetValue (page 2212) and
PMPrintSettingsGetValue (page 2210) to store and retrieve user-defined data in a print settings object. If
you use these functions, make sure that the custom keys you define for your private data do not conflict with
other print settings keys.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetPrintSettingsExtendedData (page 2168)

Declared In
PMCore.h

PMSetProfile
Embeds a color profile during printing. (Deprecated in Mac OS X v10.5. There is no replacement; draw using
Quartz 2D instead.)

OSStatus PMSetProfile (
 PMPrintSettings printSettings,
 PMTag tag,
 const CMProfileLocation *profile
);

Parameters
printSettings

The print settings object in which to embed the color profile.

tag
A tag that describes the usage of the profile. Currently, the only tag value you can pass is the constant
kPMSourceProfile. See “Tag Constants” (page 2295) for more information on this constant.

profile
A pointer to a structure of type CMProfileLocation that specifies the location of a ColorSync profile.
The profile must be version 2 or later. If you pass a profile that is an earlier version, the function returns
the result code kPMNotImplemented.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can use the function PMSetProfile to tag QuickDraw drawing with a custom ColorSync profile. The
function PMSetProfile is useful only if the graphics context is QuickDraw and the current port is the printing
port.

You should call this function each time you want to change the profile used to draw page elements. The
printing system resets the profile to the default at the beginning of each page. If you call the function
PMSetProfile a second time, the old profile is ignored.

Special Considerations

This function is deprecated because QuickDraw is deprecated. When drawing with Quartz, the current stroke
and fill color space and the color space associated with an image are used to characterize color. Quartz
provides ways to use ColorSync profiles to create color spaces, so you can characterize color using ColorSync
simply by drawing with Quartz.

2262 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetResolution
Sets the application drawing resolution. (Deprecated in Mac OS X v10.5. Draw using Quartz 2D and call
CGContextScaleCTM (page 105) instead.)

OSStatus PMSetResolution (
 PMPageFormat pageFormat,
 const PMResolution *res
);

Parameters
pageFormat

The page format object whose drawing resolution you want to set.

res
A pointer to a structure of typePMResolution (page 2278) that specifies the desired drawing resolution
for your application. You should specify the best resolution for your data. The printing system handles
the mapping between the resolution you specify and the printer resolution.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
If you call this function after initiating a print job, the change is ignored for the current job.

Special Considerations

This function was needed in the past because QuickDraw uses integer coordinates and has no notion of
scaling coordinate systems. For Quartz drawing, this function is obsolete. To change the resolution, draw
with fractional coordinates or scale the coordinate system and draw with integer coordinates.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMSetScale
Sets the scaling factor for the page and paper rectangles.

Functions 2263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMSetScale (
 PMPageFormat pageFormat,
 double scale
);

Parameters
pageFormat

The page format object whose scaling factor you want to set.

scale
The desired scaling factor expressed as a percentage. For example, for 50 percent scaling, pass a value
of 50.0; for no scaling, pass 100.0.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
You can call the function PMSetScale to change the scaling factor that appears when your application
invokes the Page Setup dialog.

If you call PMSetScale after calling PMSessionPageSetupDialog, make sure you call
PMSessionValidatePageFormat (page 2248) before you call PMSessionBeginCGDocument or
PMSessionBeginDocument.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.

See Also
PMGetScale (page 2170)

Declared In
PMCore.h

PMSetUnadjustedPaperRect
Requests a particular paper size, unaffected by rotation, resolution, or scaling. (Deprecated in Mac OS X v10.5.
To set a particular paper size, obtain or create a PMPaper (page 2275) object and call
PMCreatePageFormatWithPMPaper (page 2144).)

OSStatus PMSetUnadjustedPaperRect (
 PMPageFormat pageFormat,
 const PMRect *paperRect
);

Parameters
pageFormat

The page format object whose unadjusted paper rectangle you want to set.

paperRect
A pointer to a structure of type PMRect that specifies the desired paper size, in points. The coordinates
of the upper-left corner of the paper rectangle are specified relative to the page rectangle. See
Supporting Printing in Your Carbon Application for more information on page and paper rectangles.

2264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The result code kPMValueOutOfRange indicates
that the printer driver does not support the requested page size.

Discussion
This function is not recommended. You should call this function only if your application provides desktop
publishing and the Page Setup dialog does not provide sufficient control. Typically, such applications display
their own specialized document format dialog.

If you decide to use this function, you must call it between the creation and release of a printing session.
After using the function PMSetUnadjustedPaperRect you should always call
PMSessionValidatePageFormat (page 2248) then callPMGetUnadjustedPaperRect (page 2171) to verify
that the paper size you set is recorded by the printer driver.

If you call this function after initiating a print job, the change is ignored for the current job.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMUnflattenPageFormat
Rebuilds a page format object from a Memory Manager handle that contains flattened page format data.
(Deprecated in Mac OS X v10.5. Use PMPageFormatCreateWithDataRepresentation (page 2175) instead.)

OSStatus PMUnflattenPageFormat (
 Handle flatFormat,
 PMPageFormat *pageFormat
);

Parameters
flatFormat

A handle to a previously flattened page format object. You are responsible for disposing of the handle.

pageFormat
A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a page format
object that contains the data retrieved from the flattened page format data. You are responsible for
releasing the page format object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The result codekPMInvalidParameter is returned
if the flattened PMPageFormat object was created by an incompatible version of Core Printing.

Discussion
The PMUnflattenPageFormat function creates a new PMPageFormat object that contains the data from
the flattened page format data. You should call the function PMSessionValidatePageFormat (page 2248)
to make sure the page format object contains valid values.

If the function returns the result code kPMInvalidParameter you need to create a new, default page format
object. You should also notify the user that the flattened page format is not valid.

Functions 2265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMUnflattenPageFormatWithCFData
Rebuilds a page format object from a Core Foundation data object that contains flattened page format data.
(Deprecated in Mac OS X v10.5. Use PMPageFormatCreateWithDataRepresentation (page 2175) instead.)

OSStatus PMUnflattenPageFormatWithCFData (
 CFDataRef flattenCFData,
 PMPageFormat *pageFormat
);

Parameters
flattenCFData

A Core Foundation data object that contains a flattened representation of a page format object.

pageFormat
A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a page format
object that is rebuilt from the specified Core Foundation data object. You are responsible for releasing
the page format object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMFlattenPageFormatToCFData (page 2149)

Declared In
PMCoreDeprecated.h

PMUnflattenPageFormatWithURL
Rebuilds a page format object from a file system URL that contains flattened page format data. (Deprecated
in Mac OS X v10.5. Instead read the data into a CFData object and use
PMPageFormatCreateWithDataRepresentation (page 2175).)

2266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMUnflattenPageFormatWithURL (
 CFURLRef flattenFileURL,
 PMPageFormat *pageFormat
);

Parameters
flattenFileURL

A Core Foundation URL that specifies a file containing a flattened representation of a page format
object.

pageFormat
A pointer to your PMPageFormat (page 2275) variable. On return, the variable refers to a page format
object that is rebuilt from the specified file. You are responsible for releasing the page format object
with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMFlattenPageFormatToURL (page 2150)

Declared In
PMCoreDeprecated.h

PMUnflattenPrintSettings
Rebuilds a print settings object from a Memory Manager handle that contains flattened print settings data.
(Deprecated in Mac OS X v10.5. Use PMPrintSettingsCreateWithDataRepresentation (page 2209)
instead.)

OSStatus PMUnflattenPrintSettings (
 Handle flatSettings,
 PMPrintSettings *printSettings
);

Parameters
flatSettings

A handle to a flattened representation of a print settings object.

printSettings
A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a print
settings object that contains the data retrieved from the flattened print settings. You are responsible
for releasing the print settings object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298). The result codekPMInvalidParameter is returned
if the flattened PMPrintSettings object was created by an incompatible version of Core Printing.

Discussion
The PMUnflattenPrintSettings function creates a new PMPrintSettings object containing the data
from the flattened print settings. You should call the function PMSessionValidatePrintSettings (page
2249), as some values in the print settings object may no longer be valid.

Functions 2267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

If the function returns the result code kPMInvalidParameter you need to create a new, default print
settings object. You should also notify the user that the print settings are not valid.

There are no scoping requirements as to when you may use this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMUnflattenPrintSettingsWithCFData
Rebuilds a print settings object from a Core Foundation data object that contains flattened print settings
data. (Deprecated in Mac OS X v10.5. Use PMPrintSettingsCreateWithDataRepresentation (page 2209)
instead.)

OSStatus PMUnflattenPrintSettingsWithCFData (
 CFDataRef flattenCFData,
 PMPrintSettings *printSettings
);

Parameters
flattenCFData

A flattened representation of a print settings object.

printSettings
A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a print
settings object rebuilt from the specified Core Foundation data object. You are responsible for releasing
the print settings object with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMFlattenPrintSettingsToCFData (page 2151)

Declared In
PMCoreDeprecated.h

PMUnflattenPrintSettingsWithURL
Rebuilds a print settings object from a file that contains flattened print settings data. (Deprecated in Mac OS
X v10.5. Instead read the data into a CFData object and use
PMPrintSettingsCreateWithDataRepresentation (page 2209).)

2268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

OSStatus PMUnflattenPrintSettingsWithURL (
 CFURLRef flattenFileURL,
 PMPrintSettings *printSettings
);

Parameters
flattenFileURL

A file containing a flattened representation of a print settings object.

printSettings
A pointer to your PMPrintSettings (page 2277) variable. On return, the variable refers to a print
settings object rebuilt from the specified file. You are responsible for releasing the print settings object
with the function PMRelease (page 2214).

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.

See Also
PMFlattenPrintSettingsToURL (page 2152)

Declared In
PMCoreDeprecated.h

PMValidatePageFormat
Obtains a valid PMPageFormat object. (Deprecated in Mac OS X v10.4. Use
PMSessionValidatePageFormat (page 2248) instead.)

OSStatus PMValidatePageFormat (
 PMPageFormat pageFormat,
 Boolean *result
);

Parameters
pageFormat

A PMPageFormat object to be validated.

result
Returns true if any parameters were changed, false if no changes were required.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a page format object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

Functions 2269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMValidatePrintSettings
Obtains a valid PMPrintSettings object. (Deprecated in Mac OS X v10.4. Use
PMSessionValidatePrintSettings (page 2249) instead.)

OSStatus PMValidatePrintSettings (
 PMPrintSettings printSettings,
 Boolean *result
);

Parameters
printSettings

The PMPrintSettings object to be validated.

result
On return, a value of true if any parameters were changed, or false if no changes were required.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
Valid after calling PMBegin and creating a print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMCoreDeprecated.h

PMWorkflowCopyItems
Obtains an array of the available PDF workflow items.

OSStatus PMWorkflowCopyItems (
 CFArrayRef *workflowItems
);

Parameters
workflowItems

A pointer to your CFArrayRef variable. On return, the variable refers to an Core Foundation array.
Each element in the array is a dictionary that describes either a PDF workflow item or a folder containing
a set of PDF workflow items. For a list of possible keys, see “PDF Workflow Dictionary Keys” (page
2284). You are responsible for releasing the array.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

2270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMWorkflowSubmitPDFWithOptions
Submits a PDF file for workflow processing using the specified CUPS options string.

OSStatus PMWorkflowSubmitPDFWithOptions (
 CFURLRef workflowItem,
 CFStringRef title,
 const char *options,
 CFURLRef pdfFile
);

Parameters
workflowItem

A file system URL pointing to the workflow item that will handle the PDF file. See
PMWorkflowCopyItems (page 2270). The following table describes the different types of workflow
items for this function.

DescriptionWorkflow item

The action is executed for the PDF file. Available in Mac OS X v10.4 and
later.

Automator action

The PDF file is moved to the resolved folder.Folder alias

The application is sent an open event along with a reference to the PDF
file.

Application or application alias

The script is run with an open event along with a reference to the PDF
file.

Compiled AppleScript

The tool is run with the following parameters: title, options, and
pdfFile.

Executable tool

title
The user-displayable name of the PDF document.

options
A string of CUPS-style key-value pairs that may be passed to the PDF workflow item. This parameter
can be NULL in which case an empty string of options is used.

pdfFile
A file system URL pointing to the PDF file to be processed by the workflow item.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The printing system uses this function in conjunction with the function PMWorkflowCopyItems (page 2270)
to implement the PDF workflow button in the Print dialog.

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMCore.h

Functions 2271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMWorkflowSubmitPDFWithSettings
Submits a PDF file for workflow processing using the specified print settings.

OSStatus PMWorkflowSubmitPDFWithSettings (
 CFURLRef workflowItem,
 PMPrintSettings settings,
 CFURLRef pdfFile
);

Parameters
workflowItem

A file system URL pointing to the workflow item that will handle the PDF file. See
PMWorkflowCopyItems (page 2270). The following table describes the different types of workflow
items for this function.

DescriptionWorkflow item

The action is executed for the PDF file. Available in Mac OS X v10.4 and
later.

Automator action

The PDF file is moved to the resolved folder.Folder alias

The application is sent an open event along with a reference to the PDF
file.

Application or application alias

The script is run with an open event along with a reference to the PDF
file.

Compiled AppleScript

The tool is run with the specified settings and PDF file. This function
converts these parameters into a CUPS options string and passes the
options string to the tool.

Executable tool

settings
The print settings to apply to the PDF document. These settings are passed to the workflow item as
a CUPS options string.

pdfFile
A file system URL pointing to the PDF file to be processed by the workflow item.

Return Value
A result code. See “Core Printing Result Codes” (page 2298).

Discussion
The printing system uses this function in conjunction with the function PMWorkflowCopyItems (page 2270)
to implement the PDF workflow button in the Print dialog.

Special Considerations

In Mac OS X v10.4 and earlier, this function is not implemented and returns an error. You can use the function
PMWorkflowSubmitPDFWithOptions (page 2271) together with the function
PMPrintSettingsToOptions (page 2213) instead.

Availability
Available in Mac OS X v10.3 and later.

2272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMCore.h

Callbacks

PMIdleProcPtr
Defines a pointer to an idle function. (Deprecated. There is no replacement; this callback function was
included to facilitate porting legacy applications to Mac OS X, but it serves no useful purpose.)

typedef void (*PMIdleProcPtr) (void);

You would declare your idle function like this if you were to name it MyPrintIdleCallback:

void MyPrintIdleCallback (void);

Discussion
If you install an idle function using the function PMSessionSetIdleProc, the printing system calls your
idle function periodically during your print loop. Your idle function can display application status while
printing, but it should not duplicate information displayed by the printing system or the printer driver. If you
don’t install an idle function, you get the standard dialog for the current driver in Mac OS 8 and 9.

Your idle function must check whether the user has pressed Command-period, in which case your application
should stop its printing operation. If your status dialog contains a button to cancel the printing operation,
your idle function should also check for clicks in the button and respond accordingly.

To provide a pointer to your idle function, you create a universal procedure pointer (UPP) of type PMIdleUPP,
using the function NewPMIdleUPP. You can do so with code similar to the following:

PMIdleUPP MyPrintIdleUPP;
MyPrintIdleUPP = NewPMIdleUPP (&MyPrintIdleCallback);

When your print job is completed, you should use the function DisposePMIdleUPP to dispose of the universal
procedure pointer associated with your idle function. However, if you will use the same idle function in
subsequent print jobs, you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Special Considerations

Your idle function is not called in Mac OS X. It’s only called in Mac OS 8 and 9.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

Callbacks 2273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Data Types

PMDialog
An opaque type that represents a custom printing dialog.

typedef struct OpaquePMDialog* PMDialog;

Discussion
This data type is used by functions that are not recommended or deprecated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMDefinitionsDeprecated.h

PMIdleUPP
A type that defines a universal procedure pointer to an idle callback.

typedef PMIdleProcPtr PMIdleUPP;

Discussion
This data type is used by functions that are not recommended or deprecated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMCoreDeprecated.h

PMLanguageInfo
A data structure that contains level, version, and release information for the imaging language used by a
printer driver.

struct PMLanguageInfo {
 Str32 level;
 Str32 version;
 Str32 release;
};

Fields
level

Specifies the level of the imaging language used by the printer driver.

version
Specifies the version of the imaging language.

2274 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

release
Specifies the release of the imaging language.

PMObject
The base type for all the opaque types used in Core Printing.

typedef const void* PMObject;

Discussion
PMObject is the base type for opaque types such as PMPrintSession, PMPageFormat, PMPrintSettings,
PMPrinter, PMPaper, PMPreset, and PMServer. PMObject is used in functions such as PMRetain (page
2215) and PMRelease (page 2214) that operate on any opaque type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMDefinitions.h

PMPageFormat
An opaque type that stores the settings in the Page Setup dialog.

typedef struct OpaquePMPageFormat* PMPageFormat;

Discussion
Your application uses page format objects to store information such as the paper size, orientation, and scale
of pages in a printing session. To create a page format object, you use the function
PMCreatePageFormat (page 2143). A new page format object is empty and unusable until you call
PMSessionDefaultPageFormat (page 2225) orPMCopyPageFormat (page 2141) to initialize the settings. You
can also use the functions PMSetPageFormatExtendedData (page 2258) and
PMGetPageFormatExtendedData (page 2164) to store and retrieve application-specific data in a page format
object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMDefinitions.h

PMPaper
An opaque type that stores information about the paper used in a print job.

typedef struct OpaquePMPaper* PMPaper;

Discussion
Your application uses paper objects to identify standard and custom types of printing paper.

Availability
Available in Mac OS X v10.3 and later.

Data Types 2275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Declared In
PMDefinitions.h

PMPaperMargins
A data structure that specifies the unprintable area of a paper object.

typedef PMRect PMPaperMargins;

Discussion
Your application specifies paper margins when calling the function PMPaperCreateCustom (page 2177) to
create a custom paper type. You can obtain a paper’s margins with the function PMPaperGetMargins (page
2180).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMDefinitions.h

PMPreset
An opaque type that stores information about a named preset available for a print job.

typedef struct OpaquePMPreset* PMPreset;

Discussion
Your application uses a preset object to identify a named preset in the Print dialog. You typically obtain an
instance of this type using the function PMPrinterCopyPresets (page 2189).

Availability
Available in Mac OS X v10.3 and later.

Declared In
PMDefinitions.h

PMPrinter
An opaque type that represents a printer.

typedef struct OpaquePMPrinter* PMPrinter;

Discussion
You typically obtain a printer object using the function PMSessionGetCurrentPrinter (page 2231) or
PMServerCreatePrinterList (page 2215).

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMDefinitions.h

2276 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrintSession
An opaque type that stores information about a print job.

typedef struct OpaquePMPrintSession* PMPrintSession;

Discussion
A printing session object contains information that’s needed by the page format and print settings objects,
such as default page format and print settings values. For this reason, some printing functions can be called
only after you have created a printing session object. For example, setting defaults for or validating page
format and print settings objects can only be done after you have created a printing session object. Your
application creates a printing session object using the function PMCreateSession (page 2145).

You can use a printing session to implement multithreaded printing, and you can create multiple sessions
within a single-threaded application. If your application does not use sheets, then your application can open
only one dialog at a time. Each printing session can have its own dialog, and settings changed in one dialog
are independent of settings in any other dialog.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMDefinitions.h

PMPrintSettings
An opaque type that stores the settings in the Print dialog.

typedef struct OpaquePMPrintSettings* PMPrintSettings;

Discussion
Your application uses print settings objects to store information such as the number of copies and the range
of pages to print in a printing session. To create a print settings object, you use the function
PMCreatePrintSettings (page 2144). A new print settings object is empty and unusable until you call
PMSessionDefaultPrintSettings (page 2225) or PMCopyPrintSettings (page 2142) to initialize the
settings. You can also use the functions PMSetPrintSettingsExtendedData (page 2261) and
PMGetPrintSettingsExtendedData (page 2168) to store and retrieve application-specific data in a print
settings object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMDefinitions.h

PMRect
A data structure that describes a rectangle using four double-precision coordinates.

Data Types 2277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

struct PMRect {
 double top;
 double left;
 double bottom;
 double right;
};

Fields
top

The vertical coordinate for the upper-left point of the rectangle.

left
The horizontal coordinate for the upper-left point of the rectangle.

bottom
The vertical coordinate for the lower-right point of the rectangle.

right
The horizontal coordinate for the lower-right point of the rectangle.

PMResolution
A data structure that contains printing resolution information.

struct PMResolution {
 double hRes;
 double vRes;
};

Fields
hRes

The horizontal resolution in dots per inch (dpi).

vRes
The vertical resolution in dots per inch (dpi).

Discussion
The functions PMGetResolution (page 2169) and PMPrinterGetPrinterResolution (page 2199) use this
structure to return printing resolution information. Your application can pass this information to the function
PMSetResolution (page 2263).

PMServer
An opaque type that identifies a local or remote print server.

typedef struct OpaquePMServer* PMServer;

Availability
Available in Mac OS X v10.2 and later.

Declared In
PMDefinitions.h

2278 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PMPrintContext
An opaque type that describes the graphics environment for printing a document.

typedef struct OpaquePMPrintContext* PMPrintContext;

Discussion
This data type is used by functions that are not recommended or deprecated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMDefinitionsDeprecated.h

PMColorMode
A type that specifies color modes to use for printing.

typedef UInt16 PMColorMode;

Discussion
This data type is used by functions that are not recommended or deprecated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMDefinitionsDeprecated.h

Constants

Data Not Wanted Constants
Constants your application can use to indicate it does not need certain types of data returned by various
printing functions.

#define kPMNoData NULL
#define kPMDontWantSize NULL
#define kPMDontWantData NULL
#define kPMDontWantBoolean NULL
#define kPMNoPrintSettings NULL
#define kPMNoPageFormat NULL
#define kPMNoReference NULL

Constants
kPMNoData

Specifies that your application does not need data returned for a particular parameter. For future
compatibility, you are encouraged to use one of the following constants in cases where a specific
type of data is not required.

Constants 2279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMDontWantSize
Specifies that your application does not need the size information returned by the printing function.

kPMDontWantData
Specifies that your application does not need the data returned by the printing function.

kPMDontWantBoolean
Specifies that your application does not need a Boolean value returned by the printing function.

kPMNoPrintSettings
Specifies that your application does not need a PMPrintSettings object returned by the printing
function.

kPMNoPageFormat
Specifies that your application does not need a PMPageFormat object returned by the printing
function.

kPMNoReference
Specifies that your application does not need a reference returned by the printing function.

Data Representation Formats
Constants that specify the format of the data representation created with the functions
PMPageFormatCreateDataRepresentation (page 2174) and
PMPrintSettingsCreateDataRepresentation (page 2208).

enum PMDataFormat {
 kPMDataFormatXMLDefault = 0,
 kPMDataFormatXMLMinimal = 1,
 kPMDataFormatXMLCompressed = 2
};
typedef enum PMDataFormat PMDataFormat;

Constants
kPMDataFormatXMLDefault

Specifies a data format that is compatible with all Mac OS X versions. Data in this format can be used
with the PMUnflattenXXX functions present in versions of Mac OS X prior to 10.5. This format is a
pure XML representation of the data. However, this format is much larger than the more modern data
formats described below.

Available in Mac OS X v10.5 and later.

Declared in PMDefinitions.h.

kPMDataFormatXMLMinimal
Specifies an uncompressed data format that is approximately 3-5 times smaller than
kPMDataFormatXMLDefault. This data format is only compatible with Mac OS X v10.5 and later.
This format is a good choice when you do not need to use the data in versions of Mac OS X prior to
10.5 and you need a pure XML representation of the data.

Available in Mac OS X v10.5 and later.

Declared in PMDefinitions.h.

2280 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMDataFormatXMLCompressed
Specifies a compressed data format that is approximately 20 times smaller than
kPMDataFormatXMLDefault. This data format is only compatible with Mac OS X v10.5 and later.
This format is a good choice when you do not need to use the data in versions of Mac OS X prior to
10.5 and the minimum data size is important. Note that this format is not a pure XML representation
of the data.

Available in Mac OS X v10.5 and later.

Declared in PMDefinitions.h.

Destination Types
Constants that specify a destination for a print job.

typedef UInt16 PMDestinationType;
enum {
 kPMDestinationInvalid = 0,
 kPMDestinationPrinter = 1,
 kPMDestinationFile = 2,
 kPMDestinationFax = 3,
 kPMDestinationPreview = 4,
 kPMDestinationProcessPDF = 5
};

Constants
kPMDestinationInvalid

Specifies the destination is invalid.

Available in Mac OS X v10.1 and later.

Declared in PMDefinitions.h.

kPMDestinationPrinter
Specifies output to a printer.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDestinationFile
Specifies output to a file.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDestinationFax
Specifies output to a fax. This destination is currently not supported.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDestinationPreview
Specifies output to print preview.

Available in Mac OS X v10.1 and later.

Declared in PMDefinitions.h.

Constants 2281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMDestinationProcessPDF
Specifies output to a PDF workflow option.

Available in Mac OS X v10.4 and later.

Declared in PMDefinitions.h.

Document Format Strings
Constants that specify the document format for a print job.

#define kPMDocumentFormatDefault
 CFSTR("com.apple.documentformat.default")
#define kPMDocumentFormatPDF
 CFSTR("application/pdf")
#define kPMDocumentFormatPICT
 CFSTR("application/vnd.apple.printing-pict")
#define kPMDocumentFormatPICTPS
 CFSTR("application/vnd.apple.printing-pict-ps")
#define kPMDocumentFormatPostScript
 CFSTR("application/postscript")

Constants
kPMDocumentFormatDefault

Specifies the default format for the printing system. In Mac OS X, the default format is PDF.

kPMDocumentFormatPDF
Specifies PDF.

kPMDocumentFormatPICT
Specifies PICT format.

kPMDocumentFormatPICTPS
Specifies PICT format with embedded PostScript.

kPMDocumentFormatPostScript
Specifies PostScript format.

Duplex Modes
Constants that specify duplex mode settings.

typedef UInt32 PMDuplexMode;
enum {
 kPMDuplexNone = 0x0001,
 kPMDuplexNoTumble = 0x0002,
 kPMDuplexTumble = 0x0003,
 kPMSimplexTumble = 0x0004
};

Constants
kPMDuplexNone

Print on only one side of the paper.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

2282 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMDuplexNoTumble
Print on both sides of the paper, with both sides oriented in the same direction (no tumbling.)

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMDuplexTumble
Print on both sides of the paper, with the output on the second side flipped relative to the first side
(tumbling on.)

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMSimplexTumble
Print on only one side of the paper, but tumble the images while printing. This mode is not supported
at this time.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

Graphics Context Types
Constants that specify the graphics context for a print job.

#define kPMGraphicsContextDefault
 CFSTR("com.apple.graphicscontext.default")
#define kPMGraphicsContextQuickdraw
 CFSTR("com.apple.graphicscontext.quickdraw")
#define kPMGraphicsContextCoreGraphics
 CFSTR("com.apple.graphicscontext.coregraphics")

Constants
kPMGraphicsContextDefault

Specifies the default graphics context for the application’s runtime environment.

kPMGraphicsContextQuickdraw
Specifies a QuickDraw graphics context.

kPMGraphicsContextCoreGraphics
Specifies a Quartz graphics context. The default coordinate system for a Quartz printing context is
not the same as that used for a QuickDraw printing context. A Quartz printing context defines the
coordinates of the lower-left corner of the paper as (0,0) whereas the origin for a QuickDraw is at the
upper-right corner of the paper’s imageable area.

Page Orientation Constants
Constants that specify page orientation.

Constants 2283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

typedef UInt16 PMOrientation;
enum {
 kPMPortrait = 1,
 kPMLandscape = 2,
 kPMReversePortrait = 3,
 kPMReverseLandscape = 4
};

Constants
kPMPortrait

Specifies portrait (vertical) page orientation. Portrait orientation performs no alteration of the logical
page.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMLandscape
Specifies landscape (horizontal) orientation. Landscape orientation performs a 90° counterclockwise
rotation on the logical page image and sets the Quartz origin to the upper-left corner of the unrotated
logical page with positive y-values increasing across and to the right of the unrotated page. This has
the effect of rotating the logical page image 90° clockwise. In other words, the image appears on the
unrotated page as if it were rotated 90° clockwise.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMReversePortrait
Specifies reverse portrait orientation. Reverse portrait orientation performs a 180° rotation on the
logical page rectangle and sets the Quartz origin to the upper-right corner of the unrotated logical
page with positive y-values increasing downwards. This has the effect of rotating the logical page
image 180°. Reverse portrait orientation is supported in Mac OS X v10.5 and later.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMReverseLandscape
Specifies reverse landscape page orientation. Landscape orientation performs a 90° clockwise rotation
on the logical page rectangle and sets the Quartz origin to the lower-right corner of the unrotated
logical page, with the positive y-values increasing to across and to the left of the unrotated page.
This has the effect of rotating the logical page image 90° counterclockwise. In other words, the image
appears on the unrotated page as if it were rotated 90° counterclockwise.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

PDF Workflow Dictionary Keys
Constants that specify the keys in a PDF workflow dictionary.

2284 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

#define kPDFWorkFlowItemURLKey CFSTR("itemURL")
#define kPDFWorkflowDisplayNameKey CFSTR("displayName")
#define kPDFWorkflowFolderURLKey CFSTR("folderURL")
#define kPDFWorkflowItemsKey CFSTR("items")

Constants
kPDFWorkFlowItemURLKey

The URL to the PDF workflow item.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kPDFWorkflowDisplayNameKey
The user-displayable name for the PDF workflow item.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kPDFWorkflowFolderURLKey
The URL to the folder containing PDF workflow items.

Available in Mac OS X v10.5 and later.

Declared in PMDefinitions.h.

kPDFWorkflowItemsKey
A Core Foundation array describing the PDF workflow items in the folder.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

PostScript Injection Dictionary Keys
Constants that specify keys for PostScript injection dictionary entries.

#define kPSInjectionSectionKey CFSTR("section")
#define kPSInjectionSubSectionKey CFSTR("subsection")
#define kPSInjectionPageKey CFSTR("page")
#define kPSInjectionPlacementKey CFSTR("place")
#define kPSInjectionPostScriptKey CFSTR("psdata")

Constants
kPSInjectionSectionKey

Specifies a section.

kPSInjectionSubSectionKey
Specifies a subsection.

kPSInjectionPageKey
Specifies a page.

kPSInjectionPlacementKey
Specifies placement.

kPSInjectionPostScriptKey
Specifies PostScript data.

Constants 2285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

PostScript Page Injection Options
Constants that specify PostScript injection options.

enum {
 kPSPageInjectAllPages = -1,
 kPSInjectionMaxDictSize = 5
};

Constants
kPSPageInjectAllPages

Specifies to inject all pages in the print job with PostScript code.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPSInjectionMaxDictSize
Specifies the maximum size needed for a dictionary used for PostScript injection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

PostScript Injection Placement Options
Constants that specify where in the print job to inject PostScript code.

typedef UInt16 PSInjectionPlacement;
enum {
 kPSInjectionBeforeSubsection = 1,
 kPSInjectionAfterSubsection = 2,
 kPSInjectionReplaceSubsection = 3
};

Constants
kPSInjectionBeforeSubsection

Specifies that your PostScript code be inserted before the standard PostScript code that is normally
emitted for the subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPSInjectionAfterSubsection
Specifies that your PostScript code be inserted after the standard PostScript code that is normally
emitted for the subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

2286 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPSInjectionReplaceSubsection
Specifies that your PostScript code replace the standard PostScript code that is normally emitted for
the subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

PostScript Injection Sections
Constants that specify keys for PostScript injection section values.

typedef SInt32 PSInjectionSection;
enum {
 kInjectionSectJob = 1,
 kInjectionSectCoverPage = 2
};

Constants
kInjectionSectJob

Specifies the job section. This is the default section if you do not specify a section key explicitly.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSectCoverPage
Specifies the cover page section. Currently unsupported.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

PostScript Injection Subsections
Constants that specify PostScript injection values for the subsection key.

Constants 2287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

typedef SInt32 PSInjectionSubsection;
enum {
 kInjectionSubPSAdobe = 1,
 kInjectionSubPSAdobeEPS = 2,
 kInjectionSubBoundingBox = 3,
 kInjectionSubEndComments = 4,
 kInjectionSubOrientation = 5,
 kInjectionSubPages = 6,
 kInjectionSubPageOrder = 7,
 kInjectionSubBeginProlog = 8,
 kInjectionSubEndProlog = 9,
 kInjectionSubBeginSetup = 10,
 kInjectionSubEndSetup = 11,
 kInjectionSubBeginDefaults = 12,
 kInjectionSubEndDefaults = 13,
 kInjectionSubDocFonts = 14,
 kInjectionSubDocNeededFonts = 15,
 kInjectionSubDocSuppliedFonts = 16,
 kInjectionSubDocNeededRes = 17,
 kInjectionSubDocSuppliedRes = 18,
 kInjectionSubDocCustomColors = 19,
 kInjectionSubDocProcessColors = 20,
 kInjectionSubPlateColor = 21,
 kInjectionSubPageTrailer = 22,
 kInjectionSubTrailer = 23,
 kInjectionSubEOF = 24,
 kInjectionSubBeginFont = 25,
 kInjectionSubEndFont = 26,
 kInjectionSubBeginResource = 27,
 kInjectionSubEndResource = 28,
 kInjectionSubPage = 29,
 kInjectionSubBeginPageSetup = 30,
 kInjectionSubEndPageSetup = 31
};

Constants
kInjectionSubPSAdobe

Specifies the “%!PS-Adobe” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPSAdobeEPS
Specifies the “%!PS-Adobe-3.0 EPSF-3.0” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBoundingBox
Specifies the “%BoundingBox” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

2288 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kInjectionSubEndComments
Specifies the “%EndComments” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubOrientation
Specifies the “%Orientation” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPages
Specifies the “%Pages” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPageOrder
Specifies the “%PageOrder” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBeginProlog
Specifies the “%BeginProlog” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEndProlog
Specifies the “%EndProlog” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBeginSetup
Specifies the “%BeginSetup” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEndSetup
Specifies the “%EndSetup” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

Constants 2289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kInjectionSubBeginDefaults
Specifies the “%BeginDefaults” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEndDefaults
Specifies the “%EndDefaults” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocFonts
Specifies the “%DocumentFonts” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocNeededFonts
Specifies the “%DocumentNeededFonts” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocSuppliedFonts
Specifies the “%DocumentSuppliedFonts” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocNeededRes
Specifies the “%DocumentNeededResources” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocSuppliedRes
Specifies the “%DocumentSuppliedResources” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubDocCustomColors
Specifies the “%DocumentCustomColors” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

2290 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kInjectionSubDocProcessColors
Specifies the “%DocumentProcessColors” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPlateColor
Specifies the “%PlateColor” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPageTrailer
Specifies the “%PageTrailer” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubTrailer
Specifies the “%Trailer” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEOF
Specifies the “%EOF” (end of file) subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBeginFont
Specifies the “%BeginFont” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEndFont
Specifies the “%EndFont” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBeginResource
Specifies the “%BeginResource” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

Constants 2291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kInjectionSubEndResource
Specifies the “%EndResource” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubPage
Specifies the “%Page” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubBeginPageSetup
Specifies the “%BeginPageSetup” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kInjectionSubEndPageSetup
Specifies the “%EndPageSetup” subsection.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

PostScript Printer Description File Domains
Constants that specify the domains for PostScript printer description (PPD) files.

typedef UInt16 PMPPDDomain;
enum {
 kAllPPDDomains = 1,
 kSystemPPDDomain = 2,
 kLocalPPDDomain = 3,
 kNetworkPPDDomain = 4,
 kUserPPDDomain = 5,
 kCUPSPPDDomain = 6
};

Constants
kAllPPDDomains

Specifies all available domains.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kSystemPPDDomain
Specifies the system domain.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

2292 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kLocalPPDDomain
Specifies the local domain.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kNetworkPPDDomain
Specifies the network domain.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kUserPPDDomain
Specifies the user domain.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

kCUPSPPDDomain
Specifies the CUPS domain.

Available in Mac OS X v10.3 and later.

Declared in PMDefinitions.h.

Print All Pages Constant
A constant that specifies that all pages of a document should be printed.

enum {
 kPMPrintAllPages = -1
};

Constants
kPMPrintAllPages

Specifies that all pages of a document should be printed.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

Print Quality Modes
Constants that specify standard options for print quality.

Constants 2293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

typedef UInt32 PMQualityMode;
enum {
 kPMQualityLowest = 0,
 kPMQualityInkSaver = 1,
 kPMQualityDraft = 4,
 kPMQualityNormal = 8,
 kPMQualityPhoto = 11,
 kPMQualityBest = 13,
 kPMQualityHighest = 15
};

Constants
kPMQualityLowest

Specifies to use the lowest print quality available to the printer.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityInkSaver
Specifies to use a mode that saves ink, even if it slows printing.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityDraft
Specifies to print at the highest speed, with the amount of ink used as a secondary consideration.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityNormal
Specifies a general usage mode that balances quality and speed.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityPhoto
Specifies to optimize the quality of photos on the page, with speed not a concern.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityBest
Specifies to get the best print quality for all objects and photos on a page.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

kPMQualityHighest
Specifies to use the highest print quality available to the printer.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

Print Queue States
Constants that specify the current state of a print queue.

2294 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

typedef UInt16 PMPrinterState;
enum {
 kPMPrinterIdle = 3,
 kPMPrinterProcessing = 4,
 kPMPrinterStopped = 5
};

Constants
kPMPrinterIdle

Specifies the idle state.

Available in Mac OS X v10.2 and later.

Declared in PMDefinitions.h.

kPMPrinterProcessing
Specifies the processing state.

Available in Mac OS X v10.2 and later.

Declared in PMDefinitions.h.

kPMPrinterStopped
Specifies the stopped state.

Available in Mac OS X v10.2 and later.

Declared in PMDefinitions.h.

Printer Description Types
Constants that specify printer description types.

#define kPMPPDDescriptionType CFSTR("PMPPDDescriptionType")

Constants
kPMPPDDescriptionType

Specifies a PostScript printer description (PPD).

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

Tag Constants
Constants that specify values, such as minimum and maximum values, that your application can pass to or
obtain from printing functions.

Constants 2295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

typedef UInt32 PMTag;
enum {
 kPMCurrentValue = 'curr',
 kPMDefaultValue = 'dflt',
 kPMMinimumValue = 'minv',
 kPMMaximumValue = 'maxv',
 kPMSourceProfile = 'srcp',
 kPMMinRange = 'mnrg',
 kPMMaxRange = 'mxrg',
 kPMMinSquareResolution = 'mins',
 kPMMaxSquareResolution = 'maxs',
 kPMDefaultResolution = 'dftr'
};

Constants
kPMCurrentValue

Specifies the current setting or value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMDefaultValue
Specifies the default setting or value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMMinimumValue
Specifies the minimum setting or value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMMaximumValue
Specifies the maximum setting or value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMSourceProfile
Specifies a ColorSync source profile.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMMinRange
Specifies the minimum resolution supported by the printer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

2296 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

kPMMaxRange
Specifies the maximum resolution supported by the printer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMMinSquareResolution
Specifies the minimum resolution setting for which the horizontal and vertical resolutions are equal.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMMaxSquareResolution
Specifies the maximum resolution setting for which the horizontal and vertical resolutions are equal.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMDefaultResolution
Specifies the default resolution setting for the printer (typically 72 dots per inch).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

User Cancellation Constant
A constant that specifies an error value that indicates the user canceled a printing operation.

enum {
 kPMCancel = 128
};

Constants
kPMCancel

Specifies that the user clicked the Cancel button in a Print or Page Setup dialog.

Available in Mac OS X v10.0 and later.

Declared in PMDefinitions.h.

Discussion
This constant is provided for compatibility with old applications and printer drivers that expect the iPrAbort
error code to be returned when the user cancels a printing operation.

The default idle function checks for Command-period keyboard events during printing, and sets the error
condition equal to kPMCancel if one occurs. Your application can check for this condition using the
PMSessionError function, and should cancel the print job if kPMCancel is returned.

If you supply your own idle function (not needed in Mac OS 8, 9, or X), your function must check for
Command-period keyboard events, and set the error condition using the function PMSessionSetError.

Constants 2297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Color Modes
Constants that specify a color mode to use for printing.

typedef UInt16 PMColorMode;
enum {
 kPMBlackAndWhite = 1,
 kPMGray = 2,
 kPMColor = 3,
 kPMColorModeDuotone = 4,
 kPMColorModeSpecialColor = 5
};

Constants
kPMBlackAndWhite

Specifies black-and-white mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMGray
Specifies grayscale mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMColor
Specifies color mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMColorModeDuotone
Specifies two-channel color mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

kPMColorModeSpecialColor
Specifies to allow special colors such as metallic and light cyan.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMDefinitionsDeprecated.h.

Discussion
These constants are used by functions that are deprecated.

Result Codes

This table lists the result codes defined for Core Printing.

2298 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

DescriptionValueResult Code

An unspecified error occurred.-30870kPMGeneralError

Available in Mac OS X v10.0 and later.

Your application called this function out of sequence with
other printing functions.

-30871kPMOutOfScope

Available in Mac OS X v10.0 and later.

The user has not specified a default printer.-30872kPMNoDefaultPrinter

Available in Mac OS X v10.0 and later.

The function is not implemented.-30873kPMNotImplemented

Available in Mac OS X v10.0 and later.

There is no entry to match your application’s request.-30874kPMNoSuchEntry

Available in Mac OS X v10.0 and later.

Your application passed an invalid print settings object.-30875kPMInvalidPrintSettings

Available in Mac OS X v10.0 and later.

Your application passed an invalid page format object.-30876kPMInvalidPageFormat

Available in Mac OS X v10.0 and later.

Your application passed an out-of-range value.-30877kPMValueOutOfRange

Available in Mac OS X v10.0 and later.

The lock value was ignored.-30878kPMLockIgnored

Available in Mac OS X v10.0 and later.

Your application passed an invalid printing session object.-30879kPMInvalidPrintSession

Available in Mac OS X v10.0 and later.

Your application passed an invalid printer object.-30880kPMInvalidPrinter

Available in Mac OS X v10.0 and later.

The specified object is in use.-30881kPMObjectInUse

Available in Mac OS X v10.0 and later.

An array index is invalid.-30882kPMInvalidIndex

Available in Mac OS X v10.0 and later.

An internal error occurred while converting a string.-30883kPMStringConversionFailure

Available in Mac OS X v10.0 and later.

An error occurred while parsing XML data.-30884kPMXMLParseError

Available in Mac OS X v10.0 and later.

Result Codes 2299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

DescriptionValueResult Code

An internal error occurred while creating a job template.-30885kPMInvalidJobTemplate

Available in Mac OS X v10.0 and later.

The printer information is invalid.-30886kPMInvalidPrinterInfo

Available in Mac OS X v10.0 and later.

The printer connection type is invalid.-30887kPMInvalidConnection

Available in Mac OS X v10.0 and later.

The key in a ticket, job template, or dictionary is invalid.-30888kPMInvalidKey

Available in Mac OS X v10.0 and later.

The value in a ticket, job template, or dictionary is missing.-30889kPMInvalidValue

Available in Mac OS X v10.0 and later.

The specified memory allocator is invalid.-30890kPMInvalidAllocator

Available in Mac OS X v10.0 and later.

The job ticket is invalid.-30891kPMInvalidTicket

Available in Mac OS X v10.0 and later.

The item being added to a ticket is invalid.-30892kPMInvalidItem

Available in Mac OS X v10.0 and later.

The data type in a ticket, job template, or dictionary is not
the expected type.

-30893kPMInvalidType

Available in Mac OS X v10.0 and later.

A remote server or client sent an invalid reply.-30894kPMInvalidReply

Available in Mac OS X v10.0 and later.

The file type is invalid.-30895kPMInvalidFileType

Available in Mac OS X v10.0 and later.

The object is invalid.-30896kPMInvalidObject

Available in Mac OS X v10.0 and later.

Your application passed an invalid paper object.-30897kPMInvalidPaper

Available in Mac OS X v10.2 and later.

The dictionary specifying a printer calibration target is
invalid.

-30898kPMInvalidCalibrationTarget

Available in Mac OS X v10.3 and later.

Your application passed an invalid preset object.-30899kPMInvalidPreset

Available in Mac OS X v10.3 and later.

2300 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 48

Core Printing Reference

Framework: ApplicationServices/ImageIO

Declared in CGImageProperties.h

Overview

CGImageProperties Reference defines constants that represent characteristics of images used by the Image
I/O framework.

Constants

Format-Specific Dictionaries
Properties that have an associated dictionary of file-format or metadata-format specific key-value pairs.

CFStringRef kCGImagePropertyTIFFDictionary;
CFStringRef kCGImagePropertyGIFDictionary;
CFStringRef kCGImagePropertyJFIFDictionary;
CFStringRef kCGImagePropertyExifDictionary;
CFStringRef kCGImagePropertyPNGDictionary;
CFStringRef kCGImagePropertyIPTCDictionary;
CFStringRef kCGImagePropertyGPSDictionary;
CFStringRef kCGImagePropertyRawDictionary;
CFStringRef kCGImagePropertyCIFFDictionary;
CFStringRef kCGImageProperty8BIMDictionary;
CFStringRef kCGImagePropertyDNGDictionary;
CFStringRef kCGImagePropertyExifAuxDictionary;

Constants
kCGImagePropertyTIFFDictionary

A dictionary of key-value pairs for an image that uses Tagged Image File Format (TIFF). See “TIFF
Dictionary Keys” (page 2328).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFDictionary
A dictionary of key-value pairs for an image that uses Graphics Interchange Format (GIF). See “GIF
Dictionary Keys” (page 2316).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Overview 2301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyJFIFDictionary
A dictionary of key-value pairs for an image that uses JPEG File Interchange Format (JFIF). See “JFIF
Dictionary Keys” (page 2326).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDictionary
A dictionary of key-value pairs for an image that uses Exchangeable Image File Format (EXIF). See
“EXIF Dictionary Keys” (page 2307).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGDictionary
A dictionary of key-value pairs for an image that uses Portable Network Graphics (PNG) format. See
“PNG Dictionary Keys” (page 2327).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDictionary
A dictionary of key-value pairs for an image that uses International Press Telecommunications Council
(IPTC) metadata. See “IPTC Dictionary Keys” (page 2320).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDictionary
A dictionary of key-value pairs for an image that has Global Positioning System (GPS) information.
See “GPS Dictionary Keys” (page 2316).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyRawDictionary
A dictionary of key-value pairs for an image that contains minimally processed, or raw, data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFDictionary
A dictionary of key-value pairs for an image that uses Camera Image File Format (CIFF). See “CIFF
Dictionary Keys” (page 2332).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImageProperty8BIMDictionary
A dictionary of key-value pairs for an Adobe Photoshop image. See “8BIM Dictionary Keys” (page 2332).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGDictionary
A dictionary of key-value pairs for an image that uses the Digital Negative (DNG) archival format. See
“DNG Dictionary Keys” (page 2331).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

2302 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifAuxDictionary
An auxiliary dictionary of key-value pairs for an image that uses Exchangeable Image File Format
(EXIF).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Discussion
If any of these constants are returned by the functionsCGImageSourceCopyProperties (page 240) or
CGImageSourceCopyPropertiesAtIndex (page 241) the associated value is a dictionary of file-format or
metadata-format specific key-value pairs.

Declared In
CGImageProperties.h

Camera Maker Dictionaries
Properties that have an associated dictionary of key-value pairs for a specific camera manufacturer.

CFStringRef kCGImagePropertyMakerCanonDictionary;
CFStringRef kCGImagePropertyMakerNikonDictionary;
CFStringRef kCGImagePropertyMakerMinoltaDictionary;
CFStringRef kCGImagePropertyMakerFujiDictionary;
CFStringRef kCGImagePropertyMakerOlympusDictionary;
CFStringRef kCGImagePropertyMakerPentaxDictionary;

Constants
kCGImagePropertyMakerCanonDictionary

A dictionary of key-value pairs for an image from a Canon camera. See “Canon Camera Dictionary
Keys” (page 2337).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonDictionary
A dictionary of key-value pairs for an image from a Nikon camera. See “Nikon Camera Dictionary
Keys” (page 2334).

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerMinoltaDictionary
A dictionary of key-value pairs for an image from a Minolta camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerFujiDictionary
A dictionary of key-value pairs for an image from a Fuji camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerOlympusDictionary
A dictionary of key-value pairs for an image from a Olympus camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 2303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyMakerPentaxDictionary
A dictionary of key-value pairs for an image from a Pentax camera.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

Image Source Container Properties
Properties that apply to the container in general but not necessarily to any individual image in the container.

CFStringRef kCGImagePropertyFileSize;

Constants
kCGImagePropertyFileSize

The size of the image file in bytes, if known. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
These properties can be returned by the function CGImageSourceCopyProperties (page 240).

Declared In
CGImageProperties.h

Individual Image Properties
Properties that apply to an individual image in an image source.

CFStringRef kCGImagePropertyDPIHeight;
CFStringRef kCGImagePropertyDPIWidth;
CFStringRef kCGImagePropertyPixelWidth;
CFStringRef kCGImagePropertyPixelHeight;
CFStringRef kCGImagePropertyDepth;
CFStringRef kCGImagePropertyOrientation;
CFStringRef kCGImagePropertyIsFloat;
CFStringRef kCGImagePropertyIsIndexed;
CFStringRef kCGImagePropertyHasAlpha;
CFStringRef kCGImagePropertyColorModel;
CFStringRef kCGImagePropertyProfileName;

Constants
kCGImagePropertyDPIHeight

The resolution, in dots per inch, in the x dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDPIWidth
The resolution, in dots per inch, in the y dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2304 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyPixelWidth
The number of pixels in the x dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPixelHeight
The number of pixels in the y dimension. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDepth
The number of bits in each color sample of each pixel. If present, this key is a CFNumber value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyOrientation
The intended display orientation of the image. If present, this key is a CFNumber value with the same
value as defined by the TIFF and EXIF specifications. The value specifies where the origin (0,0) of
the image is locates, as shown in Table 49-1. If not present, a value of 1 is assumed.

Table 49-1

Location of the origin of the imageValue

Top, left1

Top, right2

Bottom, right3

Bottom, left4

Left, top5

Right, top6

Right, bottom7

Left, bottom8

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIsFloat
Whether or not the image contains floating-point pixel samples. The value of this key is
kCFBooleanTrue if the image contains them.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIsIndexed
Whether or not the image contains indexed pixel samples (sometimes called paletted samples). The
value of this key is kCFBooleanTrue if the image contains them.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyHasAlpha
Whether or not the image has an alpha channel. The value of this key is kCFBooleanTrue if the
image contains an alpha channel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModel
The color model of the image such as, "RGB", "CMYK", "Gray", or "Lab". The value of this key is
CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyProfileName
The name of the optional ICC profile embedded in the image, if known. If present, the value of this
key is a CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
These properties can be returned by the function CGImageSourceCopyPropertiesAtIndex (page 241).

Declared In
CGImageProperties.h

Color Model Values
Values for the color model property.

const CFStringRef kCGImagePropertyColorModelRGB;
const CFStringRef kCGImagePropertyColorModelGray;
const CFStringRef kCGImagePropertyColorModelCMYK;
const CFStringRef kCGImagePropertyColorModelLab;

Constants
kCGImagePropertyColorModelRGB

An RGB color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModelGray
A Gray color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyColorModelCMYK
A CMYK color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2306 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyColorModelLab
A Lab color model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
A color model describes how color values are represented mathematically. A color space is a color model
combined with a definition of how to interpret values within the model.

Declared In
CGImageProperties.h

EXIF Dictionary Keys
Keys for for an image that uses Exchangeable Image File Format (EXIF).

Constants 2307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyExifExposureTime;
const CFStringRef kCGImagePropertyExifFNumber;
const CFStringRef kCGImagePropertyExifExposureProgram;
const CFStringRef kCGImagePropertyExifSpectralSensitivity;
const CFStringRef kCGImagePropertyExifISOSpeedRatings;
const CFStringRef kCGImagePropertyExifOECF;
const CFStringRef kCGImagePropertyExifVersion;
const CFStringRef kCGImagePropertyExifDateTimeOriginal;
const CFStringRef kCGImagePropertyExifDateTimeDigitized;
const CFStringRef kCGImagePropertyExifComponentsConfiguration;
const CFStringRef kCGImagePropertyExifCompressedBitsPerPixel;
const CFStringRef kCGImagePropertyExifShutterSpeedValue;
const CFStringRef kCGImagePropertyExifApertureValue;
const CFStringRef kCGImagePropertyExifBrightnessValue;
const CFStringRef kCGImagePropertyExifExposureBiasValue;
const CFStringRef kCGImagePropertyExifMaxApertureValue;
const CFStringRef kCGImagePropertyExifSubjectDistance;
const CFStringRef kCGImagePropertyExifMeteringMode;
const CFStringRef kCGImagePropertyExifLightSource;
const CFStringRef kCGImagePropertyExifFlash;
const CFStringRef kCGImagePropertyExifFocalLength;
const CFStringRef kCGImagePropertyExifSubjectArea;
const CFStringRef kCGImagePropertyExifMakerNote;
const CFStringRef kCGImagePropertyExifUserComment;
const CFStringRef kCGImagePropertyExifSubsecTime;
const CFStringRef kCGImagePropertyExifSubsecTimeOrginal;
const CFStringRef kCGImagePropertyExifSubsecTimeDigitized;
const CFStringRef kCGImagePropertyExifFlashPixVersion;
const CFStringRef kCGImagePropertyExifColorSpace;
const CFStringRef kCGImagePropertyExifPixelXDimension;
const CFStringRef kCGImagePropertyExifPixelYDimension;
const CFStringRef kCGImagePropertyExifRelatedSoundFile;
const CFStringRef kCGImagePropertyExifFlashEnergy;
const CFStringRef kCGImagePropertyExifSpatialFrequencyResponse;
const CFStringRef kCGImagePropertyExifFocalPlaneXResolution;
const CFStringRef kCGImagePropertyExifFocalPlaneYResolution;
const CFStringRef kCGImagePropertyExifFocalPlaneResolutionUnit;
const CFStringRef kCGImagePropertyExifSubjectLocation;
const CFStringRef kCGImagePropertyExifExposureIndex;
const CFStringRef kCGImagePropertyExifSensingMethod;
const CFStringRef kCGImagePropertyExifFileSource;
const CFStringRef kCGImagePropertyExifSceneType;
const CFStringRef kCGImagePropertyExifCFAPattern;
const CFStringRef kCGImagePropertyExifCustomRendered;
const CFStringRef kCGImagePropertyExifExposureMode;
const CFStringRef kCGImagePropertyExifWhiteBalance;
const CFStringRef kCGImagePropertyExifDigitalZoomRatio;
const CFStringRef kCGImagePropertyExifFocalLenIn35mmFilm;
const CFStringRef kCGImagePropertyExifSceneCaptureType;
const CFStringRef kCGImagePropertyExifGainControl;
const CFStringRef kCGImagePropertyExifContrast;
const CFStringRef kCGImagePropertyExifSaturation;
const CFStringRef kCGImagePropertyExifSharpness;
const CFStringRef kCGImagePropertyExifDeviceSettingDescription;
const CFStringRef kCGImagePropertyExifSubjectDistRange;
const CFStringRef kCGImagePropertyExifImageUniqueID;
const CFStringRef kCGImagePropertyExifGamma;

2308 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

Constants
kCGImagePropertyExifExposureTime

The exposure time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFNumber
The F number.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureProgram
The exposure program.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSpectralSensitivity
The spectral sensitivity of each channel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifISOSpeedRatings
ISO speed ratings.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifOECF
The opto-electrical conversion function (OECF), which defines the relationship between the optical
input of the camera and the image values.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifVersion
The version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDateTimeOriginal
The original date and time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDateTimeDigitized
The digitized date and time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifComponentsConfiguration
The components configuration. For compressed data, specifies that the channels of each component
are arranged in increasing numeric order (from first component to the fourth).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifCompressedBitsPerPixel
The compressed bits per pixel.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifShutterSpeedValue
The shutter speed value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifApertureValue
The aperture value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifBrightnessValue
The brightness value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureBiasValue
The exposure bias value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMaxApertureValue
The maximum aperture value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectDistance
The distance to the subject, in meters.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMeteringMode
The metering mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifLightSource
The light source.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlash
The flash status when the image was shot.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2310 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifFocalLength
The focal length.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectArea
The subject area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifMakerNote
A maker note.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifUserComment
A user comment.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTime
The fraction of seconds for the date and time tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTimeOrginal
The fraction of seconds for the original date and time tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubsecTimeDigitized
The fraction of seconds for the digitized time tag.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlashPixVersion
The FlashPix version supported by an FPXR file. FlashPix is a format for multi-resolution, tiled images,
that facilitates fast onscreen viewing.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifColorSpace
The color space.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifPixelXDimension
The pixel x dimension.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifPixelYDimension
The pixel y dimension.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifRelatedSoundFile
A related sound file.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFlashEnergy
The strobe energy when the image was captures, in beam candle power seconds.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSpatialFrequencyResponse
The spatial frequency table and spatial frequency response values in the direction of image width,
image height, and diagonal directions. See ISO 12233..

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneXResolution
The number of image-width pixels (x) per focal plane resolution unit.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneYResolution
The number of image-height pixels (y)per focal plane resolution unit.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalPlaneResolutionUnit
The unit of measurement for the focal plane x and y tags.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectLocation
The location of the scene’s primary subject.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureIndex
The selected exposure index.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSensingMethod
The sensor type of the camera or input device.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2312 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifFileSource
The image source.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSceneType
The scene type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifCFAPattern
The color filter array (CFA) pattern, which is the geometric patter of the image sensor for a 1-chip
color sensor area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifCustomRendered
Special rendering performed on the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifExposureMode
The exposure mode setting.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifWhiteBalance
The white balance mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDigitalZoomRatio
The digital zoom ratio.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifFocalLenIn35mmFilm
The equivalent focal length in 35 mm film.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSceneCaptureType
The scene capture type (standard, landscape, portrait, night).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifGainControl
The gain adjustment applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifContrast
The contrast applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSaturation
The saturation applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSharpness
The sharpness applied to the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifDeviceSettingDescription
For a particular camera mode, indicates the conditions for taking the picture.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifSubjectDistRange
The subject distance range.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifImageUniqueID
The unique ID of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifGamma
The gamma setting.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

EXIF Auxiliary Dictionary Keys
Auxiliary keys for for an image that uses Exchangeable Image File Format (EXIF).

2314 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyExifAuxLensInfo;
const CFStringRef kCGImagePropertyExifAuxLensModel;
const CFStringRef kCGImagePropertyExifAuxSerialNumber;
const CFStringRef kCGImagePropertyExifAuxLensID;
const CFStringRef kCGImagePropertyExifAuxLensSerialNumber;
const CFStringRef kCGImagePropertyExifAuxImageNumber;
const CFStringRef kCGImagePropertyExifAuxFlashCompensation;
const CFStringRef kCGImagePropertyExifAuxOwnerName;
const CFStringRef kCGImagePropertyExifAuxFirmware;

Constants
kCGImagePropertyExifAuxLensInfo

Lens information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxSerialNumber
The serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensID
The lens ID.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxLensSerialNumber
The lens serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxImageNumber
The image number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxFlashCompensation
Flash compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyExifAuxOwnerName
The owner name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 2315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyExifAuxFirmware
Firmware information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

GIF Dictionary Keys
Keys for an image that uses Graphics Interchange Format (GIF).

const CFStringRef kCGImagePropertyGIFLoopCount;
const CFStringRef kCGImagePropertyGIFDelayTime;
const CFStringRef kCGImagePropertyGIFImageColorMap;
const CFStringRef kCGImagePropertyGIFHasGlobalColorMap;

Constants
kCGImagePropertyGIFLoopCount

The loop count.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFDelayTime
The delay time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFImageColorMap
The image color map.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGIFHasGlobalColorMap
Whether or not the GIF has a global color map.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

GPS Dictionary Keys
Keys for an image that has Global Positioning System (GPS) information.

2316 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyGPSVersion;
const CFStringRef kCGImagePropertyGPSLatitudeRef;
const CFStringRef kCGImagePropertyGPSLatitude;
const CFStringRef kCGImagePropertyGPSLongitudeRef;
const CFStringRef kCGImagePropertyGPSLongitude;
const CFStringRef kCGImagePropertyGPSAltitudeRef;
const CFStringRef kCGImagePropertyGPSAltitude;
const CFStringRef kCGImagePropertyGPSTimeStamp;
const CFStringRef kCGImagePropertyGPSSatellites;
const CFStringRef kCGImagePropertyGPSStatus;
const CFStringRef kCGImagePropertyGPSMeasureMode;
const CFStringRef kCGImagePropertyGPSDOP;
const CFStringRef kCGImagePropertyGPSSpeedRef;
const CFStringRef kCGImagePropertyGPSSpeed;
const CFStringRef kCGImagePropertyGPSTrackRef;
const CFStringRef kCGImagePropertyGPSTrack;
const CFStringRef kCGImagePropertyGPSImgDirectionRef;
const CFStringRef kCGImagePropertyGPSImgDirection;
const CFStringRef kCGImagePropertyGPSMapDatum;
const CFStringRef kCGImagePropertyGPSDestLatitudeRef;
const CFStringRef kCGImagePropertyGPSDestLatitude;
const CFStringRef kCGImagePropertyGPSDestLongitudeRef;
const CFStringRef kCGImagePropertyGPSDestLongitude;
const CFStringRef kCGImagePropertyGPSDestBearingRef;
const CFStringRef kCGImagePropertyGPSDestBearing;
const CFStringRef kCGImagePropertyGPSDestDistanceRef;
const CFStringRef kCGImagePropertyGPSDestDistance;
const CFStringRef kCGImagePropertyGPSProcessingMethod;
const CFStringRef kCGImagePropertyGPSAreaInformation;
const CFStringRef kCGImagePropertyGPSDateStamp;
const CFStringRef kCGImagePropertyGPSDifferental;

Constants
kCGImagePropertyGPSVersion

The version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLatitudeRef
Whether the latitude is northern or southern.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLatitude
The latitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSLongitudeRef
Whether the longitude is east or west.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyGPSLongitude
The longitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAltitudeRef
The reference altitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAltitude
The altitude.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSTimeStamp
The time as UTC (Coordinated Universal Time).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSatellites
The satellites used for GPS measurements.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSStatus
The status of the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSMeasureMode
The measurement mode.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDOP
The data degree of precision (DOP).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSpeedRef
The unit for expressing the GPS receiver speed of movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSSpeed
The GPS receiver speed of movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2318 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyGPSTrackRef
The reference for the direction of GPS receiver movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSTrack
The direction of GPS receiver movement.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSImgDirectionRef
The reference for the direction of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSImgDirection
The direction of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSMapDatum
The geodetic survey data used by the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLatitudeRef
Whether the latitude of the destination point is northern or southern.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLatitude
The latitude of the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLongitudeRef
Whether the longitude of the destination point is east or west.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestLongitude
The longitude of the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestBearingRef
The reference for giving the bearing to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyGPSDestBearing
The bearing to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestDistanceRef
The units for expressing the distance to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDestDistance
The distance to the destination point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSProcessingMethod
The name of the method used for finding a location.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSAreaInformation
The name of the GPS area.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDateStamp
The data and time information relative to Coordinated Universal Time (UTC).

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyGPSDifferental
Whether differential correction is applied to the GPS receiver.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

IPTC Dictionary Keys
Keys for an image that uses International Press Telecommunications Council (IPTC) metadata.

2320 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyIPTCObjectTypeReference;
const CFStringRef kCGImagePropertyIPTCObjectAttributeReference;
const CFStringRef kCGImagePropertyIPTCObjectName;
const CFStringRef kCGImagePropertyIPTCEditStatus;
const CFStringRef kCGImagePropertyIPTCEditorialUpdate;
const CFStringRef kCGImagePropertyIPTCUrgency;
const CFStringRef kCGImagePropertyIPTCSubjectReference;
const CFStringRef kCGImagePropertyIPTCCategory;
const CFStringRef kCGImagePropertyIPTCSupplementalCategory;
const CFStringRef kCGImagePropertyIPTCFixtureIdentifier;
const CFStringRef kCGImagePropertyIPTCKeywords;
const CFStringRef kCGImagePropertyIPTCContentLocationCode;
const CFStringRef kCGImagePropertyIPTCContentLocationName;
const CFStringRef kCGImagePropertyIPTCReleaseDate;
const CFStringRef kCGImagePropertyIPTCReleaseTime;
const CFStringRef kCGImagePropertyIPTCExpirationDate;
const CFStringRef kCGImagePropertyIPTCExpirationTime;
const CFStringRef kCGImagePropertyIPTCSpecialInstructions;
const CFStringRef kCGImagePropertyIPTCActionAdvised;
const CFStringRef kCGImagePropertyIPTCReferenceService;
const CFStringRef kCGImagePropertyIPTCReferenceDate;
const CFStringRef kCGImagePropertyIPTCReferenceNumber;
const CFStringRef kCGImagePropertyIPTCDateCreated;
const CFStringRef kCGImagePropertyIPTCTimeCreated;
const CFStringRef kCGImagePropertyIPTCDigitalCreationDate;
const CFStringRef kCGImagePropertyIPTCDigitalCreationTime;
const CFStringRef kCGImagePropertyIPTCOriginatingProgram;
const CFStringRef kCGImagePropertyIPTCProgramVersion;
const CFStringRef kCGImagePropertyIPTCObjectCycle;
const CFStringRef kCGImagePropertyIPTCByline;
const CFStringRef kCGImagePropertyIPTCBylineTitle;
const CFStringRef kCGImagePropertyIPTCCity;
const CFStringRef kCGImagePropertyIPTCSubLocation;
const CFStringRef kCGImagePropertyIPTCProvinceState;
const CFStringRef kCGImagePropertyIPTCCountryPrimaryLocationCode;
const CFStringRef kCGImagePropertyIPTCCountryPrimaryLocationName;
const CFStringRef kCGImagePropertyIPTCOriginalTransmissionReference;
const CFStringRef kCGImagePropertyIPTCHeadline;
const CFStringRef kCGImagePropertyIPTCCredit;
const CFStringRef kCGImagePropertyIPTCSource;
const CFStringRef kCGImagePropertyIPTCCopyrightNotice;
const CFStringRef kCGImagePropertyIPTCContact;
const CFStringRef kCGImagePropertyIPTCCaptionAbstract;
const CFStringRef kCGImagePropertyIPTCWriterEditor;
const CFStringRef kCGImagePropertyIPTCImageType;
const CFStringRef kCGImagePropertyIPTCImageOrientation;
const CFStringRef kCGImagePropertyIPTCLanguageIdentifier;
const CFStringRef kCGImagePropertyIPTCStarRating;

Constants
kCGImagePropertyIPTCObjectTypeReference

The object type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyIPTCObjectAttributeReference
The object attribute.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCObjectName
The object name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCEditStatus
The edit status.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCEditorialUpdate
An editorial update.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCUrgency
The urgency level.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSubjectReference
The subject.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCategory
The category.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSupplementalCategory
A supplemental category.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCFixtureIdentifier
A fixture identifier.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCKeywords
Keywords.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2322 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyIPTCContentLocationCode
The content location code.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCContentLocationName
The content location name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReleaseDate
The release date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReleaseTime
The release time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCExpirationDate
The expiration date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCExpirationTime
The expiration time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSpecialInstructions
Special instructions.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCActionAdvised
The advised action.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReferenceService
The reference service.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCReferenceDate
The reference date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyIPTCReferenceNumber
The reference number.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDateCreated
The date created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCTimeCreated
The time created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDigitalCreationDate
The digital creation date.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCDigitalCreationTime
The digital creation time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCOriginatingProgram
The originating program.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCProgramVersion
The program version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCObjectCycle
The object cycle.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCByline
The byline.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCBylineTitle
The byline title.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2324 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyIPTCCity
The city.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSubLocation
The sublocation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCProvinceState
The province or state.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCountryPrimaryLocationCode
The country primary location code.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCountryPrimaryLocationName
The country primary location name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCOriginalTransmissionReference
The original transmission reference.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCHeadline
The headline.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCredit
Credit information.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCSource
The source.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCopyrightNotice
The copyright notice.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyIPTCContact
Contact information.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCCaptionAbstract
The caption abstract.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCWriterEditor
The writer or editor.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCImageType
The image type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCImageOrientation
The image orientation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCLanguageIdentifier
The language identifier.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyIPTCStarRating
The star rating.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Discussion
IPTC constants are metadata elements of the Information Interchange Model (IIM) used to provide information
about images. The IIM was developer by the Newspaper Association of America (NAA) and the International
Press Telecommunications Council (IPTC).

Declared In
CGImageProperties.h

JFIF Dictionary Keys
Keys for an image that uses JPEG File Interchange Format (JFIF).

2326 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyJFIFVersion;
const CFStringRef kCGImagePropertyJFIFXDensity;
const CFStringRef kCGImagePropertyJFIFYDensity;
const CFStringRef kCGImagePropertyJFIFDensityUnit;
const CFStringRef kCGImagePropertyJFIFIsProgressive;

Constants
kCGImagePropertyJFIFVersion

The version.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFXDensity
The x density.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFYDensity
The y density.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFDensityUnit
The density unit.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyJFIFIsProgressive
Whether or not the image is progressive.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

PNG Dictionary Keys
Keys for an image that uses Portable Network Graphics (PNG) format.

const CFStringRef kCGImagePropertyPNGGamma;
const CFStringRef kCGImagePropertyPNGInterlaceType;
const CFStringRef kCGImagePropertyPNGXPixelsPerMeter;
const CFStringRef kCGImagePropertyPNGYPixelsPerMeter;
const CFStringRef kCGImagePropertyPNGsRGBIntent;
const CFStringRef kCGImagePropertyPNGChromaticities;

Constants
kCGImagePropertyPNGGamma

The gamma value.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyPNGInterlaceType
The interlace type.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGXPixelsPerMeter
The number of x pixels per meter.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGYPixelsPerMeter
The number of y pixels per meter.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGsRGBIntent
The sRGB intent.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyPNGChromaticities
The chromaticities.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

TIFF Dictionary Keys
Keys for an image that uses Tagged Image File Format (TIFF).

2328 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

const CFStringRef kCGImagePropertyTIFFCompression;
const CFStringRef kCGImagePropertyTIFFPhotometricInterpretation;
const CFStringRef kCGImagePropertyTIFFDocumentName;
const CFStringRef kCGImagePropertyTIFFImageDescription;
const CFStringRef kCGImagePropertyTIFFMake;
const CFStringRef kCGImagePropertyTIFFModel;
const CFStringRef kCGImagePropertyTIFFOrientation;
const CFStringRef kCGImagePropertyTIFFXResolution;
const CFStringRef kCGImagePropertyTIFFYResolution;
const CFStringRef kCGImagePropertyTIFFResolutionUnit;
const CFStringRef kCGImagePropertyTIFFSoftware;
const CFStringRef kCGImagePropertyTIFFTransferFunction;
const CFStringRef kCGImagePropertyTIFFDateTime;
const CFStringRef kCGImagePropertyTIFFArtist;
const CFStringRef kCGImagePropertyTIFFHostComputer;
const CFStringRef kCGImagePropertyTIFFCopyright;
const CFStringRef kCGImagePropertyTIFFWhitePoint;
const CFStringRef kCGImagePropertyTIFFPrimaryChromaticities;

Constants
kCGImagePropertyTIFFCompression

The compression scheme used on the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFPhotometricInterpretation
The color space of the image data.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFDocumentName
The document name.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFImageDescription
The image description.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFMake
The camera or input device make.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFModel
A camera or input device model.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFOrientation
The image orientation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Constants 2329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyTIFFXResolution
The number of pixels per resolution unit in the image width direction.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFYResolution
The number of pixels per resolution unit in the image height direction.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFResolutionUnit
The units of resolution.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFSoftware
The name and version of the software used for image creation.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFTransferFunction
The transfer function, in tabular format, used to map pixel components from a nonlinear form into a
linear form.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFDateTime
The date and time.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFArtist
The artist.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFHostComputer
The computer or operation system used when the image was created.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFCopyright
Copyright information.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

kCGImagePropertyTIFFWhitePoint
The white point.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

2330 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyTIFFPrimaryChromaticities
The chromaticities of the primaries of the image.

Available in Mac OS X v10.4 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

DNG Dictionary Keys
Keys for an image that uses the Digital Negative (DNG) archival format.

CFStringRef kCGImagePropertyDNGVersion;
CFStringRef kCGImagePropertyDNGBackwardVersion;
CFStringRef kCGImagePropertyDNGUniqueCameraModel;
CFStringRef kCGImagePropertyDNGLocalizedCameraModel;
CFStringRef kCGImagePropertyDNGCameraSerialNumber;
CFStringRef kCGImagePropertyDNGLensInfo;

Constants
kCGImagePropertyDNGVersion

An encoding of the four-tier version number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGBackwardVersion
The oldest version for which a file is compatible.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGUniqueCameraModel
A unique, nonlocalized name for the camera mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGLocalizedCameraModel
The localized camera model name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyDNGLensInfo
Information about the lens used for the image.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

Constants 2331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

8BIM Dictionary Keys
A key for an Adobe Photoshop image.

CFStringRef kCGImageProperty8BIMLayerNames;

Constants
kCGImageProperty8BIMLayerNames

The layer names for an Adobe Photoshop file.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

CIFF Dictionary Keys
Keys for an image that uses Camera Image File Format (CIFF).

CFStringRef kCGImagePropertyCIFFDescription;
CFStringRef kCGImagePropertyCIFFFirmware;
CFStringRef kCGImagePropertyCIFFOwnerName;
CFStringRef kCGImagePropertyCIFFImageName;
CFStringRef kCGImagePropertyCIFFImageFileName;
CFStringRef kCGImagePropertyCIFFReleaseMethod;
CFStringRef kCGImagePropertyCIFFReleaseTiming;
CFStringRef kCGImagePropertyCIFFRecordID;
CFStringRef kCGImagePropertyCIFFSelfTimingTime;
CFStringRef kCGImagePropertyCIFFCameraSerialNumber;
CFStringRef kCGImagePropertyCIFFImageSerialNumber;
CFStringRef kCGImagePropertyCIFFContinuousDrive;
CFStringRef kCGImagePropertyCIFFFocusMode;
CFStringRef kCGImagePropertyCIFFMeteringMode;
CFStringRef kCGImagePropertyCIFFShootingMode;
CFStringRef kCGImagePropertyCIFFLensMaxMM;
CFStringRef kCGImagePropertyCIFFLensMinMM;
CFStringRef kCGImagePropertyCIFFLensModel;
CFStringRef kCGImagePropertyCIFFWhiteBalanceIndex;
CFStringRef kCGImagePropertyCIFFFlashExposureComp;
CFStringRef kCGImagePropertyCIFFMeasuredEV;

Constants
kCGImagePropertyCIFFDescription

The camera description..

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFFirmware
The firmware version.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

2332 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyCIFFOwnerName
The owner name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFImageName
The image name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFImageFileName
The image file name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFReleaseMethod
The release method.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFReleaseTiming
The release timing.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFRecordID
The record ID>

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFSelfTimingTime
The self timing time.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFImageSerialNumber
The image serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFContinuousDrive
The continuous drive mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 2333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyCIFFFocusMode
The focus mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFMeteringMode
The metering mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFShootingMode
The shooting mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensMaxMM
The maximum lens length.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensMinMM
The minimum lens length.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFWhiteBalanceIndex
The white balance index.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFFlashExposureComp
The flash exposure compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyCIFFMeasuredEV
The measured EV.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

Nikon Camera Dictionary Keys
Keys for an image from a Nikon camera.

2334 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

CFStringRef kCGImagePropertyMakerNikonISOSetting;
CFStringRef kCGImagePropertyMakerNikonColorMode;
CFStringRef kCGImagePropertyMakerNikonQuality;
CFStringRef kCGImagePropertyMakerNikonWhiteBalanceMode;
CFStringRef kCGImagePropertyMakerNikonSharpenMode;
CFStringRef kCGImagePropertyMakerNikonFocusMode;
CFStringRef kCGImagePropertyMakerNikonFlashSetting;
CFStringRef kCGImagePropertyMakerNikonISOSelection;
CFStringRef kCGImagePropertyMakerNikonFlashExposureComp;
CFStringRef kCGImagePropertyMakerNikonImageAdjustment;
CFStringRef kCGImagePropertyMakerNikonLensAdapter;
CFStringRef kCGImagePropertyMakerNikonLensType;
CFStringRef kCGImagePropertyMakerNikonLensInfo;
CFStringRef kCGImagePropertyMakerNikonFocusDistance;
CFStringRef kCGImagePropertyMakerNikonDigitalZoom;
CFStringRef kCGImagePropertyMakerNikonShootingMode;
CFStringRef kCGImagePropertyMakerNikonShutterCount;
CFStringRef kCGImagePropertyMakerNikonCameraSerialNumber;

Constants
kCGImagePropertyMakerNikonISOSetting

The ISO setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonColorMode
The color mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonQuality
The quality setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonWhiteBalanceMode
The white balance mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonSharpenMode
The sharpening mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFocusMode
The focus mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFlashSetting
The flash setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 2335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyMakerNikonISOSelection
The ISO selection.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFlashExposureComp
The flash exposure compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonImageAdjustment
Image adjustment setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensAdapter
The lens adapter.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensType
The lens type.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonLensInfo
Lens information.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonFocusDistance
The focus distance.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonDigitalZoom
The digital zoom setting.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonShootingMode
The shooting mode.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerNikonShutterCount
The shutter count.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

2336 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyMakerNikonCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

Canon Camera Dictionary Keys
Keys for an image from a Canon camera.

CFStringRef kCGImagePropertyMakerCanonOwnerName;
CFStringRef kCGImagePropertyMakerCanonCameraSerialNumber;
CFStringRef kCGImagePropertyMakerCanonImageSerialNumber;
CFStringRef kCGImagePropertyMakerCanonFlashExposureComp;
CFStringRef kCGImagePropertyMakerCanonContinuousDrive;
CFStringRef kCGImagePropertyMakerCanonLensModel;
CFStringRef kCGImagePropertyMakerCanonFirmware;
CFStringRef kCGImagePropertyMakerCanonAspectRatioInfo;

Constants
kCGImagePropertyMakerCanonOwnerName

The owner name.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonCameraSerialNumber
The camera serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonImageSerialNumber
The image serial number.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonFlashExposureComp
The flash exposure compensation.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonContinuousDrive
The presence of a continuous drive.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonLensModel
The lens model.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Constants 2337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

kCGImagePropertyMakerCanonFirmware
The firmware version.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

kCGImagePropertyMakerCanonAspectRatioInfo
The image aspect ratio.

Available in Mac OS X v10.5 and later.

Declared in CGImageProperties.h.

Declared In
CGImageProperties.h

2338 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 49

CGImageProperties Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGAffineTransform.h

Companion guide Quartz 2D Programming Guide

Overview

The CGAffineTransform data structure represents a matrix used for affine transformations. A transformation
specifies how points in one coordinate system map to points in another coordinate system. An affine
transformation is a special type of mapping that preserves parallel lines in a path but does not necessarily
preserve lengths or angles. Scaling, rotation, and translation are the most commonly used manipulations
supported by affine transforms, but skewing is also possible.

Quartz provides functions that create, concatenate, and apply affine transformations using the
CGAffineTransform data structure. For information on how to use affine transformation functions, see
Quartz 2D Programming Guide.

You typically do not need to create an affine transform directly—CGContext Reference describes functions
that modify the current affine transform. If you don’t plan to reuse an affine transform, you may want to use
CGContextScaleCTM (page 105),CGContextRotateCTM (page 104),CGContextTranslateCTM (page 136),
or CGContextConcatCTM (page 82).

Functions by Task

Creating an Affine Transformation Matrix

CGAffineTransformMake (page 2342)
Returns an affine transformation matrix constructed from values you provide.

CGAffineTransformMakeRotation (page 2344)
Returns an affine transformation matrix constructed from a rotation value you provide.

CGAffineTransformMakeScale (page 2344)
Returns an affine transformation matrix constructed from scaling values you provide.

CGAffineTransformMakeTranslation (page 2345)
Returns an affine transformation matrix constructed from translation values you provide.

Overview 2339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Modifying Affine Transformations

CGAffineTransformTranslate (page 2348)
Returns an affine transformation matrix constructed by translating an existing affine transform.

CGAffineTransformScale (page 2347)
Returns an affine transformation matrix constructed by scaling an existing affine transform.

CGAffineTransformRotate (page 2346)
Returns an affine transformation matrix constructed by rotating an existing affine transform.

CGAffineTransformInvert (page 2341)
Returns an affine transformation matrix constructed by inverting an existing affine transform.

CGAffineTransformConcat (page 2340)
Returns an affine transformation matrix constructed by combining two existing affine transforms.

Applying Affine Transformations

CGPointApplyAffineTransform (page 2348)
Returns the point resulting from an affine transformation of an existing point.

CGSizeApplyAffineTransform (page 2349)
Returns the height and width resulting from a transformation of an existing height and width.

CGRectApplyAffineTransform (page 2349)
Applies an affine transform to a rectangle.

Evaluating Affine Transforms

CGAffineTransformIsIdentity (page 2342)
Checks whether an affine transform is the identity transform.

CGAffineTransformEqualToTransform (page 2341)
Checks whether two affine transforms are equal.

Functions

CGAffineTransformConcat
Returns an affine transformation matrix constructed by combining two existing affine transforms.

CGAffineTransform CGAffineTransformConcat (
 CGAffineTransform t1,
 CGAffineTransform t2
);

Parameters
t1

The first affine transform.

2340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

t2
The second affine transform. This affine transform is concatenated to the first affine transform.

Return Value
A new affine transformation matrix. That is, t’ = t1*t2.

Discussion
Concatenation combines two affine transformation matrices by multiplying them together. You might perform
several concatenations in order to create a single affine transform that contains the cumulative effects of
several transformations.

Note that matrix operations are not commutative—the order in which you concatenate matrices is important.
That is, the result of multiplying matrix t1 by matrix t2 does not necessarily equal the result of multiplying
matrix t2 by matrix t1.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformEqualToTransform
Checks whether two affine transforms are equal.

bool CGAffineTransformEqualToTransform (
 CGAffineTransform t1,
 CGAffineTransform t2
);

Parameters
t1

An affine transform.

t2
An affine transform.

Return Value
Returns true if t1 and t2 are equal, false otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGAffineTransform.h

CGAffineTransformInvert
Returns an affine transformation matrix constructed by inverting an existing affine transform.

Functions 2341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransform CGAffineTransformInvert (
 CGAffineTransform t
);

Parameters
t

An existing affine transform.

Return Value
A new affine transformation matrix. If the affine transform passed in parameter t cannot be inverted, Quartz
returns the affine transform unchanged.

Discussion
Inversion is generally used to provide reverse transformation of points within transformed objects. Given the
coordinates (x,y), which have been transformed by a given matrix to new coordinates (x’,y’), transforming
the coordinates (x’,y’) by the inverse matrix produces the original coordinates (x,y).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformIsIdentity
Checks whether an affine transform is the identity transform.

bool CGAffineTransformIsIdentity (
 CGAffineTransform t
);

Parameters
t

The affine transform to check.

Return Value
Returns true if t is the identity transform, false otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGAffineTransform.h

CGAffineTransformMake
Returns an affine transformation matrix constructed from values you provide.

2342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransform CGAffineTransformMake (
 CGFloat a,
 CGFloat b,
 CGFloat c,
 CGFloat d,
 CGFloat tx,
 CGFloat ty
);

Parameters
a

The value at position [1,1] in the matrix.

b
The value at position [1,2] in the matrix.

c
The value at position [2,1] in the matrix.

d
The value at position [2,2] in the matrix.

tx
The value at position [3,1] in the matrix.

ty
The value at position [3,2] in the matrix.

Return Value
A new affine transform matrix constructed from the values you specify.

Discussion
This function creates a CGAffineTransform structure that represents a new affine transformation matrix,
which you can use (and reuse, if you want) to transform a coordinate system. The matrix takes the following
form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

If you want only to transform an object to be drawn, it is not necessary to construct an affine transform to
do so. The most direct way to transform your drawing is by calling the appropriate CGContext function to
adjust the current transformation matrix.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGAffineTransform.h

Functions 2343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransformMakeRotation
Returns an affine transformation matrix constructed from a rotation value you provide.

CGAffineTransform CGAffineTransformMakeRotation (
 CGFloat angle
);

Parameters
angle

The angle, in radians, by which this matrix rotates the coordinate system axes. A positive value specifies
clockwise rotation, a negative value specifies counterclockwise.

Return Value
A new affine transformation matrix.

Discussion
This function creates a CGAffineTransform structure, which you can use (and reuse, if you want) to rotate
a coordinate system. The matrix takes the following form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

These are the resulting equations that Quartz uses to apply the rotation to a point (x, y):

If you want only to rotate an object to be drawn, it is not necessary to construct an affine transform to do
so. The most direct way to rotate your drawing is by calling the function CGContextRotateCTM (page 104).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformMakeScale
Returns an affine transformation matrix constructed from scaling values you provide.

2344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransform CGAffineTransformMakeScale (
 CGFloat sx,
 CGFloat sy
);

Parameters
sx

The factor by which to scale the x-axis of the coordinate system.

sy
The factor by which to scale the y-axis of the coordinate system.

Return Value
A new affine transformation matrix.

Discussion
This function creates a CGAffineTransform structure, which you can use (and reuse, if you want) to scale
a coordinate system. The matrix takes the following form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

These are the resulting equations that Quartz uses to scale the coordinates of a point (x,y):

If you want only to scale an object to be drawn, it is not necessary to construct an affine transform to do so.
The most direct way to scale your drawing is by calling the function CGContextScaleCTM (page 105).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformMakeTranslation
Returns an affine transformation matrix constructed from translation values you provide.

Functions 2345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransform CGAffineTransformMakeTranslation (
 CGFloat tx,
 CGFloat ty
);

Parameters
tx

The value by which to move the x-axis of the coordinate system.

ty
The value by which to move the y-axis of the coordinate system.

Return Value
A new affine transform matrix.

Discussion
This function creates a CGAffineTransform structure. which you can use (and reuse, if you want) to move
a coordinate system. The matrix takes the following form:

Because the third column is always (0,0,1), the CGAffineTransform data structure returned by this
function contains values for only the first two columns.

These are the resulting equations Quartz uses to apply the translation to a point (x,y):

If you want only to move the location where an object is drawn, it is not necessary to construct an affine
transform to do so. The most direct way to move your drawing is by calling the function
CGContextTranslateCTM (page 136).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformRotate
Returns an affine transformation matrix constructed by rotating an existing affine transform.

2346 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

CGAffineTransform CGAffineTransformRotate (
 CGAffineTransform t,
 CGFloat angle
);

Parameters
t

An existing affine transform.

angle
The angle, in radians, by which to rotate the affine transform.

Return Value
A new affine transformation matrix.

Discussion
You use this function to create a new affine transformation matrix by adding a rotation value to an existing
affine transform. The resulting structure represents a new affine transform, which you can use (and reuse, if
you want) to rotate a coordinate system.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGAffineTransformScale
Returns an affine transformation matrix constructed by scaling an existing affine transform.

CGAffineTransform CGAffineTransformScale (
 CGAffineTransform t,
 CGFloat sx,
 CGFloat sy
);

Parameters
t

An existing affine transform.

sx
The value by which to scale x values of the affine transform.

sy
The value by which to scale y values of the affine transform.

Return Value
A new affine transformation matrix.

Discussion
You use this function to create a new affine transformation matrix by adding scaling values to an existing
affine transform. The resulting structure represents a new affine transform, which you can use (and reuse, if
you want) to scale a coordinate system.

Availability
Available in Mac OS X version 10.0 and later.

Functions 2347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Related Sample Code
HID Calibrator

Declared In
CGAffineTransform.h

CGAffineTransformTranslate
Returns an affine transformation matrix constructed by translating an existing affine transform.

CGAffineTransform CGAffineTransformTranslate (
 CGAffineTransform t,
 CGFloat tx,
 CGFloat ty
);

Parameters
t

An existing affine transform.

tx
The value by which to move x values with the affine transform.

ty
The value by which to move y values with the affine transform.

Return Value
A new affine transformation matrix.

Discussion
You use this function to create a new affine transform by adding translation values to an existing affine
transform. The resulting structure represents a new affine transform, which you can use (and reuse, if you
want) to move a coordinate system.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGPointApplyAffineTransform
Returns the point resulting from an affine transformation of an existing point.

CGPoint CGPointApplyAffineTransform (
 CGPoint point,
 CGAffineTransform t
);

Parameters
point

A point that specifies the x- and y-coordinates to transform.

t
The affine transform to apply.

2348 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Return Value
A new point resulting from applying the specified affine transform to the existing point.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

CGRectApplyAffineTransform
Applies an affine transform to a rectangle.

CGRect CGRectApplyAffineTransform (
 CGRect rect,
 CGAffineTransform t
);

Parameters
rect

The rectangle whose corner points you want to transform.

t
The affine transform to apply to the rect parameter.

Return Value
The transformed rectangle.

Discussion
Because affine transforms do not preserve rectangles in general, the functionCGRectApplyAffineTransform
returns the smallest rectangle that contains the transformed corner points of the rect parameter. If the
affine transform t consists solely of scaling and translation operations, then the returned rectangle coincides
with the rectangle constructed from the four transformed corners.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGAffineTransform.h

CGSizeApplyAffineTransform
Returns the height and width resulting from a transformation of an existing height and width.

CGSize CGSizeApplyAffineTransform (
 CGSize size,
 CGAffineTransform t
);

Parameters
size

A size that specifies the height and width to transform.

t
The affine transform to apply.

Functions 2349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Return Value
A new size resulting from applying the specified affine transform to the existing size.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGAffineTransform.h

Data Types

CGAffineTransform
A structure for holding an affine transformation matrix.

struct CGAffineTransform {
 CGFloat a;
 CGFloat b;
 CGFloat c;
 CGFloat d;
 CGFloat tx;
 CGFloat ty;
};
typedef struct CGAffineTransform CGAffineTransform;

Fields
a

The entry at position [1,1] in the matrix.

b
The entry at position [1,2] in the matrix.

c
The entry at position [2,1] in the matrix.

d
The entry at position [2,2] in the matrix.

tx
The entry at position [3,1] in the matrix.

ty
The entry at position [3,2] in the matrix.

Discussion
In Quartz 2D, an affine transformation matrix is used to rotate, scale, translate, or skew the objects you draw
in a graphics context. The CGAffineTransform type provides functions for creating, concatenating, and
applying affine transformations.

In Quartz, affine transforms are represented by a 3 by 3 matrix:

2350 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Because the third column is always (0,0,1), the CGAffineTransform data structure contains values for
only the first two columns.

Conceptually, a Quartz affine transform multiplies a row vector representing each point (x,y) in your drawing
by this matrix, producing a vector that represents the corresponding point (x’,y’):

Given the 3 by 3 matrix, Quartz uses the following equations to transform a point (x, y) in one coordinate
system into a resultant point (x’,y’) in another coordinate system.

The matrix thereby “links” two coordinate systems—it specifies how points in one coordinate system map
to points in another.

Note that you do not typically need to create affine transforms directly. If you want only to draw an object
that is scaled or rotated, for example, it is not necessary to construct an affine transform to do so. The most
direct way to manipulate your drawing—whether by movement, scaling, or rotation—is to call the functions
CGContextTranslateCTM (page 136), CGContextScaleCTM (page 105), or CGContextRotateCTM (page
104), respectively. You should generally only create an affine transform if you want to reuse it later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGAffineTransform.h

Constants

CGAffineTransformIdentity
The identity transform.

Constants 2351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

const CGAffineTransform CGAffineTransformIdentity;

Constants
CGAffineTransformIdentity

The identity transform:

Available in Mac OS X v10.0 and later.

Declared in CGAffineTransform.h.

Declared In
CGAffineTransform.h

2352 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 50

CGAffineTransform Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in CGGeometry.h

Companion guide Quartz 2D Programming Guide

Overview

CGGeometry Reference defines structures for geometric primitives and functions that operate on them. The
data structure CGPoint represents a point in a two-dimensional coordinate system. The data structure
CGRect represents the location and dimensions of a rectangle. The data structure CGSize represents the
dimensions of width and height.

Functions by Task

Creating a Geometric Primitive From a Dictionary Representation

CGPointCreateDictionaryRepresentation (page 2355)
Returns a dictionary representation of the provided point.

CGSizeCreateDictionaryRepresentation (page 2371)
Returns a dictionary representation of the provided size.

CGRectCreateDictionaryRepresentation (page 2358)
Returns a dictionary representation of the provided rectangle.

Creating a Dictionary Representation From a Geometric Primitive

CGPointMakeWithDictionaryRepresentation (page 2357)
Fills in a CGPoint structure using the contents of the provided dictionary.

CGSizeMakeWithDictionaryRepresentation (page 2372)
Fills in a CGSize structure using the contents of the provided dictionary.

CGRectMakeWithDictionaryRepresentation (page 2369)
Fills in a CGRect structure using the contents of the provided dictionary.

Overview 2353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Creating a Geometric Primitive From Values

CGPointMake (page 2356)
Returns a CGPoint structure filled in with the coordinate values you provide.

CGRectMake (page 2368)
Returns a CGRect structure filled in with the coordinate and dimension values you provide.

CGSizeMake (page 2372)
Returns a CGSize structure filled in with dimension values you provide.

Modifying Rectangles

CGRectDivide (page 2359)
Divides a source rectangle into two component rectangles.

CGRectInset (page 2364)
Returns a rectangle that is smaller or larger than the source rectangle, with the same center point.

CGRectIntegral (page 2365)
Returns the smallest rectangle that results from converting the source rectangle values to integers.

CGRectIntersection (page 2365)
Returns the intersection of two rectangles.

CGRectOffset (page 2369)
Returns a rectangle with an origin that is offset from that of the source rectangle.

CGRectStandardize (page 2370)
Returns a rectangle with a positive width and height.

CGRectUnion (page 2371)
Returns the smallest rectangle that contains the two provided rectangles.

Comparing Values

CGPointEqualToPoint (page 2356)
Returns whether two points are equal.

CGSizeEqualToSize (page 2371)
Returns whether two sizes are equal.

CGRectEqualToRect (page 2359)
Returns whether two rectangles are equal in size and position.

CGRectIntersectsRect (page 2366)
Returns whether two rectangles intersect.

Checking for Membership

CGRectContainsPoint (page 2357)
Returns whether a rectangle contains a specified point.

CGRectContainsRect (page 2358)
Returns whether the first rectangle contains the second rectangle.

2354 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Getting Min, Mid, and Max Values

CGRectGetMinX (page 2362)
Returns the x-coordinate that establishes the left edge of a rectangle.

CGRectGetMinY (page 2363)
Returns the y-coordinate that establishes the bottom edge of a rectangle.

CGRectGetMidX (page 2361)
Returns the x- coordinate that establishes the center of a rectangle.

CGRectGetMidY (page 2362)
Returns the y-coordinate that establishes the center of a rectangle.

CGRectGetMaxX (page 2360)
Returns the x-coordinate that establishes the right edge of a rectangle.

CGRectGetMaxY (page 2361)
Returns the y-coordinate that establishes the top edge of a rectangle.

Getting Height and Width

CGRectGetHeight (page 2360)
Returns the height of a rectangle.

CGRectGetWidth (page 2363)
Returns the width of a rectangle.

Checking Rectangle Characteristics

CGRectIsEmpty (page 2366)
Returns whether a rectangle has zero width or height, or is a null rectangle.

CGRectIsNull (page 2368)
Returns whether a rectangle is invalid.

CGRectIsInfinite (page 2367)
Returns whether a rectangle is infinite.

CGRectIsIntegral (page 2367)
Returns whether the origin and size of the rectangle can be represented exactly as integers.

Functions

CGPointCreateDictionaryRepresentation
Returns a dictionary representation of the provided point.

Functions 2355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CFDictionaryRef CGPointCreateDictionaryRepresentation(
 CGPoint point
);

Parameters
point

A point.

Return Value
The dictionary representation of the point.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGPointEqualToPoint
Returns whether two points are equal.

bool CGPointEqualToPoint (
 CGPoint point1,
 CGPoint point2
);

Parameters
point1

The first point to examine.

point2
The second point to examine.

Return Value
Returns 1 if the two specified points are the same; otherwise, 0.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGPointMake
Returns a CGPoint structure filled in with the coordinate values you provide.

CGPoint CGPointMake (
 CGFloat x,
 CGFloat y
);

Parameters
x

The x-coordinate of the point to construct.

2356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

y
The y-coordinate of the point to construct.

Return Value
Returns a CGPoint structure, representing a single (x,y) coordinate pair.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CALayerEssentials
CarbonSketch

Declared In
CGGeometry.h

CGPointMakeWithDictionaryRepresentation
Fills in a CGPoint structure using the contents of the provided dictionary.

bool CGPointMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGPoint *point
);

Parameters
dict

A dictionary that was previously returned from the function
CGPointCreateDictionaryRepresentation (page 2355).

point
On return, the point created from the provided dictionary.

Return Value
true if successful; false otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGRectContainsPoint
Returns whether a rectangle contains a specified point.

bool CGRectContainsPoint (
 CGRect rect,
 CGPoint point
);

Parameters
rect

The rectangle to examine.

Functions 2357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

point
The point to examine.

Return Value
Returns 1 if the specified point is located within the specified rectangle; otherwise, 0.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

CGRectContainsRect
Returns whether the first rectangle contains the second rectangle.

bool CGRectContainsRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The rectangle to examine for containment of the rectangle passed in rect2.

rect2
The rectangle to examine for being contained in the rectangle passed in rect1.

Return Value
Returns 1 if the rectangle specified by rect2 is contained in the rectangle passed in rect1; otherwise, 0.
The first rectangle contains the second if the union of the two rectangles is equal to the first rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

CGRectCreateDictionaryRepresentation
Returns a dictionary representation of the provided rectangle.

CFDictionaryRef CGRectCreateDictionaryRepresentation(
 CGRect rect
);

Parameters
rect

A rectangle.

2358 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Return Value
The dictionary representation of the rectangle.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGRectDivide
Divides a source rectangle into two component rectangles.

void CGRectDivide (
 CGRect rect,
 CGRect *slice,
 CGRect *remainder,
 CGFloat amount,
 CGRectEdge edge
);

Parameters
rect

The source CGRect structure.

slice
On input, a pointer to an uninitialized CGRect structure. On return, a CGRect structure filled in with
the specified edge and values that extends the distance beyond the edge specified by the amount
parameter.

remainder
On input, a pointer to an uninitialized rectangle CGRect structure. On return, the CGRect structure
contains the portion of the source CGRect structure that remains after CGRectEdge produces the
“slice” rectangle.

amount
A distance from the rectangle side that is specified in the edge parameter. This distance defines the
line, parallel to the specified side, that Quartz uses to divide the source CGRect structure.

edge
A CGRectEdge value (CGRectMinXEdge (page 2376), CGRectMinYEdge (page 2376),
CGRectMaxXEdge (page 2376), orCGRectMaxYEdge (page 2376)) that specifies the side of the rectangle
from which the distance passed in the amount parameter is measured. CGRectDivide produces a
“slice” rectangle that contains the specified edge and extends amount distance beyond it.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGRectEqualToRect
Returns whether two rectangles are equal in size and position.

Functions 2359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

bool CGRectEqualToRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The first rectangle to examine.

rect2
The second rectangle to examine.

Return Value
Returns 1 if the two specified rectangles have equal size and origin values, or are both null. Otherwise,
returns 0.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGRectGetHeight
Returns the height of a rectangle.

CGFloat CGRectGetHeight (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The height of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer
WhackedTV

Declared In
CGGeometry.h

CGRectGetMaxX
Returns the x-coordinate that establishes the right edge of a rectangle.

2360 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGFloat CGRectGetMaxX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the top-right corner of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
CGGeometry.h

CGRectGetMaxY
Returns the y-coordinate that establishes the top edge of a rectangle.

CGFloat CGRectGetMaxY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The y-coordinate of the top-right corner of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Explorer

Declared In
CGGeometry.h

CGRectGetMidX
Returns the x- coordinate that establishes the center of a rectangle.

Functions 2361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGFloat CGRectGetMidX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the center of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator

Declared In
CGGeometry.h

CGRectGetMidY
Returns the y-coordinate that establishes the center of a rectangle.

CGFloat CGRectGetMidY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The y-coordinate of the center of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
CGGeometry.h

CGRectGetMinX
Returns the x-coordinate that establishes the left edge of a rectangle.

2362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGFloat CGRectGetMinX (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The x-coordinate of the bottom-left corner of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Config Save
HID Explorer

Declared In
CGGeometry.h

CGRectGetMinY
Returns the y-coordinate that establishes the bottom edge of a rectangle.

CGFloat CGRectGetMinY (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The y-coordinate of the bottom-left corner of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Config Save
HID Explorer

Declared In
CGGeometry.h

CGRectGetWidth
Returns the width of a rectangle.

Functions 2363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGFloat CGRectGetWidth (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
The width of the specified rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer
WhackedTV

Declared In
CGGeometry.h

CGRectInset
Returns a rectangle that is smaller or larger than the source rectangle, with the same center point.

CGRect CGRectInset (
 CGRect rect,
 CGFloat dx,
 CGFloat dy
);

Parameters
rect

The source CGRect structure.

dx
The x-coordinate value to use for adjusting the source rectangle. To create an inset rectangle, specify
a positive value. To create a larger, encompassing rectangle, specify a negative value.

dy
The y-coordinate value to use for adjusting the source rectangle. To create an inset rectangle, specify
a positive value. To create a larger, encompassing rectangle, specify a negative value.

Return Value
A filled-in CGRect structure. The origin value is offset in the x-axis by the distance specified by the dx
parameter and in the y-axis by the distance specified by the dy parameter, and its size adjusted by
(2*dx,2*dy), relative to the source rectangle. If dx and dy are positive values, then the rectangle’s size is
decreased. If dx and dy are negative values, the rectangle’s size is increased.

Availability
Available in Mac OS X version 10.0 and later.

2364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

CGRectIntegral
Returns the smallest rectangle that results from converting the source rectangle values to integers.

CGRect CGRectIntegral (
 CGRect rect
);

Parameters
rect

The source rectangle.

Return Value
A filled-in CGRect structure whose values represent the rectangle with the smallest integer values for its
origin and size that contains the source rectangle. That is, given a rectangle with fractional origin or size
values, CGRectIntegral rounds the rectangle’s origin downward and its size upward to the nearest whole
integers, such that the result contains the original rectangle.

Availability
Available in Mac OS X version 10.0 and later.

See Also
CGRectIsIntegral (page 2367)

Related Sample Code
WhackedTV

Declared In
CGGeometry.h

CGRectIntersection
Returns the intersection of two rectangles.

CGRect CGRectIntersection (
 CGRect r1,
 CGRect r2
);

Parameters
rect1

The first source rectangle.

rect2
The second source rectangle.

Functions 2365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Return Value
A filled-in CGRect structure that represents the intersection of the two specified rectangles. If the two
rectangles do not intersect, returns the null rectangle. To check for this condition, use CGRectIsNull (page
2368).

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
WhackedTV

Declared In
CGGeometry.h

CGRectIntersectsRect
Returns whether two rectangles intersect.

bool CGRectIntersectsRect (
 CGRect rect1,
 CGRect rect2
);

Parameters
rect1

The first rectangle to examine.

rect2
The second rectangle to examine.

Return Value
Returns 1 if the two specified rectangles intersect; otherwise, 0. The first rectangle intersects the second if
the intersection of the rectangles is not equal to the null rectangle.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGRectIsEmpty
Returns whether a rectangle has zero width or height, or is a null rectangle.

bool CGRectIsEmpty (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
Returns 1 if the specified rectangle is empty; otherwise, 0.

2366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Discussion
An empty rectangle is either a null rectangle or a valid rectangle with zero height or width. See also
CGRectIsNull (page 2368).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGRectIsInfinite
Returns whether a rectangle is infinite.

bool CGRectIsInfinite (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
Returns true if the specified rectangle is infinite, false otherwise.

Discussion
An infinite rectangle is one that has no defined bounds. Infinite rectangles can be created as output from a
tiling filter. For example, the Core Image framework perspective tile filter creates an image whose extent is
described by an infinite rectangle.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
WhackedTV

Declared In
CGGeometry.h

CGRectIsIntegral
Returns whether the origin and size of the rectangle can be represented exactly as integers.

bool CGRectIsIntegral (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
Returns true if the origin and size of the rectangle can be represented exactly as integers; false otherwise.

Functions 2367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGRectIsNull
Returns whether a rectangle is invalid.

bool CGRectIsNull (
 CGRect rect
);

Parameters
rect

The rectangle to examine.

Return Value
Returns 1 if the specified rectangle is null; otherwise, 0.

Discussion
A null rectangle is one that is not valid (you cannot draw a null rectangle). For example, the result of
intersecting two disjoint rectangles is a null rectangle. See also CGRectIsEmpty (page 2366).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGRectMake
Returns a CGRect structure filled in with the coordinate and dimension values you provide.

CGRect CGRectMake (
 CGFloat x,
 CGFloat y,
 CGFloat width,
 CGFloat height
);

Parameters
x

The x-coordinate of the rectangle’s origin point.

y
The y-coordinate of the rectangle’s origin point.

width
The width of the rectangle.

height
The height of the rectangle.

2368 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Return Value
Returns a rectangle with the specified location and dimensions.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CALayerEssentials
CarbonSketch
HID Calibrator
HID Explorer
QTCarbonShell

Declared In
CGGeometry.h

CGRectMakeWithDictionaryRepresentation
Fills in a CGRect structure using the contents of the provided dictionary.

bool CGRectMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGRect *rect
);

Parameters
dict

A dictionary that was previously returned from the function
CGRectCreateDictionaryRepresentation (page 2358).

rect
On return, the rectangle created from the provided dictionary.

Return Value
true if successful; false otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGRectOffset
Returns a rectangle with an origin that is offset from that of the source rectangle.

Functions 2369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGRect CGRectOffset (
 CGRect rect,
 CGFloat dx,
 CGFloat dy
);

Parameters
rect

The source rectangle.

dx
The offset value for the x-coordinate.

dy
The offset value for the y-coordinate.

Return Value
A filled-in CGRect structure that is the same size as the source, but with its origin offset by dx units along
the x-axis and dy units along the y-axis with respect to the source.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

CGRectStandardize
Returns a rectangle with a positive width and height.

CGRect CGRectStandardize (
 CGRect rect
);

Parameters
rect

The source rectangle.

Return Value
A filled-in CGRect structure that represents the source rectangle, but with positive width and height values.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

2370 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGRectUnion
Returns the smallest rectangle that contains the two provided rectangles.

CGRect CGRectUnion (
 CGRect r1,
 CGRect r2
);

Parameters
r1

The first source rectangle.

r2
The second source rectangle.

Return Value
A filled-in CGRect structure that represents the smallest rectangle that completely contains both of the
source rectangles.

Discussion
If one of the rectangles has 0 (or negative) width or height, a copy of the other rectangle is returned; but if
both have 0 (or negative) width or height, the returned rectangle has its origin at (0.0, 0.0) and has 0 width
and height.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGSizeCreateDictionaryRepresentation
Returns a dictionary representation of the provided size.

CFDictionaryRef CGSizeCreateDictionaryRepresentation(
 CGSize size
);

Parameters
size

A size.

Return Value
The dictionary representation of the size.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

CGSizeEqualToSize
Returns whether two sizes are equal.

Functions 2371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

bool CGSizeEqualToSize (
 CGSize size1,
 CGSize size2
);

Parameters
size1

The first size to examine.

size2
The second size to examine.

Return Value
Returns 1 if the two specified sizes are equal; otherwise, 0.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
CGGeometry.h

CGSizeMake
Returns a CGSize structure filled in with dimension values you provide.

CGSize CGSizeMake (
 CGFloat width,
 CGFloat height
);

Parameters
width

A width value.

height
A height value.

Return Value
Returns a CGSize structure with the specified width and height.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
CarbonSketch

Declared In
CGGeometry.h

CGSizeMakeWithDictionaryRepresentation
Fills in a CGSize structure using the contents of the provided dictionary.

2372 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

bool CGSizeMakeWithDictionaryRepresentation(
 CFDictionaryRef dict,
 CGSize *size
);

Parameters
dict

A dictionary that was previously returned from the function
CGSizeCreateDictionaryRepresentation (page 2371).

size
On return, the size created from the provided dictionary.

Return Value
true if successful; false otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
CGGeometry.h

Data Types

CGPoint
A structure that contains a point in a two-dimensional coordinate system.

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

Fields
x

The x-coordinate of the point.

y
The y-coordinate of the point.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGRect
A structure that contains the location and dimensions of a rectangle.

Data Types 2373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

struct CGRect {
 CGPoint origin;
 CGSize size;
};
typedef struct CGRect CGRect;

Fields
origin

A CGPoint (page 2373) structure that specifies the coordinates of the rectangle’s origin. The origin is
located in the lower-left of the rectangle.

size
A CGSize (page 2374) structure that specifies the height and width of the rectangle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

CGSize
A structure that contains width and height values.

struct CGSize {
 CGFloat width;
 CGFloat height;
};
typedef struct CGSize CGSize;

Fields
width

A width value.

height
A height value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CGGeometry.h

Constants

CGRectInfinite
A rectangle that has infinite extent.

2374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

const CGRect CGRectInfinite;

Constants
CGRectInfinite

A rectangle that has infinite extent.

Available in Mac OS X v10.4 and later.

Declared in CGGeometry.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CGGeometry.h

Geometric Zeroes
A zero point, zero rectangle, or zero size.

const CGPoint CGPointZero;
const CGRect CGRectZero;
const CGSize CGSizeZero;

Constants
CGPointZero

A point constant with location (0, 0). The zero point is equivalent to CGPointMake(0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectZero
A rectangle constant with location (0,0), and width and height of 0. The zero rectangle is equivalent
to CGRectMake(0,0,0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGSizeZero
A size constant with width and height of 0. The zero size is equivalent to CGSizeMake(0,0).

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

Geometrical Null
The null or empty rectangle.

Constants 2375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

const CGRect CGRectNull;

Constants
CGRectNull

The null rectangle. This is the rectangle returned when, for example, you intersect two disjoint
rectangles. Note that the null rectangle is not the same as the zero rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

CGRectEdge
Coordinates that establish the edges of a rectangle.

enum CGRectEdge {
 CGRectMinXEdge,
 CGRectMinYEdge,
 CGRectMaxXEdge,
 CGRectMaxYEdge
};
typedef enum CGRectEdge CGRectEdge;

Constants
CGRectMinXEdge

The x-coordinate that establishes the left edge of a rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMinYEdge
The y-coordinate that establishes the minimum edge of a rectangle. In Mac OS X, this is typically the
bottom edge of the rectangle. If the coordinate system is flipped (or if you are using the default
coordinate system in iPhone OS), this constant refers to the top edge of the rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMaxXEdge
The x-coordinate that establishes the right edge of a rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

CGRectMaxYEdge
The y-coordinate that establishes the maximum edge of a rectangle. In Mac OS X, this is typically the
top edge of the rectangle. If the coordinate system is flipped (or if you are using the default coordinate
system in iPhone OS), this constant refers to the bottom edge of the rectangle.

Available in Mac OS X v10.0 and later.

Declared in CGGeometry.h.

Declared In
CGGeometry.h

2376 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

CGFloat Informational Macros
Informational macros for the CGFloat type.

// 32-bit#define CGFLOAT_MIN FLT_MIN
#define CGFLOAT_MAX FLT_MAX
#define CGFLOAT_IS_DOUBLE 0

// 64-bit#define CGFLOAT_MIN DBL_MIN
#define CGFLOAT_MAX DBL_MAX
#define CGFLOAT_IS_DOUBLE 1

Constants
CGFLOAT_MIN

The minimum allowable value for a CGFloat type. For 32-bit code, this value is 1.17549435e-38F.
For 64-bit code, it is 2.2250738585072014e-308.

Available in Mac OS X v10.5 and later.

Declared in CABase.h.

CGFLOAT_MAX
The maximum allowable value for a CGFloat type. For 32-bit code, this value is 3.40282347e+38F.
For 64-bit code, it is 1.7976931348623157e+308.

Available in Mac OS X v10.5 and later.

Declared in CABase.h.

CGFLOAT_IS_DOUBLE
Indicates whether CGFloat is defined as a float or double type.

Available in Mac OS X v10.5 and later.

Declared in CABase.h.

Constants 2377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

2378 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 51

CGGeometry Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in FindByContent.h

Overview

Important: The Find by Content API is deprecated as of Mac OS X v10.4. A much more complete solution for
finding and displaying information is provided by the Search Kit. See Search Kit Programming Guide for
guidelines on using the Search Kit.

Whereas the Find by Content API searches specified volumes or folders for words typed in by a user, Search
Kit uses a much faster fully indexed search to return relevant content of all sorts. Because the Search Kit takes
a different approach to searching for and displaying information from that used by the Find by Content API,
you cannot make a one-to-one substitution of Seach Kit functions for Find by Content functions. However,
the basic features of the Search Kit can be implemented very quickly, and Search Kit offers much greater
capability than the Find by Content API.

Previous to Mac OS X version 10.2, the main client for Find by Content was Sherlock; in versions 10.2 and
10.3 it was the Finder. In version 10.4 and later, Search Kit is used instead by the Finder, Mail, and Spotlight.

Carbon supports Find By Content, but note that it is not contained within the Carbon framework.

Functions by Task

Working With Indexes

FBCDeleteIndexFileForFolder (page 2389) Deprecated in Mac OS X v10.4
Deletes the index file associated with a folder. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCIndexItemsInLanguages (page 2403) Deprecated in Mac OS X v10.4
Indexes one or more directories. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

Overview 2379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not
Recommended)

Setting Up a Search Session Object

FBCCreateSearchSession (page 2388) Deprecated in Mac OS X v10.4
Creates a search session. (Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

FBCSetSessionCallback (page 2406) Deprecated in Mac OS X v10.4
Sets a callback function that allows your application to cancel a search operation. (Deprecated. Use
Search Kit instead; see Search Kit Programming Guide.)

FBCSetSessionHitTest (page 2407) Deprecated in Mac OS X v10.4
Sets a callback function that allows your application to perform search-hit testing. (Deprecated. Use
Search Kit instead; see Search Kit Programming Guide.)

Executing a Search

FBCBlindExampleSearchWithCallback (page 2386) Deprecated in Mac OS X v10.4
Performs a similarity search that uses example files instead of a query string, and installs callbacks for
progress reporting and search hit testing. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCDoCFStringSearch (page 2391) Deprecated in Mac OS X v10.4
Initiates a search using a CFString as the query string. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

FBCDoExampleSearch (page 2393) Deprecated in Mac OS X v10.4
Performs a similarity search that uses example files instead of a query string. (Deprecated. Use Search
Kit instead; see Search Kit Programming Guide.)

FBCDoQuerySearch (page 2394) Deprecated in Mac OS X v10.4
Initiates a search using a C string as the query string. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

Getting Information About Search Session Hits

FBCGetHitCount (page 2395) Deprecated in Mac OS X v10.4
Obtains the number of hits returned for a search session. (Deprecated. Use Search Kit instead; see
Search Kit Programming Guide.)

FBCGetHitDocument (page 2396) Deprecated in Mac OS X v10.4
Retrieves the FSSpec associated with a specific hit and search. (Deprecated. Use Search Kit instead;
see Search Kit Programming Guide.)

FBCGetHitDocumentRef (page 2397) Deprecated in Mac OS X v10.4
Retrieves the FSRef associated with a specific hit and search. (Deprecated. Use Search Kit instead;
see Search Kit Programming Guide.)

FBCGetHitScore (page 2397) Deprecated in Mac OS X v10.4
Obtains the hit score associated with a specific hit. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

2380 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Deallocating Hit Lists and Search Sessions

FBCDestroySearchSession (page 2390) Deprecated in Mac OS X v10.4
Disposes of a search session object. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

FBCReleaseSessionHits (page 2404) Deprecated in Mac OS X v10.4
Releases the hits associated with a search session object. (Deprecated. Use Search Kit instead; see
Search Kit Programming Guide.)

Summarizing Text

FBCDisposeSummary (page 2391) Deprecated in Mac OS X v10.4
Disposes of a summary reference object. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCGetSummaryOfCFString (page 2400) Deprecated in Mac OS X v10.4
Creates a summary reference object for CFString. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

FBCGetSummarySentenceCount (page 2400) Deprecated in Mac OS X v10.4
Obtains the number of sentences in a summary reference object. (Deprecated. Use Search Kit instead;
see Search Kit Programming Guide.)

FBCGetSummarySentences (page 2401) Deprecated in Mac OS X v10.4
Obtains a summary that contains a specified number of sentences. (Deprecated. Use Search Kit instead;
see Search Kit Programming Guide.)

FBCSummarize (page 2408) Deprecated in Mac OS X v10.4
Summarizes text that is specified as an ASCII buffer. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

FBCSummarizeCFString (page 2409) Deprecated in Mac OS X v10.4
Summarizes text that is specified as a CFString. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

Working with Universal Procedure Pointers

DisposeFBCCallbackUPP (page 2383) Deprecated in Mac OS X v10.4
Disposes of universal procedure pointer (UPP) to a search cancellation callback. (Deprecated. Use
Search Kit instead; see Search Kit Programming Guide.)

DisposeFBCHitTestUPP (page 2384) Deprecated in Mac OS X v10.4
Disposes of universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated. Use Search
Kit instead; see Search Kit Programming Guide.)

InvokeFBCCallbackUPP (page 2412) Deprecated in Mac OS X v10.4
Invokes a universal procedure pointer (UPP) to a search cancellation callback. (Deprecated. Use Search
Kit instead; see Search Kit Programming Guide.)

InvokeFBCHitTestUPP (page 2413) Deprecated in Mac OS X v10.4
Invokes a universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated. Use Search
Kit instead; see Search Kit Programming Guide.)

Functions by Task 2381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

NewFBCCallbackUPP (page 2413) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a search cancellation callback. (Deprecated. Use
Search Kit instead; see Search Kit Programming Guide.)

NewFBCHitTestUPP (page 2414) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated. Use
Search Kit instead; see Search Kit Programming Guide.)

Deprecated Functions

FBCAddAllVolumesToSession (page 2384) Deprecated in Mac OS X v10.4
Adds all volumes to a search session. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

FBCAddVolumeToSession (page 2385) Deprecated in Mac OS X v10.4
Adds one volume to a session. (Deprecated. Use Search Kit instead; see SearchKit ProgrammingGuide.)

FBCBlindExampleSearch (page 2385) Deprecated in Mac OS X v10.4
Executes a similarity search. (Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

FBCCloneSearchSession (page 2388) Deprecated in Mac OS X v10.4
Clones a search session. (Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

FBCDestroyWordList (page 2390) Deprecated in Mac OS X v10.4
Destroys a word list. (Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

FBCFindIndexFileFolderForFolder (page 2395) Deprecated in Mac OS X v10.4
Gets the location of the index file associated with a directory. (Deprecated. Use Search Kit instead;
see Search Kit Programming Guide.)

FBCGetMatchedWords (page 2398) Deprecated in Mac OS X v10.4
Gets a list of matched words for a search session. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCGetSessionVolumeCount (page 2399) Deprecated in Mac OS X v10.4
Gets a volume count for a search session. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCGetSessionVolumes (page 2399) Deprecated in Mac OS X v10.4
Gets the volumes associated with a search session. (Deprecated. Use Search Kit instead; see Search
Kit Programming Guide.)

FBCGetTopicWords (page 2402) Deprecated in Mac OS X v10.4
Gets a list of topic words for a search session. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCIndexItems (page 2403) Deprecated in Mac OS X v10.4
Indexes one or more files or folders. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

FBCRemoveVolumeFromSession (page 2405) Deprecated in Mac OS X v10.4
Removes a volume from a search session. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCSetCallback (page 2405) Deprecated in Mac OS X v10.4
Sets a callback. (Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

FBCSetHeapReservation (page 2406) Deprecated in Mac OS X v10.4
Sets the amount of heap space to reserve for application use when Find by Content allocates memory.
(Deprecated. Use Search Kit instead; see Search Kit Programming Guide.)

2382 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCSetSessionVolumes (page 2408) Deprecated in Mac OS X v10.4
Sets the volumes for a search session. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

FBCVolumeIndexPhysicalSize (page 2410) Deprecated in Mac OS X v10.4
Obtains the physical size of an index. (Deprecated. Use Search Kit instead; see Search Kit Programming
Guide.)

FBCVolumeIndexTimeStamp (page 2410) Deprecated in Mac OS X v10.4
Obtains the date and time when an index was last updated. (Deprecated. Use Search Kit instead; see
Search Kit Programming Guide.)

FBCVolumeIsIndexed (page 2411) Deprecated in Mac OS X v10.4
Determines whether a volume is indexed. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

FBCVolumeIsRemote (page 2411) Deprecated in Mac OS X v10.4
Determines whether a volume is remote. (Deprecated. Use Search Kit instead; see Search Kit
Programming Guide.)

Functions

DisposeFBCCallbackUPP
Disposes of universal procedure pointer (UPP) to a search cancellation callback. (Deprecated in Mac OS X
v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

void DisposeFBCCallbackUPP (
 FBCCallbackUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback FBCCallbackProcPtr (page 2414) for more information.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

Functions 2383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

DisposeFBCHitTestUPP
Disposes of universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated in Mac OS X v10.4.
Use Search Kit instead; see Search Kit Programming Guide.)

void DisposeFBCHitTestUPP (
 FBCHitTestUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback FBCHitTestProcPtr (page 2415) for more information.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCAddAllVolumesToSession
Adds all volumes to a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

Not recommended

OSErr FBCAddAllVolumesToSession (
 FBCSearchSession theSession,
 Boolean includeRemote
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

2384 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

FBCAddVolumeToSession
Adds one volume to a session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

Not recommended

OSErr FBCAddVolumeToSession (
 FBCSearchSession theSession,
 SInt16 vRefNum
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCBlindExampleSearch
Executes a similarity search. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming
Guide.)

Not recommended

Functions 2385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

OSErr FBCBlindExampleSearch (
 const FSSpec examples[],
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords,
 Boolean allIndexes,
 Boolean includeRemote,
 FBCSearchSession * theSession
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

Use the function FBCBlindExampleSearchWithCallback (page 2386) instead.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCBlindExampleSearchWithCallback
Performs a similarity search that uses example files instead of a query string, and installs callbacks for progress
reporting and search hit testing. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

OSErr FBCBlindExampleSearchWithCallback (
 const FSSpec examples[],
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords,
 Boolean allIndexes,
 Boolean includeRemote,
 FBCSearchSession * theSession,
 FBCCallbackUPP callback,
 void * callbackData,
 FBCHitTestUPP userHitTest,
 void * userHitTestData
);

Parameters
examples

An array of FSSpec data types that specify the location of one or more examples files. The hits are
the files that most resemble the examples in terms of weighted word frequencies.

2386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

numExamples
The number of examples in the examples array.

targetDirs
An array of FSSpec data types that specify the directories you want to search. Any directories that
are not indexed are skipped.

numTargets
A value that specifies number of directories specified by the targetDirs parameter.

maxHits
A value that specifies the maximum number of hits you want. If you pass N for this parameter, you
get the N most relevant hits found in an exhaustive search of the indexes (or all the hits if there are
less than N).

maxHitWords
This parameter is ignored in Mac OS X version 10.2 and later.

allIndexes
This parameter is ignored in Mac OS X version 10.2 and later.

includeRemote
This parameter is ignored in Mac OS X version 10.2 and later.

theSession
A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

callback
A universal procedure pointer to your callback for cancelling a search. See FBCCallbackProcPtr (page
2414) for more information.

callbackData
A pointer to data needed by the callback specified by the callback parameter. Pass NULL if your
callback does not require any data.

userHitTest
A universal procedure pointer a your callback for testing search hits. See FBCHitTestProcPtr (page
2415) for more information.

callbackData
A pointer to data needed by the callback specified by the userHitTest parameter. Pass NULL if your
callback does not require any data.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You should use the function FBCBlindExampleSearchWithCallback for cases where your example files
have not been indexed. If the files have been indexed, it is simpler and more efficient for you to use the
function FBCDoExampleSearch.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.

Functions 2387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCCloneSearchSession
Clones a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming
Guide.)

Not recommended

OSErr FBCCloneSearchSession (
 FBCSearchSession original,
 FBCSearchSession * clone
);

Parameters
original

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

clone
On return, points to a newly-created search session object that is a copy of the one specified by the
original parameter.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCCreateSearchSession
Creates a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming
Guide.)

2388 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

OSErr FBCCreateSearchSession (
 FBCSearchSession * searchSession
);

Parameters
searchSession

On return, points to a newly-created search session object. You provide a search session object as a
parameter when you call other other search functions.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You must create a search session using the function FBCCreateSearchSession before you can use any
other search function.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCDeleteIndexFileForFolder
Deletes the index file associated with a folder. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see
Search Kit Programming Guide.)

OSErr FBCDeleteIndexFileForFolder (
 const FSRef * folder
);

Parameters
folder

An FSRef that specifies the folder whose index file you want to delete.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Functions 2389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

FBCDestroySearchSession
Disposes of a search session object. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

OSErr FBCDestroySearchSession (
 FBCSearchSession theSession
);

Parameters
theSession

The search session object you want to dispose of. You obtain a search session object by calling the
function FBCCreateSearchSession.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCDestroyWordList
Destroys a word list. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming
Guide.)

Not recommended

OSErr FBCDestroyWordList (
 FBCWordList theList,
 UInt32 wordCount
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

2390 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCDisposeSummary
Disposes of a summary reference object. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search
Kit Programming Guide.)

OSStatus FBCDisposeSummary (
 FBCSummaryRef summary
);

Parameters
summary

The summary reference object you want to dispose of. You obtain a summary reference object when
you call the function FBCGetSummaryOfCFString (page 2400).

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You must dispose of a summary reference object when you no longer need it.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCDoCFStringSearch
Initiates a search using a CFString as the query string. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

Functions 2391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

OSErr FBCDoCFStringSearch (
 FBCSearchSession theSession,
 CFStringRef queryString,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords
);

Parameters
theSession

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

queryString
The query string specified as a CFString.

targetDirs
An array of FSSpec data types that specify the directories you want to search. Any directories that
are not indexed are skipped.

numTargets
A value that specifies number of directories specified by the targetDirs parameter.

maxHits
A value that specifies the maximum number of hits you want. If you pass N for this parameter, you
get the N most relevant hits found in an exhaustive search of the indexes (or all the hits if there are
less than N).

maxHitWords
This parameter is ignored in Mac OS X version 10.2 and later.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
When the function FBCDoCFStringSearch returns, you must retrieve hit information by calling the functions
FBCGetHitCount (page 2395),FBCGetHitDocumentRef (page 2397), andFBCGetHitScore (page 2397). You
call FBCGetHitCount (page 2395) to obtain the number of hits found. Then you can iterate through each hit
to get the associated FSRef and score by calling FBCGetHitDocumentRef (page 2397) and
FBCGetHitScore (page 2397).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2392 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCDoExampleSearch
Performs a similarity search that uses example files instead of a query string. (Deprecated in Mac OS X v10.4.
Use Search Kit instead; see Search Kit Programming Guide.)

OSErr FBCDoExampleSearch (
 FBCSearchSession theSession,
 const UInt32 * exampleHitNums,
 UInt32 numExamples,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords
);

Parameters
theSession

A valid search session object. You must provide the search session object you provided to the search
function FBCDoCFStringSearch.

exampleHitNums
A pointer to the hits obtained from a previous search using theSession search session object.

numExamples
The number of examples pointed to by the exampleHitNums parameter.

targetDirs
An array of FSSpec data types that specify the directories you want to search. Any directories that
are not indexed are skipped.

numTargets
A value that specifies number of directories specified by the targetDirs parameter.

maxHits
A value that specifies the maximum number of hits you want. If you pass N for this parameter, you
get the N most relevant hits found in an exhaustive search of the indexes (or all the hits if there are
less than N).

maxHitWords
This parameter is ignored in Mac OS X version 10.2 and later.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You should use the function FBCDoExampleSearch for cases where you example files have been indexed.
If you example files have not been indexed, us the function FBCBlindExampleSearchWithCallback.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Functions 2393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

FBCDoQuerySearch
Initiates a search using a C string as the query string. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

OSErr FBCDoQuerySearch (
 FBCSearchSession theSession,
 char * queryText,
 const FSSpec targetDirs[],
 UInt32 numTargets,
 UInt32 maxHits,
 UInt32 maxHitWords
);

Parameters
theSession

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

queryText
The query string specified as a C string.

numTargets
A value that specifies number of directories specified by the targetDirs parameter.

maxHits
A value that specifies the maximum number of hits you want. If you pass N for this parameter, you
get the N most relevant hits found in an exhaustive search of the indexes (or all the hits if there are
less than N).

maxHitWords
This parameter is ignored in Mac OS X version 10.2 and later.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You should use the function FBCDoCFStringSearch (page 2391) instead of this one.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2394 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCFindIndexFileFolderForFolder
Gets the location of the index file associated with a directory. (Deprecated in Mac OS X v10.4. Use Search Kit
instead; see Search Kit Programming Guide.)

Not recommended

OSErr FBCFindIndexFileFolderForFolder (
 const FSRef * inFolder,
 FSRef * outFolder
);

Parameters
inFolder

A pointer to an FSRef that specifies the location of the folder that contains the index file for a directory.

outFolder
On output, points to the FSRef that specifies the directory that contains he index file.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetHitCount
Obtains the number of hits returned for a search session. (Deprecated in Mac OS X v10.4. Use Search Kit
instead; see Search Kit Programming Guide.)

OSErr FBCGetHitCount (
 FBCSearchSession theSession,
 UInt32 * count
);

Parameters
theSession

A valid search session object. You must provide the search session object you provided to the search
function FBCDoCFStringSearch.

count
On return, points to the number of hits returned for the search on the object specified by theSession.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Functions 2395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Discussion
You can iterate through each hit to get the associated FSRef and score by calling the functions
FBCGetHitDocumentRef (page 2397) and FBCGetHitScore (page 2397).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetHitDocument
Retrieves the FSSpec associated with a specific hit and search. (Deprecated in Mac OS X v10.4. Use Search
Kit instead; see Search Kit Programming Guide.)

OSErr FBCGetHitDocument (
 FBCSearchSession theSession,
 UInt32 hitNumber,
 FSSpec * theDocument
);

Parameters
theSession

A valid search session object. You must provide the search session object you provided to the search
function FBCDoCFStringSearch.

hitNumber
A value that specifies the hit whose document you want to retrieve.

theDocument
A pointer to an FSSpec that specifies the location of the document associated with hitNumber for
the search previously carried out on theSession.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2396 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCGetHitDocumentRef
Retrieves the FSRef associated with a specific hit and search. (Deprecated in Mac OS X v10.4. Use Search Kit
instead; see Search Kit Programming Guide.)

OSErr FBCGetHitDocumentRef (
 FBCSearchSession theSession,
 UInt32 hitNumber,
 FSRef * theDocument
);

Parameters
theSession

A valid search session object. You must provide the search session object you provided to the search
function FBCDoCFStringSearch.

hitNumber
A value that specifies the hit whose document you want to retrieve.

theDocument
A pointer to an FSRef that specifies the location of the document associated with hitNumber for
the search previously carried out on theSession.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetHitScore
Obtains the hit score associated with a specific hit. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

OSErr FBCGetHitScore (
 FBCSearchSession theSession,
 UInt32 hitNumber,
 float * score
);

Parameters
theSession

A valid search session object. You must provide the search session object you provided to the search
function FBCDoCFStringSearch.

Functions 2397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

hitNumber
A value that specifies the hit whose document you want to retrieve.

float
A pointer to a value that specifies the hit score. Scores are normalized to range from 1.0 (most
significant) to 0 (least significant).

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetMatchedWords
Gets a list of matched words for a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see
Search Kit Programming Guide.)

Not recommended

OSErr FBCGetMatchedWords (
 FBCSearchSession theSession,
 UInt32 hitNumber,
 UInt32 * wordCount,
 FBCWordList * list
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2398 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCGetSessionVolumeCount
Gets a volume count for a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search
Kit Programming Guide.)

Not recommended

OSErr FBCGetSessionVolumeCount (
 FBCSearchSession theSession,
 UInt16 * count
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetSessionVolumes
Gets the volumes associated with a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

Not recommended

OSErr FBCGetSessionVolumes (
 FBCSearchSession theSession,
 SInt16 vRefNums[],
 UInt16 * numVolumes
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Functions 2399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

FBCGetSummaryOfCFString
Creates a summary reference object for CFString. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

OSStatus FBCGetSummaryOfCFString (
 CFStringRef inString,
 FBCSummaryRef * summary
);

Parameters
inString

A CFStringRef representing the text you want summarized. Summarization works with all languages
that use white space to separate words, plus Japanese. It works best with text that is not broken into
lines using CR and/or LF characters.

summary
On output, a newly-created summary reference object that contains summary information for the
string specified by the inString parameter. A summary reference object is an opaque object. To
access the information in this object, you can use the functionsFBCGetSummarySentenceCount (page
2400) and FBCGetSummarySentences (page 2401). You should call the function
FBCDisposeSummary (page 2391) when you no longer need the summary reference object.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
A summary reference object is an opaque object that can very quickly give you a summary containing any
desired number of sentences from 1 up to the total number of sentences found in the original text.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetSummarySentenceCount
Obtains the number of sentences in a summary reference object. (Deprecated in Mac OS X v10.4. Use Search
Kit instead; see Search Kit Programming Guide.)

2400 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

OSStatus FBCGetSummarySentenceCount (
 FBCSummaryRef summary,
 UInt32 * numSentences
);

Parameters
summary

A valid summary reference object. You obtain a summary reference object when you call the function
FBCGetSummaryOfCFString (page 2400).

numSentences
On output, a pointer to the number of sentences contained in the summary.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetSummarySentences
Obtains a summary that contains a specified number of sentences. (Deprecated in Mac OS X v10.4. Use Search
Kit instead; see Search Kit Programming Guide.)

OSStatus FBCGetSummarySentences (
 FBCSummaryRef summary,
 CFStringRef * outString,
 UInt32 * numSentences,
 Boolean paragraphs
);

Parameters
summary

A valid summary reference object. You obtain a summary reference object when you call the function
FBCGetSummaryOfCFString (page 2400).

outString
On output, a pointer to a CFStringRef that contains the summary. You are responsible for releasing
the CFStringRef when you no longer need it.

numSentences
On input, the number of sentences you want in the summary. On output, the number of sentences
actually written into the summary. If you pass 0, Find by Content uses a logarithmic function to
determine the number of sentences.

Functions 2401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

paragraphs
A Boolean value that specifies the content of the summary. If you pass true the summary is made
up of whole paragraphs that contain the relevant sentences. If it is false, only the relevant sentences
are included.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCGetTopicWords
Gets a list of topic words for a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see
Search Kit Programming Guide.)

Not recommended

OSErr FBCGetTopicWords (
 FBCSearchSession theSession,
 UInt32 hitNumber,
 UInt32 * wordCount,
 FBCWordList * list
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCIndexItems
Indexes one or more files or folders. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

Not recommended

OSErr FBCIndexItems (
 FSSpecArrayPtr theItems,
 UInt32 itemCount
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCIndexItemsInLanguages
Indexes one or more directories. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

OSErr FBCIndexItemsInLanguages (
 FSSpecArrayPtr theItems,
 UInt32 itemCount,
 UInt32 languageHighBits,
 UInt32 languageLowBits
);

Parameters
theItems

An FSPecArrayPtr that specifies the directory or directories to be indexed; subdirectories are
included automatically.

itemCount
The number of items pointed to by theItems parameter.

languageHighBits
A value that specifies the languages to be used. The high bits are obtained by summing the desired
constants defined in Language Constants (page 2418).

languageLowBits
A value that specifies the languages to be used. The low bits should always be 0.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Functions 2403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Discussion
Your application must first call the function FBCIndexItemsInLanguages to make an index of the files to
be searched. Find by Content looks at the contents of each file (including the file's name) to make the index.
For PDF and HTML files, the textual content is separated out from formatting information; for all other file
types, the entire data of the file is used. The index is an invisible file.

Some file types do not contain words that are useful for searching, such as graphics files and application
software. Find by Content has lists of Mac OS file types and filename extensions for such files, and any file
that has one of the listed types or one of the listed extensions is treated specially when it is indexed. That is,
the name of the file is indexed, but the contents are not. In addition, folder names are indexed. The lists of
types and extensions are text files named StopTypes and StopExts. You can edit these lists using an editor
(such as BBEdit or TextEdit). The files are located in the /System/Library/Find/ directory.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCReleaseSessionHits
Releases the hits associated with a search session object. (Deprecated in Mac OS X v10.4. Use Search Kit
instead; see Search Kit Programming Guide.)

OSErr FBCReleaseSessionHits (
 FBCSearchSession theSession
);

Parameters
theSession

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
The function FBCReleaseSessionHits releases the hits associated with a specific search session object,
resetting the object so it can be used in another search. You are responsible for releasing a search session
object when you no longer need it by calling the function FBCDestroySearchSession (page 2390).

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

2404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCRemoveVolumeFromSession
Removes a volume from a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search
Kit Programming Guide.)

Not recommended

OSErr FBCRemoveVolumeFromSession (
 FBCSearchSession theSession,
 SInt16 vRefNum
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSetCallback
Sets a callback. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

Not Recommended.

void FBCSetCallback (
 FBCCallbackUPP fn,
 void * data
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Functions 2405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Carbon Porting Notes

Use the function FBCSetSessionCallback (page 2406) instead.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSetHeapReservation
Sets the amount of heap space to reserve for application use when Find by Content allocates memory.
(Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

Not recommended

void FBCSetHeapReservation (
 UInt32 bytes
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSetSessionCallback
Sets a callback function that allows your application to cancel a search operation. (Deprecated in Mac OS X
v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

void FBCSetSessionCallback (
 FBCSearchSession searchSession,
 FBCCallbackUPP fn,
 void * data
);

Parameters
searchSession

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

2406 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

fn
A universal procedure pointer to your callback for cancelling a search. See FBCCallbackProcPtr (page
2414) for more information.

data
A pointer to data needed by your callback. Pass NULL if your callback does not require any data.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSetSessionHitTest
Sets a callback function that allows your application to perform search-hit testing. (Deprecated in Mac OS X
v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

void FBCSetSessionHitTest (
 FBCSearchSession theSession,
 FBCHitTestUPP fn,
 void * data
);

Parameters
theSession

A valid search session object. You obtain a search session object by calling the function
FBCCreateSearchSession.

fn
A universal procedure pointer a your callback for testing search-hits. See FBCHitTestProcPtr (page
2415) for more information.

data
A pointer to data needed by your callback. Pass NULL if your callback does not require any data.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

Functions 2407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

FBCSetSessionVolumes
Sets the volumes for a search session. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

Not recommended

OSErr FBCSetSessionVolumes (
 FBCSearchSession theSession,
 const SInt16 vRefNums[],
 UInt16 numVolumes
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSummarize
Summarizes text that is specified as an ASCII buffer. (Deprecated in Mac OS X v10.4. Use Search Kit instead;
see Search Kit Programming Guide.)

OSErr FBCSummarize (
 const void * inBuf,
 UInt32 inLength,
 void * outBuf,
 UInt32 * outLength,
 UInt32 * numSentences
);

Parameters
inBuf

A pointer to the ASCII text you want summarized.

inLength
The length of the text buffer pointed to by inBuf.

outBuf
On output, points to the summarized text.

outLength
On output, points to a value that specifies the length of the summarized text.

2408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

numSentences
On input, points to a value that specifies the number of sentences desired in the summary. On output,
points to the number of sentences actually written into the summary. If you pass 0, Find by Content
uses a logarithmic function to determine the number of sentences.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Discussion
You should use the function FBCSummarizeCFString instead of FBCSummarize because the CFString
version is more reliable and accurate.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCSummarizeCFString
Summarizes text that is specified as a CFString. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see
Search Kit Programming Guide.)

OSStatus FBCSummarizeCFString (
 CFStringRef inString,
 CFStringRef * outString,
 UInt32 * numSentences
);

Parameters
inString

A CFStringRef representing the text you want summarized. Summarization works with all languages
that use white space to separate words, plus Japanese. It works best with text that is not broken into
lines using CR and/or LF characters.

outString
On output, points to the summarization. You are responsible for releasing this string.

numSentences
On input, points to a value that specifies the number of sentences you want in the summary. On
output, points to the number of sentences actually written into the summary. If you pass 0, Find by
Content uses a logarithmic function to determine the number of sentences.

Return Value
A result code. See “Find By Content Result Codes” (page 2421).

Functions 2409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCVolumeIndexPhysicalSize
Obtains the physical size of an index. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search Kit
Programming Guide.)

Not recommended

OSErr FBCVolumeIndexPhysicalSize (
 SInt16 theVRefNum,
 UInt32 * size
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCVolumeIndexTimeStamp
Obtains the date and time when an index was last updated. (Deprecated in Mac OS X v10.4. Use Search Kit
instead; see Search Kit Programming Guide.)

Not recommended

2410 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

OSErr FBCVolumeIndexTimeStamp (
 SInt16 theVRefNum,
 UInt32 * timeStamp
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCVolumeIsIndexed
Determines whether a volume is indexed. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search
Kit Programming Guide.)

Not recommended

Boolean FBCVolumeIsIndexed (
 SInt16 theVRefNum
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

FBCVolumeIsRemote
Determines whether a volume is remote. (Deprecated in Mac OS X v10.4. Use Search Kit instead; see Search
Kit Programming Guide.)

Functions 2411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Not recommended

Boolean FBCVolumeIsRemote (
 SInt16 theVRefNum
);

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Carbon Porting Notes

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

InvokeFBCCallbackUPP
Invokes a universal procedure pointer (UPP) to a search cancellation callback. (Deprecated in Mac OS X v10.4.
Use Search Kit instead; see Search Kit Programming Guide.)

Boolean InvokeFBCCallbackUPP (
 UInt16 phase,
 float percentDone,
 void * data,
 FBCCallbackUPP userUPP
);

Discussion
You should not need to call this function as Find by Content invokes your callback for you.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

2412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

InvokeFBCHitTestUPP
Invokes a universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated in Mac OS X v10.4.
Use Search Kit instead; see Search Kit Programming Guide.)

Boolean InvokeFBCHitTestUPP (
 const FSRef * theFile,
 void * data,
 FBCHitTestUPP userUPP
);

Discussion
You should not need to call this function as Find by Content invokes your callback for you.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

NewFBCCallbackUPP
Creates a new universal procedure pointer (UPP) to a search cancellation callback. (Deprecated in Mac OS X
v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

FBCCallbackUPP NewFBCCallbackUPP (
 FBCCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your progress callback.

Return Value
See the description of the FBCCallbackUPP data type.

Discussion
See the callback FBCCallbackProcPtr (page 2414) for more information.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Functions 2413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

NewFBCHitTestUPP
Creates a new universal procedure pointer (UPP) to a search-hit testing callback. (Deprecated in Mac OS X
v10.4. Use Search Kit instead; see Search Kit Programming Guide.)

FBCHitTestUPP NewFBCHitTestUPP (
 FBCHitTestProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your search-hit-testing callback.

Return Value
See the description of the FBCHitTestUPP data type.

Discussion
See the callback FBCHitTestProcPtr (page 2415) for more information.

Special Considerations

Because the Search Kit takes a different approach to finding and displaying information from that used by
the Find by Content API, you cannot make a one-to-one substitution of Search Kit functions for Find by
Content functions. However, the basic features of the Search Kit can be implemented very quickly, and Search
Kit offers much greater capability than the Find by Content API.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.
Deprecated in Mac OS X v10.4.

Declared In
FindByContent.h

Callbacks

FBCCallbackProcPtr
Defines a pointer to a function that can cancel a search operation.

typedef Boolean (*FBCCallbackProcPtr)
(
 UInt16 phase,
 float percentDone,
 void * data
);

If you name your function MyFBCCallbackProc, you would declare it like this:

Boolean MyFBCCallbackProcPtr (
 UInt16 phase,

2414 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

 float percentDone,
 void * data
);

Parameters
phase
percentDone
data

A pointer to data needed by your callback. This is the same data you provided to the function
FBCSetSessionCallback (page 2406) in the data parameter.

Return Value
Return true if you wants to cancel the current operation. Otherwise return false.

Discussion
Find by Content invoke your callback periodically (approximately every 5 ticks) while searching. Your callback
can cancel a search operation by returning a value of true.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCHitTestProcPtr
Defines a pointer to a function that performs search-hit testing.

typedef Boolean (*FBCHitTestProcPtr)
(
 const FSRef * theFile,
 void * data
);

If you name your function MyFBCHitTestProc, you would declare it like this:

Boolean MyFBCHitTestProcPtr (
 const FSRef * theFile,
 void * data
);

Parameters
theFile

A pointer to an FSRef that specifies the location of file that matches the search query.

data
A pointer to data needed by your callback. This is the same data you provided to the function
FBCSetSessionHitTest (page 2407) in the data parameter.

Return Value
Return true if your callback wants to accept the file as a valid match or false to reject it.

Callbacks 2415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Discussion
You can use this callback to impose additional matching criteria in addition to that provided to Find by
Content. For example, you could accept a hit only if the file has a creation date later than a specified date.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.

Declared In
FindByContent.h

Data Types

FBCCallbackUPP
Defines a universal procedure pointer to a search cancellation callback.

typedef FBCCallbackProcPtr FBCCallbackUPP;

Discussion
For more information, see the description of the FBCCallbackProcPtr (page 2414) callback function.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCHitTestUPP
Defines a universal procedure pointer to a search-hit testing callback.

typedef FBCHitTestProcPtr FBCHitTestUPP;

Discussion
For more information, see the description of the FBCHitTestProcPtr (page 2415) callback function.

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCSearchSession
Defines pointer to an opaque data type (referred to as a search session object) that contains a collection of
state information used in a search session.

2416 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

typedef struct OpaqueFBCSearchSession * FBCSearchSession;

Discussion
You call the function FBCCreateSearchSession (page 2388)to create a new search session object. When no
longer need the search session object, you must dispose of it by calling the function
FBCDestroySearchSession (page 2390).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCSummaryRef
A pointer to an opaque data type (referred to as a summary reference object) that contains summary
information, from which summary text can be obtained.

typedef struct OpaqueFBCSummaryRef * FBCSummaryRef;

Discussion
You call the function FBCGetSummaryOfCFString (page 2400)to create a new summary reference object.
When no longer need the summary reference object, you must dispose of it by calling the function
FBCDisposeSummary (page 2391).

Availability
Available in Mac OS X v10.2 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCWordItem
Defines a data type for an ordinary C string used for searching.

typedef char* FBCWordItem;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
FindByContent.h

FBCWordList
Defines an array of word items.

typedef FBCWordItem * FBCWordList;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Data Types 2417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Declared In
FindByContent.h

Constants

Language Constants
Define values for language constants.

enum {
 kFBCenglishHighWord = 0x80000000,
 kFBCdutchHighWord = 0x40000000,
 kFBCgermanHighWord = 0x20000000,
 kFBCswedishHighWord = 0x10000000,
 kFBCdanishHighWord = 0x08000000,
 kFBCspanishHighWord = 0x04000000,
 kFBCportugueseHighWord = 0x02000000,
 kFBCitalianHighWord = 0x01000000,
 kFBCfrenchHighWord = 0x00800000,
 kFBCromanHighWord = 0x00400000,
 kFBCicelandicHighWord = 0x00200000,
 kFBChebrewHighWord = 0x00100000,
 kFBCarabicHighWord = 0x00080000,
 kFBCcenteuroHighWord = 0x00040000,
 kFBCcroatianHighWord = 0x00020000,
 kFBCturkishHighWord = 0x00010000,
 kFBCromanianHighWord = 0x00008000,
 kFBCgreekHighWord = 0x00004000,
 kFBCcyrillicHighWord = 0x00002000,
 kFBCdevanagariHighWord = 0x00001000,
 kFBCgujuratiHighWord = 0x00000800,
 kFBCgurmukhiHighWord = 0x00000400,
 kFBCjapaneseHighWord = 0x00000200,
 kFBCkoreanHighWord = 0x00000100,
 kFBCdefaultLanguagesHighWord = 0xFF800000
};

Discussion
Language constants are passed as parameters to the function FBCIndexItemsInLanguages (page 2403).
The purpose of these constants is to tell Find by Content what languages the user expects the files to contain.
From this, Find by Content infer the character encodings to look for, and for some languages, what lists of
words to exclude from the index and what rules to use in reducing words to their stems.

These constants are bits in a 64-bit array that consists of two UInt32 words. In the current implementation
the low word is always 0, so values for the high word are given. If both UInt32 words are 0, the default value
of kDefaultLanguagesHighWord is used.

Phase Values
Define values that are passed to a progress callback function to indicate what phase of an operation Find By
Content is currently performing; most of these values are not used in Mac OS X.

2418 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

enum {
 kFBCphIndexing = 0,
 kFBCphFlushing = 1,
 kFBCphMerging = 2,
 kFBCphMakingIndexAccessor = 3,
 kFBCphCompacting = 4,
 kFBCphIndexWaiting = 5,
 kFBCphSearching = 6,
 kFBCphMakingAccessAccessor = 7,
 kFBCphAccessWaiting = 8,
 kFBCphSummarizing = 9,
 kFBCphIdle = 10,
 kFBCphCanceling = 11
};

Constants
kFBCphIndexing

Indicates an indexing phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphFlushing
Indicates an indexing phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphMerging
Indicates an indexing phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphMakingIndexAccessor
Indicates an indexing phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphCompacting
Indicates an indexing phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphIndexWaiting
Indicates an access phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphSearching
Indicates searching phase. In Mac OS X, this is the only phase value returned to your
FBCCallbackProcPtr callback.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

Constants 2419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

kFBCphMakingAccessAccessor
Indicates an access phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphAccessWaiting
Indicates an access phase. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphSummarizing
Indicates summarization. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphIdle
Indicates indexing or accessing. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

kFBCphCanceling
Indicates cancellation. This is no longer used in Mac OS X.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in FindByContent.h.

Discussion
The values are meaningless in Mac OS X.

Deprecated Language Constants
Redefine old language constants as new ones; you should use the new value.

2420 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

enum {
 englishHighWord = kFBCenglishHighWord,
 dutchHighWord = kFBCdutchHighWord,
 germanHighWord = kFBCgermanHighWord,
 swedishHighWord = kFBCswedishHighWord,
 danishHighWord = kFBCdanishHighWord,
 spanishHighWord = kFBCspanishHighWord,
 portugueseHighWord = kFBCportugueseHighWord,
 italianHighWord = kFBCitalianHighWord,
 frenchHighWord = kFBCfrenchHighWord,
 romanHighWord = kFBCromanHighWord,
 icelandicHighWord = kFBCicelandicHighWord,
 hebrewHighWord = kFBChebrewHighWord,
 arabicHighWord = kFBCarabicHighWord,
 centeuroHighWord = kFBCcenteuroHighWord,
 croatianHighWord = kFBCcroatianHighWord,
 turkishHighWord = kFBCturkishHighWord,
 romanianHighWord = kFBCromanianHighWord,
 greekHighWord = kFBCgreekHighWord,
 cyrillicHighWord = kFBCcyrillicHighWord,
 devanagariHighWord = kFBCdevanagariHighWord,
 gujuratiHighWord = kFBCgujuratiHighWord,
 gurmukhiHighWord = kFBCgurmukhiHighWord,
 japaneseHighWord = kFBCjapaneseHighWord,
 koreanHighWord = kFBCkoreanHighWord,
 kDefaultLanguagesHighWord = kFBCdefaultLanguagesHighWord
};

Result Codes

The result codes returned by Find By Content are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.0errIANoErr

No telling what it was-30500kFBCvTwinExceptionErr

Available in Mac OS X v10.0 and later.

Indexes not found-30501kFBCnoIndexesFound

Available in Mac OS X v10.0 and later.

Possibly due to low memory-30502kFBCallocFailed

Available in Mac OS X v10.0 and later.

Bad parameter passed to a function-30503kFBCbadParam

Available in Mac OS X v10.0 and later.

File not indexed-30504kFBCfileNotIndexed

Available in Mac OS X v10.0 and later.

Result Codes 2421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

DescriptionValueResult Code

Bad FSSpec, or bad data in file-30505kFBCbadIndexFile

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30506kFBCcompactionFailed

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30507kFBCvalidationFailed

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30508kFBCindexingFailed

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30509kFBCcommitFailed

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30510kFBCdeletionFailed

Available in Mac OS X v10.0 and later.

V-Twin exception caught-30511kFBCmoveFailed

Available in Mac OS X v10.0 and later.

Couldn't read from document or query-30512kFBCtokenizationFailed

Available in Mac OS X v10.0 and later.

Couldn't merge index files-30513kFBCmergingFailed

Available in Mac OS X v10.0 and later.

Couldn't create index-30514kFBCindexCreationFailed

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-30515kFBCaccessorStoreFailed

Available in Mac OS X v10.0 and later.-30516kFBCaddDocFailed

Available in Mac OS X v10.0 and later.-30517kFBCflushFailed

Index not found-30518kFBCindexNotFound

Available in Mac OS X v10.0 and later.

Search session object not created-30519kFBCnoSearchSession

Available in Mac OS X v10.0 and later.

Indexing cancelled-30520kFBCindexingCanceled

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-30521kFBCaccessCanceled

2422 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

DescriptionValueResult Code

Index file destroyed-30522kFBCindexFileDestroyed

Available in Mac OS X v10.0 and later.

Index not available-30523kFBCindexNotAvailable

Available in Mac OS X v10.0 and later.

Search failed-30524kFBCsearchFailed

Available in Mac OS X v10.0 and later.

Some files are not indexed-30525kFBCsomeFilesNotIndexed

Available in Mac OS X v10.0 and later.

Tried to add/remove volumes to a session.-30526kFBCillegalSessionChange

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-30527kFBCanalysisNotAvailable

Available in Mac OS X v10.0 and later.-30528kFBCbadIndexFileVersion

Summarization operation cancelled-30529kFBCsummarizationCanceled

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-30530kFBCindexDiskIOFailed

Available in Mac OS X v10.0 and later.-30531kFBCbadSearchSession

Hit doesn’t exist-30532kFBCnoSuchHit

Available in Mac OS X v10.0 and later.

Summarization operation failed-30533kFBCsummarizationFailed

Available in Mac OS X v10.2 through Mac OS X v10.4.

Not all folders are searchable-30533kFBCnotAllFoldersSearchable

Available in Mac OS X v10.2 through Mac OS X v10.4.

Result Codes 2423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

2424 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 52

Find By Content Reference (Not Recommended)

Framework: ApplicationServices/ApplicationServices.h

Declared in FontSync.h

Overview

FontSync is an API that provides a way for your application to identify fonts based upon the content of the
font, rather than just the font name. Your application can use FontSync to compare fonts that are available
on different computers. This document is relevant for anyone who is writing a text-intensive application that
must minimize font mismatch errors when a file is moved from one computer to another. To use this document,
you should understand the basics of fonts and be familiar with FontSync references and profiles.

Carbon supports FontSync. However, in Mac OS X, Apple recommends that you use FontSync only in OS X
version 10.1 and later.

Functions by Task

Determining Availability, Version, and Feature Information

FNSEnabled (page 2427)
Indicates whether FontSync is enabled.

FNSMatchDefaultsGet (page 2427)
Determines the default match options used by FontSync functions performing font matching.

FNSSysInfoGet (page 2455)
Determines version and feature information for the version of FontSync installed on the user’s system.

Providing User Interface Support

FNSReferenceCountNames (page 2441)
Determines the number of internal font names in a reference.

FNSReferenceFindName (page 2444)
Finds the first name that matches the given font name parameters, if any.

FNSReferenceGetFamilyInfo (page 2447)
Obtains information about a font family represented by a font reference.

FNSReferenceGetIndName (page 2448)
Finds the font name string and other font name parameters for an indexed font name.

Overview 2425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Searching by Font Reference

FNSProfileMatchReference (page 2435)
Obtains a list of the references in a profile that match a given reference.

FNSReferenceMatchFamilies (page 2452)
Obtains a list of font families that match a reference.

FNSReferenceMatchFonts (page 2453)
Obtains a list of font objects that match a reference.

Working With FontSync Profiles

FNSProfileAddReference (page 2428)
Adds a font reference to a profile.

FNSProfileClear (page 2429)
Removes all font references from a profile.

FNSProfileClose (page 2430)
Closes the file associated with a font profile and disposes of run-time data.

FNSProfileCompact (page 2430)
Compacts a font profile.

FNSProfileCountReferences (page 2431)
Determines the number of font references in a font profile.

FNSProfileCreate (page 2432)
Creates an empty FontSync profile using an FSSpec.

FNSProfileCreateWithFSRef (page 2433)
Creates an empty FontSync profile using an FSRef.

FNSProfileGetIndReference (page 2434)
Retrieves an indexed font reference from a profile.

FNSProfileGetVersion (page 2435)
Retrieves the format version of an open font profile.

FNSProfileOpen (page 2437)
Opens an existing font profile using an FSSpec.

FNSProfileOpenWithFSRef (page 2438)
Opens an existing font profile using an FSRef.

FNSProfileRemoveIndReference (page 2439)
Deletes an indexed font reference from a profile.

FNSProfileRemoveReference (page 2440)
Deletes a font reference from a profile.

Working With FontSync References

FNSReferenceCreate (page 2441)
Creates a font reference based on a font object.

2426 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

FNSReferenceCreateFromFamily (page 2442)
Creates a font reference based on a font family and style.

FNSReferenceDispose (page 2444)
Disposes of the storage associated with a font reference.

FNSReferenceFlatten (page 2446)
Flattens a font reference.

FNSReferenceFlattenedSize (page 2447)
Calculates the space required for the flattened form of a font reference.

FNSReferenceGetVersion (page 2450)
Indicates the format version number of a font reference.

FNSReferenceMatch (page 2451)
Compares font references using specified matching options.

FNSReferenceUnflatten (page 2454)
Reconstitutes a flattened font reference.

Functions

FNSEnabled
Indicates whether FontSync is enabled.

Boolean FNSEnabled (
 void
);

Return Value
A Boolean value indicating whether FontSync is enabled. If true, your application can perform FontSync
operations. See the Mac Types documentation for a description of the Boolean data type.

Discussion
You should check the flag returned by the FNSEnabled function before starting a sequence of FontSync
calls, although it has no effect on the operation of the rest of the FontSync API.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, FNSEnabled always returns true.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSMatchDefaultsGet
Determines the default match options used by FontSync functions performing font matching.

Functions 2427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

FNSMatchOptions FNSMatchDefaultsGet (
 void
);

Return Value
A bit mask indicating the default match options. This is the value used when the mask constant
kFNSMatchDefaults is passed to FontSync functions that perform matching. See the description of the
FNSMatchOptions data type.

Discussion
The FNSMatchDefaultsGet function retrieves the bit mask used when the mask constant
kFNSMatchDefaults is passed to the functions FNSReferenceMatch (page 2451),
FNSProfileMatchReference (page 2435), FNSReferenceMatchFonts (page 2453), and
FNSReferenceMatchFamilies (page 2452). The bit mask value is read from a preferences file which is created
when the user sets match criteria via the control panel. The preference file is maintained by the FontSync
library. If there is no preferences file, or it is unreadable, the implementation-defined fallback value
kFNSMatchAll is returned.

There is no API for setting the default match criteria. Your application can specify options that are different
from the user’s preferences via the bitmask in the FontSync matching calls.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, the implementation-defined fallback value is
kFNSMatchAll, that is, all defined options turned on. In other words, if the user does not set the match
criteria via the control panel, FontSync uses the implementation-defined fallback value of all match criteria
selected.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileAddReference
Adds a font reference to a profile.

OSStatus FNSProfileAddReference (
 FNSFontProfile iProfile,
 FNSFontReference iReference
);

Parameters
iProfile

A reference to the font profile to which you want to add a font reference. The profile must be writable.

iReference
A reference to the font reference you wish to add.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr

2428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

indicates that a profile does not have a valid structure. The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code
kFNSDuplicateReferenceErr indicates that an identical reference already exists in the profile. In this case,
the new one is not added. The File Manager error permErr indicates that the file is either locked and not
editable or opened for read-only access. FNSProfileAddReference may return other File Manager errors.
Memory Manager errors indicate that you did not have enough memory available in your heap.

Discussion
The FNSProfileAddReference function adds a font reference to a profile that has read/write access. If an
identical reference already exists in the profile, the reference is not added and the result code
kFNSDuplicateReferenceErr is returned. A matching reference is not necessarily identical, since not all
the data in a font reference is examined when a matching operation is performed.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileClear
Removes all font references from a profile.

OSStatus FNSProfileClear (
 FNSFontProfile iProfile
);

Parameters
iProfile

A font profile reference. Pass a reference to the font profile whose references you wish to remove.
The profile must be editable (that is, opened with read/write access).

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that the font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that the profile does not have a valid structure. The File Manager error permErr indicates that the
file is either locked and not editable or opened for read-only access. FNSProfileClear may return other
File Manager errors.

Discussion
The FNSProfileClear function clears all font references from a specified profile. Note that this is only true
for editable profiles (that is, those opened with read/write access). The file of the font profile remains the
same size after this operation.

Version Notes
Available beginning with FontSync 1.0.

Functions 2429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileClose
Closes the file associated with a font profile and disposes of run-time data.

OSStatus FNSProfileClose (
 FNSFontProfile iProfile
);

Parameters
iProfile

A pointer to a font profile reference. Pass a reference to the font profile you wish to close.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. FNSProfileClose may return File Manager errors.

Discussion
The FNSProfileClose function closes the file associated with a font profile. Any memory associated with
the reference is released. You should call the function FNSProfileCompact (page 2430) before closing a
profile that has been edited, since closing a profile does not automatically compact it.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileCompact
Compacts a font profile.

2430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSProfileCompact (
 FNSFontProfile iProfile
);

Parameters
iProfile

A font profile reference. Pass a reference to the font profile you wish to compact. The profile must be
editable (that is, opened with read/write access).

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. FNSProfileCompactmay return File Manager errors.

Discussion
The FNSProfileCompact function eliminates excess space created when creating a font profile (that is, the
space you designate for not-yet-existent font references). This space is necessary to minimize growing the
file and shuffling data. If a profile has not been opened for read/write access, FNSProfileCompact simply
returns without doing anything.

You should call FNSProfileCompact before closing a profile that has been edited.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileCountReferences
Determines the number of font references in a font profile.

OSStatus FNSProfileCountReferences (
 FNSFontProfile iProfile,
 ItemCount *oCount
);

Parameters
iProfile

A reference to the font profile whose font references you wish to count.

oCount
On return, a pointer to the number of font references in the profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that a profile is valid, but created
by a later version of FontSync, or that a profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure.

Functions 2431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileCreate
Creates an empty FontSync profile using an FSSpec.

OSStatus FNSProfileCreate (
 const FSSpec *iFile,
 FourCharCode iCreator,
 ItemCount iEstNumRefs,
 FNSObjectVersion iDesiredVersion,
 FNSFontProfile *oProfile
);

Parameters
iFile

A pointer to the file that you want to initialize as an empty font profile.

iCreator
The creator code to set for the file. To specify the file creator code assigned by FontSync, pass the
kFNSCreatorDefault constant, described in “Font Profile Constants” (page 2461).

iEstNumRefs
The estimated number of font references that the font profile will contain. Estimating this value
minimizes the number of times the file needs to be grown, since the new profile will usually
immediately have font references added to it. Pass 0 if you don’t know how many font references
your profile will contain.

iDesiredVersion
The desired format version of the font profile. Pass a value in the range returned by the function
FNSSysInfoGet (page 2455) in the oCurProfileVersion and oMinProfileVersion fields of the
system information structure. To specify the most recent version supported by the FontSync library
regardless of format version, pass the constant kFNSVersionDontCare, described in “Version
Constants” (page 2462).

oProfile
On return, a pointer to a reference to the newly-created font profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that you requested an unsupported profile format version. Memory Manager errors indicate that the font
profile could not be created because you did not have enough memory available in your heap.
FNSProfileCreate may return File Manager errors.

2432 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Discussion
The FNSProfileCreate function creates an empty file containing a FontSync font profile. The newly-created
font profile is ready for use. You can add font references to the profile by calling the function
FNSProfileAddReference (page 2428).

FNSProfileCreate requires that you specify the desired profile version format because there will likely be
changes to the profile file format in future versions. This allows earlier versions of FontSync to use the font
profiles you create.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, if you specify the constant kFNSCreatorDefault
in the iCreator parameter of the function FNSProfileCreate, FontSync assigns the creator code 'fns'

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileCreateWithFSRef
Creates an empty FontSync profile using an FSRef.

OSStatus FNSProfileCreateWithFSRef (
 const FSRef *iParentDirectory,
 UniCharCount iNameLength,
 const UniChar *iName,
 FourCharCode iCreator,
 ItemCount iEstNumRefs,
 FNSObjectVersion iDesiredVersion,
 FNSFontProfile *oProfile
);

Parameters
iParentDirectory

A pointer to the parent directory of the file that you want to initialize as an empty font profile.

iNameLength
The number of UniChar characters in the iName parameter.

iName
The name of the file in which you are storing the profile.

iCreator
The creator code to set for the file. To specify the file creator code assigned by FontSync, pass the
kFNSCreatorDefault constant, described in “Font Profile Constants” (page 2461).

iEstNumRefs
The estimated number of font references that the font profile will contain. Estimating this value
minimizes the number of times the file needs to be grown, since the new profile will usually
immediately have font references added to it. Pass 0 if you don’t know how many font references
your profile will contain.

Functions 2433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

iDesiredVersion
The desired format version of the font profile. Pass a value in the range returned by the function
FNSSysInfoGet (page 2455) in the oCurProfileVersion and oMinProfileVersion fields of the
system information structure. To specify the most recent version supported by the FontSync library
regardless of format version, pass the constant kFNSVersionDontCare, described in “Version
Constants” (page 2462).

oProfile
On return, a pointer to the newly-created font profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462).

Discussion
The function FNSProfileCreateWithFSRef works similarly to the function FNSProfileCreate, except
that FNSProfileCreateWithFSRef uses an FSRef instead of an FSSpec. An FSSpec cannot handle Unicode
names that are too long, as long names are truncated. In addition, an FSSpec cannot be shared between
processes since an FSSpec references volume IDs which are different between different processes.

Availability
Not available in CarbonLib 1.0.
Available in Mac OS X 10.1 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileGetIndReference
Retrieves an indexed font reference from a profile.

OSStatus FNSProfileGetIndReference (
 FNSFontProfile iProfile,
 UInt32 iWhichReference,
 FNSFontReference *oReference
);

Parameters
iProfile

A reference to the font profile whose indexed font reference you want to determine.

iWhichReference
An index into the list of font references in the profile. Pass a value between 0 and one less than the
number of references in the profile returned by the function FNSProfileCountReferences (page
2431).

oReference
On return, a pointer to a reference to the indexed font reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that the font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code inputOutOfBounds indicates
that the specified index was out of range. The result code kFNSInvalidProfileErr indicates that the
profile does not have a valid structure. FNSProfileGetIndReference may return File Manager errors.
Memory Manager errors indicate that you did not have enough memory available in your heap.

2434 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileGetVersion
Retrieves the format version of an open font profile.

OSStatus FNSProfileGetVersion (
 FNSFontProfile iProfile,
 FNSObjectVersion *oVersion
);

Parameters
iProfile

A reference to the font profile whose format version number you wish to obtain.

oVersion
On return, a pointer to the format version number of the font profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSInvalidProfileErr indicates
that the profile does not have a valid structure.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileMatchReference
Obtains a list of the references in a profile that match a given reference.

Functions 2435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSProfileMatchReference (
 FNSFontProfile iProfile,
 FNSFontReference iReference,
 FNSMatchOptions iMatchOptions,
 ItemCount iOutputSize,
 UInt32 oIndices[],
 ItemCount *oNumMatches
);

Parameters
iProfile

A reference to the font profile containing the font references you wish to compare.

iReference
A reference to a font reference against which you are performing the comparison.

iMatchOptions
A bit mask you can use to set the matching option bits to be used in the comparison. To specify the
global default match criteria, pass the bit mask returned by the function FNSMatchDefaultsGet (page
2427). Your application can specify options that are different from the user’s preferences via this mask.

iOutputSize
The number of font references you want passed back in the oIndices array. This may be less than
the actual number of matches passed back in the oNumMatches parameter. To determine this value,
see the discussion below.

oIndices
On return, a pointer to an array of indices identifying the font references that matched. The number
of indices returned is limited by the value you specify in the iOutputSize parameter. The total
number of matching references is passed back in the oNumMatches parameter.

oNumMatches
On return, a pointer to the total number of matching font references. This value may be greater than
the number of indices passed back in the oIndices array.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported version number. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code kFNSMismatchErr
indicates that no matches were found. The File Manager error permErr indicates that the file is either locked
and not editable or opened for read-only access. FNSProfileMatchReference may return other File
Manager errors. Memory Manager errors indicate that you did not have enough memory available in your
heap.

Discussion
The FNSProfileMatchReference function obtains a list of the font references that match a specified
reference. Since there may be more than one matching reference, a list is returned.

The number of font references passed back in the oIndices array is limited by the value you specify in the
iOutputSize parameter. The actual number of matches is passed back in the oNumMatches parameter.
You can check this value to determine whether the oIndices array was large enough to contain the matches.

2436 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

If you want to determine whether the profile has a matching font, but don’t care which one, pass 0 for the
iOutputSize parameter and NULL for the oNumMatches parameter. The result code noErr indicates that
matches were found, while the result code kFNSMismatchErr indicates that no matches were found.

To determine the number of matches, call FNSProfileMatchReference and pass 0 for the iOutputSize
parameter. The pointer passed back in the oNumMatches parameter will point to the actual number of
matches. You can then call FNSProfileMatchReference again, passing the returned number of matches
in the iOutputSize parameter.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileOpen
Opens an existing font profile using an FSSpec.

OSStatus FNSProfileOpen (
 const FSSpec *iFile,
 Boolean iOpenForWrite,
 FNSFontProfile *oProfile
);

Parameters
iFile

A pointer to the font profile file that you wish to open.

iOpenForWrite
A flag indicating whether the profile file is read/write or read-only. Pass true to allow read/write
access. This is necessary if the profile is going to be editable.

oProfile
On return, a pointer to a reference to the open font profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. Memory Manager errors indicate that you did not
have enough memory available in your heap. FNSProfileOpen may return File Manager errors.

Discussion
The FNSProfileOpen function opens an already-existing font profile (that is, one that contains font
references). If you want to make the font profile editable, pass true in the iOpenForWrite parameter.
FNSProfileOpen will not open an empty profile created by the function FNSProfileCreate (page 2432).

Functions 2437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Font profiles are housed in a file. FontSync attempts to moderate access to this file. Ideally, it tries to either
allow many readers or exactly one writer but not both. The Mac OS File Manager does not allow this kind of
exclusion on local volumes, so it may still be possible for someone to get write access to a profile when there
are active readers. Rather than complicating the implementation to work around this limitation, FontSync
profile files are treated like most document files. That is, the caller is responsible for making sure this does
not occur. If the user wishes to modify a profile, your application should make a copy of the file, modify the
copy, and swap file names when done. This has the added benefit of preserving the original profile if an error
leaves the new profile invalid.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileOpenWithFSRef
Opens an existing font profile using an FSRef.

OSStatus FNSProfileOpenWithFSRef (
 const FSRef *iFile,
 Boolean iOpenForWrite,
 FNSFontProfile *oProfile
);

Parameters
iFile

A pointer to the FSRef that specifies the file that you wish to open.

iOpenForWrite
A flag indicating whether the profile file is read/write or read-only. Pass true to allow read/write
access. This is necessary if the profile is going to be editable.

oProfile
On return, a pointer to a reference to the open font profile.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. Memory Manager errors indicate that you did not
have enough memory available in your heap. FNSProfileOpen may return File Manager errors.

Discussion
The function FNSProfileOpenWithFSRef works similarly to the function FNSProfileOpen,
FNSProfileOpenWithFSRef uses an FSRef instead of an FSSpec. An FSSpec cannot handle Unicode
names that are too long, as long names are truncated. In addition, an FSSpec cannot be shared between
processes since an FSSpec references volume IDs which are different between different processes.

2438 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Availability
Not available in CarbonLib 1.0.
Available in Mac OS X 10.1 and later
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileRemoveIndReference
Deletes an indexed font reference from a profile.

OSStatus FNSProfileRemoveIndReference (
 FNSFontProfile iProfile,
 UInt32 iIndex
);

Parameters
iProfile

A reference to the font profile whose indexed font reference you want to delete. The profile must be
writable.

iIndex
An index into the list of font references in the profile. Pass a value between 0 and one less than the
number of references in the profile, returned by the function FNSProfileCountReferences (page
2431). Note that this will change the indices of all succeeding references.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. The result code permErr indicates that a specified
file is locked and not writable. The result code kFNSBadReferenceVersionErr indicates that a font reference
has an unsupported format version. This may indicate that the reference is valid, but created by a later version
of FontSync, or that the reference is truly invalid. The result code kFNSInvalidReferenceErr indicates
that a font reference is invalid. The result code inputOutOfBounds indicates that the specified index was
out of range. The File Manager error permErr indicates that the file is either locked and not editable or
opened for read-only access. FNSProfileRemoveIndReference may return other File Manager errors.
Memory Manager errors indicate that you did not have enough memory available in your heap.

Discussion
The FNSProfileRemoveIndReference function deletes an indexed font reference from an editable profile.
The reference must be identical to the reference specified in the iReference parameter. A matching reference
is not enough, since not all the data in a font reference is examined when a matching operation is performed.

You can use eitherFNSProfileRemoveIndReferenceor the functionFNSProfileRemoveReference (page
2440) to remove a font reference, depending upon what you know about the reference. If you know its value,
call FNSProfileRemoveReference (page 2440). If you know its index in the list of font references, call
FNSProfileRemoveIndReference.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.

Functions 2439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSProfileRemoveReference
Deletes a font reference from a profile.

OSStatus FNSProfileRemoveReference (
 FNSFontProfile iProfile,
 FNSFontReference iReference
);

Parameters
iProfile

A reference to the font profile whose font reference you want to delete. The profile must be writable.

iReference
A reference to the font reference you wish to remove.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSBadProfileVersionErr indicates
that a font profile has an unsupported format version. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly invalid. The result code kFNSInvalidProfileErr
indicates that a profile does not have a valid structure. The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code kFNSMismatchErr
indicates that the reference you wish to remove is not in the profile. The File Manager error permErr indicates
that the file is either locked and not editable or opened for read-only access. FNSProfileRemoveReference
may return other File Manager errors. Memory Manager errors indicate that you did not have enough memory
available in your heap.

Discussion
The FNSProfileRemoveReference function deletes a font reference from an editable profile. The reference
must be identical to the reference specified in the iReference parameter. A matching reference is not
necessarily identical, since not all the data in a font reference is examined when a matching operation is
performed.

You can use eitherFNSProfileRemoveReferenceor the functionFNSProfileRemoveIndReference (page
2439) to remove a font reference, depending upon what you know about the reference. If you know the value
of the reference, call FNSProfileRemoveReference. If you know its index in the list of font references, call
FNSProfileRemoveIndReference (page 2439).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

2440 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Declared In
FontSync.h

FNSReferenceCountNames
Determines the number of internal font names in a reference.

OSStatus FNSReferenceCountNames (
 FNSFontReference iReference,
 ItemCount *oNameCount
);

Parameters
iReference

A reference to the font reference whose font names you wish to count.

oNameCount
On return, a pointer to the number of internal font names, other than the font family name passed
to the GetFNum function, recorded in the reference. The font family passed to the function GetFNum
is available by calling the function GetFamilyInfo. This includes the PostScript and unique names,
if available.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code
kFNSInsufficientDataErr indicates that the mask constant kFNSMissingDataNoMatch was set and
both references being compared are missing the same data. The result code kFNSMismatchErr indicates
that no font names were recorded in the reference.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceCreate
Creates a font reference based on a font object.

Functions 2441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceCreate (
 FMFont iFont,
 FNSObjectVersion iDesiredVersion,
 FNSFontReference *oReference
);

Parameters
iFont

The font object ID representing the font whose reference you wish to create.

iDesiredVersion
The desired font reference format version number. Pass a value between the oldest and current format
version numbers supported by the FontSync library. You can determine this range by examining the
oCurRefVersion andoMinRefVersion fields of theFNSSysInfo (page 2458) structure. This structure
is passed back in the ioInfo parameter of the function FNSSysInfoGet (page 2455). To specify the
most recent version supported by the FontSync library regardless of format version, pass the constant
kFNSVersionDontCare, described in “Version Constants” (page 2462).

oReference
On return, a pointer to a reference to the newly-created FontSync reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that you requested an unsupported reference format version. The Font Manager result code
kFMInvalidFontErr indicates that a font is invalid. Memory Manager errors indicate that a font reference
could not be created because you did not have enough memory available in your heap.

Discussion
You should call the FNSReferenceCreate function to create a font reference if your application uses ATSUI
to render text. If the specified font object is associated with a font family, the newly-created font reference
will contain the QuickDraw Text-specific information from that associated family.

The FNSReferenceCreate function requires that you specify the desired font reference format version
because there will likely be changes to the nature of the “fingerprints” in a font reference in future versions.
This allows earlier versions of FontSync to use the font references you create.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, a font object can only belong to one family. FontSync
uses the family returned by the Font Manager function FMGetFontFamilyInstanceFromFont.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceCreateFromFamily
Creates a font reference based on a font family and style.

2442 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceCreateFromFamily (
 FMFontFamily iFamily,
 FMFontStyle iStyle,
 FNSObjectVersion iDesiredVersion,
 FNSFontReference *oReference,
 FMFontStyle *oActualStyle
);

Parameters
iFamily

The font family of the font whose reference you wish to create.

iStyle
The style of the font family. This value is often not the actual style of the font reference being created,
since there are often left-over style bits. The actual style of the newly-created font reference is passed
back in the oActualStyle parameter. For more information, see the discussion.

iDesiredVersion
The desired format version of the font reference. Pass a value in the range returned by the function
FNSSysInfoGet (page 2455) in the oCurRefVersion and oMinRefVersion fields of the system
information structure. To specify the most recent version supported by the FontSync library regardless
of format version, pass the constant kFNSVersionDontCare, described in “Version Constants” (page
2462).

oReference
On return, a pointer to a reference to the newly-created FontSync reference.

oActualStyle
On return, a pointer to the actual style of the newly-created font reference. This value may differ from
the value you passed in the iStyle parameter. For more information, see the discussion. This value
may be NULL.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that you requested an unsupported reference format version. The Font Manager result code
kFMInvalidFontFamilyErr indicates that a font family is invalid. Memory Manager errors indicate that a
font reference could not be created because you did not have enough memory available in your heap.

Discussion
You should call the FNSReferenceCreateFromFamily function to create a font reference if your application
uses QuickDraw Text to render text.

The style you specify in the iStyle parameter is often not the actual style of the font reference being created,
since there may not be a real face corresponding to that style. For example, a family may not have a real
italic face, so any italicization is handled by skewing the glyphs. The actual style of the newly-created font
reference is passed back in the oActualStyle parameter.

The FNSReferenceCreateFromFamily function requires that you specify the desired font reference format
version because there will likely be changes to the nature of the “fingerprints” in a font reference in future
versions. This allows earlier versions of FontSync to use the font references you create.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 2443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceDispose
Disposes of the storage associated with a font reference.

OSStatus FNSReferenceDispose (
 FNSFontReference iReference
);

Parameters
iReference

A pointer to the font reference whose associated memory you wish to dispose of.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the font reference
is valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. Memory Manager errors indicate that
you did not have enough memory available in your heap.

Special Considerations

You should not use a font reference after calling the FNSReferenceDispose function to dispose of its
storage.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceFindName
Finds the first name that matches the given font name parameters, if any.

2444 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceFindName (
 FNSFontReference iReference,
 FontNameCode iFontNameCode,
 FontPlatformCode iFontNamePlatform,
 FontScriptCode iFontNameScript,
 FontLanguageCode iFontNameLanguage,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 ItemCount *oFontNameIndex
);

Parameters
iReference

A reference to the font reference whose font name you are searching for.

iFontNameCode
The type of the font name string you are searching for.

iFontNamePlatform
The encoding of the font name string you are searching for. You can pass the kFontNoPlatform
constant if you do not care about the encoding of a font name. In this case, FNSReferenceFindName
will pass back the first name matching the other font name parameters.

iFontNameScript
The script code of the font name string you are searching for. You can pass the kFontNoScript
constant if you do not care about the script ID. In this case, FNSReferenceFindName will pass back
the first name matching the other font name parameters.

iFontNameLanguage
The language code of the font name string you are searching for. You can pass the kFontNoLanguage
constant if you do not care about the language of the font name. In this case, FNSReferenceFindName
will pass back the first name matching the other font name parameters.

iMaximumNameLength
The maximum length of the font name. Typically, this is equivalent to the size of the buffer allocated
to contain the font name pointed to by the oName parameter. To determine this length, see the
discussion below.

oName
A pointer to a buffer. Before calling FNSReferenceFindName, pass a pointer to memory that you
have allocated for this buffer. On return, the buffer contains the font name string. If the buffer you
allocate is not large enough, FNSReferenceFindName passes back a partial string.

oActualNameLength
On return, a pointer to the actual length of the font name string. This may be greater than the value
passed in the iMaximumNameLength parameter. You should check this value to make sure that you
allocated enough memory for the buffer.

oFontNameIndex
On return, a pointer to a 0-based index of the font name in the font name table. This can be used
with the function FNSReferenceGetIndName (page 2448) to determine the actual values of unknown
font name parameters.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code

Functions 2445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

kFNSInsufficientDataErr indicates that the mask constant kFNSMissingDataNoMatch was set and
both references being compared are missing the same data. The result code kFNSNameNotFoundErr indicates
that there was no name in the font reference that matched the given parameters.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceFlatten
Flattens a font reference.

OSStatus FNSReferenceFlatten (
 FNSFontReference iReference,
 void *oFlatReference,
 ByteCount *oFlattenedSize
);

Parameters
iReference

The font reference that you want to flatten.

oFlatReference
A pointer to the storage for the font reference to be flattened. Pass a NULL pointer if you wish to
determine the size of the flattened reference without actually creating it.

oFlattenedSize
On return, a pointer to the flattened size (in bytes) of the font reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid.

Discussion
The FNSReferenceFlatten function flattens a font reference into a form which can be stored externally
(for example, in a document or embedded in an Apple event), and returns the size of the flattened reference
in the oFlattenedSize parameter. FNSReferenceFlatten assumes that the storage pointed to by
iFlatReference is large enough to hold the data and will always contain a full flattened reference.

If you simply want to calculate the size of a flattened reference, you can pass a NULL pointer in the
iFlatReference parameter or call the function FNSReferenceFlattenedSize (page 2447).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.

2446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceFlattenedSize
Calculates the space required for the flattened form of a font reference.

OSStatus FNSReferenceFlattenedSize (
 FNSFontReference iReference,
 ByteCount *oFlattenedSize
);

Parameters
iReference

The font reference whose flattened form you wish to compute.

oFlattenedSize
On return, a pointer to the flattened size (in bytes) of the font reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that the font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that the font reference is invalid.

Discussion
You can call the FNSReferenceFlattenedSize function to calculate the size of a flattened reference. You
can also accomplish this by passing a NULL pointer in the iFlatReference parameter of the function
FNSReferenceFlatten (page 2446).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceGetFamilyInfo
Obtains information about a font family represented by a font reference.

Functions 2447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceGetFamilyInfo (
 FNSFontReference iReference,
 Str255 oFamilyName,
 ScriptCode *oFamilyNameScript,
 FMFontStyle *oActualStyle
);

Parameters
iReference

A reference to the font reference representing a font family.

oFamilyName
On return, the name by which the font is known to the classic Font Manager (that is, the string you
pass to the Font Manager function GetFNum). If you do not want to obtain this information, pass
NULL.

oFamilyNameScript
On return, a pointer to the script code of the family name string. If you do not want to obtain this
information, pass NULL.

oActualStyle
On return, a pointer to the actual QuickDraw style associated with the font reference. This is the value
passed back in the oActualStyle parameter of the function
FNSReferenceCreateFromFamily (page 2442). If you do not want to obtain this information, pass
NULL. For more information, see the discussion of FNSReferenceCreateFromFamily (page 2442).

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code
kFNSInsufficientDataErr indicates that the mask constant kFNSMissingDataNoMatch was set and
both references being compared are missing the same data. The result code kFNSMismatchErr indicates
that no font names were recorded in the reference.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceGetIndName
Finds the font name string and other font name parameters for an indexed font name.

2448 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceGetIndName (
 FNSFontReference iReference,
 ItemCount iFontNameIndex,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 FontNameCode *oFontNameCode,
 FontPlatformCode *oFontNamePlatform,
 FontScriptCode *oFontNameScript,
 FontLanguageCode *oFontNameLanguage
);

Parameters
iReference

A reference to the font reference whose indexed font name you want information about.

iFontNameIndex
An index of the font name you want information about. Pass a value between 0 and one less than
the count passed back by the function FNSProfileCountReferences (page 2431).

iMaximumNameLength
The maximum length of the font name. Typically, this is equivalent to the size of the buffer allocated
to contain the font name pointed to by the oName parameter. To determine this length, see the
discussion below.

oName
A pointer to a buffer. Before calling FNSReferenceGetIndName, pass a pointer to memory that you
have allocated for this buffer. If you are uncertain of how much memory to allocate, see the discussion
below. On return, the buffer contains the font name string. If the buffer you allocate is not large
enough, FNSReferenceGetIndName passes back a partial string.

oActualNameLength
On return, a pointer to the actual length of the font name string. This may be greater than the value
passed in the iMaximumNameLength parameter. You should check this value to make sure that you
allocated enough memory for the buffer.

oFontNameCode
On return, a pointer to the type of the font name string.

oFontNamePlatform
On return, a pointer to the encoding of the font name string.

oFontNameScript
On return, a pointer to the script ID of the font name string.

oFontNameLanguage
On return, a pointer to the language of the font name string.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code
kFNSInsufficientDataErr indicates that the mask constant kFNSMissingDataNoMatch was set and
both references being compared are missing the same data. The result code inputOutOfBounds indicates
that the specified index was out of range.

Functions 2449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Discussion
You should call the FNSReferenceGetIndName function to iterate through the entries of a font name table
to find the font name string, name code, language code, script code, and platform code of an indexed font
name.

The best way to use FNSReferenceGetIndName is to call it twice:

 ■ Pass the reference of the font whose name table you want to iterate in the iReference parameter,
NULL for the oName parameter, and 0 for the other parameters. FNSReferenceGetIndName returns the
length of the font name string in the oActualNameLength parameter.

 ■ Allocate enough space for a font name buffer of the returned size, then call the function again, passing
a pointer in the oName parameter; on return, the pointer references the font name string.

To find the index and font name of the first font in a name table matching given font name parameters, call
the function FNSReferenceFindName (page 2444).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceGetVersion
Indicates the format version number of a font reference.

OSStatus FNSReferenceGetVersion (
 FNSFontReference iReference,
 FNSObjectVersion *oVersion
);

Parameters
iReference

The font reference whose format version number you wish to determine.

oVersion
On return, a pointer to the format version number of the specified font reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result codekFNSInvalidReferenceErr indicates
that the font reference is invalid.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

2450 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Declared In
FontSync.h

FNSReferenceMatch
Compares font references using specified matching options.

OSStatus FNSReferenceMatch (
 FNSFontReference iReference1,
 FNSFontReference iReference2,
 FNSMatchOptions iOptions,
 FNSMatchOptions *oFailedMatchOptions
);

Parameters
iReference1

A font reference whose contents you wish to compare to the font reference in the iReference2
parameter.

iReference2
A font reference whose contents you wish to compare to the font reference in the
iReference1parameter.

iOptions
A bit mask you can use to set the match option bits to be used in the font comparison. To specify the
global default match criteria, pass the bit mask returned by the function FNSMatchDefaultsGet (page
2427). Your application can specify options that are different from the user’s preferences via this mask.

oFailedMatchOptions
Before calling FNSReferenceMatch, pass NULL if you do not desire to know which match options
failed. On return, a pointer to a bit mask that you can test to determine the match options that failed
to match in the event of a mismatch.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code kFNSMismatchErr
indicates that a font reference did not match. The result code kFNSInsufficientDataErr indicates that
the mask constant kFNSMissingDataNoMatch was set and both references being compared are missing
the same data.

Discussion
The FNSReferenceMatch function returns a bit mask indicating the matching options that did not match
when comparing two font references. You should specify which match options you wish to compare in the
iOptions parameter. To specify the default match criteria, pass the bit mask returned by the function
FNSMatchDefaultsGet (page 2427). If the match fails, on return, the oFailedMatchOptions parameter
contains a bit mask of the elements that failed to match. You can use the bit mask to determine the criteria
under which the fonts failed to match.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Functions 2451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Declared In
FontSync.h

FNSReferenceMatchFamilies
Obtains a list of font families that match a reference.

OSStatus FNSReferenceMatchFamilies (
 FNSFontReference iReference,
 FNSMatchOptions iMatchOptions,
 ItemCount iOutputSize,
 FMFontFamilyInstance oFonts[],
 ItemCount *oNumMatches
);

Parameters
iReference

A reference to the font reference whose matching font(s) you wish to determine.

iMatchOptions
A bit mask you can use to set the matching option bits to be used in the comparison. To specify the
global default match criteria, pass the bit mask returned by the function FNSMatchDefaultsGet (page
2427). The total number of matching references is passed back in the oNumMatches parameter. Your
application can specify options that are different from the user’s preferences via this mask.

iOutputSize
The capacity of the oFonts array. This may be less than the actual number of matches passed back
in the oNumMatches parameter.

oFonts
On return, a pointer to an array of indices identifying the fonts matching the specified reference. The
number of indices returned is limited by the value you specify in the iOutputSize parameter.

oNumMatches
On return, a pointer to the total number of font families that match the specified reference. This value
may be greater than the number of fonts passed back in the oFonts array.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported version number. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code kFNSMismatchErr
indicates that no matches were found. Memory Manager errors indicate that you did not have enough
memory available in your heap.

Discussion
The FNSReferenceMatchFamilies function maps a font reference to an active font that can be used with
QuickDraw Text. Since there may be more than one such font, a list is returned.

The number of fonts passed back in the oFonts array is limited by the value you specify in the iOutputSize
parameter. The actual number of matches is passed back in the oNumMatches parameter. You can check
this value to determine whether the oFonts array was large enough to contain the matches.

2452 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

If FNSReferenceMatchFamilies cannot find a font family that matches a font reference and someone has
registered interest in this process, FontSync sends an Apple Event with the details of the request to the third
party font-management utility in question. For more information, see the discussion for the function
FNSReferenceMatchFonts (page 2453).

If you want to determine whether the profile has a matching font, but don’t care which one, pass 0 for the
iOutputSize parameter and NULL for the oNumMatches parameter. The result code noErr indicates that
matches were found, while the result code kFNSMismatchErr indicates that no matches were found.

To determine the number of matches, call FNSReferenceMatchFamilies and pass 0 for the iOutputSize
parameter. The pointer passed back in the oNumMatches parameter will point to the actual number of
matches. You can then call FNSReferenceMatchFamilies again, passing the returned number of matches
in the iOutputSize parameter.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceMatchFonts
Obtains a list of font objects that match a reference.

OSStatus FNSReferenceMatchFonts (
 FNSFontReference iReference,
 FNSMatchOptions iMatchOptions,
 ItemCount iOutputSize,
 FMFont oFonts[],
 ItemCount *oNumMatches
);

Parameters
iReference

A reference to the font reference whose matching font(s) you wish to determine.

iMatchOptions
A bit mask you can use to set the matching option bits to be used in the comparison. To specify the
global default match criteria, pass the bit mask returned by the function FNSMatchDefaultsGet (page
2427). The total number of matching references is passed back in the oNumMatches parameter. Your
application can specify options that are different from the user’s preferences via this mask.

iOutputSize
The capacity of the oFonts array. This may be less than the actual number of matches passed back
in the oNumMatches parameter.

oFonts
On return, a pointer to an array of indices identifying the fonts matching the specified reference. The
number of indices returned is limited by the value you specify in the iOutputSize parameter.

Functions 2453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

oNumMatches
On return, a pointer to the total number of font objects that match the specified reference. This value
may be greater than the number of fonts passed back in the oFonts array.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version number. This may indicate that the reference
is valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSInvalidReferenceErr indicates that a font reference is invalid. The result code kFNSMismatchErr
indicates that no matches were found. Memory Manager errors indicate that you did not have enough
memory available in your heap.

Discussion
The FNSReferenceMatchFonts function passes back a list of active fonts which match the specified reference.
FNSReferenceMatchFontsmaps a font reference to an actual font that can be used with ATSUI. Since there
may be more than one such font, a list is returned.

The number of fonts passed back in the oFonts array is limited by the value you specify in the iOutputSize
parameter. The actual number of matches is passed back in the oNumMatches parameter. You can check
this value to determine whether the oFonts array was large enough to contain the matches.

If you want to determine whether the profile has a matching font, but don’t care which one, pass 0 for the
iOutputSize parameter and NULL for the oNumMatches parameter. The result code noErr indicates that
matches were found, while the result code kFNSMismatchErr indicates that no matches were found.

To determine the number of matches, call FNSReferenceMatchFonts and pass 0 for the iOutputSize
parameter. The pointer passed back in the oNumMatches parameter will point to the actual number of
matches. You can then call FNSReferenceMatchFonts again, passing the returned number of matches in
the iOutputSize parameter.

If FNSReferenceMatchFonts cannot find an active font that matches a font reference and your application
has registered interest in this process, FontSync sends an Apple Event with the details of the request to the
third party font-management utility in question. The receiver should respond with a list of matching fonts,
taking whatever steps are necessary to identify and activate them before replying to the event. Registration
is handled by the simple expedient of installing a handler for the appropriate Apple Event. This handler will
typically be installed in the system table, though FontSync will check for handlers both in the system and in
the context’s local handler table. The Apple Event will be a send-to-self.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSReferenceUnflatten
Reconstitutes a flattened font reference.

2454 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

OSStatus FNSReferenceUnflatten (
 const void *iFlatReference,
 ByteCount iFlattenedSize,
 FNSFontReference *oReference
);

Parameters
iFlatReference

A pointer to the flattened font reference.

iFlattenedSize
The size (in bytes) of the flattened font reference.

oReference
On return, a pointer to a reference to the reconstituted font reference.

Return Value
A result code. See “FontSync Result Codes” (page 2462). The result code kFNSBadReferenceVersionErr
indicates that a font reference has an unsupported format version. This may indicate that the reference is
valid, but created by a later version of FontSync, or that the reference is truly invalid. The result code
kFNSBadFlattenedSizeErr indicates that either the specified size doesn’t match the size recorded in the
flattened reference or the size was not large enough to hold a flattened reference. The result code
kFNSInvalidReferenceErr indicates that a reconstructed reference is bad. Memory Manager errors indicate
that you did not have enough memory available in your heap.

Discussion
The FNSReferenceUnflatten function reconstitutes a flattened font reference from its external form. For
example, you could use FNSReferenceUnflatten to read a font reference out of a document. The
iFlattenedSize parameter is not really necessary since a flattened reference contains its own size. However,
you can use this value to check that you have passed the right amount of data for the flattened reference.

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

FNSSysInfoGet
Determines version and feature information for the version of FontSync installed on the user’s system.

Functions 2455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

void FNSSysInfoGet (
 FNSSysInfo *ioInfo
);

Parameters
ioInfo

Before calling the FNSSysInfoGet function, pass a pointer to a FNSSysInfo (page 2458) structure.
Fill in the iSysInfoVersion field of the structure with the version of this structure. Pass the constant
kFNSCurSysInfoVersion, described in “Version Constants” (page 2462), to represent the current
version. On return, FNSSysInfoGet fills in the remaining fields and passes back a pointer to the
structure.

Discussion
Before calling the FNSSysInfoGet function, you should fill in the iSysInfoVersion field of the
FNSSysInfo (page 2458) structure with the version of this structure. Pass the constant
kFNSCurSysInfoVersion, described in “Version Constants” (page 2462) , to represent the current version.
FNSSysInfoGet fills in the remaining fields and passes back the structure in the ioInfo parameter. The
information it provides includes the version of FontSync running in the current context and available features,
as well as the current and oldest font reference and profile format versions supported by the FontSync library.

New fields may be added to the end of the structure in future versions of FontSync. FontSync uses the
iSysInfoVersion field to determine which version of the structure you are using. The value of the current
version constant kFNSCurSysInfoVersion will change accordingly.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, the current structure version is defined by the constant
kFNSCurSysInfoVersion, described in “Version Constants” (page 2462).

Availability
Available in CarbonLib 1.0 and later when Font Sync 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
FontSync.h

Data Types

FNSFeatureFlags
Represents a mask that you can use to determine available FontSync features.

typedef UInt32 FNSFeatureFlags;

Discussion
The FNSFeatureFlags type defines a bit mask your application can use to determine available FontSync
features. The function FNSSysInfoGet (page 2455) passes back a mask of this type in the oFeatures field
of the FNSSysInfo (page 2458) structure in the ioInfo parameter. You can use this mask to determine
available FontSync features.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, the value is 0, since no feature flags are defined.

2456 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
FontSync.h

FNSFontProfile
Represents a reference to a font profile.

typedef struct OpaqueFNSFontProfile * FNSFontProfile;

Discussion
The FNSFontProfile type is a reference to an opaque structure containing a collection of font references.
It defines a set of fonts on the user’s system. Although you do not need to use font profiles to iterate, identify,
and match fonts on the user’s system, they are necessary in building font menus and other font selection
human interface elements.

You pass a font profile to FontSync functions that manipulate font profiles. A font reference is passed back
by functions that create font profiles. For a description of these functions, see “Working With FontSync
Profiles” (page 2426).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
FontSync.h

FNSFontReference
Represents a reference to a font reference.

typedef struct OpaqueFNSFontReference * FNSFontReference;

Discussion
The FNSFontReference type is a reference to an opaque structure containing information about a font.
Some of the data contained in a font reference includes the QuickDraw font family name, ATSUI-visible font
name, type of font, font version, checksums of the data, and information from the font name table.

You pass a font reference to FontSync functions that manipulate font references. A font reference is passed
back by functions that create font references. For a description of these functions, see “Working With FontSync
References” (page 2426).

Version Notes
Available beginning with FontSync 1.0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
FontSync.h

Data Types 2457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

FNSSysInfo
Contains FontSync version and feature information.

struct FNSSysInfo {
 FNSObjectVersion iSysInfoVersion;
 FNSFeatureFlags oFeatures;
 FNSObjectVersion oCurRefVersion;
 FNSObjectVersion oMinRefVersion;
 FNSObjectVersion oCurProfileVersion;
 FNSObjectVersion oMinProfileVersion;
 UInt16 oFontSyncVersion;
};
typedef struct FNSSysInfo FNSSysInfo;

Fields
iSysInfoVersion

On input, the version of this parameter block structure. In FontSync 1.0, the version number of this
structure is 1. Pass the constant kFNSCurSysInfoVersion, described in “Version Constants” (page
2462). For more information, see the discussion.

oFeatures
On output, the FontSync features that are available. In FontSync 1.0, no feature flags are defined.

oCurRefVersion
On output, the current font reference format version supported by the FontSync library.

oMinRefVersion
On output, the oldest font reference format version supported by the FontSync library.

oCurProfileVersion
On output, the current font profile format version supported by the FontSync library.

oMinProfileVersion
On output, the oldest font profile format version supported by the FontSync library.

oFontSyncVersion
On output, a binary-coded decimal value indicating the version of FontSync currently running. The
high-order 8 bits give the major version, the next four give the minor version, and the last four give
the revision. For example, version 1.0 would be encoded as 0x0100.

Discussion
Before calling the function FNSSysInfoGet (page 2455), you should fill in the iSysInfoVersion field of this
structure with the version of this structure. Pass the constant kFNSCurSysInfoVersion, described in “Version
Constants” (page 2462), to represent the current version. FNSSysInfoGet (page 2455) fills in the remaining
fields and passes back the structure in the ioInfo parameter. The information it provides includes the version
of FontSync running in the current context and available features, as well as the current and oldest font
reference and profile format versions supported by the FontSync library.

New fields may be added to the end of the structure in future versions of FontSync. FontSync uses the
iSysInfoVersion field to determine which version of the structure you are using. The value of the current
version constant kFNSCurSysInfoVersion will change accordingly.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, the value of the iSysInfoVersion field is 1. The
value of the oFeatures field is 0, since no feature flags are defined.

Availability
Available in Mac OS X v10.0 and later.

2458 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Declared In
FontSync.h

Constants

Matching Options
Represent a mask that you can use to set and determine default match options.

typedef UInt32 FNSMatchOptions;
enum {
 kFNSMatchNames = 0x00000001,
 kFNSMatchTechnology = 0x00000002,
 kFNSMatchGlyphs = 0x00000004,
 kFNSMatchEncodings = 0x00000008,
 kFNSMatchQDMetrics = 0x00000010,
 kFNSMatchATSUMetrics = 0x00000020,
 kFNSMatchKerning = 0x00000040,
 kFNSMatchWSLayout = 0x00000080,
 kFNSMatchAATLayout = 0x00000100,
 kFNSMatchPrintEncoding = 0x00000200,
 kFNSMissingDataNoMatch = 0x80000000,
 kFNSMatchAll = 0xFFFFFFFF,
 kFNSMatchDefaults = 0
};

Constants
kFNSMatchNames

If the bit specified by this mask is set, all significant font names must match. This includes the
QuickDraw Text family, ATSUI, unique, full, manufacturer, and version names. Note that the PostScript
names are also examined as part of the kFNSMatchPrintEncoding option.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchTechnology
If the bit specified by this mask is set, scaler technologies must match. It is possible to match other
parts of the font across different technologies, but this is not supported by FontSync 1.0. As a result,
even if this bit is not set, fonts of different technologies will probably not match under any other
criteria.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchGlyphs
If the bit specified by this mask is set, glyph repertoires and outline/bitmap data must match.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

Constants 2459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

kFNSMatchEncodings
If the bit specified by this mask is set, the 'cmap' tables must match. If the order of the 'cmap' tables
is different, although the tables are the same, this may be considered a mismatch, since it can cause
QuickDraw Text to use a different 'cmap'table.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchQDMetrics
If the bit specified by this mask is set, metrics used by QuickDraw Text must match. This includes the
effect of fractEnable and any metric information in the 'FOND' resource.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchATSUMetrics
If the bit specified by this mask is set, metrics used by ATSUI must match. This includes both horizontal
and vertical metrics.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchKerning
If the bit specified by this mask is set, kerning data must match.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchWSLayout
If the bit specified by this mask is set, layout information given by an 'itl5' table, whether attached
directly to the font or the one provided in the script bundle, must match.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchAATLayout
If the bit specified by this mask is set, advanced layout information such as that used by ATSUI, must
match. This includes such things as ligature and morphing tables. OpenType-style layout information
is included in this option.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchPrintEncoding
If the bit specified by this mask is set, PostScript names and 'FOND' re-encoding vectors must match.
Note that it is an error for a font’s internal PostScript name to be different from the one in the 'FOND',
but FontSync will record both and consider them separately.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMissingDataNoMatch
If the bit specified by this mask is set, FontSync will report font reference mismatches when both
fonts are missing data needed by a selected option. This is useful, since some older fonts may not
have all the data needed for matching newer fonts. This makes the mask constant kFNSMatchAll
specify the most stringent possible match criteria.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

2460 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

kFNSMatchAll
If the bit specified by this mask is set, all of the match options must match. In this case, the bit specified
by the mask constant kFNSMissingDataNoMatch is also set, asserting the most stringent possible
match criteria.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSMatchDefaults
If this constant is specified, the global default match criteria established by the API are used (that is,
use all of the options described above in the match). If the user changes the FontSync Control Panel
settings, that becomes the new default. This constant basically says to use whatever the user has set.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

Discussion
The FNSMatchOptions enumeration defines masks your application can use to set or test match option
bits. You can use this mask with the functions FNSReferenceMatch (page 2451),
FNSProfileMatchReference (page 2435), FNSReferenceMatchFonts (page 2453), and
FNSReferenceMatchFamilies (page 2452) to set the match options used during font comparison. If you
wish, your application can specify options that are different from the user’s preferences via this mask. You
can use this mask to test the match option bits produced by the function FNSMatchDefaultsGet (page
2427), thereby obtaining the default match options to use in a font comparison. You can also use this mask to
test the match option bits produced by the function FNSReferenceMatch, thereby determining the match
options under consideration that did not match.

At least one of the match options must be set. Having all of these bits clear is equivalent to saying “don’t
look at anything,” which would allow any font to match. Since having all flags clear is nonsensical, the value
of the mask constant kFNSMatchDefaults is 0. Setting undefined bits does not generate an error and
provides backward compatibility.

Version Notes
Available beginning with FontSync 1.0.

Font Profile Constants
Represent the file type and default creator code of a font profile.

enum {
 kFNSCreatorDefault = 0,
 kFNSProfileFileType = 'fnsp'
};

Constants
kFNSCreatorDefault

Assigns a file creator code instead of using one of your own. Pass this constant in the iCreator
parameter of the function FNSProfileCreate (page 2432).

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

Constants 2461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

kFNSProfileFileType
The file type of a profile. It is not used in the API, but is provided for convenience. For example, you
can use it to put up a Navigation Services dialog box to select a profile.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

Version Notes
Available beginning with FontSync 1.0. In FontSync 1.0, if you specify the constant kFNSCreatorDefault
in the iCreator parameter of the function FNSProfileCreate (page 2432), FontSync assigns the creator
code 'fns'.

Version Constants
Represents version information.

typedef UInt32 FNSObjectVersion;
enum {
 kFNSVersionDontCare = 0,
 kFNSCurSysInfoVersion = 1
};

Constants
kFNSVersionDontCare

Specifies the most recent font reference or font profile version supported by the FontSync library,
regardless of version number. In FontSync 1.0, the most recent version for both font references and
profiles is version 1. You pass this constant in the iDesiredVersion parameter of the functions
FNSSysInfo (page 2458), FNSSysInfoGet (page 2455), and FNSProfileCreate (page 2432).

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

kFNSCurSysInfoVersion
Identifies the current version of the parameter block structure FNSSysInfo (page 2458) returned by
the function FNSSysInfoGet (page 2455). You pass this constant in the iSysInfoVersion field of
the system information structure. The version of the structure used by FontSync 1.0 is version 1.

Available in Mac OS X v10.0 and later.

Declared in FontSync.h.

Discussion
You can pass the kFNSVersionDontCare constant in the iDesiredVersion parameter of the functions
FNSReferenceCreate (page 2441), FNSReferenceCreateFromFamily (page 2442), and
FNSProfileCreate (page 2432), to specify the most recent font reference or font profile version supported
by the FontSync library. You can use the kFNSCurSysInfoVersion constant in the iSysInfoVersion
field of the structure FNSSysInfo (page 2458) to indicate the current version of the structure.

Result Codes

The most common result codes returned by FontSync are listed below.

2462 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

DescriptionValueResult Code

Returned by FontSync functions that operate on font
references to indicate that the specified font reference is
invalid. This can also be returned by the function
FNSReferenceUnflatten if the reconstructed reference is
bad.

-29580kFNSInvalidReferenceErr

Available in Mac OS X v10.0 and later.

Returned by FontSync functions that operate on font
references to indicate that the reference has an unsupported
version number. This may indicate that the reference is valid,
but created by a later version of FontSync, or that the
reference is truly invalid This is also be returned by font
reference creation functions if an unsupported reference
version was requested.

-29581kFNSBadReferenceVersionErr

Available in Mac OS X v10.0 and later.

Returned by FontSync functions that operate on font profiles
to indicate that the profile does not have a valid structure.

-29582kFNSInvalidProfileErr

Available in Mac OS X v10.0 and later.

Returned by FontSync functions that operate on font profiles
to indicate that the profile has an unsupported version
number. This may indicate that the profile is valid, but created
by a later version of FontSync, or that the profile is truly
invalid. This is also be returned by font profile creation
functions if an unsupported profile version was requested.

-29583kFNSBadProfileVersionErr

Available in Mac OS X v10.0 and later.

Returned by the function FNSProfileAddReference to
indicate that the font reference being added already exists
in the profile.

-29584kFNSDuplicateReferenceErr

Available in Mac OS X v10.0 and later.

Indicates that either a reference did not match, the reference
you wish to remove is not in the profile, or that no font names
were recorded in the reference.

-29585kFNSMismatchErr

Available in Mac OS X v10.0 and later.

Returned by the functions FNSReferenceMatch,
FNSReferenceGetFamilyInfo, FNSReferenceFindName,
and FNSReferenceGetIndName to indicate that the mask
constantkFNSMissingDataNoMatchhas been set and both
references being compared are missing the same data.

-29586kFNSInsufficientDataErr

Available in Mac OS X v10.0 and later.

Result Codes 2463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

DescriptionValueResult Code

Returned by the function FNSReferenceUnflatten to
indicate that the specified size doesn’t match the size
recorded in the flattened reference or that the size was not
large enough for a flattened reference.

-29587kFNSBadFlattenedSizeErr

Available in Mac OS X v10.0 and later.

Returned by the function FNSReferenceFindName to
indicate that there was no name in the font reference that
matched the given parameters.

-29589kFNSNameNotFoundErr

Available in Mac OS X v10.0 and later.

2464 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 53

FontSync Reference

Framework: Carbon/Carbon.h

Declared in InternetConfig.h

Overview

Internet Config, a Mac OS 8 and 9 API, supports centralized entry and management of Internet preferences
for all of a user’s Internet applications. For example, email programs and Web browsers can obtain a user's
name, email address, home page, incoming mail server, and similar preferences from one common place
that is easily edited by the user via the Internet Config application.

Mac OS X applications should employ Launch Services and System Configuration for managing Internet
preferences. In Mac OS X, Internet Config calls through to these newer APIs. Using them directly increases
your application’s efficiency.

If you use Internet Config in Mac OS X, perhaps to maintain backward compatibility for your application with
Mac OS 8 and 9, here are some ways to optimize performance.

 ■ Getting multiple preferences at once.

Your program may access several Internet Config preferences within a single operation. For example,
an FTP program on startup might always get the kICFTPHost, kICFTPProxyHost, kICFTPProxyAccount,
kICFTPProxyPassword, and kICFTPProxyUser preferences. Bracket such a sequence of ICGetPref calls with
an ICBegin and ICEnd function pair for significantly faster performance.

 ■ Calling Internet Config less often.

Your application can cache Internet Config preference data and then watch for changes using one of
the preference coherency strategies described in the developer’s online documentation:

http://www.quinn.echidna.id.au/Quinn/Config/Prog_Docs.html#PreferenceCoherency

 ■ Using preferences from underlying frameworks.

Starting with Mac OS X, Internet Config is no longer the final authority on Internet preferences. For
example, Launch Services stores URL helper application settings, and System Configuration stores the
various proxy settings. When called by an application, Internet Config must call through to the appropriate
underlying framework. Call Launch Services and System Configuration directly to improve performance.

The Mac OS 8 and 9 implementation of Internet Config is in the public domain, and Carbon supports all of
its commonly-used functions. Functions that are not compatible with preemptive threads are not supported,
and Internet Config no longer supports multiple configuration files. This document contains information on
replacement functions.

For more information on Internet Config see its developer’s web site:

Overview 2465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

http://www.quinn.echidna.id.au/Quinn/Config/Prog_Docs.html#PreferenceCoherency

http://www.quinn.echidna.id.au/Quinn/Config

Functions by Task

Starting and Stopping Internet Config
These functions let you create, configure, and destroy connections to Internet Config, denoted by the
ICInstance type. Although it is usual to create one connection when your program starts and destroy it
when it terminates, you can create an arbitrary number of connections at any time.

ICStart (page 2509)
Call this routine to start using Internet Config—typically at application initialization time—passing it
your program’s creator code.

ICGetVersion (page 2502)
Returns the version of Internet Config installed on the system.

ICStop (page 2509)
Call this when your application is done using Internet Config, passing it the instance you got from
ICStart .

Getting Information About an Instance

ICGetConfigName (page 2496)
Returns a displayable string that represents the instance’s current configuration.

ICGetSeed (page 2501)
Returns the seed for the current preferences set.

ICGetPerm (page 2500)
Returns the current permissions for this instance, i.e. the permission value you used when you called
ICBegin , or returns ioNoPerm if you haven’t call ICBegin.

Preparing to Read and Write Preferences
These routines are not always required because the commonly used reading and writing calls perform this
operation automatically. However, even in that case, these routines are useful if you are making repeated
calls because they allow those calls to work faster.

ICBegin (page 2473)
Prepares Internet Config to read (and, optionally, to write) preferences.

ICEnd (page 2494)
Tells Internet Config that you have finished accessing preference information.

Reading and Writing Preferences

ICGetPref (page 2500)
Given a preference’s key, gets the preference’s data and places it into a buffer that you supply.

2466 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

http://www.quinn.echidna.id.au/Quinn/Config

ICSetPref (page 2507)
Sets a preference given its key, attributes, and a buffer containing the preference data.

ICFindPrefHandle (page 2495)
Gets a preference’s data, like ICGetPref, but returns the data in a handle.

ICSetPrefHandle (page 2508)
Sets a preference, like ICSetPref, but takes its input as a handle.

ICGetDefaultPref (page 2498)
Gets the default value for the preference associated with the specified key.

ICDeletePref (page 2493)
Deletes the preference for the specified key.

Enumerating All Preferences
You must call ICBegin before calling any of these routines.

ICCountPref (page 2487)
Returns the total number of preferences available.

ICGetIndPref (page 2498)
Returns the key associated with the preference at the specified index.

Accessing the User Interface
We recommend that you do not provide a user interface for editing Internet Config preferences from within
your application. In Mac OS X, simply provide a way for the user to open the Internet pane of System
Preferences. The ICEditPreferences function provides support for this.

ICEditPreferences (page 2494)
Opens the Internet pane of System Preferences.

URL Functions

ICParseURL (page 2505)
Parses a URL out of the specified text and returns it to the calling program.

ICLaunchURL (page 2502)
Parses a URL out of the specified text and feeds it to the appropriate helper application.

ICCreateGURLEvent (page 2489)
Creates a GURL Apple event, targetted at the application with the specified creator code

ICSendGURLEvent (page 2506)
Sends a specified Apple Event to the target application.

Mapping-Database High-Level Functions
Internet Config’s high-level functions are suitable for applications that want to easily look up a file type and
creator based on an extension, or vice versa. These functions are significantly slower than their lower level
counterparts, especially if you call them repeatedly.

Functions by Task 2467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICMapFilename (page 2504)
Given a filename, returns the most appropriate ICMapEntry based on the filename extension.

ICMapTypeCreator (page 2504)
Given a file type and creator (and optionally a filename), returns the most appropriate ICMapEntry.

Mapping-Database Mid-Level Functions
These functions are useful if you are doing multiple searches because they avoid the overhead of accessing
the mappings database each time.

ICMapEntriesFilename (page 2503)
Given a filename, returns the most appropriateICMapEntrybased on the filename extension—without
the overhead of a mappings database access.

ICMapEntriesTypeCreator (page 2503)
Given a file type and creator (and optionally a filename), returns the most appropriate
ICMapEntry—without the overhead of a mappings database access.

Mapping-Database Low-Level Functions
Internet Config’s low-level functions give you access to the primitive operations used to implement the other
mapping functions.

ICCountMapEntries (page 2487)
Counts the number of entries in the mappings database preference provided.

ICGetIndMapEntry (page 2498)
Returns the mappings database entry for a specified index .

ICGetMapEntry (page 2499)
Returns a mappings database entry based on its position in the Mapping preference.

ICSetMapEntry (page 2507)
Sets an entry in a specified Mapping preference.

ICDeleteMapEntry (page 2493)
Deletes an entry in the specified Mapping preference.

ICAddMapEntry (page 2472)
Adds an entry to the mappings database.

Profile Functions

ICGetCurrentProfile (page 2497)
Returns the profile ID of the current profile.

ICSetCurrentProfile (page 2506)
Sets the current profile to a specified profile ID.

ICCountProfiles (page 2488)
Returns the number of available profiles.

ICGetIndProfile (page 2499)
Returns the ID of the profile at the specified index.

2468 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICGetProfileName (page 2501)
Returns the name of the profile that has the specified ID.

ICSetProfileName (page 2508)
Sets the name of the profile that has the specified ID.

ICAddProfile (page 2473)
Creates a new profile and returns its ID.

ICDeleteProfile (page 2494)
Deletes the profile that has the specified ID.

Deprecated functions

ICGetPrefHandle (page 2501)
Deprecated. While this function works in Mac OS X, you should use ICFindPrefHandle instead.

Unsupported Functions

ICCSetPref (page 2491)

ICCAddMapEntry (page 2473)

ICCAddProfile (page 2474)

ICCBegin (page 2474)

ICCChooseConfig (page 2474)

ICCChooseNewConfig (page 2474)

ICCCountMapEntries (page 2475)

ICCCountPref (page 2475)

ICCCountProfiles (page 2475)

ICCCreateGURLEvent (page 2476)

ICCDefaultFileName (page 2476)

ICCDeleteMapEntry (page 2476)

ICCDeletePref (page 2477)

Functions by Task 2469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICCDeleteProfile (page 2477)

ICCEditPreferences (page 2477)

ICCEnd (page 2477)

ICCFindConfigFile (page 2478)

ICCFindPrefHandle (page 2478)

ICCFindUserConfigFile (page 2478)

ICCGeneralFindConfigFile (page 2479)

ICCGetComponentInstance (page 2479)

ICCGetConfigName (page 2479)

ICCGetConfigReference (page 2480)

ICCGetCurrentProfile (page 2480)

ICCGetDefaultPref (page 2480)

ICCGetIndMapEntry (page 2481)

ICCGetIndPref (page 2481)

ICCGetIndProfile (page 2481)

ICCGetMapEntry (page 2482)

ICCGetMappingInterruptSafe (page 2482)

ICCGetPerm (page 2482)

ICCGetPref (page 2483)

ICCGetPrefHandle (page 2483)

ICCGetProfileName (page 2483)

ICCGetSeed (page 2484)

2470 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICCGetSeedInterruptSafe (page 2484)

ICCGetVersion (page 2484)

ICChooseConfig (page 2485)

ICChooseNewConfig (page 2485)

ICCLaunchURL (page 2485)

ICCMapEntriesFilename (page 2486)

ICCMapEntriesTypeCreator (page 2486)

ICCMapFilename (page 2486)

ICCMapTypeCreator (page 2487)

ICCParseURL (page 2488)

ICCRefreshCaches (page 2489)

ICCRequiresInterruptSafe (page 2489)

ICCSendGURLEvent (page 2489)

ICCSetConfigReference (page 2490)

ICCSetCurrentProfile (page 2490)

ICCSetMapEntry (page 2490)

ICCSetPrefHandle (page 2491)

ICCSetProfileName (page 2491)

ICCSpecifyConfigFile (page 2492)

ICCStart (page 2492)

ICCStop (page 2492)

ICDefaultFileName (page 2493)

Functions by Task 2471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICFindConfigFile (page 2495)

ICFindUserConfigFile (page 2496)

ICGeneralFindConfigFile (page 2496)

ICGetComponentInstance (page 2496)

ICGetConfigReference (page 2497)

ICGetMappingInterruptSafe (page 2499)

ICGetSeedInterruptSafe (page 2502)

ICRefreshCaches (page 2505)

ICRequiresInterruptSafe (page 2505)

ICSetConfigReference (page 2506)

ICSpecifyConfigFile (page 2508)

Functions

ICAddMapEntry
Adds an entry to the mappings database.

OSStatus ICAddMapEntry (
 ICInstance inst,
 Handle entries,
 const ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

2472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICAddProfile
Creates a new profile and returns its ID.

OSStatus ICAddProfile (
 ICInstance inst,
 ICProfileID prototypeID,
 ICProfileID *newID
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICBegin
Prepares Internet Config to read (and, optionally, to write) preferences.

OSStatus ICBegin (
 ICInstance inst,
 ICPerm perm
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICCAddMapEntry
Unsupported

OSStatus ICCAddMapEntry (
 ComponentInstance inst,
 Handle entries,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICAddMapEntry (page 2472) instead.

Declared In
InternetConfig.h

Functions 2473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICCAddProfile
Unsupported

OSStatus ICCAddProfile (
 ComponentInstance inst,
 ICProfileID prototypeID,
 ICProfileID *newID
);

Carbon Porting Notes

Use ICAddProfile (page 2473) instead.

Declared In
InternetConfig.h

ICCBegin
Unsupported

OSStatus ICCBegin (
 ComponentInstance inst,
 ICPerm perm
);

Carbon Porting Notes

Use ICBegin (page 2473) instead.

Declared In
InternetConfig.h

ICCChooseConfig
Unsupported

OSStatus ICCChooseConfig (
 ComponentInstance inst
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICCChooseNewConfig
Unsupported

2474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCChooseNewConfig (
 ComponentInstance inst
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICCCountMapEntries
Unsupported

OSStatus ICCCountMapEntries (
 ComponentInstance inst,
 Handle entries,
 SInt32 *count
);

Carbon Porting Notes

Use ICCountMapEntries (page 2487) instead.

Declared In
InternetConfig.h

ICCCountPref
Unsupported

OSStatus ICCCountPref (
 ComponentInstance inst,
 SInt32 *count
);

Carbon Porting Notes

Use ICCountPref (page 2487) instead.

Declared In
InternetConfig.h

ICCCountProfiles
Unsupported

OSStatus ICCCountProfiles (
 ComponentInstance inst,
 SInt32 *count
);

Carbon Porting Notes

Use ICCountProfiles (page 2488) instead.

Functions 2475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Declared In
InternetConfig.h

ICCCreateGURLEvent
Unsupported

OSStatus ICCCreateGURLEvent (
 ComponentInstance inst,
 OSType helperCreator,
 Handle urlH,
 AppleEvent *theEvent
);

Carbon Porting Notes

Use ICCreateGURLEvent (page 2489) instead.

Declared In
InternetConfig.h

ICCDefaultFileName
Unsupported

OSStatus ICCDefaultFileName (
 ComponentInstance inst,
 Str63 name
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICCDeleteMapEntry
Unsupported

OSStatus ICCDeleteMapEntry (
 ComponentInstance inst,
 Handle entries,
 SInt32 pos
);

Carbon Porting Notes

Use ICDeleteMapEntry (page 2493) instead.

Declared In
InternetConfig.h

2476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICCDeletePref
Unsupported

OSStatus ICCDeletePref (
 ComponentInstance inst,
 ConstStr255Param key
);

Carbon Porting Notes

Use ICDeletePref (page 2493) instead.

Declared In
InternetConfig.h

ICCDeleteProfile
Unsupported

OSStatus ICCDeleteProfile (
 ComponentInstance inst,
 ICProfileID thisID
);

Carbon Porting Notes

Use ICDeleteProfile (page 2494) instead.

Declared In
InternetConfig.h

ICCEditPreferences
Unsupported

OSStatus ICCEditPreferences (
 ComponentInstance inst,
 ConstStr255Param key
);

Carbon Porting Notes

Use ICEditPreferences (page 2494) instead.

Declared In
InternetConfig.h

ICCEnd
Unsupported

Functions 2477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCEnd (
 ComponentInstance inst
);

Carbon Porting Notes

Use ICEnd (page 2494) instead.

Declared In
InternetConfig.h

ICCFindConfigFile
Unsupported

OSStatus ICCFindConfigFile (
 ComponentInstance inst,
 SInt16 count,
 ICDirSpecArrayPtr folders
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICCFindPrefHandle
Unsupported

OSStatus ICCFindPrefHandle (
 ComponentInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 Handle prefh
);

Carbon Porting Notes

Use ICFindPrefHandle (page 2495) instead.

Declared In
InternetConfig.h

ICCFindUserConfigFile
Unsupported

2478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCFindUserConfigFile (
 ComponentInstance inst,
 ICDirSpec *where
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICCGeneralFindConfigFile
Unsupported

OSStatus ICCGeneralFindConfigFile (
 ComponentInstance inst,
 Boolean searchPrefs,
 Boolean canCreate,
 SInt16 count,
 ICDirSpecArrayPtr folders
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICCGetComponentInstance
Unsupported

OSStatus ICCGetComponentInstance (
 ComponentInstance inst,
 ComponentInstance *componentInst
);

Carbon Porting Notes

Because Internet Config is not component-based under Mac OS X, use ICGetVersion (page 2502) instead.

Declared In
InternetConfig.h

ICCGetConfigName
Unsupported

Functions 2479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetConfigName (
 ComponentInstance inst,
 Boolean longname,
 Str255 name
);

Carbon Porting Notes

Use ICGetConfigName (page 2496) instead.

Declared In
InternetConfig.h

ICCGetConfigReference
Unsupported

OSStatus ICCGetConfigReference (
 ComponentInstance inst,
 ICConfigRefHandle ref
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICCGetCurrentProfile
Unsupported

OSStatus ICCGetCurrentProfile (
 ComponentInstance inst,
 ICProfileID *currentID
);

Carbon Porting Notes

Use ICGetCurrentProfile (page 2497) instead.

Declared In
InternetConfig.h

ICCGetDefaultPref
Unsupported

2480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetDefaultPref (
 ComponentInstance inst,
 ConstStr255Param key,
 Handle prefH
);

Carbon Porting Notes

Use ICGetDefaultPref (page 2498) instead.

Declared In
InternetConfig.h

ICCGetIndMapEntry
Unsupported

OSStatus ICCGetIndMapEntry (
 ComponentInstance inst,
 Handle entries,
 SInt32 index,
 SInt32 *pos,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICGetIndMapEntry (page 2498) instead.

Declared In
InternetConfig.h

ICCGetIndPref
Unsupported

OSStatus ICCGetIndPref (
 ComponentInstance inst,
 SInt32 index,
 Str255 key
);

Carbon Porting Notes

Use ICGetIndPref (page 2498) instead.

Declared In
InternetConfig.h

ICCGetIndProfile
Unsupported

Functions 2481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetIndProfile (
 ComponentInstance inst,
 SInt32 index,
 ICProfileID *thisID
);

Carbon Porting Notes

Use ICGetIndProfile (page 2499) instead.

Declared In
InternetConfig.h

ICCGetMapEntry
Unsupported

OSStatus ICCGetMapEntry (
 ComponentInstance inst,
 Handle entries,
 SInt32 pos,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICGetMapEntry (page 2499) instead.

Declared In
InternetConfig.h

ICCGetMappingInterruptSafe
Unsupported

OSStatus ICCGetMappingInterruptSafe (
 ComponentInstance inst,
 Ptr *mappingPref,
 SInt32 *mappingPrefSize
);

Carbon Porting Notes

ICCGetMappingInterruptSafe is not compatible with preemptive threads. If your application relies on
this API, contact Apple Developer Technical Support.

Declared In
InternetConfig.h

ICCGetPerm
Unsupported

2482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetPerm (
 ComponentInstance inst,
 ICPerm *perm
);

Carbon Porting Notes

Use ICGetPerm (page 2500) instead.

Declared In
InternetConfig.h

ICCGetPref
Unsupported

OSStatus ICCGetPref (
 ComponentInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 Ptr buf,
 SInt32 *size
);

Carbon Porting Notes

Use ICGetPref (page 2500) instead.

Declared In
InternetConfig.h

ICCGetPrefHandle
Unsupported

OSStatus ICCGetPrefHandle (
 ComponentInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 Handle *prefh
);

Carbon Porting Notes

Use ICFindPrefHandle (page 2495) instead.

Declared In
InternetConfig.h

ICCGetProfileName
Unsupported

Functions 2483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetProfileName (
 ComponentInstance inst,
 ICProfileID thisID,
 Str255 name
);

Carbon Porting Notes

Use ICGetProfileName (page 2501) instead.

Declared In
InternetConfig.h

ICCGetSeed
Unsupported

OSStatus ICCGetSeed (
 ComponentInstance inst,
 SInt32 *seed
);

Carbon Porting Notes

Use ICGetSeed (page 2501) instead.

Declared In
InternetConfig.h

ICCGetSeedInterruptSafe
Unsupported

OSStatus ICCGetSeedInterruptSafe (
 ComponentInstance inst,
 SInt32 *seed
);

Carbon Porting Notes

ICCGetSeedInterruptSafe is not compatible with preemptive threads. If your application relies on this
API, contact Apple Developer Technical Support.

Declared In
InternetConfig.h

ICCGetVersion
Unsupported

2484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCGetVersion (
 ComponentInstance inst,
 SInt32 whichVersion,
 UInt32 *version
);

Carbon Porting Notes

Use ICGetVersion (page 2502) instead.

Declared In
InternetConfig.h

ICChooseConfig
Unsupported

OSStatus ICChooseConfig (
 ICInstance inst
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICChooseNewConfig
Unsupported

OSStatus ICChooseNewConfig (
 ICInstance inst
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICCLaunchURL
Unsupported

Functions 2485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCLaunchURL (
 ComponentInstance inst,
 ConstStr255Param hint,
 Ptr data,
 SInt32 len,
 SInt32 *selStart,
 SInt32 *selEnd
);

Carbon Porting Notes

Use ICLaunchURL (page 2502) instead.

Declared In
InternetConfig.h

ICCMapEntriesFilename
Unsupported

OSStatus ICCMapEntriesFilename (
 ComponentInstance inst,
 Handle entries,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICMapEntriesFilename (page 2503) instead.

Declared In
InternetConfig.h

ICCMapEntriesTypeCreator
Unsupported

OSStatus ICCMapEntriesTypeCreator (
 ComponentInstance inst,
 Handle entries,
 OSType fType,
 OSType fCreator,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICMapEntriesTypeCreator (page 2503) instead.

Declared In
InternetConfig.h

ICCMapFilename
Unsupported

2486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCMapFilename (
 ComponentInstance inst,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICMapFilename (page 2504) instead.

Declared In
InternetConfig.h

ICCMapTypeCreator
Unsupported

OSStatus ICCMapTypeCreator (
 ComponentInstance inst,
 OSType fType,
 OSType fCreator,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICMapTypeCreator (page 2504) instead.

Declared In
InternetConfig.h

ICCountMapEntries
Counts the number of entries in the mappings database preference provided.

OSStatus ICCountMapEntries (
 ICInstance inst,
 Handle entries,
 long *count
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICCountPref
Returns the total number of preferences available.

Functions 2487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCountPref (
 ICInstance inst,
 long *count
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICCountProfiles
Returns the number of available profiles.

OSStatus ICCountProfiles (
 ICInstance inst,
 long *count
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICCParseURL
Unsupported

OSStatus ICCParseURL (
 ComponentInstance inst,
 ConstStr255Param hint,
 Ptr data,
 SInt32 len,
 SInt32 *selStart,
 SInt32 *selEnd,
 Handle url
);

Carbon Porting Notes

Use ICParseURL (page 2505) instead.

Declared In
InternetConfig.h

2488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICCreateGURLEvent
Creates a GURL Apple event, targetted at the application with the specified creator code

OSStatus ICCreateGURLEvent (
 ICInstance inst,
 OSType helperCreator,
 Handle urlH,
 AppleEvent *theEvent
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICCRefreshCaches
Unsupported

OSStatus ICCRefreshCaches (
 ComponentInstance inst
);

Carbon Porting Notes

This function is obsolete, because there is no supported way to modify the Internet Config database without
going through the Internet Config API. There is no replacement function.

Declared In
InternetConfig.h

ICCRequiresInterruptSafe
Unsupported

OSStatus ICCRequiresInterruptSafe (
 ComponentInstance inst
);

Carbon Porting Notes

This function is not compatible with preemptive threads. There is no replacement.

Declared In
InternetConfig.h

ICCSendGURLEvent
Unsupported

Functions 2489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCSendGURLEvent (
 ComponentInstance inst,
 AppleEvent *theEvent
);

Carbon Porting Notes

Use ICSendGURLEvent (page 2506) instead.

Declared In
InternetConfig.h

ICCSetConfigReference
Unsupported

OSStatus ICCSetConfigReference (
 ComponentInstance inst,
 ICConfigRefHandle ref,
 SInt32 flags
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICCSetCurrentProfile
Unsupported

OSStatus ICCSetCurrentProfile (
 ComponentInstance inst,
 ICProfileID newID
);

Carbon Porting Notes

Use ICSetCurrentProfile (page 2506) instead.

Declared In
InternetConfig.h

ICCSetMapEntry
Unsupported

2490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCSetMapEntry (
 ComponentInstance inst,
 Handle entries,
 SInt32 pos,
 ICMapEntry *entry
);

Carbon Porting Notes

Use ICSetMapEntry (page 2507)ICSetMapEntry instead.

Declared In
InternetConfig.h

ICCSetPref
Unsupported

OSStatus ICCSetPref (
 ComponentInstance inst,
 ConstStr255Param key,
 ICAttr attr,
 Ptr buf,
 SInt32 size
);

Carbon Porting Notes

Use ICSetPref (page 2507) instead.

Declared In
InternetConfig.h

ICCSetPrefHandle
Unsupported

OSStatus ICCSetPrefHandle (
 ComponentInstance inst,
 ConstStr255Param key,
 ICAttr attr,
 Handle prefh
);

Carbon Porting Notes

Use ICSetPrefHandle (page 2508) instead.

Declared In
InternetConfig.h

ICCSetProfileName
Unsupported

Functions 2491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICCSetProfileName (
 ComponentInstance inst,
 ICProfileID thisID,
 ConstStr255Param name
);

Carbon Porting Notes

Use ICSetProfileName (page 2508) instead.

Declared In
InternetConfig.h

ICCSpecifyConfigFile
Unsupported

OSStatus ICCSpecifyConfigFile (
 ComponentInstance inst,
 FSSpec *config
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICCStart
Unsupported

OSStatus ICCStart (
 ComponentInstance *inst,
 OSType creator
);

Carbon Porting Notes

Use ICStart (page 2509) instead.

Declared In
InternetConfig.h

ICCStop
Unsupported

OSStatus ICCStop (
 ComponentInstance inst
);

Carbon Porting Notes

Use ICStop (page 2509) instead.

2492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Declared In
InternetConfig.h

ICDefaultFileName
Unsupported

OSStatus ICDefaultFileName (
 ICInstance inst,
 Str63 name
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICDeleteMapEntry
Deletes an entry in the specified Mapping preference.

OSStatus ICDeleteMapEntry (
 ICInstance inst,
 Handle entries,
 long pos
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICDeletePref
Deletes the preference for the specified key.

OSStatus ICDeletePref (
 ICInstance inst,
 ConstStr255Param key
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.

Functions 2493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICDeleteProfile
Deletes the profile that has the specified ID.

OSStatus ICDeleteProfile (
 ICInstance inst,
 ICProfileID thisID
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICEditPreferences
Opens the Internet pane of System Preferences.

OSStatus ICEditPreferences (
 ICInstance inst,
 ConstStr255Param key
);

Return Value
A result code. See “Result Codes” (page 2538).

Discussion
This function launches the Internet preference control appropriate to the operating system version. In Mac
OS X, it opens the Internet pane of System Preferences. In Mac OS 8 and 9 wiith Carbon, it launches the
Internet control panel. On earlier systems, it launches Internet Config.

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICEnd
Tells Internet Config that you have finished accessing preference information.

2494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICEnd (
 ICInstance inst
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICFindConfigFile
Unsupported

OSStatus ICFindConfigFile (
 ICInstance inst,
 SInt16 count,
 ICDirSpecArrayPtr folders
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICFindPrefHandle
Gets a preference’s data, like ICGetPref, but returns the data in a handle.

OSStatus ICFindPrefHandle (
 ICInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 Handle prefh
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

Functions 2495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICFindUserConfigFile
Unsupported

OSStatus ICFindUserConfigFile (
 ICInstance inst,
 ICDirSpec *where
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICGeneralFindConfigFile
Unsupported

OSStatus ICGeneralFindConfigFile (
 ICInstance inst,
 Boolean searchPrefs,
 Boolean canCreate,
 SInt16 count,
 ICDirSpecArrayPtr folders
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICGetComponentInstance
Unsupported

OSStatus ICGetComponentInstance (
 ICInstance inst,
 ComponentInstance *componentInst
);

Carbon Porting Notes

Because Internet Config is not component-based under X, use ICGetVersion instead of
ICGetComponentInstance.

Declared In
InternetConfig.h

ICGetConfigName
Returns a displayable string that represents the instance’s current configuration.

2496 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICGetConfigName (
 ICInstance inst,
 Boolean longname,
 Str255 name
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetConfigReference
Unsupported

OSStatus ICGetConfigReference (
 ICInstance inst,
 ICConfigRefHandle ref
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICGetCurrentProfile
Returns the profile ID of the current profile.

OSStatus ICGetCurrentProfile (
 ICInstance inst,
 ICProfileID *currentID
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

Functions 2497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICGetDefaultPref
Gets the default value for the preference associated with the specified key.

OSStatus ICGetDefaultPref (
 ICInstance inst,
 ConstStr255Param key,
 Handle prefH
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetIndMapEntry
Returns the mappings database entry for a specified index .

OSStatus ICGetIndMapEntry (
 ICInstance inst,
 Handle entries,
 long index,
 long *pos,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetIndPref
Returns the key associated with the preference at the specified index.

OSStatus ICGetIndPref (
 ICInstance inst,
 long index,
 Str255 key
);

Return Value
A result code. See “Result Codes” (page 2538).

2498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetIndProfile
Returns the ID of the profile at the specified index.

OSStatus ICGetIndProfile (
 ICInstance inst,
 long index,
 ICProfileID *thisID
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetMapEntry
Returns a mappings database entry based on its position in the Mapping preference.

OSStatus ICGetMapEntry (
 ICInstance inst,
 Handle entries,
 long pos,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetMappingInterruptSafe
Unsupported

Functions 2499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICGetMappingInterruptSafe (
 ICInstance inst,
 Ptr *mappingPref,
 SInt32 *mappingPrefSize
);

Carbon Porting Notes

Because ICGetMappingInterruptSafe is not compatible with preemptive threads, it has been removed
from Carbon.

Declared In
InternetConfig.h

ICGetPerm
Returns the current permissions for this instance, i.e. the permission value you used when you called ICBegin
, or returns ioNoPerm if you haven’t call ICBegin.

OSStatus ICGetPerm (
 ICInstance inst,
 ICPerm *perm
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetPref
Given a preference’s key, gets the preference’s data and places it into a buffer that you supply.

OSStatus ICGetPref (
 ICInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 void *buf,
 long *size
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

2500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

ICGetPrefHandle
Deprecated. While this function works in Mac OS X, you should use ICFindPrefHandle instead.

OSStatus ICGetPrefHandle (
 ICInstance inst,
 ConstStr255Param key,
 ICAttr *attr,
 Handle *prefh
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetProfileName
Returns the name of the profile that has the specified ID.

OSStatus ICGetProfileName (
 ICInstance inst,
 ICProfileID thisID,
 Str255 name
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetSeed
Returns the seed for the current preferences set.

OSStatus ICGetSeed (
 ICInstance inst,
 long *seed
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.

Functions 2501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICGetSeedInterruptSafe
Unsupported

OSStatus ICGetSeedInterruptSafe (
 ICInstance inst,
 SInt32 *seed
);

Carbon Porting Notes

Because ICGetSeedInterruptSafe is not compatible with preemptive threads, it has been removed from
Carbon.

Declared In
InternetConfig.h

ICGetVersion
Returns the version of Internet Config installed on the system.

OSStatus ICGetVersion (
 ICInstance inst,
 long whichVersion,
 UInt32 *version
);

Return Value
A result code. See “Result Codes” (page 2538).

Discussion
For the range of versions, refer to “Version Constants” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICLaunchURL
Parses a URL out of the specified text and feeds it to the appropriate helper application.

2502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICLaunchURL (
 ICInstance inst,
 ConstStr255Param hint,
 const void *data,
 long len,
 long *selStart,
 long *selEnd
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICMapEntriesFilename
Given a filename, returns the most appropriate ICMapEntry based on the filename extension—without the
overhead of a mappings database access.

OSStatus ICMapEntriesFilename (
 ICInstance inst,
 Handle entries,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICMapEntriesTypeCreator
Given a file type and creator (and optionally a filename), returns the most appropriate ICMapEntry—without
the overhead of a mappings database access.

Functions 2503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICMapEntriesTypeCreator (
 ICInstance inst,
 Handle entries,
 OSType fType,
 OSType fCreator,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICMapFilename
Given a filename, returns the most appropriate ICMapEntry based on the filename extension.

OSStatus ICMapFilename (
 ICInstance inst,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICMapTypeCreator
Given a file type and creator (and optionally a filename), returns the most appropriate ICMapEntry.

OSStatus ICMapTypeCreator (
 ICInstance inst,
 OSType fType,
 OSType fCreator,
 ConstStr255Param filename,
 ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

2504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICParseURL
Parses a URL out of the specified text and returns it to the calling program.

OSStatus ICParseURL (
 ICInstance inst,
 ConstStr255Param hint,
 const void *data,
 long len,
 long *selStart,
 long *selEnd,
 Handle url
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICRefreshCaches
Unsupported

OSStatus ICRefreshCaches (
 ICInstance inst
);

Carbon Porting Notes

This function ICRefreshCaches is obsolete. There is no supported way to modify the Internet Config
database without going through the Internet Config API. There is no replacement function.

Declared In
InternetConfig.h

ICRequiresInterruptSafe
Unsupported

Functions 2505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICRequiresInterruptSafe (
 ICInstance inst
);

Carbon Porting Notes

Because ICRequiresInterruptSafe is not compatible with preemptive threads, it has been removed from
Carbon.

Declared In
InternetConfig.h

ICSendGURLEvent
Sends a specified Apple Event to the target application.

OSStatus ICSendGURLEvent (
 ICInstance inst,
 AppleEvent *theEvent
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICSetConfigReference
Unsupported

OSStatus ICSetConfigReference (
 ICInstance inst,
 ICConfigRefHandle ref,
 SInt32 flags
);

Carbon Porting Notes

Because Internet Config no longer supports multiple configuration files, this function is obsolete, and there
is no replacement function.

Declared In
InternetConfig.h

ICSetCurrentProfile
Sets the current profile to a specified profile ID.

2506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICSetCurrentProfile (
 ICInstance inst,
 ICProfileID newID
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICSetMapEntry
Sets an entry in a specified Mapping preference.

OSStatus ICSetMapEntry (
 ICInstance inst,
 Handle entries,
 long pos,
 const ICMapEntry *entry
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICSetPref
Sets a preference given its key, attributes, and a buffer containing the preference data.

OSStatus ICSetPref (
 ICInstance inst,
 ConstStr255Param key,
 ICAttr attr,
 const void *buf,
 long size
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 2507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Declared In
InternetConfig.h

ICSetPrefHandle
Sets a preference, like ICSetPref, but takes its input as a handle.

OSStatus ICSetPrefHandle (
 ICInstance inst,
 ConstStr255Param key,
 ICAttr attr,
 Handle prefh
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICSetProfileName
Sets the name of the profile that has the specified ID.

OSStatus ICSetProfileName (
 ICInstance inst,
 ICProfileID thisID,
 ConstStr255Param name
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICSpecifyConfigFile
Unsupported

2508 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

OSStatus ICSpecifyConfigFile (
 ICInstance inst,
 FSSpec *config
);

Carbon Porting Notes

Functions related to finding different IC database files are obsolete. You can simply remove these calls from
your code—there are no replacement functions.

Declared In
InternetConfig.h

ICStart
Call this routine to start using Internet Config—typically at application initialization time—passing it your
program’s creator code.

OSStatus ICStart (
 ICInstance *inst,
 OSType signature
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

ICStop
Call this when your application is done using Internet Config, passing it the instance you got from ICStart
.

OSStatus ICStop (
 ICInstance inst
);

Return Value
A result code. See “Result Codes” (page 2538).

Availability
Available in CarbonLib 1.0.2 and later when Internet Config 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
InternetConfig.h

Functions 2509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Data Types

ICAppSpec
A fixed length record used to specify an application.

struct ICAppSpec {
 OSType fCreator;
 Str63 name;
};
typedef struct ICAppSpec ICAppSpec;
typedef ICAppSpec * ICAppSpecPtr;
typedef ICAppSpecPtr * ICAppSpecHandle;

Discussion
The program using this specification is expected to look up the location of the application in the desktop
database. The name is provided to display to the user, and should not affect the search.

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICAppSpecList
Represents a list of application specifications.

struct ICAppSpecList {
 short numberOfItems;
 ICAppSpec appSpecs[1];
};
typedef struct ICAppSpecList ICAppSpecList;
typedef ICAppSpecList * ICAppSpecListPtr;
typedef ICAppSpecListPtr * ICAppSpecListHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICCharTable
Specifies a mapping from MacRoman encoding (kTextEncodingMacRoman) to Mac Net ASCII
(kTextEncodingMacRomanLatin1) and vice versa.

2510 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

struct ICCharTable {
 unsigned char netToMac[256];
 unsigned char macToNet[256];
};
typedef struct ICCharTable ICCharTable;
typedef ICCharTable * ICCharTablePtr;
typedef ICCharTablePtr * ICCharTableHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICConfigRef
Stores a permanent reference to an Internet Config configuration.

struct ICConfigRef {
 OSType manufacturer;
};
typedef struct ICConfigRef ICConfigRef;
typedef ICConfigRef * ICConfigRefPtr;
typedef ICConfigRefPtr * ICConfigRefHandle;

Discussion
The ICConfigRef type varies in length and only the first four bytes, representing the manufacturer field,
has a public meaning. For more information see the IC Internals Documentation.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
InternetConfig.h

ICDirSpec
Holds the vRefNum and dirID of a directory.

struct ICDirSpec {
 short vRefNum;
 long dirID;
};
typedef struct ICDirSpec ICDirSpec;
typedef ICDirSpec ICDirSpecArray[4];
typedef ICDirSpecArray * ICDirSpecArrayPtr;

Discussion
An array of ICDirSpec records is supplied to the pre-Carbon-only function ICFindConfigFile to specify
the search path. This array is defined to contain just 4 elements, but is in fact arbitrarily extensible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 2511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Declared In
InternetConfig.h

ICError
Used for all error results from Internet Config.

typedef long ICError;

Discussion
ICError uses a long integer because Internet Config makes calls to Component Manager, which uses long
integers for error codes.

Special Considerations

This data type is available only if you define OLDROUTINENAMES.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
InternetConfig.h

ICFileInfo
Defines the format of a key.

struct ICFileInfo {
 OSType fType;
 OSType fCreator;
 Str63 name;
};
typedef struct ICFileInfo ICFileInfo;
typedef ICFileInfo * ICFileInfoPtr;
typedef ICFileInfoPtr * ICFileInfoHandle;

Special Considerations

This data type defines the format of a key. That key data type has previouisly been removed from the header
file. ICFileInfo is deprecated and will also be removed, but for the moment, it is available if you define
OLDROUTINENAMES.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
InternetConfig.h

ICFileSpec
A variable length data structure used to specify a file or folder.

2512 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

struct ICFileSpec {
 Str31 volName;
 long volCreationDate;
 FSSpec fss;
 AliasRecord alias;
};
typedef struct ICFileSpec ICFileSpec;
typedef ICFileSpec * ICFileSpecPtr;
typedef ICFileSpecPtr * ICFileSpecHandle;

Discussion
ICFileSpec contains both an alias and a ‘poor man’s alias.’ All modern applications can use the real alias
and ignore the poor man’s alias. The latter was included so that programs running under System 6 could
specify file positions using vol_name and vol_creation_date for the volume, fss.parID for the directory
on the volume, and fss.name for the file in the directory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICFontRecord
A fixed length record used to specify a font, size and face.

struct ICFontRecord {
 short size;
 Style face;
 char pad;
 Str255 font;
};
typedef struct ICFontRecord ICFontRecord;
typedef ICFontRecord * ICFontRecordPtr;
typedef ICFontRecordPtr * ICFontRecordHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICInstance
An opaque type used to hold a reference to a session with Internet Config.

typedef struct OpaqueICInstance * ICInstance;

Discussion
Applications can create IC instances by calling ICStart, use them with any of the API routines, and destroy
them by calling ICStop .

Data Types 2513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

An ICInstance is a pointer, so you can use the system nil value to denote an invalid instance. Do not pass
an ICInstance between processes. Also, do not pass an ICInstance between instruction set architectures,
i.e. from PowerPC to 68K or vice versa.

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICMapEntry
Specifies an Internet Config map entry.

struct ICMapEntry {
 short totalLength;
 ICFixedLength fixedLength;
 short version;
 OSType fileType;
 OSType fileCreator;
 OSType postCreator;
 ICMapEntryFlags flags;
 Str255 extension;
 Str255 creatorAppName;
 Str255 postAppName;
 Str255 MIMEType;
 Str255 entryName;
};
typedef struct ICMapEntry ICMapEntry;
typedef ICMapEntry * ICMapEntryPtr;
typedef ICMapEntryPtr * ICMapEntryHandle;

Fields
totalLength

The length of the map entry, in bytes, from beginning of the record. This includes the fixed length,
the length of the packed Pascal strings at the end of the entry, and the length of the user data that
follow those strings.

fixedLength
The length of the fixed part of the map entry, in bytes, from beginning of the record.

version
The version number of the map entry. The only version currently defined is 0.

fileType
The four-character file type for the map entry.

fileCreator
The four-character creator code for the map entry.

postCreator
The creator code for the post-processing application for the map entry. Applications should consult
this field only if the ICmap_post_bit is set in the flags field, but even if that bit is not set,
applications can determine the post-processing application by looking at this field. If no post processing
application has even been set, this field’s value will be 0.

2514 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

flags
Flags associated with this map entry. For flag definitions, see “Map Constants” (page 2532), “Map Entry
Flags” (page 2533), and “Map Entry Masks” (page 2534).

extension
The filename extension for this map entry.

creatorAppName
The name of the creator application identified by the fileCreator field. You can use this field to
display the application name even if the application is not installed.

postAppName
The name of the post-processing application identified by the postCreator field. You can use this
field to display the post-processing application’s name even if the that application is not installed.
See the post_creator field description for details as to when this field is valid.

MIMEType
The MIME type for the map entry, for example, “application/zip”.

entryName
The user-visible name for the map entry.

Discussion
The value of the Mappings preference is not an array, so you cannot index it directly. It is instead a packed
array of ICMapEntry types, with each entry packed to remove the empty space at the end of the strings.
Entries can start on an odd address and entries can contain user data . We strongly recommend that you
access this data structure using the routines described in this section. These routines return an unpacked
ICMapEntry, which is a lot easier to deal with.

Each ICMapEntry data type provides a filename extension, a MIME type, and a file type and creator. The
database of ICMapEntry types is not normalised; that is, there can be multiple entries with the same creator,
file type, MIME type, filename extension, and so on. In general, each application determines how these entries
are used in a particular circumstance, although IC does define some policies by way of its high level mapping
routines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICServiceEntry
Specifies an Internet Config TCP service entry.

struct ICServiceEntry {
 Str255 name;
 short port;
 ICServiceEntryFlags flags;
};
typedef struct ICServiceEntry ICServiceEntry;
typedef ICServiceEntry * ICServiceEntryPtr;
typedef ICServiceEntryPtr * ICServiceEntryHandle;

Fields
name

The name for the TCP service entry.

Data Types 2515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

port
The port for the TCP service entry.

flags
For descriptions of the flags, see “Services Constants” (page 2535), “Services Bits” (page 2537), and “Services
Masks” (page 2537).

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

ICServices
Specifies the mapping between TCP service names and their ports.

struct ICServices {
 short count;
 ICServiceEntry services[1];
};
typedef struct ICServices ICServices;
typedef ICServices * ICServicesPtr;
typedef ICServicesPtr * ICServicesHandle;

Fields
count
services

An unbounded array of ICServiceEntry (page 2515)records.

Availability
Available in Mac OS X v10.0 and later.

Declared In
InternetConfig.h

internetConfigurationComponent
typedef ComponentInstance internetConfigurationComponent;

Special Considerations

This data type is obsolete. Use the data type ICInstance (page 2513) instead.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
InternetConfig.h

2516 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Constants

Apple Event Constants
enum {
 kInternetEventClass = 'GURL',
 kAEGetURL = 'GURL',
 kAEFetchURL = 'FURL',
 keyAEAttaching = 'Atch'
};

Attribute Constants
These are old names, mapped to newer names for backward compatibility, available only if you define
OLDROUTINENAMES.

enum {
 ICattr_no_change = (unsigned long) (kICAttrNoChange),
 ICattr_locked_bit = kICAttrLockedBit,
 ICattr_locked_mask = kICAttrLockedMask,
 ICattr_volatile_bit = kICAttrVolatileBit,
 ICattr_volatile_mask = kICAttrVolatileMask,
 icNoUserInteraction_bit = kICNoUserInteractionBit,
 icNoUserInteraction_mask = kICNoUserInteractionMask,
 ICfiletype = kICFileType,
 ICcreator = kICCreator
};

Component Identifiers
Define the component type, subtype, and manufacturer of the Internet Config component.

Constants 2517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

enum {
 kICComponentType = 'PREF',
 kICComponentSubType = 'ICAp',
 kICComponentManufacturer = 'JPQE'
};

Component Identifiers (Deprecated)
enum {
 internetConfigurationComponentType = 'PREF',
 internetConfigurationComponentSubType = 'ICAp',
 internetConfigurationComponentInterfaceVersion0 = 0x00000000,
 internetConfigurationComponentInterfaceVersion1 = 0x00010000,
 internetConfigurationComponentInterfaceVersion2 = 0x00020000,
 internetConfigurationComponentInterfaceVersion3 = 0x00030000,
 internetConfigurationComponentInterfaceVersion =
internetConfigurationComponentInterfaceVersion3
};

Discussion
These constants are deprecated. Please use Component Interface Version (page 2518) and Component
Identifiers (page 2517) instead.

Component Interface Version
Define the possible version numbers returned by the Internet Config component.

enum {
 kICComponentInterfaceVersion0 = 0x00000000,
 kICComponentInterfaceVersion1 = 0x00010000,
 kICComponentInterfaceVersion2 = 0x00020000,
 kICComponentInterfaceVersion3 = 0x00030000,
 kICComponentInterfaceVersion4 = 0x00040000,
 kICComponentInterfaceVersion = kICComponentInterfaceVersion4
};

Constants
kICComponentInterfaceVersion0

Internet Config versions greater than or equal to 1.0.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICComponentInterfaceVersion1
Internet Config versions greater than or equal to 1.1.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICComponentInterfaceVersion2
Internet Config versions greater than or equal to 1.2.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

2518 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICComponentInterfaceVersion3
Internet Config versions greater than or equal to 2.0.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICComponentInterfaceVersion4
Internet Config versions greater than or equal to 2.5.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICComponentInterfaceVersion
The current version number is 4.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Discussion
These constants define the possible version numbers returned by the Internet Config component in response
to a ICGetVersion (page 2502) call. The constants define only the high word of the version number, which
is the version of the programming interface. The low word of the version number is the implementation
version, which changes with each bug fix release of Internet Config.

Component Selectors
Represent component selectors for each Internet Config function.

Constants 2519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

enum {
 kICCStart = 0,
 kICCStop = 1,
 kICCGetVersion = 50,
 kICCFindConfigFile = 2,
 kICCFindUserConfigFile = 14,
 kICCGeneralFindConfigFile = 30,
 kICCChooseConfig = 33,
 kICCChooseNewConfig = 34,
 kICCGetConfigName = 35,
 kICCGetConfigReference = 31,
 kICCSetConfigReference = 32,
 kICCSpecifyConfigFile = 3,
 kICCRefreshCaches = 47,
 kICCGetSeed = 4,
 kICCGetPerm = 13,
 kICCDefaultFileName = 11,
 kICCBegin = 5,
 kICCGetPref = 6,
 kICCSetPref = 7,
 kICCFindPrefHandle = 36,
 kICCGetPrefHandle = 26,
 kICCSetPrefHandle = 27,
 kICCCountPref = 8,
 kICCGetIndPref = 9,
 kICCDeletePref = 12,
 kICCEnd = 10,
 kICCGetDefaultPref = 49,
 kICCEditPreferences = 15,
 kICCLaunchURL = 17,
 kICCParseURL = 16,
 kICCCreateGURLEvent = 51,
 kICCSendGURLEvent = 52,
 kICCMapFilename = 24,
 kICCMapTypeCreator = 25,
 kICCMapEntriesFilename = 28,
 kICCMapEntriesTypeCreator = 29,
 kICCCountMapEntries = 18,
 kICCGetIndMapEntry = 19,
 kICCGetMapEntry = 20,
 kICCSetMapEntry = 21,
 kICCDeleteMapEntry = 22,
 kICCAddMapEntry = 23,
 kICCGetCurrentProfile = 37,
 kICCSetCurrentProfile = 38,
 kICCCountProfiles = 39,
 kICCGetIndProfile = 40,
 kICCGetProfileName = 41,
 kICCSetProfileName = 42,
 kICCAddProfile = 43,
 kICCDeleteProfile = 44,
 kICCRequiresInterruptSafe = 45,
 kICCGetMappingInterruptSafe = 46,
 kICCGetSeedInterruptSafe = 48,
 kICCFirstSelector = kICCStart,
 kICCLastSelector = 52
};

2520 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Discussion
These constants are component selectors for each Internet Config fuction. You can use these values as
parameters to the Component Manager’s ComponentFunctionImplemented function. These are also useful
for authors of override components.

Constants 2521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Component Selector Proc Information
enum {
 kICCStartProcInfo = 1008,
 kICCStopProcInfo = 240,
 kICCGetVersionProcInfo = 4080,
 kICCFindConfigFileProcInfo = 3824,
 kICCFindUserConfigFileProcInfo = 1008,
 kICCGeneralFindConfigFileProcInfo = 58864,
 kICCChooseConfigProcInfo = 240,
 kICCChooseNewConfigProcInfo = 240,
 kICCGetConfigNameProcInfo = 3568,
 kICCGetConfigReferenceProcInfo = 1008,
 kICCSetConfigReferenceProcInfo = 4080,
 kICCSpecifyConfigFileProcInfo = 1008,
 kICCRefreshCachesProcInfo = 240,
 kICCGetSeedProcInfo = 1008,
 kICCGetPermProcInfo = 1008,
 kICCDefaultFileNameProcInfo = 1008,
 kICCGetComponentInstanceProcInfo = 1008,
 kICCBeginProcInfo = 496,
 kICCGetPrefProcInfo = 65520,
 kICCSetPrefProcInfo = 65520,
 kICCFindPrefHandleProcInfo = 16368,
 kICCGetPrefHandleProcInfo = 16368,
 kICCSetPrefHandleProcInfo = 16368,
 kICCCountPrefProcInfo = 1008,
 kICCGetIndPrefProcInfo = 4080,
 kICCDeletePrefProcInfo = 1008,
 kICCEndProcInfo = 240,
 kICCGetDefaultPrefProcInfo = 4080,
 kICCEditPreferencesProcInfo = 1008,
 kICCLaunchURLProcInfo = 262128,
 kICCParseURLProcInfo = 1048560,
 kICCCreateGURLEventProcInfo = 16368,
 kICCSendGURLEventProcInfo = 1008,
 kICCMapFilenameProcInfo = 4080,
 kICCMapTypeCreatorProcInfo = 65520,
 kICCMapEntriesFilenameProcInfo = 16368,
 kICCMapEntriesTypeCreatorProcInfo = 262128,
 kICCCountMapEntriesProcInfo = 4080,
 kICCGetIndMapEntryProcInfo = 65520,
 kICCGetMapEntryProcInfo = 16368,
 kICCSetMapEntryProcInfo = 16368,
 kICCDeleteMapEntryProcInfo = 4080,
 kICCAddMapEntryProcInfo = 4080,
 kICCGetCurrentProfileProcInfo = 1008,
 kICCSetCurrentProfileProcInfo = 1008,
 kICCCountProfilesProcInfo = 1008,
 kICCGetIndProfileProcInfo = 4080,
 kICCGetProfileNameProcInfo = 4080,
 kICCSetProfileNameProcInfo = 4080,
 kICCAddProfileProcInfo = 4080,
 kICCDeleteProfileProcInfo = 1008,
 kICCRequiresInterruptSafeProcInfo = 240,
 kICCGetMappingInterruptSafeProcInfo = 4080,
 kICCGetSeedInterruptSafeProcInfo = 1008
};

2522 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Edit Preference Constants
Specify AppleEvent details for Internet Config preference requests.

enum {
 kICEditPreferenceEventClass = 'ICAp',
 kICEditPreferenceEvent = 'ICAp',
 keyICEditPreferenceDestination = 'dest'
};

Discussion
These constants specify details of the AppleEvent that the ICEditPreferences (page 2494) function sends
to the Internet Config application to request it to open the edit window for a specific preference. Consult
the Internet Config terminology resource ('aete') for the meaning of these constants.

File Specification Header Size
enum {
 kICFileSpecHeaderSize = sizeof(ICFileSpec) - sizeof(AliasRecord)
};

File Specification Header Size (Deprecated)
enum {
 ICfile_spec_header_size = kICFileSpecHeaderSize
};

Discussion
This constant is available only if you define OLDROUTINENAMES.

File Type Constants
Define the file type and creator code for the Internet preferences file.

enum {
 kICFileType = 'ICAp',
 kICCreator = 'ICAp'
};

Constants
kICFileType

The Finder file type for the Internet preferences file.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICCreator
The Finder creator code for the Internet preferences file.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Keys

#define kICReservedKey "\pkICReservedKey"
#define kICArchieAll "\pArchieAll"
#define kICArchiePreferred "\pArchiePreferred"
#define kICCharacterSet "\pCharacterSet"
#define kICDocumentFont "\pDocumentFont"
#define kICDownloadFolder "\pDownloadFolder"
#define kICEmail "\pEmail"
#define kICFTPHost "\pFTPHost"
#define kICFTPProxyAccount "\pFTPProxyAccount"
#define kICFTPProxyHost "\pFTPProxyHost"
#define kICFTPProxyPassword "\pFTPProxyPassword"
#define kICFTPProxyUser "\pFTPProxyUser"
#define kICFingerHost "\pFingerHost"
#define kICGopherHost "\pGopherHost"
#define kICGopherProxy "\pGopherProxy"
#define kICHTTPProxyHost "\pHTTPProxyHost"
#define kICHelper "\pHelper•"
#define kICHelperDesc "\pHelperDesc•"
#define kICHelperList "\pHelperList•"
#define kICIRCHost "\pIRCHost"
#define kICInfoMacAll "\pInfoMacAll"
#define kICInfoMacPreferred "\pInfoMacPreferred"
#define kICLDAPSearchbase "\pLDAPSearchbase"
#define kICLDAPServer "\pLDAPServer"
#define kICListFont "\pListFont"
#define kICMacSearchHost "\pMacSearchHost"
#define kICMailAccount "\pMailAccount"
#define kICMailHeaders "\pMailHeaders"
#define kICMailPassword "\pMailPassword"
#define kICMapping "\pMapping"
#define kICNNTPHost "\pNNTPHost"
#define kICNTPHost "\pNTPHost"
#define kICNewMailDialog "\pNewMailDialog"
#define kICNewMailFlashIcon "\pNewMailFlashIcon"
#define kICNewMailPlaySound "\pNewMailPlaySound"
#define kICNewMailSoundName "\pNewMailSoundName"
#define kICNewsAuthPassword "\pNewsAuthPassword"
#define kICNewsAuthUsername "\pNewsAuthUsername"
#define kICNewsHeaders "\pNewsHeaders"
#define kICNoProxyDomains "\pNoProxyDomains"
#define kICOrganization "\pOrganization"
#define kICPhHost "\pPhHost"
#define kICPlan "\pPlan"
#define kICPrinterFont "\pPrinterFont"
#define kICQuotingString "\pQuotingString"
#define kICRealName "\pRealName"
#define kICRTSPProxyHost "\pRTSPProxyHost"
#define kICSMTPHost "\pSMTPHost"
#define kICScreenFont "\pScreenFont"
#define kICServices "\pServices"
#define kICSignature "\pSignature"
#define kICSnailMailAddress "\pSnailMailAddress"
#define kICSocksHost "\pSocksHost"
#define kICTelnetHost "\pTelnetHost"
#define kICUMichAll "\pUMichAll"
#define kICUMichPreferred "\pUMichPreferred"

2524 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

#define kICUseFTPProxy "\pUseFTPProxy"
#define kICUseGopherProxy "\pUseGopherProxy"
#define kICUseHTTPProxy "\pUseHTTPProxy"
#define kICUsePassiveFTP "\pUsePassiveFTP"
#define kICUseRTSPProxy "\pUseRTSPProxy"
#define kICUseSocks "\pUseSocks"
#define kICWAISGateway "\pWAISGateway"
#define kICWWWHomePage "\pWWWHomePage"
#define kICWebBackgroundColour "\pWebBackgroundColour"
#define kICWebReadColor "\p646F6777•WebReadColor"
#define kICWebSearchPagePrefs "\pWebSearchPagePrefs"
#define kICWebTextColor "\pWebTextColor"
#define kICWebUnderlineLinks "\p646F6777•WebUnderlineLinks"
#define kICWebUnreadColor "\p646F6777•WebUnreadColor"
#define kICWhoisHost "\pWhoisHost"

Constants
kICReservedKey

Reserved for use by Internet Config.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICArchieAll
Formatted string list of Archie servers.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICArchiePreferred
Formatted string naming the preferred Archie server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICCharacterSet
For conversion between kTextEncodingMacRoman (“Mac”) and kTextEncodingMacRomanLatin1
(“Net”). Deprecated. Use the Text Encoding Conversion manager and Unicode instead.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICDocumentFont
Font to use for proportional text.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICDownloadFolder
Location in the file system for newly downloaded files.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICEmail
Return address for the user.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICFTPHost
Default FTP server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICFTPProxyAccount
Second-level FTP proxy authorization. Read-only in Mac OS X; use System Configuration to set this
value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICFTPProxyHost
Default FTP proxy server. Read-only in Mac OS X; use System Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICFTPProxyPassword
Password (scrambled) for FTP proxy user. Read-only in Mac OS X; use System Configuration to set this
value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICFTPProxyUser
First-level FTP proxy authorization. Read-only in Mac OS X; use System Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICFingerHost
Default finger-protocol server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICGopherHost
Default gopher-protocol server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICGopherProxy
Read-only in Mac OS X; use System Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICHTTPProxyHost
Default HTTP proxy server. Read-only in Mac OS X; use System Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICHelper
Helpers for URL schemes.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

2526 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICHelperDesc
Descriptions for URL schemes.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICHelperList
Common helpers for URL schemes.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICIRCHost
Internet Relay Chat server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICInfoMacAll
Formatted list of Info-Mac servers.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICInfoMacPreferred
Formatted string containing preferred Info-Mac server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICLDAPSearchbase
Default LDAP search base.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICLDAPServer
Default LDAP server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICListFont
Font used for lists, such as news article lists.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMacSearchHost
Host for MacSearch queries.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMailAccount
Account from which to fetch email.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICMailHeaders
Additional headers for email messages.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMailPassword
Password (scrambled) for the default mail account.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapping
File-type mapping.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNNTPHost
Default NNTP server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNTPHost
Default NTP (Network Time Protocol) server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewMailDialog
Boolean value indicating whether to display a new email dialog.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewMailFlashIcon
Boolean value indicating whether to flash a new email icon.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewMailPlaySound
Boolean value indicating whether to play a new email sound.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewMailSoundName
The name of the preferred new email sound.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewsAuthPassword
Password (scrambled) for authorized news account.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

2528 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICNewsAuthUsername
User name for authorized news account.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNewsHeaders
Additional headers for news messages.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICNoProxyDomains
List of domains not to be proxied.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICOrganization
String for the X-Organization MIME header.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICPhHost
Default Ph protocol server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICPlan
Default response for finger servers.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICPrinterFont
Font used to print the monospaced text displayed on screen (see kICScreenFont).

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICQuotingString
A short string used to indicate quoting in email and news replies.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICRealName
Real name of user.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICRTSPProxyHost
Default RTSP proxy server. Read-only in Mac OS X; use System Configuration to set this value.

Available in Mac OS X v10.1 and later.

Declared in InternetConfig.h.

Constants 2529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICSMTPHost
Default SMTP host.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICScreenFont
Font for monospaced text.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICServices
TCP and IP port-to-name mapping.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICSignature
Block of text to append to outgoing news and email messages.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICSnailMailAddress
Preferred postal mail address.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICSocksHost
Default SOCKS host. (The host.domain format allows ":port" and " port")

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICTelnetHost
Default Telnet host.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUMichAll
Formatted list of UMich servers.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUMichPreferred
Formatted string containing preferred UMich server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUseFTPProxy
Boolean value indicating whether to use an FTP proxy. Read-only in Mac OS X; use System Configuration
to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

2530 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICUseGopherProxy
Boolean value indicating whether to use a Gopher proxy. Read-only in Mac OS X; use System
Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUseHTTPProxy
Boolean value indicating whether to use an HTTP proxy. Read-only in Mac OS X; use System
Configuration to set this value.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUsePassiveFTP
Boolean value indicating whether to use the PASV command for FTP transfers.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICUseRTSPProxy
Boolean value indicating whether to use an RTSP proxy. Read-only in Mac OS X; use System
Configuration to set this value.

Available in Mac OS X v10.1 and later.

Declared in InternetConfig.h.

kICUseSocks
Boolean value indicating whether to use SOCKS.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWAISGateway
Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWWWHomePage
User’s default Web home page.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWebBackgroundColour
Background color for Web pages.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWebReadColor
Color for Web links that have been visited.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWebSearchPagePrefs
URL for the default search engine page.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

kICWebTextColor
Color for normal text on Web pages.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWebUnderlineLinks
Boolean value indicating whether to underline Web links.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWebUnreadColor
Color for Web links that have not been visited.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICWhoisHost
Default whois server.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Map Constants

enum {
 ICmap_binary_bit = kICMapBinaryBit,
 ICmap_binary_mask = kICMapBinaryMask,
 ICmap_resource_fork_bit = kICMapResourceForkBit,
 ICmap_resource_fork_mask = kICMapResourceForkMask,
 ICmap_data_fork_bit = kICMapDataForkBit,
 ICmap_data_fork_mask = kICMapDataForkMask,
 ICmap_post_bit = kICMapPostBit,
 ICmap_post_mask = kICMapPostMask,
 ICmap_not_incoming_bit = kICMapNotIncomingBit,
 ICmap_not_incoming_mask = kICMapNotIncomingMask,
 ICmap_not_outgoing_bit = kICMapNotOutgoingBit,
 ICmap_not_outgoing_mask = kICMapNotOutgoingMask,
 ICmap_fixed_length = kICMapFixedLength
};

Discussion
For descriptions of these constants, see “Map Entry Flags” (page 2533) and “Map Entry Masks” (page 2534). These
constants are available only if you define OLDROUTINENAMES.

2532 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Map Entry Flags
typedef long ICMapEntryFlags;
enum {
 kICMapBinaryBit = 0,
 kICMapResourceForkBit = 1,
 kICMapDataForkBit = 2,
 kICMapPostBit = 3,
 kICMapNotIncomingBit = 4,
 kICMapNotOutgoingBit = 5
};

Constants
kICMapBinaryBit

When this bit is set, indicates the file should be transferred in binary as opposed to text mode.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapResourceForkBit
When this bit is set, indicates the resource fork of the file is significant.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapDataForkBit
When this bit is set, indicates the data fork of the file is significant.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapPostBit
When this bit is set, indicates post process using post fields.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapNotIncomingBit
When this bit is set, indicates to ignore this mapping for incoming files.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapNotOutgoingBit
When this bit is set, indicates to ignore this mapping for outgoing files.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Map Entry Masks
enum {
 kICMapBinaryMask = 0x00000001,
 kICMapResourceForkMask = 0x00000002,
 kICMapDataForkMask = 0x00000004,
 kICMapPostMask = 0x00000008,
 kICMapNotIncomingMask = 0x00000010,
 kICMapNotOutgoingMask = 0x00000020
};

Constants
kICMapBinaryMask

Indicates the file should be transferred in binary as opposed to text mode.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapResourceForkMask
Indicates the resource fork of the file is significant.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapDataForkMask
Indicates the data fork of the file is significant.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapPostMask
Indicates to post process using post fields.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapNotIncomingMask
Indicates to ignore this mapping for incoming files.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICMapNotOutgoingMask
Indicates to ignore this mapping for outgoing files.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

2534 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Map Fixed Length Constants
typedef short ICFixedLength;
enum {
 kICMapFixedLength = 22
};

Constants
kICMapFixedLength

Use in the fixedLength field of a structure ICMapEntry (page 2514).

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Services Constants
enum {
 ICservices_tcp_bit = kICServicesTCPBit,
 ICservices_tcp_mask = kICServicesTCPMask,
 ICservices_udp_bit = kICServicesUDPBit,
 ICservices_udp_mask = kICServicesUDPMask
};

Special Considerations

These constants are available only if you define OLDROUTINENAMES.

Permissions
The ICPerm type is used to specify whether you wish to access the preferences as read-only or read/write.

typedef UInt8 ICPerm;
enum {
 icNoPerm = 0,
 icReadOnlyPerm = 1,
 icReadWritePerm = 2
};

Preference Attribute Bits and Masks
typedef UInt32 ICAttr;
enum {
 kICAttrLockedBit = 0,
 kICAttrVolatileBit = 1
};

Constants 2535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

enum {
 kICAttrNoChange = 0xFFFFFFFF,
 kICAttrLockedMask = 0x00000001,
 kICAttrVolatileMask = 0x00000002
};

Constants
kICAttrLockedBit

If the locked bit is set, any attempt to set the preference will result in an error.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICAttrVolatileBit
If the volatile bit is set, you should not cache the value of this preference because it is subject to
non-seed changing changes.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICAttrNoChange
Used when you call ICSetPref and do not want to mess around with attributes. You can supply this
value and IC will not change the attribute of the preference.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICAttrLockedMask
Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICAttrVolatileMask
Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Discussion
The ICAttr type is simply a longint containing flags that describe the attributes of a key and its data.

Preference Attribute Masks
enum {
 kICAttrNoChange = 0xFFFFFFFF,
 kICAttrLockedMask = 0x00000001,
 kICAttrVolatileMask = 0x00000002
};

Profile IDs
The ICProfileID type is an opaque reference to a particular profile.

2536 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

typedef long ICProfileID;
typedef ICProfileID * ICProfileIDPtr;
enum {
 kICNilProfileID = 0
};

Constants
kICNilProfileID

Use to denote no profile.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Services Bits
typedef short ICServiceEntryFlags;
enum {
 kICServicesTCPBit = 0,
 kICServicesUDPBit = 1
};

Constants
kICServicesTCPBit

When this bit is set, indicates the service is TCP.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICServicesUDPBit
When this bit is set, indicates the service is UDP.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Discussion
Both these bits may be set to indicate the service is both TCP and UDP.

Services Masks
enum {
 kICServicesTCPMask = 0x00000001,
 kICServicesUDPMask = 0x00000002
};

Constants
kICServicesTCPMask

Indicates the service is TCP.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

kICServicesUDPMask
Indicates the service is UDP.

Available in Mac OS X v10.0 and later.

Declared in InternetConfig.h.

Constants 2537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Discussion
Both these bits may be set to indicate the service is both TCP and UDP.

User Interaction Constants
enum {
 kICNoUserInteractionBit = 0
};

User Interaction Masks
enum {
 kICNoUserInteractionMask = 0x00000001
};

Version Constants
enum {
 kICComponentVersion = 0,
 kICNumVersion = 1
};

Result Codes

The most common result codes returned by Internet Config are listed in the table below.

DescriptionValueResult Code

The preference was not found.-666icPrefNotFoundErr

Available in Mac OS X v10.0 and later.

The preference cannot be set because of premissions restrictions.-667icPermErr

Available in Mac OS X v10.0 and later.

There was a problem with the preference data.-668icPrefDataErr

Available in Mac OS X v10.0 and later.

An internal error occurred.-669icInternalErr

Available in Mac OS X v10.0 and later.

More data was present than was returned.-670icTruncatedErr

Available in Mac OS X v10.0 and later.

2538 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

DescriptionValueResult Code

You can’t begin a write session because there is already one in
progress.

-671icNoMoreWritersErr

Available in Mac OS X v10.0 and later.

There is no component for the override component to capture.-672icNothingToOverrideErr

Available in Mac OS X v10.0 and later.

No URL was found.-673icNoURLErr

Available in Mac OS X v10.0 and later.

No configuration was found.-674icConfigNotFoundErr

Available in Mac OS X v10.0 and later.

The manufacturer code is incorrect.-675icConfigInappropriateErr

Available in Mac OS X v10.0 and later.

The profile was not found.-676icProfileNotFoundErr

Available in Mac OS X v10.0 and later.

There are too many profiles in the database.-677icTooManyProfilesErr

Available in Mac OS X v10.0 and later.

Result Codes 2539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

2540 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 54

Internet Config Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in QuickdrawAPI.h
QuickdrawTypes.h
QDOffscreen.h
QDPictToCGContext.h

Companion guide Quartz Programming Guide for QuickDraw Developers

Overview

QuickDraw is the legacy 2D drawing engine for Macintosh computers. QuickDraw provides routines for
drawing, manipulating, and displaying graphic objects such as lines, arcs, rectangles, ovals, regions, and
bitmap images. Carbon supports most of the classic QuickDraw programming interface.

Note: QuickDraw has been deprecated for deployment targets Mac OS X version 10.4 and later. The
replacement API is Quartz 2D. Because of the fundamental differences in the imaging models and design
goals between QuickDraw and Quartz, there is no direct correspondence between QuickDraw and Quartz
concepts and interfaces. For certain purposes, some QuickDraw functions may still be needed during a
transition period; nevertheless, most of them have been deprecated to express the overriding goal of
eliminating the use of QuickDraw in the future.

Functions by Task

Drawing QuickDraw Pictures in a Quartz Context

QDPictCreateWithProvider (page 2766)
Creates a QDPict picture, using QuickDraw picture data supplied with a Quartz data provider.

QDPictCreateWithURL (page 2767)
Creates a QDPict picture, using QuickDraw picture data specified with a Core Foundation URL.

QDPictDrawToCGContext (page 2767)
Draws a QuickDraw picture in a Quartz context.

QDPictGetBounds (page 2768)
Returns the intended location and size of a QDPict picture.

QDPictGetResolution (page 2769)
Returns the horizontal and vertical resolution of a QDPict picture.

Overview 2541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDPictRelease (page 2769)
Releases a QDPict picture.

QDPictRetain (page 2770) Deprecated in Mac OS X v10.3
Retains a QDPict picture.

Using Quartz 2D to Draw in a Graphics Port

QDBeginCGContext (page 2756)
Returns a Quartz 2D drawing environment associated with a graphics port.

QDEndCGContext (page 2758)
Terminates a Quartz 2D drawing environment associated with a graphics port.

ClipCGContextToRegion (page 2579) Deprecated in Mac OS X v10.4
Sets the clipping path in a Quartz 2D graphics context, using a clipping region. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CreateCGContextForPort (page 2591) Deprecated in Mac OS X v10.4
Creates a Quartz 2D drawing environment associated with a graphics port. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SyncCGContextOriginWithPort (page 2826) Deprecated in Mac OS X v10.4
Synchronizes the origin in a Quartz context with the lower-left corner of the associated graphics port.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Other Quartz-Related Functions in QuickDraw

QDGetCGDirectDisplayID (page 2761)
Returns the Quartz display ID that corresponds to a QuickDraw graphics device.

CreateNewPortForCGDisplayID (page 2592) Deprecated in Mac OS X v10.4
Creates a graphics port associated with a display. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

LockPortBits (page 2705) Deprecated in Mac OS X v10.4
Acquires an exclusive lock on the back buffer for a Carbon window. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

QDFlushPortBuffer (page 2760) Deprecated in Mac OS X v10.4
Calls the Quartz compositor to flush all new drawing in a Carbon window to the display. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UnlockPortBits (page 2829) Deprecated in Mac OS X v10.4
Releases a previously acquired lock on the back buffer for a Carbon window. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Calculating Black-and-White Fills

CalcMask (page 2578) Deprecated in Mac OS X v10.4
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2542 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SeedFill (page 2788) Deprecated in Mac OS X v10.4
Determines how far filling will extend from a seeding point. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Calculating Color Fills

CalcCMask (page 2577) Deprecated in Mac OS X v10.4
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SeedCFill (page 2787) Deprecated in Mac OS X v10.4
Determines how far filling will extend to pixels matching the color of a particular pixel. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Changing Black-and-White Cursors

GetCursor (page 2638) Deprecated in Mac OS X v10.4
Loads a cursor resource into memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

SetCursor (page 2792) Deprecated in Mac OS X v10.4
Sets the current cursor. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Changing Color Cursors

AllocCursor (page 2572) Deprecated in Mac OS X v10.4
Reallocates cursor memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

DisposeCCursor (page 2598) Deprecated in Mac OS X v10.4
Disposes of all structures allocated by the GetCCursor function. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetCCursor (page 2635) Deprecated in Mac OS X v10.4
Loads a color cursor resource into memory. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetCCursor (page 2790) Deprecated in Mac OS X v10.4
Specifies a color cursor for display on the screen. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Changing the Background Bit Pattern

BackPat (page 2575) Deprecated in Mac OS X v10.4
Changes the bit pattern used as the background pattern by the current graphics port. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Changing the Background Pixel Pattern

BackPixPat (page 2576) Deprecated in Mac OS X v10.4
Assigns a pixel pattern as the background pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Compressing and Decompressing Data

PackBits (page 2739) Deprecated in Mac OS X v10.4
Compresses a data buffer stored in RAM. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

UnpackBits (page 2830) Deprecated in Mac OS X v10.4
Decompresses a data buffer containing data compressed by PackBits. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Converting Between Angle and Slope Values

AngleFromSlope (page 2574)
Converts a slope value to an angle value.

SlopeFromAngle (page 2814)
Converts an angle value to a slope value.

Copying Images

CopyBits (page 2584) Deprecated in Mac OS X v10.4
Copies a portion of a bitmap or a pixel map from one graphics port or offscreen graphics world into
another graphics port. (Deprecated. Use Quartz 2D instead; seeQuartzProgrammingGuide forQuickDraw
Developers.)

CopyDeepMask (page 2586) Deprecated in Mac OS X v10.4
Uses a mask when copying bitmaps or pixel maps between graphics ports (or from an offscreen
graphics world into a graphics port). (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

CopyMask (page 2588) Deprecated in Mac OS X v10.4
Copies a bit or pixel image from one graphics port or offscreen graphics world into another graphics
port only where the bits in a mask are set to 1. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Creating, Altering, and Disposing of Offscreen Graphics Worlds

NewGWorld (page 2715)
Creates an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

DisposeGWorld (page 2601) Deprecated in Mac OS X v10.4
Disposes of all the memory allocated for an offscreen graphics world. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

2544 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DisposeScreenBuffer (page 2609) Deprecated in Mac OS X v10.4
Disposes an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

NewScreenBuffer (page 2727) Deprecated in Mac OS X v10.4
Creates an offscreen PixMap structure and allocates memory for the base address of its pixel image.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewTempScreenBuffer (page 2728) Deprecated in Mac OS X v10.4
Creates an offscreen PixMap structure and allocate temporary memory for the base address of its
pixel image applications generally don’t need to use NewTempScreenBuffer. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UpdateGWorld (page 2831) Deprecated in Mac OS X v10.4
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Creating and Disposing of Color Tables

DisposeCTable (page 2599) Deprecated in Mac OS X v10.4
Disposes a ColorTable structure. (Deprecated. Use Quartz 2D instead; see Quartz ProgrammingGuide
for QuickDraw Developers.)

GetCTable (page 2636) Deprecated in Mac OS X v10.4
Obtains a color table stored in a 'clut' resource. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Creating and Disposing of Pictures

ClosePicture (page 2581) Deprecated in Mac OS X v10.4
Completes the collection of drawing commands and picture comments that define your picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

KillPicture (page 2691) Deprecated in Mac OS X v10.4
Releases the memory occupied by a picture not stored in a 'PICT' resource. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OpenCPicture (page 2734) Deprecated in Mac OS X v10.4
Begins defining a picture in extended version 2 format. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

OpenPicture (page 2736) Deprecated in Mac OS X v10.4
Creates a picture which allows you to specify resolutions for your pictures. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PicComment (page 2748) Deprecated in Mac OS X v10.4
Inserts a picture comment into a picture that you are defining or into your printing code. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Creating and Disposing of Pixel Patterns

CopyPixPat (page 2590) Deprecated in Mac OS X v10.4
Copies the contents of one pixel pattern to another. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

DisposePixPat (page 2602) Deprecated in Mac OS X v10.4
Releases the storage allocated to a pixel pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPixPat (page 2651) Deprecated in Mac OS X v10.4
Obtains a pixel pattern ('ppat') resource stored in a resource file. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

MakeRGBPat (page 2706) Deprecated in Mac OS X v10.4
Creates the appearance of otherwise unavailable colors on indexed devices. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewPixPat (page 2720) Deprecated in Mac OS X v10.4
Creates a new pixel pattern. Generally, however, your application should create a pixel pattern in a
'ppat' resource. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Creating and Managing Polygons

ClosePoly (page 2581) Deprecated in Mac OS X v10.4
Completes the collection of lines that defines a polygon. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

KillPoly (page 2691) Deprecated in Mac OS X v10.4
Releases the memory occupied by a polygon. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

OffsetPoly (page 2731) Deprecated in Mac OS X v10.4
Moves a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OpenPoly (page 2737) Deprecated in Mac OS X v10.4
Begins defining a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Creating and Managing Rectangles

EmptyRect (page 2611)
Determines whether a rectangle is an empty rectangle.

EqualRect (page 2613)
Determines whether two rectangles are equal.

InsetRect (page 2672)
Shrinks or expands a rectangle.

OffsetRect (page 2732)
Moves a rectangle.

2546 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Pt2Rect (page 2753)
Determines the smallest rectangle that encloses two given points.

PtInRect (page 2753)
Determines whether a pixel below is enclosed in a rectangle.

PtToAngle (page 2754)
Calculates an angle between a vertical line pointing straight up from the center of a rectangle and a
line from the center to a given point.

SectRect (page 2785)
Determines whether two rectangles intersect.

SetRect (page 2809)
Assigns coordinates to a rectangle.

UnionRect (page 2827)
Calculates the smallest rectangle that encloses two rectangles.

Creating and Managing Regions

CopyRgn (page 2590)
Makes a copy of a region.

DiffRgn (page 2598)
Subtracts one region from another.

DisposeRgn (page 2609)
Releases the memory occupied by a region.

EmptyRgn (page 2612)
Determines whether a region is empty.

EqualRgn (page 2614)
Determines whether two regions have identical sizes, shapes, and locations.

InsetRgn (page 2673)
Shrinks or expands a region.

NewRgn (page 2726)
Begins creating a new region.

OffsetRgn (page 2732)
Moves a region.

PtInRgn (page 2754)
Determines whether a pixel is within a region.

RectInRgn (page 2776)
Determines whether a rectangle intersects a region.

RectRgn (page 2776)
Changes the structure of an existing region to that of a rectangle.

SectRgn (page 2786)
Calculates the intersection of two regions.

SetEmptyRgn (page 2794)
Sets an existing region to be empty.

SetRectRgn (page 2810)
Changes the structure of an existing region to that of a rectangle.

Functions by Task 2547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

UnionRgn (page 2828)
Calculates the union of two regions.

XorRgn (page 2833)
Calculates the difference between the union and the intersection of two regions.

CloseRgn (page 2582) Deprecated in Mac OS X v10.4
Organizes a collection of lines and shapes into a region definition. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

OpenRgn (page 2737) Deprecated in Mac OS X v10.4
Begins defining a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Creating, Setting, and Disposing of GDevice Records

DisposeGDevice (page 2601) Deprecated in Mac OS X v10.4
Disposes of a GDevice structure, releases the space allocated for it, and disposes of all the data
structures allocated for it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

InitGDevice (page 2671) Deprecated in Mac OS X v10.4
Initializes a GDevice structure. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

NewGDevice (page 2714) Deprecated in Mac OS X v10.4
Creates a new GDevice structure. (Deprecated. Use Quartz 2D instead; see Quartz ProgrammingGuide
for QuickDraw Developers.)

SetDeviceAttribute (page 2793) Deprecated in Mac OS X v10.4
Sets the attribute bits of a GDevice structure. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetGDevice (page 2796) Deprecated in Mac OS X v10.4
Sets a GDevice structure as the current device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Creating, Setting, and Disposing of Pixel Maps

CopyPixMap (page 2589) Deprecated in Mac OS X v10.4
Duplicates a PixMap structure. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

DisposePixMap (page 2602) Deprecated in Mac OS X v10.4
Disposes a PixMap structure and its color table. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

NewPixMap (page 2719) Deprecated in Mac OS X v10.4
Creates a new, initialized PixMap structure. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetPortPix (page 2805) Deprecated in Mac OS X v10.4
Sets the pixel map for the current color graphics port. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

2548 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Customizing Color QuickDraw Operations

SetStdCProcs (page 2811) Deprecated in Mac OS X v10.4
Obtains a CQDProcs structure with fields that point to QuickDraw’s standard low-level functions,
which you can modify to change QuickDraw’s standard low-level behavior. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Customizing QuickDraw Operations

SetStdProcs (page 2812) Deprecated in Mac OS X v10.4
Obtains a QDProcs structure with fields that point to basic QuickDraw’s standard low-level functions,
which you can modify to point to your own functions. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

StdArc (page 2815) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing an arc or a wedge. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

StdBits (page 2816) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for transferring bits and pixels. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

StdComment (page 2817) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for processing a picture comment. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdGetPic (page 2817) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for retrieving information from the definition of a picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdLine (page 2818) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a line. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

StdOval (page 2819) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing an oval. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdPoly (page 2820) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a polygon. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdPutPic (page 2820) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for saving information as the definition of a picture.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdRect (page 2821) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a rectangle. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdRgn (page 2822) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a region. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

StdRRect (page 2822) Deprecated in Mac OS X v10.4
QuickDraw’s standard low-level function for drawing a rounded rectangle. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Determining Current Colors and Best Intermediate Colors

GetBackColor (page 2634) Deprecated in Mac OS X v10.4
Obtains the background color of the current graphics port. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

GetCPixel (page 2636) Deprecated in Mac OS X v10.4
Determines the color of an individual pixel specified in the h and v parameters. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetForeColor (page 2639) Deprecated in Mac OS X v10.4
Obtains the color of the foreground color for the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Determining the Characteristics of a Video Device

DeviceLoop (page 2597) Deprecated in Mac OS X v10.4
Draws images that are optimized for every screen they cross. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

ScreenRes (page 2783) Deprecated in Mac OS X v10.4
Determines the resolution of the main device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

TestDeviceAttribute (page 2826) Deprecated in Mac OS X v10.4
Determines whether the flag bit for an attribute has been set in the gdFlags field of a GDevice
structure. (Deprecated. Use Quartz 2D instead; seeQuartzProgrammingGuide forQuickDrawDevelopers.)

Determining Whether QuickDraw Has Finished Drawing

QDDone (page 2758) Deprecated in Mac OS X v10.4
Determines whether QuickDraw has completed drawing in a given graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Arcs and Wedges

EraseArc (page 2615) Deprecated in Mac OS X v10.4
Erases a wedge. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillArc (page 2619) Deprecated in Mac OS X v10.4
Fills a wedge with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameArc (page 2629) Deprecated in Mac OS X v10.4
Draws an arc of the oval that fits inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

InvertArc (page 2674) Deprecated in Mac OS X v10.4
Inverts the pixels of a wedge. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

2550 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PaintArc (page 2740) Deprecated in Mac OS X v10.4
Paints a wedge of the oval that fits inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Drawing Lines

Line (page 2692) Deprecated in Mac OS X v10.4
Draws a line a specified distance from the graphics pen’s current location in the current graphics port.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LineTo (page 2693) Deprecated in Mac OS X v10.4
Draws a line from the graphics pen’s current location to a new location. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Move (page 2711) Deprecated in Mac OS X v10.4
Moves the graphics pen a particular distance. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

MoveTo (page 2712) Deprecated in Mac OS X v10.4
Moves the graphics pen to a particular location in the current graphics port. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Ovals

EraseOval (page 2615) Deprecated in Mac OS X v10.4
Erases an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillOval (page 2624) Deprecated in Mac OS X v10.4
Fills an oval with any available bit pattern. (Deprecated. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

FrameOval (page 2630) Deprecated in Mac OS X v10.4
Draws an outline inside an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertOval (page 2675) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by an oval. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintOval (page 2741) Deprecated in Mac OS X v10.4
Paints an oval with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Drawing Pictures

DrawPicture (page 2610) Deprecated in Mac OS X v10.4
Draws a picture on any type of output device. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPicture (page 2648) Deprecated in Mac OS X v10.4
Obtains a handle to a picture stored in a 'PICT' resource. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Drawing Polygons

ErasePoly (page 2616) Deprecated in Mac OS X v10.4
Erases a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillPoly (page 2625) Deprecated in Mac OS X v10.4
Fills a polygon with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FramePoly (page 2630) Deprecated in Mac OS X v10.4
Draws the outline of a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertPoly (page 2676) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a polygon. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintPoly (page 2741) Deprecated in Mac OS X v10.4
Paints a polygon with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Rectangles

EraseRect (page 2617) Deprecated in Mac OS X v10.4
Erases a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillRect (page 2626) Deprecated in Mac OS X v10.4
Fills a rectangle with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameRect (page 2631) Deprecated in Mac OS X v10.4
Draws an outline inside a rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

InvertRect (page 2677) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a rectangle. (Deprecated. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

PaintRect (page 2742) Deprecated in Mac OS X v10.4
Paints a rectangle with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing Regions

EraseRgn (page 2618) Deprecated in Mac OS X v10.4
Erases a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

FillRgn (page 2626) Deprecated in Mac OS X v10.4
Fills a region with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

2552 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

FrameRgn (page 2632) Deprecated in Mac OS X v10.4
Draws an outline inside a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

InvertRgn (page 2678) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a region. (Deprecated. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PaintRgn (page 2743) Deprecated in Mac OS X v10.4
Paints a region with the graphics pen’s pattern and pattern mode. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Drawing Rounded Rectangles

EraseRoundRect (page 2618) Deprecated in Mac OS X v10.4
Erases a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

FillRoundRect (page 2627) Deprecated in Mac OS X v10.4
Fills a rounded rectangle with any available bit pattern. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

FrameRoundRect (page 2633) Deprecated in Mac OS X v10.4
Draws an outline inside a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

InvertRoundRect (page 2679) Deprecated in Mac OS X v10.4
Inverts the pixels enclosed by a rounded rectangle. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PaintRoundRect (page 2743) Deprecated in Mac OS X v10.4
Paints a rounded rectangle with the graphics pen’s pattern and pattern mode. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Drawing With Color QuickDraw Colors

FillCArc (page 2620) Deprecated in Mac OS X v10.4
Fills a wedge with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCOval (page 2621) Deprecated in Mac OS X v10.4
Fills an oval with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCPoly (page 2621) Deprecated in Mac OS X v10.4
Fills a polygon with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCRect (page 2622) Deprecated in Mac OS X v10.4
Fills a rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

FillCRgn (page 2622) Deprecated in Mac OS X v10.4
Fills a region with the given pixel pattern, using the patCopy pattern mode. (Deprecated. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

FillCRoundRect (page 2623) Deprecated in Mac OS X v10.4
Fills a rounded rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

HiliteColor (page 2670) Deprecated in Mac OS X v10.4
Changes the highlight color for the current color graphics port. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

OpColor (page 2733) Deprecated in Mac OS X v10.4
Sets the maximum color values for the addPin and subPin arithmetic transfer modes and the weight
color for the blend arithmetic transfer mode. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

RGBBackColor (page 2779) Deprecated in Mac OS X v10.4
Changes the background color. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

RGBForeColor (page 2780) Deprecated in Mac OS X v10.4
Changes the color of the “ink” used for framing and painting. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

SetCPixel (page 2791) Deprecated in Mac OS X v10.4
Sets the color of an individual pixel to the color that most closely matches the RGB color that you
specify in the cPix parameter. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

Drawing With the Eight-Color System

BackColor (page 2574) Deprecated in Mac OS X v10.4
Changes a basic graphics port’s background color. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

ColorBit (page 2584) Deprecated in Mac OS X v10.4
Sets the foreground color for all printing in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

ForeColor (page 2628) Deprecated in Mac OS X v10.4
Changes the color of the “ink” used for framing, painting, and filling on computers that support only
basic QuickDraw. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Getting Pattern Resources

GetIndPattern (page 2643) Deprecated in Mac OS X v10.4
Obtains a pattern stored in a pattern list ('PAT#') resource. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

GetPattern (page 2646) Deprecated in Mac OS X v10.4
Obtains a pattern ('PAT') resource stored in a resource file. (Deprecated. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

2554 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Getting the Available Graphics Devices

GetDeviceList (page 2639) Deprecated in Mac OS X v10.4
Obtains a handle to the first GDevice structure in the device list. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetGDevice (page 2640) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the current device. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetMainDevice (page 2644) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the main screen. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetMaxDevice (page 2644) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure for the video device with the greatest pixel depth.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetNextDevice (page 2645) Deprecated in Mac OS X v10.4
Returns a handle to the next GDevice structure in the device list. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Hiding and Showing Cursors

InitCursor (page 2671)
Sets the cursor to the standard arrow and makes the cursor visible.

HideCursor (page 2668)
Hides the cursor if it is visible on the screen.

ObscureCursor (page 2730)
Hides the cursor until the next time the user moves the mouse.

ShieldCursor (page 2813)
Hides the cursor in a rectangle.

ShowCursor (page 2813)
Displays a cursor hidden by the HideCursor or ShieldCursor functions.

Managing a Color Graphics Pen

PenPixPat (page 2747) Deprecated in Mac OS X v10.4
Sets the pixel pattern used by the graphics pen in the current color graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Managing an Offscreen Graphics World’s Pixel Image

GetPixBaseAddr (page 2648)
Obtains a pointer to an offscreen pixel map.

AllowPurgePixels (page 2573) Deprecated in Mac OS X v10.4
Makes the base address for an offscreen pixel image purgeable. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetGWorldPixMap (page 2642) Deprecated in Mac OS X v10.4
Obtains the pixel map created for an offscreen graphics world. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetPixelsState (page 2651) Deprecated in Mac OS X v10.4
Saves the current information about the memory allocated for an offscreen pixel image. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LockPixels (page 2704) Deprecated in Mac OS X v10.4
Prevents the base address for an offscreen pixel image from being moved while you draw into or
copy from its pixel map. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

NoPurgePixels (page 2729) Deprecated in Mac OS X v10.4
Prevents the Memory Manager from purging the base address for an offscreen pixel image. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixMap32Bit (page 2749) Deprecated in Mac OS X v10.4
Determines whether a pixel map requires 32-bit addressing mode for access to its pixel image.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPixelsState (page 2799) Deprecated in Mac OS X v10.4
Restores an offscreen pixel image to the state that you saved with the GetPixelsState function.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

UnlockPixels (page 2829) Deprecated in Mac OS X v10.4
Allows the Memory Manager to move the base address for the offscreen pixel map that you specify
in the pm parameter. (Deprecated. Use Quartz 2D instead; see Quartz ProgrammingGuide forQuickDraw
Developers.)

Managing Bitmaps, Port Rectangles, and Clipping Regions

GetClip (page 2635)
Saves the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

SetClip (page 2791)
Changes the clipping region of the current graphics port (basic or color) to a region you specify.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

BitMapToRegion (page 2576) Deprecated in Mac OS X v10.4
Converts a bitmap or pixel map to a region. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

ClipRect (page 2580) Deprecated in Mac OS X v10.4
Changes the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

MovePortTo (page 2711) Deprecated in Mac OS X v10.4
Changes the position of the port rectangle of the current graphics port (basic or color). (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PortSize (page 2751) Deprecated in Mac OS X v10.4
Changes the size of the port rectangle of the current graphics port (basic or color). (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2556 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ScrollRect (page 2784) Deprecated in Mac OS X v10.4
Scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color graphics port’s
pixel map). (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SetOrigin (page 2797) Deprecated in Mac OS X v10.4
Changes the coordinates of the window origin of the port rectangle of the current graphics port (basic
or color). (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDrawDevelopers.)

SetPortBits (page 2801) Deprecated in Mac OS X v10.4
Sets the bitmap for the current basic graphics port. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Managing Color Tables

GetCTSeed (page 2638) Deprecated in Mac OS X v10.4
Obtains a unique seed value for a color table created by your application. This function is used by
system software and your application should not need to call it. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

ProtectEntry (page 2752) Deprecated in Mac OS X v10.4
Adds protection to or removes protection from an entry in the current GDevice data structure’s color
table. This function is used by system software and your application should not need to call it.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

ReserveEntry (page 2777) Deprecated in Mac OS X v10.4
Reserves or removes reservation from an entry in the current GDevice data structure’s color table.
This function is used by system software and your application should not need to call it. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

RestoreEntries (page 2778) Deprecated in Mac OS X v10.4
Restores a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

SaveEntries (page 2781) Deprecated in Mac OS X v10.4
Saves a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

SetEntries (page 2794) Deprecated in Mac OS X v10.4
Sets a group of color table entries for the current GDevice data structure. This function is used by
system software and your application should not need to call it. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Managing Colors

Color2Index (page 2583) Deprecated in Mac OS X v10.4
Obtains the index of the best available approximation for a given color in the color table of the current
GDevice data structure. This function is used only by system software. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetSubTable (page 2667) Deprecated in Mac OS X v10.4
Searches one color table for the best matches to colors in another color table. Your application should
not need to call this function; it is used by system software only. (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Index2Color (page 2670) Deprecated in Mac OS X v10.4
Obtains the RGBColor data structure corresponding to an index value in the color table of the current
GDevice data structure. Your application should not need to call this function; it is used by system
software only. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

InvertColor (page 2675) Deprecated in Mac OS X v10.4
Finds the complement of an RGBColor data structure. This function is used only by system software.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

MakeITable (page 2706) Deprecated in Mac OS X v10.4
Generates an inverse table for a color table. Your application should not need to call this function; it
is used by system software only. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

RealColor (page 2775) Deprecated in Mac OS X v10.4
Determines whether a given RGBColor data structure exists in the current device’s color table. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Managing the Graphics Pen

GetPen (page 2646) Deprecated in Mac OS X v10.4
Determines the location of the graphics pen. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPenState (page 2647) Deprecated in Mac OS X v10.4
Determines the graphics pen’s location, size, pattern, and pattern mode. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

HidePen (page 2669) Deprecated in Mac OS X v10.4
Makes the graphics pen invisible, so that pen drawing doesn’t show on the screen. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PenMode (page 2744) Deprecated in Mac OS X v10.4
Sets the pattern mode of the graphics pen in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

PenNormal (page 2745) Deprecated in Mac OS X v10.4
Sets the size, pattern, and pattern mode of the graphics pen in the current graphics port to their initial
values. (Deprecated. Use Quartz 2D instead; see Quartz ProgrammingGuide forQuickDrawDevelopers.)

PenPat (page 2746) Deprecated in Mac OS X v10.4
Sets the bit pattern to be used by the graphics pen in the current graphics port. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PenSize (page 2747) Deprecated in Mac OS X v10.4
Sets the dimensions of the graphics pen in the current graphics port. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPenState (page 2798) Deprecated in Mac OS X v10.4
Restores the state of the graphics pen that was saved with the GetPenState function. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2558 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ShowPen (page 2814) Deprecated in Mac OS X v10.4
Changes the ink of a graphics pen from invisible to visible, making pen drawing appear on the screen.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Manipulating Points in Graphics Ports

AddPt (page 2571)
Adds the coordinates of two points.

EqualPt (page 2613)
Determines whether the coordinates of two given points are equal.

SetPt (page 2807)
Assigns two coordinates to a point.

SubPt (page 2824)
Subtracts the coordinates of one point from another.

DeltaPoint (page 2596) Deprecated in Mac OS X v10.4
Subtracts the coordinates of one point from another. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GetPixel (page 2650) Deprecated in Mac OS X v10.4
Determines whether the pixel associated with a point is black or white. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

GlobalToLocal (page 2667) Deprecated in Mac OS X v10.4
Converts the coordinates of a point from global coordinates to the local coordinates of the current
graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

LocalToGlobal (page 2703) Deprecated in Mac OS X v10.4
Converts a point’s coordinates from the local coordinates of the current graphics port (basic or color)
to global coordinates. (Deprecated. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

Obtaining a Pseudorandom Number

Random (page 2775) Deprecated in Mac OS X v10.4
Obtains a pseudorandom integer. (Deprecated. Use the Standard C Library random(3) function
instead.)

Operations on Search and Complement Functions

AddComp (page 2571) Deprecated in Mac OS X v10.4
Adds a function to the head of the current device data structure’s list of complement functions. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

AddSearch (page 2572) Deprecated in Mac OS X v10.4
Adds a function to the head of the current GDevice data structure’s list of search functions. This
function is used by system software and your application should not need to call it. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DelComp (page 2595) Deprecated in Mac OS X v10.4
Removes a custom complement function from the current GDevice data structure’s list of complement
functions. This function is used by system software and your application should not need to call it.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DelSearch (page 2595) Deprecated in Mac OS X v10.4
Removes a custom search function from the current GDevice data structure’s list of search functions.
This function is used by system software and your application should not need to call it. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetClientID (page 2790) Deprecated in Mac OS X v10.4
Sets the gdID field in the current GDevice data structure to identify this client program to its search
and complement functions. This function is used by system software and your application should not
need to call it. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Reporting Data Structure Changes to QuickDraw

CTabChanged (page 2593) Deprecated in Mac OS X v10.4
Signals QuickDraw that the content of a ColorTable structure has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDeviceChanged (page 2633) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a GDevice structure has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixPatChanged (page 2750) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a PixPat structure, including its PixMap structure or the
image in its patData field, has been modified. (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PortChanged (page 2751) Deprecated in Mac OS X v10.4
Notifies QuickDraw that the content of a GrafPort structure or CGrafPort structure, including any
of the data structures specified by handles within the structure, has been modified. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Retrieving Color QuickDraw Result Codes

QDError (page 2759) Deprecated in Mac OS X v10.4
Obtains a result code from the last applicable QuickDraw function that you called. (Deprecated. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Saving and Restoring Graphics Ports

GetPort (page 2652) Deprecated in Mac OS X v10.4
Saves the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

SetPort (page 2799) Deprecated in Mac OS X v10.4
Changes the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

2560 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

GetGWorld (page 2640)
Saves the current graphics port (basic, color, or offscreen) and the current GDevice structure.
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetGWorld (page 2796)
Changes the current graphics port (basic, color, or offscreen). (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

GetGWorldDevice (page 2641) Deprecated in Mac OS X v10.4
Obtains a handle to the GDevice structure associated with an offscreen graphics world. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Scaling and Mapping Points, Rectangles, Polygons, and Regions

MapPt (page 2708)
Maps a point in one rectangle to an equivalent position in another rectangle.

MapRect (page 2709)
Maps and scales a rectangle within one rectangle to another rectangle.

MapRgn (page 2710)
Maps and scales a region within one rectangle to another rectangle.

ScalePt (page 2782)
Scales a height and width according to the proportions of two rectangles.

MapPoly (page 2707) Deprecated in Mac OS X v10.4
Maps and scales a polygon within one rectangle to another rectangle. (Deprecated. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Miscellaneous

GetRegionBounds (page 2666)

HandleToRgn (page 2668)

IsRegionRectangular (page 2690)

IsValidRgnHandle (page 2690)

QDGetPatternOrigin (page 2762)
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDRegionToRects (page 2770)

RgnToHandle (page 2781)

CloseCursorComponent (page 2581) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CreateNewPort (page 2592) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CursorComponentChanged (page 2594) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

CursorComponentSetData (page 2594) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

deltapoint (page 2596) Deprecated in Mac OS X v10.4
(Deprecated. Use DeltaPoint (page 2596) instead.)

DisposeColorComplementUPP (page 2599) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeColorSearchUPP (page 2599) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeDeviceLoopDrawingUPP (page 2600) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeDragGrayRgnUPP (page 2600) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposePort (page 2603) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDArcUPP (page 2603) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDBitsUPP (page 2603) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDCommentUPP (page 2604) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDGetPicUPP (page 2604) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDJShieldCursorUPP (page 2604) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDLineUPP (page 2605) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDOpcodeUPP (page 2605) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDOvalUPP (page 2605) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDPolyUPP (page 2606) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDPutPicUPP (page 2606) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRectUPP (page 2606) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRgnUPP (page 2607) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDRRectUPP (page 2607) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2562 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DisposeQDStdGlyphsUPP (page 2607) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDTextUPP (page 2608) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeQDTxMeasUPP (page 2608) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

DisposeRegionToRectsUPP (page 2608) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetMaskTable (page 2644) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixBounds (page 2649) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixDepth (page 2650) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPixRowBytes (page 2652) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBackColor (page 2653) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBackPixPat (page 2653) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBitMapForCopyBits (page 2654) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortBounds (page 2654) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortChExtra (page 2655) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortClipRegion (page 2655) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortCustomXFerProc (page 2655) Deprecated in Mac OS X v10.4

GetPortFillPixPat (page 2656) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortForeColor (page 2656) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortFracHPenLocation (page 2657) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortGrafProcs (page 2657) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortHiliteColor (page 2658) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortOpColor (page 2658) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenLocation (page 2658) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetPortPenMode (page 2659) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenPixPat (page 2659) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenSize (page 2660) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPenVisibility (page 2660) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortPixMap (page 2660) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortSpExtra (page 2661) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextFace (page 2661) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextFont (page 2662) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextMode (page 2662) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortTextSize (page 2662) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetPortVisibleRegion (page 2663) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsArrow (page 2663) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsBlack (page 2663) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsDarkGray (page 2664) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsGray (page 2664) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsLightGray (page 2665) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsRandomSeed (page 2665) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsScreenBits (page 2665) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsThePort (page 2666) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GetQDGlobalsWhite (page 2666) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GrafDevice (page 2668) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeColorComplementUPP (page 2680) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2564 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

InvokeColorSearchUPP (page 2680) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeDeviceLoopDrawingUPP (page 2680) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeDragGrayRgnUPP (page 2681) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDArcUPP (page 2681) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDBitsUPP (page 2682) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDCommentUPP (page 2682) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDGetPicUPP (page 2682) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDJShieldCursorUPP (page 2683) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDLineUPP (page 2683) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDOpcodeUPP (page 2683) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDOvalUPP (page 2684) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDPolyUPP (page 2684) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDPutPicUPP (page 2685) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDRectUPP (page 2685) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDRgnUPP (page 2685) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDRRectUPP (page 2686) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDStdGlyphsUPP (page 2686) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDTextUPP (page 2686) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeQDTxMeasUPP (page 2687) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

InvokeRegionToRectsUPP (page 2687) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortClipRegionEmpty (page 2687) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortColor (page 2688) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

IsPortOffscreen (page 2688) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortPictureBeingDefined (page 2688) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortPolyBeingDefined (page 2689) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortRegionBeingDefined (page 2689) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsPortVisibleRegionEmpty (page 2689) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

IsValidPort (page 2690) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.5
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetCursorNew (page 2693) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetDeviceList (page 2694) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetFractEnable (page 2694) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetHiliteMode (page 2694) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetHiliteRGB (page 2695) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetLastFOND (page 2695) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetLastSPExtra (page 2695) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetMainDevice (page 2696) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetQDColors (page 2696) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetScrHRes (page 2696) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetScrVRes (page 2697) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetTheGDevice (page 2697) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthListHand (page 2697) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthPtr (page 2698) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMGetWidthTabHandle (page 2698) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetCursorNew (page 2698) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2566 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetDeviceList (page 2699) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetFractEnable (page 2699) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetHiliteMode (page 2699) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetHiliteRGB (page 2700) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetLastFOND (page 2700) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetLastSPExtra (page 2700) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetMainDevice (page 2701) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetQDColors (page 2701) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetScrHRes (page 2701) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetScrVRes (page 2702) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetTheGDevice (page 2702) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthListHand (page 2702) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthPtr (page 2703) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

LMSetWidthTabHandle (page 2703) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewColorComplementUPP (page 2713) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewColorSearchUPP (page 2713) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewDeviceLoopDrawingUPP (page 2713) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewDragGrayRgnUPP (page 2714) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewGWorldFromPtr (page 2718) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDArcUPP (page 2721) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDBitsUPP (page 2721) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDCommentUPP (page 2721) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

NewQDGetPicUPP (page 2722) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDJShieldCursorUPP (page 2722) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDLineUPP (page 2722) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDOpcodeUPP (page 2723) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDOvalUPP (page 2723) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDPolyUPP (page 2723) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDPutPicUPP (page 2724) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRectUPP (page 2724) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRgnUPP (page 2724) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDRRectUPP (page 2725) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDStdGlyphsUPP (page 2725) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDTextUPP (page 2725) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewQDTxMeasUPP (page 2726) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

NewRegionToRectsUPP (page 2726) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OffscreenVersion (page 2730) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OpenCursorComponent (page 2735) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDAddRectToDirtyRegion (page 2755) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDAddRegionToDirtyRegion (page 2756) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDDisplayWaitCursor (page 2757) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDDisposeRegionBits (page 2757) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetCursorData (page 2761) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.5
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGetDirtyRegion (page 2762) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2568 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDGetPictureBounds (page 2762) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalPoint (page 2763) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalRect (page 2763) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDGlobalToLocalRegion (page 2764) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsNamedPixMapCursorRegistered (page 2764) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsPortBufferDirty (page 2764) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDIsPortBuffered (page 2765) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalPoint (page 2765) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalRect (page 2765) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDLocalToGlobalRegion (page 2766) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDRegisterNamedPixMapCursor (page 2770) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDRestoreRegionBits (page 2771) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSaveRegionBits (page 2771) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetCursorScale (page 2772) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetDirtyRegion (page 2772) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetNamedPixMapCursor (page 2772) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSetPatternOrigin (page 2773) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapPort (page 2773) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapPortTextFlags (page 2773) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDSwapTextFlags (page 2774) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

QDUnregisterNamedPixMapCursor (page 2774) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SectRegionWithPortClipRegion (page 2786) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions by Task 2569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SectRegionWithPortVisibleRegion (page 2786) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetCursorComponent (page 2793) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortBackPixPat (page 2800) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortBounds (page 2801) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortClipRegion (page 2801) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortCustomXFerProc (page 2802) Deprecated in Mac OS X v10.4

SetPortFillPixPat (page 2802) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortFracHPenLocation (page 2803) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortGrafProcs (page 2803) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortOpColor (page 2803) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenMode (page 2804) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenPixPat (page 2804) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortPenSize (page 2805) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextFace (page 2806) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextFont (page 2806) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextMode (page 2806) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortTextSize (page 2807) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetPortVisibleRegion (page 2807) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDError (page 2808) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDGlobalsArrow (page 2808) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SetQDGlobalsRandomSeed (page 2809) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

StdOpcode (page 2819) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2570 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

StuffHex (page 2823) Deprecated in Mac OS X v10.4
Sets byte values into memory. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

SwapPortPicSaveHandle (page 2824) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SwapPortPolySaveHandle (page 2825) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

SwapPortRegionSaveHandle (page 2825) Deprecated in Mac OS X v10.4
(Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions

AddComp
Adds a function to the head of the current device data structure’s list of complement functions. This function
is used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AddComp (
 ColorComplementUPP compProc
);

Parameters
compProc

A pointer to your complement function, ColorComplementProcPtr (page 2834).

Discussion
AddComp creates and allocates a CProcRec (page 2852) data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AddPt
Adds the coordinates of two points.

void AddPt (
 Point src,
 Point *dst
);

Parameters
src

A point, the coordinates of which are to be added to the point in the dstPt parameter.

Functions 2571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dst
A pointer to a point, the coordinates of which are to be added to the point in the srcPt parameter.
On return, this value contains the result of adding the coordinates of the points you supplied in the
srcPt and dstPt parameters.

Discussion
The AddPt function adds the coordinates of the point specified in the srcPt parameter to the coordinates
of the point specified in the dstPt parameter, and returns the result in the dstPt parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

AddSearch
Adds a function to the head of the current GDevice data structure’s list of search functions. This function is
used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AddSearch (
 ColorSearchUPP searchProc
);

Parameters
searchProc

A pointer to your custom search function, ColorSearchProcPtr (page 2834).

Discussion
AddSearch creates and allocates an SProcRec (page 2883) data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AllocCursor
Reallocates cursor memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

2572 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void AllocCursor (
 void
);

Discussion
Under normal circumstances, you should never need to use this function, since Color QuickDraw handles
reallocation of cursor memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

AllowPurgePixels
Makes the base address for an offscreen pixel image purgeable. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void AllowPurgePixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map.

Discussion
The AllowPurgePixels function allows the Memory Manager to free the memory it occupies if available
memory space becomes low. By default, NewGWorld creates an unpurgeable base address for an offscreen
pixel image.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap (page 2642) function. Then supply
this handle for the pm parameter of AllowPurgePixels.

Your application should call the LockPixels (page 2704) function before drawing into or copying from an
offscreen pixel map. If the Memory Manager has purged the base address for its pixel image, LockPixels
returns FALSE. In that case either your application should use the UpdateGWorld (page 2831) function to
begin reconstructing the offscreen pixel image, or it should draw directly to an onscreen graphics port.

Only unlocked memory blocks can be made purgeable. If you use LockPixels, you must use the
UnlockPixels function before calling AllowPurgePixels.

Special Considerations

The AllowPurgePixels function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QDOffscreen.h

AngleFromSlope
Converts a slope value to an angle value.

short AngleFromSlope (
 Fixed slope
);

Parameters
slope

The slope, defined as Dx/Dy, which is the horizontal change divided by the vertical change between
any two points on a line with the slope.

Return Value
The angle corresponding to the slope specified in the slope parameter treated MOD 180. Angles are defined
in clockwise degrees from 12 o’clock. The negative y-axis is defined as being at 12 o’clock, and the positive
y-axis at 6 o’clock. The x-axis is defined as usual, with the positive side defined as being at 3 o’clock.

Special Considerations

The AngleFromSlope function is most useful when you require speed more than accuracy in performing
the calculation. The integer result is within 1 degree of the correct answer, but not necessarily within half a
degree.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BackColor
Changes a basic graphics port’s background color. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void BackColor (
 long color
);

Parameters
color

One of eight color values. See “Color Constants” (page 2885).

Discussion
The background color is the color of the pixels in the bitmap wherever no drawing has taken place. By default
the background color of a GrafPort is white.

The BackColor function sets the background color for the current graphics port to the color that you specify
in the color parameter. When you draw with the patCopy and srcCopy transfer modes, for example, white
pixels are drawn in the color you specify with BackColor.

2574 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

All nonwhite colors appear as black on black-and-white screens. Before you use BackColor, use the
DeviceLoop function to determine the color characteristics of the current screen.

Special Considerations

The BackColor function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Version Notes
In System 7, use the Color QuickDraw function RGBBackColor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BackPat
Changes the bit pattern used as the background pattern by the current graphics port. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void BackPat (
 const Pattern *pat
);

Parameters
pat

A bit pattern, as defined by a Pattern (page 2866) structure.

Discussion
The BackPat function sets the bit pattern defined in the Pattern structure, which you specify in the pat
parameter, to be the background pattern. (The standard bit patterns white, black, gray, ltGray, and
dkGray are predefined; the initial background pattern for the graphics port is white.) This pattern is stored
in the bkPat field of a GrafPort structure.

The BackPat function also sets a bit pattern for the background color in a color graphics port. The BackPat
function creates a handle, of type PixPatHandle, for the bit pattern and stores this handle in the bkPixPat
field of the CGrafPort structure. As in basic graphics ports, Color QuickDraw draws patterns in color graphics
ports at the time of drawing, not at the time you use PenPat to set the pattern.

To define your own patterns, you typically create pattern, ‘PAT’, or pattern list, ‘PAT#’, resources.

Special Considerations

The BackPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

BackPixPat
Assigns a pixel pattern as the background pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void BackPixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to use as the background pattern.

Discussion
Setting the background pattern allows the ScrollRect function and the shape-erasing functions (for
example, EraseRect) to fill the background with a colored patterned “ink.”

The BackPixPat function is similar to the basic QuickDraw function BackPat, except that you pass
BackPixPat a handle to a multicolored pixel pattern instead of a bit pattern.

The handle to the pixel pattern is stored in the bkPixPat field of the CGrafPort structure, therefore, you
should not dispose of this handle since QuickDraw removes all references to your pattern from an existing
graphics port when you dispose of it.

If you use BackPixPat to set a background pixel pattern in a basic graphics port, the data in the pat1Data
field of the PixPat (page 2871) structure is placed into the bkPat field of the GrafPort structure.

To define your own pixel pattern, create a pixel pattern resource, x is described on 'ppat', or use the
NewPixPat (page 2720) function. To set the background pattern to a bit pattern, you can also use the QuickDraw
function, BackPat.

Special Considerations

The BackPixPat function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

BitMapToRegion
Converts a bitmap or pixel map to a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

2576 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OSErr BitMapToRegion (
 RgnHandle region,
 const BitMap *bMap
);

Parameters
region

A handle to a region to hold the converted BitMap or PixMap structure. This must be a valid region
handle created with the NewRgn function. The old region contents are lost.

bMap
A pointer to a BitMap or PixMap structure to be converted. If you supply a PixMap structure, its pixel
depth must be 1.

Return Value
A result code.

Discussion
The BitMapToRegion function converts a given BitMap or PixMap structure to a region. Pixels are added
to the region where the corresponding entries in the bitmap have a value of 1. You would generally use this
region later for drawing operations.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CalcCMask
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CalcCMask (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 const RGBColor *seedRGB,
 ColorSearchUPP matchProc,
 long matchData
);

Parameters
srcBits

The source image. If the image is in a pixel map, you must coerce its PixMap structure to a BitMap
structure.

dstBits
The destination image. The CalcCMask function returns the generated bitmap mask in this parameter.
You can then use this mask with the CopyBits, CopyMask, and CopyDeepMask functions.

srcRect
The rectangle of the source image.

Functions 2577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dstRect
The rectangle of the destination image.

seedRGB
An RGBColor structure specifying the color for pixels that should not be filled.

matchProc
An optional matching function.

matchData
Data for the optional matching function.

Discussion
Specify a source image in the srcBits parameter and in the srcRect parameter, specify a rectangle within
that source image. Starting from the edges of this rectangle, CalcCMask calculates which pixels cannot be
filled. By default, CalcCMask returns 1’s in the mask to indicate which pixels have the exact color that you
specify in the seedRGB parameter and which pixels are enclosed by shapes whose outlines consist entirely
of pixels with this color.

For instance, if the source image in srcBits contains a dark blue rectangle on a red background, and your
application sets seedRGB equal to dark blue, then CalcCMask returns a mask with 1’s in the positions
corresponding to the edges and interior of the rectangle, and the 0’s outside of the rectangle.

If you set the matchProc and matchData parameters to 0, CalcCMask uses the exact color specified in the
RGBColor structure that you supply in the seedRGB parameter. You can customize CalcCMask by writing
your own color search function and pointing to it in the matchProc parameter. As with SeedCFill, you
can then use the matchData parameter in any manner useful for your application.

The CalcCMask function does not scale so the source and destination rectangles must be the same size.
Calls to CalcCMask are not clipped to the current port and are not stored into QuickDraw pictures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CalcMask
Determines where filling will not occur when filling from the outside of a rectangle. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CalcMask (
 const void *srcPtr,
 void *dstPtr,
 short srcRow,
 short dstRow,
 short height,
 short words
);

Parameters
srcPtr

A pointer to the source bit image.

2578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dstPtr
A pointer to the destination bit image.

srcRow
Row width of the source bitmap.

dstRow
Row width of the destination bitmap.

height
Height (in pixels) of the fill rectangle.

words
Width (in words) of the fill rectangle.

Discussion
The CalcMask function produces a bit image with 1’s in all pixels to which paint could not flow from any of
the outer edges of the rectangle. Use this bit image as a mask with the CopyBits or CopyMask function. A
hollow object produces a solid mask, but an open object produces a mask of itself.

As with the SeedFill function, point to the bit image you want to fill with the srcPtr parameter, which
can point to the image’s base address or a word boundary within the image. Specify a pixel height and word
width with the height and words parameters to define a fill rectangle that delimits the area you want to
fill. The fill rectangle can be the entire bit image or a subset of it. Point to a destination image with the dstPtr
parameter. Specify the row widths of the source and destination bitmaps (their rowBytes values) with the
srcRow and dstRow parameters. (The bitmaps can be different sizes, but they must be large enough to
contain the fill rectangle at the origins specified by srcPtr and dstPtr.)

Calls to CalcMask are not clipped to the current port and are not stored into QuickDraw pictures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClipCGContextToRegion
Sets the clipping path in a Quartz 2D graphics context, using a clipping region. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSStatus ClipCGContextToRegion (
 CGContextRef gc,
 const Rect *portRect,
 RgnHandle region
);

Parameters
context

A Quartz context associated with a graphics port. You can obtain such a context by calling
QDBeginCGContext (page 2756).

portRect
The portRect for the graphics port associated with the context.

Functions 2579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

region
A region that represents the desired clipping path.

Return Value
A result code. If noErr, the clipping path is now the region-based path.

Discussion
This function sets the clipping path in the specified context to closely approximate the geometry of the
specified region.

Unlike clipping in Quartz 2D, this function does not intersect the new region-based path with the current
clipping path—the new path simply replaces the current clipping path.

You should use this function only when absolutely necessary—it’s relatively inefficient when compared to
Quartz 2D clipping functions such as CGContextClipToRect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClipRect
Changes the clipping region of the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ClipRect (
 const Rect *r
);

Parameters
r

A pointer to a rectangle for the boundary of the new clipping region. The ClipRect function changes
the clipping region of the current graphics port to a region that’s equivalent to this rectangle. ClipRect
doesn’t change the region handle, but it affects the clipping region itself.

Discussion
Since ClipRect makes a copy of the given rectangle, any subsequent changes you make to that rectangle
do not affect the clipping region of the port.

The ClipRect function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CloseCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr CloseCursorComponent (
 ComponentInstance ci
);

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClosePicture
Completes the collection of drawing commands and picture comments that define your picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ClosePicture (
 void
);

Discussion
The ClosePicture function stops collecting drawing commands and picture comments for the currently
open picture. You should perform one and only one call to ClosePicture for every call to the OpenCPicture
(or OpenPicture) function.

The ClosePicture function calls the ShowPen function, balancing the call made by OpenCPicture (or
OpenPicture) to the HidePen function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ClosePoly
Completes the collection of lines that defines a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void ClosePoly (
 void
);

Discussion
The ClosePoly function stops collecting line-drawing commands for the currently open polygon and
computes the polyBBox field of the Polygon (page 2873) structure. You should call ClosePoly only once
for every call to the OpenPoly function.

The ClosePoly function uses the ShowPen function, balancing the call to the HidePen function made by
the OpenPoly function.

Special Considerations

The ClosePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CloseRgn
Organizes a collection of lines and shapes into a region definition. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CloseRgn (
 RgnHandle dstRgn
);

Parameters
dstRgn

The handle to the region to close. This handle should be a region handle returned by the NewRgn (page
2726) function.

Discussion
The CloseRgn function stops the collection of lines and framed shapes, organizes them into a region
definition, and saves the result in the region whose handle you pass in the dstRgn parameter.

The CloseRgn function does not create the destination region; you must have already allocated space for
it by using the OpenRgn function. The CloseRgn function calls the ShowPen function, balancing the call to
the HidePen function made by OpenRgn.

When you no longer need the memory occupied by the region, use the DisposeRgn (page 2609) function.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

2582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw. When you structure
drawing operations in an open region, the resulting region description may overflow this limit. Should this
happen in Color QuickDraw, the QDError function returns the result code regionTooBigError. Since the
resulting region is potentially corrupt, the CloseRgn function returns an empty region if it detects QDError
has returned regionTooBigError.

The CloseRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Color2Index
Obtains the index of the best available approximation for a given color in the color table of the current
GDevice data structure. This function is used only by system software. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

long Color2Index (
 const RGBColor *myColor
);

Parameters
myColor

A pointer to the RGB color value to be approximated.

Return Value
The index of the best approximation for the given color that is available in the color table of the current
GDevice data structure. Note that Color2Index returns a long integer, in which the low-order word is the
index value; the high-order word contains zeros.

Discussion
You should not call Color2Index from within a custom search function (described in
ColorSearchProcPtr (page 2834)).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ColorBit
Sets the foreground color for all printing in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ColorBit (
 short whichBit
);

Parameters
whichBit

An integer specifying the plane to draw into.

Discussion
The ColorBit function is called by printing software for a color printer (or other color-imaging software) to
set the GrafPort structure’s colorBit field to the value in the whichBit parameter. This value tells
QuickDraw which plane of the color picture to draw into. QuickDraw draws into the plane corresponding to
the bit number specified by the whichBit parameter. Since QuickDraw can support output devices that
have up to 32 bits of color information per pixel, the possible range of values for whichBit is 0 through 31.
The initial value of the colorBit field is 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyBits
Copies a portion of a bitmap or a pixel map from one graphics port or offscreen graphics world into another
graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void CopyBits (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

The source BitMap structure.

dstBits
The destination BitMap structure.

srcRect
The source rectangle.

dstRect
The destination rectangle.

2584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

mode
One of the eight source modes in which the copy is to be performed. See “Source, Pattern, and
Arithmetic Transfer Mode Constants” (page 2898). The CopyBits function always dithers images when
shrinking them between pixel maps on direct devices.

When transferring pixels from a source pixel map to a destination pixel map, color QuickDraw interprets
the source mode constants differently than basic QuickDraw does.

When you use CopyBits on a computer running color QuickDraw, you can also specify one of the
transfer modes in the mode parameter.

maskRgn
A region to use as a clipping mask. You can pass a region handle to specify a mask region the resulting
image is always clipped to this mask region and to the boundary rectangle of the destination bitmap.
If the destination bitmap is the current graphics port’s bitmap, it is also clipped to the intersection of
the graphics port’s clipping region and visible region. If you do not want to clip to a masking region,
just pass NULL for this parameter.

Discussion
The CopyBits function transfers any portion of a bitmap between two basic graphics ports, or any portion
of a pixel map between two color graphics ports. Use CopyBits to move offscreen graphic images into an
onscreen window, to blend colors for the image in a pixel map, and to shrink and expand images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the dstBits parameter.
When copying images between color graphics ports, you must coerce each CGrafPort structure to a
GrafPort structure, dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits
and dstBits parameters. If your application copies a pixel image from a color graphics port called
MyColorPort, for example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits
parameter. In a CGrafPort structure, the high 2 bits of the portVersion field are set. This field, which
shares the same position in a CGrafPort structure as the portBits.rowBytes field in a GrafPort structure,
indicates to CopyBits that you have passed it a handle to a pixel map rather than a bitmap.

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyBits scales the source image to fit the destination.
If the bit image is a circle in a square source rectangle, and the destination rectangle is not square, the bit
image appears as an oval in the destination. When you specify rectangles in the srcRect and dstRect
parameters, use the local coordinate systems of, respectively, the source and destination graphics ports.

The CopyDeepMask (page 2586) function combines the functions of the CopyBits and CopyMask functions.

Special Considerations

When you use the CopyBits function to transfer an image between pixel maps, the source and destination
images may be of different pixel depths, of different sizes, and they may have different color tables. However,
CopyBits assumes that the destination pixel map uses the same color table as the color table for the current
GDevice structure. (This is because the Color Manager requires an inverse table for translating the color
table from the source pixel map to the destination pixel map.)

The CopyBits function applies the foreground and background colors of the current graphics port to the
image in the destination pixel map (or bitmap), even if the source image is a bitmap. This causes the foreground
color to replace all black pixels in the destination and the background color to replace all white pixels. To
avoid unwanted coloring of the image, use the RGBForeColor function to set the foreground to black and
use the RGBBackColor function to set the background to white before calling CopyBits.

The source bitmap or pixel map must not occupy more memory than half the available stack space. The stack
space required by CopyBits is roughly five times the value of the rowBytes field of the source pixel map:
one rowBytes value for the pixel map (or bitmap), an additional rowBytes value for dithering, another

Functions 2585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

rowBytes value when stretching or shrinking the source pixel map into the destination, another rowBytes
value for any color map changing, and a fifth additional rowBytes value for any color aliasing. If there is
insufficient memory to complete a CopyBits operation in Color QuickDraw, the QDError function returns
the result code –143.

If you use CopyBits to copy between two graphics ports that overlap, you must first use the LocalToGlobal
function to convert to global coordinates, and then specify the global variable screenBits for both the
srcBits and dstBits parameters.

The CopyBits function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

If you are reading directly from a NuBus video card with a base address of Fs00000 and there is not a card
in the slot (s–1) below it, CopyBits reads addresses less than the base address of the pixel map. This causes
a bus error. To work around the problem, remap the baseAddr field of the pixel map in your video card to
at least 20 bytes above the NuBus boundary; an address link of Fs000020 precludes the problem.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyDeepMask
Uses a mask when copying bitmaps or pixel maps between graphics ports (or from an offscreen graphics
world into a graphics port). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void CopyDeepMask (
 const BitMap *srcBits,
 const BitMap *maskBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *maskRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

The source BitMap structure.

maskBits
The masking BitMap structure.

dstBits
The destination BitMap structure. The result is clipped to the mask region that you specify in the
maskRgn parameter, and to the boundary rectangle that you specify in the dstRect parameter.

srcRect
The source rectangle.

2586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

maskRect
The mask rectangle. This must be the same size as the rectangle passed in the srcRect parameter.
The rectangle you pass here selects the portion of the bitmap or pixel map that you specify in the
maskBits parameter to use as the mask.

dstRect
The destination rectangle.

mode
The source mode.

maskRgn
The mask clipping region. If you do not want to clip to the mask region, specify NULL.

Discussion
CopyDeepMask combines the effects of the CopyBits and CopyMask functions. You specify a mask to
CopyDeepMask so that it transfers the source image to the destination image only where the bits of the
mask are set to 1. Use CopyDeepMask to move offscreen graphic images into an onscreen window, to blend
colors for the image in a pixel map, and to shrink and expand images.

When copying images between color graphics ports, you must coerce each port’s CGrafPort structure to
a GrafPort structure, dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits
and dstBits parameters. If your application copies a pixel image from a color graphics port called
MyColorPort, for example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits
parameter. The transfer can be performed in any of the transfer modes—with or without adding the
ditherCopy constant—that are available to CopyBits (page 2584).

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyDeepMask scales the source image to fit the
destination. When you specify rectangles in the srcRect and dstRect parameters, use the local coordinate
systems of, respectively, the source and destination graphics ports.

If you specify pixel maps to CopyDeepMask, they may range from 1 to 32 pixels in depth. The pixel depth of
the mask that you specify in the maskBits parameter is applied as a filter between the source and destination
pixel maps that you specify in the srcBits and dstBits parameters. A black mask pixel value means that
the copy operation is to take the source pixel a white value means that the copy operation is to take the
destination pixel. Intermediate values specify a weighted average, which is calculated on a color component
basis. For each pixel’s color component value, the calculation is

(1 – mask) x source + (mask) x destination

Thus high mask values for a pixel’s color component reduce that component’s contribution from the source
PixMap structure.

Special Considerations

As with the CopyMask function, calls to CopyDeepMask are not recorded in pictures and do not print.

See the list of special considerations for CopyBits (page 2584); these considerations also apply to
CopyDeepMask.

The CopyDeepMask function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyMask
Copies a bit or pixel image from one graphics port or offscreen graphics world into another graphics port
only where the bits in a mask are set to 1. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void CopyMask (
 const BitMap *srcBits,
 const BitMap *maskBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *maskRect,
 const Rect *dstRect
);

Parameters
srcBits

The source BitMap structure.

maskBits
The mask BitMap structure.

dstBits
The destination BitMap structure.

srcRect
The source rectangle.

maskRect
The mask rectangle. This must be the same size as the rectangle passed in the srcRect parameter.
The rectangle you pass in this parameter selects the portion of the bitmap or pixel map that you
specify in the maskBits parameter to use as the mask.

dstRect
The destination rectangle.

Discussion
The CopyMask function copies the source bitmap or pixel map that you specify in the srcBits parameter
to a destination bitmap or pixel map that you specify in the dstBits parameter—but only where the bits
of the mask bitmap or pixel map that you specify in the maskBits parameter are set to 1. When copying
images between color graphics ports, you must coerce each CGrafPort structure to a GrafPort structure,
dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits and dstBits
parameters. If your application copies a pixel image from a color graphics port called MyColorPort, for
example, you could specify (* GrafPtr(MyColorPort)).portBits in the srcBits parameter.

Using the srcRect and dstRect parameters, you can specify identically or differently sized source and
destination rectangles; for differently sized rectangles, CopyMask scales the source image to fit the destination.
When you specify rectangles in the srcRect and dstRect parameters, use the local coordinate systems of,
respectively, the source and destination graphics ports.

2588 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

If you specify pixel maps to CopyMask, they may range from 1 to 32 pixels in depth. The pixel depth of the
mask that you specify in the maskBits parameter is applied as a filter between the source and destination
pixel maps that you specify in the srcBits and dstBits parameters. A black mask pixel value means that
the copy operation is to take the source pixel a white value means that the copy operation is to take the
destination pixel. Intermediate values specify a weighted average, which is calculated on a color component
basis. For each pixel’s color component value, the calculation is

(1 – mask) x source + (mask) x destination

Thus high mask values for a pixel’s color component reduce that component’s contribution from the source
PixMap structure.

Use the bitmap returned by CalcMask (page 2578) as the mask in order to implement a mask copy similar to
that performed by the MacPaint lasso tool. In the same way, you can use the pixel map returned by the
CalcCMask function.

The CopyDeepMask (page 2586) function combines the functions of the CopyMask and CopyBits functions.

Special Considerations

Calls to CopyMask are not recorded in pictures and do not print.

See the list of special considerations for CopyBits (page 2584); these considerations also apply to CopyMask.

The CopyMask function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyPixMap
Duplicates a PixMap structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void CopyPixMap (
 PixMapHandle srcPM,
 PixMapHandle dstPM
);

Parameters
srcPM

A handle to the PixMap structure to be copied.

dstPM
On return, a handle to the duplicated PixMap structure.

Functions 2589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Typically, you do not need to call this function in your application code, because the CopyPixMap function
copies the contents of the source PixMap structure to the destination PixMap structure. The contents of the
color table are copied, so the destination PixMap has its own copy of the color table. Because the baseAddr
field of the PixMap structure is a pointer, the pointer, but not the image itself, is copied.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyPixPat
Copies the contents of one pixel pattern to another. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void CopyPixPat (
 PixPatHandle srcPP,
 PixPatHandle dstPP
);

Parameters
srcPP

A handle to a source pixel pattern, the contents of which you want to copy.

dstPP
A handle to a destination pixel pattern, into which you want to copy the contents of the pixel pattern
in the srcPP parameter.

Discussion
The CopyPixPat function copies all of the fields in the source PixPat (page 2871) structure, including the
contents of the data handle, expanded data handle, expanded map, pixel map handle, and color table.

Generally, your application should create a pixel pattern in a 'ppat' resource, instead of using this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CopyRgn
Makes a copy of a region.

2590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void CopyRgn (
 RgnHandle srcRgn,
 RgnHandle dstRgn
);

Parameters
srcRgn

A handle to the region to copy.

dstRgn
A handle to the region to receive the copy.

Discussion
The CopyRgn function copies the mathematical structure of the region whose handle you pass in the srcRgn
parameter into the region whose handle you pass in the dstRgn parameter; that is, CopyRgn makes a
duplicate copy of srcRgn. When calling CopyRgn, pass handles that have been returned by the NewRgn
function in the srcRgn and dstRgn parameters.

Once this is done, the region indicated by srcRgn may be altered (or even disposed of) without affecting
the region indicated by dstRgn. The CopyRgn function does not create the destination region; space must
already have been allocated for it by using the NewRgn function.

Special Considerations

The CopyRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CreateCGContextForPort
Creates a Quartz 2D drawing environment associated with a graphics port. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Not Recommended

OSStatus CreateCGContextForPort (
 CGrafPtr inPort,
 CGContextRef *outContext
);

Parameters
port

A color graphics port in which to draw. Offscreen graphics worlds with pixel depths of 1, 2, 4, and 8
are not supported. When using Quartz 2D to draw in a offscreen graphics world, alpha information
is always ignored. Printing ports are not supported—if you specify a printing port, this function does
nothing and returns a non-zero result code.

Functions 2591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

contextPtr
A pointer to your storage for a Quartz context. Upon completion, contextPtr points to a context
associated with the port. The context matches the port’s pixel depth, width, and height. Otherwise
the context is in a default state and does not necessarily match other port attributes such as foreground
color, background color, or clip region.

You should release this context when you no longer need it.

Return Value
A result code. If noErr, the context was successfully created.

Discussion
This function is not recommended in Mac OS X version 10.1 and later. For information about its replacement,
see QDBeginCGContext (page 2756).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CreateNewPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CGrafPtr CreateNewPort (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CreateNewPortForCGDisplayID
Creates a graphics port associated with a display. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

2592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CGrafPtr CreateNewPortForCGDisplayID (
 UInt32 inCGDisplayID
);

Parameters
displayID

A display identifier. If the identifier is not valid, the main display is used instead. For information about
finding displays, see Quartz Display Services Reference.

Return Value
A new display port. The portBounds rectangle is the same size as the display. When you are finished using
the port, you should call DisposePort (page 2603) to release it.

Discussion
This function returns a graphics port used to draw directly to a display. The pixel map for the new port is
taken from the GDevice record corresponding to the display. There is no back buffer associated with the
port.

Before calling this function, you should capture the display. For information about capturing displays, see
Quartz Display Services Reference.

You should not call this function and then attempt to create a Quartz drawing environment inside the port.
Instead, applications using Quartz 2D can callCGDisplayGetDrawingContext (page 1497) to obtain a context
suitable for drawing directly to a captured display.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CTabChanged
Signals QuickDraw that the content of a ColorTable structure has been modified. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void CTabChanged (
 CTabHandle ctab
);

Parameters
ctab

A handle to the ColorTable structure changed by your application.

Discussion
The CTabChanged function calls the function GetCTSeed and gets a new, unique identifier in the ctSeed
field of the ColorTable structure, and notifies QuickDraw of the change.

Your application should never need to directly modify a ColorTable structure and use the CTabChanged
function; instead, your application should use the QuickDraw functions provided for manipulating the values
in a ColorTable structure.

Functions 2593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The CTabChanged function may move or purge memory in the application heap; do not call the CTabChanged
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

CursorComponentChanged
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr CursorComponentChanged (
 ComponentInstance ci
);

Return Value
A result code.

Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

CursorComponentSetData
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr CursorComponentSetData (
 ComponentInstance ci,
 long data
);

Return Value
A result code.

Carbon Porting Notes

This function is not implemented on Mac OS X.

2594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DelComp
Removes a custom complement function from the current GDevice data structure’s list of complement
functions. This function is used by system software and your application should not need to call it. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DelComp (
 ColorComplementUPP compProc
);

Parameters
compProc

A pointer to the complement function,ColorComplementProcPtr (page 2834), to be deleted.DelComp
disposes of the chain element, but does nothing to the ProcPtr data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DelSearch
Removes a custom search function from the current GDevice data structure’s list of search functions. This
function is used by system software and your application should not need to call it. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DelSearch (
 ColorSearchUPP searchProc
);

Parameters
searchProc

A pointer to the custom search function, ColorSearchProcPtr (page 2834) to be deleted. DelSearch
disposes of the chain element, but does nothing to the ProcPtr data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DeltaPoint
Subtracts the coordinates of one point from another. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

long DeltaPoint (
 Point ptA,
 Point ptB
);

Parameters
p1

The first point.

p2
The second point, the coordinates of which are to be subtracted from the coordinates of the first
point.

Return Value
A 32-bit value that contains the differences between the coordinates of the points p1 and p2. The vertical
difference is returned in the high 16 bits and the horizontal difference is returned in the low 16 bits.

Discussion
You should not cast the result to a Point data structure. Instead, use HiWord and LoWord to obtain the
horizontal and vertical differences.

For example:

 Point pointDiff;
 SInt32 difference = DeltaPoint(p1, p2);
 pointDiff.h = LoWord(difference);
 pointDiff.v = HiWord(difference);

While DeltaPoint is supported in Carbon, you can achieve the same result in a more direct manner using
the function SubPt (page 2824).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

deltapoint
(Deprecated in Mac OS X v10.4. Use DeltaPoint (page 2596) instead.)

long deltapoint (
 Point *ptA,
 Point *ptB
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DeviceLoop
Draws images that are optimized for every screen they cross. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void DeviceLoop (
 RgnHandle drawingRgn,
 DeviceLoopDrawingUPP drawingProc,
 long userData,
 DeviceLoopFlags flags
);

Parameters
drawingRgn

A handle to the region in which you will draw; this drawing region uses coordinates that are local to
its graphics port.

drawingProc
A pointer to your own drawing function.

userData
Any additional data that you wish to supply to your drawing function.

flags
One or more members of the set of flags defined by the “ Device Loop Flags” (page 2889) data type. if
you want to use the default behavior of DeviceLoop, specify an empty set ([]) in this parameter.

Discussion
The DeviceLoop function searches for graphics devices that intersect your window’s drawing region, and
it calls your drawing function for each dissimilar video device it finds.

Because DeviceLoop provides your drawing function with the pixel depth and other attributes of each video
device, your drawing function can optimize its drawing for each video device.

See DeviceLoopDrawingProcPtr (page 2836) for a description of the drawing function you must provide
for the drawingProc parameter.

Special Considerations

The DeviceLoop function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DiffRgn
Subtracts one region from another.

void DiffRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the region to subtract from.

srcRgnB
A handle to the region to subtract.

dstRgn
On return, a handle to the region holding the resulting area. If the first source region is empty, DiffRgn
sets the destination to the empty region defined by the rectangle (0,0,0,0).

The DiffRgn function does not create the destination region; you must have already allocated
memory for it by using the NewRgn (page 2726) function.

The destination region may be one of the source regions, if desired.

Discussion
The DiffRgn procedure subtracts the region whose handle you pass in the srcRgnB parameter from the region
whose handle you pass in the srcRgnA parameter and places the difference in the region whose handle you
pass in the dstRgn parameter. If the first source region is empty, DiffRgn sets the destination to the empty
region defined by the rectangle (0,0,0,0).

The DiffRgn procedure does not create the destination region; you must have already allocated memory for
it by using the NewRgn function. The destination region may be one of the source regions, if desired.

Special Considerations

The DiffRgn function may temporarily use heap space that’s twice the size of the two input regions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeCCursor
Disposes of all structures allocated by the GetCCursor function. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeCCursor (
 CCrsrHandle cCrsr
);

Parameters
cCrsr

A handle to the color cursor to be disposed of.

2598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Use DisposeCCursor for each call to the GetCCursor (page 2635) function.

The DisposeCCursor function is also available as the DisposCCursor function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeColorComplementUPP (
 ColorComplementUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeColorSearchUPP (
 ColorSearchUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeCTable
Disposes a ColorTable structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

Functions 2599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeCTable (
 CTabHandle cTable
);

Parameters
cTable

A handle to a ColorTable structure to dispose of.

Discussion
The DisposeCTable procedure disposes of the ColorTable record whose handle you pass in the cTable
parameter.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeDeviceLoopDrawingUPP (
 DeviceLoopDrawingUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeDragGrayRgnUPP (
 DragGrayRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

2600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DisposeGDevice
Disposes of a GDevice structure, releases the space allocated for it, and disposes of all the data structures
allocated for it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void DisposeGDevice (
 GDHandle gdh
);

Parameters
gdh

A handle to the GDevice structure.

Discussion
Generally, you should never need to use this function. Color QuickDraw calls this function when appropriate.
The DisposeGDevice function is also available as the DisposGDevice function.

When your application uses the DisposeGWorld function to dispose of an offscreen graphics world,
DisposeGDevice disposes of its GDevice structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeGWorld
Disposes of all the memory allocated for an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void DisposeGWorld (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. In this parameter, pass the pointer returned to your
application by the NewGWorld function when you created the offscreen graphics world.

Discussion
The DisposeGWorld function disposes of all the memory allocated for the specified offscreen graphics world,
including the pixel map, color table, pixel image, and GDevice structure (if one was created).

Call DisposeGWorld only when your application no longer needs the pixel image associated with this
offscreen graphics world. If this offscreen graphics world was the current device, the current device is reset
to the device stored in the global variable MainDevice.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

DisposePixMap
Disposes a PixMap structure and its color table. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DisposePixMap (
 PixMapHandle pm
);

Parameters
pm

A handle to the PixMap structure to be disposed of.

Discussion
The CloseCPort function calls DisposePixMap.

Your application typically does not need to call this function. This function is also available as DisposPixMap.

If your application uses DisposePixMap, take care that it does not dispose of a PixMap structure whose
color table is the same as the current device’s CLUT.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
LiveVideoMixer2

Declared In
QuickdrawAPI.h

DisposePixPat
Releases the storage allocated to a pixel pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DisposePixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to be disposed of.

2602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The DisposePixPat function disposes of the data handle, expanded data handle, and pixel map handle
allocated to the pixel pattern that you specify in the ppat parameter.

The DisposePixPat function is also available as the DisposPixPat function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposePort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposePort (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

DisposeQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDArcUPP (
 QDArcUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeQDBitsUPP (
 QDBitsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDCommentUPP (
 QDCommentUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDGetPicUPP (
 QDGetPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2604 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeQDJShieldCursorUPP (
 QDJShieldCursorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDLineUPP (
 QDLineUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDOpcodeUPP (
 QDOpcodeUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeQDOvalUPP (
 QDOvalUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDPolyUPP (
 QDPolyUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDPutPicUPP (
 QDPutPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2606 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeQDRectUPP (
 QDRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDRgnUPP (
 QDRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDRRectUPP (
 QDRRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeQDStdGlyphsUPP (
 QDStdGlyphsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDTextUPP (
 QDTextUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void DisposeQDTxMeasUPP (
 QDTxMeasUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

DisposeRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void DisposeRegionToRectsUPP (
 RegionToRectsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawAPI.h

DisposeRgn
Releases the memory occupied by a region.

void DisposeRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to dispose. This handle should be a region handle returned by the NewRgn (page
2726) function.

Discussion
Use DisposeRgn only after you are completely through with a region.

Special Considerations

The DisposeRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

DisposeScreenBuffer
Disposes an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void DisposeScreenBuffer (
 PixMapHandle offscreenPixMap
);

Parameters
offscreenPixMap

A handle to an existing offscreen PixMap structure.

Functions 2609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Generally, applications do not need to useDisposeScreenBuffer. TheDisposeGWorld (page 2601) function
uses the DisposeScreenBuffer function when disposing of an offscreen graphics world.

The DisposeScreenBuffer function disposes of the memory allocated for the base address of an offscreen
pixel image.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

DrawPicture
Draws a picture on any type of output device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void DrawPicture (
 PicHandle myPicture,
 const Rect *dstRect
);

Parameters
myPicture

A handle to the picture to be drawn. You must access a picture through its handle.

When creating pictures, theOpenCPicture (page 2734) andOpenPicture (page 2736) functions return
their handles. You can use the GetPicture (page 2648) function to get a handle to a QuickDraw picture
stored in a 'PICT' resource. To get a handle to a QuickDraw picture stored in a 'PICT' file, you must
use File Manager functions. To get a picture stored in the scrap, use the Scrap Manager function
GetScrap to get a handle to its data and then coerce this handle to one of type PicHandle.

dstRect
A destination rectangle, specified in coordinates local to the current graphics port, in which to draw
the picture. The DrawPicture function shrinks or expands the picture as necessary to align the
borders of its bounding rectangle with the rectangle you specify in this parameter. To display a picture
at a resolution other than that at which it was created, your application should compute an appropriate
destination rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then your
application should compute the destination rectangle width and height as 1/4 of those of the picture’s
bounding rectangle. Use the GetPictInfo function to gather information about a picture. The
PictInfo structure returned by GetPictInfo returns the picture’s resolution in its hRes and vRes
fields. The sourceRect field contains the bounding rectangle for displaying the image at its optimal
resolution.

Discussion
Within the rectangle that you specify in the dstRect parameter, the DrawPicture function draws the
picture that you specify in the myPicture parameter.

2610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The DrawPicture function passes any picture comments to the StdComment function pointed to by the
commentProc field of the CQDProcs or QDProcs structure, which in turn is pointed to by the grafProcs
field of a CGrafPort or GrafPort structure. The default StdComment function provided by QuickDraw does
no comment processing whatsoever. If you want to process picture comments when drawing a picture, use
the SetStdCProcs function to assist you in changing the CQDProcs structure and use the SetStdProcs
function to assist you in changing the QDProcs structure.

Special Considerations

Always use the ClipRect function to specify a clipping region appropriate for your picture before defining
it with the OpenCPicture (or OpenPicture) function. If you do not use ClipRect to specify a clipping
region, OpenCPicture uses the clipping region specified in the current graphics port. If the clipping region
is very large (as it is when a graphics port is initialized) and you want to scale the picture, the clipping region
can become invalid when DrawPicture scales the clipping region—in which case, your picture will not be
drawn. On the other hand, if the graphics port specifies a small clipping region, part of your drawing may
be clipped when DrawPicture draws it. Setting a clipping region equal to the port rectangle of the current
graphics port always sets a valid clipping region.

When it scales, DrawPicture changes the size of the font instead of scaling the bits. However, the widths
used by bitmap fonts are not always linear. For example, the 12-point width isn’t exactly 1/2 of the 24-point
width. This can cause lines of text to become slightly longer or shorter as the picture is scaled. The difference
is often insignificant, but if you are trying to draw a line of text that fits exactly into a box (a spreadsheet cell,
for example), the difference can become noticeable to the user—most typically, at print time. The easiest
way to avoid such problems is to specify a destination rectangle that is the same size as the bounding
rectangle for the picture. Otherwise, your application may need to directly process the opcodes in the picture
instead of using DrawPicture.

You may also have disappointing results if the fonts contained in an image are not available on the user’s
system. Before displaying a picture, your application may want to use the Picture Utilities to determine what
fonts are contained in the picture, and then use Font Manager functions to determine whether the fonts are
available on the user’s system. If they are not, you can use Dialog Manager functions to display an alert box
warning the user of display problems.

If there is insufficient memory to draw a picture in Color QuickDraw, the QDError function returns the result
code noMemForPictPlaybackErr.

The DrawPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EmptyRect
Determines whether a rectangle is an empty rectangle.

Functions 2611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean EmptyRect (
 const Rect *r
);

Parameters
r

The rectangle to examine.

Return Value
TRUE if the rectangle that you specify in the r parameter is an empty rectangle, FALSE if it is not. A rectangle
is considered empty if the bottom coordinate is less than or equal to the top coordinate or if the right
coordinate is less than or equal to the left.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
SoftVDigX

Declared In
QuickdrawAPI.h

EmptyRgn
Determines whether a region is empty.

Boolean EmptyRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to test for emptiness.

Return Value
TRUE if the region whose handle you pass in the rgn parameter is an empty region or FALSE if it is not.

Discussion
The EmptyRgn function does not create an empty region. To create an empty region, you can perform any
of the following operations:

 ■ Use NewRgn (page 2726).

 ■ Pass the handle to an empty region to CopyRgn (page 2590).

 ■ Pass an empty rectangle to either SetRectRgn (page 2810) or RectRgn (page 2776).

2612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

 ■ Call CloseRgn (page 2582) without a previous call to OpenRgn (page 2737).

 ■ Call CloseRgn (page 2582) without performing any drawing after calling OpenRgn (page 2737).

 ■ Pass an empty region to OffsetRgn (page 2732).

 ■ Pass an empty region or too large an inset to InsetRgn (page 2673)

 ■ Pass two nonintersecting regions to SectRgn (page 2786).

 ■ Pass two empty regions to UnionRgn (page 2828).

 ■ Pass two identical or nonintersecting regions to DiffRgn (page 2598) or XorRgn (page 2833).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EqualPt
Determines whether the coordinates of two given points are equal.

Boolean EqualPt (
 Point pt1,
 Point pt2
);

Parameters
pt1

The first of two points to be compared.

pt2
The second of two points to be compared.

Return Value
TRUE if the coordinates of the two points are equal, or FALSE if they are not.

Discussion
The EqualPt function compares the points specified in the pt1 and pt2 parameters and returns TRUE if their
coordinates are equal or FALSE if they are not.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

EqualRect
Determines whether two rectangles are equal.

Functions 2613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean EqualRect (
 const Rect * rect1,
 const Rect * rect2
);

Parameters
rect1

The first of two rectangles to compare.

rect2
The second of two rectangles to compare.

Return Value
TRUE if the rectangles are equal, FALSE if they are not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

EqualRgn
Determines whether two regions have identical sizes, shapes, and locations.

Boolean EqualRgn (
 RgnHandle rgnA,
 RgnHandle rgnB
);

Parameters
rgnA

A handle to the first of two regions to compare.

rgnB
A handle to the second of two regions to compare.

Return Value
TRUE if the two regions are equal; FALSE if they are not. The two regions must have identical sizes, shapes,
and locations to be considered equal. Any two empty regions are always equal.

Discussion
The EqualRgn function compares the two regions whose handles you pass in the rgnA and rgnB parameters
and returns TRUE if they’re equal or FALSE if they’re not.

The two regions must have identical sizes, shapes, and locations to be considered equal. Any two empty
regions are always equal.

2614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseArc
Erases a wedge. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
Using the patCopy pattern mode, the EraseArc function draws a wedge of the oval bounded by the
rectangle that you specify in the r parameter with the background pattern for the current graphics port. As
in FrameArc (page 2629) , use the startAngle and arcAngle parameters to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseOval
Erases an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Functions 2615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void EraseOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the background pattern for the current graphics port and the patCopy pattern mode, the EraseOval
function draws the interior of an oval just inside the bounding rectangle that you specify in the r parameter.
This effectively erases the oval bounded by the specified rectangle.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ErasePoly
Erases a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void ErasePoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to erase. The OpenPoly (page 2737) function returns this handle when you
first create the polygon.

Discussion
Using the patCopy pattern mode, the ErasePoly function draws the interior of the polygon whose handle
you pass in the poly parameter with the background pattern for the current graphics port.

This function leaves the location of the graphics pen unchanged.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 2707) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

2616 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Special Considerations

The ErasePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseRect
Erases a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseRect (
 const Rect *r
);

Parameters
r

The rectangle to erase.

Discussion
Using the patCopy pattern mode, the EraseRect function draws the interior of the rectangle that you
specify in the r parameter with the background pattern for the current graphics port. This effectively erases
the rectangle, making the shape blend into the background pattern of the graphics port. For example, use
EraseRect to erase the port rectangle for a window before redrawing into the window.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

Declared In
QuickdrawAPI.h

Functions 2617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

EraseRgn
Erases a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void EraseRgn (
 RgnHandle rgn
);

Parameters
rgn

The region to erase.

Discussion
Using the patCopy pattern mode, the EraseRgn function draws the interior of the region whose handle
you pass in the rgn parameter with the background pattern for the current graphics port.

This function leaves the location of the graphics pen unchanged.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Special Considerations

The EraseRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

EraseRoundRect
Erases a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void EraseRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

2618 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the patCopy pattern mode, the EraseRoundRect function draws the interior of the rounded rectangle
bounded by the rectangle that you specify in the r parameter with the background pattern of the current
graphics port. This effectively erases the rounded rectangle. Use the ovalWidth and ovalHeight parameters
to specify the diameters of curvature for the corners of the rounded rectangle.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The EraseRoundRect function may move or purge memory blocks in the application; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillArc
Fills a wedge with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FillArc (
 const Rect *r,
 short startAngle,
 short arcAngle,
 const Pattern *pat
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The bit pattern to use for the fill.

pat
The angle indicating the arc’s extent.

Discussion
Using the patCopy pattern mode and the pattern defined in the Pattern (page 2866) structure that you
specify in the pat parameter, the FillArc function draws a wedge of the oval bounded by the rectangle
that you specify in therparameter. As inFrameArc (page 2629) use thestartAngle andarcAngleparameters
to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

Functions 2619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Use GetPattern (page 2646) and GetIndPattern (page 2643) to get a pattern stored in a resource.

Use PaintArc (page 2740) to draw a wedge with the pen pattern for the current graphics port.

To fill a wedge with a pixel pattern, use the FillCArc function.

Special Considerations

The FillArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCArc
Fills a wedge with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCArc (
 const Rect *r,
 short startAngle,
 short arcAngle,
 PixPatHandle pp
);

Parameters
r

The rectangle that defines the oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
Use the startAngle and arcAngle parameters to define the arc of the wedge. This function ignores the
pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen location unchanged.

Special Considerations

The FillCArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2620 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

FillCOval
Fills an oval with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCOval (
 const Rect *r,
 PixPatHandle pp
);

Parameters
r

The rectangle containing the oval to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCPoly
Fills a polygon with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCPoly (
 PolyHandle poly,
 PixPatHandle pp
);

Parameters
poly

A handle to the polygon to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Functions 2621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRect
Fills a rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCRect (
 const Rect *r,
 PixPatHandle pp
);

Parameters
r

The rectangle to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRgn
Fills a region with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2622 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void FillCRgn (
 RgnHandle rgn,
 PixPatHandle pp
);

Parameters
rgn

A handle to the region to be filled.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
This function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

Special Considerations

The FillCRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillCRoundRect
Fills a rounded rectangle with the given pixel pattern, using the patCopy pattern mode. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void FillCRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 PixPatHandle pp
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pp
A handle to the PixPat structure for the pixel pattern to be used for the fill.

Discussion
Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the corners. This
function ignores the pnPat, pnMode, and bkPat fields of the current graphics port and leaves the pen location
unchanged.

Functions 2623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The FillCRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillOval
Fills an oval with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FillOval (
 const Rect *r,
 const Pattern *pat
);

Parameters
r

The rectangle that defines the oval’s boundaries.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode and the bit pattern defined in the Pattern (page 2866) structure that you
specify in the pat parameter, the FillOval function draws the interior of an oval just inside the bounding
rectangle that you specify in the r parameter. The pen location does not change.

Use GetPattern (page 2646) and GetIndPattern (page 2643) , to get a pattern stored in a resource. Use the
PaintOval (page 2741) function to draw the interior of an oval with the pen pattern for the current graphics
port.

To fill an oval with a pixel pattern, use the FillCOval function.

Special Considerations

The FillOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2624 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

FillPoly
Fills a polygon with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FillPoly (
 PolyHandle poly,
 const Pattern *pat
);

Parameters
poly

A handle to the polygon to fill. The OpenPoly (page 2737) function returns this handle when you first
create the polygon.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode, the FillPoly function draws the interior of the polygon whose handle
you pass in the poly parameter with the pattern defined in the Pattern (page 2866) structure that you specify
in the pat parameter.

This function leaves the location of the graphics pen unchanged.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 2707) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Use GetPattern (page 2646) and GetIndPattern (page 2643) to get a pattern stored in a resource.

Use PaintPoly (page 2741) to draw the interior of a polygon with the pen pattern for the current graphics
port. To fill a polygon with a pixel pattern, use the FillCPoly function.

Special Considerations

The FillPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

FillRect
Fills a rectangle with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FillRect (
 const Rect * r,
 const Pattern * pat
);

Parameters
r

The rectangle to fill.

pat
The bit pattern to use for the fill.

Discussion
Using the patCopy pattern mode, the FillRect function draws the interior of the rectangle that you specify
in the r parameter with the pattern defined in the Pattern (page 2866) structure that you specify in the pat
parameter. This function leaves the pen location unchanged.

Use GetPattern (page 2646) and GetIndPattern (page 2643) , to get a pattern stored in a resource.

Use the PaintRect (page 2742) to draw the interior of a rectangle with the pen pattern for the current graphics
port. To fill a rectangle with a pixel pattern, use the FillCRect function.

Special Considerations

The FillRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillRgn
Fills a region with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FillRgn (
 RgnHandle rgn,
 const Pattern * pat
);

Parameters
rgn

A handle to the region to fill.

pat
The bit pattern to use for the fill.

2626 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Using the patCopy pattern mode, the FillRgn function draws the interior of the region with the pattern
defined in the Pattern (page 2866) structure that you specify in the pat parameter.

This function leaves the location of the graphics pen unchanged.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Use GetPattern (page 2646) and GetIndPattern (page 2643) to get a pattern stored in a resource.

Use PaintRgn (page 2743) to draw the interior of a region with the pen pattern for the current graphics port.
To fill a region with a pixel pattern, use the FillCRegion function.

Special Considerations

The FillRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FillRoundRect
Fills a rounded rectangle with any available bit pattern. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void FillRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 const Pattern *pat
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pat
The bit pattern to use for the fill.

Functions 2627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Using the patCopy pattern mode, the FillRoundRect function draws the interior of the rounded rectangle
bounded by the rectangle that you specify in the r parameter with the bit pattern defined in the Pattern
structure that you specify in the pat parameter. Use the ovalWidth and ovalHeight parameters to specify
the diameters of curvature for the corners. The pen location does not change.

To fill a rounded rectangle with a pixel pattern, use the FillCRoundRect function.

Use GetPattern (page 2646) and GetIndPattern (page 2643) to get a pattern stored in a resource. Use
PaintRoundRect (page 2743) to draw the interior of a rounded rectangle with the pen pattern for the current
graphics port.

Special Considerations

The FillRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ForeColor
Changes the color of the “ink” used for framing, painting, and filling on computers that support only basic
QuickDraw. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

void ForeColor (
 long color
);

Parameters
color

One of eight color values. See “Color Constants” (page 2885).

Discussion
By default, the foreground color of a GrafPort is black.

The ForeColor function sets the foreground color for the current graphics port to the color that you specify
in the color parameter. When you draw with the patCopy and srcCopy transfer modes, for example, black
pixels are drawn in the color you specify with ForeColor.

When printing, use the ColorBit (page 2584) function to set the foreground color.

All nonwhite colors appear as black on black-and-white screens. Before you use ForeColor, use the
DeviceLoop function to determine the color characteristics of the current screen.

Special Considerations

The ForeColor function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

2628 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Version Notes
In System 7, you may instead use the color QuickDraw function RGBForeColor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
QuickdrawAPI.h

FrameArc
Draws an arc of the oval that fits inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void FrameArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameArc
function draws an arc of the oval bounded by the rectangle that you specify in the r parameter. Use the
startAngle parameter to specify where the arc begins as modulo 360. Use the arcAngle parameter to
specify how many degrees the arc covers. Specify whether the angles are in positive or negative degrees a
positive angle goes clockwise, while a negative angle goes counterclockwise. Zero degrees is at 12 o’clock
high, 90 (or –270) is at 3 o’clock, 180 (or –180) is at 6 o’clock, and 270 (or –90) is at 9 o’clock. Measure other
angles relative to the bounding rectangle.

A line from the center of the rectangle through its upper-right corner is at 45, even if the rectangle is not
square a line through the lower-right corner is at 135, and so on.

The arc is as wide as the pen width and as tall as the pen height. The pen location does not change.

Special Considerations

The FrameArc function differs from other QuickDraw functions that frame shapes in that the arc is not
mathematically added to the boundary of a region that’s open and being formed.

The FrameArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Functions 2629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameOval
Draws an outline inside an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void FrameOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameOval
function draws an outline just inside the oval with the bounding rectangle that you specify in the r parameter.
The outline is as wide as the pen width and as tall as the pen height. The pen location does not change.

If a region is open and being formed, the outside outline of the new oval is mathematically added to the
region’s boundary.

Special Considerations

The FrameOval function may move or purge memory blocks in the application; do not call this function at
interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FramePoly
Draws the outline of a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

2630 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void FramePoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to draw. The OpenPoly (page 2737) function returns this handle when you
first create the polygon.

Discussion
Using the current graphics port’s pen pattern, pattern mode, and size, the FramePoly function plays back
the line-drawing commands that define the polygon whose handle you pass in the poly parameter.

The graphics pen hangs below and to the right of each point on the boundary of the polygon. Thus, the
drawn polygon extends beyond the right and bottom edges of the polygon’s bounding rectangle (which is
stored in the polyBBox field of the Polygon structure) by the pen width and pen height, respectively. All
other graphics operations, such as painting a polygon with the PaintPoly function, occur strictly within
the boundary of the polygon.

If a polygon is open and being formed, FramePoly affects the outline of the polygon just as if the line-drawing
functions themselves had been called. If a region is open and being formed, the outside outline of the polygon
being framed is mathematically added to the region’s boundary.

The result of this function is undefined whenever any horizontal or vertical line through the polygon would
intersect the polygon’s outline more than 50 times.

Special Considerations

The FramePoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRect
Draws an outline inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FrameRect (
 const Rect * r
);

Parameters
r

The rectangle to frame.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the FrameRect
function draws an outline just inside the rectangle that you specify in the r parameter. The outline is as wide
as the pen width and as tall as the pen height. The pen location does not change.

Functions 2631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

If a region is open and being formed, the outside outline of the new rectangle is mathematically added to
the region’s boundary.

Special Considerations

The FrameRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRgn
Draws an outline inside a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void FrameRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to frame.

Discussion
Using the current graphics port’s pen pattern, pattern mode, and pen size, the FrameRgn function draws an
outline just inside the region whose handle you pass in the rgn parameter. The outline never goes outside
the region boundary. The pen location does not change.

If a region is open and being formed, the outside outline of the region being framed is mathematically added
to that region’s boundary.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined. The FrameRgn function in particular requires that
there would be no more than 25 such intersections.

Special Considerations

The FrameRgn function calls the functions CopyRgn, InsetRgn, and DiffRgn, so FrameRgnmay temporarily
use heap space that’s three times the size of the original region.

The FrameRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2632 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

FrameRoundRect
Draws an outline inside a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void FrameRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the pattern, pattern mode, and size of the graphics pen for the current graphics port, the
FrameRoundRect function draws an outline just inside the rounded rectangle bounded by the rectangle
that you specify in the r parameter. The outline is as wide as the pen width and as tall as the pen height.
The pen location does not change.

Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the corners of
the rounded rectangle.

If a region is open and being formed, the outside outline of the new rounded rectangle is mathematically
added to the region’s boundary.

Special Considerations

The FrameRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GDeviceChanged
Notifies QuickDraw that the content of a GDevice structure has been modified. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void GDeviceChanged (
 GDHandle gdh
);

Discussion
If your application changes the pmTable field of the PixMap structure specified in a GDevice structure, call
GDeviceChanged. If your application changes the content of the ColorTable structure referenced by the
PixMap structure, call both GDeviceChanged and CTabChanged.

Your application should never need to directly modify a GDevice structure and use the GDeviceChanged
function; instead, your application should use the QuickDraw functions described in this book for manipulating
the values in a GDevice structure.

Special Considerations

The GDeviceChanged function may move or purge memory in the application heap; do not call the
GDeviceChanged function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetBackColor
Obtains the background color of the current graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetBackColor (
 RGBColor *color
);

Parameters
color

On return, the RGBColor structure for the current background color.

Discussion
This function operates for graphics ports defined by both the GrafPort and CGrafPort structures. If the
current graphics port is defined by a CGrafPort structure, the returned value is taken directly from the
rgbBkColor field.

If the current graphics port is defined by a GrafPort structure, then only eight possible colors can be returned.
These eight colors are determined by the values in a global variable named QDColors, which is a handle to
a color table containing the current QuickDraw colors.

Use the RGBBackColor (page 2779) function to change the background color.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

GetCCursor
Loads a color cursor resource into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

CCrsrHandle GetCCursor (
 short crsrID
);

Parameters
crsrID

The resource ID of the cursor that you want to display.

Return Value
A handle to the new CCrsr structure. To display this cursor on the screen, call SetCCursor. If a resource
with the specified ID isn’t found, then this function returns a NULL handle.

Discussion
The GetCCursor function creates a new CCrsr (page 2847) structure and initializes it using the information
in the ‘crsr’ resource with the specified ID.

Since the GetCCursor function creates a new CCrsr structure each time it is called, do not call the
GetCCursor function before each call to the SetCCursor function. Unlike the way GetCursor and
SetCursor are normally used, GetCCursor does not dispose of or detach the resource, so resources of type
'crsr' should typically be purgeable. Call the DisposeCCursor (page 2598) function when you are finished
using the color cursor created with GetCCursor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetClip
Saves the clipping region of the current graphics port (basic or color). (Deprecated. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void GetClip (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to be clipped. The GetClip function changes this region to one that’s equivalent
to the clipping region of the current graphics port. The GetClip function doesn’t change the region
handle.

Functions 2635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
You can use the GetClip and SetClip functions to preserve the current clipping region: use GetClip to
save the current port’s clipping region, and use SetClip to restore it. If, for example, you want to draw a
half-circle on the screen, you can set the clipping region to half of the square that would enclose the whole
circle, and then draw the whole circle. Only the half within the clipping region is actually drawn in the graphics
port.

The GetClip function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.k.h

GetCPixel
Determines the color of an individual pixel specified in the h and v parameters. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetCPixel (
 short h,
 short v,
 RGBColor *cPix
);

Parameters
h

The horizontal coordinate of the point at the upper-left corner of the pixel.

v
The vertical coordinate of the point at the upper-left corner of the pixel.

cPix
On return, the RGBColor structure for the pixel color.

Discussion
Use the SetCPixel (page 2791) function to change the color of this pixel.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCTable
Obtains a color table stored in a 'clut' resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

2636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CTabHandle GetCTable (
 short ctID
);

Parameters
ctID

The resource ID of a 'clut' resource.

Return Value
A handle to the color table. If the 'clut' resource with that ID is not found, GetCTable returns NULL. Before
you place this handle in the pmTable field of a PixMap structure, first use the DisposeCTable function to
dispose of the handle already there.

Discussion
Before you modify a ColorTable structure, change its ctSeed field to invalidate it. To do this, use the
CTabChanged (page 2593) function.

The GetCTable function recognizes a number of standard 'clut' resource IDs. You can obtain the default
grayscale color table for a given pixel depth by calling GetCTable, adding 32 (decimal) to the pixel depth,
and passing these values in the ctID parameter:

 ■ A pixel depth of 1. Pass a resource ID of 33. Color table composition: black, white.

 ■ A pixel depth of 2. Pass a resource ID of 34. Color table composition: black, 33% gray, 66% gray, white.

 ■ A pixel depth of 4. Pass a resource ID of 36. Color table composition: black, 14 shades of gray, white.

 ■ A pixel depth of 8. Pass a resource ID of 40. Color table composition: black, 254 shades of gray, white.

For full color, obtain the default color tables by adding 64 to the pixel depth and passing these values in the
ctID parameter:

 ■ A pixel depth of 2. Pass a resource ID of 66. Color table composition: black, 50% gray, highlight color,
white.

 ■ A pixel depth of 4. Pass a resource ID of 68. Color table composition: black, 14 colors including the
highlight color, white.

 ■ A pixel depth of 8. Pass a resource ID of 72. Color table composition: black, 254 colors including the
highlight color, white.

Special Considerations

The GetCTable function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetCTSeed
Obtains a unique seed value for a color table created by your application. This function is used by system
software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

long GetCTSeed (
 void
);

Return Value
A unique seed value that you can use in the ctSeed field of a color table created by your application. It is
greater than the value stored in the constant minSeed.

Discussion
The seed value guarantees that the color table is recognized as distinct from the destination, and that color
table translation is performed properly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetCursor
Loads a cursor resource into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

CursHandle GetCursor (
 short cursorID
);

Parameters
cursorID

The resource ID for the cursor you want to display. You can supply one of the “Cursor ID
Constants” (page 2886) to get a handle to one of the standard cursors.

Return Value
A handle to a Cursor structure for the cursor with the resource ID that you specify in the cursorID parameter.
If the resource cannot be read into memory, GetCursor returns NULL.

Discussion
To get a handle to a color cursor, use the GetCCursor (page 2635) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetDeviceList
Obtains a handle to the first GDevice structure in the device list. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetDeviceList (
 void
);

Return Value
A handle to the first GDevice structure in the global variable DeviceList.

Discussion
All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetDeviceList function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetForeColor
Obtains the color of the foreground color for the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetForeColor (
 RGBColor *color
);

Parameters
color

On return, the RGBColor structure for the current foreground color.

Discussion
This function operates for graphics ports defined by both the GrafPort and CGrafPort structures. If the
current graphics port is defined by a CGrafPort structure, the returned value is taken directly from the
rgbFgColor field.

If the current graphics port is defined by a GrafPort structure, then only eight possible RGB values can be
returned. These eight values are determined by the values in a global variable named QDColors, which is a
handle to a color table containing the current QuickDraw colors.

Use the RGBForeColor (page 2780) function to change the foreground color.

Availability
Available in Mac OS X v10.0 and later.

Functions 2639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

GetGDevice
Obtains a handle to the GDevice structure for the current device. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetGDevice (
 void
);

Return Value
A handle to the current device.

Discussion
At any given time, exactly one video device is the current device—that is, the one on which drawing is actually
taking place.

Color QuickDraw stores a handle to the current device in the global variable TheGDevice.

All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

You can also use the GetGWorld function to get a handle to the GDevice structure for the current device.

Special Considerations

The GetGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetGWorld
Saves the current graphics port (basic, color, or offscreen) and the current GDevice structure. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void GetGWorld (
 CGrafPtr *port,
 GDHandle *gdh
);

Parameters
port

On return, a pointer to the current graphics port in the port parameter. This parameter can return
values of type GrafPtr, CGrafPtr, or GWorldPtr, depending on whether the current graphics port
is a basic graphics port, color graphics port, or offscreen graphics world.

gdh
On return, a pointer to a handle to the GDevice structure for the current device.

Discussion
After using GetGWorld to save a graphics port and a GDevice structure, use the SetGWorld (page 2796)
function to restore them.

Special Considerations

The GetGWorld function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
Simple DrawSprocket

Declared In
ImageCompression.k.h

GetGWorldDevice
Obtains a handle to the GDevice structure associated with an offscreen graphics world. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetGWorldDevice (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. The pointer returned to your application by the NewGWorld
function.

Return Value
A handle to the GDevice structure associated with the offscreen graphics world specified by the
offscreenGWorld parameter.

If you created the offscreen world by specifying the noNewDevice flag, the GDevice structure is for one of
the screen devices or is the GDevice structure that you specified to NewGWorld or UpdateGWorld.

If you point to a GrafPort or CGrafPort structure in the offscreenGWorld parameter, GetGWorldDevice
returns the current device.

Functions 2641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The GetGWorldDevice function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
WhackedTV

Declared In
QDOffscreen.h

GetGWorldPixMap
Obtains the pixel map created for an offscreen graphics world. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixMapHandle GetGWorldPixMap (
 GWorldPtr offscreenGWorld
);

Parameters
offscreenGWorld

A pointer to an offscreen graphics world. Pass the pointer returned to your application by the
NewGWorld (page 2715) function when you created the offscreen graphics world.

Return Value
A handle to the pixel map created for an offscreen graphics world. Your application can, in turn, pass the
handle returned by GetGWorldPixMap as a parameter to other QuickDraw functions that accept a handle
to a pixel map.

On a system running only basic QuickDraw, the GetGWorldPixMap function returns the handle to a 1-bit
pixel map that your application can supply as a parameter to the other functions related to offscreen graphics
worlds. However, your application should not supply this handle to color QuickDraw functions.

Special Considerations

To ensure compatibility on systems running basic QuickDraw instead of Color QuickDraw, use
GetGWorldPixMap whenever you need to gain access to the bitmap created for a graphics world—that is,
do not dereference the GWorldPtr structure for that graphics world.

Version Notes
The GetGWorldPixMap function is not available in systems preceding System 7. You can make sure that the
GetGWorldPixMap function is available by using the Gestalt function with the gestaltSystemVersion
selector. Test the low-order word in the response parameter; if the value is $0700 or greater, then
GetGWorldPixMap is available.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2642 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

GetIndPattern
Obtains a pattern stored in a pattern list ('PAT#') resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetIndPattern (
 Pattern *thePat,
 short patternListID,
 short index
);

Parameters
thePat

On return, a pointer to a Pattern (page 2866) structure for the pattern stored in the specified pattern
list resource.

patternListID
The resource ID for a resource of type 'PAT#'.

index
The index number for the desired pattern within the pattern list ('PAT#') resource. The index number
can range from 1 to the number of patterns in the pattern list resource.

Discussion
The GetIndPattern function calls the following Resource Manager function with these parameters:

GetResource('PAT#', patternListID);

There is a pattern list resource in the System file that contains the standard Macintosh patterns used by
MacPaint. The resource ID is represented by the constant sysPatListID.

Special Considerations

The GetIndPattern function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetMainDevice
Obtains a handle to the GDevice structure for the main screen. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetMainDevice (
 void
);

Return Value
A handle to the device for the main screen, which is the device containing the menu bar.

Discussion
A handle to the main device is kept in the global variable MainDevice.

All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetMainDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetMaskTable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Ptr GetMaskTable (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetMaxDevice
Obtains a handle to the GDevice structure for the video device with the greatest pixel depth. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2644 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GDHandle GetMaxDevice (
 const Rect *globalRect
);

Parameters
globalRect

A rectangle, in global coordinates, that intersects the graphics devices that you are searching to find
the one with the greatest pixel depth.

Return Value
A handle to the device with the greatest pixel depth.

Discussion
All existing GDevice structures are linked together in the device list. After using this function to obtain a
handle to the current GDevice structure, your application can use the GetNextDevice function to obtain
a handle to the next GDevice structure in the list.

Special Considerations

The GetMaxDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetNextDevice
Returns a handle to the next GDevice structure in the device list. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GDHandle GetNextDevice (
 GDHandle curDevice
);

Parameters
curDevice

A handle to the GDevice structure at which you want the search to begin.

Return Value
A handle to the next device. If there are no more GDevice structures in the list, NULL.

Discussion
After using any of the functionsGetDeviceList (page 2639) ,GetGDevice (page 2640) ,GetMainDevice (page
2644) , or GetMaxDevice (page 2644) to obtain a handle to a GDevice structure, use the GetNextDevice
function to obtain a handle to the next GDevice structure in the list.

Special Considerations

The GetNextDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Functions 2645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPattern
Obtains a pattern ('PAT') resource stored in a resource file. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

PatHandle GetPattern (
 short patternID
);

Parameters
patternID

The resource ID for a resource of type ‘PAT’.

Return Value
a handle to the pattern having the resource ID that you specify in the patID parameter. If a pattern resource
with the ID that you request does not exist, the GetPattern function returns NULL.

Discussion
The GetPattern function calls the following Resource Manager function with these parameters:

GetResource('PAT', patID);

When you are finished using the pattern, dispose of its handle with the Memory Manager function
DisposeHandle.

Special Considerations

The GetPattern function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPen
Determines the location of the graphics pen. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

2646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void GetPen (
 Point *pt
);

Parameters
pt

On return, a pointer to the graphics pen’s current position in the current graphics port. The point
returned is in the local coordinates of the current graphics port.

Discussion
In the pt parameter, the GetPen procedure returns the current pen position. The point returned is in the local
coordinates of the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPenState
Determines the graphics pen’s location, size, pattern, and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetPenState (
 PenState *pnState
);

Parameters
pnState

On return, a pointer to a PenState structure holding information about the graphics pen. The
GetPenState function saves the location, size, pattern, and pattern mode of the graphics pen for
the current graphics port in this structure.

Discussion
After changing the graphics pen as necessary, restore these pen states with the SetPenState (page 2798)
function.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetPicture
Obtains a handle to a picture stored in a 'PICT' resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

PicHandle GetPicture (
 short pictureID
);

Parameters
pictureID

The resource ID for a 'PICT' resource.

Return Value
A handle to the picture in the specified ‘PICT’ resource. To draw the picture stored in the resource, pass this
handle to the DrawPicture (page 2610) function. If the resource cannot be read, GetPicture returns NULL.

Discussion
The GetPicture function calls the Resource Manager function GetResource as follows:

GetResource(‘PICT’, picID)

Special Considerations

To release the memory occupied by a picture stored in a 'PICT' resource, use the Resource Manager function
ReleaseResource.

The GetPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixBaseAddr
Obtains a pointer to an offscreen pixel map.

Ptr GetPixBaseAddr (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 2642) function.

Return Value
A 32-bit pointer to the beginning of a pixel image. If the offscreen buffer has been purged, GetPixBaseAddr
returns NULL.

2648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer, which is what the baseAddr field for an onscreen pixel map contains. You must use the
GetPixBaseAddr function to obtain a pointer to the PixMap structure for an offscreen graphics world.

Your application should never directly access the baseAddr field of the PixMap structure for an offscreen
graphics world; instead, always use GetPixBaseAddr. If your application is using 24-bit mode, use the
PixMap32Bit (page 2749) function to determine whether a pixel map requires 32-bit addressing mode for
access to its pixel image.

Special Considerations

Any QuickDraw functions that your application uses after calling GetPixBaseAddr may change the base
address for the offscreen pixel image.

The GetPixBaseAddr function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell

Declared In
QDOffscreen.h

GetPixBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * GetPixBounds (
 PixMapHandle pixMap,
 Rect *bounds
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetPixDepth
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPixDepth (
 PixMapHandle pixMap
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixel
Determines whether the pixel associated with a point is black or white. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean GetPixel (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the point for the pixel to be tested.

v
The vertical coordinate of the point for the pixel to be tested.

Return Value
Returns TRUE if the pixel is black or FALSE if it is white.

Discussion
The selected pixel is immediately below and to the right of the point whose coordinates you supply in the
h and v parameters, in the local coordinates of the current graphics port. There’s no guarantee that the
specified pixel actually belongs to the current graphics port, however it may have been drawn in a graphics
port overlapping the current one. To see if the point indeed belongs to the current graphics port, you could
use the PtInRgn function to test whether the point is in the current graphics port’s visible region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetPixelsState
Saves the current information about the memory allocated for an offscreen pixel image. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

GWorldFlags GetPixelsState (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 2642) function.

Return Value
Information about the memory allocated for the base address for an offscreen pixel image. This result can
be either of the constants, pixelsPurgeable or pixelsLocked. If the pixelsPurgeable flag is not
returned, then the base address for the offscreen pixel image is unpurgeable. If the pixelsLocked flag is
not returned, then the base address for the offscreen pixel image is unlocked.

Discussion
After using GetPixelsState to save this state information, use the SetPixelsState (page 2799) function
to restore this state to the offscreen graphics world.

After using GetPixelsState and before using SetPixelsState, temporarily use the
AllowPurgePixels (page 2573) function to make the base address for an offscreen pixel image purgeable,
the NoPurgePixels (page 2729) function to make it unpurgeable, the LockPixels (page 2704) function to
prevent it from being moved, and the UnlockPixels (page 2829) function to allow it to be moved.

Special Considerations

The GetPixelsState function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetPixPat
Obtains a pixel pattern ('ppat') resource stored in a resource file. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PixPatHandle GetPixPat (
 short patID
);

Parameters
patID

The resource ID for a resource of type 'ppat'.

Functions 2651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Return Value
A handle to the pixel pattern having the resource ID you specify in the patID parameter. The GetPixPat
function calls the following Resource Manager function with these parameters:

GetResource('ppat', patID);

If a 'ppat' resource with the ID that you request does not exist, the GetPixPat function returns NULL.

Discussion
When you are finished with the pixel pattern, use the DisposePixPat (page 2602) function. For more
information on the pixel pattern resource, see 'ppat'.

Pixel patterns can use colors at any pixel depth and can be of any width and height that’s a power of 2. To
create a pixel pattern, you typically define it in a 'ppat' resource, which you store in a resource file. To
retrieve the pixel pattern stored in a 'ppat' resource, you can use the GetPixPat function.

Special Considerations

The GetPixPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPixRowBytes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 GetPixRowBytes (
 PixMapHandle pm
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

GetPort
Saves the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

2652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void GetPort (
 GrafPtr *port
);

Parameters
port

On return, a pointer to a GrafPort structure for the current graphics port. If the current graphics
port is a color graphics port, GetPort coerces its CGrafPort structure into a GrafPort structure.

Discussion
When your application runs in Color QuickDraw or uses offscreen graphics worlds, it should use the GetGWorld
function instead of GetPort. The GetGWorld function saves the current graphics port for basic and color
graphics ports as well as offscreen graphics worlds.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

GetPortBackColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortBackColor (
 CGrafPtr port,
 RGBColor *backColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBackPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PixPatHandle GetPortBackPixPat (
 CGrafPtr port,
 PixPatHandle backPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBitMapForCopyBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

const BitMap * GetPortBitMapForCopyBits (
 CGrafPtr port
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * GetPortBounds (
 CGrafPtr port,
 Rect *rect
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

GetPortChExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortChExtra (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle GetPortClipRegion (
 CGrafPtr port,
 RgnHandle clipRgn
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortCustomXFerProc
(Deprecated in Mac OS X v10.4.)

Not recommended

Functions 2655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OSErr GetPortCustomXFerProc (
 CGrafPtr port,
 CustomXFerProcPtr *proc,
 UInt32 *flags,
 UInt32 *refCon
);

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortFillPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixPatHandle GetPortFillPixPat (
 CGrafPtr port,
 PixPatHandle fillPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortForeColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

RGBColor * GetPortForeColor (
 CGrafPtr port,
 RGBColor *foreColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortFracHPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortFracHPenLocation (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortGrafProcs
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CQDProcsPtr GetPortGrafProcs (
 CGrafPtr port
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

GetPortHiliteColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortHiliteColor (
 CGrafPtr port,
 RGBColor *hiliteColor
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortOpColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RGBColor * GetPortOpColor (
 CGrafPtr port,
 RGBColor *opColor
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Point * GetPortPenLocation (
 CGrafPtr port,
 Point *penLocation
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 GetPortPenMode (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

PixPatHandle GetPortPenPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.

Functions 2659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * GetPortPenSize (
 CGrafPtr port,
 Point *penSize
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPenVisibility
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortPenVisibility (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortPixMap
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PixMapHandle GetPortPixMap (
 CGrafPtr port
);

Return Value
Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortSpExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Fixed GetPortSpExtra (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextFace
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Style GetPortTextFace (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetPortTextFont
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextFont (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextMode (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortTextSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short GetPortTextSize (
 CGrafPtr port
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

2662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle GetPortVisibleRegion (
 CGrafPtr port,
 RgnHandle visRgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsArrow
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Cursor * GetQDGlobalsArrow (
 Cursor *arrow
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsBlack
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Pattern * GetQDGlobalsBlack (
 Pattern *black
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsDarkGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsDarkGray (
 Pattern *dkGray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsGray (
 Pattern *gray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetQDGlobalsLightGray
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsLightGray (
 Pattern *ltGray
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsRandomSeed
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

long GetQDGlobalsRandomSeed (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsScreenBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

BitMap * GetQDGlobalsScreenBits (
 BitMap *screenBits
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetQDGlobalsThePort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

CGrafPtr GetQDGlobalsThePort (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetQDGlobalsWhite
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Pattern * GetQDGlobalsWhite (
 Pattern *white
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GetRegionBounds

Rect * GetRegionBounds (
 RgnHandle region,
 Rect *bounds
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GetSubTable
Searches one color table for the best matches to colors in another color table. Your application should not
need to call this function; it is used by system software only. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void GetSubTable (
 CTabHandle myColors,
 short iTabRes,
 CTabHandle targetTbl
);

Parameters
myColors

A handle to a color table containing the colors for which you want matches.

iTabRes
The resolution of the inverse table to be used.

targetTbl
A handle to a color table whose colors are to be matched. If you supply NULL for targetTbl, then
the Color Manager searches the current GDevice data structure’s CLUT, and uses its inverse table.
Otherwise a temporary inverse table is built, with a resolution of the value in the iTabRes parameter.

Discussion
The Color Manager uses the Color2Index (page 2583) function for each RGBColor data structure in the color
table of the myColors parameter. It determines the best match in the target table and stores that index
value in the value field of the color table of the myColors parameter.

Depending on the requested resolution, building the inverse table can require large amounts of temporary
space in the application heap: twice the size of the table itself, plus a fixed overhead of 3–15 KB for each
inverse table resolution.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GlobalToLocal
Converts the coordinates of a point from global coordinates to the local coordinates of the current graphics
port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

void GlobalToLocal (
 Point *pt
);

Parameters
pt

A pointer to a point expressed in global coordinates (where the upper-left corner of the main screen
has coordinates [0,0]). On return, this point is converted to local coordinates.

Functions 2667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The GlobalToLocal procedure takes a point expressed in global coordinates (where the upper-left corner of
the main screen has coordinates [0,0]) and converts it into the local coordinates of the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

GrafDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void GrafDevice (
 short device
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

HandleToRgn

void HandleToRgn (
 Handle oldRegion,
 RgnHandle region
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

HideCursor
Hides the cursor if it is visible on the screen.

2668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void HideCursor (
 void
);

Discussion
The HideCursor function removes the cursor from the screen, restores the bits under the cursor image, and
decrements the cursor level (which InitCursor initialized to 0). You might want to use HideCursor when
the user is using the keyboard to create content in one of your application’s windows. Every call to HideCursor
should be balanced by a subsequent call to the ShowCursor (page 2813) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

HidePen
Makes the graphics pen invisible, so that pen drawing doesn’t show on the screen. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void HidePen (
 void
);

Discussion
TheHidePen function is called by theOpenRgn (page 2737) ,OpenPicture, andOpenPoly (page 2737) functions
so that you can create regions, pictures, and polygons without drawing on the screen.

The HidePen function decrements the pnVis field of the current graphics port. The pnVis field is initialized
to 0 by the OpenPort function. Whenever pnVis is negative, the pen does not draw on the screen. The
pnVis field keeps track of the number of times the pen has been hidden to compensate for nested calls to
the HidePen and ShowPen functions.

Every call to HidePen should be balanced by a subsequent call to ShowPen (page 2814).

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

HiliteColor
Changes the highlight color for the current color graphics port. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void HiliteColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure that defines the highlight color.

Discussion
All drawing operations that use the hilite transfer mode use the highlight color. When a color graphics
port is created, its highlight color is initialized from the global variable HiliteRGB.

If the current graphics port is a basic graphics port, HiliteColor has no effect.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Index2Color
Obtains the RGBColor data structure corresponding to an index value in the color table of the current
GDevice data structure. Your application should not need to call this function; it is used by system software
only. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void Index2Color (
 long index,
 RGBColor *aColor
);

Parameters
index

The index value whose color entry is sought; you should supply a long integer in which the high-order
word is padded with zeros.

aColor
A pointer to the returned RGBColor data structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

InitCursor
Sets the cursor to the standard arrow and makes the cursor visible.

void InitCursor (
 void
);

Discussion
This function initializes the standard arrow cursor, sets the current cursor to the standard arrow, and makes
the cursor visible. Classic Mac OS applications need to call this function when launching because the system
sets the cursor to the watch cursor. Carbon applications running in Mac OS 9 or Mac OS X do not need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
HideMenuBar
ictbSample
Simple DrawSprocket

Declared In
QuickdrawAPI.h

InitGDevice
Initializes a GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void InitGDevice (
 short qdRefNum,
 long mode,
 GDHandle gdh
);

Parameters
qdRefNum

Reference number of the graphics device. System software sets this number at system startup time
for most graphics devices.

mode
The device configuration mode. Used by the screen driver, this value sets the pixel depth and specifies
color or black and white.

gdh
The handle, returned by theNewGDevice function, to theGDevice (page 2859) structure to be initialized.

Discussion
The InitGDevice function sets the graphics device whose driver has the reference number specified in the
gdRefNum parameter to the mode specified in the mode parameter. The InitGDevice function then fills
out the GDevice structure, previously created with the NewGDevice function, to contain all information
describing that mode.

Functions 2671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The mode parameter determines the configuration of the device. Possible modes for a device are determined
by interrogating the video device’s ROM through Slot Manager functions. The information describing the
device’s mode is primarily contained in the video device’s ROM. If the video device has a fixed color table,
then that table is read directly from the ROM. If the video device has a variable color table, then InitGDevice
uses the default color table defined in a 'clut' resource, contained in the System file, that has a resource
ID equal to the video device’s pixel depth.

In general, your application should never need to call InitGDevice. All video devices are initialized at start
time, and users change modes through the Monitors control panel.

If your program uses NewGDevice to create a graphics device without a driver, InitGDevice does nothing;
instead, your application must initialize all fields of the GDevice structure. After your application initializes
the color table for the GDevice structure, call the Color Manager function MakeITable to build the inverse
table for the graphics device.

Special Considerations

The InitGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InsetRect
Shrinks or expands a rectangle.

void InsetRect (
 Rect * r,
 short dh,
 short dv
);

Parameters
r

A pointer to the rectangle to alter.

dh
The horizontal distance to move the left and right sides in toward or outward from the center of the
rectangle.

dv
The vertical distance to move the top and bottom sides in toward or outward from the center of the
rectangle.

Discussion
The InsetRect function shrinks or expands the rectangle that you specify in the r parameter: the left and
right sides are moved in by the amount you specify in the dh parameter; the top and bottom are moved
toward the center by the amount you specify in the dv parameter. If the value you pass in dh or dv is negative,

2672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

the appropriate pair of sides is moved outward instead of inward. The effect is to alter the size by 2*dh
horizontally and 2*dv vertically, with the rectangle remaining centered in the same place on the coordinate
plane.

If the resulting width or height becomes less than 1, the rectangle is set to the empty rectangle (0,0,0,0).

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

InsetRgn
Shrinks or expands a region.

void InsetRgn (
 RgnHandle rgn,
 short dh,
 short dv
);

Parameters
rgn

A handle to the region to alter.

dh
The horizontal distance to move points on the left and right boundaries in toward or outward from
the center.

dv
The vertical distance to move points on the top and bottom boundaries in toward or outward from
the center.

Discussion
The InsetRgn function moves all points on the region boundary of the region whose handle you pass in
the rgn parameter inward by the vertical distance that you specify in the dv parameter and by the horizontal
distance that you specify in the dh parameter. If you specify negative values for dh or dv, the InsetRgn
function moves the points outward in that direction.

The InsetRgn function leaves the region’s center at the same position, but moves the outline in (for positive
values of dh and dv) or out (for negative values of dh and dv). Using InsetRgn on a rectangular region has
the same effect as using the InsetRect function.

Special Considerations

The InsetRgn function temporarily uses heap space that’s twice the size of the original region.

Functions 2673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The InsetRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertArc
Inverts the pixels of a wedge. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void InvertArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
The InvertArc function inverts the pixels enclosed by a wedge of the oval bounded by the rectangle that
you specify in the r parameter. Every white pixel becomes black and every black pixel becomes white. As in
FrameArc (page 2629) , use the startAngle and arcAngle parameters to define the arc of the wedge.

This function leaves the location of the graphics pen unchanged.

Special Considerations

The InvertArc function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

2674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertColor
Finds the complement of an RGBColor data structure. This function is used only by system software.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvertColor (
 RGBColor *myColor
);

Parameters
myColor

A pointer to the RGBColor data structure for which the complement is to be found. The InvertColor
function returns the complement of an absolute color, using the list of complement functions in the
current device data structure. The default complement function uses the one’s complement of each
component of the given color.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertOval
Inverts the pixels enclosed by an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
The InvertOval function inverts the pixels enclosed by an oval just inside the bounding rectangle that you
specify in the r parameter. Every white pixel becomes black and every black pixel becomes white. The pen
location does not change.

Functions 2675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The InvertOval function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertOval function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertPoly
Inverts the pixels enclosed by a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertPoly (
 PolyHandle poly
);

Parameters
poly

A handle to a polygon, the pixels of which you want to invert. The OpenPoly (page 2737) function
returns this handle when you first create the polygon.

Discussion
The InvertPoly function inverts the pixels enclosed by the polygon whose handle you pass in the poly
parameter. Every white pixel becomes black and every black pixel becomes white.

This function leaves the location of the graphics pen unchanged.

InvertPoly temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 2707) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

2676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Special Considerations

The InvertPoly function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with 1-bit or direct pixels. For indexed
pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely
on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertPoly function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRect
Inverts the pixels enclosed by a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertRect (
 const Rect * r
);

Parameters
r

The rectangle whose enclosed pixels are to be inverted.

Discussion
The InvertRect function inverts the pixels enclosed by the rectangle that you specify in the r parameter.
Every white pixel becomes black and every black pixel becomes white. The pen location does not change.

Special Considerations

The InvertRect function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with direct pixels or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color
table represented by the global variable QDColors. To display those eight basic QuickDraw colors on an
indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that
best map to the colors in the QDColors color table. Because the index, not the color value, is inverted, the
results are unpredictable.

Functions 2677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRgn
Inverts the pixels enclosed by a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void InvertRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region whose pixels are to invert.

Discussion
The InvertRgn function inverts the pixels enclosed by the region whose handle you pass in the rgn
parameter. Every white pixel becomes black and every black pixel becomes white.

This function leaves the location of the graphics pen unchanged.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Special Considerations

The InvertRgn function was designed for 1-bit images in basic graphics ports. This function operates on
color pixels in color graphics ports, but the results are predictable only with 1-bit or direct pixels. For indexed
pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely
on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

2678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The InvertRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvertRoundRect
Inverts the pixels enclosed by a rounded rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void InvertRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
The InvertRoundRect function inverts the pixels enclosed by the rounded rectangle bounded by the
rectangle that you specify in the r parameter. Every white pixel becomes black and every black pixel becomes
white. The ovalWidth and ovalHeight parameters specify the diameters of curvature for the corners. The
pen location does not change.

Special Considerations

The InvertRoundRect function was designed for 1-bit images in basic graphics ports. This function operates
on color pixels in color graphics ports, but the results are predictable only with direct devices or 1-bit pixel
maps. For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which means the
results depend entirely on the contents of the CLUT. The eight colors used in basic QuickDraw are stored in
a color table represented by the global variable QDColors. To display those eight basic QuickDraw colors
on an indexed device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT
that best map to the colors in the QDColors color table. Because the index, not the color value, is inverted,
the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red, green, and blue
component values of $0000, $FFFF, and $0000 results in magenta, which has component values of $FFFF,
$0000, and $FFFF.

The InvertRoundRect function may move or purge memory blocks in the application; do not call this
function at interrupt time.

Functions 2679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

InvokeColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean InvokeColorComplementUPP (
 RGBColor *rgb,
 ColorComplementUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean InvokeColorSearchUPP (
 RGBColor *rgb,
 long *position,
 ColorSearchUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void InvokeDeviceLoopDrawingUPP (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 SRefCon userData,
 DeviceLoopDrawingUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeDragGrayRgnUPP (
 DragGrayRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDArcUPP (
 GrafVerb verb,
 const Rect *r,
 short startAngle,
 short arcAngle,
 QDArcUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

Functions 2681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

InvokeQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDBitsUPP (
 const BitMap *srcBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn,
 QDBitsUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDCommentUPP (
 short kind,
 short dataSize,
 Handle dataHandle,
 QDCommentUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDGetPicUPP (
 void *dataPtr,
 short byteCount,
 QDGetPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

InvokeQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDJShieldCursorUPP (
 short left,
 short top,
 short right,
 short bottom,
 QDJShieldCursorUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDLineUPP (
 Point newPt,
 QDLineUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void InvokeQDOpcodeUPP (
 const Rect *fromRect,
 const Rect *toRect,
 UInt16 opcode,
 SInt16 version,
 QDOpcodeUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDOvalUPP (
 GrafVerb verb,
 const Rect *r,
 QDOvalUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDPolyUPP (
 GrafVerb verb,
 PolyHandle poly,
 QDPolyUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

2684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

InvokeQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDPutPicUPP (
 const void *dataPtr,
 short byteCount,
 QDPutPicUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRectUPP (
 GrafVerb verb,
 const Rect *r,
 QDRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRgnUPP (
 GrafVerb verb,
 RgnHandle rgn,
 QDRgnUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

Functions 2685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

InvokeQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDRRectUPP (
 GrafVerb verb,
 const Rect *r,
 short ovalWidth,
 short ovalHeight,
 QDRRectUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus InvokeQDStdGlyphsUPP (
 void *dataStream,
 ByteCount size,
 QDStdGlyphsUPP userUPP
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void InvokeQDTextUPP (
 short byteCount,
 const void *textBuf,
 Point numer,
 Point denom,
 QDTextUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

2686 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

short InvokeQDTxMeasUPP (
 short byteCount,
 const void *textAddr,
 Point *numer,
 Point *denom,
 FontInfo *info,
 QDTxMeasUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

InvokeRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus InvokeRegionToRectsUPP (
 UInt16 message,
 RgnHandle rgn,
 const Rect *rect,
 void *refCon,
 RegionToRectsUPP userUPP
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawAPI.h

IsPortClipRegionEmpty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean IsPortClipRegionEmpty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortColor (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortOffscreen
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortOffscreen (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortPictureBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2688 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean IsPortPictureBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortPolyBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortPolyBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortRegionBeingDefined
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsPortRegionBeingDefined (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsPortVisibleRegionEmpty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean IsPortVisibleRegionEmpty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsRegionRectangular

Boolean IsRegionRectangular (
 RgnHandle region
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsValidPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean IsValidPort (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

IsValidRgnHandle

Boolean IsValidRgnHandle (
 RgnHandle rgn
);

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

2690 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

KillPicture
Releases the memory occupied by a picture not stored in a 'PICT' resource. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void KillPicture (
 PicHandle myPicture
);

Parameters
myPicture

A handle to the picture whose memory can be released.

Discussion
Use this function only when you are completely finished with a picture.

Special Considerations

If you use the Window Manager function SetWindowPic to store a picture handle in the window structure,
use the Window Manager function DisposeWindow or CloseWindow to release the memory allocated to
the picture. These functions automatically call KillPicture for the picture.

If the picture is stored in a 'PICT' resource, use the Resource Manager function ReleaseResource instead
of KillPicture. The Window Manager functions DisposeWindow and CloseWindow will not delete it.
Instead, call ReleaseResource before calling DisposeWindow or CloseWindow.

The KillPicture function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

KillPoly
Releases the memory occupied by a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void KillPoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to dispose of.

Discussion
Use KillPoly only when you are completely through with a polygon.

Functions 2691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The KillPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Line
Draws a line a specified distance from the graphics pen’s current location in the current graphics port.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void Line (
 short dh,
 short dv
);

Parameters
dh

The horizontal distance of the graphics pen’s movement.

dv
The vertical distance of the graphics pen’s movement.

Discussion
Starting at the current location of the graphics pen, the Line function draws a line the horizontal distance
that you specify in the dh parameter and the vertical distance that you specify in the dv parameter. The Line
function calls

LineTo(h+dh,v+dv)

where (h,v) is the current location in local coordinates. The pen location becomes the coordinates of the
end of the line after the line is drawn. If you are using Line to draw a region or polygon, its outline is infinitely
thin and is not affected by the values of the pnSize, pnMode, and pnPat fields of the graphics port.

Special Considerations

The Line function may move or purge memory blocks in the application heap; do not call this function at
interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2692 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LineTo
Draws a line from the graphics pen’s current location to a new location. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void LineTo (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the graphics pen’s new location.

v
The vertical coordinate of the graphics pen’s new location.

Discussion
The LineTo function draws a line from the graphics pen’s current location in the current graphics port to
the new location (h,v), which you specify in the local coordinates of the current graphics port. If you are
using LineTo to draw a region or polygon, its outline is infinitely thin and is not affected by the values of
the pnSize, pnMode, or pnPat field of the graphics port.

Special Considerations

The LineTo function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetCursorNew
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean LMGetCursorNew (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMGetDeviceList
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GDHandle LMGetDeviceList (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetFractEnable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt8 LMGetFractEnable (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetHiliteMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt8 LMGetHiliteMode (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2694 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMGetHiliteRGB
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMGetHiliteRGB (
 RGBColor *hiliteRGBValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetLastFOND
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetLastFOND (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetLastSPExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt32 LMGetLastSPExtra (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMGetMainDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GDHandle LMGetMainDevice (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetQDColors
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetQDColors (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetScrHRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt16 LMGetScrHRes (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2696 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMGetScrVRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

SInt16 LMGetScrVRes (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetTheGDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GDHandle LMGetTheGDevice (
 void
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetWidthListHand
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetWidthListHand (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMGetWidthPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Ptr LMGetWidthPtr (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMGetWidthTabHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle LMGetWidthTabHandle (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetCursorNew
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetCursorNew (
 Boolean value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2698 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetDeviceList
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetDeviceList (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetFractEnable
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetFractEnable (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetHiliteMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetHiliteMode (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetHiliteRGB
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetHiliteRGB (
 const RGBColor *hiliteRGBValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetLastFOND
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetLastFOND (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetLastSPExtra
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetLastSPExtra (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2700 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetMainDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetMainDevice (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetQDColors
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetQDColors (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetScrHRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetScrHRes (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetScrVRes
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetScrVRes (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetTheGDevice
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetTheGDevice (
 GDHandle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetWidthListHand
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetWidthListHand (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2702 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

LMSetWidthPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetWidthPtr (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LMSetWidthTabHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void LMSetWidthTabHandle (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LocalToGlobal
Converts a point’s coordinates from the local coordinates of the current graphics port (basic or color) to
global coordinates. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

void LocalToGlobal (
 Point *pt
);

Parameters
pt

A pointer to a point in local coordinates. On return, this point is converted to global coordinates.

Discussion
The LocalToGlobal function converts the given point from the current graphics port’s local coordinate
system into the global coordinate system (where the upper-left corner of the main screen has coordinates
[0,0]). This global point can then be compared to other global points, or it can be changed into the local
coordinates of another graphics port.

Functions 2703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Because a rectangle is defined by two points, you can convert a rectangle into global coordinates with two
calls to LocalToGlobal. In conjunction with LocalToGlobal, you can use the OffsetRect, OffsetRgn,
or OffsetPoly functions to convert a rectangle, region, or polygon into global coordinates.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

LockPixels
Prevents the base address for an offscreen pixel image from being moved while you draw into or copy from
its pixel map. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Boolean LockPixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. To get a handle to an offscreen pixel map, use the
GetGWorldPixMap (page 2642) function .

Return Value
If the base address for an offscreen pixel image hasn’t been purged by the Memory Manager or is not
purgeable, LockPixels returns TRUE as its function result, and your application can draw into or copy from
the offscreen pixel map. However, if the base address for an offscreen pixel image has been purged,
LockPixels returns FALSE to indicate that you can perform no drawing to or copying from the pixel map.
At that point, your application should either call the UpdateGWorld (page 2831) function to reallocate the
offscreen pixel image and then reconstruct it, or draw directly in a window instead of preparing the image
in an offscreen graphics world.

Discussion
You must call LockPixels before drawing to or copying from an offscreen graphics world.

The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer (which is what the baseAddr field for an onscreen pixel map contains). The LockPixels function
dereferences the PixMap handle into a pointer. When you use the UnlockPixels function the handle is
recovered.

As soon as you are finished drawing into and copying from the offscreen pixel image, call the
UnlockPixels (page 2829) function.

Special Considerations

The LockPixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2704 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell
WhackedTV

Declared In
QDOffscreen.h

LockPortBits
Acquires an exclusive lock on the back buffer for a Carbon window. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

OSErr LockPortBits (
 GrafPtr port
);

Parameters
port

A window port.

Return Value
A result code. If noErr, the window’s back buffer is locked and available for direct access.

Discussion
In Mac OS X, a Carbon window’s port bits are in a back buffer shared by the application and the Quartz
compositor (sometimes called the window server). When an application needs to update this buffer, the
Quartz compositor must be locked out temporarily. You can use this function together with
UnlockPortBits (page 2829) to acquire and release an exclusive lock.

If you’re using QuickDraw or Quartz 2D to draw in a window, you do not need to call this function—buffer
locks are handled for you automatically. If you’re writing code that reads or modifies the port bits directly,
you should bracket your code with calls to this function and UnlockPortBits (page 2829).

Nested calls to this function for the same port are permitted. For a given port, if you call LockPortBits n
times, the lock is actually released after the nth balancing call to UnlockPortBits (page 2829).

You should not call any QuickTime functions while holding the lock. To avoid degrading the user experience,
you should release the lock as quickly as possible.

In Mac OS 9, this function does nothing and returns noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

Functions 2705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

MakeITable
Generates an inverse table for a color table. Your application should not need to call this function; it is used
by system software only. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void MakeITable (
 CTabHandle cTabH,
 ITabHandle iTabH,
 short res
);

Parameters
cTabH

The color table for which an inverse table is to be generated. Passing NULL substitutes an appropriate
handle from the current GDevice data structure.

iTabH
The generated inverse table. Passing NULL substitutes an appropriate handle from the current GDevice
data structure.

res
The resolution needed for the inverse table. Passing 0 substitutes the current GDevice data structure’s
inverse table resolution.

Discussion
The MakeITable function generates an inverse table based on the current contents of the color table pointed
to by the cTabH parameter, with a resolution specified by the value in the res parameter. Reserved color
table pixel values are not included in the resulting color table. MakeITable tests its input parameters and
returns an error in QDError if the resolution is less than three or greater than five.

This function allows maximum precision in mapping colors, even if colors in the color table differ by less than
the resolution of the inverse table. Five-bit inverse tables are not needed when drawing in normal Color
QuickDraw modes. However, Color QuickDraw transfer modes such as add, subtract, and blend may require
a 5-bit inverse table for best results with certain color tables. The 'mitq' resource governs how much memory
is allocated for temporary internal structures; this resource type is for internal use only.

Depending on the requested resolution, building the inverse table can require large amounts of temporary
space in the application heap: twice the size of the table itself, plus a fixed overhead of 3–15 KB for each
inverse table resolution.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MakeRGBPat
Creates the appearance of otherwise unavailable colors on indexed devices. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2706 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void MakeRGBPat (
 PixPatHandle pp,
 const RGBColor *myColor
);

Parameters
pp

On return, a handle to the generated pixel pattern.

myColor
An RGBColor structure that defines the color you want to approximate.

Discussion
The MakeRGBPat function generates a PixPat (page 2871) structure that approximates the color you specify
in the myColor parameter. For example, if your application draws to an indexed device that supports 4 bits
per pixel, you only have 16 colors available if you simply set the foreground color and draw. If you use
MakeRGBPat to create a pattern, and then draw using that pattern, you effectively get 125 different colors.
If the graphics device has 8 bits per pixel, you effectively get 2197 colors. (More color are theoretically possible;
this implementation opted for a fast pattern selection rather than the best possible pattern selection.)

For a pixel pattern, the (** patMap).bounds field of the PixPat structure always contains the values (0,0,8,8),
and the (** patMap).rowbytes field equals 2.

Because patterns produced with MakeRGBPat aren’t usually solid—they provide a selection of colors by
alternating between colors, with up to four colors in a pattern— lines that are only one pixel wide may not
look good.

When MakeRGBPat creates a ColorTable structure, it fills in only the rgb fields of its ColorSpec structures;
the value fields are computed at the time the drawing actually takes place, using the current pixel depth
for the system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MapPoly
Maps and scales a polygon within one rectangle to another rectangle. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void MapPoly (
 PolyHandle poly,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
poly

A handle to a polygon. Upon input, this is the polygon to map. Upon completion, this polygon is the
one mapped to a new location.

Functions 2707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

srcRect
The rectangle containing the polygon.

dstRect
The rectangle in which the new region will be mapped.

Discussion
The MapPoly function takes a polygon within one rectangle and maps and scales it to another rectangle. In
the poly parameter, you specify a handle to a polygon that lies within the rectangle that you specify in the
srcRect parameter. By calling the MapPt function to map all the points that define the polygon specified
in the poly parameter, MapPoly maps and scales it to the rectangle that you specify in the dstRect
parameter. The MapPoly function returns the result in the polygon whose handle you initially passed in the
poly parameter.

Similar to the MapRgn function described in the previous section, the MapPoly function is useful for
determining whether a polygon operation will exceed available memory.

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MapPt
Maps a point in one rectangle to an equivalent position in another rectangle.

void MapPt (
 Point *pt,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
pt

Upon input, a pointer to the point in the source rectangle to map; upon completion, a pointer to its
mapped position in the destination rectangle.

srcRect
The source rectangle containing the original point.

dstRect
The destination rectangle in which the point will be mapped.

Discussion
The MapPt function maps a point in one rectangle to an equivalent position in another rectangle.

2708 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

In the pt parameter, you specify a point that lies within the rectangle that you specify in the srcRect
parameter. The MapPt function maps this point to a similarly located point within the rectangle that you
specify in the dstRect parameter—that is, to where it would fall if it were part of a drawing being expanded
or shrunk to fit the destination rectangle. The MapPt function returns the location of the mapped point in
the pt parameter. For example, a corner point of the source rectangle would be mapped to the corresponding
corner point of the destination rectangle in dstRect, and the center of the source rectangle would be
mapped to the center of destination rectangle.

The source and destination rectangles may overlap, and the point you specify need not actually lie within
the source rectangle.

If you are going to draw inside the destination rectangle, you’ll probably also want to scale the graphics pen
size accordingly with ScalePt (page 2782).

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

MapRect
Maps and scales a rectangle within one rectangle to another rectangle.

void MapRect (
 Rect *r,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
r

Upon input, a pointer to the rectangle to map; upon completion, the mapped rectangle.

srcRect
The rectangle containing the rectangle to map.

dstRect
The rectangle in which the new rectangle will be mapped.

Discussion
The MapRect function takes a rectangle within one rectangle and maps and scales it to another rectangle.
In the r parameter, you specify a rectangle that lies within the rectangle that you specify in the srcRect
parameter. By calling the MapPt function to map the upper-left and lower-right corners of the rectangle in
the r parameter, MapRect maps and scales it to the rectangle that you specify in the dstRect parameter.
The MapRect function returns the newly mapped rectangle in the r parameter.

Functions 2709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

MapRgn
Maps and scales a region within one rectangle to another rectangle.

void MapRgn (
 RgnHandle rgn,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
rgn

A handle to a region. Upon input, this is the region to map. Upon completion, this region is the one
mapped to a new location.

srcRect
The rectangle containing the region to map.

dstRect
The rectangle in which the new region will be mapped.

Discussion
The MapRgn function takes a region within one rectangle and maps and scales it to another rectangle. In the
rgn parameter, you specify a handle to a region that lies within the rectangle that you specify in the srcRect
parameter. By calling the MapPt function to map all the points of the region in the rgn parameter, MapRgn
maps and scales it to the rectangle that you specify in the dstRect parameter. The MapRgn function returns
the result in the region whose handle you initially passed in the rgn parameter.

The MapRgn function is useful for determining whether a region operation will exceed available memory. By
mapping a large region into a smaller one and performing the operation (without actually drawing), you can
estimate how much memory will be required by the anticipated operation.

Special Considerations

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

2710 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The MapRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Move
Moves the graphics pen a particular distance. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void Move (
 short dh,
 short dv
);

Parameters
dh

The horizontal distance of the graphics pen’s movement.

dv
The vertical distance of the graphics pen’s movement.

Discussion
The Move function moves the graphics pen from its current location in the current graphics port a horizontal
distance that you specify in the dh parameter and a vertical distance that you specify in the dv parameter.
The Move function calls

MoveTo(h+dh,v+dv)

where (h,v) is the graphics pen’s current location in local coordinates. The Move function performs no
drawing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MovePortTo
Changes the position of the port rectangle of the current graphics port (basic or color). (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void MovePortTo (
 short leftGlobal,
 short topGlobal
);

Parameters
leftGlobal

The horizontal distance to move the port rectangle.

topGlobal
The vertical distance to move the port rectangle.

Discussion
The MovePortTo function is normally called only by the Window Manager. The MovePortTo function changes
the position of the current graphics port’s port rectangle: the leftGlobal and topGlobal parameters set
the distance between the upper-left corner of the boundary rectangle and the upper-left corner of the new
port rectangle.

This does not affect the screen; it merely changes the location at which subsequent drawing inside the
graphics port appears. Like the PortSize function, MovePortTo doesn’t change the clipping or visible
region, nor does it affect the local coordinate system of the graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

MoveTo
Moves the graphics pen to a particular location in the current graphics port. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void MoveTo (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the graphics pen’s new position.

v
The vertical coordinate of the graphics pen’s new position.

Discussion
The MoveTo function changes the graphics pen’s current location to the new horizontal coordinate you
specify in the h parameter and the new vertical coordinate you specify in the v parameter. Specify the new
location in the local coordinates of the current graphics port. The MoveTo function performs no drawing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2712 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawAPI.h

NewColorComplementUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

ColorComplementUPP NewColorComplementUPP (
 ColorComplementProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewColorSearchUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

ColorSearchUPP NewColorSearchUPP (
 ColorSearchProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewDeviceLoopDrawingUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DeviceLoopDrawingUPP NewDeviceLoopDrawingUPP (
 DeviceLoopDrawingProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewDragGrayRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

DragGrayRgnUPP NewDragGrayRgnUPP (
 DragGrayRgnProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewGDevice
Creates a new GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

GDHandle NewGDevice (
 short refNum,
 long mode
);

Parameters
refNum

Reference number of the graphics device for which you are creating a GDevice structure. For most
video devices, this information is set at system startup.

mode
The device configuration mode. Used by the screen driver, this value sets the pixel depth and specifies
color or black and white.

Return Value
A handle to the new GDevice (page 2859) structure. If the request is unsuccessful, NewGDevice returns NULL.

2714 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
Generally, you do not need to use NewGDevice, because Color QuickDraw uses this function to create
GDevice structures for your application automatically. When the system starts up, it allocates and initializes
one handle to a GDevice structure for each video device it finds. When you use the NewGWorld function,
QuickDraw automatically creates a GDevice structure for the new offscreen graphics world.

For the graphics device whose driver is specified in the refNum parameter and whose mode is specified in
the mode parameter, the NewGDevice function allocates a new GDevice structure and all of its handles, and
then calls the InitGDevice function to initialize the structure.

NewGDevice allocates the new GDevice structure and all of its handles in the system heap, and the
NewGDevice function sets all attributes in the gdFlags field of the GDevice structure to FALSE. If your
application creates a GDevice structure, use the SetDeviceAttribute (page 2793) function to change the
flag bits in the gdFlags field of the GDevice structure to TRUE. Your application should never directly change
the gdFlags field of the GDevice structure. Instead, use only the SetDeviceAttribute function.

If your application creates a GDevice structure without a driver, set the mode parameter to –1. In this case,
InitGDevice cannot initialize the GDevice structure, so your application must perform all initialization of
the structure. A GDevice structure’s default mode is defined as 128. This is assumed to be a black-and-white
mode. If you specify a value other than 128 in the mode parameter, the structure’s gdDevType bit in the
gdFlags field of the GDevice structure is set to TRUE to indicate that the graphics device is capable of
displaying color.

The NewGDevice function does not automatically insert the GDevice structure into the device list. In general,
your application should not create GDevice structures, and if it ever does, it should never add them to the
device list.

If your program uses NewGDevice to create a graphics device without a driver, InitGDevice does nothing;
instead, your application must initialize all fields of the GDevice structure. After your application initializes
the color table for the GDevice structure, call the Color Manager function MakeITable to build the inverse
table for the graphics device.

Special Considerations

The NewGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NewGWorld
Creates an offscreen graphics world. (Deprecated. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

Functions 2715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDErr NewGWorld (
 GWorldPtr *offscreenGWorld,
 short PixelDepth,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On return, a pointer to the offscreen graphics world created by this function. You use this pointer
when referring to this new offscreen world in other QuickDraw functions.

PixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16, and 32 bits per pixel. The
default parameter (0) uses the pixel depth of the screen with the greatest pixel depth from among
all screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter. If you specify 0 in this parameter, NewGWorld also uses the GDevice structure from this
device instead of creating a new GDevice structure for the offscreen world. If you use NewGWorld
on a computer that supports only basic QuickDraw, you may specify only 0 or 1 in this parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map. This becomes the boundary
rectangle for the GDevice structure, if NewGWorld creates one. If you specify 0 in the pixelDepth
parameter, NewGWorld interprets the boundaries in global coordinates that it uses to determine
which screens intersect the rectangle. NewGWorld then uses the pixel depth, color table, and GDevice
structure from the screen with the greatest pixel depth from among all screens whose boundary
rectangles intersect this rectangle. Typically, your application supplies this parameter with the port
rectangle for the onscreen window into which your application will copy the pixel image from this
offscreen world.

cTable
A handle to a ColorTable structure. If you pass NULL in this parameter, NewGWorld uses the default
color table for the pixel depth that you specify in the pixelDepth parameter. If you set the
pixelDepth parameter to 0, NewGWorld ignores the cTable parameter and instead copies and uses
the color table of the graphics device with the greatest pixel depth among all graphics devices whose
boundary rectangles intersect the rectangle that you specify in the boundsRect parameter. If you
use NewGWorld on a computer that supports only basic QuickDraw, you may specify only NULL in
this parameter.

aGDevice
A handle to a GDevice structure that is used only when you specify the noNewDevice flag in the
flags parameter, in which case NewGWorld attaches this GDevice structure to the new offscreen
graphics world. If you set the pixelDepth parameter to 0, or if you do not set the noNewDevice
flag, NewGWorld ignores the aGDevice parameter, so set it to NULL. If you set the pixelDepth
parameter to 0, NewGWorld uses the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle that you
specify in the boundsRect parameter. You should pass NULL in this parameter if the computer
supports only basic QuickDraw. Generally, your application should never create GDevice structures
for offscreen graphics worlds.

2716 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

flags
Options available to your application. You can set a combination of the flags pixPurge, noNewDevice,
useTempMem, and keepLocal. If you don’t wish to use any of these flags, specify 0 in this parameter
to accept the default behavior for NewGWorld. The default behavior creates an offscreen graphics
world where the base address for the offscreen pixel image is unpurgeable, it uses an existing GDevice
structure (if you pass 0 in the depth parameter) or creates a new GDevice structure, it uses memory
in your application heap, and it allows graphics accelerators to cache the offscreen pixel image. See
“Graphics World Flags” (page 2891) for a description of the values you can use here.

Return Value
A result code.

Discussion
Typically, you pass 0 in the pixelDepth parameter, a window’s port rectangle in the boundsRect parameter,
NULL in the cTable and aGDevice parameters, and in the flags parameter a 0. This provides your application
with the default behavior of NewGWorld, and it supports computers running basic QuickDraw. This also
allows QuickDraw to optimize the CopyBits, CopyMask, and CopyDeepMask functions when your application
copies the image in an offscreen graphics world into an onscreen graphics port.

The NewGWorld function allocates memory for an offscreen graphics port and its pixel map. On computers
that support only basic QuickDraw, NewGWorld creates a 1-bit pixel map that your application can manipulate
using other relevant functions described in this chapter. Your application can copy this 1-bit pixel map into
basic graphics ports.

Unless you specify 0 in the pixelDepth parameter–or pass the noNewDevice flag in the flags parameter
and supply a GDevice structure in the aGDevice parameter– NewGWorld also allocates a new offscreen
GDevice structure.

When creating an image, use the NewGWorld function to create an offscreen graphics world that is optimized
for an image’s characteristics—for example, its best pixel depth. After creating the image, use the CopyBits,
CopyMask, or CopyDeepMask function to copy that image to an onscreen graphics port. Color QuickDraw
automatically renders the image at the best available pixel depth for the screen. Creating an image in an
offscreen graphics port and then copying it to the screen in this way prevents the visual choppiness that
would otherwise occur if your application were to build a complex image directly onscreen.

The NewGWorld function initializes the offscreen graphics port by calling the OpenCPort function. The
NewGWorld function sets the offscreen graphics port’s visible region to a rectangular region coincident with
its boundary rectangle. The NewGWorld function generates an inverse table with the Color Manager function
MakeITable, unless one of the GDevice structures for the screens has the same color table as the GDevice
structure for the offscreen world, in which case NewGWorld uses the inverse table from that GDevice structure.

The address of the offscreen pixel image is not directly accessible from the PixMap structure for the offscreen
graphics world. However, you can use the GetPixBaseAddr (page 2648) function to get a pointer to the
beginning of the offscreen pixel image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel image by using this
formula:

rowBytes * (boundsRect.bottom – boundsRect.top)

In the flags parameter, you can specify several options. If you don’t want to use any of these options, pass
0 in the flags parameter:

Functions 2717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

 ■ If you specify the pixPurge flag, NewGWorld stores the offscreen pixel image in a purgeable block of
memory. In this case, before drawing to or from the offscreen pixel image, your application should call
the LockPixels (page 2704) function and ensure that it returns TRUE. If LockPixels returns FALSE, the
memory for the pixel image has been purged, and your application should either call UpdateGWorld (page
2831) to reallocate it and then reconstruct the pixel image, or draw directly in a window instead of preparing
the image in an offscreen graphics world. Never draw to or copy from an offscreen pixel image that has
been purged without reallocating its memory and then reconstructing it.

 ■ If you specify the noNewDevice flag, NewGWorld does not create a new offscreen GDevice structure.
Instead, it uses the GDevice structure that you specify in the aGDevice parameter–and its associated
pixel depth and color table–to create the offscreen graphics world. (If you set the pixelDepth parameter
to 0, NewGWorld uses the GDevice structure for the screen with the greatest pixel depth among all the
screens whose boundary rectangles intersect the rectangle that you specify in the boundsRect
parameter–even if you specify the noNewDevice flag.) The NewGWorld function keeps a reference to
the GDevice structure for the offscreen graphics world, and the SetGWorld (page 2796) function uses
that structure to set the current graphics device.

 ■ If you set the useTempMem flag, NewGWorld creates the base address for an offscreen pixel image in
temporary memory. You generally would not use this flag, because you should use temporary memory
only for fleeting purposes and only with the AllowPurgePixels (page 2573) function.

 ■ If you specify the keepLocal flag, your offscreen pixel image is kept in Macintosh main memory and is
not cached to a graphics accelerator card. use this flag carefully, as it negates the advantages provided
by any graphics acceleration card that might be present.

If your application needs to change the pixel depth, boundary rectangle, or color table for an offscreen
graphics world, use the UpdateGWorld (page 2831) function.

Special Considerations

If you supply a handle to a ColorTable structure in the cTable parameter, NewGWorld makes a copy of
the structure and stores its handle in the offscreen PixMap structure. It is your application’s responsibility to
make sure that the ColorTable structure you specify in the cTable parameter is valid for the offscreen
graphics port’s pixel depth.

If when using NewGWorld you specify a pixel depth, color table, or GDevice structure that differs from those
used by the window into which you copy your offscreen image, the CopyBits, CopyMask, and CopyDeepMask
functions require extra time to complete.

To use a custom color table in an offscreen graphics world, you need to create the associated offscreen
GDevice structure, because Color QuickDraw needs its inverse table.

The NewGWorld function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.k.h

NewGWorldFromPtr
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2718 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDErr NewGWorldFromPtr (
 GWorldPtr *offscreenGWorld,
 UInt32 PixelFormat,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags,
 Ptr newBuffer,
 SInt32 rowBytes
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

NewPixMap
Creates a new, initialized PixMap structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

PixMapHandle NewPixMap (
 void
);

Return Value
A handle to the new PixMap structure.

Discussion
All fields of the PixMap structure are copied from the current device’s PixMap structure except the color
table. In System 7, the hRes and vRes fields are set to 72 dpi, no matter what values the current device’s
PixMap structure contains. A handle to the color table is allocated but not initialized.

Typically, you do not need to call this function because PixMap structures are created for you when you
create a window using the Window Manager functions NewCWindow and GetNewCWindow and when you
create an offscreen graphics world with the NewGWorld function.

If your application creates a pixel map, your application must initialize the PixMap structure’s color table to
describe the pixels. Use the GetCTable (page 2636) function to read such a table from a resource file. Use the
DisposeCTable (page 2599) function to dispose of the PixMap structure’s color table and replace it with the
one returned by GetCTable.

Special Considerations

The NewPixMap function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
LiveVideoMixer2

Declared In
QuickdrawAPI.h

NewPixPat
Creates a new pixel pattern. Generally, however, your application should create a pixel pattern in a 'ppat'
resource. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz ProgrammingGuide forQuickDraw
Developers.)

PixPatHandle NewPixPat (
 void
);

Return Value
A handle to the new PixPat (page 2871) structure created by the NewPixPat function.

Discussion
This function calls the NewPixMap (page 2719) function to allocate the pattern’s PixMap structure and initializes
it to the same settings as the pixel map of the current GDevice structure. NewPixPat also sets the pat1Data
field of the new PixPat structure to a 50 percent gray pattern. NewPixPat allocates new handles for the
PixPat structure’s data, expanded data, expanded map, and color table but does not initialize them instead,
your application must initialize them.

Set the rowBytes, bounds, and pixelSize fields of the pattern’s PixMap structure to the dimensions of
the desired pattern. The rowBytes value should be equal to

(width of bounds) x pixelSize/8

The rowBytes value need not be even. The width and height of the bounds must be a power of 2. Each scan
line of the pattern must be at least 1 byte in length—that is, ([width of bounds] x pixelSize) must be at
least 8.

Your application can explicitly specify the color corresponding to each pixel value with a color table. The
color table for the pattern must be placed in the pmTable field in the pattern’s PixMap structure.

Including the PixPat structure itself, NewPixPat allocates a total of five handles. The sizes of the handles
to the PixPat and PixMap structures are the sizes of their respective data structures. The other three handles
are initially small in size. Once the pattern is drawn, the size of the expanded data is proportional to the size
of the pattern data, but adjusted to the depth of the screen. The color table size is the size of the structure
plus 8 bytes times the number of colors in the table.

When you are finished using the pixel pattern, use the DisposePixPat (page 2602) function to make the
memory used by the pixel pattern available again.

Special Considerations

The NewPixPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2720 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

NewQDArcUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDArcUPP NewQDArcUPP (
 QDArcProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDBitsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDBitsUPP NewQDBitsUPP (
 QDBitsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDCommentUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDCommentUPP NewQDCommentUPP (
 QDCommentProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Functions 2721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDGetPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDGetPicUPP NewQDGetPicUPP (
 QDGetPicProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDJShieldCursorUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDJShieldCursorUPP NewQDJShieldCursorUPP (
 QDJShieldCursorProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDLineUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDLineUPP NewQDLineUPP (
 QDLineProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

2722 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDOpcodeUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDOpcodeUPP NewQDOpcodeUPP (
 QDOpcodeProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDOvalUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDOvalUPP NewQDOvalUPP (
 QDOvalProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDPolyUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDPolyUPP NewQDPolyUPP (
 QDPolyProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Functions 2723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDPutPicUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDPutPicUPP NewQDPutPicUPP (
 QDPutPicProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRectUPP NewQDRectUPP (
 QDRectProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDRgnUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRgnUPP NewQDRgnUPP (
 QDRgnProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

2724 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDRRectUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRRectUPP NewQDRRectUPP (
 QDRRectProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDStdGlyphsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDStdGlyphsUPP NewQDStdGlyphsUPP (
 QDStdGlyphsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDTextUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDTextUPP NewQDTextUPP (
 QDTextProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Functions 2725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewQDTxMeasUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDTxMeasUPP NewQDTxMeasUPP (
 QDTxMeasProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawTypes.h

NewRegionToRectsUPP
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RegionToRectsUPP NewRegionToRectsUPP (
 RegionToRectsProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawAPI.h

NewRgn
Begins creating a new region.

RgnHandle NewRgn (
 void
);

Return Value
A handle to the new region.

2726 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The NewRgn function allocates space for a new, variable-size region and initializes it to the empty region
defined by the rectangle (0,0,0,0). This is the only function that creates a new region; other functions merely
alter the size or shape of existing regions.

To begin defining a region, use the OpenRgn (page 2737) function.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The NewRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Use the Memory Manager function MaxMem to determine whether the memory for the region is valid before
using NewRgn.

Ensure that the memory for a region is valid before calling this function to manipulate that region if there
isn’t sufficient memory, the system may crash. Regions are limited to 32 KB in size in basic QuickDraw and
64 KB in color QuickDraw. Before defining a region, you can use the Memory Manager function MaxMem to
determine whether the memory for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize. When you record drawing operations in
an open region, the resulting region description may overflow the 32 KB or 64 KB limit. Should this happen
in color QuickDraw, the QDError function returns the result code regionTooBigError.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

NewScreenBuffer
Creates an offscreen PixMap structure and allocates memory for the base address of its pixel image.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDErr NewScreenBuffer (
 const Rect *globalRect,
 Boolean purgeable,
 GDHandle *gdh,
 PixMapHandle *offscreenPixMap
);

Parameters
globalRect

The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable
A value of TRUE to make the memory block for the offscreen pixel map purgeable, or a value of FALSE
to make it unpurgeable.

gdh
On return, a pointer to the handle to the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle specified
in the globalRect parameter.

offscreenPixMap
On return, a pointer to a handle to the new offscreen PixMap structure.

Return Value
A result code.

Discussion
Applications generally do not need to use NewScreenBuffer. The NewGWorld (page 2715) function uses the
NewScreenBuffer function to create and allocate memory for an offscreen pixel image.

Special Considerations

The NewScreenBuffer function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

NewTempScreenBuffer
Creates an offscreen PixMap structure and allocate temporary memory for the base address of its pixel image
applications generally don’t need to use NewTempScreenBuffer. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

2728 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDErr NewTempScreenBuffer (
 const Rect *globalRect,
 Boolean purgeable,
 GDHandle *gdh,
 PixMapHandle *offscreenPixMap
);

Parameters
globalRect

The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable
A value of TRUE to make the memory block for the offscreen pixel map purgeable, or a value of FALSE
to make it unpurgeable.

gdh
On return, a pointer to the handle to the GDevice structure for the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles intersect the rectangle specified
in the globalRect parameter.

offscreenPixMap
On return, a pointer to the handle to the new offscreen PixMap structure.

Return Value
A result code.

Discussion
The NewTempScreenBuffer function performs the same functions as NewScreenBuffer except that it
creates the base address for the offscreen pixel image in temporary memory. When an application passes it
the useTempMem flag, the NewGWorld function uses NewTempScreenBuffer instead of NewScreenBuffer.

Your application should not need to use this function.

Special Considerations

The NewTempScreenBuffer function may move or purge memory blocks in the application heap. Your
application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

NoPurgePixels
Prevents the Memory Manager from purging the base address for an offscreen pixel image. (Deprecated in
Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void NoPurgePixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map.

Discussion
The NoPurgePixels function marks the base address for an offscreen pixel image as unpurgeable.

To get a handle to an offscreen pixel map, use the GetGWorldPixMap (page 2642) function. Then supply this
handle for the pm parameter of NoPurgePixels.

Special Considerations

The NoPurgePixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

ObscureCursor
Hides the cursor until the next time the user moves the mouse.

void ObscureCursor (
 void
);

Discussion
Your application normally calls ObscureCursor when the user begins to type. Unlike HideCursor (page
2668) , ObscureCursor has no effect on the cursor level and must not be balanced by a call to ShowCursor.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OffscreenVersion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2730 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SInt32 OffscreenVersion (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

OffsetPoly
Moves a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void OffsetPoly (
 PolyHandle poly,
 short dh,
 short dv
);

Parameters
poly

A handle to a polygon to move.

dh
The horizontal distance to move the polygon.

dv
The vertical distance to move the polygon.

Discussion
The OffsetPoly function moves the polygon whose handle you pass in the poly parameter by adding the
value you specify in the dh parameter to the horizontal coordinates of its points, and by adding the value
you specify in the dv parameter to the vertical coordinates of all points of its region boundary. If the values
of dh and dv are positive, the movement is to the right and down; if either is negative, the corresponding
movement is in the opposite direction. The region retains its size and shape. This does not affect the screen
unless you subsequently call a function to draw the region.

OffsetPoly is an especially efficient operation, because the data defining a polygon is stored relative to
the first point of the polygon and so is not actually changed by OffsetPoly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OffsetRect
Moves a rectangle.

void OffsetRect (
 Rect * r,
 short dh,
 short dv
);

Parameters
r

A pointer to the rectangle to move.

dh
The horizontal distance to move the rectangle.

dv
The vertical distance to move the rectangle.

Discussion
The OffsetRect function moves the rectangle that you specify in the r parameter by adding the value you
specify in the dh parameter to each of its horizontal coordinates and the value you specify in the dv parameter
to each of its vertical coordinates. If the dh and dv parameters are positive, the movement is to the right and
down; if either is negative, the corresponding movement is in the opposite direction. The rectangle retains
its shape and size; it is merely moved on the coordinate plane. The movement does not affect the screen
unless you subsequently call a function to draw within the rectangle.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator

Declared In
QuickdrawAPI.h

OffsetRgn
Moves a region.

2732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void OffsetRgn (
 RgnHandle rgn,
 short dh,
 short dv
);

Parameters
rgn

A handle to the region to move.

dh
The horizontal distance to move the region.

dv
The vertical distance to move the region.

Discussion
The OffsetRgn function moves the region whose handle you pass in the rgn parameter by adding the value
you specify in the dh parameter to the horizontal coordinates of all points of its region boundary, and by
adding the value you specify in the dv parameter to the vertical coordinates of all points of its region boundary.
If the values of dh and dv are positive, the movement is to the right and down; if either is negative, the
corresponding movement is in the opposite direction. The region retains its size and shape. This does not
affect the screen unless you subsequently call a function to draw the region.

The OffsetRgn function is an especially efficient operation, because most of the data defining a region is
stored relative to the rgnBBox field in its Region structure and so is not actually changed by OffsetRgn.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpColor
Sets the maximum color values for the addPin and subPin arithmetic transfer modes and the weight color
for the blend arithmetic transfer mode. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void OpColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure that defines a color.

Discussion
Specify the red, green, and blue values in the RGBColor structure and specify this structure in the color
parameter.

If the current graphics port is defined by a GrafPort structure, OpColor has no effect.

Availability
Available in Mac OS X v10.0 and later.

Functions 2733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenCPicture
Begins defining a picture in extended version 2 format. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

PicHandle OpenCPicture (
 const OpenCPicParams *newHeader
);

Parameters
newHeader

An OpenCPicParams structure.

Return Value
A handle to a new Picture structure. OpenCPicture collects your subsequent drawing commands in this
structure. Use this handle when referring to the picture in subsequent functions, such as the DrawPicture
function.

Discussion
When defining a picture, you can use all other QuickDraw drawing functions, with the exception of CopyMask,
CopyDeepMask, SeedFill, SeedCFill, CalcMask, and CalcCMask. You can also use the PicComment (page
2748) function to include picture comments in your picture definition.

The OpenCPicture function creates a pictures in the extended version 2 format. This format permits your
application to specify resolutions when creating images.

Use theOpenCPicParams (page 2865) structure you pass in thenewHeaderparameter to specify the horizontal
and vertical resolution for the picture, and specify an optimal bounding rectangle for displaying the picture
at this resolution. When you later call the DrawPicture (page 2610) function to play back the saved picture,
supply a destination rectangle, and DrawPicture scales the picture so that it is completely aligned with the
destination rectangle. To display a picture at a resolution other than that at which it was created, compute
an appropriate destination rectangle by scaling its width and height by the following factor:

scale factor = destination resolution / source resolution

For example, if a picture was created at 300 dpi and you want to display it at 75 dpi, then your application
should compute the destination rectangle width and height as 1/4 of those of the picture’s bounding rectangle.

The OpenCPicture function calls the HidePen function, so no drawing occurs on the screen while the
picture is open (unless you call the ShowPen function just after OpenCPicture, or you called ShowPen
previously without balancing it by a call to HidePen).

After defining the picture, close it by using the ClosePicture (page 2581) function.

After creating the picture, use the GetPictInfo function to gather information about it. The PictInfo
structure returned by GetPictInfo returns the picture’s resolution and optimal bounding rectangle.

2734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

When creating a picture, use the ClosePicture function to finish it before you open the Printing Manager
with the PrOpen function. There are two main reasons for this. First, you should allow the printing driver to
use as much memory as possible. Second, the Printing Manager creates its own type of graphics port, one
that replaces the standard QuickDraw drawing operations stored in the grafProcs field of a CGrafPort or
GrafPort structure. To avoid unexpected results when creating a picture, draw into a graphics port created
with QuickDraw instead of drawing into a printing port created by the Printing Manager.

After calling OpenCPicture, be sure to finish your picture definition by calling ClosePicture before you
call OpenCPicture again. You cannot nest calls to OpenCPicture.

Always use the ClipRect procedure to specify a clipping region appropriate for your picture before you call
OpenCPicture. If you do not use ClipRect to specify a clipping region, OpenCPicture uses the clipping
region specified in the current graphics port. If the clipping region is very large (as it is when a graphics port
is initialized) and you scale the picture when drawing it, the clipping region can become invalid when
DrawPicture scales the clipping region—in which case, your picture will not be drawn.

The OpenCPicture function may move or purge memory; do not call at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr OpenCursorComponent (
 Component c,
 ComponentInstance *ci
);

Return Value
Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OpenPicture
Creates a picture which allows you to specify resolutions for your pictures. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

PicHandle OpenPicture (
 const Rect *picFrame
);

Parameters
picFrame

The bounding rectangle for the picture. The DrawPicture function uses this rectangle to scale the
picture if you draw it into a destination rectangle of a different size.

Return Value
A handle to a new Picture structure. OpenPicture collects your subsequent drawing commands in this
structure. Use this handle when referring to the picture in subsequent functions, such as the DrawPicture
function.

Discussion
The OpenPicture function, which was created for earlier versions of system software, is described here for
completeness. Use the OpenPicture function to begin defining a picture.

The OpenPicture function calls the HidePen function, so no drawing occurs on the screen while the picture
is open (unless you call the ShowPen function just after OpenPicture or you called ShowPen previously
without balancing it by a call to HidePen).

The OpenPicture function creates pictures in the version 2 format on computers with Color QuickDraw
when the current graphics port is a color graphics port. Pictures created in this format support color drawing
operations at 72 dpi. On computers supporting only basic QuickDraw, or when the current graphics port is
a basic graphics port, this function creates pictures in version 1 format. Pictures created in version 1 format
support only black-and-white drawing operations at 72 dpi.

When defining a picture, you can use all other QuickDraw drawing functions, with the exception of CopyMask,
CopyDeepMask, SeedFill, SeedCFill, CalcMask, and CalcCMask. You can also use the PicComment (page
2748) function to include picture comments in your picture definition.

After defining the picture, close it by using the ClosePicture (page 2581) function. To draw the picture, use
the DrawPicture (page 2610) function.

Special Considerations

The version 2 and version 1 picture formats support only 72-dpi resolution. The OpenCPicture function
creates pictures in the extended version 2 format. The extended version 2 format, which is created by the
OpenCPicture function on all Macintosh computers running System 7, permits your application to specify
additional resolutions when creating images.

Version 1 pictures are limited to 32 KB. You can determine the picture size while it is being formed by calling
the Memory Manager function GetHandleSize.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OpenPoly
Begins defining a polygon. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

PolyHandle OpenPoly (
 void
);

Return Value
A handle to a new polygon.

Discussion
The OpenPoly function starts saving lines for processing as a polygon definition. While a polygon is open,
all calls to the Line and LineTo functions affect the outline of the polygon. Only the line endpoints affect
the polygon definition; the pattern mode, pattern, and size do not affect it. The OpenPoly function calls the
HidePen function, so no drawing occurs on the screen while the polygon is open (unless you call the ShowPen
function just after calling OpenPoly, or you called ShowPen previously without balancing it by a call to
HidePen).

A polygon should consist of a sequence of connected lines. The OpenPoly function stores the definition for
a polygon in a Polygon structure.

When a polygon is open, the current graphics port’s polySave field contains a handle to information related
to the polygon definition. If you want to temporarily disable the polygon definition, you can save the current
value of this field, set the field to NULL, and later restore the saved value to resume the polygon definition.

Even though the onscreen presentation of a polygon is clipped, the definition of a polygon is not; you can
define a polygon anywhere on the coordinate plane.

When you are finished calling the line-drawing functions that define your polygon, use the ClosePoly (page
2581) function.

Special Considerations

Do not call OpenPoly while a region or another polygon is already open.

Polygons are limited to 64 KB. You can determine the polygon size while it is being formed by calling the
Memory Manager function GetHandleSize.

The OpenPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

OpenRgn
Begins defining a region. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

Functions 2737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void OpenRgn (
 void
);

Discussion
The OpenRgn function allocates temporary memory to start saving lines and framed shapes for processing
as a region definition. Call OpenRgn only after initializing a region with the NewRgn function.

The NewRgn function stores the definition for a region in a Region structure.

While a region is open, all calls to Line, LineTo, and the functions that draw framed shapes (except arcs)
affect the outline of the region. Only the line endpoints and shape boundaries affect the region definition—the
pattern mode, pattern, and size do not affect it.

When you are finished defining the region, call the CloseRgn (page 2582) function.

The OpenRgn function calls HidePen, so no drawing occurs on the screen while the region is open (unless
you call ShowPen just after OpenRgn, or you called ShowPen previously without balancing it by a call to
HidePen). Since the pen hangs below and to the right of the pen location, drawing lines with even the
smallest pen changes pixels that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and it separates the bit or pixel image
into two groups of pixels: those within the region and those outside it.

A region should consist of one or more closed loops. Each framed shape itself constitutes a loop. Any lines
drawn with the Line or LineTo function should connect with each other or with a framed shape. Even if
the onscreen presentation of a region is clipped, the definition of a region is not; you can define a region
anywhere on the coordinate plane with complete disregard for the location of various graphics port entities
on that plane.

When a region is open, the current graphics port’s rgnSave field contains a handle to information related
to the region definition. If you want to temporarily disable the collection of lines and shapes, you can save
the current value of this field, set the field to NULL, and later restore the saved value to resume the region
definition. Also, calling SetPort while a region is being formed discontinues formation of the region until
another call to SetPort resets the region’s original graphics port.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw. You can determine
the current size of an existing region by calling the Memory Manager function GetHandleSize. When you
structure drawing operations in an open region, the resulting region description may overflow the 32 KB or
64 KB limit. Should this happen in Color QuickDraw, the QDError function returns the result code
regionTooBigError.

Do not call OpenRgn while another region or a polygon is already open. When you are finished constructing
the region, use the CloseRgn function, which is described next.

The OpenRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

2738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PackBits
Compresses a data buffer stored in RAM. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void PackBits (
 Ptr *srcPtr,
 Ptr *dstPtr,
 short srcBytes
);

Parameters
srcPtr

On entry, a pointer to the first byte of a buffer of data to be compressed. On exit, a pointer to the first
byte following the bytes compressed.

dstPtr
On entry, a pointer to the first byte in which to store compressed data. On exit, a pointer to the first
byte following the compressed data.

srcBytes
The number of bytes of uncompressed data to be compressed. In versions of software prior to version
6.0.2, this number must be 127 or less.

Discussion
You must allocate memory for the destination buffer itself. Allocate enough memory for a worst-case scenario
where the destination buffer is 128 bytes long for each block of source data up to 127 bytes. Use the following
formula to determine how much space to allocate for the destination buffer:

maxDstBytes := srcBytes + (srcBytes+126) DIV 127;

where maxDstBytes stands for the maximum number of destination bytes.

The PackBits algorithm is most effective on data buffers in which there are likely to be series of bytes
containing the same value. For example, resources of many formats often contain many consecutive zeros.
If you have a data buffer in which there are only likely to be a series of words or long words containing the
same values, PackBits is unlikely to be effective.

Special Considerations

Because your application must allocate memory for the source and destination buffers, PackBits does not
move relocatable blocks. Thus, you can call it at interrupt time.

Because PackBits changes the values of the srcPtr and dstPtr parameters, you should pass to PackBits
only copies of the pointers to the source and destination buffers. This allows you to access the beginning of
the source and destination buffers after PackBits returns. Also, if the source or destination buffer is stored
in an unlocked, relocatable block, this technique prevents PackBits from changing the value of a master
pointer, which would make the original handle invalid.

Functions 2739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintArc
Paints a wedge of the oval that fits inside a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void PaintArc (
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
r

The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle
The angle indicating the arc’s extent.

Discussion
Using the pen pattern and pattern mode of the current graphics port, the PaintArc function draws a wedge
of the oval bounded by the rectangle that you specify in the r parameter. As in the FrameArc function, use
the startAngle and arcAngle parameters to define the arc of the wedge.

The pen location does not change.

Use FillArc (page 2619) , to draw a wedge with a pattern different from that specified in the pnPat field of
the current graphics port.

Special Considerations

The PaintArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PaintOval
Paints an oval with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintOval (
 const Rect *r
);

Parameters
r

The rectangle that defines the oval’s boundary.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintOval function draws the
interior of an oval just inside the bounding rectangle that you specify in the r parameter. The pen location
does not change.

Use FillOval (page 2624) to draw the interior of an oval with a pen pattern different from that for the current
graphics port.

Special Considerations

The PaintOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintPoly
Paints a polygon with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintPoly (
 PolyHandle poly
);

Parameters
poly

A handle to the polygon to paint. The OpenPoly (page 2737) function returns this handle when you
first create the polygon.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintPoly function draws the
interior of a polygon whose handle you pass in the poly parameter. The pen location does not change.

This function temporarily converts the polygon into a region to perform their operations. The amount of
memory required for this temporary region may be far greater than the amount required by the polygon
alone.

Functions 2741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

You can estimate the size of this region by scaling down the polygon with the MapPoly (page 2707) , converting
the polygon into a region, checking the region’s size with the Memory Manager function GetHandleSize,
and multiplying that value by the factor by which you scaled the polygon.

The result of this graphics operation is undefined whenever any horizontal or vertical line drawn through
the polygon would intersect the polygon’s outline more than 50 times.

Use the FillPoly (page 2625) function to draw the interior of a polygon with a pattern different from that
specified in the pnPat field of the current graphics port.

Special Considerations

Do not create a height or width for the polygon greater than 32,767 pixels, or PaintPoly will crash.

The PaintPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintRect
Paints a rectangle with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintRect (
 const Rect *r
);

Parameters
r

The rectangle to paint.

Discussion
The PaintRect function draws the interior of the rectangle that you specify in the r parameter with the
pen pattern for the current graphics port, according to the pattern mode for the current graphics port. The
pen location does not change.

Use the FillRect (page 2626) to draw the interior of a rectangle with a pen pattern different from that for
the current graphics port.

Special Considerations

The PaintRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawAPI.h

PaintRgn
Paints a region with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PaintRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to paint.

Discussion
Using the pen pattern and pattern mode for the current graphics port, the PaintRgn function draws the
interior of the region whose handle you pass in the rgn parameter. The pen location does not change.

This function depends on the local coordinate system of the current graphics port. If you draw a region in a
graphics port different from the one in which you defined the region, it may not appear in the proper position
in the graphics port.

If any horizontal or vertical line drawn through the region would intersect the region’s outline more than 50
times, the results of this graphics operation are undefined.

Use FillRgn (page 2626) to draw the interior of a region with a pen pattern different from that for the current
graphics port.

Special Considerations

The PaintRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PaintRoundRect
Paints a rounded rectangle with the graphics pen’s pattern and pattern mode. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void PaintRoundRect (
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
r

The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth
The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

Discussion
Using the pattern and pattern mode of the graphics pen for the current graphics port, the PaintRoundRect
function draws the interior of the rounded rectangle bounded by the rectangle that you specify in the r
parameter. Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature for the
corners of the rounded rectangle.

The pen location does not change.

Use FillRoundRect (page 2627) to draw the interior of a rounded rectangle with a pen pattern different from
that for the current graphics port.

Special Considerations

The PaintRoundRect function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenMode
Sets the pattern mode of the graphics pen in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenMode (
 short mode
);

Parameters
mode

The pattern mode. See “Source, Pattern, and Arithmetic Transfer Mode Constants” (page 2898).

Discussion
Using the pattern mode you specify in the mode parameter, the PenMode function sets the manner in which
the pattern of the graphics pen is transferred onto the bitmap (or pixel map) when you draw lines or shapes
in the current graphics port.

2744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

If you specify a source mode (such as one used with the CopyBits function) instead of a pattern mode, no
drawing is performed.

The current pattern mode is stored in the pnMode field of the current graphics port. The initial pattern mode
value is patCopy, in which the pen pattern is copied directly to the bitmap.

To use highlighting, add the hilite constant or its value to the source or pattern mode:

With highlighting, QuickDraw replaces the background color with the highlight color when your application
draws or copies images between graphics ports. This has the visual effect of using a highlighting pen to
select the object. (The global variable HiliteRGB is read from parameter RAM when the machine starts.
Basic graphics ports use the color stored in the HiliteRGB global variable as the highlight color. Color
graphics ports default to the HiliteRGB global variable, but can be overridden by the HiliteColor function.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Special Considerations

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern mode and simply
transfers the pattern directly to the pixel map without regard to the foreground and background colors.

The results of inverting a pixel are predictable only with direct pixels or 1-bit pixel maps. For indexed pixels,
Color QuickDraw performs the inversion on the pixel indexes, which means the results depend entirely on
the contents of the color table. The eight colors used in basic QuickDraw are stored in a color table represented
by the global variable QDColors. To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best map to the colors
in the QDColors color table. Because the index, not the color value, is inverted, the results are unpredictable.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenNormal
Sets the size, pattern, and pattern mode of the graphics pen in the current graphics port to their initial values.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void PenNormal (
 void
);

Discussion
The PenNormal function restores the size, pattern, and pattern mode of the graphics pen in the current
graphics port to their initial values: a size of 1 pixel by 1 pixel, a pattern mode of patCopy, and a pattern of
black. The pen location does not change.

Functions 2745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The PenNormal function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenPat
Sets the bit pattern to be used by the graphics pen in the current graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenPat (
 const Pattern *pat
);

Parameters
pat

A bit pattern, as defined by a Pattern structure.

Discussion
The PenPat function sets the graphics pen to use the bit pattern defined in the Pattern (page 2866) structure
that you specify in the pat parameter. (The standard patterns white, black, gray, ltGray, and dkGray
are predefined; the initial bit pattern for the pen is black.) This pattern is stored in the pnPat field of a
GrafPort structure. The QuickDraw painting functions (such as PaintRect) also use the pen’s pattern when
drawing a shape.

The PenPat function also sets a bit pattern for the graphics pen in a color graphics port. The PenPat function
creates a handle, of type PixPatHandle, for the bit pattern and stores this handle in the pnPixPat field of
the CGrafPort structure. This pattern always uses the graphics port’s current foreground and background
colors.

To define your own patterns, you typically create pattern, ‘PAT’, or pattern list, ‘PAT#’, resources.

Special Considerations

The PenPat function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PenPixPat
Sets the pixel pattern used by the graphics pen in the current color graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenPixPat (
 PixPatHandle pp
);

Parameters
pp

A handle to the pixel pattern to use as the pen pattern.

Discussion
The PenPixPat function is similar to the basic QuickDraw function PenPat, except that you pass PenPixPat
a handle to a multicolored pixel pattern rather than a bit pattern.

The PenPixPat function stores the handle to the pixel pattern in the pnPixPat field of the CGrafPort
structure, therefore, you should not dispose of this handle since QuickDraw removes all references to your
pattern from an existing graphics port when you dispose of it.

If you use PenPixPat to set a pixel pattern in a basic graphics port, the data in the pat1Data field of the
PixPat (page 2871) structure is placed into the pnPat field of the GrafPort structure.

To define your own pixel pattern, you can create a pixel pattern resource, which is described in 'ppat', or
you can use the NewPixPat (page 2720) function. To set the pen to use a bit pattern, you can also use the
QuickDraw function PenPat.

Special Considerations

The PenPixPat function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PenSize
Sets the dimensions of the graphics pen in the current graphics port. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PenSize (
 short width,
 short height
);

Parameters
width

The pen width, as an integer from 0 to 32,767. If you set the value to 0, the pen does not draw. Values
less than 0 are undefined.

Functions 2747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

height
The pen height, as an integer from 0 to 32,767. If you set the value to 0, the pen does not draw. Values
less than 0 are undefined.

Discussion
The PenSize function sets the width that you specify in the width parameter and the height that you specify
in the height parameter for the graphics pen in the current graphics port. All subsequent calls to the Line
and LineTo functions and to the functions that draw framed shapes in the current graphics port use the
new pen dimensions.

You can get the current pen dimensions from the pnSize field of the current graphics port, where the width
and height are stored as a Point structure.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PicComment
Inserts a picture comment into a picture that you are defining or into your printing code. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PicComment (
 short kind,
 short dataSize,
 Handle dataHandle
);

Parameters
kind

The type of comment.

dataSize
Size of any additional data passed in the dataHandle parameter. If no additional data is used, specify
0 in this parameter.

dataHandle
A handle to additional data, if used. If no additional data is used, specify NULL in this parameter.

Discussion
When used after your application begins creating a picture with the OpenCPicture (or OpenPicture)
function, the PicComment function inserts the specified comment into the Picture structure. When sent
to a printer driver after your application uses the PrOpenPage function, PicComment passes the data or
commands in the specified comment directly to the printer.

Picture comments contain data or commands for special processing by output devices, such as printers.

2748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Usually printer drivers process picture comments, but applications can also do so. For your application to
process picture comments, it must replace the StdComment function pointed to by the commentProc field
of the CQDProcs or QDProcs structure, which in turn is pointed to by the grafProcs field of a CGrafPort
or GrafPort structure. The default StdComment function provided by QuickDraw does no comment
processing whatsoever. You can use the SetStdCProcs function to assist you in changing the CQDProcs
structure, and you can use the SetStdProcs function to assist you in changing the QDProcs structure.

If you create and process your own picture comments, you should define comments so that they contain
information that identifies your application (to avoid using the same comments as those used by Apple or
by other third-party products). You should define a comment as an ApplicationComment comment type
with a kind value of 100. The first 4 bytes of the data for the comment should specify your application’s
signature. You can use the next 2 bytes to identify the type of comment—that is, to specify a kind value to
your own application.

Suppose your application signature were 'WAVE', and you wanted to use the value 128 to identify a kind
value to your own application. You would supply values to the kind and data parameters to PicComment
as follows:

kind = 100; data = 'WAVE' [4 bytes] + 128 [2 bytes] + additional data [n bytes]

Your application can then parse the first 6 bytes of the comment to determine whether and how to process
the rest of the data in the comment. It is up to you to publish information about your comments if you wish
them to be understood and used by other applications.

Special Considerations

These former picture comments are now obsolete: SetGrayLevel, ResourcePS, PostScriptFile, and
TextIsPostScript.

The PicComment function may move or purge memory.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PixMap32Bit
Determines whether a pixel map requires 32-bit addressing mode for access to its pixel image. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean PixMap32Bit (
 PixMapHandle pmHandle
);

Parameters
pmHandle

A handle to an offscreen pixel map.

Return Value
TRUE if a pixel map requires 32-bit addressing mode for access to its pixel image. If your application is in
24-bit mode, you must change to 32-bit mode.

Functions 2749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
To get a handle to an offscreen pixel map, first use the GetGWorldPixMap (page 2642) function. Then supply
this handle for the pm parameter of PixMap32Bit.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

PixPatChanged
Notifies QuickDraw that the content of a PixPat structure, including its PixMap structure or the image in
its patData field, has been modified. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void PixPatChanged (
 PixPatHandle ppat
);

Parameters
ppat

A handle to the changed pixel pattern.

Discussion
The PixPatChanged function sets the patXValid field of the PixPat structure specified in the ppat
parameter to –1 and notifies QuickDraw of the change.

If your application changes the pmTable field of a pixel pattern’s PixMap structure, it should call
PixPatChanged. However, if your application changes the content of the color table referenced by the
PixMap structure’s pmTable field, it should call both the PixPatChanged and the CTabChanged functions.

Your application should never need to directly modify a PixPat structure and use the PixPatChanged
function; instead, your application should use the QuickDraw functions for manipulating the values in a
PixPat structure.

Special Considerations

The PixPatChanged function may move or purge memory in the application heap; do not call the
PixPatChanged function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

2750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PortChanged
Notifies QuickDraw that the content of a GrafPort structure or CGrafPort structure, including any of the
data structures specified by handles within the structure, has been modified. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PortChanged (
 GrafPtr port
);

Parameters
port

A pointer to the GrafPort structure that you have changed.

Discussion
If your application has changed a CGrafPort structure, it must coerce the CGrafPtr so it will point to a
GrafPtr before passing the pointer in the port parameter.

You generally should not directly change any of the PixPat structures specified in a CGrafPort structure,
but instead use the PenPixPat and BackPixPat functions. However, if your application does change the
content of a PixPat structure, it should call the PixPatChanged function and the PortChanged function.

If your application changes the pmTable field of the PixMap structure specified in the graphics port, your
application should call PortChanged. If your application changes the content of the ColorTable structure
referenced by the pmTable field, it should call CTabChanged also.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

PortSize
Changes the size of the port rectangle of the current graphics port (basic or color). (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void PortSize (
 short width,
 short height
);

Parameters
width

The width of the reset port rectangle.

height
The height of the reset port rectangle.

Functions 2751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The PortSize function is normally called only by the Window Manager. The PortSize function changes
the size of the current graphics port’s port rectangle. The upper-left corner of the port rectangle remains at
its same location the width and height of the port rectangle are set to the given width and height. In other
words, PortSize moves the lower-right corner of the port rectangle to a position relative to the upper-left
corner.

The PortSize function doesn’t change the clipping or visible region of the graphics port, nor does it affect
the local coordinate system of the graphics port it changes only the width and height of the port rectangle.
Remember that all drawing occurs only in the intersection of the boundary rectangle and the port rectangle,
after being cropped to the visible region and the clipping region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ProtectEntry
Adds protection to or removes protection from an entry in the current GDevice data structure’s color table.
This function is used by system software and your application should not need to call it. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void ProtectEntry (
 short index,
 Boolean protect
);

Parameters
index

The index to the entry whose protection is to be changed.

protect
A Boolean value: specify true to protect the entry, false to remove protection.

Discussion
A protected entry can not be changed by other applications. ProtectEntry returns a protection error in
QDErr if you attempt to protect an already protected entry. However, it can remove protection from any
entry, even an already unprotected one.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Pt2Rect
Determines the smallest rectangle that encloses two given points.

void Pt2Rect (
 Point pt1,
 Point pt2,
 Rect *dstRect
);

Parameters
pt1

The first of two points to enclose.

pt2
The second of two points to enclose.

dstRect
On return, a pointer to the smallest rectangle that can enclose them.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

PtInRect
Determines whether a pixel below is enclosed in a rectangle.

Boolean PtInRect (
 Point pt,
 const Rect * r
);

Parameters
pt

The point to test.

r
The rectangle to test.

Return Value
TRUE if the pixel below and to the right of the point specified in the pt parameter is enclosed in the rectangle
specified in the r parameter. FALSE if it is not.

Functions 2753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

PtInRgn
Determines whether a pixel is within a region.

Boolean PtInRgn (
 Point pt,
 RgnHandle rgn
);

Parameters
pt

The point whose pixel is to be checked.

rgn
A handle to the region to test.

Return Value
TRUE if the pixel below and to the right of the point specified in the pt parameter is within the region whose
handle is specified in the rgn parameter. FALSE if it is not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

PtToAngle
Calculates an angle between a vertical line pointing straight up from the center of a rectangle and a line
from the center to a given point.

2754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void PtToAngle (
 const Rect *r,
 Point pt,
 short *angle
);

Parameters
r

The rectangle to examine.

pt
The point to which an angle is to be calculated.

angle
On return, a pointer to the resulting angle.

The result returned in the angle parameter is specified in degrees from 0 to 359, measured clockwise
from 12 o’clock, with 90 at 3 o’clock, 180 at 6 o’clock, and 270 at 9 o’clock. Other angles are measured
relative to the rectangle. If the line to the given point goes through the upper-right corner of the
rectangle, the angle returned is 45, even if the rectangle is not square if it goes through the lower-right
corner, the angle is 135, and so on.

The angle returned can be used as input to one of the functions that manipulate arcs and wedges,
in “Drawing Arcs and Wedges”.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

QDAddRectToDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDAddRectToDirtyRegion (
 CGrafPtr inPort,
 const Rect *inBounds
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

QDAddRegionToDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDAddRegionToDirtyRegion (
 CGrafPtr inPort,
 RgnHandle inRegion
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDBeginCGContext
Returns a Quartz 2D drawing environment associated with a graphics port.

OSStatus QDBeginCGContext (
 CGrafPtr inPort,
 CGContextRef *outContext
);

Parameters
port

A color graphics port in which to draw. Offscreen graphics worlds with pixel depths of 1, 2, 4, and 8
are not supported. When using Quartz 2D to draw in a offscreen graphics world, alpha information
is always ignored.

contextPtr
A pointer to your storage for a Quartz context. Upon completion, contextPtr points to a context
associated with the port. The context matches the port’s pixel depth, width, and height. Otherwise
the context is in a default state and does not necessarily match other port attributes such as foreground
color, background color, or clip region.

You should not retain or release the context. When you are finished using the context, you should
call QDEndCGContext (page 2758).

Return Value
A result code. If noErr, the context was successfully initiated.

Discussion
Applications running in Mac OS X can use Quartz 2D to draw in a QuickDraw graphics port. When you call
this function, you obtain a Quartz context that’s associated with the specified port. To improve performance,
contexts returned by this function are cached and reused during subsequent calls whenever possible.

2756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Each block of Quartz 2D drawing code in your application should be surrounded by calls to this function and
QDEndCGContext (page 2758). Nested calls to this function for the same graphics port are not permitted—that
is, for a given port you should not call this function more than once without an intervening call to
QDEndCGContext (page 2758).

While the Quartz context is in use, all Quickdraw imaging operations in the associated graphics port are
disabled. This is done because the operations would fail during printing.

For information about how to use a Quartz context, see Quartz 2D Programming Guide.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDDisplayWaitCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDDisplayWaitCursor (
 Boolean forceWaitCursor
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDDisposeRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDDisposeRegionBits (
 QDRegionBitsRef regionBits
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

QDDone
Determines whether QuickDraw has completed drawing in a given graphics port. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean QDDone (
 GrafPtr port
);

Parameters
port

The GrafPort structure for a graphics port in which your application has begun drawing; if you pass
NULL, QDDone tests all open graphics ports.

Return Value
TRUE if all drawing operations have finished in the graphics port specified in the port parameter, FALSE if
any remain to be executed. If you pass NULL in the port parameter, then QDDone returns TRUE only if drawing
operations have completed in all ports.

Discussion
The QDDone function may be useful if a graphics accelerator is present and operating asynchronously. You
can use it to ensure that all drawing is done before issuing new drawing commands, and to avoid the
possibility that the new drawing operations might be overlaid by previously issued but unexecuted operations.

Special Considerations

If a graphics port draws a clock or some other continuously operating drawing process, QDDone may never
return TRUE.

To determine whether all drawing in a color graphics port has completed, you must coerce its CGrafPort
structure to a GrafPort structure, which you pass in the port parameter.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

QDEndCGContext
Terminates a Quartz 2D drawing environment associated with a graphics port.

2758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OSStatus QDEndCGContext (
 CGrafPtr inPort,
 CGContextRef *inoutContext
);

Parameters
port

A graphics port specified in a preceding call to QDBeginCGContext (page 2756).

contextPtr
A pointer to the context obtained in the preceding call to QDBeginCGContext (page 2756) for the
port. Upon completion, the storage pointed to by contextPtr is set to NULL.

Return Value
A result code. If noErr, the context is terminated.

Discussion
After you finish using Quartz 2D to draw in a graphics port, you should call this function to terminate the
context. For more information, see QDBeginCGContext (page 2756).

Before calling this function, you should do one of the following:

 ■ Call CGContextSynchronize (page 136) to mark the affected areas of the port for update.

 ■ Call CGContextFlush (page 95) to immediately update the destination device.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDError
Obtains a result code from the last applicable QuickDraw function that you called. (Deprecated in Mac OS X
v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

short QDError (
 void
);

Return Value
The error result. On a system with only basic QuickDraw, QDError always returns noErr.

Discussion
The QDError function is helpful in determining whether insufficient memory caused a drawing operation -
particularly those involving regions, polygons, pictures, and images copied with CopyBits - to fail.

Basic QuickDraw uses stack space for work buffers. For complex operations such as depth conversion, dithering,
and image resizing, stack space may not be sufficient. QuickDraw attempts to get temporary memory from
other parts of the system. If that is still not enough, QDError returns the nsStackErr error. If your application
receives this result, reduce the memory required by the operation.

Functions 2759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

When you structure drawing operations in an open region, the resulting region description may overflow
the 64 KB limit. In this case, QDError returns regionTooBigError. Since the resulting region is potentially
corrupt, the CloseRgn function returns an empty region if it detects QDError has returned
regionTooBigError. A similar error, rgnTooBigErr, occurs when using the BitMapToRegion function
to convert a bitmap to a region.

The BitMapToRegion function also generates the pixmapTooDeepErr error if a PixMap structure is supplied
that is greater than 1 bit per pixel. You may be able to recover from this problem by coercing your PixMap
structure into a 1-bit PixMap structure and calling the BitMapToRegion function again.

Special Considerations

The QDError function does not report errors returned by basic QuickDraw.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDFlushPortBuffer
Calls the Quartz compositor to flush all new drawing in a Carbon window to the display. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void QDFlushPortBuffer (
 CGrafPtr port,
 RgnHandle region
);

Parameters
port

A window port. If the port has no back buffer, or if the port is an offscreen or printing port, this function
does nothing.

region
An update region. Under normal conditions, you should pass NULL to avoid the overhead of additional
region operations.

Discussion
In Mac OS X, drawing in a window port updates a back buffer associated with the window. Updates to this
buffer are accumulated in a list called the dirty region.

The back buffer is automatically flushed to the display each time through the event loop. When the event
loop does not get control soon enough—for example, during an animation sequence—you can call this
function to flush the port buffer to the device immediately.

When you call this function, there are several different execution paths:

1. If the regionparameter is NULL, the dirty region is flushed—along with any Quartz 2D drawing operations
marked for update by calls to CGContextSynchronize (page 136)—and the dirty region is set to empty.

2760 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

2. If the region parameter specifies an update region, the intersection of the dirty region and the update
region is flushed—along with any Quartz 2D drawing operations marked for update by calls to
CGContextSynchronize (page 136)—and the flushed region is subtracted from the dirty region.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

QDGetCGDirectDisplayID
Returns the Quartz display ID that corresponds to a QuickDraw graphics device.

CGDirectDisplayID QDGetCGDirectDisplayID (
 GDHandle inGDevice
);

Parameters
inGDevice

A QuickDraw graphics device.

Return Value
A Quartz display ID, or NULL if the inGDevice parameter does not represent a display. For information about
using a display ID, see Quartz Display Services Reference.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetCursorData
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDGetCursorData (
 Boolean contextCursor,
 PixMapHandle *crsrData,
 Point *hotSpot
);

Return Value
Availability
Available in Mac OS X v10.3 and later.

Functions 2761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDGetDirtyRegion (
 CGrafPtr port,
 RgnHandle rgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetPatternOrigin
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDGetPatternOrigin (
 Point *origin
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGetPictureBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2762 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Rect * QDGetPictureBounds (
 PicHandle picH,
 Rect *outRect
);

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDGlobalToLocalPoint
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * QDGlobalToLocalPoint (
 CGrafPtr port,
 Point *point
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
QuickdrawAPI.h

QDGlobalToLocalRect
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * QDGlobalToLocalRect (
 CGrafPtr port,
 Rect *bounds
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDGlobalToLocalRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle QDGlobalToLocalRegion (
 CGrafPtr port,
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDIsNamedPixMapCursorRegistered
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsNamedPixMapCursorRegistered (
 const char name[128]
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDIsPortBufferDirty
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsPortBufferDirty (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2764 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDIsPortBuffered
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDIsPortBuffered (
 CGrafPtr port
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDLocalToGlobalPoint
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Point * QDLocalToGlobalPoint (
 CGrafPtr port,
 Point *point
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDLocalToGlobalRect
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Rect * QDLocalToGlobalRect (
 CGrafPtr port,
 Rect *bounds
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Functions 2765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

QDLocalToGlobalRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

RgnHandle QDLocalToGlobalRegion (
 CGrafPtr port,
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDPictCreateWithProvider
Creates a QDPict picture, using QuickDraw picture data supplied with a Quartz data provider.

QDPictRef QDPictCreateWithProvider (
 CGDataProviderRef provider
);

Parameters
provider

A Quartz data provider that supplies QuickDraw picture data. The picture data must begin at either
the first byte or the 513th byte in the data provider. The picture bounds must not be an empty
rectangle.

QuickDraw retains the data provider you pass in, and you may safely release it after this function
returns.

Return Value
A new QDPict picture, or NULL if the picture data is not valid. The initial retain count is 1. After you finish
using the picture, you should release it by calling QDPictRelease (page 2769).

Discussion
This function creates a QDPict picture that you can draw in a Quartz context. For general information about
QDPict pictures, see QDPictRef (page 2877).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

2766 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDPictCreateWithURL
Creates a QDPict picture, using QuickDraw picture data specified with a Core Foundation URL.

QDPictRef QDPictCreateWithURL (
 CFURLRef url
);

Parameters
url

A Core Foundation URL that specifies a PICT file containing the QuickDraw picture data. The picture
header data must begin at either the first byte or the 513th byte in the PICT file. The picture bounds
must not be an empty rectangle.

Return Value
A new QDPict picture, or NULL if the picture data is not valid. The initial retain count is 1. After you finish
using the picture, you should release it by calling QDPictRelease (page 2769).

Discussion
This function creates a QDPict picture that you can draw in a Quartz context. For general information about
QDPict pictures, see QDPictRef (page 2877).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictDrawToCGContext
Draws a QuickDraw picture in a Quartz context.

OSStatus QDPictDrawToCGContext (
 CGContextRef ctx,
 CGRect rect,
 QDPictRef pictRef
);

Parameters
context

The Quartz context in which to draw.

rect
The rectangular area in which to draw the picture. You should specify the origin and size of this
rectangle in user space units. The origin is the lower left corner of the picture when drawn. If necessary,
the picture is scaled to fit inside this rectangle. To get unscaled results, you should pass the rectangle
returned byQDPictGetBounds (page 2768). For additional information about scaling, see the discussion
below.

picture
A QDPict picture.

Return Value
A result code. A non-zero result indicates that the picture was not successfully drawn.

Functions 2767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
This function converts the picture data in a QDPict picture into an equivalent sequence of Quartz 2D graphics
operations. Conceptually this is the same processing path taken when an application running in Mac OS X
draws into a QuickDraw printing port.

When drawing a QDPict picture in a Quartz context, there are two ways to change the horizontal or vertical
scale of the picture:

 ■ Construct the drawing rectangle (see the rect parameter) by applying the change of scale to the bounds
rectangle returned by QDPictGetBounds (page 2768). In this case, QuickDraw scales all the graphic
elements in the picture except for patterns—the same behavior as DrawPicture (page 2610).

 ■ Prior to calling QDPictDrawToCGContext, apply the change of scale to the current transformation
matrix in the Quartz context—for example, by calling CGContextScaleCTM (page 105). In this case,
QuickDraw scales the entire picture including patterns.

In a bitmap-based context, the picture is rendered into the bitmap. In a PDF-based context, the picture is
converted into a PDF content stream. If the picture uses transfer modes such as srcXor that do not have an
analog in Quartz 2D, the PDF representation may not match the original exactly.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictGetBounds
Returns the intended location and size of a QDPict picture.

CGRect QDPictGetBounds (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture.

Return Value
A Quartz rectangle that represents the intended location and size of the picture. The rectangle is in default
user space with one unit = 1/72 inch, and the origin is the lower-left corner of the picture.

Discussion
If the native resolution in the picture data is not 72 pixels per inch, the bounding rectangle returned by this
function is scaled as follows:

 width = width in pixels * 72 / horizontal resolution
 height = height in pixels * 72 / vertical resolution

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

2768 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QDPictToCGContext.h

QDPictGetResolution
Returns the horizontal and vertical resolution of a QDPict picture.

void QDPictGetResolution (
 QDPictRef pictRef,
 float *xRes,
 float *yRes
);

Parameters
picture

A QDPict picture.

xRes
A pointer to your storage for a return value. Upon completion, the value is the picture’s horizontal
resolution in pixels per inch.

yRes
A pointer to your storage for a return value. Upon completion, the value is the picture’s vertical
resolution in pixels per inch.

Discussion
This function returns resolution data that you can use—together with the rectangle returned by
QDPictGetBounds (page 2768)—to compute the picture’s size in pixels.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictRelease
Releases a QDPict picture.

void QDPictRelease (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture which you created or retained.

Discussion
After you finish using a QDPict picture that you created or retained, you should call this function to release
the picture. If the picture’s retain count becomes 0, this function frees the picture and any associated resources
such as the picture’s data provider.

Availability
Available in Mac OS X v10.1 and later.

Functions 2769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDPictRetain
Retains a QDPict picture.

QDPictRef QDPictRetain (
 QDPictRef pictRef
);

Parameters
picture

A QDPict picture.

Return Value
The retained picture.

Discussion
You should call this function when you obtain a QDPict picture that you did not create and you want to retain
the picture for later use. When you no longer need the retained picture, you should call QDPictRelease (page
2769) to release it.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QDPictToCGContext.h

QDRegionToRects

OSStatus QDRegionToRects (
 RgnHandle rgn,
 QDRegionParseDirection dir,
 RegionToRectsUPP proc,
 void *userData
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

QDRegisterNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2770 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OSStatus QDRegisterNamedPixMapCursor (
 PixMapHandle crsrData,
 PixMapHandle crsrMask,
 Point hotSpot,
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDRestoreRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDRestoreRegionBits (
 RgnHandle region,
 QDRegionBitsRef regionBits
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSaveRegionBits
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

QDRegionBitsRef QDSaveRegionBits (
 RgnHandle region
);

Return Value
Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDSetCursorScale
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetCursorScale (
 float scale
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSetDirtyRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetDirtyRegion (
 CGrafPtr port,
 RgnHandle rgn
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSetNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDSetNamedPixMapCursor (
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

QDSetPatternOrigin
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void QDSetPatternOrigin (
 Point origin
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSwapPort
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Boolean QDSwapPort (
 CGrafPtr inNewPort,
 CGrafPtr *outOldPort
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

QDSwapPortTextFlags
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

UInt32 QDSwapPortTextFlags (
 CGrafPtr port,
 UInt32 newFlags
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDSwapTextFlags
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

UInt32 QDSwapTextFlags (
 UInt32 newFlags
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

QDUnregisterNamedPixMapCursor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus QDUnregisterNamedPixMapCursor (
 const char name[128]
);

Return Value
Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Random
Obtains a pseudorandom integer. (Deprecated in Mac OS X v10.4. Use the Standard C Library random(3)
function instead.)

short Random (
 void
);

Return Value
A pseudorandom integer, uniformly distributed in the range -32767 to 32767.

Discussion
The value Random returns depends solely on the global variable randSeed, which the QuickDraw InitGraf
function initializes to 1. Each time the Random function executes, it uses a numerical algorithm to change
the value of randSeed to prevent it from returning the same value each time it is called.

To prevent your application from generating the same sequence of pseudo-random numbers each time it
is executed, initialize the randSeed global variable, when your application starts up, to a volatile long word
variable such as the current date and time. If you would like to generate the same sequence of pseudo-random
numbers twice, on the other hand, simply set randSeed to the same value before calling Random for each
sequence.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RealColor
Determines whether a given RGBColor data structure exists in the current device’s color table. This function
is used by system software and your application should not need to call it. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Boolean RealColor (
 const RGBColor *color
);

Parameters
color

The RGBColor data structure to be tested.

Discussion
The RealColor function determines whether the color is available in the current GDevice data structure’s
CLUT, basing its search on the current resolution of the inverse table. For example, if the current value of the
iTabRes field is 4, RealColor returns true if there exists a color that exactly matches the top 4 bits of red,
green, and blue. (See the iTabRes field of the inverse table, ITab (page 2863).)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

RectInRgn
Determines whether a rectangle intersects a region.

Boolean RectInRgn (
 const Rect *r,
 RgnHandle rgn
);

Parameters
r

The rectangle to check for intersection.

rgn
A handle to the region to check.

Return Value
TRUE if the rectangle specified in the r parameter intersects the region whose handle is specified in the rgn
parameter. The RectInRgn function returns TRUE if the intersection encloses at least 1 bit or FALSE if it does
not.

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The RectInRgn function sometimes returns TRUEwhen the rectangle merely intersects the region’s bounding
rectangle. If you need to know exactly whether a given rectangle intersects the actual region, use
RectRgn (page 2776) to set the rectangle to a region, and call SectRgn (page 2786) to see whether the two
regions intersect. If the result of SectRgn is an empty region, then the rectangle does not intersect the region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RectRgn
Changes the structure of an existing region to that of a rectangle.

2776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void RectRgn (
 RgnHandle rgn,
 const Rect *r
);

Parameters
rgn

A handle to the region to restructure as a rectangle.

r
The rectangle structure to use.

Discussion
The RectRgn function destroys the previous structure of the SetRectRgn function, and it then sets the new
structure to a rectangle that you specify in the r parameter.

As an alternative to the RectRgn function, use the SetRectRgn function, which accepts as parameters four
coordinates instead of a rectangle.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The RectRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
QuickdrawAPI.h

ReserveEntry
Reserves or removes reservation from an entry in the current GDevice data structure’s color table. This
function is used by system software and your application should not need to call it. (Deprecated in Mac OS
X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void ReserveEntry (
 short index,
 Boolean reserve
);

Parameters
index

The index to the entry.

reserve
True to reserve the entry, false to remove the reservation.

Discussion
A reserved entry cannot be matched by another application’s search function, and Color2Index (or other
functions that depend on it such as RGBForeColor, RGBBackColor, and SetCPixel) never return that
entry to another client. You could use this function to selectively protect a color for color table animation.

The ReserveEntry function copies the low byte of the gdID field of the current GDevice data structure
into the low byte of the ColorSpec.value field of the color table when reserving an entry, and leaves the
high byte alone. ReserveEntry acts like selective protection and does not allow any changes if the current
gdID field is different than the one in the ColorSpec.value field of the reserved entry. If a requested match
is already reserved, ReserveEntry returns a protection error. It can remove reservation from any entry, even
if a requested match is already not reserved.

Carbon Porting Notes

This function does nothing useful on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RestoreEntries
Restores a selection of color table entries. This function is used by system software and your application
should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void RestoreEntries (
 CTabHandle srcTable,
 CTabHandle dstTable,
 ReqListRec *selection
);

Parameters
srcTable

The color table containing entries to be restored.

dstTable
The color table in which to restore the entries. If dstTable is NULL, or points to the current GDevice
data structure’s color table, RestoreEntries changes the device’s color table and the hardware
CLUT to these new colors.

2778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

selection
A pointer to the ReqListRec (page 2882) data structure. The entries to be restored are enumerated
as offsets into a ColorTable data structure, not the contents of the ColorSpec.value field.

Discussion
The RestoreEntries function does not rebuild the inverse table.

If a request is beyond the end of the destination color table, RestoreEntries sets that position in the
requestList data structure to colReqErr, and returns an error. RestoreEntries assumes that the color
table specified by the srcTable parameter and the request list specified by the selection parameter have
the same number of entries.

RestoreEntries does not change the color table’s seed, so no invalidation occurs (which may cause
RGBForeColor to act strangely). RestoreEntries ignores protection and reservation of color table entries.

You generally should use the Palette Manager to give your application its own set of colors; use of
RestoreEntries should be limited to special-purpose applications. RestoreEntries allows you to change
a color table without changing its ctSeed field. You can execute the application code and then use
RestoreEntries to put the original colors back in. However, in some cases things in the background may
appear in the wrong colors, since they were never redrawn. To avoid this, your application must build its
own new inverse table and redraw the background. If you then use RestoreEntries, you should call the
CTabChanged function to clean up correctly.

Carbon Porting Notes

This function does nothing useful on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RGBBackColor
Changes the background color. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; seeQuartz Programming
Guide for QuickDraw Developers.)

void RGBBackColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure.

Discussion
If the current port is defined by a CGrafPort structure, QuickDraw supplies its rgbBkColor field with the
RGB value that you specify in the color parameter, and places the pixel value most closely matching that
color in the bkColor field. For indexed devices, the pixel value is an index to the current device’s CLUT. F or
direct devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

Functions 2779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

If the current port is defined by a GrafPort structure, basic QuickDraw supplies its fgColor field with a
color value determined by taking the high bit of each of the red, green, and blue components of the color
that you supply in the color parameter. Basic QuickDraw uses that 3-bit number to select a color from its
eight-color system.

You can also use Palette Manager functions to set the background color.

To determine the current background color, use the GetBackColor (page 2634) function.

Because a pixel pattern already contains color, QuickDraw ignores the background color and foreground
colors when your application draws with a pixel pattern. Use the PenPixPat function to assign a pixel pattern
to the foreground pattern used by the graphics pen. Use the BackPixPat function to assign a pixel pattern
as the background pattern for the current color graphics port. Use the FillCRect, FillCOval,
FillCRoundRect, FillCArc, FillCRgn, and FillCPoly functions to fill shapes with a pixel pattern.

Special Considerations

The RGBBackColor function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

RGBForeColor
Changes the color of the “ink” used for framing and painting. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void RGBForeColor (
 const RGBColor *color
);

Parameters
color

An RGBColor structure.

Discussion
If the current port is defined by a CGrafPort structure, QuickDraw supplies its rgbFgColor field with the
RGB value that you specify in the color parameter, and places the pixel value most closely matching that
color in the fgColor field. For indexed devices, the pixel value is an index to the current device’s CLUT. For
direct devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort structure, basic QuickDraw supplies its fgColor field with a
color value determined by taking the high bit of each of the red, green, and blue components of the color
that you supply in the color parameter. Basic QuickDraw uses that 3-bit number to select a color from its
eight-color system.

You can also use Palette Manager functions to set the foreground color.

To determine the current foreground color, use the GetForeColor (page 2639) function.

2780 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QuickDraw ignores the foreground and background colors when your application draws with a pixel pattern.
Assign a pixel pattern to the foreground pattern used by the graphics pen; by using the BackPixPat function
to assign a pixel pattern as the background pattern for the current color graphics port; and by using the
FillCRect, FillCOval, FillCRoundRect, FillCArc, FillCRgn, and FillCPoly functions to fill shapes
with a pixel pattern.

Special Considerations

The RGBForeColor function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

RgnToHandle

void RgnToHandle (
 RgnHandle region,
 Handle flattenedRgnDataHdl
);

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SaveEntries
Saves a selection of color table entries. This function is used by system software and your application should
not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void SaveEntries (
 CTabHandle srcTable,
 CTabHandle resultTable,
 ReqListRec *selection
);

Parameters
srcTable

The color table containing entries to be saved. If you supply NULL, SaveEntries uses the current
device’s color table as the source.

Functions 2781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

resultTable
The color table in which to save the entries.

selection
A pointer to the ReqListRec (page 2882) data structure. The entries to be set are enumerated as offsets
into a ColorTable data structure, not the contents of the ColorSpec.value field.) If an entry is
not present in srcTable, then SaveEntries sets that position of the selection parameter to
colReqErr, and that position of resultTable contains random values.

Discussion
If SaveEntries can not find one or more entries, then it posts an error code to QDError; however, for every
entry in selection which is not colReqErr, the values in resultTable are valid. SaveEntries assumes
that the color table specified by the srcTable parameter and the request list specified by the selection
parameter have the same number of entries.

The output of SaveEntries is the same as the input for RestoreEntries, except for the order.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ScalePt
Scales a height and width according to the proportions of two rectangles.

void ScalePt (
 Point *pt,
 const Rect *srcRect,
 const Rect *dstRect
);

Parameters
pt

On input, a pointer to an initial height and width (specified in the two fields of a Point structure) to
scale; on return, vertical and horizontal scaling factors derived by multiplying the height and width
by ratios of the height and width of the rectangle in the srcRect parameter to the height and width
of the rectangle in the dstRect parameter.

You do not pass coordinates in this parameter. Instead, you pass an initial height to scale in the v (or
vertical) field of the Point structure, and you pass an initial width to scale in the h (or horizontal)
field.

The ScalePt function scales these measurements by multiplying the initial height by the ratio of the
height of the rectangle you specify in the dstRect parameter to the height of the rectangle you
specify in the srcRect parameter, and by multiplying the initial width by the ratio of the width of
the dstRect rectangle to the width of the srcRect rectangle.

srcRect
A rectangle. The ratio of this rectangle’s height to the height of the rectangle in the dstRect parameter
provides the vertical scaling factor, and the ratio of this rectangle’s width to the width of the rectangle
in the dstRect parameter provides the horizontal scaling factor.

2782 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dstRect
A rectangle compared to the rectangle in the srcRect parameter to determine vertical and horizontal
scaling factors.

Discussion
The ScalePt function produces horizontal and vertical scaling factors from the proportions of two rectangles.
Use ScalePt, for example, to scale the dimensions of the graphics pen.

Where the width of the dstRect rectangle is twice the width of the srcRect rectangle, and its height is
three times the height of srcRect, ScalePt scales the width of the graphics pen from 3 to 6 and scales its
height from 2 to 6.

Special Considerations

The minimum value ScalePt returns is (1,1).

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

ScreenRes
Determines the resolution of the main device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void ScreenRes (
 short *scrnHRes,
 short *scrnVRes
);

Parameters
scrnHRes

On return, the number of horizontal pixels per inch displayed by the current device.

scrnVRes
On return, the number of vertical pixels per inch displayed by the current device.

Discussion
To determine the resolutions of all available graphics devices, examine their GDevice (page 2859) structures.
The horizontal and vertical resolutions for a graphics device are stored in the hRes and vRes fields, respectively,
of the PixMap structure for the device’s GDevice structure.

Currently, QuickDraw and the Printing Manager always assume a screen resolution of 72 dpi.

Do not use the actual screen resolution as a scaling factor when drawing into a printing graphics port. Instead,
always use 72 dpi as the scaling factor. See the Printing Manager documentation for more information about
drawing into a printing graphics port.

Functions 2783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ScrollRect
Scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color graphics port’s pixel map).
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void ScrollRect (
 const Rect *r,
 short dh,
 short dv,
 RgnHandle updateRgn
);

Parameters
r

The pointer to the rectangle defining the area to be scrolled.

dh
The horizontal distance to be scrolled.

dv
The vertical distance to be scrolled.

updateRgn
A handle to the region of the window that needs to be updated.

Discussion
The ScrollRect function shifts pixels that are inside the specified rectangle of the current graphics port.
No other pixels or the bits they represent are affected. The pixels are shifted a distance of dh horizontally
and dv vertically. The positive directions are to the right and down. The pixels that are shifted out of the
specified rectangle are not displayed, and the bits they represent are not saved. It is up to your application
to save this data.

The empty area created by the scrolling is filled with the graphics port’s background pattern, and the update
region is changed to this filled area.

The ScrollRect function doesn’t change the local coordinate system of the graphics port it simply moves
the rectangle specified in the r parameter to different coordinates. Notice that ScrollRect doesn’t move
the graphics pen or the clipping region. However, because the document has moved, they’re in different
positions relative to the document.

By creating an update region for the window, ScrollRect forces an update event. After using ScrollRect,
your application should use its own window-updating code to draw into the update region of the window.

The ScrollRect function may move or purge memory blocks in the application heap. Your application
should not call this function at interrupt time.

2784 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SectRect
Determines whether two rectangles intersect.

Boolean SectRect (
 const Rect *src1,
 const Rect *src2,
 Rect *dstRect
);

Parameters
src1

The first of two rectangles to test for intersection.

src2
The second of two rectangles to test for intersection.

dstRect
On return, a pointer to the rectangle marking the intersection of the first two rectangles.

Return Value
TRUE if the specified rectangles intersect or FALSE if they do not.

Discussion
The SectRect function calculates the rectangle that delineates the intersection of the two rectangles you
specify in the src1 and src2 parameters. Rectangles that touch at a line or a point are not considered
intersecting, because their intersection rectangle (actually, in this case, an intersection line or point) does
not enclose any pixels in the bit image.

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,0). The SectRect function works
correctly even if one of the source rectangles is also the destination.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
QuickdrawAPI.h

Functions 2785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SectRegionWithPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SectRegionWithPortClipRegion (
 CGrafPtr port,
 RgnHandle ioRegion
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SectRegionWithPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SectRegionWithPortVisibleRegion (
 CGrafPtr port,
 RgnHandle ioRegion
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SectRgn
Calculates the intersection of two regions.

void SectRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions whose intersection is to be determined.

srcRgnB
A handle to the second of two regions whose intersection is to be determined.

2786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dstRgn
On return, a handle to the region holding the intersection area. If the regions do not intersect, or one
of the regions is empty, SectRgn sets the destination to the empty region defined by the rectangle
(0,0,0,0).

The SectRgn function does not create a destination region; you must have already allocated memory
for it by using the NewRgn (page 2726) function.

The destination region may be one of the source regions, if desired.

Discussion
The SectRgn procedure calculates the intersection of the two regions whose handles you pass in the srcRgnA
and srcRgnB parameters, and it places the intersection in the region whose handle you pass in the dstRgn
parameter. If the regions do not intersect, or one of the regions is empty, SectRgn sets the destination to the
empty region defined by the rectangle (0,0,0,0).

The SectRgn procedure does not create a destination region; you must have already allocated memory for
it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

Special Considerations

The SectRgn function may temporarily use heap space that’s twice the size of the two input regions.

The SectRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SeedCFill
Determines how far filling will extend to pixels matching the color of a particular pixel. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SeedCFill (
 const BitMap *srcBits,
 const BitMap *dstBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short seedH,
 short seedV,
 ColorSearchUPP matchProc,
 long matchData
);

Parameters
srcBits

The source image. If the image is in a pixel map, you must coerce its PixMap structure to a BitMap
structure.

Functions 2787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

dstBits
On return, the destination mask.

srcRect
The rectangle of the source image.

dstRect
The rectangle of the destination image.

seedH
The horizontal position of the seed point.

seedV
The vertical position of the seed point.

matchProc
An optional color search function.

matchData
Data for the optional color search function.

Discussion
The SeedCFill function generates a mask showing where the pixels in an image can be filled from a starting
point, like the paint pouring from the MacPaint paint-bucket tool. This mask is a bitmap filled with 1’s to
indicate all pixels adjacent to a seed point whose colors do not exactly match the RGBColor structure for
the pixel at the seed point. You can then use this mask with the CopyBits, CopyMask, and CopyDeepMask
functions.

You specify a source image in the srcBits parameter and, in the srcRect parameter, specify a rectangle
within that source image. You specify where to begin seeding in the seedH and seedV parameters, which
must be the horizontal and vertical coordinates of a point in the local coordinate system of the source bitmap.
By default, the 1’s returned in the mask indicate all pixels adjacent to the seed point whose pixel values do
not exactly match the pixel value of the pixel at the seed point. To use this default, set the matchProc and
matchData parameters to 0.

In generating the mask, SeedCFill uses the CopyBits function to convert the source image to a 1-bit mask.
The SeedCFill function installs a default color search function that returns 0 if the pixel value matches that
of the seed point all other pixel values return 1’s.

The SeedCFill function does not scale so the source and destination rectangles must be the same size.
Calls to SeedCFill are not clipped to the current port and are not stored into QuickDraw pictures.

To customize SeedCFill,write your own color search function and point to it in the matchProc parameter;
SeedCFill will then use your function instead of the default.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SeedFill
Determines how far filling will extend from a seeding point. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

2788 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SeedFill (
 const void *srcPtr,
 void *dstPtr,
 short srcRow,
 short dstRow,
 short height,
 short words,
 short seedH,
 short seedV
);

Parameters
srcPtr

A pointer to the source bit image.

dstPtr
On input, a pointer to the destination bit image; upon return, a pointer to the bitmap containing the
resulting mask.

srcRow
Row width of the source bitmap.

dstRow
Row width of the destination bitmap.

height
Height (in pixels) of the fill rectangle.

words
Width (in words) of the fill rectangle.

seedH
The horizontal offset (in pixels) at which to begin filling the destination bit image.

seedV
The vertical offset (in pixels) at which to begin filling the destination bit image.

Discussion
The SeedFill function produces a mask showing where bits in an image can be filled from a starting point,
like the paint pouring from the MacPaint paint-bucket tool. The SeedFill returns this mask in the dstPtr
parameter. This mask is a bitmap filled with 1’s only where the pixels in the source image can be filled. You
can then use this mask with the CopyBits, CopyMask, and CopyDeepMask functions.

Point to the bit image you want to fill with the srcPtr parameter, which can point to the image’s base
address or a word boundary within the image. Specify a pixel height and word width with the height and
words parameters to define a fill rectangle that delimits the area you want to fill. The fill rectangle can be
the entire bit image or a subset of it. Point to a destination image with the dstPtr parameter. Specify the
row widths of the source and destination bitmaps (their rowBytes values) with the srcRow and dstRow
parameters. (The bitmaps can be different sizes, but they must be large enough to contain the fill rectangle
at the origins specified by the srcPtr and dstPtr parameters.)

You specify where to begin filling with the seedH and seedV parameters: they specify a horizontal and
vertical offset in pixels from the origin of the image pointed to by the srcPtr parameter. The SeedFill
function calculates contiguous pixels from that point out to the boundaries of the fill rectangle, and it stores
the result in the bit image pointed to by the dstPtr parameter.

Calls to SeedFill are not clipped to the current port and are not stored into QuickDraw pictures.

Functions 2789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCCursor
Specifies a color cursor for display on the screen. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetCCursor (
 CCrsrHandle cCrsr
);

Parameters
cCrsr

A handle to the color cursor to be displayed.

Discussion
At the time the cursor is set, it is expanded to the current screen depth so that it can be drawn rapidly. You
must call GetCCursor before you call SetCCursor; however, you can make several subsequent calls to
SetCCursor once GetCCursor creates the CCrsr structure.

If your application has changed the cursor’s data or its color table, it must also invalidate the crsrXValid
and crsrID fields of the CCrsr structure before calling SetCCursor.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetClientID
Sets the gdID field in the current GDevice data structure to identify this client program to its search and
complement functions. This function is used by system software and your application should not need to
call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetClientID (
 short id
);

Parameters
id

The ID to be set in the device data structure.

2790 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetClip
Changes the clipping region of the current graphics port (basic or color) to a region you specify. (Deprecated.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetClip (
 RgnHandle rgn
);

Parameters
rgn

A handle to a region. The SetClip function makes this region the clipping region of the current
graphics port. The SetClip function doesn’t change the region handle, but instead affects the clipping
region itself.

Discussion
Since SetClip copies the specified region into the current graphics port’s clipping region, any subsequent
changes you make to the region specified in the rgn parameter do not affect the clipping region of the
graphics port.

The initial clipping region of a graphics port is an arbitrarily large rectangle. You can set the clipping region
to any arbitrary region, to aid you in drawing inside the graphics port—for example, to avoid drawing over
scroll bars when drawing into a window, you could define a clipping region that excludes the scroll bars.

You can use the GetClip and SetClip functions to preserve the current clipping region: use GetClip to
save the current port’s clipping region, and use SetClip to restore it.

All other system software functions preserve the current clipping region.

The SetClip function may move or purge memory blocks in the application heap. Your application should
not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCompression.k.h

SetCPixel
Sets the color of an individual pixel to the color that most closely matches the RGB color that you specify in
the cPix parameter. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide
for QuickDraw Developers.)

Functions 2791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetCPixel (
 short h,
 short v,
 const RGBColor *cPix
);

Parameters
h

The horizontal coordinate of the point at the upper-left corner of the pixel.

v
The vertical coordinate of the point at the upper-left corner of the pixel.

cPix
An RGBColor structure.

Discussion
On an indexed color system, the SetCPixel function sets the pixel value to the index of the best-matching
color in the current device’s CLUT. In a direct environment, the SetCPixel function sets the pixel value to
a 16-bit or 32-bit direct pixel value.

To determine the color of an individual pixel, use the GetCPixel (page 2636) function.

Special Considerations

The SetCPixel function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCursor
Sets the current cursor. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz ProgrammingGuide
for QuickDraw Developers.)

void SetCursor (
 const Cursor * crsr
);

Parameters
crsr

A Cursor (page 2854) structure for the cursor to be displayed.

Discussion
If the cursor is hidden, it remains hidden and attains its new appearance only when it’s uncovered. If the
cursor is already visible, it changes to the new appearance immediately.

You need to use the InitCursor (page 2671) function to initialize the standard arrow cursor and make it
visible on the screen before you call SetCursor to change the cursor’s appearance.

To display a color cursor, use the SetCCursor (page 2790) function.

2792 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetCursorComponent
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSErr SetCursorComponent (
 ComponentInstance ci
);

Return Value
Carbon Porting Notes

This function is not implemented on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetDeviceAttribute
Sets the attribute bits of a GDevice structure. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetDeviceAttribute (
 GDHandle gdh,
 short attribute,
 Boolean value
);

Parameters
gdh

A handle to a GDevice structure.

attribute
One of the specific constants, which represent bits in the gdFlags field of a GDevice structure. See
GDevice (page 2859) for the values you can use in this parameter.

value
A value of either 0 or 1 for the flag bit specified in the attribute parameter.

Functions 2793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
For the graphics device specified in the gdh parameter, the SetDeviceAttribute function sets the flag bit
specified in the attribute parameter to the value specified in the value parameter.

Your application should never directly change the gdFlags field of the GDevice structure; instead, use only
the SetDeviceAttribute function.

Special Considerations

The SetDeviceAttribute function may move or purge memory blocks in the application heap; do not call
this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetEmptyRgn
Sets an existing region to be empty.

void SetEmptyRgn (
 RgnHandle rgn
);

Parameters
rgn

A handle to the region to be made empty.

Discussion
The SetEmptyRgn function destroys the previous structure of the region whose handle you pass in the rgn
parameter; it then sets the new structure to the empty region defined by the rectangle (0,0,0,0).

Special Considerations

The SetEmptyRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetEntries
Sets a group of color table entries for the current GDevice data structure. This function is used by system
software and your application should not need to call it. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

2794 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetEntries (
 short start,
 short count,
 CSpecArray aTable
);

Parameters
start

The index of the first entry to be changed.

count
The number of entries to be changed. Note that all values are zero-based; for example, to set three
entries, pass 2 in the count parameter.

aTable
An array of ColorSpec data structures containing the colors to be used. Directly specify a cSpecArray
structure, not the beginning of a color table. The ColorSpec.value fields of the entries must be in
the logical range for the target device’s assigned pixel depth. Thus, with a 4-bit pixel size, the
ColorSpec.value fields should be in the range 1 to 15. With an 8-bit pixel size, the range is 0 to
255.

Discussion
Instead of using SetEntries, you should use the Palette Manager function SetEntryColor to allow your
application to run in a multiscreen or multitasking environment.

The SetEntries positional information works in logical space rather than in the actual memory space used
by the hardware. Requesting a change at the fourth position in the color table may not modify the fourth
color table entry in the hardware, but it does correctly change the color on the screen for any pixels with a
value of 4 in the video card. The SetEntries mode characterized by a start position and a length is called
sequence mode. In this case, SetEntries sequentially loads new colors into the hardware in the same order
as they appear in the aTable parameter, copies the clientID fields for changed color table entries from
the current GDevice data structure’s gdID field, and ignores the ColorSpec.value fields.

The other SetEntries mode is called index mode. It allows the cSpecArray structure to specify where the
data will be installed on an entry-by-entry basis. To use this mode, pass –1 for the start position, with a valid
count and a pointer to the cSpecArray data structure. Each entry is installed into the color table at the
position specified by the ColorSpec.value field of each entry in the cSpecArray data structure. In the
current GDevice data structure’s color table, the ColorSpec.value fields of all changed entries are assigned
the GDevice data structure’s gdID value.

When the Color Manager changes color table entries, it invalidates all cached fonts, and changes the color
table’s seed number so that the next drawing operation triggers the Color Manager to rebuild the inverse
table. If any of the requested entries are protected or out of range, the Color Manager returns a protection
error, and nothing happens. The Color Manager changes a reserved entry only if the current gdID field of
the current GDevice data structure matches the low byte of the intended ColorSpec.value field in the
color table.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SetGDevice
Sets a GDevice structure as the current device. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetGDevice (
 GDHandle gd
);

Parameters
gd

A handle to a GDevice structure.

Discussion
Your application won’t generally need to use this function, because when your application draws into a
window on one or more screens, Color QuickDraw automatically switches GDevice structures as appropriate;
and when your application needs to draw into an offscreen graphics world, it can use the SetGWorld function
to set the graphics port as well as the GDevice structure for the offscreen environment. However, if your
application uses the SetPort function instead of the SetGWorld function to set the graphics port to or from
an offscreen graphics world, then your application must use SetGDevice in conjunction with SetPort.

A handle to the currently active device is kept in the global variable TheGDevice.

Special Considerations

The SetGDevice function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetGWorld
Changes the current graphics port (basic, color, or offscreen). (Deprecated. Use Quartz 2D instead; see Quartz
Programming Guide for QuickDraw Developers.)

void SetGWorld (
 CGrafPtr port,
 GDHandle gdh
);

Parameters
port

A pointer to an offscreen graphics world, color graphics port, or basic graphics port. Specify values
of type GrafPtr, CGrafPtr, or GWorldPtr, depending on whether you want to set the current
graphics port to be a basic graphics port, color graphics port, or offscreen graphics world. Any drawing
your application performs then occurs in this graphics port.

2796 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

gdh
A handle to a GDevice structure. If you pass a pointer to an offscreen graphics world in the port
parameter, set this parameter to NULL, because SetGWorld ignores this parameter and sets the
current device to the device attached to the offscreen graphics world.

Discussion
The SetGWorld function sets the current graphics port to the one specified by the port parameter
and—unless you set the current graphics port to be an offscreen graphics world—sets the current device to
that specified by the gdh parameter.

Special Considerations

The SetGWorld function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
QTCarbonShell
Simple DrawSprocket

Declared In
ImageCompression.k.h

SetOrigin
Changes the coordinates of the window origin of the port rectangle of the current graphics port (basic or
color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetOrigin (
 short h,
 short v
);

Parameters
h

The horizontal coordinate of the upper-left corner of the port rectangle.

v
The vertical coordinate of the upper-left corner of the port rectangle.

Discussion
The SetOrigin function changes the coordinates of the upper-left corner of the current graphics port’s port
rectangle to the values supplied by the h and v parameters. All other points in the current graphics port’s
local coordinate system are calculated from this point. All subsequent drawing and calculation functions use
the new coordinate system.

The SetOrigin function does not affect the screen; it does, however, affect where subsequent drawing
inside the graphics port appears. The SetOrigin function does not offset the coordinates of the clipping
region or the graphics pen, which therefore change position on the screen (unlike the boundary rectangle,
port rectangle, and visible region, which don’t change position onscreen).

Functions 2797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Because SetOrigin does not move the window’s clipping region, use the GetClip function to store your
clipping region immediately after your first call to SetOrigin—if you use clipping regions in your windows.
Before calling your own window-drawing function, use the ClipRect function to define a new clipping
region—to avoid drawing over your scroll bars, for example. After calling your own window-drawing function,
use the SetClip function to restore the original clipping region. You can then call SetOrigin again to
restore the window origin to a horizontal coordinate of 0 and a vertical coordinate of 0 with your original
clipping region intact.

All other functions in the Macintosh Toolbox and Operating System preserve the local coordinate system of
the current graphics port. The SetOrigin function is useful for readjusting the coordinate system after a
scrolling operation.

Note that the Window Manager and Control Manager always assume the window’s upper-left point has a
horizontal coordinate of 0 and a vertical coordinate of 0 when they draw in a window. Therefore, if you use
SetOrigin to change the window origin, be sure to use SetOrigin again to return the window origin to
a horizontal coordinate of 0 and a vertical coordinate of 0 before using any Window Manager or Control
Manager functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPenState
Restores the state of the graphics pen that was saved with the GetPenState function. (Deprecated in Mac
OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetPenState (
 const PenState *pnState
);

Parameters
pnState

A PenState structure previously created with the GetPenState function. The SetPenState function
sets the graphics pen’s location, size, pattern, and pattern mode in the current graphics port to the
values stored in this structure.

Discussion
This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2798 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SetPixelsState
Restores an offscreen pixel image to the state that you saved with the GetPixelsState function. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetPixelsState (
 PixMapHandle pm,
 GWorldFlags state
);

Parameters
pm

A handle to an offscreen pixel map.

state
Flags, which you usually save with the GetPixelsState function. You can use either of the constants
pixelsPurgeable or pixelsLocked here.

Because only an unlocked memory block can be purged, SetPixelsState calls the
UnlockPixels (page 2829) and AllowPurgePixels (page 2573) functions if the state parameter
specifies the pixelsPurgeable flag. If the state parameter does not specify the pixelsPurgeable
flag, SetPixelsState makes the base address for the offscreen pixel image unpurgeable.

If the state parameter does not specify the pixelsLocked flag, SetPixelsState allows the base
address for the offscreen pixel image to be moved.

Discussion
The SetPixelsState function changes the state of the memory allocated for an offscreen pixel image to
the state indicated in the state parameter.

After using GetPixelsState and before using SetPixelsState, your application can temporarily alter
the offscreen graphics world by using the AllowPurgePixels (page 2573) function to temporarily mark the
memory block for its offscreen pixel map as purgeable, the NoPurgePixels (page 2729) function to make it
unpurgeable, the LockPixels (page 2704) function to prevent it from being moved, and the
UnlockPixels (page 2829) function to unlock it.

Special Considerations

The SetPixelsState function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

SetPort
Changes the current graphics port (basic or color). (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

Functions 2799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

virtual void SetPort (
 void *port
);

Parameters
port

A pointer to a GrafPort structure. Typically, you pass a pointer to a GrafPort structure that you
previously saved with the GetPort function. The SetPort function sets this structure to be the
current graphics port.

Discussion
All QuickDraw drawing functions affect the bitmap of, and use the local coordinate system of, the current
graphics port. Each graphics port has its own graphics pen and text characteristics, which remain unchanged
when the graphics port isn’t selected as the current graphics port.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it should use the SetGWorld
function instead of SetPort. The SetGWorld function restores the current graphics port for basic and color
graphics ports as well as offscreen graphics worlds.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
QuickdrawAPI.h

SetPortBackPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortBackPixPat (
 CGrafPtr port,
 PixPatHandle backPattern
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2800 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SetPortBits
Sets the bitmap for the current basic graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void SetPortBits (
 const BitMap *bm
);

Parameters
bm

A pointer to the BitMap structure to set for the current graphics port. Be sure to prepare all fields of
the BitMap structure before you call SetPortBits.

Discussion
You should never need to use this function. This function, created for early versions of QuickDraw, allows
you to perform all normal drawing and calculations on a buffer other than the screen—for example, copying
a small offscreen image onto the screen with the CopyBits function. However, instead of using SetPortBits,
you should use the more powerful offscreen graphics capabilities.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortBounds
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortBounds (
 CGrafPtr port,
 const Rect *rect
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortClipRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetPortClipRegion (
 CGrafPtr port,
 RgnHandle clipRgn
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortCustomXFerProc
(Deprecated in Mac OS X v10.4.)

Not recommended

OSErr SetPortCustomXFerProc (
 CGrafPtr port,
 CustomXFerProcPtr proc,
 UInt32 flags,
 UInt32 refCon
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortFillPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortFillPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2802 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

SetPortFracHPenLocation
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortFracHPenLocation (
 CGrafPtr port,
 short pnLocHFrac
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortGrafProcs
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortGrafProcs (
 CGrafPtr port,
 CQDProcsPtr procs
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortOpColor
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Functions 2803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetPortOpColor (
 CGrafPtr port,
 const RGBColor *opColor
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenMode (
 CGrafPtr port,
 SInt32 penMode
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenPixPat
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenPixPat (
 CGrafPtr port,
 PixPatHandle penPattern
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.

2804 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPenSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortPenSize (
 CGrafPtr port,
 Point penSize
);

Carbon Porting Notes

Use this new accessor function in place of direct access to structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortPix
Sets the pixel map for the current color graphics port. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead;
see Quartz Programming Guide for QuickDraw Developers.)

void SetPortPix (
 PixMapHandle pm
);

Parameters
pm

A handle to the PixMap structure.

Discussion
The SetPortPix function replaces the portPixMap field of the current CGrafPort structure with the
handle you specify in the pm parameter.

Typically, your application does not need to call this function.

The SetPortPix function is analogous to the basic QuickDraw function SetPortBits, which sets the bitmap
for the current basic graphics port. The SetPortPix function has no effect when used with a basic graphics
port. Similarly, SetPortBits has no effect when used with a color graphics port.

Both SetPortPix and SetPortBits allow you to perform drawing and calculations on a buffer other than
the screen. However, instead of using these functions, use the offscreen graphics capabilities.

Functions 2805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextFace
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextFace (
 CGrafPtr port,
 StyleParameter face
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextFont
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextFont (
 CGrafPtr port,
 short txFont
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextMode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2806 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetPortTextMode (
 CGrafPtr port,
 short mode
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortTextSize
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortTextSize (
 CGrafPtr port,
 short txSize
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPortVisibleRegion
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetPortVisibleRegion (
 CGrafPtr port,
 RgnHandle visRgn
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetPt
Assigns two coordinates to a point.

Functions 2807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void SetPt (
 Point *pt,
 short h,
 short v
);

Parameters
pt

A pointer to the point to be given new coordinates. On return, this point is assigned the horizontal
coordinate you specify in the h parameter and the vertical coordinate you specify in the v parameter.

h
The horizontal value of the new coordinates.

v
The vertical value of the new coordinates.

Discussion
The SetPt procedure assigns the horizontal coordinate specified in the h parameter and the vertical coordinate
specified in the v parameter to the point returned in the pt parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

SetQDError
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDError (
 OSErr err
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetQDGlobalsArrow
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDGlobalsArrow (
 const Cursor *arrow
);

Availability
Available in Mac OS X v10.0 and later.

2808 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetQDGlobalsRandomSeed
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void SetQDGlobalsRandomSeed (
 long randomSeed
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetRect
Assigns coordinates to a rectangle.

void SetRect (
 Rect * r,
 short left,
 short top,
 short right,
 short bottom
);

Parameters
r

A pointer to the rectangle to set.

left
The horizontal coordinate of the new upper-left corner of the rectangle.

top
The vertical coordinate of the new upper-left corner of the rectangle.

right
The horizontal coordinate of the new lower-right corner of the rectangle.

bottom
The vertical coordinate of the new lower-right corner of the rectangle.

Functions 2809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The SetRect function assigns the coordinates you specify in the left, top, right, and bottom parameters
to the rectangle that you specify in the r parameter. This function is provided to help you shorten your
program text. If you want a more readable text, at the expense of source text length, you can instead assign
integers (or points) directly into the fields of a Rect structure.

You can use a rectangle to specify locations and sizes for various graphics operations.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Calibrator
WhackedTV

Declared In
QuickdrawAPI.h

SetRectRgn
Changes the structure of an existing region to that of a rectangle.

void SetRectRgn (
 RgnHandle rgn,
 short left,
 short top,
 short right,
 short bottom
);

Parameters
rgn

A handle to the region to restructure as a rectangle.

left
The horizontal coordinate of the upper-left corner of the rectangle to set as the new region.

top
The vertical coordinate of the upper-left corner of the rectangle to set as the new region.

right
The horizontal coordinate of the lower-right corner of the rectangle to set as the new region.

bottom
The vertical coordinate of the lower-right corner of the rectangle to set as the new region.

2810 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The SetRectRgn function destroys the previous structure of the region whose handle you pass in the rgn
parameter, and it then sets the new structure to the rectangle that you specify in the left, top, right, and
bottom parameters. If you specify an empty rectangle (that is, right is greater than or equal to left or
bottom = top), the SetRectRgn function sets the region to the empty region defined by the rectangle
(0,0,0,0).

As an alternative to the SetRectRgn function, you can change the structure of an existing region to that of
a rectangle by using the RectRgn (page 2776) function, which accepts as a parameter a rectangle instead of
four coordinates.

If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Special Considerations

The SetRectRgn function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetStdCProcs
Obtains a CQDProcs structure with fields that point to QuickDraw’s standard low-level functions, which you
can modify to change QuickDraw’s standard low-level behavior. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void SetStdCProcs (
 CQDProcs *procs
);

Parameters
procs

Upon completion, a CQDProcs structure with fields that point to QuickDraw’s standard low-level
functions. You can change one or more fields to point to your own functions and then set the color
graphics port to use this modified CQDProcs (page 2852) structure.

Discussion
For each shape that QuickDraw can draw, certain functions perform basic graphics operations on the shape:
framing, painting, erasing, inverting, and filling. These functions, in turn, call a low-level drawing function
for the shape.

The grafProcs field determines which low-level functions are called. If that field contains a value of NULL,
the standard functions are called. You can set the grafProcs field to point to a structure of pointers to your
own functions, and either completely override the standard ones or call them after your functions have
modified their parameters as necessary.

Functions 2811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

The SetStdCProcs function sets all the fields of the CQDProcs structure to point to the standard functions.
You can then reset the ones with which you are concerned.

The functions you install in the CDQProcs structure must have the same calling sequences as the standard
basic QuickDraw functions.

When drawing in a color graphics port, your application must always use SetStdCProcs instead of
SetStdProcs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SetStdProcs
Obtains a QDProcs structure with fields that point to basic QuickDraw’s standard low-level functions, which
you can modify to point to your own functions. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see
Quartz Programming Guide for QuickDraw Developers.)

void SetStdProcs (
 QDProcs *procs
);

Parameters
procs

On return, a pointer to a QDProcs structure with fields that point to basic QuickDraw’s standard
low-level functions. You can change one or more fields of this structure to point to your own functions
and then set the basic graphics port to use this modified QDProcs structure. By changing these
pointers, you can install your own functions, and either completely override the standard ones or call
them after your functions have modified their parameters as necessary.

Discussion
The functions you install in this QDProcs structure must have the same calling sequences as the standard
functions.

Special Considerations

The Color QuickDraw function SetStdCProcs is analogous to the SetStdProcs function, which you should
use with computers that support only basic QuickDraw. When drawing in a color graphics port, your application
must always use SetStdCProcs instead of SetStdProcs.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

2812 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ShieldCursor
Hides the cursor in a rectangle.

void ShieldCursor (
 const Rect *shieldRect,
 Point offsetPt
);

Parameters
shieldRect

A rectangle in which the cursor is hidden whenever the cursor intersects the rectangle. The rectangle
may be specified in global or local coordinates. If you are using global coordinates, pass (0,0) in the
offsetPt parameter. If you are using the local coordinates of a graphics port, pass the coordinates
for the upper-left corner of the graphics port’s boundary rectangle in the offsetPt parameter.

offsetPt
A point value for the offset of the rectangle. Like the basic QuickDraw function LocalToGlobal, the
ShieldCursor function offsets the coordinates of the rectangle by the coordinates of this point.

Discussion
If the cursor and the given rectangle intersect, ShieldCursor hides the cursor. If they do not intersect, the
cursor remains visible while the mouse is not moving, but is hidden when the mouse moves. Use this function
with a feature such as QuickTime to display content in a specified rectangle. When a QuickTime movie is
animating, the cursor should not be visible in front of the movie.

The ShieldCursor function decrements the cursor level and should be balanced by a call to the ShowCursor
function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

ShowCursor
Displays a cursor hidden by the HideCursor or ShieldCursor functions.

void ShowCursor (
 void
);

Discussion
ShowCursor increments the cursor level, which has been decremented by the HideCursor (page 2668) or
ShieldCursor (page 2813) function and displays the cursor on the screen when the level is 0. A call to the
ShowCursor function balances each previous call to the HideCursor or ShieldCursor function. The level
is not incremented beyond 0, so extra calls to ShowCursor have no effect.

Low-level interrupt-driven functions link the cursor with the mouse position, so that if the cursor level is 0
and visible, the cursor automatically follows the mouse.

If the cursor has been changed with the SetCursor (page 2792) function while hidden, ShowCursor displays
the new cursor.

Functions 2813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawAPI.h

ShowPen
Changes the ink of a graphics pen from invisible to visible, making pen drawing appear on the screen.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void ShowPen (
 void
);

Discussion
ShowPen is called by the functions CloseRgn (page 2582) , ClosePoly (page 2581) , and ClosePicture.

The ShowPen function increments the pnVis field of the current graphics port. For 0 or positive values, the
pen drawing shows on the screen.

For example, if you have used the HidePen function to decrement the pnVis field from 0 to –1, use the
ShowPen function to make its value 0 so that QuickDraw resumes drawing on the screen. Subsequent calls
to ShowPen increment pnVis beyond 0, so every call to ShowPen should be balanced by a call to HidePen.

This pen-manipulation function uses the local coordinate system of the current graphics port. Remember
that each graphics port has its own pen, the state of which is stored in several fields of its GrafPort or
CGrafPort structure. If you draw in one graphics port, change to another, and return to the first, the pen
for the first graphics port has the same state as when you left it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SlopeFromAngle
Converts an angle value to a slope value.

2814 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Fixed SlopeFromAngle (
 short angle
);

Parameters
angle

The angle, expressed in clockwise degrees from 12 o’clock and treated MOD 180. (90 degrees is thus
at 3 o’clock and –90 degrees is at 9 o’clock.

Return Value
The slope corresponding to the angle specified in the angle parameter. Slopes are defined as Dx/Dy, the
horizontal change divided by the vertical change between any two points on a line with the given angle.
The negative y-axis is defined as being at 12 o’clock, and the positive y-axis at 6 o’clock. The x-axis is defined
as usual, with the positive side defined as being at 3 o’clock.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdArc
QuickDraw’s standard low-level function for drawing an arc or a wedge. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdArc (
 GrafVerb verb,
 const Rect *r,
 short startAngle,
 short arcAngle
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

r
The rectangle to contain the arc.

startAngle
The beginning angle.

arcAngle
The ending angle.

Discussion
Using the action specified in the verb parameter, the StdArc function draws an arc or wedge of the oval
that fits inside the rectangle specified in the r parameter. The arc or wedge is bounded by the radii specified
in the startAngle and arcAngle parameters.

You should only call this low-level function from your customized QuickDraw functions.

Functions 2815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The StdArc function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdBits
QuickDraw’s standard low-level function for transferring bits and pixels. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdBits (
 const BitMap *srcBits,
 const Rect *srcRect,
 const Rect *dstRect,
 short mode,
 RgnHandle maskRgn
);

Parameters
srcBits

A pointer to a bitmap or pixel map containing the image to copy.

srcRect
A pointer to the source rectangle.

dstRect
The destination rectangle.

mode
The source mode for the copy.

maskRgn
A handle to a region acting as a mask for the transfer.

Discussion
The StdBits function transfers a bit or pixel image between the bitmap or pixel map specified in the srcBits
parameter and bitmap of the current graphics port, just as if the CopyBits function were called with the
same parameters and with a destination bitmap equal to (* thePort).portBits.

You should only call this low-level function from your customized QuickDraw functions.

See CopyBits (page 2584) for a discussion of the destination bitmap and of the srcBits, srcRect, dstRect,
mode, and maskRgn parameters

Special Considerations

The StdBits function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

2816 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdComment
QuickDraw’s standard low-level function for processing a picture comment. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdComment (
 short kind,
 short dataSize,
 Handle dataHandle
);

Parameters
kind

The type of comment.

dataSize
The size of additional data, in bytes.

dataHandle
A handle to additional data.

Discussion
If there’s no additional data for the comment, the value of the dataHandle parameter is NULL and the value
of the dataSize parameter is 0. The StdComment function simply ignores the comment.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdComment function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdGetPic
QuickDraw’s standard low-level function for retrieving information from the definition of a picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void StdGetPic (
 void *dataPtr,
 short byteCount
);

Parameters
dataPtr

On return, a pointer to the collected picture data.

byteCount
The size of the picture data.

Discussion
The StdGetPic function retrieves from the definition of the currently open picture the next number of bytes
as specified in the byteCount parameter.

You should only call this low-level function from your customized QuickDraw functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdLine
QuickDraw’s standard low-level function for drawing a line. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdLine (
 Point newPt
);

Parameters
newPt

The point to which to draw the line.

Discussion
The StdLine function draws a line from the current pen location to the location (in local coordinates) specified
in the newPt parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdLine function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2818 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

StdOpcode
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

void StdOpcode (
 const Rect *fromRect,
 const Rect *toRect,
 UInt16 opcode,
 SInt16 version
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdOval
QuickDraw’s standard low-level function for drawing an oval. (Deprecated in Mac OS X v10.4. Use Quartz 2D
instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdOval (
 GrafVerb verb,
 const Rect *r
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

r
The rectangle to contain the oval.

Discussion
The StdOval function draws an oval inside the given rectangle specified in the r parameter according to
the action specified in the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdOval function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

StdPoly
QuickDraw’s standard low-level function for drawing a polygon. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdPoly (
 GrafVerb verb,
 PolyHandle poly
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

poly
A handle to the polygon data.

Discussion
The StdPoly function draws the polygon specified in the poly parameter according to the action specified
in the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdPoly function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdPutPic
QuickDraw’s standard low-level function for saving information as the definition of a picture. (Deprecated
in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdPutPic (
 const void *dataPtr,
 short byteCount
);

Parameters
dataPtr

A pointer to the collected picture data.

byteCount
The size of the picture data.

2820 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
The StdPutPic function saves as the definition of the currently open picture the drawing commands stored
in the data structure pointed to by the dataPtr parameter, starting with the first byte and continuing for
the next number of bytes as specified in the byteCount parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdPutPic function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdRect
QuickDraw’s standard low-level function for drawing a rectangle. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdRect (
 GrafVerb verb,
 const Rect *r
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

r
The rectangle to draw.

Discussion
The StdRect function draws the rectangle specified in the r parameter according to the action specified in
the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

StdRgn
QuickDraw’s standard low-level function for drawing a region. (Deprecated in Mac OS X v10.4. Use Quartz
2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdRgn (
 GrafVerb verb,
 RgnHandle rgn
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

rgn
A handle to the region data.

Discussion
The StdRgn function draws the region specified in the rgn parameter according to the action specified in
the verb parameter.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StdRRect
QuickDraw’s standard low-level function for drawing a rounded rectangle. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void StdRRect (
 GrafVerb verb,
 const Rect *r,
 short ovalWidth,
 short ovalHeight
);

Parameters
verb

The action to perform. See “Verb Constants” (page 2904).

r
The rectangle to draw.

ovalWidth
The width diameter for the corner oval.

2822 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ovalHeight
The height diameter for the corner oval.

Discussion
The StdRRect function draws the rounded rectangle specified in the r parameter according to the action
specified in the verb parameter. The ovalWidth and ovalHeight parameters specify the diameters of
curvature for the corners.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdRRect function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

StuffHex
Sets byte values into memory. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming
Guide for QuickDraw Developers.)

void StuffHex (
 void *thingPtr,
 ConstStr255Param s
);

Parameters
thingPtr

A pointer to any data structure in memory. If thingPtr is an odd address, then thingPtr is interpreted
as pointing to the next word boundary.

s
A string of characters representing hexadecimal digits. All characters in this string must be hexadecimal
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). Otherwise, StuffHex may set bytes in the data structure
pointed to by thingPtr to arbitrary values. If there are an odd number of characters in the string,
the last character is ignored.

Discussion
The StuffHex function sets bytes in memory beginning with that byte specified by the parameter thingPtr.
The total number of bytes set is equivalent to half the length of the string, ignoring the last character if the
number of characters is odd.

Each byte to be set corresponds to two characters in the string. These characters should represent hexadecimal
digits. For example, the string ‘ D41A’ results in 2 bytes being set to the values $D4 and $1A, respectively.

To copy a range of bytes from one memory location to another, you should ordinarily use the Memory
Manager function, BlockMove.

Functions 2823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Special Considerations

The StuffHex function does no range checking to ensure that bytes being set are within the bounds of a
certain data structure. If you do not use StuffHex carefully, you may change memory in the partition of
your application or another application in unpredictable ways.

Although the StuffHex function sets the value of individual bytes, it does not move relocatable blocks.
Thus, you can call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SubPt
Subtracts the coordinates of one point from another.

void SubPt (
 Point src,
 Point *dst
);

Parameters
src

A point, the coordinates of which are to be subtracted from the coordinates of the point specified in
the dst parameter.

dst
The address of a point. Upon completion, the coordinates of this point contain the differences between
the coordinates of the two points specified in the entry parameters.

If you pass NULL in the dst parameter, this function sets the QDError result code to paramErr and
returns.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

SwapPortPicSaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Handle SwapPortPicSaveHandle (
 CGrafPtr port,
 Handle inPicSaveHdl
);

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SwapPortPolySaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle SwapPortPolySaveHandle (
 CGrafPtr port,
 Handle inPolySaveHdl
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

SwapPortRegionSaveHandle
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

Handle SwapPortRegionSaveHandle (
 CGrafPtr port,
 Handle inRegionSaveHdl
);

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

Functions 2825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

SyncCGContextOriginWithPort
Synchronizes the origin in a Quartz context with the lower-left corner of the associated graphics port.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

OSStatus SyncCGContextOriginWithPort (
 CGContextRef inContext,
 CGrafPtr port
);

Parameters
context

A Quartz context associated with a graphics port. You can obtain such a context by calling
QDBeginCGContext (page 2756).

port
The graphics port associated with the context.

Return Value
A result code. If noErr, the context’s origin was successfully changed.

Discussion
If you’re using Quartz 2D to draw in a graphics port and SetOrigin (page 2797) is called to change the port’s
origin, you can call this function to maintain the correspondence between the context’s origin and the
lower-left corner of the portBounds rectangle.

When you call this function:

1. The current transformation matrix (CTM) is reset to its default values. Any changes you made to the CTM
prior to calling this function are lost.

2. The CTM is translated to establish the new origin, taking the port’s current origin into account.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

TestDeviceAttribute
Determines whether the flag bit for an attribute has been set in the gdFlags field of a GDevice structure.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

2826 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Boolean TestDeviceAttribute (
 GDHandle gdh,
 short attribute
);

Parameters
gdh

A handle to a GDevice structure.

attribute
One of the specific constants, which represent bits in the gdFlags field of a GDevice structure. See
“Device Attribute Constants” (page 2887) for a description of the values you can use in this parameter.

Return Value
TRUE if the bit of the graphics device attribute specified in the attribute parameter is set to 1. Otherwise,
TestDeviceAttribute returns FALSE.

Discussion
Use the SetDeviceAttribute (page 2793) function to change any of the flags tested by the
TestDeviceAttribute function.

Special Considerations

The TestDeviceAttribute function may move or purge memory blocks in the application heap; do not
call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

UnionRect
Calculates the smallest rectangle that encloses two rectangles.

void UnionRect (
 const Rect * src1,
 const Rect * src2,
 Rect * dstRect
);

Parameters
src1

The first of two rectangles to enclose.

src2
The second of two rectangles to enclose.

dstRect
On return, a pointer to the smallest rectangle that encloses both of the rectangles you specify in the
src1 and src2 parameters. One of the source rectangles may also be the destination.

Functions 2827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Discussion
If the points or rectangles supplied to this function are defined in a graphics port other than your current
graphics port, you must convert them to the local coordinate system of your current graphics port. You can
accomplish this by using the SetPort function to change to the graphics port containing the points or
rectangles, using the LocalGlobal function to convert their locations to global coordinates, using SetPort
to return to your starting graphics port, and then using the GlobalToLocal function to convert the locations
of points or rectangles to the local coordinates of your current graphics port.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

UnionRgn
Calculates the union of two regions.

void UnionRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions whose union is to be determined.

srcRgnB
A handle to the second of two regions whose union is to be determined.

dstRgn
On return, a handle to the region holding the resulting union area. If both regions are empty, UnionRgn
sets the destination to the empty region defined by the rectangle (0,0,0,0).

The UnionRgn function does not create the destination region; you must have already allocated
memory for it by using the NewRgn (page 2726) function.

The destination region may be one of the source regions, if desired.

Discussion
The UnionRgn procedure calculates the union of the two regions whose handles you pass in the srcRgnA
and srcRgnB parameters, and it places the union in the region whose handle you pass in the dstRgn parameter.
If both regions are empty, UnionRgn sets the destination to the empty region defined by the rectangle
(0,0,0,0).

Special Considerations

The UnionRgn function may temporarily use heap space that’s twice the size of the two input regions.

The UnionRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

2828 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

UnlockPixels
Allows the Memory Manager to move the base address for the offscreen pixel map that you specify in the
pm parameter. (Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for
QuickDraw Developers.)

void UnlockPixels (
 PixMapHandle pm
);

Parameters
pm

A handle to an offscreen pixel map. Pass the same handle that you passed previously to the
LockPixels function.

Discussion
To ensure the integrity of the data in a pixel image, call LockPixels before drawing into or copying from
a pixel map; then, to prevent heap fragmentation, call UnlockPixels as soon as your application finishes
drawing to and copying from the offscreen pixel map.

The baseAddr field of the PixMap structure for an offscreen graphics world contains a handle instead of a
pointer (which is what the baseAddr field for an onscreen pixel map contains). The LockPixels function
dereferences the PixMap handle into a pointer. When you use the UnlockPixels function, the handle is
recovered.

You don’t need to call UnlockPixels if LockPixels returns FALSE, because LockPixels doesn’t lock the
memory for a pixel image if that memory has been purged. However, calling UnlockPixels on purged
memory does no harm.

Special Considerations

The UnlockPixels function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QDOffscreen.h

UnlockPortBits
Releases a previously acquired lock on the back buffer for a Carbon window. (Deprecated in Mac OS X v10.4.
Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

Functions 2829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

OSErr UnlockPortBits (
 GrafPtr port
);

Parameters
port

A window port specified in a previous call to LockPortBits (page 2705).

Return Value
A result code. If noErr, the corresponding lock is released.

Discussion
For more information about this function, see LockPortBits (page 2705).

In Mac OS 9, this function does nothing and returns noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
QuickdrawAPI.h

UnpackBits
Decompresses a data buffer containing data compressed by PackBits. (Deprecated in Mac OS X v10.4. Use
Quartz 2D instead; see Quartz Programming Guide for QuickDraw Developers.)

void UnpackBits (
 Ptr *srcPtr,
 Ptr *dstPtr,
 short dstBytes
);

Parameters
srcPtr

On entry, a pointer to the first byte of a buffer of data to be decompressed. On exit, a pointer to the
first byte following the compressed data.

dstPtr
On entry, a pointer to the first byte in which to store decompressed data. On exit, a pointer to the
first byte following the decompressed data.

dstBytes
The number of bytes of the data before compression. Use PackBits to compress data structures of
a fixed size that you can then pass in this parameter to UnpackBits, or store with the compressed
data the original size of the uncompressed data.

Discussion
Because your application must allocate memory for the source and destination buffers, UnpackBits does
not move relocatable blocks. Thus, you can call it at interrupt time.

2830 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Because UnpackBits changes the values of the srcPtr and dstPtr parameters, you should pass to
UnpackBits only copies of the pointers to the source and destination buffers. This allows you to access the
beginning of the source and destination buffers after UnpackBits returns. Also, if the source or destination
buffer is stored in an unlocked, relocatable block, this technique prevents UnpackBits from changing the
value of a master pointer, which would make the original handle invalid.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawAPI.h

UpdateGWorld
Changes the pixel depth, boundary rectangle, or color table for an existing offscreen graphics world.
(Deprecated in Mac OS X v10.4. Use Quartz 2D instead; see Quartz Programming Guide for QuickDraw
Developers.)

GWorldFlags UpdateGWorld (
 GWorldPtr *offscreenGWorld,
 short pixelDepth,
 const Rect *boundsRect,
 CTabHandle cTable,
 GDHandle aGDevice,
 GWorldFlags flags
);

Parameters
offscreenGWorld

On input, a pointer to an existing offscreen graphics world; upon completion, the pointer to the
updated offscreen graphics world.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16, and 32 bits per pixel. If you
specify 0 in this parameter, UpdateGWorld rescans the device list and uses the depth of the screen
with the greatest pixel depth among all screens whose boundary rectangles intersect the rectangle
that you specify in the boundsRect parameter. If you specify 0 in this parameter, UpdateGWorld
also copies the GDevice structure from this device to create an offscreen GDevice structure. The
UpdateGWorld function ignores the value you supply for this parameter if you specify a GDevice
structure in the aGDevice parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map. This also becomes the boundary
rectangle for the GDevice structure, if NewGWorld creates one. If you specify 0 in the pixelDepth
parameter, NewGWorld interprets the boundaries in global coordinates, with which it determines
which screens intersect the rectangle. (NewGWorld then uses the pixel depth, color table, and GDevice
structure from the screen with the greatest pixel depth from among all screens whose boundary
rectangles intersect this rectangle.) Typically, your application supplies this parameter with the port
rectangle for the onscreen window into which your application will copy the pixel image from this
offscreen world.

Functions 2831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

cTable
A handle to a ColorTable structure. If you pass NULL in this parameter, UpdateGWorld uses the
default color table for the pixel depth that you specify in the pixelDepth parameter; if you set the
pixelDepth parameter to 0, UpdateGWorld copies and uses the color table of the graphics device
with the greatest pixel depth among all graphics devices whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter. The UpdateGWorld function ignores the
value you supply for this parameter if you specify a GDevice structure in the aGDevice parameter.

aGDevice
As an option, a handle to a GDevice structure whose pixel depth and color table you want to use for
the offscreen graphics world. To use the pixel depth and color table that you specify in the pixelDepth
and cTable parameters, set this parameter to NULL.

flags
Options available to your application. You can set a combination of the flags clipPix, stretchPix,
and ditherPix. If you don’t wish to use any of these flags, specify 0. However, you should pass either
clipPix or stretchPix to ensure that the pixel map is updated to reflect the new color table. See
GWorldFlags (page 2863) for a description of the values you can use here.

Return Value
UpdateGWorld returns the gwFlagErr flag if UpdateGWorld was unsuccessful; in this case, the offscreen
graphics world is left unchanged. Use the QDError function to help you determine why UpdateGWorld
failed.

Discussion
You should call UpdateGWorld after every update event and whenever your windows move or change size.

If the LockPixels (page 2704) function reports that the Memory Manager has purged the base address for
the offscreen pixel image, use UpdateGWorld to reallocate its memory. Then, reconstruct the pixel image
or draw directly in a window instead of preparing the image in an offscreen graphics world.

The UpdateGWorld function uses the following algorithm when updating the offscreen pixel image:

1. If the color table that you specify in the cTable parameter is different from the previous color table, or
if the color table associated with the GDevice structure that you specify in the aGDevice parameter is
different, Color QuickDraw maps the pixel values in the offscreen pixel map to the new color table.

2. If the value you specify in the pixelDepth parameter differs from the previous pixel depth, Color
QuickDraw translates the pixel values in the offscreen pixel image to those for the new pixel depth.

3. If the rectangle you specify in the boundsRect parameter differs from, but has the same size as, the
previous boundary rectangle, QuickDraw realigns the pixel image to the screen for optimum performance
for the CopyBits function.

4. If the rectangle you specify in the boundsRect parameter is smaller than the previous boundary rectangle
and you specify the clipPix flag, the pixel image is clipped along the bottom and right edges.

5. If the rectangle you specify in the boundsRect parameter is bigger than the previous boundary rectangle
and you specify the clipPix flag, the bottom and right edges of the pixel image are undefined.

6. If the rectangle you specify in the boundsRect parameter is smaller than the previous boundary rectangle
and you specify the stretchPix flag, the pixel image is reduced to the new size.

7. If the rectangle you specify in the boundsRect parameter is bigger than the previous boundary rectangle
and you specify the stretchPix flag, the pixel image is stretched to the new size.

2832 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

8. If the Memory Manager purged the base address for the offscreen pixel image, UpdateGWorld reallocates
the memory, but the pixel image is lost. You must reconstruct it.

Special Considerations

The UpdateGWorld function may move or purge memory blocks in the application heap; do not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QDOffscreen.h

XorRgn
Calculates the difference between the union and the intersection of two regions.

void XorRgn (
 RgnHandle srcRgnA,
 RgnHandle srcRgnB,
 RgnHandle dstRgn
);

Parameters
srcRgnA

A handle to the first of two regions to compare.

srcRgnB
A handle to the second of two regions to compare.

dstRgn
On return, a handle to the region holding the result.

This does not create the destination region; you must have already allocated memory for it by using
the NewRgn (page 2726) function.

If the regions are coincident, XorRgn sets the destination region to the empty region defined by the
rectangle (0,0,0,0).

Discussion
The XorRgn procedure calculates the difference between the union and the intersection of the regions whose
handles you pass in the srcRgnA and srcRgnB parameters and places the result in the region whose handle
you pass in the dstRgn parameter.

Special Considerations

The XorRgn function may temporarily use heap space that’s twice the size of the two input regions.

The XorRgn function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 2833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawAPI.h

Callbacks

ColorComplementProcPtr
Defines a pointer to a color inversion callback function that overrides the Color Manager’s color inversion
method.

typedef Boolean (*ColorComplementProcPtr) (
 RGBColor * rgb
);

If you name your function MyColorComplementProc, you would declare it like this:

Boolean ColorComplementProcPtr (
 RGBColor * rgb
);

Parameters
rgb

A pointer to the RGBColor data structure. Change it to reflect the inverted value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorSearchProcPtr
Defines a pointer to a color search callback function that overrides the Color Manager’s code for inverse table
mapping.

typedef Boolean (*ColorSearchProcPtr) (
 RGBColor * rgb,
 long * position
);

If you name your function MyColorSearchProc, you would declare it like this:

Boolean ColorSearchProcPtr (
 RGBColor * rgb,
 long * position
);

2834 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Parameters
rgb

A pointer to the RGBColor data structure passed to your search function. Your function should set
the ColorSpec.value field to the index corresponding to the color indicated here.

position
A pointer to the index of the best-mapping color your function finds.

Return Value
True if your function succeeds, false if your function cannot find a match.

Discussion
Your MyColorSearchCallback function should examine the RGBColor data structure passed to it by the
Color Manager and return the index to the best-mapping color in the current GDevice data structure.

The Color Manager specifies the desired color in the RGBColor field of a ColorSpec data structure and
passes it by a pointer on the stack. Your function should return the corresponding index in the
ColorSpec.value field. If your function cannot handle the search, return false as the function value, and
pass the RGBColor data structure back to the Color Manager in the rgb parameter.

The Color Manager calls each search function in the list until one returns the Boolean value true. If no search
function installed in the linked list returns true, the Color Manager calls the default search function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CustomXFerProcPtr
typedef void (*CustomXFerProcPtr) (
 CustomXFerRecPtr info
);

If you name your function MyCustomXFerProc, you would declare it like this:

void CustomXFerProcPtr (
 CustomXFerRecPtr info
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Callbacks 2835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DeviceLoopDrawingProcPtr
typedef void (*DeviceLoopDrawingProcPtr) (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 long userData
);

If you name your function MyDeviceLoopDrawingProc, you would declare it like this:

void DeviceLoopDrawingProcPtr (
 short depth,
 short deviceFlags,
 GDHandle targetDevice,
 long userData
);

Parameters
depth

The pixel depth of the graphics device.

deviceFlags
Constants which represent bits that are set to 1 in the gdFlags field of the GDevice structure for
the current device. See “Device Attribute Constants” (page 2887) for a description of the values which
you can receive in this parameter.

targetDevice
A handle to the GDevice (page 2859) structure for the current device.

userData
A value that your application supplies to the DeviceLoop function, which in turn passes the value
to your drawing function for whatever purpose you deem useful.

Discussion
For each video device that intersects a drawing region that you define (generally, the update region of a
window), DeviceLoop calls your drawing function. Your drawing function should analyze the pixel depth
passed in the depth parameter and the values passed in the deviceFlags parameter, and then draw in a
manner that is optimized for the current device.

When highlighting, for example, your application might invert black and white when drawing onto a 1-bit
video device but use magenta as the highlight color when drawing onto a color video device. In this case,
even were your window to span both a black-and-white and a color screen, the user sees the selection
inverted on the black-and-white screen, while magenta would be used to highlight the selection on the color
screen.

You must provide a pointer to your MyDeviceLoopDrawingCallback function in the drawingProc
parameter for DeviceLoop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2836 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DragGrayRgnProcPtr
typedef void (*DragGrayRgnProcPtr) (
);

If you name your function MyDragGrayRgnProc, you would declare it like this:

void DragGrayRgnProcPtr ();

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDArcProcPtr
typedef void (*QDArcProcPtr) (
 GrafVerb verb,
 const Rect * r,
 short startAngle,
 short arcAngle
);

If you name your function MyQDArcProc, you would declare it like this:

void QDArcProcPtr (
 GrafVerb verb,
 const Rect * r,
 short startAngle,
 short arcAngle
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDBitsProcPtr
typedef void (*QDBitsProcPtr) (
 const BitMap * srcBits,
 const Rect * srcRect,
 const Rect * dstRect,
 short mode,
 RgnHandle maskRgn
);

If you name your function MyQDBitsProc, you would declare it like this:

void QDBitsProcPtr (
 const BitMap * srcBits,

Callbacks 2837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

 const Rect * srcRect,
 const Rect * dstRect,
 short mode,
 RgnHandle maskRgn
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDCommentProcPtr
typedef void (*QDCommentProcPtr) (
 short kind,
 short dataSize,
 Handle dataHandle
);

If you name your function MyQDCommentProc, you would declare it like this:

void QDCommentProcPtr (
 short kind,
 short dataSize,
 Handle dataHandle
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDGetPicProcPtr
typedef void (*QDGetPicProcPtr) (
 void * dataPtr,
 short byteCount
);

If you name your function MyQDGetPicProc, you would declare it like this:

void QDGetPicProcPtr (
 void * dataPtr,
 short byteCount
);

Availability
Available in Mac OS X v10.0 and later.

2838 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDJShieldCursorProcPtr
typedef void (*QDJShieldCursorProcPtr) (
 short left,
 short top,
 short right,
 short bottom
);

If you name your function MyQDJShieldCursorProc, you would declare it like this:

void QDJShieldCursorProcPtr (
 short left,
 short top,
 short right,
 short bottom
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDLineProcPtr
typedef void (*QDLineProcPtr) (
 Point newPt
);

If you name your function MyQDLineProc, you would declare it like this:

void QDLineProcPtr (
 Point newPt
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Callbacks 2839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDOpcodeProcPtr
typedef void (*QDOpcodeProcPtr) (
 const Rect * fromRect,
 const Rect * toRect,
 UInt16 opcode,
 SInt16 version
);

If you name your function MyQDOpcodeProc, you would declare it like this:

void QDOpcodeProcPtr (
 const Rect * fromRect,
 const Rect * toRect,
 UInt16 opcode,
 SInt16 version
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDOvalProcPtr
typedef void (*QDOvalProcPtr) (
 GrafVerb verb,
 const Rect * r
);

If you name your function MyQDOvalProc, you would declare it like this:

void QDOvalProcPtr (
 GrafVerb verb,
 const Rect * r
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPolyProcPtr
typedef void (*QDPolyProcPtr) (
 GrafVerb verb,
 PolyHandle poly
);

If you name your function MyQDPolyProc, you would declare it like this:

2840 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

void QDPolyProcPtr (
 GrafVerb verb,
 PolyHandle poly
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPrinterStatusProcPtr
typedef OSStatus (*QDPrinterStatusProcPtr) (
 PrinterStatusOpcode opcode,
 CGrafPtr currentPort,
 void * printerStatus
);

If you name your function MyQDPrinterStatusProc, you would declare it like this:

OSStatus QDPrinterStatusProcPtr (
 PrinterStatusOpcode opcode,
 CGrafPtr currentPort,
 void * printerStatus
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPutPicProcPtr
typedef void (*QDPutPicProcPtr) (
 const void * dataPtr,
 short byteCount
);

If you name your function MyQDPutPicProc, you would declare it like this:

void QDPutPicProcPtr (
 const void * dataPtr,
 short byteCount
);

Availability
Available in Mac OS X v10.0 and later.

Callbacks 2841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDRectProcPtr
typedef void (*QDRectProcPtr) (
 GrafVerb verb,
 const Rect * r
);

If you name your function MyQDRectProc, you would declare it like this:

void QDRectProcPtr (
 GrafVerb verb,
 const Rect * r
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRgnProcPtr
typedef void (*QDRgnProcPtr) (
 GrafVerb verb,
 RgnHandle rgn
);

If you name your function MyQDRgnProc, you would declare it like this:

void QDRgnProcPtr (
 GrafVerb verb,
 RgnHandle rgn
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2842 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDRRectProcPtr
typedef void (*QDRRectProcPtr) (
 GrafVerb verb,
 const Rect * r,
 short ovalWidth,
 short ovalHeight
);

If you name your function MyQDRRectProc, you would declare it like this:

void QDRRectProcPtr (
 GrafVerb verb,
 const Rect * r,
 short ovalWidth,
 short ovalHeight
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDStdGlyphsProcPtr
typedef OSStatus (*QDStdGlyphsProcPtr) (
 void * dataStream,
 ByteCount size
);

If you name your function MyQDStdGlyphsProc, you would declare it like this:

OSStatus QDStdGlyphsProcPtr (
 void * dataStream,
 ByteCount size
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Callbacks 2843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDTextProcPtr
typedef void (*QDTextProcPtr) (
 short byteCount,
 const void * textBuf,
 Point numer,
 Point denom
);

If you name your function MyQDTextProc, you would declare it like this:

void QDTextProcPtr (
 short byteCount,
 const void * textBuf,
 Point numer,
 Point denom
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTxMeasProcPtr
typedef short (*QDTxMeasProcPtr) (
 short byteCount,
 const void * textAddr,
 Point * numer,
 Point * denom,
 FontInfo * info
);

If you name your function MyQDTxMeasProc, you would declare it like this:

short QDTxMeasProcPtr (
 short byteCount,
 const void * textAddr,
 Point * numer,
 Point * denom,
 FontInfo * info
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2844 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

RegionToRectsProcPtr
typedef OSStatus (*RegionToRectsProcPtr) (
 UInt16 message,
 RgnHandle rgn,
 const Rect * rect,
 void * refCon
);

If you name your function MyRegionToRectsProc, you would declare it like this:

OSStatus RegionToRectsProcPtr (
 UInt16 message,
 RgnHandle rgn,
 const Rect * rect,
 void * refCon
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Data Types

BitMap
struct BitMap {
 Ptr baseAddr;
 short rowBytes;
 Rect bounds;
};
typedef struct BitMap BitMap;
typedef BitMap * BitMapPtr;

Fields
baseAddr

A pointer to the beginning of the bit image.

rowBytes
The offset in bytes from one row of the image to the next. The value of the rowBytes field must be
less than $4000.

bounds
The bitmap’s boundary rectangle by default, the entire main screen.

Discussion
A bitmap, which is a data structure of type BitMap, defines a bit image in terms of the QuickDraw coordinate
plane. (A bit image is a collection of bits in memory that form a grid.)

Data Types 2845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

A bitmap has three parts: a pointer to a bit image, the row width of that image, and a boundary rectangle
that links the local coordinate system of a graphics port to QuickDraw’s global coordinate system and defines
the area of the bit image into which QuickDraw can draw.

The width of the boundary rectangle determines how many bits of one row are logically owned by the
bitmap. This width must not exceed the number of bits in each row of the bit image. The height of the
boundary rectangle determines how many rows of the image are logically owned by the bitmap. The number
of rows enclosed by the boundary rectangle must not exceed the number of rows in the bit image.

The boundary rectangle defines the local coordinate system used by the port rectangle for a graphics port
(described next). The upper-left corner (which for a window is called the window origin) of the port rectangle
usually has a vertical coordinate of 0 and a horizontal coordinate of 0, although you can use the function
SetOrigin (page 2797) to change the coordinates of the window origin.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Bits16
typedef short Bits16[16];

Discussion
The Bits16 array is used by the Cursor (page 2854) structure to hold a black-and-white, 16-by-16 pixel square
image.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2846 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CCrsr
struct CCrsr {
 short crsrType;
 PixMapHandle crsrMap;
 Handle crsrData;
 Handle crsrXData;
 short crsrXValid;
 Handle crsrXHandle;
 Bits16 crsr1Data;
 Bits16 crsrMask;
 Point crsrHotSpot;
 long crsrXTable;
 long crsrID;
};
typedef struct CCrsr CCrsr;
typedef CCrsr * CCrsrPtr;

Fields
crsrType

The type of cursor. Possible values are $8000 for a black-and-white cursor and $8001 for a color cursor.

crsrMap
A handle to the PixMap structure defining the cursor’s characteristics. When the screen depth is
greater than 2 bits per pixel, the crsrMap field and the crsrData field define the image. The pixels
within the mask replace the destination pixels. Color QuickDraw transfers the pixels outside the mask
into the destination pixels using the XOR Boolean transfer mode. Therefore, if pixels outside the mask
are white, the destination pixels aren’t changed. If pixels outside the mask are all black, the destination
pixels are inverted. All other values outside of the mask cause unpredictable results.

crsrData
A handle to the cursor’s pixel data. To work properly, a color cursor’s image should contain white
pixels (R=G= B=$FFFF) for the transparent part of the image, and black pixels (R=G=B=$0000) for
the part of the image to be inverted, in addition to the other colors in the cursor’s image. Thus, to
define a cursor that contains two colors, it’s necessary to use a 2-bit cursor image (that is, a four-color
image.

crsrXData
A handle to the expanded pixel image used internally by Color QuickDraw.

crsrXValid
The depth of the expanded cursor image. If you change the cursor’s data or color table, set this field
to 0 to cause the cursor to be re-expanded. Never set it to any other values.

crsrXHandle
Reserved for future use.

crsr1Data
A 16-by-16 pixel image with a pixel depth of 1 to be displayed when the cursor is on screens with
pixel depths of 1 or 2 bits.

crsrMask
The cursor’s mask data. QuickDraw uses the mask to crop the cursor’s outline into a background color
or pattern. QuickDraw then draws the cursor into this shape. The same 1-bit mask is used with images
specified by the crsrData and crsr1Data fields.

crsrHotSpot
The cursor’s hot spot.

Data Types 2847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

crsrXTable
Reserved for future use.

crsrID
The color table seed for the cursor.

Discussion
Your application typically does not create CCrsr structures. Although you can create a CCrsr structure, it
is usually easier to create a color cursor in a color cursor resource, ‘crsr’.

A color cursor is a 256-pixel color image in a 16-by-16 pixel square defined in a color cursor ('crsr') resource.
When your application uses the GetCCursor function to get a color cursor from a 'crsr' resource,
GetCCursor loads the resource into memory as a CCrsr structure. Your application can then display the
color cursor by using the SetCCursor (page 2790) function.

CCrsr is substantially different from the Cursor structure. The fields crsr1Data, crsrMask, and
crsrHotSpot in the CCrsr structure are the only ones that have counterparts in the Cursor structure.

The first four fields of the CCrsr structure are similar to the first four fields of the PixPat record, and are
used in the same manner by QuickDraw.

The display of a cursor involves a relationship between a mask, stored in the crsrMask field with the same
format used for 1-bit cursor masks, and an image. There are two possible sources for a color cursor’s image.
When the cursor is on a screen whose depth is 1 or 2 bits per pixel, the image for the cursor is taken from
the crsr1Data field, which contains bitmap cursor data, similar to the bitmap in a 'CURS' resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2848 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CGrafPort
struct CGrafPort {
 SInt16 device;
 PixMapHandle portPixMap;
 SInt16 portVersion;
 Handle grafVars;
 SInt16 chExtra;
 SInt16 pnLocHFrac;
 Rect portRect;
 RgnHandle visRgn;
 RgnHandle clipRgn;
 PixPatHandle bkPixPat;
 RGBColor rgbFgColor;
 RGBColor rgbBkColor;
 Point pnLoc;
 Point pnSize;
 SInt16 pnMode;
 PixPatHandle pnPixPat;
 PixPatHandle fillPixPat;
 SInt16 pnVis;
 SInt16 txFont;
 StyleField txFace;
 SInt16 txMode;
 SInt16 txSize;
 Fixed spExtra;
 SInt32 fgColor;
 SInt32 bkColor;
 SInt16 colrBit;
 SInt16 patStretch;
 Handle picSave;
 Handle rgnSave;
 Handle polySave;
 CQDProcsPtr grafProcs;
};

CGrafPtr
typedef GrafPtr CGrafPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorComplementUPP
typedef ColorComplementProcPtr ColorComplementUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ColorSearchUPP
typedef ColorSearchProcPtr ColorSearchUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ColorSpec
struct ColorSpec {
 short value;
 RGBColor rgb;
};
typedef struct ColorSpec ColorSpec;
typedef ColorSpec * ColorSpecPtr;

Fields
value

The pixel value assigned by QuickDraw for the color specified in the rgb field of this structure.
QuickDraw assigns a pixel value based on the capabilities of the user’s screen. For indexed devices,
the pixel value is an index number assigned by QuickDraw to the closest color available on the indexed
device for direct devices, this value expresses the best available red, green, and blue values for the
color on the direct device.

rgb
An RGBColor (page 2882) structure that fully specifies the color whose approximation QuickDraw
specifies in the value field.

Discussion
When creating a PixMap (page 2869) structure for an indexed device, QuickDraw creates a ColorTable
structure that defines the best colors available for the pixel image on that graphics device. QuickDraw also
stores a ColorTable structure for the currently available colors in the graphics device’s CLUT.

One of the fields in a ColorTable structure requires a value of type cSpecArray, which is defined as an
array of ColorSpec structures. Typically, your application never needs to create ColorTable structures or
ColorSpec structures. For completeness, the data structure of type ColorSpec is shown here.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

2850 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ColorTable
struct ColorTable {
 long ctSeed;
 short ctFlags;
 short ctSize;
 CSpecArray ctTable;
};
typedef struct ColorTable ColorTable;
typedef ColorTable * CTabPtr;
typedef CTabPtr * CTabHandle;

Fields
ctSeed

Identifies a particular instance of a color table. QuickDraw uses the ctSeed value to compare an
indexed device’s color table with its associated inverse table (a table it uses for fast color lookup).
When the color table for a graphics device has been changed, QuickDraw needs to rebuild the inverse
table.

ctFlags
Flags that distinguish pixel map color tables from color tables in GDevice structures.

ctSize
One less than the number of entries in the table.

ctTable
An array of ColorSpec (page 2850) entries, each containing a pixel value and a color specified by an
RGBColor structure.

Discussion
When creating aPixMap (page 2869) structure for a particular graphics device, QuickDraw creates aColorTable
structure that defines the best colors available for the pixel image on that particular graphics device. QuickDraw
also creates a ColorTable structure of all available colors for use by the CLUT on indexed devices.

Typically, your application needs to create ColorTable structures only if it uses the Palette Manager.

Your application should never need to directly change the fields of a ColorTable structure. If you find it
absolutely necessary for your application to do so, immediately use the CTabChanged (page 2593) function
to notify QuickDraw that your application has changed the ColorTable structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

ConstPatternParam
typedef const Pattern* ConstPatternParam;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CProcRec
struct CProcRec {
 Handle nxtComp;
 ColorComplementUPP compProc;
};
typedef struct CProcRec CProcRec;
typedef CProcRec * CProcPtr;

Fields
nxtComp

A handle to the next CPRocRec data structure in the list.

compProc
A pointer to a complement function, as described in ColorComplementProcPtr (page 2834).

Discussion
The CProcRec data structure contains a pointer to a custom complement function and a pointer to the next
complement function in the list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CQDProcs
struct CQDProcs {
 QDTextUPP textProc;
 QDLineUPP lineProc;
 QDRectUPP rectProc;
 QDRRectUPP rRectProc;
 QDOvalUPP ovalProc;
 QDArcUPP arcProc;
 QDPolyUPP polyProc;
 QDRgnUPP rgnProc;
 QDBitsUPP bitsProc;
 QDCommentUPP commentProc;
 QDTxMeasUPP txMeasProc;
 QDGetPicUPP getPicProc;
 QDPutPicUPP putPicProc;
 QDOpcodeUPP opcodeProc;
 UniversalProcPtr newProc1;
 QDStdGlyphsUPP glyphsProc;
 QDPrinterStatusUPP printerStatusProc;
 UniversalProcPtr newProc4;
 UniversalProcPtr newProc5;
 UniversalProcPtr newProc6;
};
typedef struct CQDProcs CQDProcs;
typedef CQDProcs * CQDProcsPtr;

Fields
textProc

A pointer to the low-level function that draws text. The standard QuickDraw function is the StdText
function.

2852 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

lineProc
A pointer to the low-level function that draws lines. The standard QuickDraw function is the StdLine
function.

rectProc
A pointer to the low-level function that draws rectangles. The standard QuickDraw function is the
StdRect function.

rRectProc
A pointer to the low-level function that draws rounded rectangles. The standard QuickDraw function
is the StdRRect function.

ovalProc
A pointer to the low-level function that draws ovals. The standard QuickDraw function is the StdOval
function.

arcProc
A pointer to the low-level function that draws arcs. The standard QuickDraw function is the StdArc
function.

polyProc
A pointer to the low-level function that draws polygons. The standard QuickDraw function is the
StdPoly function.

rgnProc
A pointer to the low-level function that draws regions. The standard QuickDraw function is the StdRgn
function.

bitsProc
A pointer to the low-level function that copies bitmaps. The standard QuickDraw function is the
StdBits function.

commentProc
A pointer to the low-level function for processing a picture comment. The standard QuickDraw function
is the StdComment function.

txMeasProc
A pointer to the low-level function for measuring text width. The standard QuickDraw function is the
StdTxMeas function.

getPicProc
A pointer to the low-level function for retrieving information from the definition of a picture. The
standard QuickDraw function is the StdGetPic function.

putPicProc
A pointer to the low-level function for saving information as the definition of a picture. The standard
QuickDraw function is the StdPutPic function.

opcodeProc
Reserved for future use.

newProc1
Reserved for future use.

glyphsProc
Reserved for future use.

printerStatusProc
Reserved for future use.

newProc4
Reserved for future use.

Data Types 2853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

newProc5
Reserved for future use.

newProc6
Reserved for future use.

Discussion
Use the CQDProcs structure only if you customize one or more of QuickDraw’s standard low-level drawing
functions. Use the SetStdCProcs (page 2811) function to create a CQDProcs structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

CSpecArray
typedef ColorSpec CSpecArray[1];

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Cursor
struct Cursor {
 Bits16 data;
 Bits16 mask;
 Point hotSpot;
};
typedef struct Cursor Cursor;
typedef Cursor * CursPtr;

Fields
data

Cursor image data, which must begin on a word boundary.

mask
The cursor’s mask. QuickDraw uses the mask to crop the cursor’s outline into a background color or
pattern. QuickDraw then draws the cursor into this shape.

hotSpot
A point in the image that aligns a point (not a bit) in the image with the mouse location on the screen.
Whenever the user moves the mouse, the low-level interrupt-driven mouse functions move the cursor.
When the user clicks, the Event Manager function WaitNextEvent reports the location of the cursor’s
hot spot in global coordinates.

Discussion
Your application typically does not create Cursor structures. Although you can create a Cursor structure
and its associated Bits16 array in your program code, it is usually easier to create a black-and-white cursor
in a cursor resource,‘CURS’.

2854 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square. When your application uses the
GetCursor (page 2638) function to get a cursor from a 'CURS' resource, GetCursor loads the resource into
memory as a Cursor structure. Your application then displays the color cursor by using the SetCursor (page
2792) function.

The cursor appears on the screen as a 16-by-16 pixel square. The appearance of each bit if the square is
determined by the corresponding bits in the data and the mask and, if the mask bit is 0, by the pixel under
the cursor. The four possible combinations of values for the data bit and the mask bit are:

 ■ Data bit 0, Mask bit 1. The resulting pixel on the screen is white.

 ■ Data bit 1, Mask bit 1. The resulting pixel on the screen is black.

 ■ Data bit 0, Mask bit 0. The resulting pixel on the screen is the same as the pixel under the cursor.

 ■ Data bit 1, Mask bit 0. The resulting pixel on the screen is the inverse of the pixel under the cursor.

Notice that if all mask bits are 0, the cursor is completely transparent, in that the image under the cursor can
still be viewed. Pixels under the white part of the cursor appear unchanged; under the black part of the
cursor, black pixels show through as white.

Basic QuickDraw supplies a predefined cursor in the global variable named arrow; this is the standard arrow
cursor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
X.h

CursorImageRec
struct CursorImageRec {
 UInt16 majorVersion;
 UInt16 minorVersion;
 PixMapHandle cursorPixMap;
 BitMapHandle cursorBitMask;
};
typedef struct CursorImageRec CursorImageRec;
typedef CursorImageRec * CursorImagePtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Quickdraw.h

Data Types 2855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

CursorInfo
struct CursorInfo {
 long version;
 long capabilities;
 long animateDuration;
 Rect bounds;
 Point hotspot;
 long reserved;
};
typedef struct CursorInfo CursorInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

CustomXFerRec
struct CustomXFerRec {
 UInt32 version;
 void * srcPixels;
 void * destPixels;
 void * resultPixels;
 UInt32 refCon;
 UInt32 pixelSize;
 UInt32 pixelCount;
 Point firstPixelHV;
 Rect destBounds;
};
typedef struct CustomXFerRec CustomXFerRec;
typedef CustomXFerRec * CustomXFerRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

CWindowPtr
typedef WindowPtr CWindowPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2856 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DeviceLoopDrawingUPP
typedef DeviceLoopDrawingProcPtr DeviceLoopDrawingUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DeviceLoopFlags
typedef unsigned long DeviceLoopFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DialogPtr
An opaque type that represents a dialog.

typedef struct OpaqueDialogPtr * DialogPtr;

Discussion
This is a Dialog Manager data type, defined in QuickDraw for historical reasons. Its role in Mac OS X is to serve
as the basis for the widely used DialogRef data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

DragConstraint
typedef UInt16 DragConstraint;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DragGrayRgnUPP
typedef DragGrayRgnProcPtr DragGrayRgnUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GammaTbl
struct GammaTbl {
 short gVersion;
 short gType;
 short gFormulaSize;
 short gChanCnt;
 short gDataCnt;
 short gDataWidth;
 short gFormulaData[1];
};
typedef struct GammaTbl GammaTbl;
typedef GammaTbl * GammaTblPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

2858 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GDevice
struct GDevice {
 short gdRefNum;
 short gdID;
 short gdType;
 ITabHandle gdITable;
 short gdResPref;
 SProcHndl gdSearchProc;
 CProcHndl gdCompProc;
 short gdFlags;
 PixMapHandle gdPMap;
 long gdRefCon;
 GDHandle gdNextGD;
 Rect gdRect;
 long gdMode;
 short gdCCBytes;
 short gdCCDepth;
 Handle gdCCXData;
 Handle gdCCXMask;
 long gdReserved;
};
typedef struct GDevice GDevice;
typedef GDevice * GDPtr;
typedef GDPtr * GDHandle;

Fields
gdRefNum

The reference number of the driver for the screen associated with the video device. For most video
devices, this information is set at system startup time.

gdID
Reserved. If you create your own GDevice structure, set this field to 0.

gdType
The general type of graphics device. See “Graphics Device Type Constants” (page 2891) for a description
of the values which you can use in this field.

gdITable
A handle to the inverse table for color mapping.

gdResPref
The preferred resolution for inverse tables.

gdSearchProc
A handle to the list of search functions. Its value is NULL for the default function.

gdCompProc
A handle to a list of complement functions. Its value is NULL for the default function.

gdFlags
The GDevice structure’s attributes. To set the attribute bits in the gdFlags field, use the
SetDeviceAttribute (page 2793) function. Do not set gdFlags directly in the GDevice structure.

Data Types 2859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

gdPMap
A handle to a PixMap structure giving the dimension of the image buffer, along with the characteristics
of the graphics device (resolution, storage format, color depth, and color table). For GDevice structures,
the high bit of the global variable

(((**TheGDevice).**gdPMap).**pmTable).ctFlags

is always set.

gdRefCon
A value used by system software to pass device-related parameters. Since a graphics device is shared,
do not store data here.

gdNextGD
A handle to the next graphics device in the device list. If this is the last graphics device in the device
list, the field contains 0.

gdRect
The boundary rectangle of the graphics device represented by the GDevice structure. The main
screen has the upper-left corner of the rectangle set to (0,0). All other graphics devices are relative
to this point.

gdMode
The current setting for the graphics device mode. This value is passed to the video driver to set its
pixel depth and to specify color or black and white; applications do not need this information.

gdCCBytes
The rowBytes value of the expanded cursor. Your application should not change this field.

gdCCDepth
The depth of the expanded cursor. Your application should not change this field.

gdCCXData
A handle to the cursor’s expanded data. Your application should not change this field.

gdCCXMask
A handle to the cursor’s expanded mask. Your application should not change this field.

gdReserved
Reserved for future expansion; it must be set to 0 for future compatibility.

Discussion
Color QuickDraw stores state information for video devices and offscreen graphics worlds in GDevice
structures. When the system starts up, it allocates and initializes one handle to a GDevice structure for each
video device it finds. When you use the Offscreen Graphics Devices function, NewGWorld, Color QuickDraw
automatically creates a GDevice structure for the new offscreen graphics world. The system links these
GDevice structures in a list, called the device list. (You can find a handle to the first element in the device
list in the global variable DeviceList.) By default, the GDevice structure corresponding to the first video
device found is marked as the current device. All other graphics devices in the list are initially marked as
inactive.

When the user moves a window or creates a window on another screen, and your application draws into
that window, Color QuickDraw automatically makes the video device for that screen the current device. Color
QuickDraw stores that information in the global variable TheGDevice.

GDevice structures that correspond to video devices have drivers associated with them. These drivers can
be used to change the mode of the video device from black and white to color and to change the pixel depth.
Application-created GDevice structures usually don’t require drivers.

2860 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Your application should never need to directly change the fields of a GDevice structure. If you find it absolutely
necessary for your application to so, immediately use the GDeviceChanged function to notify QuickDraw
that your application has changed the GDevice structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GrafPort
struct GrafPort {
 SInt16 device;
 BitMap portBits;
 Rect portRect;
 RgnHandle visRgn;
 RgnHandle clipRgn;
 Pattern bkPat;
 Pattern fillPat;
 Point pnLoc;
 Point pnSize;
 SInt16 pnMode;
 Pattern pnPat;
 SInt16 pnVis;
 SInt16 txFont;
 StyleField txFace;
 SInt16 txMode;
 SInt16 txSize;
 Fixed spExtra;
 SInt32 fgColor;
 SInt32 bkColor;
 SInt16 colrBit;
 SInt16 patStretch;
 Handle picSave;
 Handle rgnSave;
 Handle polySave;
 QDProcsPtr grafProcs;
};

GrafPtr
typedef struct OpaqueGrafPtr * GrafPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GrafVars
struct GrafVars {
 RGBColor rgbOpColor;
 RGBColor rgbHiliteColor;
 Handle pmFgColor;
 short pmFgIndex;
 Handle pmBkColor;
 short pmBkIndex;
 short pmFlags;
};
typedef struct GrafVars GrafVars;
typedef GrafVars * GVarPtr;

Fields
rgbOpColor

The color for the arithmetic transfer operations addPin, subPin, and blend.

rgbHiliteColor
The highlight color for this graphics port.

pmFgColor
A handle to the palette that contains the foreground color.

pmFgIndex
The index value into the palette for the foreground color.

pmBkColor
A handle to the palette that contains the background color.

pmBkIndex
The index value into the palette for the background color.

pmFlags
Flags private to the Palette Manager.

Discussion
The GrafVars structure contains color information in addition to that in the CGrafPort structure, of which
it is logically a part; the information is used by QuickDraw and the Palette Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

GrafVerb
typedef SInt8 GrafVerb;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2862 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

GWorldFlags
typedef unsigned long GWorldFlags;

Discussion
Several functions expect or return values defined by the GWorldFlags data type. See “Graphics World
Flags” (page 2891) for a detailed description of these flags.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QDOffscreen.h

GWorldPtr
Defines a pointer to a structure that your application can use to refer to an offscreen graphics world.

typedef CGrafPtr GWorldPtr;

Discussion
An offscreen graphics world in color QuickDraw contains a CGrafPort structure—and its handles to associated
PixMap and ColorTable structures—that describes an offscreen graphics port and contains references to
a GDevice structure and other state information. The actual data structure for an offscreen graphics world
is kept private to allow for future extensions. However, when your application uses the NewGWorld function
to create an offscreen world, NewGWorld returns a pointer of type GWorldPtr by which your application
refers to the offscreen graphics world.

On computers lacking color QuickDraw, GWorldPtr points to an extension of the GrafPort structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QDOffscreen.h

ITab
struct ITab {
 long iTabSeed;
 short iTabRes;
 Byte iTTable[1];
};
typedef struct ITab ITab;
typedef ITab * ITabPtr;
typedef ITabPtr * ITabHandle;

Fields
iTabSeed

The iTabSeed value, initially set from the corresponding CLUT’s ctSeed field. If at any time these
do not match, then the color table was changed, and the inverse table needs to be rebuilt.

iTabRes
The resolution of this inverse table.

Data Types 2863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

iTTable
An array of index values. The size of the iTabTable field in bytes is 23*iTabRes.

Discussion
The ITab data structure contains the inverse table information that the Color Manager uses for fast mapping
of RGB color values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

MacPolygon
struct MacPolygon {
 short polySize;
 Rect polyBBox;
 Point polyPoints[1];
};
typedef struct MacPolygon MacPolygon;
typedef MacPolygon Polygon;
typedef MacPolygon * PolyPtr;
typedef PolyPtr * PolyHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

MacRegion
struct MacRegion {
 UInt16 rgnSize;
 Rect rgnBBox;
};
typedef struct MacRegion MacRegion;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2864 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

MatchRec
struct MatchRec {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
 long matchData;
};
typedef struct MatchRec MatchRec;

Fields
red

Red value of the seed.

green
Green value of the seed.

blue
Blue value of the seed.

matchData
The value passed in the matchData parameter of the SeedCFill or CalcCMask function.

Discussion
When SeedCFill (page 2787) or CalcCMask (page 2577) calls your color search function, the GDRefCon field
of the current GDevice structure contains a pointer to a MatchRec structure. This structure contains the
RGB value of the seed pixel or seed color for which your color search function searches.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

OpenCPicParams
struct OpenCPicParams {
 Rect srcRect;
 Fixed hRes;
 Fixed vRes;
 short version;
 short reserved1;
 long reserved2;
};
typedef struct OpenCPicParams OpenCPicParams;

Fields
srcRect

The optimal bounding rectangle for the resolution indicated by the hRes and vRes fields. When you
later call the DrawPicture (page 2610) function to play back the saved picture, specify a destination
rectangle and DrawPicture scales the picture so that it is completely aligned with the destination
rectangle.

hRes
The best horizontal resolution for the picture. A value of $00480000 specifies a horizontal resolution
of 72 dpi.

Data Types 2865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

vRes
The best vertical resolution for the picture. A value of $00480000 specifies a vertical resolution of 72
dpi.

version
Always set this field to –2.

reserved1
Reserved; set to 0.

reserved2
Reserved; set to 0.

Discussion
When you use the OpenCPicture function to begin creating a picture, you must pass it information in an
OpenCPicParams structure. This structure provides a simple mechanism for specifying resolutions when
creating images. For example, applications that create pictures from scanned images can specify resolutions
higher than 72 dpi for these pictures in OpenCPicParams structures.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Pattern
struct Pattern {
 UInt8 pat[8];
};
typedef struct Pattern Pattern;
typedef Pattern * PatPtr;
typedef PatPtr * PatHandle;

Discussion
Your application typically does not create Pattern structures. Although you can create Pattern structures
in your program code, it is usually easier to create bit patterns using the pattern, ‘PAT’, or pattern list, ‘PAT#’,
resource.

A bit pattern is a 64-bit image, organized as an 8-by-8 bit square, that defines a repeating design or tone.
When a pattern is drawn, it is aligned so that adjacent areas of the same pattern in the same graphics port
form a continuous, coordinated pattern. QuickDraw provides predefined patterns in global variables named
white, black, gray, ltGray, and dkGray. The row width of a pattern is 1 byte.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2866 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PenState
struct PenState {
 Point pnLoc;
 Point pnSize;
 short pnMode;
 Pattern pnPat;
};
typedef struct PenState PenState;

Fields
pnLoc

For the current graphics port at the time the GetPenState function was called, the value of that
graphics port’s pnLoc field. This value is the point where QuickDraw begins drawing next. The location
of the graphics pen is a point in the graphics port’s coordinate system, not a pixel in a bit image. The
upper-left corner of the pen is at the pen location the graphics pen hangs below and to the right of
this point.

pnSize
For the current graphics port at the time the GetPenState function was called, the value of that
graphics port’s pnSize field. The graphics pen is rectangular in shape, and its width and height are
specified by the values in the pnSize field. The default size is a 1-by-1 bit square; the width and
height can range from 0 by 0 to 32,767 by 32,767. If either the pen width or the pen height is 0, the
pen does not draw. Heights or widths of less than 0 are undefined.

pnMode
The pattern mode—that is, for the current graphics port at the time the GetPenState function was
called, the value of that graphics port’s pnMode field. This value determines how the pen pattern is
to affect what’s already in the bit image when lines or shapes are drawn. When the graphics pen
draws, QuickDraw first determines what bits in the bit image are affected, finds their corresponding
bits in the pattern, and then transfers the bits from the pattern into the image according to this mode,
which specifies one of eight Boolean transfer operations. The resulting bit is stored into its proper
place in the bit image.

pnPat
For the current graphics port at the time the GetPenState function was called, the pen pattern for
that graphics port. This pattern determines how the bits under the graphics pen are affected when
lines or shapes are drawn.

Discussion
The GetPenState (page 2647) function saves the location, size, pattern, and pattern mode of the graphics
pen for the current graphics port in a PenState structure, which is a data structure of type PenState. After
changing the graphics pen as necessary, you can later restore these pen states with the SetPenState (page
2798) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Picture
struct Picture {
 short picSize;
 Rect picFrame;
};
typedef struct Picture Picture;
typedef Picture * PicPtr;
typedef PicPtr * PicHandle;

Fields
picSize

The size of the rest of this structure for a version 1 picture. To maintain compatibility with the version
1 picture format, the picSize field was not changed for the version 2 picture or extended version 2
formats. The information in this field is used only for version 1 pictures, which cannot exceed 32 KB
in size. Because version 2 and extended version 2 pictures can be much larger than the 32 KB limit
imposed by the 2-byte picSize field, you should use the Memory Manager function GetHandleSize
to determine the size of a picture in memory; you should use the File Manager function PBGetFInfo
to determine the size of a picture in a 'PICT' file; and you should use the Resource Manager function
GetMaxResourceSize to determine the size of a 'PICT' resource.

picFrame
The bounding rectangle for the picture defined in the rest of this structure. The DrawPicture function
uses this rectangle to scale the picture if you draw it into a destination rectangle of a different size.

Discussion
When you use the OpenCPicture (page 2734) or OpenPicture (page 2736) function, QuickDraw begins
collecting your subsequent drawing commands in a Picture structure. (You use the ClosePicture function
to complete a picture definition.) When you use the GetPicture (page 2648) function to retrieve a picture
stored in a resource, GetPicture reads the resource into memory as a Picture structure. By using the
DrawPicture (page 2610) procedure, you can draw onscreen the picture defined by the commands stored
in the Picture structure.

A picture opcode is a number that the DrawPicture function uses to determine what object to draw or
what mode to change for subsequent drawing. Generally, do not read or write this picture data directly.
Instead, use the OpenCPicture (or OpenPicture), ClosePicture, and DrawPicture functions to process
these opcodes.

The Picture structure can also contain picture comments. Created by applications using the PicComment
function, picture comments contain data or commands for special processing by output devices, such as
PostScript printers.

You can use File Manager functions to save the picture in a file of type 'PICT', you can use Resource Manager
functions to save the picture in a resource of type 'PICT', and you can use the Scrap Manager function
PutScrap to store the picture in 'PICT' scrap format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2868 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PixelType
typedef SInt8 PixelType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PixMap
struct PixMap {
 Ptr baseAddr;
 short rowBytes;
 Rect bounds;
 short pmVersion;
 short packType;
 long packSize;
 Fixed hRes;
 Fixed vRes;
 short pixelType;
 short pixelSize;
 short cmpCount;
 short cmpSize;
 long planeBytes;
 CTabHandle pmTable;
 long pmReserved;
};
typedef struct PixMap PixMap;
typedef PixMap * PixMapPtr;
typedef PixMapPtr * PixMapHandle;

Fields
baseAddr

For an onscreen pixel image, a pointer to the first byte of the image. For optimal performance, this
should be a multiple of 4. The pixel image that appears on a screen is normally stored on a graphics
card rather than in main memory.

Note that the baseAddr field of the PixMap structure for an offscreen graphics world contains a
handle instead of a pointer. You must use the GetPixBaseAddr function to obtain a pointer to the
PixMap structure for an offscreen graphics world. Your application should never directly access the
baseAddr field of the PixMap structure for an offscreen graphics world.

rowBytes
The offset in bytes from one row of the image to the next. The value must be even, less than $4000,
and for best performance it should be a multiple of 4. The high 2 bits of rowBytes are used as flags.
If bit 15 = 1, the data structure pointed to is a PixMap structure; otherwise it is a BitMap structure.

bounds
The boundary rectangle, which links the local coordinate system of a graphics port to QuickDraw’s
global coordinate system and defines the area of the bit image into which QuickDraw can draw. By
default, the boundary rectangle is the entire main screen. Do not use the value of this field to determine
the size of the screen instead use the value of the gdRect field of the GDevice structure for the
screen.

Data Types 2869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

pmVersion
The version number of QuickDraw that created this PixMap structure. The value of pmVersion is
normally 0. If pmVersion is 4, QuickDraw treats the PixMap structure’s baseAddr field as 32-bit clean.
All other flags are private. Most applications never need to set this field.

packType
The packing algorithm used to compress image data. QuickDraw currently supports a packType of
0, which means no packing, and values of 1 to 4 for packing direct pixels.

packSize
The size of the packed image in bytes. When the packType field contains the value 0, this field is
always set to 0.

hRes
The horizontal resolution of the pixel image in pixels per inch. This value is of type Fixed; by default,
the value here is $00480000 (for 72 pixels per inch).

vRes
The vertical resolution of the pixel image in pixels per inch. This value is of type Fixed; by default,
the value here is $00480000 (for 72 pixels per inch).

pixelType
The storage format for a pixel image. Indexed pixels are indicated by a value of 0. Direct pixels are
specified by a value of RGBDirect, or 16. In the PixMap structure of the GDevice structure for a
direct device, this field is set to the constant RGBDirect when the screen depth is set.

pixelSize
Pixel depth; that is, the number of bits used to represent a pixel. Indexed pixels can have sizes of 1,
2, 4, and 8 bits; direct pixel sizes are 16 and 32 bits.

cmpCount
The number of components used to represent a color for a pixel. With indexed pixels, each pixel is a
single value representing an index in a color table, and therefore this field contains the value 1—the
index is the single component. With direct pixels, each pixel contains three components—one integer
each for the intensities of red, green, and blue—so this field contains the value 3.

cmpSize
The size in bits of each component for a pixel. QuickDraw expects that the sizes of all components
are the same, and that the value of the cmpCount field multiplied by the value of the cmpSize field
is less than or equal to the value in the pixelSize field.

For an indexed pixel value, which has only one component, the value of the cmpSize field is the
same as the value of the pixelSize field—that is, 1, 2, 4, or 8.

For direct pixels there are two additional possibilities:

 ■ A 16-bit pixel, which has three components, has a cmpSize value of 5. This leaves an unused
high-order bit, which QuickDraw sets to 0.

 ■ A 32-bit pixel, which has three components (red, green, and blue), has a cmpSize value of 8. This
leaves an unused high-order byte, which QuickDraw sets to 0.

Generally, therefore, your application should clear the memory for the image to 0 before creating a
16-bit or 32-bit image. The Memory Manager functions NewHandleClear and NewPtrClear assist
you in allocating pre-zeroed memory.

planeBytes
The offset in bytes from one drawing plane to the next. This field is set to 0.

pmTable
A handle to a ColorTable structure for the colors in this pixel map.

2870 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

pmReserved
Reserved for future expansion. This field must be set to 0 for future compatibility.

Discussion
The PixMap structure contains information about the dimensions, contents, storage format, depth, resolution,
and color usage of a pixel image. The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even if the window is created on or
moved to an entirely different screen.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PixPat
struct PixPat {
 short patType;
 PixMapHandle patMap;
 Handle patData;
 Handle patXData;
 short patXValid;
 Handle patXMap;
 Pattern pat1Data;
};
typedef struct PixPat PixPat;
typedef PixPat * PixPatPtr;
typedef PixPatPtr * PixPatHandle;

Fields
patType

The pattern’s type. The value 0 specifies a basic QuickDraw bit pattern, the value 1 specifies a full-color
pixel pattern, and the value 2 specifies an RGB pattern.

patMap
A handle to a PixMap (page 2869) structure that describes the pattern’s pixel image. The PixMap
structure can contain indexed or direct pixels.

patData
A handle to the pattern’s pixel image.

patXData
A handle to an expanded pixel image used internally by QuickDraw.

patXValid
A flag that, when set to –1, invalidates the expanded data.

patXMap
Reserved for use by QuickDraw.

pat1Data
A bit pattern to be used when this pattern is drawn into a GrafPort structure. The NewPixPat (page
2720) function sets this field to 50 percent gray.

Discussion
Your application typically does not create PixPat structures. Although you can create such structures in
your program code, it is usually easier to create pixel patterns using the pixel pattern resource, 'ppat'.

Data Types 2871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

When used for a color graphics port, the basic QuickDraw functions PenPat and BackPat store pixel patterns
in, respectively, the pnPixPat and bkPixPat fields of the CGrafPort structure and set the patType field
of the PixPat field to 0 to indicate that the PixPat structure contains a bit pattern. Such patterns are limited
to 8-by-8 pixel dimensions and, instead of being drawn in black and white, are always drawn using the colors
specified in the CGrafPort structure’s rgbFgColor and rgbBkColor fields, respectively.

In a full-color pixel pattern, the patType field contains the value 1, and the pattern’s dimensions, depth,
resolution, set of colors, and other characteristics are defined by a PixMap structure, referenced by the handle
in the patMap field of the PixPat structure. Full-color pixel patterns contain color tables that describe the
colors they use. Generally such a color table contains one entry for each color used in the pattern. For instance,
if your pattern has five colors, you would probably create a 4 bits per pixel pattern that uses pixel values 0–4,
and a color table with five entries, numbered 0–4, that contain the RGB specifications for those pixel values.

However, if you don’t specify a color table for a pixel value, QuickDraw assigns a color to that pixel value.
The largest unassigned pixel value becomes the foreground color the smallest unassigned pixel value is
assigned the background color. Remaining unassigned pixel values are given colors that are evenly distributed
between the foreground and background.

For instance, in the color table mentioned above, pixel values 5–15 are unused. Assume that the foreground
color is black and the background color is white. Pixel value 15 is assigned the foreground color, black pixel
value 5 is assigned the background color, white the nine pixel values between them are assigned evenly
distributed shades of gray. If the PixMap structure’s color table is set to NULL, all pixel values are determined
by blending the foreground and background colors.

Full-color pixel patterns are not limited to a fixed size: their height and width can be any power of 2, as
specified by the height and width of the boundary rectangle for the PixMap structure specified in the patMap
field. A pattern 8 bits wide, which is the size of a bit pattern, has a row width of just 1 byte, contrary to the
usual rule that the rowBytes field must be even. Read this pattern type into memory using the
GetPixPat (page 2651) function, and set it using the PenPixPat (page 2747) or BackPixPat (page 2576)
functions.

The pixel map specified in the patMap field of the PixPat structure defines the pattern’s characteristics. The
baseAddr field of the PixMap structure for that pixel map is ignored. For a full-color pixel pattern, the actual
pixel image defining the pattern is stored in the handle in the patData field of the PixPat structure. The
pattern’s pixel depth need not match that of the pixel map into which it’s transferred the depth is adjusted
automatically when the pattern is drawn. QuickDraw maintains a private copy of the pattern’s pixel image,
expanded to the current screen depth and aligned to the current graphics port, in the patXData field of the
PixPat structure.

In an RGB pixel pattern, the patType field contains the value 2. Using the MakeRGBPat (page 2706) function,
your application can specify the exact color it wants to use. QuickDraw selects a pattern to approximate that
color. In this way, your application can effectively increase the color resolution of the screen. RGB pixel
patterns are particularly useful for dithering: mixing existing colors together to create the illusion of a third
color that’s unavailable on an indexed device. The MakeRGBPat function aids in this process by constructing
a dithered pattern to approximate a given absolute color. An RGB pixel pattern can display 125 different
patterns on a 4-bit screen, or 2197 different patterns on an 8-bit screen.

An RGB pixel pattern has an 8-by-8 pixel pattern that is 2 bits deep. For an RGB pixel pattern, the RGBColor
structure that you specify to the MakeRGBPat function defines the image; there is no image data.

Your application should never need to directly change the fields of a PixPat structure. If you find it absolutely
necessary for your application to so, immediately use the PixPatChanged (page 2750) function to notify
QuickDraw that your application has changed the PixPat structure.

2872 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Polygon
typedef MacPolygon Polygon;

Discussion
After you use the OpenPoly function to create a polygon, QuickDraw begins collecting the line-drawing
information you provide into a MacPolygon structure. The OpenPoly function returns a handle to the newly
allocated MacPolygon structure. Thereafter, your application normally refers to your new polygon by this
handle, because QuickDraw functions such as FramePoly and PaintPoly expect a handle to a Polygon
as their first parameter.

A polygon is defined by a sequence of connected lines. A MacPolygon structure consists of two fixed-length
fields followed by a variable-length array of points: the starting point followed by each successive point to
which a line is drawn.

Your application typically does not need to create a MacPolygon structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PrinterFontStatus
struct PrinterFontStatus {
 SInt32 oResult;
 SInt16 iFondID;
 Style iStyle;
};
typedef struct PrinterFontStatus PrinterFontStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

PrinterScalingStatus
struct PrinterScalingStatus {
 Point oScalingFactors;
};
typedef struct PrinterScalingStatus PrinterScalingStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

PrinterStatusOpcode
typedef SInt32 PrinterStatusOpcode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDArcUPP
typedef QDArcProcPtr QDArcUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDBitsUPP
typedef QDBitsProcPtr QDBitsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDByte
typedef SignedByte QDByte;

Availability
Available in Mac OS X v10.0 and later.

2874 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDCommentUPP
typedef QDCommentProcPtr QDCommentUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDErr
typedef short QDErr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDGetPicUPP
typedef QDGetPicProcPtr QDGetPicUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

Data Types 2875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDGlobals
struct QDGlobals {
 char privates[76];
 long randSeed;
 BitMap screenBits;
 Cursor arrow;
 Pattern dkGray;
 Pattern ltGray;
 Pattern gray;
 Pattern black;
 Pattern white;
 GrafPtr thePort;
};
typedef struct QDGlobals QDGlobals;
typedef QDGlobals * QDGlobalsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDJShieldCursorUPP
typedef QDJShieldCursorProcPtr QDJShieldCursorUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDLineUPP
typedef QDLineProcPtr QDLineUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDOpcodeUPP
typedef QDOpcodeProcPtr QDOpcodeUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2876 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

QDOvalUPP
typedef QDOvalProcPtr QDOvalUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPictRef
Defines an opaque data type that represents a QuickDraw picture in the Quartz 2D graphics environment.

typedef struct QDPict * QDPictRef;

Discussion
This opaque type is used to draw QuickDraw picture data in a Quartz context. (Quartz 2D defines an analogous
opaque type called CGPDFDocumentRef (page 340) which is used to draw PDF data in a Quartz context.) An
instance of the QDPictRef type is called a QDPict picture. There are two ways to create a QDPict picture:

 ■ You can call QDPictCreateWithProvider (page 2766), passing in a Quartz data provider for the picture
data. Typically the source of this data is a 'PICT' resource.

 ■ You can call QDPictCreateWithURL (page 2767), passing in a Core Foundation URL that specifies a file
with picture data in the data fork.

Both functions verify that picture header information is present, starting at either byte 1 or byte 513 of the
picture data.

To draw a QDPict picture in a Quartz context, you call QDPictDrawToCGContext (page 2767). To get the
bounds or native resolution of a QDPict picture, you call QDPictGetBounds (page 2768) or
QDPictGetResolution (page 2769).

When you draw a QDPict picture in a PDF context, you can save the drawing in a PDF file. This is the
recommended way to convert QuickDraw pictures into single-page PDF documents.

These additional sources of information may be helpful:

 ■ The sample Carbon program CGDrawPicture shows how to use this opaque type to draw QuickDraw
pictures in a Quartz context.

 ■ For general information about QuickDraw pictures and the PICT graphics format, see Chapter 7 in Inside
Macintosh: Imaging With QuickDraw.

Availability
Available in Mac OS X v10.1 and later.

Declared In
QDPictToCGContext.h

Data Types 2877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

http://developer.apple.com/documentation/mac/QuickDraw/QuickDraw-332.html

QDPolyUPP
typedef QDPolyProcPtr QDPolyUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPrinterStatusUPP
typedef QDPrinterStatusProcPtr QDPrinterStatusUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDProcs
struct QDProcs {
 QDTextUPP textProc;
 QDLineUPP lineProc;
 QDRectUPP rectProc;
 QDRRectUPP rRectProc;
 QDOvalUPP ovalProc;
 QDArcUPP arcProc;
 QDPolyUPP polyProc;
 QDRgnUPP rgnProc;
 QDBitsUPP bitsProc;
 QDCommentUPP commentProc;
 QDTxMeasUPP txMeasProc;
 QDGetPicUPP getPicProc;
 QDPutPicUPP putPicProc;
};
typedef struct QDProcs QDProcs;
typedef QDProcs * QDProcsPtr;

Fields
textProc

A pointer to the low-level function that draws text. The standard QuickDraw function is the StdText
function.

lineProc
A pointer to the low-level function that draws lines. The standard QuickDraw function is the
StdLine (page 2818) function.

rectProc
A pointer to the low-level function that draws rectangles. The standard QuickDraw function is the
StdRect (page 2821) function.

2878 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

rRectProc
A pointer to the low-level function that draws rounded rectangles. The standard QuickDraw function
is the StdRRect (page 2822) function.

ovalProc
A pointer to the low-level function that draws ovals. The standard QuickDraw function is the
StdOval (page 2819) function.

arcProc
A pointer to the low-level function that draws arcs. The standard QuickDraw function is the
StdArc (page 2815) function.

polyProc
A pointer to the low-level function that draws polygons. The standard QuickDraw function is the
StdPoly (page 2820) function.

rgnProc
A pointer to the low-level function that draws regions. The standard QuickDraw function is the
StdRgn (page 2822) function.

bitsProc
A pointer to the low-level function that copies bitmaps. The standard QuickDraw function is the
StdBits (page 2816) function.

commentProc
A pointer to the low-level function for processing a picture comment. The standard QuickDraw function
is the StdComment (page 2817) function.

txMeasProc
A pointer to the low-level function for measuring text width. The standard QuickDraw function is the
StdTxMeas function.

getPicProc
A pointer to the low-level function for retrieving information from the definition of a picture. The
standard QuickDraw function is the StdGetPic (page 2817) function.

putPicProc
A pointer to the low-level function for saving information as the definition of a picture. The standard
QuickDraw function is the StdPutPic (page 2820) function.

Discussion
You need to use the QDProcs structure only if you customize one or more of QuickDraw’s low-level drawing
functions. Use SetStdProcs (page 2812) to create a QDProcs structure.

The QDProcs structure contains pointers to low-level drawing functions. You can change the fields of this
structure to point to functions of your own devising.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDPutPicUPP
typedef QDPutPicProcPtr QDPutPicUPP;

Availability
Available in Mac OS X v10.0 and later.

Data Types 2879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDRectUPP
typedef QDRectProcPtr QDRectUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRegionBitsRef
typedef struct OpaqueQDRegionBitsRef * QDRegionBitsRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
QuickdrawAPI.h

QDRegionParseDirection
typedef SInt32 QDRegionParseDirection;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

QDRgnUPP
typedef QDRgnProcPtr QDRgnUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDRRectUPP
typedef QDRRectProcPtr QDRRectUPP;

Availability
Available in Mac OS X v10.0 and later.

2880 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
QuickdrawTypes.h

QDStdGlyphsUPP
typedef QDStdGlyphsProcPtr QDStdGlyphsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTextUPP
typedef QDTextProcPtr QDTextUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

QDTxMeasUPP
typedef QDTxMeasProcPtr QDTxMeasUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

RegionToRectsUPP
typedef RegionToRectsProcPtr RegionToRectsUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawAPI.h

Data Types 2881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ReqListRec
struct ReqListRec {
 short reqLSize;
 short reqLData[1];
};
typedef struct ReqListRec ReqListRec;

Fields
reqLSize

The size of this ReqListRec data structure minus one.

reqLData
An array of integers representing offsets into a color table.

Discussion
The ReqListRec data structure is a parameter to the SaveEntries function by which you can describe
color table entries to be saved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

RGBColor
struct RGBColor {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
};
typedef struct RGBColor RGBColor;
typedef RGBColor * RGBColorPtr;

Fields
red

An unsigned integer specifying the red value of the color.

green
An unsigned integer specifying the green value of the color.

blue
An unsigned integer specifying the blue value of the color.

Discussion
You usually specify a color to QuickDraw by creating an RGBColor structure in which you assign the red,
green, and blue values of the foreground color. For example, when you want to set the foreground color for
drawing, you create an RGBColor structure that defines the foreground color you desire; then you pass that
structure as a parameter to the RGBForeColor function.

In an RGBColor structure, three 16-bit unsigned integers give the intensity values for the three additive
primary colors.

Availability
Available in Mac OS X v10.0 and later.

2882 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Declared In
IOMacOSTypes.h

RgnHandle
An opaque type that represents a QuickDraw region.

typedef struct OpaqueRgnHandle * RgnHandle;

Discussion
A region is an arbitrary area or set of areas on the QuickDraw coordinate plane. The outline of a region should
be one or more closed loops.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

SProcRec
struct SProcRec {
 Handle nxtSrch;
 ColorSearchUPP srchProc;
};
typedef struct SProcRec SProcRec;
typedef SProcRec * SProcPtr;

Fields
nxtSrch

A handle to the next SProcRec data structure in the chain of search functions.

srchProc
A pointer to a custom search function (described in ColorSearchProcPtr (page 2834)).

Discussion
The SProcRec data structure contains a pointer to a custom search function and a handle to the next
SProcRec data structure in the function list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

WindowPtr
An opaque type that represents a window.

typedef struct OpaqueWindowPtr * WindowPtr;

Discussion
This is a Window Manager data type, defined in QuickDraw for historical reasons. Its role in Mac OS X is to
serve as the basis for the widely used WindowRef data type.

Data Types 2883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

xColorSpec
struct xColorSpec {
 short value;
 RGBColor rgb;
 short xalpha;
};
typedef struct xColorSpec xColorSpec;
typedef xColorSpec * xColorSpecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

xCSpecArray
typedef xColorSpec xCSpecArray[1];

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

2884 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Constants

chunky
enum {
 chunky = 0,
 chunkyPlanar = 1,
 planar = 2
};

Color Constants
enum {
 blackColor = 33,
 whiteColor = 30,
 redColor = 205,
 greenColor = 341,
 blueColor = 409,
 cyanColor = 273,
 magentaColor = 137,
 yellowColor = 69
};

Constants
blackColor

Represents black.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

whiteColor
Represents white.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

redColor
Represents red.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

greenColor
Represents green.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

blueColor
Represents blue.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 2885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

cyanColor
Represents cyan.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

magentaColor
Represents magenta.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

yellowColor
Represents yellow.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants are used in the color parameter of the ForeColor (page 2628) and BackColor (page 2574)
functions to specify one of the eight basic QuickDraw colors.

colorXorXFer
enum {
 colorXorXFer = 52,
 noiseXFer = 53,
 customXFer = 54
};

Cursor ID Constants
enum {
 sysPatListID = 0,
 iBeamCursor = 1,
 crossCursor = 2,
 plusCursor = 3,
 watchCursor = 4
};

Constants
iBeamCursor

The I-beam cursor; to select text

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

crossCursor
The crosshairs cursor; to draw graphics

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

2886 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

plusCursor
The plus sign cursor; to select cells

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

watchCursor
The wristwatch cursor; to indicate a short operation in progress

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When passing a value to the Show_Cursor function, use the Cursors data type to represent the kind of
cursor to show.

cursorDoesAnimate
enum {
 cursorDoesAnimate = 1L << 0,
 cursorDoesHardware = 1L << 1,
 cursorDoesUnreadableScreenBits = 1L << 2
};

Device Attribute Constants
enum {
 interlacedDevice = 2,
 hwMirroredDevice = 4,
 roundedDevice = 5,
 hasAuxMenuBar = 6,
 burstDevice = 7,
 ext32Device = 8,
 ramInit = 10,
 mainScreen = 11,
 allInit = 12,
 screenDevice = 13,
 noDriver = 14,
 screenActive = 15,
 hiliteBit = 7,
 pHiliteBit = 0,
 defQDColors = 127,
 RGBDirect = 16,
 baseAddr32 = 4
};

Constants
burstDevice

If this bit is set to 1, the graphics device supports block transfer.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 2887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

ext32Device
If this bit is set to 1, the graphics device must be used in 32-bit mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

ramInit
If this bit is set to 1, the graphics device has been initialized from RAM.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

mainScreen
If this bit is set to 1,the graphics device is the main screen.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

allInit
If this bit is set to 1, all graphics devices were initialized from the 'scrn' resource.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

screenDevice
If this bit is set to 1, the graphics device is a screen.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

noDriver
If this bit is set to 1, the GDevice structure has no driver.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

screenActive
If this bit is set to 1, the graphics device is active.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants are used in the attribute parameters of the SetDeviceAttribute (page 2793) and
TestDeviceAttribute (page 2826) functions, and in the deviceFlags parameter of the
DeviceLoopDrawingProcPtr (page 2836) callback. These constants represent the GDevice structure’s
attributes, as bits in the gdFlags field.

2888 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Device Loop Flags
enum {
 singleDevices = 1 << singleDevicesBit,
 dontMatchSeeds = 1 << dontMatchSeedsBit,
 allDevices = 1 << allDevicesBit
};

Constants
singleDevices

If this flag is not set, DeviceLoop calls your drawing function only once for each set of similar graphics
devices, and the first one found is passed as the target device. (It is assumed to be representative of
all the similar graphics devices.) If you set the singleDevices flag, then DeviceLoop does not group
similar graphics devices, (that is, those having identical pixel depths, black-and-white or color settings,
and matching color table seeds), when it calls your drawing function.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

dontMatchSeeds
If you set the dontMatchSeeds flag, then DeviceLoop does not consider the ctSeed field of
ColorTable structures for graphics devices when comparing them; DeviceLoop ignores this flag
if you set the singleDevices flag.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

allDevices
If you set the allDevices flag, DeviceLoop ignores the drawingRgn parameter and calls your
drawing function for every device. The value of the current graphics port’s visRgn field is not affected
when you set this flag.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When you use the DeviceLoop (page 2597) function, you can change its default behavior by using the flags
parameter to specify one or more members of the set of flags defined by the DeviceLoopFlags data type.
If you want to use the default behavior of DeviceLoop, specify 0 in the flags parameter.

Constants 2889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

deviceIsIndirect
enum {
 deviceIsIndirect = (1L << 0),
 deviceNeedsLock = (1L << 1),
 deviceIsStatic = (1L << 2),
 deviceIsExternalBuffer = (1L << 3),
 deviceIsDDSurface = (1L << 4),
 deviceIsDCISurface = (1L << 5),
 deviceIsGDISurface = (1L << 6),
 deviceIsAScreen = (1L << 7),
 deviceIsOverlaySurface = (1L << 8)
};

Drag Constraint Constants
When passed to the DragControl function, specify how a user can move a control.

enum {
 kNoConstraint = 0,
 kVerticalConstraint = 1,
 kHorizontalConstraint = 2
};

Constants
kNoConstraint

No constraint.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

kVerticalConstraint
Constrain movement to horizontal axis only.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

kHorizontalConstraint
Constrain movement to vertical axis only.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

2890 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Graphics Device Type Constants
enum {
 picLParen = 0,
 picRParen = 1,
 clutType = 0,
 fixedType = 1,
 directType = 2,
 gdDevType = 0
};

Constants
clutType

Represents a CLUT device--that is, one with colors mapped with a color lookup table.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

fixedType
Represents a fixed colors device --that is, the color lookup table can't be changed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

directType
Represents a device with direct RGB colors.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

gdDevType
If this bit is set to 0, the graphics device is black and white; if it is set to 1, the graphics device supports
color.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
These constants represent the general type of graphics device for the gdType field of the GDevice (page
2859) structure.

Graphics World Flags
Specify additional information passed to and from NewGWorld (page 2715) and related functions in parameters
of type GWorldFlags (page 2863).

Constants 2891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

enum {
 pixPurge = 1L << pixPurgeBit,
 noNewDevice = 1L << noNewDeviceBit,
 useTempMem = 1L << useTempMemBit,
 keepLocal = 1L << keepLocalBit,
 useDistantHdwrMem = 1L << useDistantHdwrMemBit,
 useLocalHdwrMem = 1L << useLocalHdwrMemBit,
 pixelsPurgeable = 1L << pixelsPurgeableBit,
 pixelsLocked = 1L << pixelsLockedBit,
 kNativeEndianPixMap = 1L << nativeEndianPixMapBit,
 kAllocDirectDrawSurface = 1L << 14,
 mapPix = 1L << mapPixBit,
 newDepth = 1L << newDepthBit,
 alignPix = 1L << alignPixBit,
 newRowBytes = 1L << newRowBytesBit,
 reallocPix = 1L << reallocPixBit,
 clipPix = 1L << clipPixBit,
 stretchPix = 1L << stretchPixBit,
 ditherPix = 1L << ditherPixBit,
 gwFlagErr = 1L << gwFlagErrBit
};

Constants
pixPurge

If you specify this flag for the flags parameter of the NewGWorld function, UpdateGWorld (page
2831) makes the base address for the offscreen pixel image purgeable.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

noNewDevice
If you specify this flag for the flagsparameter of the UpdateGWorld (page 2831) function, NewGWorld
does not create a new offscreen GDevice structure; instead, NewGWorld uses either the GDevice
structure you specify or the GDevice structure for a video card on the user’s system.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

useTempMem
If you specify this in the flags parameter of the UpdateGWorld (page 2831) function, NewGWorld
creates the base address for an offscreen pixel image in temporary memory. You generally should
not use this flag. You should use temporary memory only for fleeting purposes and only with the
GetPixelsState (page 2651) function so that other applications can launch.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

keepLocal
If you specify this in the flags parameter of the UpdateGWorld (page 2831) function, NewGWorld
creates a pixel image in Macintosh main memory where it cannot be cached to a graphics accelerator
card.

If you specify this in the flags parameter of GetPixelsState (page 2651), UpdateGWorld keeps the
offscreen pixel image in Macintosh main memory.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

2892 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

pixelsPurgeable
If you specify this in thestateparameter of theUpdateGWorld (page 2831) function,SetPixelsState
makes the base address for an offscreen pixel map purgeable. If you use the SetPixelsState
function without passing it this flag, then SetPixelsState makes the base address for an offscreen
pixel map unpurgeable. If the GetPixelsState (page 2651) function returns this flag, then the base
address for an offscreen pixel is purgeable.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

pixelsLocked
If you specify this flag for the state parameter of the SetPixelsState function, SetPixelsState
locks the base address for an offscreen pixel image. If you use the SetPixelsState function without
passing it this flag, then SetPixelsState unlocks the offscreen pixel image. If the GetPixelsState
function returns this flag, then the base address for an offscreen pixel is locked.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

kNativeEndianPixMap
By default, the function NewGWorld (page 2715) allocates pixel buffers with big-endian byte ordering
regardless of the system architecture. If this flag is passed in the flags parameter of NewGWorld, the
pixel format will be set to k32ARGBPixelFormat or k16BE555PixelFormat on a PowerPC system,
and to k32BGRAPixelFormat or k16LE555PixelFormat on an Intel system, for depths 32 or 16,
respectively. Note that NewGWorld is the only function where this flag is observed;
NewGWorldFromPtr (page 2718) and UpdateGWorld (page 2831) ignore it.

Available in Mac OS X v10.3 and later.

Declared in QDOffscreen.h.

mapPix
If the UpdateGWorld (page 2831) function returns this flag, then it remapped the colors in the offscreen
pixel map to a new color table.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

newDepth
If the UpdateGWorld function returns this flag, then it translated the offscreen pixel map to a different
pixel depth.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

alignPix
If the UpdateGWorld function returns this flag, then it realigned the offscreen pixel image to an
onscreen window.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

newRowBytes
If the UpdateGWorld function returns this flag, then it changed the rowBytes field of the PixMap
structure for the offscreen graphics world.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

Constants 2893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

reallocPix
If the UpdateGWorld function returns this flag, then it reallocated the base address for the offscreen
pixel image. Your application should then reconstruct the pixel image or draw directly in a window
instead of preparing the image in an offscreen graphics world.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

clipPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 2831) function, then
UpdateGWorld updates and clips the pixel image to the new boundary rectangle specified. If the
UpdateGWorld function returns this flag, then it clipped the pixel image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

stretchPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 2831) function, then
UpdateGWorld updates and stretches or shrinks the pixel image to the new boundary rectangle
specified. If the UpdateGWorld function returns this flag, then it stretched or shrank the offscreen
image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

ditherPix
If you specify this flag in the flags parameter of the UpdateGWorld (page 2831) function, then
UpdateGWorld dithers the pixel image to the new boundary rectangle specified. Include this flag
with the clipPix or stretchPix flag. If the UpdateGWorld function returns this flag, then it dithered
the offscreen image.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

gwFlagErr
If the UpdateGWorld function returns this flag, then it was unsuccessful and the offscreen graphics
world was left unchanged.

Available in Mac OS X v10.0 and later.

Declared in QDOffscreen.h.

2894 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

invalColReq
enum {
 invalColReq = -1
};

italicBit
enum {
 italicBit = 1,
 ulineBit = 2,
 outlineBit = 3,
 shadowBit = 4,
 condenseBit = 5,
 extendBit = 6
};

Pixel Formats
enum {
 k16LE555PixelFormat = 'L555',
 k16LE5551PixelFormat = '5551',
 k16BE565PixelFormat = 'B565',
 k16LE565PixelFormat = 'L565',
 k24BGRPixelFormat = '24BG',
 k32BGRAPixelFormat = 'BGRA',
 k32ABGRPixelFormat = 'ABGR',
 k32RGBAPixelFormat = 'RGBA',
 kYUVSPixelFormat = 'yuvs',
 kYUVUPixelFormat = 'yuvu',
 kYVU9PixelFormat = 'YVU9',
 kYUV411PixelFormat = 'Y411',
 kYVYU422PixelFormat = 'YVYU',
 kUYVY422PixelFormat = 'UYVY',
 kYUV211PixelFormat = 'Y211',
 k2vuyPixelFormat = '2vuy'
};

k1MonochromePixelFormat
enum {
 k1MonochromePixelFormat = 0x00000001,
 k2IndexedPixelFormat = 0x00000002,
 k4IndexedPixelFormat = 0x00000004,
 k8IndexedPixelFormat = 0x00000008,
 k16BE555PixelFormat = 0x00000010,
 k24RGBPixelFormat = 0x00000018,
 k32ARGBPixelFormat = 0x00000020,
 k1IndexedGrayPixelFormat = 0x00000021,
 k2IndexedGrayPixelFormat = 0x00000022,
 k4IndexedGrayPixelFormat = 0x00000024,
 k8IndexedGrayPixelFormat = 0x00000028
};

Constants 2895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

kCursorComponentInit
enum {
 kCursorComponentInit = 0x0001,
 kCursorComponentGetInfo = 0x0002,
 kCursorComponentSetOutputMode = 0x0003,
 kCursorComponentSetData = 0x0004,
 kCursorComponentReconfigure = 0x0005,
 kCursorComponentDraw = 0x0006,
 kCursorComponentErase = 0x0007,
 kCursorComponentMove = 0x0008,
 kCursorComponentAnimate = 0x0009,
 kCursorComponentLastReserved = 0x0050
};

kCursorComponentsVersion
enum {
 kCursorComponentsVersion = 0x00010001
};

kCursorComponentType
enum {
 kCursorComponentType = 'curs'
};

kCursorImageMajorVersion
enum {
 kCursorImageMajorVersion = 0x0001,
 kCursorImageMinorVersion = 0x0000
};

kPrinterFontStatus
enum {
 kPrinterFontStatus = 0,
 kPrinterScalingStatus = 1
};

kQDGrafVerbFrame
enum {
 kQDGrafVerbFrame = 0,
 kQDGrafVerbPaint = 1,
 kQDGrafVerbErase = 2,
 kQDGrafVerbInvert = 3,
 kQDGrafVerbFill = 4
};

2896 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

kQDParseRegionFromTop
enum {
 kQDParseRegionFromTop = (1 << 0),
 kQDParseRegionFromBottom = (1 << 1),
 kQDParseRegionFromLeft = (1 << 2),
 kQDParseRegionFromRight = (1 << 3),
 kQDParseRegionFromTopLeft = kQDParseRegionFromTop | kQDParseRegionFromLeft,
 kQDParseRegionFromBottomRight = kQDParseRegionFromBottom |
kQDParseRegionFromRight
};

kQDRegionToRectsMsgInit
enum {
 kQDRegionToRectsMsgInit = 1,
 kQDRegionToRectsMsgParse = 2,
 kQDRegionToRectsMsgTerminate = 3
};

kQDUseDefaultTextRendering
enum {
 kQDUseDefaultTextRendering = 0,
 kQDUseTrueTypeScalerGlyphs = (1 << 0),
 kQDUseCGTextRendering = (1 << 1),
 kQDUseCGTextMetrics = (1 << 2),
 kQDSupportedFlags = kQDUseTrueTypeScalerGlyphs | kQDUseCGTextRendering |
kQDUseCGTextMetrics,
 kQDDontChangeFlags = 0xFFFFFFFF
};

kRenderCursorInHardware
enum {
 kRenderCursorInHardware = 1L << 0,
 kRenderCursorInSoftware = 1L << 1
};

kXFer1PixelAtATime
enum {
 kXFer1PixelAtATime = 0x00000001,
 kXFerConvertPixelToRGB32 = 0x00000002
};

normalBit
enum {
 normalBit = 0,

Constants 2897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

 inverseBit = 1,
 redBit = 4,
 greenBit = 3,
 blueBit = 2,
 cyanBit = 8,
 magentaBit = 7,
 yellowBit = 6,
 blackBit = 5
};

pixPurgeBit
enum {
 pixPurgeBit = 0,
 noNewDeviceBit = 1,
 useTempMemBit = 2,
 keepLocalBit = 3,
 useDistantHdwrMemBit = 4,
 useLocalHdwrMemBit = 5,
 pixelsPurgeableBit = 6,
 pixelsLockedBit = 7,
 nativeEndianPixMapBit = 8,
 mapPixBit = 16,
 newDepthBit = 17,
 alignPixBit = 18,
 newRowBytesBit = 19,
 reallocPixBit = 20,
 clipPixBit = 28,
 stretchPixBit = 29,
 ditherPixBit = 30,
 gwFlagErrBit = 31
};

singleDevicesBit
enum {
 singleDevicesBit = 0,
 dontMatchSeedsBit = 1,
 allDevicesBit = 2
};

Source, Pattern, and Arithmetic Transfer Mode Constants
enum {
 srcCopy = 0,
 srcOr = 1,
 srcXor = 2,
 srcBic = 3,
 notSrcCopy = 4,
 notSrcOr = 5,
 notSrcXor = 6,
 notSrcBic = 7,
 patCopy = 8,

2898 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

 patOr = 9,
 patXor = 10,
 patBic = 11,
 notPatCopy = 12,
 notPatOr = 13,
 notPatXor = 14,
 notPatBic = 15,
 grayishTextOr = 49,
 hilitetransfermode = 50,
 hilite = 50,
 blend = 32,
 addPin = 33,
 addOver = 34,
 subPin = 35,
 addMax = 37,
 adMax = 37,
 subOver = 38,
 adMin = 39,
 ditherCopy = 64,
 transparent = 36
};

Constants
srcCopy

For basic graphics ports, force the destination pixel black where the source pixel is black; where the
source pixel is white, force the destination pixel white.

For color graphics ports, determines how close the color of the source pixel is to black, and assigns
this relative amount of foreground color to the destination pixel. Determines how close the color of
the source pixel is to white, and assigns this relative amount of background color to the destination
pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcOr
For basic graphics ports, forces the destination pixel black if the source pixel is black; where the source
pixel is white, leaves the destination pixel unaltered.

For color graphics ports, determines how close the color of the source pixel is to black, and assigns
this relative amount of foreground color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

srcXor
For basic and color graphics ports, inverts destination pixel where the source pixel is black. For a basic
graphics port, where the source pixel is white, leaves the destination pixel unaltered.

For a color graphics port, for a colored destination pixel, uses the complement of its color if the pixel
is direct, or inverts its index if the pixel is indexed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 2899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

srcBic
For a basic graphics port, forces destination pixel white where source pixel is black; where source
pixel is white, leaves the destination pixel unaltered.

For a color graphics port, determines how close the color of the source pixel is to black, and assigns
this relative amount of background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcCopy
For a basic graphics port, forces the destination pixel white where the source pixel is black; where
the source pixel is white, forces the destination pixel black.

For a color graphics port, determines how close the color of the source pixel is to black, and assigns
this relative amount of background color to the destination pixel. Determines how close the color of
the source pixel is to white, and assigns this relative amount of foreground color to the destination
pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcOr
For a basic graphics port, leaves the destination pixel unaltered where the source pixel is black; where
the source pixel is white, forces the destination pixel black.

For a color graphics port, determines how close the color of the source pixel is to white, and assigns
this relative amount of foreground color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcXor
For basic and color graphics ports, where the source pixel is white, inverts the destination pixel. For
a basic graphics port, where the source pixel is black, leaves the destination pixel unaltered.

For a color graphics port, for a colored destination pixel, uses the complement of its color if the pixel
is direct, or inverts its index if the pixel is indexed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notSrcBic
For a basic graphics port, where the source pixel is black, leaves the destination pixel unaltered; where
the source pixel is white, forces the destination pixel white.

For a color graphics port, determines how close the color of the source pixel is to white, and assigns
this relative amount of background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patCopy
Where the pattern pixel is black, applies foreground color to the destination pixel; where the pattern
pixel is white, applies background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

2900 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

patOr
Where the pattern pixel is black, inverts the destination pixel; where the pattern pixel is white, leaves
the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patXor
Where the pattern pixel is black, inverts the destination pixel; where the pattern pixel is white, leaves
the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

patBic
Where the pattern pixel is black, applies the background color to destination pixel; where the pattern
pixel is white, leaves the destination pixel unaltered.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatCopy
Where the pattern pixel is black, applies background color to destination pixel; where the pattern
pixel is white, applies foreground color to the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatOr
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, applies foreground color to the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatXor
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, inverts the destination pixel

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

notPatBic
Where the pattern pixel is black, leaves the destination pixel unaltered; where the pattern pixel is
white, applies background color to the destination pixel.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

grayishTextOr
Draws dimmed text on the screen. You can use it for black-and-white or color graphics ports. The
grayishTextOr transfer mode is not considered a standard transfer mode because currently it is
not stored in pictures, and printing with it is undefined. (It does not pass through the QuickDraw
bottleneck functions.)

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Constants 2901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

hilite
Adds highlighting to the source or pattern mode. With highlighting, QuickDraw replaces the
background color with the highlight color when your application copies images between graphics
ports. This has the visual effect of using a highlighting pen to select the object. (The global variable
HiliteRGB is read from parameter RAM when the machine starts. Basic graphics ports use the color
stored in the HiliteRGB global variable as the highlight color. Color graphics ports default to the
HiliteRGB global variable, but can be overridden by the HiliteColor function.)

For text, specifies that the caret position should be determined according to the primary line direction,
based on the value of SysDirection.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

blend
Replaces the destination pixel with a blend of the source and destination pixel colors. If the destination
is a bitmap or 1-bit pixel map, reverts to srcCopy mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addPin
Replaces the destination pixel with the sum of the source and destination pixel colors-- up to a
maximum allowable values. If the destination is a bitmap or 1-bit pixel map, reverts to srcBic mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addOver
Replaces the destination pixel with the sum of the source and destination pixel colors, except if the
value of the red, green, or blue component exceeds 65,536, then addOver subtracts 65,536 from that
value. If the destination is a bitmap or 1-bit pixel map, reverts to srcXor mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subPin
Replaces the destination pixel with the difference of the source and destination pixel colors, but not
less than a minimum allowable value. If the destination is a bitmap or 1-bit pixel map, reverts to srcOr
mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

addMax
Compares the source and destination pixels, and replaces the destination pixel with the color containing
the greater saturation of each of the RGB components. If the destination is a bitmap or 1-bit pixel
map, reverts to srcBic mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

subOver
Replaces the destination pixel with the difference of the source and destination pixel colors, except
if the value of the red, green, or blue component is less than 0, then it adds the negative result to
65,536. if the destination is a bitmap or 1-bit pixel map, revert to srcXor mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

2902 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

adMin
Compares the source and destination pixels, and replaces the destination pixel with the color containing
the lesser saturation of each of the RGB components. If the destination is a bitmap or 1-bit pixel map,
reverts to srcOr mode.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

ditherCopy
On computers running System 7, you can add dithering to any source mode by adding this constant
or the value it represents to the source mode.

Dithering is a technique that mixes existing colors to create the effect of additional colors. It also
improves images that you shrink or that you copy from a direct pixel device to an indexed device.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

transparent
Replaces the destination pixel with the source pixel if the source pixel is not equal to the background
color. The transparent mode replaces the destination pixel with the source pixel if the source pixel
isn’t equal to the background color. This mode is most useful in 8-bit, 4-bit, or 2-bit color modes.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
CopyBits (page 2584) uses the source and arithmetic transfer mode constants in the mode parameter to
specify the manner in which pixels are transferred from a source pixel map to a destination pixel map.

PenMode (page 2744) uses the pattern mode constants in the mode parameter to specify source modes for
transferring the bits from a source bitmap to a destination bitmap.

The TextMode function uses these constants to set the transfer mode in the graphics port txMode field.

The transfer mode determines the interplay between what an application is drawing (the source) and what
already exists on the display device (the destination), resulting in the text display.

There are two basic kinds of modes: pattern (pat) and source (src).

The pattern mode constants are patCopy, patOr, patXor, patBic, notPatCopy, notPatOr, notPatXor,
and notPatBic.

Source is the kind that you use for drawing text. There are four basic Boolean operations: Copy, Or, Xor, and
Bic (bit clear), each of which has an inverse variant in which the source is inverted before the transfer, yielding
eight operations in all. Basic QuickDraw supports these eight transfer modes. Color QuickDraw interprets the
source mode constants differently than basic QuickDraw does. Color QuickDraw enables your application to
achieve color effects within those basic transfer modes, and offers an additional set of transfer modes that
perform arithmetic operations on the RGB values of the source and destination pixels. Other transfer modes
are grayishTextOr, transparent mode, and text mask mode.

The arithmetic transfer modes are addOver, addPin, subOver, subPin, addMax, adMax, adMin, and blend.
For color, the arithmetic modes change the destination pixels by performing arithmetic operations on the
source and destination pixels. Arithmetic transfer modes calculate pixel values by adding, subtracting, or
averaging the RGB components of the source and destination pixels. They are most useful for 8-bit color, but
they work on 4-bit and 2-bit color also. When the destination bitmap is one bit deep, the mode reverts to
the basic transfer mode that best approximates the arithmetic mode requested.

Constants 2903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Verb Constants
enum {
 frame = kQDGrafVerbFrame,
 paint = kQDGrafVerbPaint,
 erase = kQDGrafVerbErase,
 invert = kQDGrafVerbInvert,
 fill = kQDGrafVerbFill
};

Constants
frame

Specifies the frame action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

paint
Specifies the paint action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

erase
Specifies the erase action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

invert
Specifies the invert action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

fill
Specifies the fill action.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawTypes.h.

Discussion
When you use the StdRect (page 2821) , StdRRect (page 2822) , StdOval (page 2819) , StdArc (page 2815) ,
StdPoly (page 2820) , or StdRgn (page 2822) functions, these constants are used in the verb parameter to
specify the type of action taken by those low-level drawing functions.

Result Codes

The table below lists the result codes specific to QuickDraw.

DescriptionValueResult Code

Insufficient memory to update a pixmap.-125updPixMemErr

Available in Mac OS X v10.0 and later.

2904 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

DescriptionValueResult Code

Insufficient memory for drawing the picture.-145noMemForPictPlaybackErr

Available in Mac OS X v10.0 and later.

Pixel map is deeper than 1 bit per pixel.-148pixMapTooDeepErr

Available in Mac OS X v10.0 and later.

Insufficient stack-149nsStackErr

Available in Mac OS X v10.0 and later.

Color2Index failed to find an index.-150cMatchErr

Available in Mac OS X v10.0 and later.

Failed to allocate memory for temporary structures.-151cTempMemErr

Available in Mac OS X v10.0 and later.

Failed to allocate memory for structures.-152cNoMemErr

Available in Mac OS X v10.0 and later.

Range error on color table requests.-153cRangeErr

Available in Mac OS X v10.0 and later.

ColorTable structure entry protection violation.-154cProtectErr

Available in Mac OS X v10.0 and later.

Invalid type of graphics device.-155cDevErr

Available in Mac OS X v10.0 and later.

Invalid resolution for MakeITable.-156cResErr

Available in Mac OS X v10.0 and later.

Invalid pixel depth.-157cDepthErr

Available in Mac OS X v10.0 and later.

Bitmap too large to convert to a region.-500rgnTooBigErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.2 and later.-3950kQDNoPalette

Available in Mac OS X v10.2 and later.-3951kQDNoColorHWCursorSupport

Available in Mac OS X v10.2 and later.-3952kQDCursorAlreadyRegistered

Available in Mac OS X v10.2 and later.-3953kQDCursorNotRegistered

Available in Mac OS X v10.2 and later.-3954kQDCorruptPICTDataErr

Result Codes 2905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

2906 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 55

QuickDraw Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in QuickdrawText.h

Important: The information in this document is obsolete and should not be used for new development.

Overview

You can use the QuickDraw text routines to measure and draw text ranging in complexity from a single glyph
to a line of justified text containing multiple languages and styles. In addition to measuring and drawing
text, the QuickDraw text routines also help you to determine which characters to highlight and where to
position the caret to mark the insertion point. These routines translate pixel locations into byte offsets and
vice versa.

To understand the routines described in this document, it is helpful to be familiar with the other parts of
QuickDraw. It is also helpful to be familiar with the Font Manager, because of the close relationship between
QuickDraw and the Font Manager. To understand the tasks involved in text layout, you should also be
acquainted with the Text Utilities and the Script Manager.

Carbon supports the majority of QuickDraw Text.

Functions by Task

Determining the Caret Position, and Selecting and Highlighting Text

CharToPixel (page 2911) Deprecated in Mac OS X v10.4
Returns the screen pixel width from the left edge of a text segment to the glyph of the character
whose byte offset you specify. (Deprecated. Use ATSUI instead.)

HiliteText (page 2921) Deprecated in Mac OS X v10.4
Finds all the characters between two byte offsets in a text segment whose glyphs are to be highlighted.
(Deprecated. Use ATSUI instead.)

PixelToChar (page 2927) Deprecated in Mac OS X v10.4
Returns the byte offset of a character in a style run, or part of a style run, whose onscreen glyph is
nearest the place where the user clicked the mouse. (Deprecated. Use ATSUI instead.)

Overview 2907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not
Recommended)

Drawing Text

DrawChar (page 2914) Deprecated in Mac OS X v10.4
Draws the glyph for a single 1-byte character at the current pen location in the current graphics port.
(Deprecated. Use ATSUI or Quartz instead.)

DrawJustified (page 2915) Deprecated in Mac OS X v10.4
Draws the specified text at the current pen location in the current graphics port, taking into account
the adjustment necessary to condense or extend the text by the slop value, appropriately for the
script system. (Deprecated. Use ATSUI instead.)

DrawString (page 2917) Deprecated in Mac OS X v10.4
Draws the text of the specified Pascal string at the pen location in the current graphics port (GrafPort
or CGrafPort). (Deprecated. Use ATSUI or Quartz instead.)

DrawText (page 2918) Deprecated in Mac OS X v10.4
Draws the specified text at the current pen location in the current graphics port. (Deprecated. Use
ATSUI or Quartz instead.)

StandardGlyphs (page 2933) Deprecated in Mac OS X v10.4
This obsolete function doesn’t do anything in Mac OS X. (Deprecated. Use ATSUI to render Unicode
text.)

StdText (page 2933) Deprecated in Mac OS X v10.4
Draws text from an arbitrary structure in memory. (Deprecated. Use ATSUI or Quartz instead.)

stdtext (page 2934) Deprecated in Mac OS X v10.4
Draws text from an arbitrary structure in memory. (Deprecated. Use ATSUI or Quartz instead.)

Laying Out a Line of Text

GetFormatOrder (page 2920) Deprecated in Mac OS X v10.4
Determines the display order of style runs for a line of text containing multiple style runs with mixed
directions. (Deprecated. Use ATSUI instead.)

PortionLine (page 2930) Deprecated in Mac OS X v10.4
Determines the correct proportion of extra space to apply to the specified style run in a line of justified
text; that is, how to distribute the total slop value for a line among the style runs on that line.
(Deprecated. Use ATSUI instead.)

VisibleLength (page 2944) Deprecated in Mac OS X v10.4
Calculates the length, in bytes, of a given text segment, excluding trailing white space. (Deprecated.
Use ATSUI instead.)

Measuring Text

CharWidth (page 2913) Deprecated in Mac OS X v10.4
Returns the width (horizontel extension), in pixels, of the specified character. (Deprecated. Use ATSUI
instead.)

MeasureJustified (page 2923) Deprecated in Mac OS X v10.4
Calculates, for text that is expanded, condensed, or scaled, the onscreen width in pixels from the left
edge of the text segment to the glyph of the character. (Deprecated. Use ATSUI instead.)

2908 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

MeasureText (page 2925) Deprecated in Mac OS X v10.4
Calculates the width of the character’s glyph in pixels from the left edge of the text segment.
(Deprecated. Use ATSUI instead.)

StdTxMeas (page 2934) Deprecated in Mac OS X v10.4
Measures the width of scaled or unscaled text. (Deprecated. Use ATSUI instead.)

StringWidth (page 2936) Deprecated in Mac OS X v10.4
Returns the length, in pixels, of the specified text string. (Deprecated. Use ATSUI instead.)

TextWidth (page 2941) Deprecated in Mac OS X v10.4
Returns the length, in pixels, of the specified text. (Deprecated. Use ATSUI instead.)

Setting Text Characteristics

CharExtra (page 2910) Deprecated in Mac OS X v10.4
Specifies, for a color graphics port (CGrafPort), the number of pixels by which to widen (or narrow)
the glyphs of each nonspace character in a style run. (Deprecated. Use ATSUI instead.)

GetFontInfo (page 2919) Deprecated in Mac OS X v10.4
Returns information about the current graphics port’s font, taking into account the style and size in
which the glyphs are to be drawn. (Deprecated. Use ATSUI instead.)

SpaceExtra (page 2932) Deprecated in Mac OS X v10.4
Specifies the number of pixels by which to widen (or narrow) each space in a style run to be drawn
in the current graphics port. (Deprecated. Use ATSUI instead.)

TextFace (page 2939) Deprecated in Mac OS X v10.4
Sets the style of the font in which the text is to be drawn in the current graphics port. (Deprecated.
Use ATSUI or Quartz instead.)

TextFont (page 2939) Deprecated in Mac OS X v10.4
Sets the font of the current graphics port in which the text is to be rendered. (Deprecated. Use ATSUI
or Quartz instead.)

TextMode (page 2940) Deprecated in Mac OS X v10.4
Sets the transfer mode for drawing text in the current graphics port. (Deprecated. Use ATSUI or Quartz
instead.)

TextSize (page 2941) Deprecated in Mac OS X v10.4
Sets the font size for text drawn in the current graphics port to the specified number of points.
(Deprecated. Use ATSUI or Quartz instead.)

Truncating Strings and Breaking Lines

StyledLineBreak (page 2937) Deprecated in Mac OS X v10.4
Returns the proper location to break a line of text, taking into account script and language
considerations, making use of tables in the string-manipulation ('itl2') resource in its computations.
(Deprecated. Use ATSUI instead.)

TruncString (page 2943) Deprecated in Mac OS X v10.4
Ensures that a Pascal string fits into the specified pixel width, by truncating the string as necessary.
This function makes use of the current script and font. (Deprecated. Use CFString instead.)

Functions by Task 2909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

TruncText (page 2943) Deprecated in Mac OS X v10.4
Ensures that a text string fits into the specified pixel width, by truncating the string as necessary. This
function makes use of the current script and font. (Deprecated. Use CFString instead.)

Working With Universal Procedure Pointers

DisposeStyleRunDirectionUPP (page 2914) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a style run direction callback. (Deprecated. Use
ATSUI to handle style runs.)

InvokeStyleRunDirectionUPP (page 2922) Deprecated in Mac OS X v10.4
Calls your style run direction callback. (Deprecated. Use ATSUI to handle style runs.)

NewStyleRunDirectionUPP (page 2927) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a style run direction callback. (Deprecated. Use
ATSUI to handle style runs.)

Functions

CharExtra
Specifies, for a color graphics port (CGrafPort), the number of pixels by which to widen (or narrow) the
glyphs of each nonspace character in a style run. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void CharExtra (
 Fixed extra
);

Parameters
extra

The amount (in pixels or decimal fractions of a pixel) to widen (or narrow) each glyph other than the
space character in a range of text.

Discussion
The CharExtra function sets the value of the chExtra field of the color graphics port structure. This field
contains a number that is in 4.12 fractional notation: four bits of signed integer followed by 12 bits of fraction.
The CharExtra function uses the value of the txSize field, so you must call TextSize to set the font size
of the text before you call CharExtra.

The initial setting is 0. You can pass a negative value for the extra parameter, but be careful not to narrow
glyphs so much that the text is unreadable. The measuring and drawing functions use the value in this field
when an application calls them to measure or draw text. The CharExtra function is available only for color
graphic ports.

Do not use CharExtra for script systems that include zero-width characters, such as diacritical marks, because
intercharacter space is added to all glyphs, separating the diacritical mark from the glyph of the character.
Do not use it for script systems that include contextual forms, such as ligatures or conjunct characters, which
would not be represented properly were intercharacter space added to these glyphs. For example, you should
not use CharExtra for the Devanagari or Arabic languages, whose text is drawn as connected glyphs, or
with the Sonata font because it includes zero-width characters.

2910 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

The 2-byte script systems use the chExtra field value properly.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
chExtra field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

CharToPixel
Returns the screen pixel width from the left edge of a text segment to the glyph of the character whose byte
offset you specify. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short CharToPixel (
 Ptr textBuf,
 long textLength,
 Fixed slop,
 long offset,
 short direction,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textBuf

A pointer to the beginning of the text segment.

textLength
The length in bytes of the entire text segment pointed to by textBuf. The CharToPixel function
requires the context of the complete text in order to determine the correct value.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how smuch the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

offset
The offset from textBuf to the character within the text segment whose display pixel location is to
be measured. For 2-byte script systems, if the character whose position is to be measured is 2 bytes
long, this is the offset of the first byte.

Functions 2911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

direction
This parameter specifies whether CharToPixel is to return the caret position for a character with a
direction of left-to-right or right-to-left. A direction value of hilite indicates that CharToPixel is
to use the caret position for the character direction that matches the primary line direction as specified
by the SysDirection global variable.

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 2951) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Return Value
The screen pixel width from the left edge of a text segment to the glyph of the character whose byte offset
you specify.

Discussion
You use CharToPixel to find the onscreen pixel location at which to draw a caret and to identify the selection
points for highlighting. The CharToPixel function returns the horizontal distance in pixels from the start
of the range of text beginning with the byte offset at textBuf to the glyph corresponding to the character
whose byte offset is specified by the offset parameter. The pixel location is relative to the beginning of
the text segment, not the left margin of the display line. To get the actual display line pixel location of the
glyph relative to the left margin, you add the pixel value that CharToPixel returns to the pixel location at

2912 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

the end of the previous style run (on the left) in display order. In other words, you need to know the length
of the text in pixels on the display line up to the beginning of the range of text that you call CharToPixel
for, and then you add in the screen pixel width that CharToPixel returns.

You specify a value for textLen that is equal to the entire visible part of the style run on a line and includes
trailing spaces if and only if they are displayed. They may not be displayed, for example, for the last style run
in memory order, which is part of the line. Do not confuse the textLen parameter with the offset, which
is the byte offset of the character within the text segment whose pixel location CharToPixel is to return.

If you use CharToPixel to get a caret position to mark the insertion point, you specify a value of leftCaret
or rightCaret for the direction parameter. You can use the value of the PixelToChar leadingEdge
flag to determine the direction parameter value.

If the leadingEdge flag is FALSE, you base the value of the direction parameter on the direction of the
character at the byte offset in memory that precedes the one that PixelToChar returns; if leadingEdge
is TRUE, you base the value of the direction parameter on the direction of the character at the byte offset
that PixelToChar returns. If there isn’t a character at the byte offset, you base the value of the direction
parameter on the primary line direction as determined by the SysDirection global variable.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
CharToPixel that you pass to any of the other justification functions for this style run.

The CharToPixel function works with text in all script systems. For 1-byte contextual script systems,
CharToPixel calculates the widths of any ligatures, reversals, and compound characters that need to be
drawn.

Note that textLen is the number of bytes to be drawn, not the number of characters. Because 2-byte script
systems also include characters consisting of only one byte, do not simply multiply the number of characters
by 2 to determine this value; you must determine and specify the correct number of bytes.

Special Considerations

The CharToPixel function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

CharWidth
Returns the width (horizontel extension), in pixels, of the specified character. (Deprecated in Mac OS X v10.4.
Use ATSUI instead.)

short CharWidth (
 CharParameter ch
);

Parameters
ch

The character whose width is to be measured.

Functions 2913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Return Value
The width (horizontel extension), in pixels, of the specified character.

Discussion
The CharWidth function includes the effects of the stylistic variations for the text set in the current graphics
port. If you change any of these attributes after determining the glyph width but before actually drawing it,
the predetermined width may not be correct. For a space character, CharWidth also includes the effect of
SpaceExtra. For a nonspace character, CharWidth includes the effect of CharExtra.

Because it takes a single-byte value as the ch parameter, CharWidth works only for 1-byte simple script
systems.

A series of calls to CharWidth in a contextual 1-byte font may give incorrect results, because the width of a
text segment may be different from the sum of its individual character widths. In that case, to measure a line
of text you should call TextWidth.

Do not use the CharWidth function for 2-byte script systems. If you want to measure the width of a single
glyph in a 2-byte font, you should use TextWidth.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DisposeStyleRunDirectionUPP
Disposes of a universal procedure pointer (UPP) to a style run direction callback. (Deprecated in Mac OS X
v10.4. Use ATSUI to handle style runs.)

void DisposeStyleRunDirectionUPP (
 StyleRunDirectionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

DrawChar
Draws the glyph for a single 1-byte character at the current pen location in the current graphics port.
(Deprecated in Mac OS X v10.4. Use ATSUI or Quartz instead.)

2914 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

void DrawChar (
 CharParameter ch
);

Parameters
ch

The character code whose glyph is to be drawn.

Discussion
The DrawChar function draws a single character’s glyph and then advances the pen by the width of the
glyph. If the glyph isn’t in the font, the font’s missing symbol is drawn.

If you’re drawing more than one character, it’s faster to make one DrawString or DrawText call rather than
a series of DrawChar calls.

Because it takes a single-byte value as the ch parameter, DrawChar works only for 1-byte script systems. If
you want to draw the glyph of a single character in a 2-byte script, call either DrawText, DrawString, or
DrawJustified.

A series of calls to DrawChar in a 1-byte complex script system can give incorrect results because a text string
is not always a simple concatenation of a series of characters. In a contextual script, two different glyphs may
be used to represent a single character in its contextual form and alone. To draw a sequence of text in a
1-byte complex script system, use DrawText, DrawString, or DrawJustified instead.

For 1-byte complex scripts, you can use DrawChar for special purposes, such as to include the isolated glyph
of a character in a book’s index, for example, to show a single glyph as it exists apart from contextual
transformations.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DrawJustified
Draws the specified text at the current pen location in the current graphics port, taking into account the
adjustment necessary to condense or extend the text by the slop value, appropriately for the script system.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void DrawJustified (
 Ptr textPtr,
 long textLength,
 Fixed slop,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the memory location of the beginning of the text to be drawn.

Functions 2915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

textLength
The number of bytes of text to be drawn.

Note that textLength is the number of bytes to be drawn, not the number of characters. Because
2-byte script systems also include characters consisting of only 1 byte, do not simply multiply the
number of characters by 2 to determine this value; you must determine and specify the correct number
of bytes.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment. Pass the value assessed for this style run based on the proportion
returned for it from PortionLine.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs. Be sure to pass the same
value that you pass to PortionLine.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 2951) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need to
specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1. Be sure to pass the same value that you pass to PortionLine.

denom
A point giving the denominator for the horizontal and vertical scaling factors. Be sure to pass the
same value that you pass to PortionLine.

2916 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Discussion
The DrawJustified function is similar to the DrawText function, except that you use it to draw text that
is expanded or condensed by the number of pixels specified by slop. The DrawJustified function is most
commonly used to draw a line of justified text.

The DrawJustified function draws the specified text in the font, size, and style of the current graphics
port, taking into account any scaling factors, and it distributes the slop appropriately for the script system.
Regardless of the line direction of the text to be drawn, you place the pen at the left edge of the line before
calling DrawJustified for the first style run. For all subsequent style runs on that line, QuickDraw advances
the pen appropriately.

If DrawJustified changes the width of spaces, it temporarily resets the space extra (spExtra) value. It
adds to the current value of the field, if any, the amount of extra space to be applied to each space character
within the range of text in order to justify the text, based on calculations that take into account the slop
value and all of the text characteristics. On exit, DrawJustified restores the original value.

The DrawJustifie d function works with text in all script systems. For example, to depict justified Arabic
text, DrawJustified uses extension bars to create the additional width that is distributed as slop within a
style run.

For 1-byte complex script systems, DrawJustified substitutes the proper ligatures, reversals, and compound
characters as needed.

For 2-byte script systems that do not use space characters to delimit words, DrawJustified distributes the
slop value in a manner appropriate to the script system. For script systems, such as Japanese, that use
ideographic characters, DrawJustified distributes the additional screen pixel width appropriately for the
text representation.

Special Considerations

The DrawJustified function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

DrawString
Draws the text of the specified Pascal string at the pen location in the current graphics port (GrafPort or
CGrafPort). (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz instead.)

void DrawString (
 ConstStr255Param s
);

Parameters
s

A Pascal string consisting of the text to be drawn.

Functions 2917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Discussion
The DrawString function draws the string with its left edge at the current pen location, extending right.
The final position of the pen location, after the text is drawn, is to the right of the rightmost glyph in the
string. QuickDraw does not do any formatting, such as handling of carriage returns or line feeds.

Note that you can use DrawString only for a Pascal string containing a single style run.

QuickDraw temporarily stores on the stack all of the text you ask it to draw, even if the text is to be clipped.
When drawing large font sizes or complex style variations, draw only what is visible on the screen. You can
determine the number of characters whose corresponding glyphs actually fit on the screen by calling the
StringWidth function to determine the length of the string before calling DrawString.

If you specify values in the graphics port spExtra or chExtra fields to change the width of space or nonspace
characters, DrawString takes these values into account.

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost) glyph first, then moves
to the right through all the glyphs, drawing the initial (rightmost) glyph last.

Note that you should not change the width of nonspace characters for 1-byte simple script systems with
zero-width characters or 1-byte complex script systems. For more information, see CharExtra (page 2910).

For contextual script systems, DrawString substitutes the proper ligatures, reversals, and compound
characters as needed. Inside a picture definition, DrawString can’t have a byteCount greater than 255.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
QuickdrawText.h

DrawText
Draws the specified text at the current pen location in the current graphics port. (Deprecated in Mac OS X
v10.4. Use ATSUI or Quartz instead.)

void DrawText (
 const void * textBuf,
 short firstByte,
 short byteCount
);

Parameters
textBuf

A pointer to a buffer containing the text to be drawn.

firstByte
An offset from the start of the text buffer (textBuf) to the first byte of the text to be drawn.

2918 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

byteCount
The number of bytes of text to be drawn. Inside a picture definition, DrawText cannot have a
byteCount greater than 255.

For 2-byte script systems, note that byteCount is the number of bytes to be drawn, not the number
of glyphs. Because 2-byte script systems also include characters consisting of only 1 byte, do not
simply multiply the number of characters by 2 to determine this value; you must determine and
specify the correct number of bytes.

Discussion
The DrawText function draws the text with the leftmost glyph at the current pen location, extending right.
After QuickDraw draws the text, it sets the pen location to the right of the rightmost glyph.

QuickDraw temporarily stores on the stack all of the text you ask it to draw, even if the text is to be clipped.
When drawing a range of text, it’s best to draw only what is visible on the screen. If an entire text string does
not fit on a line, truncate the text at a word boundary. If possible, avoid truncating within a style run. You
can determine the number of characters whose glyphs actually fit on the screen by calling the TextWidth
function before calling DrawText.

If you specify values in the graphics port spExtra and chExtra fields to change the width of nonspace and
space characters, both TextWidth and DrawText take these values into account.

For 1-byte complex script systems, DrawText substitutes the proper ligatures, reversals, and compound
characters as needed.

For right-to-left text, such as Hebrew or Arabic, QuickDraw draws the final (leftmost) glyph first, then moves
to the right through all the characters, drawing the initial (rightmost) glyph last.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

GetFontInfo
Returns information about the current graphics port’s font, taking into account the style and size in which
the glyphs are to be drawn. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void GetFontInfo (
 FontInfo *info
);

Parameters
info

Pointer to a font information structure that contains the font measurement information, in integer
values.

Discussion
The GetFontInfo function returns the ascent, descent, leading, and width of the largest glyph of the font
in the text font, size, and style specified in the current graphics port. If the script system specified by the
current graphics port txFont field has an associated font, as do Hebrew and Arabic, GetFontInfo returns
combined information based on both fonts. This is to accommodate text written in the Roman script when

Functions 2919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

the primary script system is non-Roman. However, even if all of the text is written in a non-Roman script, if
there is an associated font, GetFontInfo always bases its information on the combined fonts. You can
determine the line height, in pixels, by adding the values of the ascent, descent, and leading fields.

The GetFontInfo function is similar to the Font Manager’s FontMetrics function, except that the
GetFontInfo function returns integer values. See FontInfo (page 2947) for a description of the structure
and its fields.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

GetFormatOrder
Determines the display order of style runs for a line of text containing multiple style runs with mixed directions.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void GetFormatOrder (
 FormatOrderPtr ordering,
 short firstFormat,
 short lastFormat,
 Boolean lineRight,
 StyleRunDirectionUPP rlDirProc,
 Ptr dirParam
);

Parameters
ordering

A pointer to a format order array, with (lastFormat – firstFormat + 1) entries. The function
fills the array with the display order of each style run. On exit, the array contains a permuted list of
the numbers from firstFormat to lastFormat.

The first entry in the array is the number of the style run to draw first; this is the leftmost style run in
display order. The last entry in the array is the number of the entry to draw last, the rightmost style
run in display order.

Upon completion of the call, the FormatOrder (page 2948) array contains the numbers identifying the
style runs in display order.

firstFormat
A number greater than or equal to 0 identifying the first style run in storage order that is part of the
line for which you are calling GetFormatOrder.

lastFormat
A number greater than or equal to 0 identifying the last style run in storage order that is part of the
line for which you are calling GetFormatOrder.

lineRight
A flag that you set to TRUE if the primary line direction is right-to-left.

2920 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

rlDirProc
A pointer to a callback function that calculates the correct direction, given the style run identifier. The
GetFormatOrder function calls the application-defined rlDirProc function for each identifier from
firstFormat to lastFormat.

This function returns TRUE for right-to-left text direction and FALSE for left-to-right. Given dirParam
and a style run identifier, the callback function should be able to determine the style run direction.
For more information, see StyleRunDirectionProcPtr (page 2946).

dirParam
A pointer to a parameter block that contains the font and script information for each style run in the
text. This parameter block is used by the application-supplied function.

Discussion
The GetFormatOrder function helps you determine how to draw text that contains multiple style runs with
mixed directions. For mixed-directional text, after you determine where to break the line, you need to call
GetFormatOrder to determine the display order. When you call GetFormatOrder, you supply a Boolean
function, and reference it using the rlDirProc parameter. This function calculates the direction of each
style run identified by number. Do not call GetFormatOrder if there is only one style run on the line.

You must index the style runs in storage order. You pass GetFormatOrder numbers identifying the first and
last style runs of the line in storage order and the primary line direction. The GetFormatOrder function
returns to you an equivalent sequence in display order.

If you do not explicitly define the primary line direction of the text, base the lineRight parameter on the
value of the SysDirection global variable. (The SysDirection global variable is set to -1 if the system
direction is right to left, and 0 if the system direction is left to right.)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

HiliteText
Finds all the characters between two byte offsets in a text segment whose glyphs are to be highlighted.
(Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void HiliteText (
 Ptr textPtr,
 short textLength,
 short firstOffset,
 short secondOffset,
 OffsetTable offsets
);

Parameters
textPtr

A pointer to a buffer that contains the text to be highlighted.

textLength
The length in bytes of the entire text segment pointed to by textPtr.

Functions 2921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

firstOffset
The byte offset from textPtr to the first character to be highlighted.

secondOffset
The byte offset from textPtr to the last character to be highlighted.

offsets
A table that, upon completion of the call, specifies the boundaries of the text to be highlighted.

Discussion
The HiliteText function returns three pairs of byte offsets that mark the onscreen ranges of text to be
highlighted. This is because for bidirectional text, although the characters are contiguous in memory, their
displayed glyphs can include up to three separate ranges of text.

The HiliteText function takes into account the fact that to highlight the complete range of text whose
beginning and ending byte offsets you pass it, it must return byte offsets that encompass the glyphs of the
first and last characters in the text segment. To determine the correct offset pairs, HiliteText relies on the
primary line direction as specified by the SysDirection global variable.

Before calling HiliteText, you must set up an offset table (of type OffsetTable) in your application to
hold the results. You can consider the offset table to be a set of three offset pairs.

If the two offsets in any pair are equal, the pair is empty and you can ignore it. Otherwise the pair identifies
a run of characters whose glyphs are to be highlighted.

The offsets that HiliteText returns depend on the primary line direction as defined by the SysDirection
global variable. If you change the value of SysDirection, HiliteText returns the offset that is meaningful
according to the primary line direction for ambiguous offsets on the boundary of right-to-left and left-to-right
text.

Special Considerations

The HiliteText function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

InvokeStyleRunDirectionUPP
Calls your style run direction callback. (Deprecated in Mac OS X v10.4. Use ATSUI to handle style runs.)

Boolean InvokeStyleRunDirectionUPP (
 short styleRunIndex,
 void *dirParam,
 StyleRunDirectionUPP userUPP
);

Parameters
userUPP

Return Value
A Boolean value that indicates whether the callback was invoked successfully.

2922 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Discussion
You should not need to use the function InvokeStyleRunDirectionUPP as the system calls your style run
direction callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

MeasureJustified
Calculates, for text that is expanded, condensed, or scaled, the onscreen width in pixels from the left edge
of the text segment to the glyph of the character. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void MeasureJustified (
 Ptr textPtr,
 long textLength,
 Fixed slop,
 Ptr charLocs,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the memory location of the beginning of the text to be measured.

textLength
The number of bytes of text to be measured. The text length should equal the entire visible part of
the text on a line, including trailing spaces if and only if they are displayed. Otherwise, the results for
the last glyph on the line may be invalid.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

charLocs
A pointer to an application-defined array of textLength + 1 integers.

Functions 2923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 2951) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you
can specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Discussion
The MeasureJustified function is similar to the MeasureText function, except that it is used to find the
pixel location of a character’s glyph in text that is expanded or condensed. The function calculates the
onscreen pixel width of the glyph of each character, beginning from the left edge of the text segment, taking
into account slop value, scaling, and style run position.

On return, the first element in the charLocs array contains 0 and the last element contains the total width
of the text segment, when the primary line direction is left to right and the text is unidirectional. When the
primary line direction is right to left and the text is unidirectional, the first element in the array contains the
total width of the text segment, and the last element in the array contains 0. When the text is bidirectional,
at a direction boundary, MeasureJustified selects the character whose direction maps to that of the
primary line direction.

The MeasureJustified function returns the same results that an application would get if it called
CharToPixel for each character with a direction parameter value of hilite. Using MeasureJustified
to find the pixel location of a character’s glyph is less efficient than using the CharToPixel function because
the application must define the array pointed to by charLocs, and then walk the array after MeasureText
returns the results.

2924 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

The MeasureJustified function temporarily resets the space extra (spExtra) value, adding to the current
value of the field, if any, the amount of extra space to be added to space characters in order to fully justify
the text, based on calculations that take into account the slop value and all the text characteristics. On exit,
MeasureJustified restores the original value.

Because MeasureJustified measures text in only the current font, style, and size, you need to call it once
for each individual style run. For additional information about MeasureJustified, contact Developer
Technical Support.

The MeasureJustified function works properly for text in all script systems. For 1-byte complex script
systems, MeasureJustified calculates the widths of any ligatures, reversals, and compound characters
that would need to be drawn.

Note that textLength is the number of bytes to be drawn, not the number of characters. Because 2-byte
script systems also include characters consisting of only one byte, you should not simply multiply the number
of characters by 2 to determine this value; the application must determine and specify the correct number
of bytes.

Some 1-byte script system fonts may have zero-width characters, which are usually overlapping diacritical
marks that typically follow the base character in memory. In this case, MeasureJustified measures both
the glyph of the base character (the high-order, low-address byte) and the width of the diacritical mark. The
charLoc array includes an entry for each, but both entries contain the same value.

For 1-byte complex script systems, MeasureJustified calculates the widths of any ligatures, reversals,
compound characters, and character clusters that need to be drawn. For example, for an Arabic ligature, the
entry that corresponds to the trailing edge of each character that is part of the ligature is the trailing edge
of the entire ligature.

Special Considerations

The MeasureJustified function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

MeasureText
Calculates the width of the character’s glyph in pixels from the left edge of the text segment. (Deprecated
in Mac OS X v10.4. Use ATSUI instead.)

Functions 2925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

void MeasureText (
 short count,
 const void *textAddr,
 void *charLocs
);

Parameters
count

The number of bytes (as opposed to characters) to be measured. Because 2-byte script systems also
include characters consisting of only one byte, do not simply multiply the number of characters by
2 to determine this value; you must determine and specify the correct number of bytes.

For 2-byte characters, the charLocs array contains two entries—one corresponding to each byte—but
both entries contain the same pixel-width value.

textAddr
A pointer to the memory location of the beginning of the text to be measured. The value of textAddr
must point directly to the first character whose glyph is to be measured.

charLocs
A pointer to an application-defined array of count + 1 integers. On return, the first element in the
charLocs array contains 0 and the last element contains the total width of the text segment, when
the primary line direction is left to right and the text is unidirectional.

When the primary line direction is right to left, and the text is unidirectional, the first element in the
array contains the total width of the text segment, and the last element in the array contains 0. When
the text is bidirectional, at a direction boundary, MeasureText selects the character whose direction
maps to that of the primary line direction.

Discussion
Provides an array version of the TextWidth function. The MeasureText function calculates the onscreen
pixel width of the glyph of each character, beginning from the left edge of the text segment. The function
returns the same results that an application would get if it called CharToPixel for each character with a
direction parameter value of hilite. Using MeasureText to find the pixel location of a character’s glyph
is less efficient than using the CharToPixel function because the application must define the array pointed
to by charLocs, and then walk the array after MeasureText returns the results.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

Some fonts in 1-byte script systems may have zero-width characters, which are usually overlapping diacritical
marks that typically follow the base character in memory. In this case, MeasureText measures both the
glyph of the base character (the high-order, low-address byte) and the width of the diacritical mark. The
charLoc array includes an entry for each, but both entries contain the same value.

For 1-byte complex script systems, MeasureText calculates the widths of any ligatures, reversals, compound
characters, and character clusters that need to be drawn. For example, for an Arabic ligature, the entry that
corresponds to the trailing edge of each character that is part of the ligature is the trailing edge of the entire
ligature.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

2926 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

NewStyleRunDirectionUPP
Creates a new universal procedure pointer (UPP) to a style run direction callback. (Deprecated in Mac OS X
v10.4. Use ATSUI to handle style runs.)

StyleRunDirectionUPP NewStyleRunDirectionUPP (
 StyleRunDirectionProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the StyleRunDirectionUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
QuickdrawText.h

PixelToChar
Returns the byte offset of a character in a style run, or part of a style run, whose onscreen glyph is nearest
the place where the user clicked the mouse. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short PixelToChar (
 Ptr textBuf,
 long textLength,
 Fixed slop,
 Fixed pixelWidth,
 Boolean *leadingEdge,
 Fixed *widthRemaining,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textBuf

A pointer to the start of the text segment.

textLength
The length in bytes of the entire text segment pointed to by textBuf. The PixelToChar function
requires the context of the complete text segment in order to determine the correct value.

slop
The amount of slop for the text to be drawn. A positive value extends the text segment; a negative
value condenses the text segment.

The value of this parameter is the number of pixels by which the width of the text segment is to be
changed, after the text has been scaled. The slop is a signed value that specifies how much the text
is to be extended or condensed. The slop is derived from the calculations made using the proportion
returned from the PortionLine function for a style run. To measure or draw text that is not to be
extended or condensed, pass a slop value of 0.

Functions 2927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

pixelWidth
The screen location of the glyph associated with the character whose byte offset is to be returned.
The screen location is measured in pixels beginning from the left edge of the text segment for which
you call PixelToChar.

leadingEdge
Pointer to a Boolean flag that, upon completion of the call, is set to TRUE if the pixel location is on
the leading edge of the glyph, and FALSE if the pixel location is on the trailing edge of the glyph.
The leading edge is the left side if the direction of the character that the glyph represents is left-to-right
(such as a Roman character), and the right side if the character direction is right-to-left (such as an
Arabic or a Hebrew letter).

widthRemaining
Pointer to a location that, upon completion of the call, contains –1 if the pixel location (specified by
the pixelWidth parameter) falls within the style run (represented by the textLen bytes starting at
textBuf). Otherwise, the location contains the amount of pixels by which the input pixel location
(pixelWidth) extends beyond the right edge of the text for which you called PixelToChar.

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 2951) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

2928 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Return Value
The byte offset of a character in a style run, or part of a style run, whose onscreen glyph is nearest the place
where the user clicked the mouse.

Discussion
You can use the information that PixelToChar returns for highlighting, word selection, and identifying the
caret position. The PixelToChar function returns a byte offset and a Boolean value that describes whether
the pixel location is on the leading edge or trailing edge of the glyph where the mouse-down event occurred.
When the pixel location falls on a glyph that corresponds to one or more characters that are part of the text
segment, the PixelToChar function uses the direction of the character or characters to determine which
side of the glyph is the leading edge. (A glyph can represent more than one character, for example, for a
ligature. Generally, if a glyph represents more than one character, all of the characters have the same text
direction.)

If the pixel location is on the leading edge, PixelToChar returns the byte offset of the character whose
glyph is at the pixel location. (If the glyph represents multiple characters, it returns the byte offset of the first
of these characters in memory.) If the pixel location is on the trailing edge, PixelToChar returns the byte
offset of the first character in memory following the character or characters represented by the glyph. If the
pixel location is on the trailing edge of the glyph that corresponds to the last character in the text segment,
PixelToChar returns a byte offset equal to the length of the text segment.

When the pixel location is before the leading edge of the first glyph in the displayed text segment,
PixelToChar returns a leading edge value of FALSE and the byte offset of the first character. When the
pixel location is after the trailing edge of the last glyph in the displayed text segment, PixelToChar returns
a leading edge value of TRUE and the next byte offset in memory, the one after the last character in the text
segment. If the primary line direction is left to right, before means to the left of all of the glyphs for the
characters in the text segment, and after means to the right of all these glyphs. If the primary line direction
is right to left, before and after hold the opposite meanings.

You also use the value of the leadingEdge flag to help determine the value of the direction parameter
to pass to CharToPixel, which you call to get the caret position. If the leadingEdge flag is FALSE, you
base the value of the direction parameter on the direction of the character at the byte offset in memory
that precedes the one that PixelToChar returns; if leadingEdge is TRUE, you base the value of the
direction parameter on the direction of the character at the byte offset that PixelToChar returns. If there
isn’t a character at the byte offset, you base the value of the direction parameter on the primary line
direction as determined by the SysDirection global variable.

You specify a value for textLen that is equal to the entire visible part of the style run on a line and includes
trailing spaces if and only if they are displayed. They may not be displayed, for example, for the last style run
in memory order that is part of the current line.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
PixelToChar that you pass to any of the other justification functions for this style run.

You pass PixelToChar a pointer to the byte offset of the character in the text buffer that begins the text
segment or style run containing the character whose glyph is at the pixel location. If you do not know which
style run on the display line contains the character whose glyph is at the pixel location, you can loop through
the style runs until you find the one that contains the pixel location. If the style run contains the character,
PixelToChar returns its byte offset. If it doesn’t, you can use the widthRemaining parameter value to help
determine which style run contains the glyph at the pixel location.

If you pass PixelToChar the pixel width of the display line, you can use the returned value of
widthRemaining to calculate the length of a style run. The widthRemaining parameter contains the length
in pixels from the end of the style run for which you call PixelToChar to the end of the display line, in this

Functions 2929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

case, if the style run for which you call it does not include the byte offset whose glyph corresponds to the
pixel location. You subtract the returned widthRemaining value from the screen pixel width of the display
line to get the style run’s length.

To truncate a line of text, you can use PixelToChar to find the byte offset of the character where the line
should be broken. To return the correct byte offset associated with the pixel location of a mouse-down event
when the text belongs to a right-to-left script system, the PixelToChar function reorders the text. If
right-to-left text is reordered when you use PixelToChar to determine where to break a line, it returns the
wrong byte offset. To get the correct result, you must turn off reordering before you call PixelToCha r.
Remember to restore reordering after you have determined where to break the line.

The PixelToChar function works with text in all script systems, and for text that is justified or not. For
contextual script systems, PixelToChar takes into account the widths of any ligatures, reversals, and
compound characters that were created when the text was drawn.

Because 2-byte script systems also include characters consisting of only one byte, you should not simply
multiply the number of characters by 2 to determine this value; you must determine and specify the correct
number of bytes.

Special Considerations

The PixelToChar function may move memory; do not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

PortionLine
Determines the correct proportion of extra space to apply to the specified style run in a line of justified text;
that is, how to distribute the total slop value for a line among the style runs on that line. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

Fixed PortionLine (
 Ptr textPtr,
 long textLen,
 JustStyleCode styleRunPosition,
 Point numer,
 Point denom
);

Parameters
textPtr

A pointer to the style run.

textLen
The number of bytes in the text of the style run.

2930 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

styleRunPosition
The position on the line of this style run. The style run can be the only one on the line, the leftmost
on the line, the rightmost on the line, or one between two other style runs.

This parameter specifies the position of the style run on the display line. It is used to determine the
proportion of total slop to apply to a style run, measure or draw a line of justified text, identify where
to break a line of text, and determine the caret position to mark an insertion point or highlight text.

The style run position parameter is meaningful only for those script systems that use intercharacter
spacing for justification. For all other script systems, the parameter exists for future extensibility.
Although the style run position parameter is not used, for example, for justifying text in the Roman
script system, to allow for future compatibility, you should always specify the appropriate value for
it for all calls that take it.

For those script systems that do use intercharacter spacing, space between style runs may be allocated
differently depending upon whether the style run is leftmost, rightmost, or between two other style
runs. For example, depending on the script system, if a style run occurs at the beginning or end of a
line, extra space may not be added to the outer edge of the outermost glyph, whereas if a style run
is interior to a line, all of the glyphs of the text may be treated the same: extra space is allocated to
both sides of every glyph including those at either end of the style run.

The current implementations of simple script systems such as Roman and Cyrillic do not justify a line
of text by changing the width of nonspace characters. Instead, they rely solely on the use of space
characters: the same amount of extra width is added to (or subtracted from) every space whether the
space is at the beginning or end of the line or interior to it.

See “Style Run Position Constants” (page 2951) for a list of the constants you can supply.

numer
A point giving the numerator for the horizontal and vertical scaling factors.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
A point giving the denominator for the horizontal and vertical scaling factors.

Return Value
A number that represents the portion of the slop to be applied to the style run for which it is called.

Discussion
You use PortionLine in formatting a line of justified text. It helps you determine how to distribute the slop
for a line among its style runs. When you know the total slop for a line of text, you need to determine what
portion of it to attribute to each style run. To do this, you call the PortionLine function once for each style
run on the line. The PortionLine function computes the portion of extra space for a style run, taking into
account the font, size, style, and scaling factors of the style run. It returns a number that represents the portion
of the slop to be applied to the style run for which it is called. You use the value that PortionLine returns
to determine the percentage of slop that you should attribute to a style run.

To determine the percentage of slop to allocate to each style run, you compute what percentage each portion
is of the sum of all portions. To determine the actual slop value in pixels for each style run, you apply the
percentage to the total slop value. The following steps summarize this process:

1. Call PortionLine for each style run on the line.

2. Add the returned values together.

Functions 2931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

3. Calculate the percentage of the slop value for each style run using the ratio of the value returned by
PortionLine for that style run and the total of the values returned for all of the style runs on the line.

4. Calculate the number of pixels to be added to each style run by multiplying the percentage of the slop
for each style run by the total number of pixels.

Be sure to pass the same values for styleRunPosition and the scaling factors (numer and denom) to
PortionLine that you pass to any of the other justification functions for this style run.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

SpaceExtra
Specifies the number of pixels by which to widen (or narrow) each space in a style run to be drawn in the
current graphics port. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

void SpaceExtra (
 Fixed extra
);

Parameters
extra

The amount (in pixels or binary fractions of a pixel) to widen (or narrow) each space in a style run on
a line.

Discussion
The SpaceExtra function sets the value of the extra space (spExtra) field in the current graphics port
structure. The initial setting is 0. You can pass a negative value for the extra parameter, but be careful not
to narrow spaces so much that the text is unreadable. The value you specify is added to the width of each
space character in the style run. For those script systems that do not use spaces, any value set in the extra
space field is ignored. For those script systems that use spaces as delimiters, if you do not want to justify a
line of text using DrawJustified, you can use the SpaceExtra function to set a fixed number of pixels to
be added to each space character, then call DrawText or DrawString.

When you use the justification functions (MeasureJustified, DrawJustified) to measure or draw justified
text, they temporarily reset the extra space value. They add to the current value of the field, if any, the amount
of extra space to be added to space characters in the specified text in order to justify the text, based on
calculations that take into account the slop value for the range of text and all of the text characteristics. On
exit, these functions restore the original value.

For a color graphics port (CGrafPort), you can use SpaceExtra by itself or in conjunction with the
CharExtra function to format a line of text in the 1-byte simple or 2-byte script systems. You should not
use CharExtra for 1-byte complex script systems.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
spExtra field, rather than directly change the field value.

2932 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StandardGlyphs
This obsolete function doesn’t do anything in Mac OS X. (Deprecated in Mac OS X v10.4. Use ATSUI to render
Unicode text.)

Not recommended.

OSStatus StandardGlyphs (
 void *dataStream,
 ByteCount size
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StdText
Draws text from an arbitrary structure in memory. (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz
instead.)

void StdText (
 short count,
 const void *textAddr,
 Point numer,
 Point denom
);

Parameters
count

The number of bytes of text to draw.

textAddr
A memory structure containing the text to draw.

numer
Scaling numerator.

denom
Scaling denominator.

Functions 2933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Discussion
This is QuickDraw’s standard low-level function for drawing text. The StdText function draws text from the
arbitrary structure in memory specified by the textBuf parameter, starting from the first byte and continuing
for the number of bytes specified in the byteCount parameter. The numer and denom parameters specify
the scaling factor: numer.v over denom.v gives the vertical scaling, and numer.h over denom.h gives the
horizontal scaling factor.

You should only call this low-level function from your customized QuickDraw functions.

Special Considerations

The StdText function may move or purge memory blocks in the application heap; do not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

stdtext
Draws text from an arbitrary structure in memory. (Deprecated in Mac OS X v10.4. Use ATSUI or Quartz
instead.)

Modified

void stdtext (
 short count,
 const void *textAddr,
 const Point *numer,
 const Point *denom
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StdTxMeas
Measures the width of scaled or unscaled text. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

2934 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

short StdTxMeas (
 short byteCount,
 const void *textAddr,
 Point *numer,
 Point *denom,
 FontInfo *info
);

Parameters
byteCount

The number of bytes to be counted.

textAddr
A pointer to the beginning of the text in memory.

numer
Pointer to a point giving the numerator for the horizontal and vertical scaling factors. For this function,
numer and denom are reference parameters. On output, these parameters contain additional scaling
to be applied to the text.

Both numer and denom are point values: numer specifies the numerator for the horizontal and vertical
scaling factors, and denom specifies the denominator for the horizontal and vertical scaling factors.
Together, these values specify the scaling factors for the text: numer.v over denom.v gives the vertical
scaling (height), and numer.h over denom.h gives the horizontal scaling factors (width). You need
to specify values for numer and denom even if you are not scaling the text. For unscaled text, you can
specify scaling factors of 1, 1.

denom
Pointer to a point giving the denominator for the horizontal and vertical scaling factors.

info
Pointer to a font information structure that describes the current font.

Return Value
The width of the text stored in memory, beginning with the first character at textAddr and continuing for
byteCount bytes.

Discussion
The StdTxMeas function is a QuickDraw bottleneck function that the QuickDraw text-measuring functions
use extensively. The StdTxMeas function returns the width of the text stored in memory beginning with the
first character at textAddr and continuing for byteCount bytes. You can call the StdTxMeas function
directly, for example, to measure text that you want to explicitly scale, but not justify. You can also use
StdTxMeas to get the font metrics for scaled text in order to determine the line height, instead of using
GetFontInfo, which doesn’t support scaling.

The high-level QuickDraw text functions provide most of the functionality needed to measure and draw text.
However, if you need to call StdTxMeas directly, you must first check the graphics port grafProcs field to
determine whether the bottleneck functions have been customized, and if so, you must call the customized
function instead of the standard one. The bottleneck functions are always customized for printing.

If the grafProcs field contains NULL, the standard bottleneck functions have not been customized. If the
grafProcs field contains a pointer, the standard bottleneck functions have been replaced by customized
ones. This pointer (of type QDProcPtr) points to a QDProc structure, which contains fields that point to the
bottleneck function to be used for a specific drawing function. If the standard bottleneck function has been
customized, your application needs to use the customized function indicated by the QDProc structure field.

Functions 2935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

On input, you need to specify values for numer and denom, even if you are not scaling the text. You can
specify 1,1 scaling factors, in this case, so that no scaling is applied. On return, numer and denom contain the
additional scaling to be applied to the text.

The StdTxtMeas function returns output scaling factors that you need to apply to the text to get the right
measurement if the Font Manager was not able to fully satisfy the scaling request. You can use the Toolbox
Utilities’ FixRound and FixRatio functions to help with this process.

The StdTxMeas function gives the correct results for all script systems. The byteCount parameter is the
number of bytes of the text to be drawn, not characters. When specifying this value, consider that 2-byte
script systems also include characters consisting of only one byte.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

StringWidth
Returns the length, in pixels, of the specified text string. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

short StringWidth (
 ConstStr255Param s
);

Parameters
s

A Pascal string containing the text to be measured.

Return Value
The length, in pixels, of the specified text string.

Discussion
You should not call StringWidth to measure scaled text. Although StringWidth takes into account the
graphics port structure settings, it does not accept scaling parameters, and therefore cannot determine the
correct text width result for text to be drawn using scaling factor parameters.

If you specify values in the graphics port spExtra or chExtra fields to change the width of space or nonspace
characters, StringWidth takes these values into account.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

The StringWidth function works with all script systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2936 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

StyledLineBreak
Returns the proper location to break a line of text, taking into account script and language considerations,
making use of tables in the string-manipulation ('itl2') resource in its computations. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

StyledLineBreakCode StyledLineBreak (
 Ptr textPtr,
 SInt32 textLen,
 SInt32 textStart,
 SInt32 textEnd,
 SInt32 flags,
 Fixed *textWidth,
 SInt32 *textOffset
);

Parameters
textPtr

A pointer to the beginning of a script run on the current line to be broken.

textLen
The number of bytes in the script run on the current line to be broken.

textStart
A byte offset to the beginning of a style run within the script run.

When used with unformatted text, textStart can be 0, and textEnd is identical to textLen. With
styled text, the interval between textStart and textEnd specifies a style run. The interval between
textPtr and textLen specifies a script run. Note that the style runs in StyledLineBreak must be
traversed in memory order, not in display order.

textEnd
A byte offset to the end of the style run within the script run.

flags
Reserved for future expansion; must be 0.

textWidth
A pointer to the maximum length of the displayed line in pixels. StyledLineBreak decrements this
value for its own use. You are responsible for setting it before your first call to StyledLineBreak
for a line.

StyledLineBreak automatically decrements the textWidth variable by the width of the style run
for use on the next call. You need to set the value of textWidth before calling it to process a line.

Functions 2937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

textOffset
A pointer to the text offset value, which must be nonzero on your first call to StyledLineBreak for
a line, and zero for subsequent calls to StyledLineBreak for that line. This value allows
StyledLineBreak to differentiate between the first and subsequent calls, which is important when
a long word is found (as described below).

The textOffset parameter must be nonzero for the first call on a line and zero for each call to the
function on the line. This allows StyledLineBreak to act differently when a long word is encountered:
if the word is in the first style run on the line, StyledLineBreak breaks the line on a character
boundary within the word; if the word is in a subsequent style run on the line, StyledLineBreak
breaks the line before the start of the word.

On output, textOffset is the count of bytes from textPtr to the location in the text string where
the line break is to occur. When StyledLineBreak finds a line break, it sets the value of textOffset
to the count of bytes that can be displayed starting at textPtr.

When StyledLineBreak is called for the second or subsequent style runs within a script run, the
textOffset value at exit may be less than the textStart parameter (that is, it may specify a line
break before the current style run).

Return Value
Indicates whether the function broke on a word boundary or a character boundary, or if the width extended
beyond the edge of the text. See “Style Line Break Values” (page 2950) for a list of the constants that can be
returned.

Discussion
The function StyledLineBreak breaks the line on a word boundary if possible and allows for multiscript
runs and style runs on a single line.

Use the StyledLineBreak function when you are laying out lines in an environment that may include text
from multiple scripts. To use this function, you need to understand how QuickDraw draws text.

You can only use the StyledLineBreak function when you have organized your text in script runs and
style runs within each script run. This type of text organization is used by most text-processing applications
that allow for multiscript text. Use this function when you are displaying text in a screen area to determine
the best place to break each displayed line.

What you do is iterate through your text, a script run at a time starting from the first character past the end
of the previous line. Use StyledLineBreak to check each style run in the script run (in memory order) until
the function determines that it has arrived at a line break. As you loop through each style run, before calling
StyledLineBreak, you must set the text values in the graphics port structure that are used by QuickDraw
to measure the text. These include the font, font size, and font style of the style run.

If the current style run is included in a contiguous sequence of other style runs of the same script, then
textPtr should point to the start of the first style run of the same script on the line, and textLen should
include the last style run of the same script on the line. This is because word boundaries can extend across
style runs, but not across script runs.

Although the offsets are in long integer values and the widths are in fixed values for future extensions, in
the current version the long integer values are restricted to the integer range, and only the integer portion
of the widths is used.

StyledLineBreak always chooses a line break for the last style run on the line in memory order as if all
whitespace in that style run would be stripped. The VisibleLength function, which is a QuickDraw function
used to eliminate trailing spaces from a style run before drawing it, can be called for the style run that is at

2938 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

the display end of a line. This leads to a potential conflict when both functions are used with mixed-directional
text: if the end of a line in memory order actually occurs in the middle of the displayed line, StyledLineBreak
assumes that the whitespace is stripped from that run, but VisibleLength does not strip the characters.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextFace
Sets the style of the font in which the text is to be drawn in the current graphics port. (Deprecated in Mac
OS X v10.4. Use ATSUI or Quartz instead.)

void TextFace (
 StyleParameter face
);

Parameters
face

The style for text to be drawn in the current graphics port.

Discussion
The TextFace function sets the value for the style of the font in the text face (txFace) field of the current
graphics port. The Style data type allows you to specify a set of one or more of the following predefined
constants: bold, italic, underline, outline, shadow, condense, and extend. In Pascal, you specify the
constants within square brackets. For example:

TextFace([bold]);
{bold}TextFace([bold,italic]);
{bold and italic}

The style is set to the empty set ([]) by default, which specifies plain.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txFace field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextFont
Sets the font of the current graphics port in which the text is to be rendered. (Deprecated in Mac OS X v10.4.
Use ATSUI or Quartz instead.)

Functions 2939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

void TextFont (
 short font
);

Parameters
font

The font family ID. The initial font family ID is 0, which represents the system font. The value that you
specify for this field is either an integer or a constant. The range of integers currently defined are from
0 to 32767. Currently, negative font family IDs are not supported, although they may be supported
in the future.

The system font and application font have different font IDs and sizes on various script systems.
However, the special designators 0 and 1 always map to the system font and the application font for
the system script, respectively.

Discussion
The TextFont function sets the value of the graphics port text font (txFont) field. To ensure future
compatibility and benefit from any enhancements, always use this function to modify the txFont field, rather
than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

TextMode
Sets the transfer mode for drawing text in the current graphics port. (Deprecated in Mac OS X v10.4. Use
ATSUI or Quartz instead.)

void TextMode (
 short mode
);

Parameters
mode

The transfer mode to be used to draw the text.

Discussion
The TextMode function sets the transfer mode in the graphics port txMode field. The transfer mode determines
the interplay between what an application is drawing (the source) and what already exists on the display
device (the destination), resulting in the text display.

There are two basic kinds of modes: pattern (pat) and source (src). Source is the kind that you use for
drawing text. There are four basic Boolean operations: Copy, Or, Xor, and Bic (bit clear), each of which has
an inverse variant in which the source is inverted before the transfer, yielding eight operations in all. Original
QuickDraw supports these eight transfer modes. Color QuickDraw enables your application to achieve color

2940 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

effects within those basic transfer modes, and offers an additional set of transfer modes that perform arithmetic
operations on the RGB values of the source and destination pixels. Other transfer modes are grayishTextOr,
transparent mode, and text mask mode.

To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txMode field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TextSize
Sets the font size for text drawn in the current graphics port to the specified number of points. (Deprecated
in Mac OS X v10.4. Use ATSUI or Quartz instead.)

void TextSize (
 short size
);

Parameters
size

The font size in points (0 to 32,767). The initial setting is 0, which specifies that the font size of the
system font (normally 12 points) is to be used.

Discussion
The TextSize function sets the font size in the text size (txSize) field of the current graphics port structure.
To ensure future compatibility and benefit from any enhancements, always use this function to modify the
txSize field, rather than directly change the field value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
QuickdrawText.h

TextWidth
Returns the length, in pixels, of the specified text. (Deprecated in Mac OS X v10.4. Use ATSUI instead.)

Functions 2941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

short TextWidth (
 const void *textBuf,
 short firstByte,
 short byteCount
);

Parameters
textBuf

A pointer to a buffer that contains the text to be measured.

firstByte
An offset from textBuf to the first byte of the text to be measured.

byteCount
The number of bytes of text to be measured.

Return Value
The length, in pixels, of the specified text.

Discussion
You can use TextWidth to measure the screen pixel width of any text segment that has uniform character
attributes. You can use it to measure the style runs in a line of text, whether you intend to draw the line using
DrawText or DrawJustified. The TextWidth function takes into account the character attributes set in
the graphics port. If you change any of these attributes after determining the text width but before actually
drawing the text, the predetermined width may not be correct. For a space character, TextWidth also
includes the effect of SpaceExtra. For a nonspace character, TextWidth includes the effect of CharExtra.

Because this function measures text in the font, style, and size of the current graphics port, you need to call
it once for each individual style run in any line of text that contains multiple style runs.

The TextWidth function works with text in all script systems because the script management system modifies
the function if necessary to give the proper results.

To draw justified lines of text that include multiple style runs, you calculate the amount of extra pixels, or
slop, that remains to be distributed throughout the line. This process entails measuring the screen pixel width
of each style run on the line: you can use TextWidth for this purpose.

For 1-byte complex script systems, TextWidth calculates the widths of any ligatures, reversals, and compound
characters that need to be drawn.

Note that byteCount is the number of bytes to be measured, not the number of characters. Because 2-byte
script systems also include characters consisting of only one byte, you should not simply multiply the number
of characters by 2 to determine this value; you must determine and specify the correct number of bytes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

2942 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

TruncString
Ensures that a Pascal string fits into the specified pixel width, by truncating the string as necessary. This
function makes use of the current script and font. (Deprecated in Mac OS X v10.4. Use CFString instead.)

short TruncString (
 short width,
 Str255 theString,
 TruncCode truncWhere
);

Parameters
width

The number of pixels in which the string must be displayed in the current script and font.

theString
The Pascal string to be displayed. On output, contains a version of the string that has been truncated
(if necessary) to fit in the number of pixels specified by width.

truncWhere
A constant that indicates where the string should be truncated. If you supply the truncEnd value,
characters are truncated off the end of the string. If you supply the truncMiddle value, characters
are truncated from the middle of the string; this is useful when displaying pathnames.

See “Truncation Positions” (page 2953) for a list of the constants you can supply.

Discussion
The TruncString function ensures that a Pascal string fits into the pixel width specified by the width
parameter by modifying the string, if necessary, through truncation. TruncString uses the font script to
determine how to perform truncation. If truncation occurs, TruncString inserts a truncation indicator,
which is the ellipsis (…) in the Roman script system. You can specify which token to use for indicating
truncation as the tokenEllipsis token type in the untoken table of a tokens ('itl4') resource.

To determine the width of a string in the current font and script, use the QuickDraw StringWidth function.

Special Considerations

TruncString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

TruncText
Ensures that a text string fits into the specified pixel width, by truncating the string as necessary. This function
makes use of the current script and font. (Deprecated in Mac OS X v10.4. Use CFString instead.)

Functions 2943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

short TruncText (
 short width,
 Ptr textPtr,
 short *length,
 TruncCode truncWhere
);

Parameters
width

The number of pixels in which the text string must be displayed in the current script and font.

textPtr
A pointer to the text string to be truncated. The text string can be up to 32 KB long.

length
On input, a pointer to a value containing the length, in bytes, of the text string to be truncated. On
output, this value is updated to reflect the length of the (possibly) truncated text.

truncWhere
A constant that indicates where the text string should be truncated. You must set this parameter to
one of the constants truncEnd or truncMiddle. If you supply the truncEnd value, characters are
truncated off the end of the string. If you supply the truncMiddle value, characters are truncated
from the middle of the string; this is useful when displaying pathnames.

See “Truncation Positions” (page 2953) for a list of the constants you can supply.

Discussion
You can use the TruncText function to ensure that a string defined by a pointer and a byte length fits into
the specified pixel width, by truncating the string in a manner dependent on the font script.

TruncText uses the font script to determine how to perform truncation. If truncation occurs, TruncText
inserts a truncation indicator which is the ellipsis (…) in the Roman script system. You can specify which
token to use for indicating truncation as the tokenEllipsis token type in the untoken table of a tokens
resource.

To determine the width of a string in the current font and script, use the QuickDraw StringWidth function.

Special Considerations

TruncText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

VisibleLength
Calculates the length, in bytes, of a given text segment, excluding trailing white space. (Deprecated in Mac
OS X v10.4. Use ATSUI instead.)

2944 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

long VisibleLength (
 Ptr textPtr,
 long textLength
);

Parameters
textPtr

A pointer to a text string.

textLength
The number of bytes in the text segment.

Return Value
The length, in bytes, of a given text segment, excluding trailing white space.

Discussion
The VisibleLength function determines how much of a style run to display, without displaying trailing
spaces. You call VisibleLength for the last style run of a line in memory order. The last style run in memory
order of the text constituting the line is not always the last style run in display order. For a line of unidirectional
left-to-right text, the last style run in memory order is the rightmost style run in display order. For a line of
unidirectional right-to-left text, the last style run in memory order is the leftmost style run in display order.
However, if the text contains mixed directions, the last style run in memory order may be an interior style
run in display order.

The text justification functions do not automatically exclude trailing spaces, so you pass them the value that
VisibleLength returns as the length of the last style run in memory order.

The VisibleLength function behaves differently for various script systems. For simple script systems, such
as Roman and Cryllic, and for 2-byte script systems, VisibleLength does not include in the byte count it
returns trailing spaces that occur at the display end of the text segment. For 2-byte script systems,
VisibleLength does not count them, whether they are 1-byte or 2-byte space characters.

For 1-byte complex script systems, VisibleLength does not include in the byte count that it returns spaces
whose character direction is the same as the primary line direction. For 1-byte complex script systems that
support bidirectional text, Roman spaces take on a character direction based on the primary line direction.
If the Roman spaces then fall at the end of the text, VisibleLength does not include them in the returned
byte count.

The purpose of VisibleLength is to trim off white space at the display end of the line. The VisibleLength
function does not eliminate the white space by removing its character code from memory. Rather, it does
not include white space characters in the count that it returns as the length of the range of text for which
you call it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
QuickdrawText.h

Functions 2945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Callbacks

StyleRunDirectionProcPtr
Defines a pointer to a style run direction callback function that calculates, for a style run identified by number,
the direction of that style run.

typedef Boolean (*StyleRunDirectionProcPtr)
(
 short styleRunIndex,
 void * dirParam
);

If you name your function MyStyleRunDirectionProc, you would declare it like this:

Boolean StyleRunDirectionProcPtr (
 short styleRunIndex,
 void * dirParam
);

Parameters
styleRunIndex

A value that identifies the style run whose direction is needed.

dirParam
A pointer to an application-defined parameter block that contains the font and script information for
each style run in the text. The contents of this parameter block are used to determine the direction
of the style run. Because of the relationship between the font family ID and the script code, the font
family ID can be used to determine the text direction.

Return Value
A Boolean value that is TRUE for right-to-left text direction, FALSE for left-to-right.

Discussion
To fill the ordering array (type FormatOrder) for style runs on a line, the GetFormatOrder function calls
MyStyleRunDirectionCallback for each style run numbered from firstFormat to lastFormat.
GetFormatOrder passes MyStyleRunDirectionCallback a number identifying the style run in storage
order, and a pointer to the parameter information block, dirParam, that contains the font and style information
for the style run. Given dirParam and a style run identifier, the application-defined
MyStyleRunDirectionCallback function should be able to determine the style run direction.

You should store your style run information in a way that makes it convenient for
MyStyleRunDirectionCallback. One obvious way to do this is to declare a structure type for style runs
that allows you to save things like font style, font family ID, script number, and so forth. You then can store
these structures in an array. When the time comes for GetFormatOrder to fill the ordering array,
MyStyleRunDirectionCallback can consult the style run array for direction information for each of the
numbered style runs in turn.

For more information, see GetFormatOrder (page 2920).

When you provide the Component Manager with a pointer to your function, you should use a universal
procedure pointer (UPP). The definition of the UPP data type for your file identification function is as follows:

typedef (StyleRunDirectionProcPtr) StyleRunDirectionUPP;

2946 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Before using your style run direction callback function, you must first create a new universal procedure pointer
to it, using the NewStyleRunDirectionUPP function, as shown here:

StyleRunDirectionUPP MyStyleRunDirectionUPP;

MyStyleRunDirectionUPP = StyleRunDirectionUPP(&MyStyleRunDirectionCallback)

You then pass MyStyleRunDirectionUPP to the function GetFormatOrder. If you wish to call your own
callback function, you can use the InvokeStyleRunDirectionUPP function:

direction = InvokeStyleRunDirectionUPP(styleRunIndex, ¶mInfo,
MyStyleRunDirectionUPP)

When you are finished using your callback function, you should dispose of the universal procedure pointer
associated with it, using the DisposeStyleRunDirectionUPP function.

DisposeStyleRunDirectionUPP(MyStyleRunDirectionUPP);

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

Data Types

FontInfo
Contains font metric information.

struct FontInfo {
 short ascent;
 short descent;
 short widMax;
 short leading;
};
typedef struct FontInfo FontInfo;

Fields
ascent

The measurement, in pixels, from the baseline to the ascent line of the font.

descent
The measurement, in pixels, from the baseline to the descent line of the font.

widMax
The width, in pixels, of the largest glyph in the font.

leading
The measurement, in pixels, from the descent line to the ascent line below it.

Discussion
The FontInfo data type defines a font information structure. The GetFontInfo (page 2919) function uses
the font information structure to return measurement information based on the font of the current graphics
port. If the current font has an associated font, as do Arabic and Hebrew, GetFontInfo returns information

Data Types 2947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

based on both fonts. The font information structure contains the ascent, the descent, the width of the largest
glyph, and the leading for a given font. The StdTxMeas (page 2934) function also uses a structure of type
FontInfo to return information about the current font.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

FormatOrder
Contains and array of display orders for style runs.

typedef FormatOrder[1];

Discussion
The GetFormatOrder (page 2920) function fills the supplied format order array with the display order of each
style run.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

StyleRunDirectionUPP
Defines a universal procedure pointer to a style run direction callback.

typedef StyleRunDirectionProcPtr StyleRunDirectionUPP;

Discussion
For more information, see the description of the StyleRunDirectionProcPtr (page 2946) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawText.h

Constants

Caret Direction Constants
Specify a caret position.

2948 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

enum {
 leftCaret = 0,
 rightCaret = -1,
 kHilite = 1
};

Constants
leftCaret

Place caret for left-to-right text direction.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

rightCaret
Place caret for right-to-left text direction.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

kHilite
Specifies that the caret position should be determined according to the primary line direction, based
on the value of SysDirection.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Discussion
You can use these constants to specify a value for direction, as used in the CharToPixel (page 2911)
function.

Truncation Status Values
Returned as result codes for the functions TruncString and TruncText.

enum {
 notTruncated = 0,
 truncated = 1,
 truncErr = -1,
 smNotTruncated = 0,
 smTruncated = 1,
 smTruncErr = -1
};

Constants
notTruncated

Specifies that truncation is not necessary.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

truncated
Specifies that truncation was performed.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Constants 2949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

truncErr
Specifies a general error occurred.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smNotTruncated
Specifies that truncation is not necessary. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncated
Specifies that truncation was performed. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncErr
Specifies a general error occurred. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Style Line Break Values
Specify a line break.

typedef SInt8 StyledLineBreakCode;
enum {
 smBreakWord = 0,
 smBreakChar = 1,
 smBreakOverflow = 2
};

Constants
smBreakWord

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smBreakChar

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smBreakOverflow

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Obsolete Caret Placement Values
Specify where to place a caret.

2950 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

enum {
 smLeftCaret = 0,
 smRightCaret = -1,
 smHilite = 1
};

Constants
smLeftCaret

Specifies to place caret for left block. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smRightCaret
Specifies to place caret for right block. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smHilite
Specifies the direction is TESysJust. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Style Run Position Constants
Specify style run positions.

typedef short JustStyleCode;
enum {
 onlyStyleRun = 0,
 leftStyleRun = 1,
 rightStyleRun = 2,
 middleStyleRun = 3,
 smOnlyStyleRun = 0,
 smLeftStyleRun = 1,
 smRightStyleRun = 2,
 smMiddleStyleRun = 3
};

Constants
onlyStyleRun

This is the only style run on the line.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

leftStyleRun
This is the leftmost of multiple style runs on the line.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

rightStyleRun
This is the rightmost of multiple style runs on the line

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Constants 2951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

middleStyleRun
The line and this one is interior: neither leftmost nor rightmost.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smOnlyStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smLeftStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smRightStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smMiddleStyleRun
This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Discussion
Use one of the following constants (defined as type JustStyleCode) in the styleRunPosition parameter
forPortionLine (page 2930)DrawJustified (page 2915),MeasureJustified (page 2923),CharToPixel (page
2911), and PixelToChar (page 2927).

txFlag Constants
Specify constants for txFlags.

enum {
 tfAntiAlias = 1 << 0,
 tfUnicode = 1 << 1
};

Constants
tfAntiAlias

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

tfUnicode
Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Discussion
These used to be the pad field after txFace.

2952 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

Truncation Positions
Specify where to truncate a string.

typedef TruncCode;
enum {
 truncEnd = 0,
 truncMiddle = 0x4000,
 smTruncEnd = 0,
 smTruncMiddle = 0x4000
};

Constants
truncEnd

Truncate at end.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

truncMiddle
Truncate in middle.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncEnd
Truncate at end. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

smTruncMiddle
Truncate in middle. This is obsolete.

Available in Mac OS X v10.0 and later.

Declared in QuickdrawText.h.

Constants 2953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

2954 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 56

QuickDraw Text Reference (Not Recommended)

This table describes the changes to Application Services Framework Reference.

NotesDate

Added Core Printing. Removed Launch Services.2007-10-31

Updated with a new document for Mac OS X v10.5.2007-05-11

First publication of this content as a collection of previously published
documents.

2006-05-23

2955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

2956
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Numerals

8BIM Dictionary Keys 2332

A

Abstract Color Space Constants 946
Access Method Features 1069
Accessibility Event Class 2087
Accessibility Event Constants 2081
Accessibility Event Parameters 2085
AcquireIconRef function 1238
Actions 2115
ActivatePalette function (Deprecated in Mac OS X

v10.4) 1360
Activation Contexts 1224
Active Device Only Values 1148
AddComp function (Deprecated in Mac OS X v10.4) 2571
AddIconToSuite function (Deprecated in Mac OS X

v10.5) 1238
addMax constant 2902
addOver constant 2902
addPin constant 2902
AddPt function 2571
AddSearch function (Deprecated in Mac OS X v10.4) 2572
adMin constant 2903
AEAddressDesc data type 551
AEArrayData structure 545
AEArrayDataPointer data type 551
AEArrayType data type 552
AEBuild Error Codes 563
AEBuildAppleEvent function 408
AEBuildDesc function 410
AEBuildError structure 546
AEBuildParameters function 411
aeBuildSyntaxBadData constant 565
aeBuildSyntaxBadDesc constant 565
aeBuildSyntaxBadEOF constant 564
aeBuildSyntaxBadHex constant 565
aeBuildSyntaxBadNegative constant 564

aeBuildSyntaxBadToken constant 564
aeBuildSyntaxCoercedList constant 566
aeBuildSyntaxMissingQuote constant 564
aeBuildSyntaxNoCloseBrace constant 565
aeBuildSyntaxNoCloseBracket constant 565
aeBuildSyntaxNoCloseHex constant 565
aeBuildSyntaxNoCloseParen constant 565
aeBuildSyntaxNoCloseString constant 565
aeBuildSyntaxNoColon constant 566
aeBuildSyntaxNoEOF constant 564
aeBuildSyntaxNoErr constant 564
aeBuildSyntaxNoKey constant 566
aeBuildSyntaxOddHex constant 565
aeBuildSyntaxUncoercedDoubleAt constant 566
aeBuildSyntaxUncoercedHex constant 565
AECallObjectAccessor function 412
AECheckIsRecord function 413
AECoerceDesc function 413
AECoerceDescProcPtr callback 524
AECoerceDescUPP data type 552
AECoercePtr function 414
AECoercePtrProcPtr callback 525
AECoercePtrUPP data type 552
AECoercionHandlerUPP data type 552
AECountItems function 415
AECreateAppleEvent function 416
AECreateDesc function 417
AECreateDescFromExternalPtr function 418
AECreateList function 419
AECreateRemoteProcessResolver function 420
AEDataStorage data type 553
AEDataStorageType data type 553
AEDecodeMessage function 421
AEDeleteItem function 422
AEDeleteKeyDesc function 423
AEDeleteParam function 423
AEDesc structure 546
AEDescList data type 553
AEDisposeDesc function 424
AEDisposeExternalProcPtr callback 527
AEDisposeExternalUPP data type 555
AEDisposeRemoteProcessResolver function 424

2957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Index

AEDisposeToken function 425
AEDuplicateDesc function 426
AEEventClass data type 555
AEEventHandlerProcPtr callback 528
AEEventHandlerUPP data type 555
AEEventID data type 556
AEEventSource data type 554
AEFilterProcPtr callback 530
AEFilterUPP data type 556
AEFlattenDesc function 426
AEGetArray function 428
AEGetAttributeDesc function 429
AEGetAttributePtr function 430
AEGetCoercionHandler function 431
AEGetDescData function 432
AEGetDescDataRange function 433
AEGetDescDataSize function 434
AEGetEventHandler function 435
AEGetInteractionAllowed function 436
AEGetKeyDesc function 436
AEGetKeyPtr function 437
AEGetNthDesc function 439
AEGetNthPtr function 440
AEGetObjectAccessor function 441
AEGetParamDesc function 443
AEGetParamPtr function 444
AEGetRegisteredMachPort function 445
AEGetSpecialHandler function 446
AEGetTheCurrentEvent function 447
AEIdleProcPtr callback 531
AEIdleUPP data type 556
AEInitializeDesc function 448
AEInstallCoercionHandler function 448
AEInstallEventHandler function 449
AEInstallObjectAccessor function 451
AEInstallSpecialHandler function 452
AEInteractAllowed data type 563
AEInteractWithUser function 453
AEKeyDesc structure 547
AEKeyword data type 556
AEManagerInfo function 454
AEObjectInit function 455
AEPrintDescToHandle function 456
AEProcessAppleEvent function 457
AEProcessMessage function 458
AEPutArray function 459
AEPutAttributeDesc function 460
AEPutAttributePtr function 461
AEPutDesc function 461
AEPutKeyDesc function 462
AEPutKeyPtr function 463
AEPutParamDesc function 464
AEPutParamPtr function 464

AEPutPtr function 465
AERecord data type 557
AERemoteProcessResolverCallback callback 532
AERemoteProcessResolverContext structure 547
AERemoteProcessResolverGetProcesses function

466
AERemoteProcessResolverRef data type 557
AERemoteProcessResolverScheduleWithRunLoop

function 467
AERemoveCoercionHandler function 468
AERemoveEventHandler function 469
AERemoveObjectAccessor function 470
AERemoveSpecialHandler function 471
AEReplaceDescData function 472
AEResetTimer function 472
AEResolve function 473
AEResumeTheCurrentEvent function 474
AEReturnID data type 558
AESend function 476
AESendMessage function 478
AESendMode 566
AESendOptions data type 558
AESendPriority data type 558
AESetInteractionAllowed function 479
AESetObjectCallbacks function 480
AESetTheCurrentEvent function 481
AESizeOfAttribute function 482
AESizeOfFlattenedDesc function 483
AESizeOfKeyDesc function 483
AESizeOfNthItem function 484
AESizeOfParam function 485
AEStreamClose function 485
AEStreamCloseDesc function 486
AEStreamCloseList function 486
AEStreamCloseRecord function 487
AEStreamCreateEvent function 487
AEStreamOpen function 489
AEStreamOpenDesc function 489
AEStreamOpenEvent function 490
AEStreamOpenKeyDesc function 490
AEStreamOpenList function 491
AEStreamOpenRecord function 491
AEStreamOptionalParam function 492
AEStreamRef data type 558
AEStreamSetRecordType function 493
AEStreamWriteAEDesc function 493
AEStreamWriteData function 494
AEStreamWriteDesc function 494
AEStreamWriteKey function 495
AEStreamWriteKeyDesc function 496
AESuspendTheCurrentEvent function 497
AETransactionID data type 559
AEUnflattenDesc function 498

2958
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Alert Icon Constants 1314
alignPix constant 2893
All Morphemes Constant 1350
allDevices constant 2889
allInit constant 2888
AllocCursor function (Deprecated in Mac OS X v10.4)

2572
AllowPurgePixels function (Deprecated in Mac OS X

v10.4) 2573
Alpha Information for Images 226
Analysis Engine Keywords 1350
Analysis Engine Type Definitions 1353
Analysis Results Constants 1350
AngleFromSlope function 2574
AnimateEntry function (Deprecated in Mac OS X v10.4)

1361
AnimatePalette function (Deprecated in Mac OS X

v10.4) 1362
appIsDaemon constant 1468
Apple Event Constants 2517
Apple Event Notification Keywords 1149
Apple Event Recording Event ID Constants 570
AppleEvent data type 559
appleMark constant 1229
applFont constant 1229
appMemFullErr constant 1468
appModeErr constant 1467
AppParameters structure 1457
appVersionTooOld constant 1468
AsscEntry structure 1214
Assorted Options 702
atNone 1323
ATSCreateFontQueryRunLoopSource function 646
ATSCubicClosePathProcPtr callback 1990
ATSCubicClosePathUPP data type 2028
ATSCubicCurveToProcPtr callback 1991
ATSCubicCurveToUPP data type 2028
ATSCubicLineToProcPtr callback 1992
ATSCubicLineToUPP data type 2028
ATSCubicMoveToProcPtr callback 1993
ATSCubicMoveToUPP data type 2029
ATSFlatDataFontNameDataHeader structure 2025
ATSFlatDataFontSpecRawNameData structure 2026
ATSFlatDataFontSpecRawNameDataHeader structure

2026
ATSFlatDataLayoutControlsDataHeader structure

2019
ATSFlatDataLineInfoData structure 2020
ATSFlatDataLineInfoHeader structure 2019
ATSFlatDataMainHeaderBlock structure 2015
ATSFlatDataStyleListFeatureData structure 2024
ATSFlatDataStyleListHeader structure 2021

ATSFlatDataStyleListStyleDataHeader structure
2023

ATSFlatDataStyleListVariationData structure 2024
ATSFlatDataStyleRunDataHeader structure 2020
ATSFlatDataTextLayoutDataHeader structure 2016
ATSFontActivateFromFileReference function 647
ATSFontActivateFromFileSpecification function

(Deprecated in Mac OS X v10.5) 648
ATSFontActivateFromMemory function 649
ATSFontApplierFunction callback 682
ATSFontApplyFunction function 650
ATSFontContainerRef data type 687
ATSFontDeactivate function 651
ATSFontFamilyApplierFunction callback 683
ATSFontFamilyApplyFunction function 652
ATSFontFamilyFindFromName function 652
ATSFontFamilyFindFromQuickDrawName function 653
ATSFontFamilyGetEncoding function 653
ATSFontFamilyGetGeneration function 654
ATSFontFamilyGetName function 654
ATSFontFamilyGetQuickDrawName function 655
ATSFontFamilyIterator data type 687
ATSFontFamilyIteratorCreate function 655
ATSFontFamilyIteratorNext function 657
ATSFontFamilyIteratorRelease function 658
ATSFontFamilyIteratorReset function 658
ATSFontFamilyRef data type 687
ATSFontFilter structure 688
ATSFontFindFromContainer function 659
ATSFontFindFromName function 660
ATSFontFindFromPostScriptName function 661
ATSFontGetAutoActivationSettingForApplication

function 661
ATSFontGetContainer function 662
ATSFontGetContainerFromFileReference function

662
ATSFontGetFileReference function 663
ATSFontGetFileSpecification function (Deprecated

in Mac OS X v10.5) 663
ATSFontGetFontFamilyResource function 664
ATSFontGetGeneration function 665
ATSFontGetGlobalAutoActivationSetting function

666
ATSFontGetHorizontalMetrics function 666
ATSFontGetName function 666
ATSFontGetPostScriptName function 667
ATSFontGetTable function 668
ATSFontGetTableDirectory function 669
ATSFontGetVerticalMetrics function 670
ATSFontIsEnabled function 671
ATSFontIterator data type 689
ATSFontIteratorCreate function 671
ATSFontIteratorNext function 672

2959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ATSFontIteratorRelease function 673
ATSFontIteratorReset function 674
ATSFontMetrics structure 689
ATSFontNotificationInfoRef data type 690
ATSFontNotificationRef data type 691
ATSFontNotificationSubscribe function 675
ATSFontNotificationUnsubscribe function 676
ATSFontNotify function 676
ATSFontQueryCallback callback 683
ATSFontQuerySourceContext structure 691
ATSFontRef data type 692
ATSFontSetAutoActivationSettingForApplication

function 677
ATSFontSetEnabled function 678
ATSFontSetGlobalAutoActivationSetting function

678
ATSFontSize data type 692
ATSGeneration data type 692
ATSGetGeneration function 678
ATSGlyph data type 699
ATSGlyphIdealMetrics structure 699
ATSGlyphRef data type 699
ATSGlyphScreenMetrics structure 700
ATSJustPriorityWidthDeltaOverrides data type

2009
ATSJustWidthDeltaEntryOverride structure 2010
ATSLayoutRecord structure 2001
ATSNotificationCallback callback 684
ATSOptionFlags data type 693
ATSQuadraticClosePathProcPtr callback 1994
ATSQuadraticClosePathUPP data type 2029
ATSQuadraticCurveProcPtr callback 1995
ATSQuadraticCurveUPP data type 2029
ATSQuadraticLineProcPtr callback 1996
ATSQuadraticLineUPP data type 2029
ATSQuadraticNewPathProcPtr callback 1997
ATSQuadraticNewPathUPP data type 2030
ATSTrapezoid structure 2014
ATSUAttributeInfo structure 2001
ATSUAttributeValuePtr data type 2002
ATSUBackgroundColor data type 2004
ATSUBackgroundData structure 2004
ATSUBatchBreakLines function 1844
ATSUBreakLine function 1846
ATSUCalculateBaselineDeltas function 1847
ATSUCaret structure 2004
ATSUClearAttributes function 1848
ATSUClearFontFeatures function 1849
ATSUClearFontVariations function 1850
ATSUClearLayoutCache function 1851
ATSUClearLayoutControls function 1852
ATSUClearLineControls function 1853
ATSUClearSoftLineBreaks function 1854

ATSUClearStyle function 1854
ATSUCompareStyles function 1855
ATSUCopyAttributes function 1856
ATSUCopyLayoutControls function 1857
ATSUCopyLineControls function 1857
ATSUCopyToHandle function (Deprecated in Mac OS X

v10.1) 1858
ATSUCountFontFeatureSelectors function 1859
ATSUCountFontFeatureTypes function 1860
ATSUCountFontInstances function 1860
ATSUCountFontNames function 1861
ATSUCountFontTracking function 1861
ATSUCountFontVariations function 1862
ATSUCreateAndCopyStyle function 1863
ATSUCreateAndCopyTextLayout function 1863
ATSUCreateFontFallbacks function 1864
ATSUCreateStyle function 1865
ATSUCreateTextLayout function 1866
ATSUCreateTextLayoutWithTextHandle function

(Deprecated in Mac OS X v10.0) 1867
ATSUCreateTextLayoutWithTextPtr function 1869
ATSUCurvePath structure 700
ATSUCurvePaths structure 701
ATSUDirectAddStyleSettingRef function 1871
ATSUDirectGetLayoutDataArrayPtrFromLineRef

function 1872
ATSUDirectGetLayoutDataArrayPtrFromTextLayout

function 1873
ATSUDirectLayoutOperationOverrideProcPtr

callback 1998
ATSUDirectLayoutOperationOverrideUPP structure

2027
ATSUDirectReleaseLayoutDataArrayPtr function

1874
ATSUDisposeFontFallbacks function 1875
ATSUDisposeStyle function 1876
ATSUDisposeTextLayout function 1876
ATSUDrawGlyphInfo function (Deprecated in Mac OS X

v10.3) 1877
ATSUDrawText function 1877
ATSUFindFontFromName function 1879
ATSUFindFontName function 1880
ATSUFlattenStyleRunsToStream function 1882
ATSUFONDtoFontID function 1884
ATSUFontCount function 1885
ATSUFontFallbacks data type 2007
ATSUFontFeatureSelector data type 2006
ATSUFontFeatureType data type 2005
ATSUFontID data type 2007
ATSUFontIDtoFOND function 1885
ATSUFontVariationAxis data type 2006
ATSUFontVariationValue data type 2007
ATSUGetAllAttributes function 1886

2960
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ATSUGetAllFontFeatures function 1887
ATSUGetAllFontVariations function 1888
ATSUGetAllLayoutControls function 1890
ATSUGetAllLineControls function 1891
ATSUGetAttribute function 1892
ATSUGetContinuousAttributes function 1893
ATSUGetFontFallbacks function (Deprecated in Mac

OS X v10.3) 1894
ATSUGetFontFeature function 1895
ATSUGetFontFeatureNameCode function 1896
ATSUGetFontFeatureSelectors function 1897
ATSUGetFontFeatureTypes function 1898
ATSUGetFontIDs function 1899
ATSUGetFontInstance function 1900
ATSUGetFontInstanceNameCode function 1901
ATSUGetFontVariationNameCode function 1902
ATSUGetFontVariationValue function 1903
ATSUGetGlyphBounds function 1904
ATSUGetGlyphInfo function (Deprecated in Mac OS X

v10.3) 1906
ATSUGetIndFontName function 1908
ATSUGetIndFontTracking function 1910
ATSUGetIndFontVariation function 1911
ATSUGetLayoutControl function 1912
ATSUGetLineControl function 1913
ATSUGetNativeCurveType function 1914
ATSUGetObjFontFallbacks function 1914
ATSUGetRunStyle function 1916
ATSUGetSoftLineBreaks function 1917
ATSUGetStyleRefCon function 1918
ATSUGetTabArray function 1918
ATSUGetTextHighlight function 1919
ATSUGetTextLayoutRefCon function 1921
ATSUGetTextLocation function 1921
ATSUGetTransientFontMatching function 1922
ATSUGetUnjustifiedBounds function 1923
ATSUGlyphGetCubicPaths function 1925
ATSUGlyphGetCurvePaths function 1926
ATSUGlyphGetIdealMetrics function 1927
ATSUGlyphGetQuadraticPaths function 1928
ATSUGlyphGetScreenMetrics function 1929
ATSUGlyphInfo structure 2007
ATSUGlyphInfoArray structure 2008
ATSUGlyphSelector structure 2009
ATSUHighlightInactiveText function 1930
ATSUHighlightText function 1931
ATSUIdle function (Deprecated in Mac OS X v10.0) 1933
ATSULayoutOperationOverrideSpecifier structure

2011
ATSULeftwardCursorPosition function 1933
ATSULineRef structure 2011
ATSUMatchFontsToText function 1936

ATSUMeasureText function (Deprecated in Mac OS X
v10.3) 1938

ATSUMeasureTextImage function 1938
ATSUNextCursorPosition function 1940
ATSUOffsetToCursorPosition function 1941
ATSUOffsetToPosition function 1942
ATSUOverwriteAttributes function 1944
ATSUPositionToCursorOffset function 1945
ATSUPositionToOffset function 1946
ATSUPreviousCursorPosition function 1948
ATSURGBAlphaColor structure 2003
ATSURightwardCursorPosition function 1949
ATSUSetAttributes function 1950
ATSUSetFontFallbacks function (Deprecated in Mac

OS X v10.3) 1952
ATSUSetFontFeatures function 1952
ATSUSetHighlightingMethod function 1953
ATSUSetLayoutControls function 1955
ATSUSetLineControls function 1956
ATSUSetObjFontFallbacks function 1958
ATSUSetRunStyle function 1959
ATSUSetSoftLineBreak function 1961
ATSUSetStyleRefCon function 1961
ATSUSetTabArray function 1962
ATSUSetTextHandleLocation function (Deprecated in

Mac OS X v10.0) 1963
ATSUSetTextLayoutRefCon function 1964
ATSUSetTextPointerLocation function 1965
ATSUSetTransientFontMatching function 1967
ATSUSetVariations function 1967
ATSUStyle data type 2012
ATSUStyleIsEmpty function 1968
ATSUStyleRunInfo structure 2012
ATSUStyleSettingRef structure 2002
ATSUTab structure 2012
ATSUTextDeleted function 1969
ATSUTextInserted function 1970
ATSUTextLayout data type 2013
ATSUTextMeasurement data type 2013
ATSUTextMoved function 1971
ATSUUnderwriteAttributes function 1972
ATSUUnflattenStyleRunsFromStream function 1972
ATSUUnhighlightData structure 2014
ATSUUnhighlightText function 1974
Attribute Constants 2517
Attribute Tags 2030
Attributes 2097
Automatic Activation Settings 703
Auxiliary Dictionary Keys 310
AVLocationRec structure 1137
AVPowerStatePtr data type 1137
AVPowerStateRec data type 1137
AXDescendingSortDirection constant 2120

2961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

AXNotificationHIObjectNotify function 2074
AXUIElementCreateWithHIObjectAndIdentifier

function 2074
AXUIElementGetHIObject function 2075
AXUIElementGetIdentifier function 2076

B

BackColor function (Deprecated in Mac OS X v10.4) 2574
Background Data Types 2042
BackPat function (Deprecated in Mac OS X v10.4) 2575
BackPixPat function (Deprecated in Mac OS X v10.4)

2576
badDictFormat constant 1705
badInputText constant 1705
badPasteboardFlavorErr constant 1408
badPasteboardIndexErr constant 1408
badPasteboardItemErr constant 1408
badPasteboardSyncErr constant 1408
BitMap structure 2845
BitMapToRegion function (Deprecated in Mac OS X

v10.4) 2576
Bits16 data type 2846
blackColor constant 2885
blend constant 2902
Blend Modes 137
blueColor constant 2885
Box Dictionary Keys 313
bufTooSmall constant 1705
burstDevice constant 2887

C

cAEList 571
CalcCMask function (Deprecated in Mac OS X v10.4) 2577
CalcColorTableProcPtr callback 1426
CalcColorTableUPP data type 1432
CalcMask function (Deprecated in Mac OS X v10.4) 2578
Calibrator Name Prefix 950
CalibratorInfo structure 875
Callback Constants for the AEResolve Function 571
Camera Maker Dictionaries 2303
Canon Camera Dictionary Keys 2337
cantLoadPickMethodErr constant 1441
Caret Direction Constants 2948
Caret Movement Types 2042
Catalog Information Bitmask 1314
ccntTokenRecord structure 548
CCrsr structure 2847
cDepthErr constant 2905

cDevErr constant 2905
cFTPItem constant 580
CGAcquireDisplayFadeReservation function 1476
CGAffineTransform structure 2350
CGAffineTransformConcat function 2340
CGAffineTransformEqualToTransform function 2341
CGAffineTransformIdentity 2351
CGAffineTransformIdentity constant 2352
CGAffineTransformInvert function 2341
CGAffineTransformIsIdentity function 2342
CGAffineTransformMake function 2342
CGAffineTransformMakeRotation function 2344
CGAffineTransformMakeScale function 2344
CGAffineTransformMakeTranslation function 2345
CGAffineTransformRotate function 2346
CGAffineTransformScale function 2347
CGAffineTransformTranslate function 2348
CGAssociateMouseAndMouseCursorPosition function

1477
CGBeamPosition data type 1544
CGBeginDisplayConfiguration function 1477
CGBitmapContextCreate function 24
CGBitmapContextCreateImage function 25
CGBitmapContextGetAlphaInfo function 26
CGBitmapContextGetBitmapInfo function 26
CGBitmapContextGetBitsPerComponent function 27
CGBitmapContextGetBitsPerPixel function 27
CGBitmapContextGetBytesPerRow function 28
CGBitmapContextGetColorSpace function 28
CGBitmapContextGetData function 28
CGBitmapContextGetHeight function 29
CGBitmapContextGetWidth function 29
CGButtonCount data type 1605
CGByteValue data type 1544
CGCancelDisplayConfiguration function 1478
CGCaptureAllDisplays function 1478
CGCaptureAllDisplaysWithOptions function 1479
CGCharCode data type 1605
CGColorCreate function 32
CGColorCreateCopy function 33
CGColorCreateCopyWithAlpha function 33
CGColorCreateGenericCMYK function 34
CGColorCreateGenericGray function 35
CGColorCreateGenericRGB function 35
CGColorCreateWithPattern function 36
CGColorEqualToColor function 36
CGColorGetAlpha function 37
CGColorGetColorSpace function 37
CGColorGetComponents function 38
CGColorGetConstantColor function 38
CGColorGetNumberOfComponents function 38
CGColorGetPattern function 39
CGColorGetTypeID function 39

2962
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGColorRef data type 41
CGColorRelease function 40
CGColorRetain function 40
CGColorSpaceCopyICCProfile function 45
CGColorSpaceCreateCalibratedGray function 45
CGColorSpaceCreateCalibratedRGB function 46
CGColorSpaceCreateDeviceCMYK function 47
CGColorSpaceCreateDeviceGray function 48
CGColorSpaceCreateDeviceRGB function 48
CGColorSpaceCreateICCBased function 49
CGColorSpaceCreateIndexed function 50
CGColorSpaceCreateLab function 50
CGColorSpaceCreatePattern function 51
CGColorSpaceCreateWithName function 52
CGColorSpaceCreateWithPlatformColorSpace

function 52
CGColorSpaceGetBaseColorSpace function 53
CGColorSpaceGetColorTable function 53
CGColorSpaceGetColorTableCount function 54
CGColorSpaceGetModel function 54
CGColorSpaceGetNumberOfComponents function 54
CGColorSpaceGetTypeID function 55
CGColorSpaceRef data type 56
CGColorSpaceRelease function 55
CGColorSpaceRetain function 56
CGCompleteDisplayConfiguration function 1479
CGConfigureDisplayFadeEffect function 1480
CGConfigureDisplayMirrorOfDisplay function 1481
CGConfigureDisplayMode function 1482
CGConfigureDisplayOrigin function 1483
CGConfigureDisplayStereoOperation function 1484
CGContextAddArc function 68
CGContextAddArcToPoint function 69
CGContextAddCurveToPoint function 70
CGContextAddEllipseInRect function 71
CGContextAddLines function 72
CGContextAddLineToPoint function 73
CGContextAddPath function 73
CGContextAddQuadCurveToPoint function 74
CGContextAddRect function 75
CGContextAddRects function 75
CGContextBeginPage function 76
CGContextBeginPath function 76
CGContextBeginTransparencyLayer function 77
CGContextBeginTransparencyLayerWithRect

function 78
CGContextClearRect function 78
CGContextClip function 79
CGContextClipToMask function 79
CGContextClipToRect function 80
CGContextClipToRects function 81
CGContextClosePath function 81
CGContextConcatCTM function 82

CGContextConvertPointToDeviceSpace function 83
CGContextConvertPointToUserSpace function 83
CGContextConvertRectToDeviceSpace function 84
CGContextConvertRectToUserSpace function 84
CGContextConvertSizeToDeviceSpace function 85
CGContextConvertSizeToUserSpace function 85
CGContextDrawImage function 86
CGContextDrawLayerAtPoint function 254
CGContextDrawLayerInRect function 255
CGContextDrawLinearGradient function 86
CGContextDrawPath function 87
CGContextDrawPDFDocument function 88
CGContextDrawPDFPage function 88
CGContextDrawRadialGradient function 89
CGContextDrawShading function 90
CGContextDrawTiledImage function 90
CGContextEndPage function 91
CGContextEndTransparencyLayer function 92
CGContextEOClip function 92
CGContextEOFillPath function 93
CGContextFillEllipseInRect function 93
CGContextFillPath function 94
CGContextFillRect function 94
CGContextFillRects function 95
CGContextFlush function 95
CGContextGetClipBoundingBox function 96
CGContextGetCTM function 96
CGContextGetInterpolationQuality function 97
CGContextGetPathBoundingBox function 97
CGContextGetPathCurrentPoint function 98
CGContextGetTextMatrix function 98
CGContextGetTextPosition function 99
CGContextGetTypeID function 99
CGContextGetUserSpaceToDeviceSpaceTransform

function 100
CGContextIsPathEmpty function 100
CGContextMoveToPoint function 100
CGContextPathContainsPoint function 101
CGContextRef data type 137
CGContextRelease function 102
CGContextReplacePathWithStrokedPath function

102
CGContextRestoreGState function 103
CGContextRetain function 103
CGContextRotateCTM function 104
CGContextSaveGState function 104
CGContextScaleCTM function 105
CGContextSelectFont function 106
CGContextSetAllowsAntialiasing function 106
CGContextSetAlpha function 107
CGContextSetBlendMode function 107
CGContextSetCharacterSpacing function 108
CGContextSetCMYKFillColor function 108

2963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGContextSetCMYKStrokeColor function 110
CGContextSetFillColor function 111
CGContextSetFillColorSpace function 111
CGContextSetFillColorWithColor function 112
CGContextSetFillPattern function 112
CGContextSetFlatness function 113
CGContextSetFont function 113
CGContextSetFontSize function 114
CGContextSetGrayFillColor function 114
CGContextSetGrayStrokeColor function 115
CGContextSetInterpolationQuality function 116
CGContextSetLineCap function 116
CGContextSetLineDash function 117
CGContextSetLineJoin function 118
CGContextSetLineWidth function 118
CGContextSetMiterLimit function 119
CGContextSetPatternPhase function 119
CGContextSetRenderingIntent function 120
CGContextSetRGBFillColor function 120
CGContextSetRGBStrokeColor function 121
CGContextSetShadow function 122
CGContextSetShadowWithColor function 123
CGContextSetShouldAntialias function 124
CGContextSetShouldSmoothFonts function 124
CGContextSetStrokeColor function 125
CGContextSetStrokeColorSpace function 125
CGContextSetStrokeColorWithColor function 126
CGContextSetStrokePattern function 126
CGContextSetTextDrawingMode function 127
CGContextSetTextMatrix function 127
CGContextSetTextPosition function 128
CGContextShowGlyphs function 129
CGContextShowGlyphsAtPoint function 129
CGContextShowGlyphsAtPositions function 130
CGContextShowGlyphsWithAdvances function 130
CGContextShowText function 131
CGContextShowTextAtPoint function 132
CGContextStrokeEllipseInRect function 133
CGContextStrokeLineSegments function 133
CGContextStrokePath function 134
CGContextStrokeRect function 134
CGContextStrokeRectWithWidth function 135
CGContextSynchronize function 136
CGContextTranslateCTM function 136
CGCursorIsDrawnInFramebuffer function 1484
CGCursorIsVisible function 1485
CGDataConsumerCallbacks structure 152
CGDataConsumerCreate function 148
CGDataConsumerCreateWithCFData function 148
CGDataConsumerCreateWithURL function 149
CGDataConsumerGetTypeID function 149
CGDataConsumerPutBytesCallback callback 151
CGDataConsumerRef data type 153

CGDataConsumerRelease function 150
CGDataConsumerReleaseInfoCallback callback 152
CGDataConsumerRetain function 150
CGDataProviderCallbacks structure 170
CGDataProviderCopyData function 155
CGDataProviderCreate function (Deprecated in Mac

OS X v10.5) 156
CGDataProviderCreateDirect function 156
CGDataProviderCreateDirectAccess function

(Deprecated in Mac OS X v10.5) 157
CGDataProviderCreateSequential function 157
CGDataProviderCreateWithCFData function 158
CGDataProviderCreateWithData function 159
CGDataProviderCreateWithFilename function 159
CGDataProviderCreateWithURL function 160
CGDataProviderDirectAccessCallbacks structure

171
CGDataProviderDirectCallbacks structure 172
CGDataProviderGetBytePointerCallback callback

162
CGDataProviderGetBytesAtOffsetCallback callback

163
CGDataProviderGetBytesAtPositionCallback

callback 164
CGDataProviderGetBytesCallback callback 165
CGDataProviderGetTypeID function 160
CGDataProviderRef data type 170
CGDataProviderRelease function 161
CGDataProviderReleaseBytePointerCallback

callback 166
CGDataProviderReleaseDataCallback callback 166
CGDataProviderReleaseInfoCallback callback 167
CGDataProviderRetain function 161
CGDataProviderRewindCallback callback 168
CGDataProviderSequentialCallbacks structure 173
CGDataProviderSkipBytesCallback callback 168
CGDataProviderSkipForwardCallback callback 169
CGDeviceByteColor structure 1544
CGDeviceColor structure 1545
CGDirectDisplayID data type 1546
CGDirectPaletteRef data type 1546
CGDisplayAddressForPosition function 1485
CGDisplayAvailableModes function 1486
CGDisplayBaseAddress function 1487
CGDisplayBeamPosition function 1487
CGDisplayBestModeForParameters function 1488
CGDisplayBestModeForParametersAndRefreshRate

function 1488
CGDisplayBestModeForParametersAndRefreshRateWith-

Property function 1490
CGDisplayBitsPerPixel function 1491
CGDisplayBitsPerSample function 1491
CGDisplayBlendFraction data type 1547

2964
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGDisplayBounds function 1491
CGDisplayBytesPerRow function 1492
CGDisplayCanSetPalette function 1492
CGDisplayCapture function 1493
CGDisplayCaptureWithOptions function 1493
CGDisplayConfigRef data type 1547
CGDisplayCoord data type 1548
CGDisplayCopyColorSpace function 1494
CGDisplayCount data type 1548
CGDisplayCurrentMode function 1494
CGDisplayErr data type 1548
CGDisplayFade function 1495
CGDisplayFadeInterval data type 1549
CGDisplayFadeOperationInProgress function 1496
CGDisplayFadeReservationToken data type 1549
CGDisplayGammaTableCapacity function 1497
CGDisplayGetDrawingContext function 1497
CGDisplayHideCursor function 1497
CGDisplayIDToOpenGLDisplayMask function 1498
CGDisplayIOServicePort function 1498
CGDisplayIsActive function 1499
CGDisplayIsAlwaysInMirrorSet function 1499
CGDisplayIsAsleep function 1500
CGDisplayIsBuiltin function 1500
CGDisplayIsCaptured function 1501
CGDisplayIsInHWMirrorSet function 1501
CGDisplayIsInMirrorSet function 1502
CGDisplayIsMain function 1502
CGDisplayIsOnline function 1503
CGDisplayIsStereo function 1503
CGDisplayMirrorsDisplay function 1504
CGDisplayModelNumber function 1504
CGDisplayMoveCursorToPoint function 1505
CGDisplayPixelsHigh function 1505
CGDisplayPixelsWide function 1506
CGDisplayPrimaryDisplay function 1506
CGDisplayReconfigurationCallBack callback 1540
CGDisplayRegisterReconfigurationCallback

function 1507
CGDisplayRelease function 1507
CGDisplayRemoveReconfigurationCallback function

1508
CGDisplayReservationInterval data type 1549
CGDisplayRestoreColorSyncSettings function 1508
CGDisplayRotation function 1508
CGDisplaySamplesPerPixel function 1509
CGDisplayScreenSize function 1509
CGDisplaySerialNumber function 1510
CGDisplaySetPalette function 1510
CGDisplaySetStereoOperation function 1511
CGDisplayShowCursor function 1512
CGDisplaySwitchToMode function 1512
CGDisplayUnitNumber function 1513

CGDisplayUsesOpenGLAcceleration function 1514
CGDisplayVendorNumber function 1514
CGDisplayWaitForBeamPositionOutsideLines

function 1515
CGEnableEventStateCombining function 1571
CGError data type 1550
CGEventCreate function 1571
CGEventCreateCopy function 1572
CGEventCreateData function 1572
CGEventCreateFromData function 1573
CGEventCreateKeyboardEvent function 1573
CGEventCreateMouseEvent function 1574
CGEventCreateScrollWheelEvent function 1575
CGEventCreateSourceFromEvent function 1576
CGEventGetDoubleValueField function 1576
CGEventGetFlags function 1577
CGEventGetIntegerValueField function 1577
CGEventGetLocation function 1578
CGEventGetSource function (Deprecated in Mac OS X

v10.4) 1578
CGEventGetTimestamp function 1578
CGEventGetType function 1579
CGEventGetTypeID function 1579
CGEventGetUnflippedLocation function 1579
CGEventKeyboardGetUnicodeString function 1580
CGEventKeyboardSetUnicodeString function 1581
CGEventMask data type 1606
CGEventMaskBit macro 1581
CGEventPost function 1582
CGEventPostToPSN function 1582
CGEventRef data type 1606
CGEventSetDoubleValueField function 1583
CGEventSetFlags function 1583
CGEventSetIntegerValueField function 1584
CGEventSetLocation function 1584
CGEventSetSource function 1585
CGEventSetTimestamp function 1585
CGEventSetType function 1586
CGEventSourceButtonState function 1586
CGEventSourceCounterForEventType function 1587
CGEventSourceCreate function 1587
CGEventSourceFlagsState function 1588
CGEventSourceGetKeyboardType function 1588
CGEventSourceGetLocalEventsFilterDuringSuppression-

State function 1589
CGEventSourceGetLocalEventsSuppressionInterval

function 1589
CGEventSourceGetPixelsPerLine function 1590
CGEventSourceGetSourceStateID function 1590
CGEventSourceGetTypeID function 1591
CGEventSourceGetUserData function 1591
CGEventSourceKeyboardType data type 1607
CGEventSourceKeyState function 1592

2965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGEventSourceRef data type 1607
CGEventSourceSecondsSinceLastEventType function

1592
CGEventSourceSetKeyboardType function 1593
CGEventSourceSetLocalEventsFilterDuringSuppression-

State function 1593
CGEventSourceSetLocalEventsSuppressionInterval

function 1594
CGEventSourceSetPixelsPerLine function 1594
CGEventSourceSetUserData function 1595
CGEventTapCallBack callback 1604
CGEventTapCreate function 1595
CGEventTapCreateForPSN function 1597
CGEventTapEnable function 1598
CGEventTapInformation structure 1607
CGEventTapIsEnabled function 1598
CGEventTapPostEvent function 1599
CGEventTapProxy data type 1609
CGEventTimestamp data type 1609
CGFloat Informational Macros 2377
CGFLOAT_IS_DOUBLE constant 2377
CGFLOAT_MAX constant 2377
CGFLOAT_MIN constant 2377
CGFontCanCreatePostScriptSubset function 177
CGFontCopyFullName function 177
CGFontCopyGlyphNameForGlyph function 178
CGFontCopyPostScriptName function 178
CGFontCopyTableForTag function 179
CGFontCopyTableTags function 179
CGFontCopyVariationAxes function 180
CGFontCopyVariations function 180
CGFontCreateCopyWithVariations function 181
CGFontCreatePostScriptEncoding function 181
CGFontCreatePostScriptSubset function 182
CGFontCreateWithDataProvider function 182
CGFontCreateWithFontName function 183
CGFontCreateWithPlatformFont function 183
CGFontGetAscent function 184
CGFontGetCapHeight function 184
CGFontGetDescent function 185
CGFontGetFontBBox function 185
CGFontGetGlyphAdvances function 186
CGFontGetGlyphBBoxes function 187
CGFontGetGlyphWithGlyphName function 187
CGFontGetItalicAngle function 188
CGFontGetLeading function 188
CGFontGetNumberOfGlyphs function 188
CGFontGetStemV function 189
CGFontGetTypeID function 189
CGFontGetUnitsPerEm function 190
CGFontGetXHeight function 190
CGFontIndex data type 192
CGFontPostScriptFormat 192

CGFontRef data type 191
CGFontRelease function 190
CGFontRetain function 191
CGFunctionCallbacks structure 199
CGFunctionCreate function 196
CGFunctionEvaluateCallback callback 198
CGFunctionGetTypeID function 197
CGFunctionRef data type 199
CGFunctionRelease function 197
CGFunctionReleaseInfoCallback callback 199
CGFunctionRetain function 197
CGGammaValue data type 1550
CGGetActiveDisplayList function 1515
CGGetDisplaysWithOpenGLDisplayMask function

1516
CGGetDisplaysWithPoint function 1517
CGGetDisplaysWithRect function 1518
CGGetDisplayTransferByFormula function 1518
CGGetDisplayTransferByTable function 1520
CGGetEventTapList function 1599
CGGetLastMouseDelta function 1520
CGGetOnlineDisplayList function 1521
CGGLContextCreate function 201
CGGLContextUpdateViewportSize function 202
CGGlyph data type 192
CGGradientCreateWithColorComponents function

204
CGGradientCreateWithColors function 205
CGGradientGetTypeID function 206
CGGradientRef data type 207
CGGradientRelease function 206
CGGradientRetain function 206
CGImageCreate function 211
CGImageCreateCopy function 212
CGImageCreateCopyWithColorSpace function 213
CGImageCreateWithImageInRect function 213
CGImageCreateWithJPEGDataProvider function 214
CGImageCreateWithMask function 215
CGImageCreateWithMaskingColors function 215
CGImageCreateWithPNGDataProvider function 216
CGImageDestinationAddImage function 232
CGImageDestinationAddImageFromSource function

233
CGImageDestinationCopyTypeIdentifiers function

233
CGImageDestinationCreateWithData function 234
CGImageDestinationCreateWithDataConsumer

function 234
CGImageDestinationCreateWithURL function 235
CGImageDestinationFinalize function 235
CGImageDestinationGetTypeID function 236
CGImageDestinationRef data type 237
CGImageDestinationSetProperties function 236

2966
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGImageGetAlphaInfo function 217
CGImageGetBitmapInfo function 217
CGImageGetBitsPerComponent function 218
CGImageGetBitsPerPixel function 218
CGImageGetBytesPerRow function 219
CGImageGetColorSpace function 219
CGImageGetDataProvider function 220
CGImageGetDecode function 220
CGImageGetHeight function 220
CGImageGetRenderingIntent function 221
CGImageGetShouldInterpolate function 221
CGImageGetTypeID function 222
CGImageGetWidth function 222
CGImageIsMask function 223
CGImageMaskCreate function 223
CGImageRef data type 225
CGImageRelease function 224
CGImageRetain function 225
CGImageSourceCopyProperties function 240
CGImageSourceCopyPropertiesAtIndex function 241
CGImageSourceCopyTypeIdentifiers function 241
CGImageSourceCreateImageAtIndex function 242
CGImageSourceCreateIncremental function 242
CGImageSourceCreateThumbnailAtIndex function

243
CGImageSourceCreateWithData function 244
CGImageSourceCreateWithDataProvider function

244
CGImageSourceCreateWithURL function 245
CGImageSourceGetCount function 245
CGImageSourceGetStatus function 246
CGImageSourceGetStatusAtIndex function 246
CGImageSourceGetType function 247
CGImageSourceGetTypeID function 247
CGImageSourceRef data type 249
CGImageSourceUpdateData function 248
CGImageSourceUpdateDataProvider function 248
CGInhibitLocalEvents function 1600
CGKeyCode data type 1609
CGLayerCreateWithContext function 255
CGLayerGetContext function 256
CGLayerGetSize function 257
CGLayerGetTypeID function 257
CGLayerRef data type 258
CGLayerRelease function 257
CGLayerRetain function 258
CGMainDisplayID function 1522
CGMouseDelta data type 1550
CGMutablePathRef data type 279
CGOpenGLDisplayMask data type 1551
CGOpenGLDisplayMaskToDisplayID function 1522
CGPaletteBlendFraction data type 1551
CGPaletteCreateCopy function 1523

CGPaletteCreateDefaultColorPalette function
1523

CGPaletteCreateFromPaletteBlendedWithColor
function 1524

CGPaletteCreateWithByteSamples function 1524
CGPaletteCreateWithCapacity function 1525
CGPaletteCreateWithDisplay function 1525
CGPaletteCreateWithSamples function 1525
CGPaletteGetColorAtIndex function 1526
CGPaletteGetIndexForColor function 1526
CGPaletteGetNumberOfSamples function 1527
CGPaletteIsEqualToPalette function 1527
CGPaletteRelease function 1528
CGPaletteSetColorAtIndex function 1528
CGPathAddArc function 263
CGPathAddArcToPoint function 264
CGPathAddCurveToPoint function 265
CGPathAddEllipseInRect function 266
CGPathAddLines function 267
CGPathAddLineToPoint function 267
CGPathAddPath function 268
CGPathAddQuadCurveToPoint function 268
CGPathAddRect function 269
CGPathAddRects function 270
CGPathApplierFunction callback 278
CGPathApply function 271
CGPathCloseSubpath function 271
CGPathContainsPoint function 272
CGPathCreateCopy function 272
CGPathCreateMutable function 273
CGPathCreateMutableCopy function 273
CGPathElement structure 279
CGPathEqualToPath function 274
CGPathGetBoundingBox function 274
CGPathGetCurrentPoint function 274
CGPathGetTypeID function 275
CGPathIsEmpty function 275
CGPathIsRect function 276
CGPathMoveToPoint function 276
CGPathRef data type 278
CGPathRelease function 277
CGPathRetain function 277
CGPatternCallbacks structure 288
CGPatternCreate function 284
CGPatternDrawPatternCallback callback 286
CGPatternGetTypeID function 285
CGPatternRef data type 288
CGPatternRelease function 285
CGPatternReleaseInfoCallback callback 287
CGPatternRetain function 286
CGPDFArrayGetArray function 291
CGPDFArrayGetBoolean function 292
CGPDFArrayGetCount function 293

2967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGPDFArrayGetDictionary function 293
CGPDFArrayGetInteger function 293
CGPDFArrayGetName function 294
CGPDFArrayGetNull function 295
CGPDFArrayGetNumber function 295
CGPDFArrayGetObject function 296
CGPDFArrayGetStream function 296
CGPDFArrayGetString function 297
CGPDFArrayRef data type 297
CGPDFBoolean data type 345
CGPDFContentStreamCreateWithPage function 300
CGPDFContentStreamCreateWithStream function 300
CGPDFContentStreamGetResource function 301
CGPDFContentStreamGetStreams function 301
CGPDFContentStreamRef data type 303
CGPDFContentStreamRelease function 302
CGPDFContentStreamRetain function 302
CGPDFContextAddDestinationAtPoint function 306
CGPDFContextBeginPage function 306
CGPDFContextClose function 307
CGPDFContextCreate function 307
CGPDFContextCreateWithURL function 308
CGPDFContextEndPage function 309
CGPDFContextSetDestinationForRect function 309
CGPDFContextSetURLForRect function 310
CGPDFDataFormat 372
CGPDFDataFormatJPEG2000 constant 373
CGPDFDataFormatJPEGEncoded constant 373
CGPDFDataFormatRaw constant 373
CGPDFDictionaryApplierFunction callback 324
CGPDFDictionaryApplyFunction function 318
CGPDFDictionaryGetArray function 319
CGPDFDictionaryGetBoolean function 320
CGPDFDictionaryGetCount function 320
CGPDFDictionaryGetDictionary function 320
CGPDFDictionaryGetInteger function 321
CGPDFDictionaryGetName function 322
CGPDFDictionaryGetNumber function 322
CGPDFDictionaryGetObject function 323
CGPDFDictionaryGetStream function 323
CGPDFDictionaryGetString function 324
CGPDFDictionaryRef data type 325
CGPDFDocumentAllowsCopying function 329
CGPDFDocumentAllowsPrinting function 329
CGPDFDocumentCreateWithProvider function 330
CGPDFDocumentCreateWithURL function 330
CGPDFDocumentGetArtBox function (Deprecated in Mac

OS X version 10.3 and later) 331
CGPDFDocumentGetBleedBox function (Deprecated in

Mac OS X version 10.3 and later) 331
CGPDFDocumentGetCatalog function 332
CGPDFDocumentGetCropBox function (Deprecated in

Mac OS X version 10.3 and later) 333

CGPDFDocumentGetID function 333
CGPDFDocumentGetInfo function 334
CGPDFDocumentGetMediaBox function (Deprecated in

Mac OS X version 10.3 and later) 334
CGPDFDocumentGetNumberOfPages function 335
CGPDFDocumentGetPage function 335
CGPDFDocumentGetRotationAngle function

(Deprecated in Mac OS X version 10.3 and later) 336
CGPDFDocumentGetTrimBox function (Deprecated in

Mac OS X version 10.3 and later) 336
CGPDFDocumentGetTypeID function 337
CGPDFDocumentGetVersion function 337
CGPDFDocumentIsEncrypted function 338
CGPDFDocumentIsUnlocked function 338
CGPDFDocumentRef data type 340
CGPDFDocumentRelease function 339
CGPDFDocumentRetain function 339
CGPDFDocumentUnlockWithPassword function 340
CGPDFInteger data type 345
CGPDFObjectGetType function 343
CGPDFObjectGetValue function 344
CGPDFObjectRef union 344
CGPDFOperatorCallback callback 351
CGPDFOperatorTableCreate function 350
CGPDFOperatorTableRef data type 352
CGPDFOperatorTableRelease function 350
CGPDFOperatorTableRetain function 350
CGPDFOperatorTableSetCallback function 351
CGPDFPageGetBoxRect function 354
CGPDFPageGetDictionary function 354
CGPDFPageGetDocument function 355
CGPDFPageGetDrawingTransform function 355
CGPDFPageGetPageNumber function 356
CGPDFPageGetRotationAngle function 357
CGPDFPageGetTypeID function 357
CGPDFPageRef data type 358
CGPDFPageRelease function 357
CGPDFPageRetain function 358
CGPDFReal data type 345
CGPDFScannerCreate function 362
CGPDFScannerGetContentStream function 363
CGPDFScannerPopArray function 363
CGPDFScannerPopBoolean function 364
CGPDFScannerPopDictionary function 364
CGPDFScannerPopInteger function 364
CGPDFScannerPopName function 365
CGPDFScannerPopNumber function 365
CGPDFScannerPopObject function 366
CGPDFScannerPopStream function 366
CGPDFScannerPopString function 367
CGPDFScannerRef data type 369
CGPDFScannerRelease function 367
CGPDFScannerRetain function 368

2968
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGPDFScannerScan function 368
CGPDFStream data type 372
CGPDFStreamCopyData function 371
CGPDFStreamGetDictionary function 372
CGPDFStringCopyDate function 376
CGPDFStringCopyTextString function 376
CGPDFStringGetBytePtr function 376
CGPDFStringGetLength function 377
CGPDFStringRef data type 377
CGPoint structure 2373
CGPointApplyAffineTransform function 2348
CGPointCreateDictionaryRepresentation function

2355
CGPointEqualToPoint function 2356
CGPointMake function 2356
CGPointMakeWithDictionaryRepresentation

function 2357
CGPointZero constant 2375
CGPostKeyboardEvent function 1600
CGPostMouseEvent function 1601
CGPostScrollWheelEvent function 1602
CGPSConverterAbort function 379
CGPSConverterBeginDocumentCallback callback 382
CGPSConverterBeginPageCallback callback 383
CGPSConverterCallbacks structure 386
CGPSConverterConvert function 379
CGPSConverterCreate function 380
CGPSConverterEndDocumentCallback callback 383
CGPSConverterEndPageCallback callback 384
CGPSConverterGetTypeID function 381
CGPSConverterIsConverting function 381
CGPSConverterMessageCallback callback 384
CGPSConverterProgressCallback callback 385
CGPSConverterRef data type 386
CGPSConverterReleaseInfoCallback callback 386
CGrafPort structure 2849
CGrafPtr data type 2849
CGRect structure 2373
CGRectApplyAffineTransform function 2349
CGRectContainsPoint function 2357
CGRectContainsRect function 2358
CGRectCount data type 1551
CGRectCreateDictionaryRepresentation function

2358
CGRectDivide function 2359
CGRectEdge 2376
CGRectEqualToRect function 2359
CGRectGetHeight function 2360
CGRectGetMaxX function 2360
CGRectGetMaxY function 2361
CGRectGetMidX function 2361
CGRectGetMidY function 2362
CGRectGetMinX function 2362

CGRectGetMinY function 2363
CGRectGetWidth function 2363
CGRectInfinite 2374
CGRectInfinite constant 2375
CGRectInset function 2364
CGRectIntegral function 2365
CGRectIntersection function 2365
CGRectIntersectsRect function 2366
CGRectIsEmpty function 2366
CGRectIsInfinite function 2367
CGRectIsIntegral function 2367
CGRectIsNull function 2368
CGRectMake function 2368
CGRectMakeWithDictionaryRepresentation function

2369
CGRectMaxXEdge constant 2376
CGRectMaxYEdge constant 2376
CGRectMinXEdge constant 2376
CGRectMinYEdge constant 2376
CGRectNull constant 2376
CGRectOffset function 2369
CGRectStandardize function 2370
CGRectUnion function 2371
CGRectZero constant 2375
CGRefreshRate data type 1552
CGRegisterScreenRefreshCallback function 1529
CGReleaseAllDisplays function 1529
CGReleaseDisplayFadeReservation function 1530
CGReleaseScreenRefreshRects function 1530
CGRestorePermanentDisplayConfiguration function

1531
CGScreenRefreshCallback callback 1542
CGScreenRegisterMoveCallback function 1531
CGScreenUnregisterMoveCallback function 1532
CGScreenUpdateMoveCallback callback 1543
CGScreenUpdateMoveDelta structure 1552
CGSessionCopyCurrentDictionary function 1532
CGSetDisplayTransferByByteTable function 1532
CGSetDisplayTransferByFormula function 1533
CGSetDisplayTransferByTable function 1535
CGSetLocalEventsFilterDuringSuppressionState

function 1603
CGSetLocalEventsSuppressionInterval function

1603
CGShadingCreateAxial function 390
CGShadingCreateRadial function 391
CGShadingGetTypeID function 391
CGShadingRef data type 393
CGShadingRelease function 392
CGShadingRetain function 392
CGShieldingWindowID function 1535
CGShieldingWindowLevel function 1536
CGSize structure 2374

2969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CGSizeApplyAffineTransform function 2349
CGSizeCreateDictionaryRepresentation function

2371
CGSizeEqualToSize function 2371
CGSizeMake function 2372
CGSizeMakeWithDictionaryRepresentation function

2372
CGSizeZero constant 2375
CGTableCount data type 1552
CGUnregisterScreenRefreshCallback function 1536
CGWaitForScreenRefreshRects function 1537
CGWaitForScreenUpdateRects function 1538
CGWarpMouseCursorPosition function 1539
CGWheelCount data type 1610
CGWindowLevel data type 1553
CGWindowLevelForKey function 1539
CGWindowServerCFMachPort function 1540
Channel Encoding Format 951
CharExtra function (Deprecated in Mac OS X v10.4) 2910
CharToPixel function (Deprecated in Mac OS X v10.4)

2911
CharWidth function (Deprecated in Mac OS X v10.4) 2913
checkMark constant 1228
Chromatic Adaptation Values 951
cHTML constant 580
chunky 2885
CIcon structure 1305
CIFF Dictionary Keys 2332
cInsertionLoc 573
cInternetAddress constant 579
cKeystroke 573
ClipCGContextToRegion function (Deprecated in Mac

OS X v10.4) 2579
clipPix constant 2894
ClipRect function (Deprecated in Mac OS X v10.4) 2580
CloseCursorComponent function (Deprecated in Mac

OS X v10.4) 2581
ClosePicture function (Deprecated in Mac OS X v10.4)

2581
ClosePoly function (Deprecated in Mac OS X v10.4) 2581
CloseRgn function (Deprecated in Mac OS X v10.4) 2582
clutType constant 2891
cm10CLRData constant 972
cm11CLRData constant 972
cm12CLRData constant 972
cm13CLRData constant 972
cm14CLRData constant 972
cm15CLRData constant 972
cm16_8ColorPacking constant 959
cm24_8ColorPacking constant 959
CM2Header structure 875
CM2Profile structure 878
cm32_16ColorPacking constant 960

cm32_32ColorPacking constant 960
cm32_8ColorPacking constant 959
cm3CLRData constant 972
cm40_8ColorPacking constant 959
cm48_16ColorPacking constant 960
cm48_8ColorPacking constant 959
cm4CLRData constant 972
CM4Header structure 879
cm56_8ColorPacking constant 959
cm5CLRData constant 972
cm64_16ColorPacking constant 960
cm64_8ColorPacking constant 959
cm6CLRData constant 972
cm7CLRData constant 972
cm8CLRData constant 972
cm8_8ColorPacking constant 959
cm9CLRData constant 972
cmAbortWriteAccess constant 999
cmAbsoluteColorimetric constant 1013
cmAbstractClass constant 1000
CMAccelerationCalcData structure 880
CMAccelerationCalcDataHdl data type 880
CMAccelerationCalcDataPtr data type 880
CMAccelerationTableData structure 880
CMAccelerationTableDataHdl data type 880
CMAccelerationTableDataPtr data type 880
CMAdaptationMatrixType structure 881
cmAlphaFirstPacking constant 959
cmAlphaLastPacking constant 959
cmAlphaPmulSpace constant 949
cmAlphaSpace constant 949
CMAppleProfileHeader structure 881
cmARGB32PmulSpace constant 966
cmARGB32Space constant 965
cmARGB64LPmulSpace constant 966
cmARGB64LSpace constant 965
cmARGB64PmulSpace constant 966
cmARGB64Space constant 965
cmAsciiData constant 977
cMatchErr constant 2905
cmAToB0Tag constant 1005
cmAToB1Tag constant 1005
cmAToB2Tag constant 1006
cmBeginAccess constant 999
cmBeginProfile constant 996
cmBeginProfileSel constant 997
cmBestMode constant 1012
cmBgResponse constant 962
cmBinaryData constant 977
CMBitmap structure 882
CMBitmapCallBackProc data type 883
CMBitmapCallBackProcPtr callback 852
CMBitmapCallBackUPP data type 883

2970
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

cmBlueColorantTag constant 1006
cmBlueResponse constant 961
cmBlueTRCTag constant 1006
cmBradfordChromaticAdaptation constant 951
cmBToA0Tag constant 1006
cmBToA1Tag constant 1006
cmBToA2Tag constant 1006
cmBufferBasedProfile constant 1004
CMBufferLocation structure 883
CMCalibrateDisplay function 727
cmCalibrationDateTimeTag constant 1006
cmCameraDeviceClass constant 979
cmCantConcatenateError constant 1021
cmCantCopyModifiedV1Profile constant 1022
cmCantDeleteElement constant 1021
cmCantDeleteProfile constant 1021
cmCantGamutCheckError constant 1022
cmCantXYZ constant 1021
cmCharTargetTag constant 1006
cmChromaticAdaptationTag constant 1006
CMCloneProfileRef function 727
cmCloseAccess constant 999
CMCloseProfile function 728
cmCloseSpool constant 976
cmCMSReservedFlagsMask constant 984
CMCMYColor structure 883
cmCMYData constant 971
cmCMYK32Space constant 966
cmCMYK64LSpace constant 966
cmCMYK64Space constant 966
CMCMYKColor structure 884
cmCMYKData constant 971
cmCMYKSpace constant 947
CMColor structure 884
cmColorimetricMatch constant 995
cmColorSpaceAlphaMask constant 973
cmColorSpaceClass constant 1000
cmColorSpaceEncodingMask constant 973
cmColorSpacePackingMask constant 973
cmColorSpacePremulAlphaMask constant 973
cmColorSpaceReservedMask constant 973
cmColorSpaceSpaceAndAlphaMask constant 973
cmColorSpaceSpaceMask constant 973
cmComment constant 996
CMConcatCallBackProcPtr callback 853
CMConcatCallBackUPP data type 886
CMConcatProfileSet structure 887
cmContinueProfileSel constant 997
CMConvertFixedXYZToXYZ function (Deprecated in Mac

OS X v10.5) 730
CMConvertHLSToRGB function (Deprecated in Mac OS X

v10.5) 730

CMConvertHSVToRGB function (Deprecated in Mac OS X
v10.5) 731

CMConvertLabToXYZ function (Deprecated in Mac OS X
v10.5) 732

CMConvertLuvToXYZ function (Deprecated in Mac OS X
v10.5) 733

CMConvertRGBToGray function (Deprecated in Mac OS
X v10.5) 733

CMConvertRGBToHLS function (Deprecated in Mac OS X
v10.5) 734

CMConvertRGBToHSV function (Deprecated in Mac OS X
v10.5) 735

CMConvertXYZToFixedXYZ function (Deprecated in Mac
OS X v10.5) 736

CMConvertXYZToLab function (Deprecated in Mac OS X
v10.5) 736

CMConvertXYZToLuv function (Deprecated in Mac OS X
v10.5) 737

CMConvertXYZToXYZ function (Deprecated in Mac OS X
v10.5) 738

CMConvertXYZToYxy function (Deprecated in Mac OS X
v10.5) 739

CMConvertYxyToXYZ function (Deprecated in Mac OS X
v10.5) 739

CMCopyProfile function 740
CMCopyProfileDescriptionString function 742
CMCopyProfileLocalizedString function 742
CMCopyProfileLocalizedStringDictionary function

743
cmCopyrightTag constant 1006
CMCountImageProfiles function (Deprecated in Mac

OS X v10.5) 743
CMCountImageProfilesProcPtr callback 854
CMCountProfileElements function 744
cmCreateNewAccess constant 999
CMCreateProfileIdentifier function (Deprecated in

Mac OS X v10.5) 745
cmCS1ChromTag constant 981
cmCS1CustTag constant 982
cmCS1NameTag constant 981
cmCS1ProfileVersion constant 985
cmCS1TRCTag constant 981
cmCS2ProfileVersion constant 985
cmCurrentDeviceInfoVersion constant 975
cmCurrentProfileInfoVersion constant 975
cmCurrentProfileLocationSize constant 994
cmCurrentProfileMajorVersion constant 976
CMCurveType structure 888
CMCWInfoRecord structure 888
cmCyanResponse constant 961
CMDataType structure 889
CMDateTime structure 889
CMDateTimeType structure 890

2971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

cmDefaultDeviceID constant 978
cmDefaultProfileID constant 978
cmDeviceAlreadyRegistered constant 1023
CMDeviceData structure 891
CMDeviceDataPtr data type 891
cmDeviceDBNotFoundErr constant 1023
CMDeviceID data type 891
CMDeviceInfo structure 892
cmDeviceInfoVersion1 constant 975
cmDeviceMfgDescTag constant 1006
cmDeviceModelDescTag constant 1006
CMDeviceName structure 893
CMDeviceNamePtr data type 893
cmDeviceNotRegistered constant 1023
CMDeviceProfileArray structure 893
CMDeviceProfileID data type 893
CMDeviceProfileInfo structure 894
cmDeviceProfileInfoVersion1 constant 975
cmDeviceProfileInfoVersion2 constant 975
CMDeviceProfileScope data type 894
cmDeviceProfilesNotFound constant 1023
CMDeviceScope structure 894
CMDeviceSpec structure 895
CMDeviceSpecPtr data type 895
CMDeviceState data type 895
cmDeviceStateAppleRsvdBits constant 980
cmDeviceStateBusy constant 980
cmDeviceStateDefault constant 980
cmDeviceStateDeviceRsvdBits constant 980
cmDeviceStateForceNotify constant 980
cmDeviceStateOffline constant 980
cmDisableMatching constant 996
cmDisplayClass constant 1000
cmDisplayDeviceClass constant 979
CMDisplayIDType data type 895
cmDisplayUse constant 1018
CMDisposeProfileSearch function (Deprecated in Mac

OS X v10.5) 745
cmDraftMode constant 1012
cmElementTagNotFound constant 1021
cmEmbeddedMask constant 984
cmEmbeddedProfile constant 982
cmEmbeddedUse constant 982
cmEmbeddedUseMask constant 984
CMEmbedImage function (Deprecated in Mac OS X v10.5)

746
CMEmbedImageProcPtr callback 855
cmEmbedProfileIdentifier constant 983
cmEmbedWholeProfile constant 983
cmEnableMatching constant 996
CMEnableMatchingComment function (Deprecated in

Mac OS X v10.4) 746
cmEndAccess constant 999

CMEndMatching function (Deprecated in Mac OS X v10.4)
747

cmEndProfile constant 996
cmEndProfileSel constant 997
cmErrIncompatibleProfile constant 1022
CMError data type 895
cmFatalProfileErr constant 1021
cmFileBasedProfile constant 1003
CMFileLocation structure 896
CMFixedXYColor structure 896
CMFixedXYZColor structure 897
cmFlare0 constant 991
cmFlare100 constant 991
CMFlattenProcPtr callback 855
CMFlattenProfile function (Deprecated in Mac OS X

v10.5) 748
CMFlattenUPP data type 897
cmGamutCheckingMask constant 985
cmGamutResult1Space constant 968
cmGamutResultSpace constant 949
cmGamutTag constant 1006
cmGeometry045or450 constant 991
cmGeometry0dord0 constant 991
cmGeometryUnknown constant 991
CMGetColorSyncFolderSpec function (Deprecated in

Mac OS X v10.5) 749
CMGetColorSyncVersion function 750
CMGetCWInfo function (Deprecated in Mac OS X v10.5)

751
CMGetDefaultDevice function 752
CMGetDefaultProfileBySpace function 752
CMGetDefaultProfileByUse function 753
CMGetDeviceDefaultProfileID function 754
CMGetDeviceFactoryProfiles function 754
CMGetDeviceInfo function 755
CMGetDeviceProfile function 756
CMGetDeviceProfiles function (Deprecated in Mac OS

X v10.5) 756
CMGetDeviceState function 757
CMGetGammaByAVID function 757
CMGetImageSpace function (Deprecated in Mac OS X

v10.5) 758
CMGetImageSpaceProcPtr callback 858
CMGetIndImageProfile function (Deprecated in Mac

OS X v10.5) 758
CMGetIndImageProfileProcPtr callback 858
CMGetIndNamedColorValue function 759
CMGetIndProfileElement function 760
CMGetIndProfileElementInfo function 761
CMGetNamedColorIndex function 762
CMGetNamedColorInfo function 763
CMGetNamedColorName function 763
CMGetNamedColorValue function 764

2972
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CMGetPartialProfileElement function 765
CMGetPreferredCMM function (Deprecated in Mac OS X

v10.5) 766
CMGetProfileByAVID function 767
CMGetProfileDescriptions function 767
CMGetProfileElement function 768
CMGetProfileHeader function 769
CMGetProfileLocation function (Deprecated in Mac

OS X v10.5) 770
CMGetProfileMD5 function 771
CMGetProfileRefCount function 772
CMGetPS2ColorRendering function 773
CMGetPS2ColorRenderingIntent function 774
CMGetPS2ColorRenderingVMSize function 775
CMGetPS2ColorSpace function 776
CMGetScriptProfileDescription function

(Deprecated in Mac OS X v10.5) 777
CMGetSystemProfile function 778
cmGlossy constant 979
cmGlossyMatteMask constant 978
cmGray16LSpace constant 964
cmGray16Space constant 964
cmGray8Space constant 964
cmGrayA16PmulSpace constant 964
cmGrayA16Space constant 964
cmGrayA32LPmulSpace constant 964
cmGrayA32LSpace constant 964
cmGrayA32PmulSpace constant 964
cmGrayA32Space constant 964
cmGrayAPmulSpace constant 950
cmGrayASpace constant 950
CMGrayColor structure 897
cmGrayData constant 971
cmGrayResponse constant 961
cmGraySpace constant 948
cmGrayTRCTag constant 1006
cmGreenColorantTag constant 1007
cmGreenResponse constant 961
cmGreenTRCTag constant 1007
cmHandleBasedProfile constant 1003
CMHandleLocation structure 898
CMHeader structure 898
cmHLS32Space constant 967
CMHLSColor structure 901
cmHLSData constant 971
cmHLSSpace constant 948
cmHSV32Space constant 966
CMHSVColor structure 901
cmHSVData constant 971
cmHSVSpace constant 947
cmICCProfileVersion2 constant 985
cmICCProfileVersion21 constant 985
cmICCProfileVersion4 constant 985

cmICCReservedFlagsMask constant 983
cmIlluminantA constant 986
cmIlluminantD50 constant 986
cmIlluminantD55 constant 986
cmIlluminantD65 constant 986
cmIlluminantD93 constant 986
cmIlluminantEquiPower constant 986
cmIlluminantF2 constant 986
cmIlluminantF8 constant 986
cmIlluminantUnknown constant 986
cmIndexRangeErr constant 1021
cmInputClass constant 1000
cmInputUse constant 1018
CMIntentCRDVMSize structure 902
cmInternalCFErr constant 1023
cmInterpolationMask constant 984
cmInvalidColorSpace constant 1022
cmInvalidDstMap constant 1022
cmInvalidProfile constant 1021
cmInvalidProfileComment constant 1022
cmInvalidProfileLocation constant 1022
cmInvalidSearch constant 1022
cmInvalidSrcMap constant 1022
CMIString structure 902
cmIterateAllDeviceProfiles constant 994
CMIterateCMMInfo function 779
CMIterateColorDevices function 780
CMIterateColorSyncFolder function 780
cmIterateCurrentDeviceProfiles constant 994
cmIterateCustomDeviceProfiles constant 994
CMIterateDeviceInfoProcPtr callback 859
CMIterateDeviceProfileProcPtr callback 859
CMIterateDeviceProfiles function 782
cmIterateDeviceProfilesMask constant 994
cmIterateFactoryDeviceProfiles constant 993
cmLAB24Space constant 967
cmLAB32Space constant 968
cmLAB48LSpace constant 968
cmLAB48Space constant 968
CMLabColor structure 903
cmLabData constant 970
cmLABSpace constant 948
CMLaunchControlPanel function 783
cmLinearChromaticAdaptation constant 951
cmLinesPer constant 1013
cmLinkClass constant 1000
CMLinkImage function (Deprecated in Mac OS X v10.5)

783
CMLinkImageProcPtr callback 860
cmLittleEndianPacking constant 960
cmLong10ColorPacking constant 958
cmLong8ColorPacking constant 958
cmLuminanceTag constant 1007

2973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CMLut16Type structure 904
CMLut8Type structure 905
cmLUV32Space constant 967
CMLuvColor structure 905
cmLuvData constant 970
cmLUVSpace constant 948
CMM Function Selectors 951
cmMagentaResponse constant 961
cmMagicNumber constant 987
CMMakeAndModel structure 906
cmMakeAndModelTag constant 1019
CMMakeAndModelType structure 906
CMMakeProfile function 784
cmMatchAnyProfile constant 988
cmMatchApplProfileVersion constant 989
cmMatchAttributes constant 988
cmMatchBlack constant 990
cmMatchCMMType constant 989
cmMatchDataColorSpace constant 988
cmMatchDataType constant 989
cmMatchDeviceAttributes constant 990
cmMatchDeviceManufacturer constant 989
cmMatchDeviceModel constant 990
cmMatchDeviceType constant 989
CMMatchFlag data type 907
cmMatchFlags constant 990
CMMatchImage function (Deprecated in Mac OS X v10.5)

787
CMMatchImageProcPtr callback 861
cmMatchManufacturer constant 988
cmMatchModel constant 988
CMMatchOption data type 907
cmMatchOptions constant 990
cmMatchProfileClass constant 988
cmMatchProfileCMMType constant 988
cmMatchProfileConnectionSpace constant 988
cmMatchProfileFlags constant 989
CMMatchRef data type 907
cmMatchWhite constant 990
cmMCEight8Space constant 969
cmMCEightSpace constant 949
cmMCFive8Space constant 968
cmMCFiveSpace constant 949
cmMCH5Data constant 971
cmMCH6Data constant 971
cmMCH7Data constant 971
cmMCH8Data constant 972
cmMCSeven8Space constant 969
cmMCSevenSpace constant 949
cmMCSix8Space constant 968
cmMCSixSpace constant 949
cmMeasurementTag constant 1007
CMMeasurementType structure 908

cmMediaBlackPointTag constant 1007
cmMediaWhitePointTag constant 1007
cmMethodError constant 1021
cmMethodNotFound constant 1021
CMMInfo structure 908
CMMInfoRecord structure 909
CMMInterfaceVersion constant 957
CMMIterateProcPtr callback 862
CMMIterateUPP data type 910
cmMonitorDevice constant 981
CMMultichannel5Color structure 910
CMMultichannel6Color structure 911
CMMultichannel7Color structure 911
CMMultichannel8Color structure 911
CMMultiFunctCLUTType structure 912
CMMultiFunctLutA2BType data type 912
CMMultiFunctLutB2AType data type 913
CMMultiFunctLutType structure 913
CMMultiLocalizedUniCodeEntryRec structure 914
CMMultiLocalizedUniCodeType structure 914
CMNamedColor structure 914
CMNamedColor2EntryType structure 915
cmNamedColor2Tag constant 1007
CMNamedColor2Type structure 916
cmNamedColorClass constant 1000
cmNamedColorNotFound constant 1022
cmNamedColorTag constant 1007
CMNamedColorType structure 916
cmNamedData constant 973
cmNamedIndexed32LSpace constant 968
cmNamedIndexed32Space constant 968
cmNamedIndexedSpace constant 949
CMNativeDisplayInfo structure 917
cmNativeDisplayInfoTag constant 1019
CMNativeDisplayInfoType structure 917
cmNativeMatchingPreferred constant 1002
CMNewProfile function 788
CMNewProfileSearch function (Deprecated in Mac OS

X v10.5) 789
cmNoColorPacking constant 958
cmNoCurrentProfile constant 1021
cmNoGDevicesError constant 1022
cmNoProfileBase constant 1003
cmNormalMode constant 1011
cmNoSpace constant 947
cmNumHeaderElements constant 1015
cmOneBitDirectPacking constant 959
cmOnePlusLastResponse constant 962
CMOpenProfile function 790
cmOpenReadAccess constant 998
cmOpenReadSpool constant 976
cmOpenWriteAccess constant 998
cmOpenWriteSpool constant 976

2974
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

cmOriginalProfileLocationSize constant 994
cmOutputClass constant 1000
cmOutputUse constant 1018
CMParametricCurveType structure 918
cmParametricType0 constant 992
cmParametricType1 constant 993
cmParametricType2 constant 993
cmParametricType3 constant 993
cmParametricType4 constant 993
cmPathBasedProfile constant 1004
CMPathLocation structure 918
cmPerceptual constant 1012
cmPerceptualMatch constant 995
cmPreview0Tag constant 1007
cmPreview1Tag constant 1007
cmPreview2Tag constant 1007
cmPrinterDevice constant 981
cmPrinterDeviceClass constant 979
cmProcedureBasedProfile constant 1004
CMProcedureLocation structure 919
CMProfile structure 920
CMProfileAccessProcPtr callback 862
CMProfileAccessUPP data type 920
CMProfileChromaticities structure 921
cmProfileDescriptionMLTag constant 1019
cmProfileDescriptionTag constant 1007
CMProfileElementExists function 792
cmProfileError constant 1020
CMProfileFilterProc data type 921
CMProfileFilterProcPtr callback 864
CMProfileFilterUPP data type 921
CMProfileIdentifier structure 921
CMProfileIdentifierFolderSearch function

(Deprecated in Mac OS X v10.5) 792
CMProfileIdentifierListSearch function

(Deprecated in Mac OS X v10.5) 793
cmProfileIdentifierSel constant 997
CMProfileIterateData structure 923
cmProfileIterateDataVersion1 constant 1002
cmProfileIterateDataVersion2 constant 1002
cmProfileIterateDataVersion3 constant 1003
CMProfileIterateProcPtr callback 865
CMProfileIterateUPP data type 924
CMProfileLocation structure 924
cmProfileMajorVersionMask constant 976
CMProfileMD5 data type 925
CMProfileModified function 795
CMProfileName structure 925
CMProfileNamePtr data type 925
cmProfileNotFound constant 1021
CMProfileRef data type 925
CMProfileResponse structure 926
CMProfileSearchRecord structure 926

CMProfileSearchRef data type 927
cmProfileSequenceDescTag constant 1007
CMProfileSequenceDescType structure 928
cmProfilesIdentical constant 1021
CMProfLoc structure 928
cmProofDeviceClass constant 979
CMProofImage function (Deprecated in Mac OS X v10.5)

796
CMProofImageProcPtr callback 866
cmProofUse constant 1018
cmPrtrDefaultScreens constant 1013
cmPS2CRD0Tag constant 1007
cmPS2CRD1Tag constant 1008
cmPS2CRD2Tag constant 1008
cmPS2CRD3Tag constant 1008
cmPS2CRDVMSizeTag constant 1019
CMPS2CRDVMSizeType structure 929
cmPS2CSATag constant 1008
cmPS2RenderingIntentTag constant 1008
cmPS7bit constant 995
cmPS8bit constant 995
cmPtrBasedProfile constant 1003
CMPtrLocation structure 929
cmQualityMask constant 984
cmRangeOverFlow constant 1022
cmReadAccess constant 998
cmReadSpool constant 976
cmRedColorantTag constant 1008
cmRedResponse constant 961
cmRedTRCTag constant 1008
cmReflective constant 979
cmReflectiveTransparentMask constant 978
CMRegisterColorDevice function 797
cmRelativeColorimetric constant 1012
CMRemoveProfileElement function 797
cmReservedSpace1 constant 948
cmReservedSpace2 constant 948
cmReverseChannelPacking constant 960
cmRGB16LSpace constant 964
cmRGB16Space constant 964
cmRGB24Space constant 965
cmRGB32Space constant 965
cmRGB48LSpace constant 965
cmRGB48Space constant 965
cmRGB565LSpace constant 965
cmRGB565Space constant 964
cmRGBA32PmulSpace constant 966
cmRGBA32Space constant 965
cmRGBA64LPmulSpace constant 966
cmRGBA64LSpace constant 966
cmRGBA64PmulSpace constant 966
cmRGBA64Space constant 965
cmRGBAPmulSpace constant 950

2975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

cmRGBASpace constant 949
CMRGBColor structure 930
cmRGBData constant 971
cmRGBSpace constant 947
CMS15Fixed16ArrayType structure 931
cmSaturation constant 1013
cmSaturationMatch constant 995
cmScannerDevice constant 981
cmScannerDeviceClass constant 979
CMScreeningChannelRec structure 931
cmScreeningDescTag constant 1008
cmScreeningTag constant 1008
CMScreeningType structure 932
cmSearchError constant 1022
CMSearchGetIndProfile function (Deprecated in Mac

OS X v10.5) 798
CMSearchGetIndProfileFileSpec function

(Deprecated in Mac OS X v10.5) 799
CMSearchRecord structure 932
CMSetDefaultDevice function 800
CMSetDefaultProfileBySpace function (Deprecated

in Mac OS X v10.5) 801
CMSetDefaultProfileByUse function (Deprecated in

Mac OS X v10.5) 801
CMSetDeviceDefaultProfileID function 802
CMSetDeviceFactoryProfiles function 803
CMSetDeviceProfile function 803
CMSetDeviceProfiles function (Deprecated in Mac OS

X v10.5) 804
CMSetDeviceState function 805
CMSetGammaByAVID function 806
CMSetIndImageProfile function (Deprecated in Mac

OS X v10.5) 807
CMSetIndImageProfileProcPtr callback 866
CMSetPartialProfileElement function 807
CMSetProfileByAVID function 808
CMSetProfileDescriptions function 809
CMSetProfileElement function 810
CMSetProfileElementReference function 811
CMSetProfileElementSize function 812
CMSetProfileHeader function 813
CMSetProfileLocalizedStringDictionary function

813
CMSetSystemProfile function (Deprecated in Mac OS

X v10.5) 814
cmSigCrdInfoType constant 1009
cmSigCurveType constant 1009
cmSigDataType constant 1009
cmSigDateTimeType constant 1009
cmSigLut16Type constant 1009
cmSigLut8Type constant 1009
cmSigMakeAndModelType constant 1020
cmSigMeasurementType constant 1010

cmSigMultiFunctA2BType constant 1010
cmSigMultiFunctB2AType constant 1010
cmSigMultiLocalizedUniCodeType constant 1020
cmSigNamedColor2Type constant 1010
cmSigNamedColorType constant 1010
cmSigNativeDisplayInfoType constant 1020
CMSignatureType structure 934
cmSigParametricCurveType constant 1010
cmSigProfileDescriptionType constant 1010
cmSigProfileSequenceDescType constant 1010
cmSigPS2CRDVMSizeType constant 1020
cmSigS15Fixed16Type constant 1010
cmSigScreeningType constant 1010
cmSigSignatureType constant 1010
cmSigTextType constant 1010
cmSigU16Fixed16Type constant 1010
cmSigU1Fixed15Type constant 1010
cmSigUcrBgType constant 1011
cmSigUInt16Type constant 1011
cmSigUInt32Type constant 1011
cmSigUInt64Type constant 1011
cmSigUInt8Type constant 1011
cmSigUnicodeTextType constant 1011
cmSigVideoCardGammaType constant 1020
cmSigViewingConditionsType constant 1011
cmSigXYZType constant 1011
cmspFavorEmbeddedMask constant 987
cmspInvalidImageFile constant 974
cmspInvalidImageSpace constant 974
cmspInvalidProfileDest constant 974
cmspInvalidProfileEmbed constant 974
cmspInvalidProfileLink constant 974
cmspInvalidProfileProof constant 974
cmspInvalidProfileSource constant 974
cmSpotFunctionCross constant 1014
cmSpotFunctionDefault constant 1014
cmSpotFunctionDiamond constant 1014
cmSpotFunctionEllipse constant 1014
cmSpotFunctionLine constant 1014
cmSpotFunctionRound constant 1014
cmSpotFunctionSquare constant 1014
cmSpotFunctionUnknown constant 1014
cmSRGB16ChannelEncoding constant 951
cmSRGBData constant 971
cmStdobs1931TwoDegrees constant 1015
cmStdobs1964TenDegrees constant 1015
cmStdobsUnknown constant 1015
CMTagElemTable structure 934
CMTagRecord structure 934
cmTechnologyAMDisplay constant 1017
cmTechnologyCRTDisplay constant 1017
cmTechnologyDigitalCamera constant 1016
cmTechnologyDyeSublimationPrinter constant 1016

2976
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

cmTechnologyElectrophotographicPrinter
constant 1016

cmTechnologyElectrostaticPrinter constant 1016
cmTechnologyFilmScanner constant 1016
cmTechnologyFilmWriter constant 1017
cmTechnologyFlexography constant 1017
cmTechnologyGravure constant 1017
cmTechnologyInkJetPrinter constant 1016
cmTechnologyOffsetLithography constant 1017
cmTechnologyPhotoCD constant 1017
cmTechnologyPhotographicPaperPrinter constant

1017
cmTechnologyPhotoImageSetter constant 1017
cmTechnologyPMDisplay constant 1017
cmTechnologyProjectionTelevision constant 1017
cmTechnologyReflectiveScanner constant 1016
cmTechnologySilkscreen constant 1017
cmTechnologyTag constant 1008
cmTechnologyThermalWaxPrinter constant 1016
cmTechnologyVideoCamera constant 1017
cmTechnologyVideoMonitor constant 1017
CMTextDescriptionType structure 935
CMTextType structure 935
cmTrap constant 987
cmTurnOffCache constant 1002
CMU16Fixed16ArrayType structure 936
cmUcrBgTag constant 1008
CMUcrBgType structure 936
cmUcrResponse constant 961
CMUInt16ArrayType structure 937
CMUInt32ArrayType structure 937
CMUInt64ArrayType structure 938
CMUInt8ArrayType structure 938
CMUnembedImage function (Deprecated in Mac OS X

v10.5) 814
CMUnembedImageProcPtr callback 867
CMUnicodeTextType structure 939
CMUnregisterColorDevice function 815
cmUnsupportedDataType constant 1021
CMUpdateProfile function 816
CMUpdateProfileSearch function (Deprecated in Mac

OS X v10.5) 817
cmUseDefaultChromaticAdaptation constant 951
CMValidateProfile function 818
CMValidImage function (Deprecated in Mac OS X v10.5)

819
CMValidImageProcPtr callback 868
CMVideoCardGamma structure 939
CMVideoCardGammaFormula structure 940
cmVideoCardGammaFormulaType constant 1018
CMVideoCardGammaTable structure 941
cmVideoCardGammaTableType constant 1018
cmVideoCardGammaTag constant 1019

CMVideoCardGammaType structure 941
cmViewingConditionsDescTag constant 1008
cmViewingConditionsTag constant 1008
CMViewingConditionsType structure 942
cmVonKriesChromaticAdaptation constant 951
cmWord565ColorPacking constant 958
cmWord5ColorPacking constant 958
CMWorldRef data type 942
cmWriteAccess constant 998
cmWriteSpool constant 976
cmXYZ24Space constant 967
cmXYZ32Space constant 967
cmXYZ48LSpace constant 967
cmXYZ48Space constant 967
CMXYZColor structure 943
CMXYZComponent data type 943
cmXYZData constant 970
cmXYZSpace constant 948
CMXYZType structure 944
cmYCbCrData constant 970
cmYellowResponse constant 961
CMYKColor data type 944
cmYXY32Space constant 967
CMYxyColor structure 944
cmYxyData constant 971
cmYXYSpace constant 948
cNoMemErr constant 2905
Color Bank Type 1439
Color Constants 2885
Color Information Type 1440
Color Management Module Component Interface 956
Color Model Values 2306
Color Modes 2298
Color Packing for Color Spaces 957
Color Rendering Intents 59
Color Responses 960
Color Selection Method 1440
Color Space Constants With Packing Formats 962
Color Space Masks 973
Color Space Models 57
Color Space Names 57
Color Space Signatures 969
Color2Index function (Deprecated in Mac OS X v10.4)

2583
ColorBankIs555 constant 1439
ColorBankIsCustom constant 1439
ColorBankIsExactAnd555 constant 1439
ColorBit function (Deprecated in Mac OS X v10.4) 2584
ColorComplementProcPtr callback 2834
ColorComplementUPP data type 2849
ColorInfo structure 1387
ColorSearchProcPtr callback 2834
ColorSearchUPP data type 2850

2977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ColorSpec structure 2850
colorsRequestedErr constant 1441
ColorSync Options 1802
ColorSync Scripting AppleEvent Errorsl 974
ColorTable structure 2851
colorXorXFer 2886
Command Delimiter Keys 1703
commandMark constant 1228
CommentSpec structure 1432
Comparison Operator Constants 574
Component Identifiers 2517
Component Identifiers (Deprecated) 2518
Component Interface Version 2518
Component Selector Proc Information 2522
Component Selectors 2519
CompositeIconRef function 1239
Confirm Flags 1153
Conjugation Constants 1351
Constant Colors 41
Constants for Object Specifiers, Positions, and Logical and

Comparison Operations 575
ConstATSUAttributeValuePtr data type 2003
ConstCStrList data type 1797
ConstPatternParam data type 2851
ConstPMRectList data type 1797
Constraint Types 1802
ConstSInt32List data type 1798
Context Options 703
ContinueSpeech function 1632
Control Flags Constants 1680
Control Panel Message Codes 1463
Control Panel Result Codes 1463
Convenience Constants 714, 2043
Converter Setup Ticket Keys 1803
Converting Mask 1351
CopyBits function (Deprecated in Mac OS X v10.4) 2584
CopyDeepMask function (Deprecated in Mac OS X v10.4)

2586
CopyMask function (Deprecated in Mac OS X v10.4) 2588
CopyPalette function (Deprecated in Mac OS X v10.4)

1363
CopyPhonemesFromText function 1633
CopyPixMap function (Deprecated in Mac OS X v10.4)

2589
CopyPixPat function (Deprecated in Mac OS X v10.4)

2590
CopyProcessName function 1445
CopyRgn function 2590
CopySpeechProperty function 1634
CountImageProfilesProcPtr callback 868
CountVoices function 1634
cParagraph constant 600
cPICT constant 600

CProcRec structure 2852
cProperty constant 600
cProtectErr constant 2905
CQDProcs structure 2852
cRangeErr constant 2905
CreateCGContextForPort function (Deprecated in Mac

OS X v10.4) 2591
CreateCompDescriptor function 498
CreateLogicalDescriptor function 499
CreateNewPort function (Deprecated in Mac OS X v10.4)

2592
CreateNewPortForCGDisplayID function (Deprecated

in Mac OS X v10.4) 2592
CreateObjSpecifier function 500
CreateOffsetDescriptor function 501
CreateRangeDescriptor function 502
cResErr constant 2905
cRGBColor constant 600
crossCursor constant 2886
CSpecArray data type 2854
CStrList structure 1798
CS_MAX_PATH constant 990
CTab2Palette function (Deprecated in Mac OS X v10.4)

1364
CTabChanged function (Deprecated in Mac OS X v10.4)

2593
cTempMemErr constant 2905
cURL 579
cURL constant 579
Current Device Versions 975
Current Info Versions 975
Current Major Version Mask 975
Current Voice Keys 1703
Cursor ID Constants 2886
Cursor structure 2854
CursorComponentChanged function (Deprecated in Mac

OS X v10.4) 2594
CursorComponentSetData function (Deprecated in Mac

OS X v10.4) 2594
cursorDoesAnimate 2887
CursorImageRec structure 2855
CursorInfo structure 2856
Curve Types 714
CustomXFerProcPtr callback 2835
CustomXFerRec structure 2856
cVersion 580
CWCheckBitmap function 819
CWCheckColors function 821
CWCheckPixMap function (Deprecated in Mac OS X v10.4)

822
CWConcatColorWorld function 823
CWDisposeColorWorld function 825
CWFillLookupTexture function 826

2978
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CWindowPtr data type 2856
CWMatchBitmap function 826
CWMatchColors function 828
CWMatchPixMap function (Deprecated in Mac OS X v10.4)

829
CWNewLinkProfile function (Deprecated in Mac OS X

v10.5) 830
cyanColor constant 2886

D

Data Array Constants 580
Data Not Specified Constants 704
Data Not Wanted Constants 2279
Data Representation Formats 2280
Data Transfer Commands 976
Data Transmission Keys 1805
Data Type Element Values 977
DCMAccessMethodID data type 1064
DCMAccessMethodIterator data type 1064
DCMAddRecord function (Deprecated in Mac OS X v10.5)

1028
dcmBadDataSizeErr constant 1081
dcmBadDictionaryErr constant 1080
dcmBadFeatureErr constant 1081
dcmBadFieldInfoErr constant 1081
dcmBadFieldTypeErr constant 1081
dcmBadFindMethodErr constant 1081
dcmBadKeyErr constant 1081
dcmBadPropertyErr constant 1081
dcmBlockFullErr constant 1080
dcmBufferOverflowErr constant 1082
DCMCloseDictionary function (Deprecated in Mac OS

X v10.5) 1029
DCMCompactDictionary function (Deprecated in Mac

OS X v10.5) 1030
DCMCountObjectIterator function (Deprecated in Mac

OS X v10.5) 1030
DCMCountRecord function (Deprecated in Mac OS X

v10.5) 1031
DCMCountRecordIterator function (Deprecated in Mac

OS X v10.5) 1032
DCMCreateAccessMethodIterator function

(Deprecated in Mac OS X v10.5) 1032
DCMCreateDictionaryIterator function (Deprecated

in Mac OS X v10.5) 1033
DCMCreateFieldInfoRecord function (Deprecated in

Mac OS X v10.5) 1033
DCMDeleteDictionary function (Deprecated in Mac OS

X v10.5) 1035
DCMDeleteRecord function (Deprecated in Mac OS X

v10.5) 1035

DCMDeriveNewDictionary function (Deprecated in Mac
OS X v10.5) 1036

dcmDictionaryBusyErr constant 1080
DCMDictionaryHeader structure 1064
DCMDictionaryID data type 1066
DCMDictionaryIterator data type 1066
dcmDictionaryNotOpenErr constant 1080
DCMDictionaryRef data type 1066
DCMDisposeObjectIterator function (Deprecated in

Mac OS X v10.5) 1037
DCMDisposeRecordIterator function (Deprecated in

Mac OS X v10.5) 1037
dcmDupRecordErr constant 1081
DCMFieldTag data type 1067
DCMFieldType data type 1067
DCMFindRecords function (Deprecated in Mac OS X

v10.5) 1038
DCMFoundRecordIterator data type 1067
DCMGetAccessMethodIDFromName function (Deprecated

in Mac OS X v10.5) 1040
DCMGetDictionaryFieldInfo function (Deprecated in

Mac OS X v10.5) 1040
DCMGetDictionaryIDFromFile function (Deprecated

in Mac OS X v10.5) 1041
DCMGetDictionaryIDFromRef function (Deprecated in

Mac OS X v10.5) 1042
DCMGetDictionaryProperty function (Deprecated in

Mac OS X v10.5) 1042
DCMGetDictionaryPropertyList function (Deprecated

in Mac OS X v10.5) 1043
DCMGetDictionaryWriteAccess function (Deprecated

in Mac OS X v10.5) 1044
DCMGetFieldAttributes function (Deprecated in Mac

OS X v10.5) 1045
DCMGetFieldData function (Deprecated in Mac OS X

v10.5) 1046
DCMGetFieldDefaultData function (Deprecated in Mac

OS X v10.5) 1047
DCMGetFieldFindMethods function (Deprecated in Mac

OS X v10.5) 1047
DCMGetFieldMaxRecordSize function (Deprecated in

Mac OS X v10.5) 1048
DCMGetFieldTagAndType function (Deprecated in Mac

OS X v10.5) 1048
DCMGetFileFromDictionaryID function (Deprecated

in Mac OS X v10.5) 1049
DCMGetNextRecord function (Deprecated in Mac OS X

v10.5) 1050
DCMGetNthRecord function (Deprecated in Mac OS X

v10.5) 1051
DCMGetPrevRecord function (Deprecated in Mac OS X

v10.5) 1052

2979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DCMGetRecordSequenceNumber function (Deprecated
in Mac OS X v10.5) 1053

DCMIterateFoundRecord function (Deprecated in Mac
OS X v10.5) 1053

DCMIterateObject function (Deprecated in Mac OS X
v10.5) 1055

dcmIterationCompleteErr constant 1081
DCMLibraryVersion function (Deprecated in Mac OS X

v10.5) 1055
dcmNecessaryFieldErr constant 1081
DCMNewDictionary function (Deprecated in Mac OS X

v10.5) 1056
dcmNoAccessMethodErr constant 1081
dcmNoFieldErr constant 1081
dcmNoRecordErr constant 1081
dcmNotDictionaryErr constant 1080
DCMObjectID data type 1067
DCMObjectIterator data type 1068
DCMObjectRef data type 1068
DCMOpenDictionary function (Deprecated in Mac OS X

v10.5) 1057
dcmParamErr constant 1080
dcmPermissionErr constant 1080
DCMProgressFilterProcPtr callback 1063
DCMProgressFilterUPP data type 1068
dcmProtectedErr constant 1081
DCMRegisterDictionaryFile function (Deprecated in

Mac OS X v10.5) 1058
DCMReleaseDictionaryWriteAccess function

(Deprecated in Mac OS X v10.5) 1059
DCMReorganizeDictionary function (Deprecated in

Mac OS X v10.5) 1059
DCMResetObjectIterator function (Deprecated in Mac

OS X v10.5) 1060
DCMSetDictionaryProperty function (Deprecated in

Mac OS X v10.5) 1061
DCMSetFieldData function (Deprecated in Mac OS X

v10.5) 1061
dcmTooManyKeyErr constant 1081
DCMUniqueID data type 1069
DCMUnregisterDictionary function (Deprecated in

Mac OS X v10.5) 1062
Default CMM Signature 977
Default Copy/Collate Value 1811
Default Environment Names 1353
Default IDs 978
Default Options 1224
DelComp function (Deprecated in Mac OS X v10.4) 2595
Deleted Glyph Code 715
DelimiterInfo structure 1670
DelSearch function (Deprecated in Mac OS X v10.4) 2595
DeltaPoint function (Deprecated in Mac OS X v10.4)

2596

deltapoint function (Deprecated in Mac OS X v10.4)
2596

Dependent Notification Constants 1153
DependentNotifyRec structure 1138
Deprecated Language Constants 2420
Descriptor Type Constants 581
DescType data type 560
Destination Properties 237
Destination Types 2281
destPortErr constant 636
Device and Media Attributes 979
Device Attribute Constants 2887
Device Attribute Values for Version 2.x Profiles 978
Device Classes 979
Device Loop Flags 2889
Device States 980
Device Types 980
deviceIsIndirect 2890
DeviceLoop function (Deprecated in Mac OS X v10.4)

2597
DeviceLoopDrawingProcPtr callback 2836
DeviceLoopDrawingUPP data type 2857
DeviceLoopFlags data type 2857
DialogPtr data type 2857
diamondMark constant 1228
Dictionary Classes 1070
Dictionary Information Constants 1071
Dictionary Properties 1072
DiffRgn function 2598
Direct Data Selectors 2044
directType constant 2891
Display Capture Options 1553
Display Configuration Change Flags 1553
Display Configuration Scopes 1555
Display Fade Blend Fractions 1556
Display Fade Constants 1556
Display Gestalt Constants 1155
Display ID Defaults 1557
Display Mode Flags 1155
Display Mode Optional Properties 1558
Display Mode Standard Properties 1557
Display Version Values 1155
Display/Device ID Constants 1154
DisplayListEntryRec structure 1139
DisposeAECoerceDescUPP function 503
DisposeAECoercePtrUPP function 503
DisposeAEDisposeExternalUPP function 503
DisposeAEEventHandlerUPP function 504
DisposeAEFilterUPP function 504
DisposeAEIdleUPP function 504
DisposeATSCubicClosePathUPP function 1976
DisposeATSCubicCurveToUPP function 1976
DisposeATSCubicLineToUPP function 1977

2980
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DisposeATSCubicMoveToUPP function 1977
DisposeATSQuadraticClosePathUPP function 1978
DisposeATSQuadraticCurveUPP function 1978
DisposeATSQuadraticLineUPP function 1978
DisposeATSQuadraticNewPathUPP function 1979
DisposeATSUDirectLayoutOperationOverrideUPP

function 1979
DisposeCalcColorTableUPP function (Deprecated in

Mac OS X v10.4) 1411
DisposeCCursor function (Deprecated in Mac OS X

v10.4) 2598
DisposeCIcon function (Deprecated in Mac OS X v10.5)

1240
DisposeCMBitmapCallBackUPP function (Deprecated

in Mac OS X v10.5) 832
DisposeCMConcatCallBackUPP function (Deprecated

in Mac OS X v10.5) 832
DisposeCMFlattenUPP function (Deprecated in Mac OS

X v10.5) 833
DisposeCMMIterateUPP function (Deprecated in Mac

OS X v10.5) 833
DisposeCMProfileAccessUPP function (Deprecated in

Mac OS X v10.5) 834
DisposeCMProfileFilterUPP function (Deprecated in

Mac OS X v10.5) 834
DisposeCMProfileIterateUPP function (Deprecated

in Mac OS X v10.5) 834
DisposeColorComplementUPP function (Deprecated in

Mac OS X v10.4) 2599
DisposeColorPickMethodProcPtr callback 1428
DisposeColorPickMethodUPP data type 1433
DisposeColorSearchUPP function (Deprecated in Mac

OS X v10.4) 2599
DisposeCTable function (Deprecated in Mac OS X v10.4)

2599
DisposeDeviceLoopDrawingUPP function (Deprecated

in Mac OS X v10.4) 2600
DisposeDisposeColorPickMethodUPP function

(Deprecated in Mac OS X v10.4) 1411
DisposeDMComponentListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1088
DisposeDMDisplayListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1088
DisposeDMDisplayModeListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1089
DisposeDMExtendedNotificationUPP function

(Deprecated in Mac OS X v10.4) 1089
DisposeDMNotificationUPP function (Deprecated in

Mac OS X v10.4) 1089
DisposeDMProfileListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1090
DisposeDragGrayRgnUPP function (Deprecated in Mac

OS X v10.4) 2600

DisposeFBCCallbackUPP function (Deprecated in Mac
OS X v10.4) 2383

DisposeFBCHitTestUPP function (Deprecated in Mac
OS X v10.4) 2384

DisposeFMFontCallbackFilterUPP function 679
DisposeFMFontFamilyCallbackFilterUPP function

679
DisposeGDevice function (Deprecated in Mac OS X

v10.4) 2601
DisposeGWorld function (Deprecated in Mac OS X v10.4)

2601
DisposeIconActionUPP function 1241
DisposeIconGetterUPP function 1241
DisposeIconSuite function (Deprecated in Mac OS X

v10.5) 1241
DisposeInitPickMethodUPP function (Deprecated in

Mac OS X v10.4) 1412
DisposeOSLAccessorUPP function 504
DisposeOSLAdjustMarksUPP function 505
DisposeOSLCompareUPP function 505
DisposeOSLCountUPP function 505
DisposeOSLDisposeTokenUPP function 506
DisposeOSLGetErrDescUPP function 506
DisposeOSLGetMarkTokenUPP function 506
DisposeOSLMarkUPP function 507
DisposePalette function (Deprecated in Mac OS X

v10.4) 1365
DisposePictInfo function (Deprecated in Mac OS X

v10.4) 1412
DisposePixMap function (Deprecated in Mac OS X v10.4)

2602
DisposePixPat function (Deprecated in Mac OS X v10.4)

2602
DisposePMIdleUPP function (Deprecated in Mac OS X

v10.4) 2137
DisposePort function (Deprecated in Mac OS X v10.4)

2603
DisposeQDArcUPP function (Deprecated in Mac OS X

v10.4) 2603
DisposeQDBitsUPP function (Deprecated in Mac OS X

v10.4) 2603
DisposeQDCommentUPP function (Deprecated in Mac OS

X v10.4) 2604
DisposeQDGetPicUPP function (Deprecated in Mac OS

X v10.4) 2604
DisposeQDJShieldCursorUPP function (Deprecated in

Mac OS X v10.4) 2604
DisposeQDLineUPP function (Deprecated in Mac OS X

v10.4) 2605
DisposeQDOpcodeUPP function (Deprecated in Mac OS

X v10.4) 2605
DisposeQDOvalUPP function (Deprecated in Mac OS X

v10.4) 2605

2981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DisposeQDPolyUPP function (Deprecated in Mac OS X
v10.4) 2606

DisposeQDPutPicUPP function (Deprecated in Mac OS
X v10.4) 2606

DisposeQDRectUPP function (Deprecated in Mac OS X
v10.4) 2606

DisposeQDRgnUPP function (Deprecated in Mac OS X
v10.4) 2607

DisposeQDRRectUPP function (Deprecated in Mac OS X
v10.4) 2607

DisposeQDStdGlyphsUPP function (Deprecated in Mac
OS X v10.4) 2607

DisposeQDTextUPP function (Deprecated in Mac OS X
v10.4) 2608

DisposeQDTxMeasUPP function (Deprecated in Mac OS
X v10.4) 2608

DisposeRecordColorsUPP function (Deprecated in Mac
OS X v10.4) 1413

DisposeRedrawBackgroundUPP function 1980
DisposeRegionToRectsUPP function (Deprecated in

Mac OS X v10.4) 2608
DisposeRgn function 2609
DisposeScreenBuffer function (Deprecated in Mac OS

X v10.4) 2609
DisposeSpeechChannel function 1635
DisposeSpeechDoneUPP function 1635
DisposeSpeechErrorUPP function 1636
DisposeSpeechPhonemeUPP function 1636
DisposeSpeechSyncUPP function 1637
DisposeSpeechTextDoneUPP function 1637
DisposeSpeechWordUPP function 1637
DisposeStyleRunDirectionUPP function (Deprecated

in Mac OS X v10.4) 2914
ditherCopy constant 2903
ditherPix constant 2894
DMAddDisplay function (Deprecated in Mac OS X v10.4)

1090
dmAllDisplays constant 1148
DMBeginConfigureDisplays function (Deprecated in

Mac OS X v10.4) 1091
DMBlockMirroring function (Deprecated in Mac OS X

v10.4) 1092
DMCanMirrorNow function (Deprecated in Mac OS X

v10.4) 1093
DMCheckDisplayMode function (Deprecated in Mac OS

X v10.4) 1094
DMComponentListEntryRec structure 1140
DMComponentListIteratorProcPtr callback 1132
DMComponentListIteratorUPP data type 1141
DMConfirmConfiguration function (Deprecated in Mac

OS X v10.4) 1095
DMDepthInfoBlockRec structure 1141
DMDepthInfoRec structure 1142

DMDisableDisplay function (Deprecated in Mac OS X
v10.4) 1095

DMDisplayListIteratorProcPtr callback 1133
DMDisplayListIteratorUPP data type 1142
DMDisplayModeListEntryRec structure 1143
DMDisplayModeListIteratorProcPtr callback 1133
DMDisplayModeListIteratorUPP data type 1144
DMDisplayTimingInfoRec structure 1144
DMDisposeAVComponent function (Deprecated in Mac

OS X v10.4) 1096
DMDisposeDisplay function (Deprecated in Mac OS X

v10.4) 1096
DMDisposeList function (Deprecated in Mac OS X v10.4)

1097
DMDrawDesktopRect function (Deprecated in Mac OS X

v10.4) 1098
DMDrawDesktopRegion function (Deprecated in Mac OS

X v10.4) 1098
DMEnableDisplay function (Deprecated in Mac OS X

v10.4) 1099
DMEndConfigureDisplays function (Deprecated in Mac

OS X v10.4) 1099
DMExtendedNotificationProcPtr callback 1134
DMExtendedNotificationUPP data type 1145
DMFidelityType data type 1145
DMGetAVPowerState function (Deprecated in Mac OS X

v10.4) 1100
DMGetDeskRegion function (Deprecated in Mac OS X

v10.4) 1101
DMGetDeviceAVIDByPortAVID function (Deprecated in

Mac OS X v10.4) 1101
DMGetDeviceComponentByAVID function (Deprecated

in Mac OS X v10.4) 1102
DMGetDisplayComponent function (Deprecated in Mac

OS X v10.4) 1102
DMGetDisplayIDByGDevice function (Deprecated in

Mac OS X v10.4) 1102
DMGetDisplayMode function (Deprecated in Mac OS X

v10.4) 1103
DMGetEnableByAVID function (Deprecated in Mac OS X

v10.4) 1104
DMGetFirstScreenDevice function (Deprecated in Mac

OS X v10.4) 1104
DMGetGDeviceByDisplayID function (Deprecated in

Mac OS X v10.4) 1105
DMGetGraphicInfoByAVID function (Deprecated in Mac

OS X v10.4) 1106
DMGetIndexedComponentFromList function

(Deprecated in Mac OS X v10.4) 1106
DMGetIndexedDisplayModeFromList function

(Deprecated in Mac OS X v10.4) 1107
DMGetNameByAVID function (Deprecated in Mac OS X

v10.4) 1108

2982
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DMGetNextMirroredDevice function (Deprecated in
Mac OS X v10.4) 1108

DMGetNextScreenDevice function (Deprecated in Mac
OS X v10.4) 1109

DMGetPortComponentByAVID function (Deprecated in
Mac OS X v10.4) 1110

DMIsMirroringOn function (Deprecated in Mac OS X
v10.4) 1110

DMListIndexType data type 1145
DMListType data type 1145
DMMakeAndModelRec structure 1146
DMMirrorDevices function (Deprecated in Mac OS X

v10.4) 1111
DMModalFilterUPP data type 1146
DMMoveDisplay function (Deprecated in Mac OS X v10.4)

1112
DMNewAVDeviceList function (Deprecated in Mac OS X

v10.4) 1113
DMNewAVEngineList function (Deprecated in Mac OS X

v10.4) 1113
DMNewAVIDByDeviceComponent function (Deprecated

in Mac OS X v10.4) 1114
DMNewAVIDByPortComponent function (Deprecated in

Mac OS X v10.4) 1114
DMNewAVPanelList function (Deprecated in Mac OS X

v10.4) 1114
DMNewAVPortListByDeviceAVID function (Deprecated

in Mac OS X v10.4) 1115
DMNewAVPortListByPortType function (Deprecated in

Mac OS X v10.4) 1115
DMNewDisplay function (Deprecated in Mac OS X v10.4)

1115
DMNewDisplayModeList function (Deprecated in Mac

OS X v10.4) 1117
DMNotificationProcPtr callback 1136
DMNotificationUPP data type 1146
dmOnlyActiveDisplays constant 1148
DMProcessInfoPtr data type 1147
DMProfileListEntryRec structure 1147
DMProfileListIteratorProcPtr callback 1136
DMProfileListIteratorUPP data type 1147
DMQDIsMirroringCapable function (Deprecated in Mac

OS X v10.4) 1117
DMRegisterExtendedNotifyProc function (Deprecated

in Mac OS X v10.4) 1118
DMRegisterNotifyProc function (Deprecated in Mac

OS X v10.4) 1119
DMRemoveDisplay function (Deprecated in Mac OS X

v10.4) 1119
DMRemoveExtendedNotifyProc function (Deprecated

in Mac OS X v10.4) 1120
DMRemoveNotifyProc function (Deprecated in Mac OS

X v10.4) 1121

DMResolveDisplayComponents function (Deprecated
in Mac OS X v10.4) 1121

DMSaveScreenPrefs function (Deprecated in Mac OS X
v10.4) 1122

DMSendDependentNotification function (Deprecated
in Mac OS X v10.4) 1122

DMSetAVPowerState function (Deprecated in Mac OS X
v10.4) 1123

DMSetDisplayComponent function (Deprecated in Mac
OS X v10.4) 1124

DMSetDisplayMode function (Deprecated in Mac OS X
v10.4) 1125

DMSetEnableByAVID function (Deprecated in Mac OS X
v10.4) 1126

DMSetMainDisplay function (Deprecated in Mac OS X
v10.4) 1126

DMUnblockMirroring function (Deprecated in Mac OS
X v10.4) 1127

DMUnmirrorDevice function (Deprecated in Mac OS X
v10.4) 1127

DNG Dictionary Keys 2331
Document Format Strings 2282
Document Ticket Keys 1806
dontMatchSeeds constant 2889
Drag Constraint Constants 2890
DragConstraint data type 2857
DragGrayRgnProcPtr callback 2837
DragGrayRgnUPP data type 2858
DrawChar function (Deprecated in Mac OS X v10.4) 2914
Drawing Resolution Keys 1806
DrawJustified function (Deprecated in Mac OS X v10.4)

2915
DrawPicture function (Deprecated in Mac OS X v10.4)

2610
DrawString function (Deprecated in Mac OS X v10.4)

2917
DrawText function (Deprecated in Mac OS X v10.4) 2918
Duplex Modes 2282
Duplex Options 1807
duplicatePasteboardFlavorErr constant 1408

E

Edit Preference Constants 2522
Element Tags and Signatures for Version 1.0 Profiles 981
Embedded Profile Flags 982
Embedded Profile Identifiers 982
EmbedImageProcPtr callback 869
EmptyRect function 2611
EmptyRgn function 2612
Engine Limitations 1353

2983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Entry2Index function (Deprecated in Mac OS X v10.4)
1366

EqualPt function 2613
EqualRect function 2613
EqualRgn function 2614
erase constant 2904
EraseArc function (Deprecated in Mac OS X v10.4) 2615
EraseOval function (Deprecated in Mac OS X v10.4) 2615
ErasePoly function (Deprecated in Mac OS X v10.4) 2616
EraseRect function (Deprecated in Mac OS X v10.4) 2617
EraseRgn function (Deprecated in Mac OS X v10.4) 2618
EraseRoundRect function (Deprecated in Mac OS X

v10.4) 2618
errAEAccessorNotFound constant 638
errAEBadKeyForm constant 640
errAEBadListItem constant 637
errAEBadTestKey constant 638
errAEBufferTooSmall constant 639
errAEBuildSyntaxError constant 639
errAECantHandleClass constant 640
errAECantPutThatThere constant 641
errAECantSupplyType constant 640
errAECantUndo constant 641
errAECoercionFail constant 636
errAECorruptData constant 636
errAEDescIsNull constant 639
errAEDescNotFound constant 636
errAEDuplicateHandler constant 639
errAEEmptyListContainer constant 638
errAEEventFailed constant 640
errAEEventFiltered constant 639
errAEEventNotHandled constant 637
errAEHandlerNotFound constant 637
errAEIllegalIndex constant 638
errAEImpossibleRange constant 638
errAEIndexTooLarge constant 640
errAEInTransaction constant 640
errAENegativeCount constant 638
errAENewerVersion constant 637
errAENoSuchLogical constant 638
errAENoSuchObject constant 638
errAENoSuchTransaction constant 641
errAENotAEDesc constant 637
errAENotAnElement constant 640
errAENotAnEnumMember constant 641
errAENotAnObjectSpec constant 638
errAENotAppleEvent constant 637
errAENotASingleObject constant 641
errAENotASpecialFunction constant 637
errAENotModifiable constant 640
errAENoUserInteraction constant 637
errAENoUserSelection constant 641
errAEParamMissed constant 637

errAEPrivilegeError constant 640
errAEPropertiesClash constant 641
errAEReadDenied constant 640
errAEReceiveEscapeCurrent constant 639
errAEReceiveTerminate constant 639
errAERecordingIsAlreadyOn constant 638
errAEReplyNotArrived constant 638
errAEReplyNotValid constant 637
errAEStreamAlreadyConverted constant 639
errAEStreamBadNesting constant 639
errAETimeout constant 637
errAETypeError constant 640
errAEUnknownAddressType constant 637
errAEUnknownObjectType constant 638
errAEUnknownSendMode constant 637
errAEWaitCanceled constant 637
errAEWriteDenied constant 640
errAEWrongDataType constant 637
errAEWrongNumberArgs constant 638
errASCantCompareMoreThan32k constant 639
errASCantConsiderAndIgnore constant 639
errASIllegalFormalParameter constant 639
errASNoResultReturned constant 640
errASParameterNotForEvent constant 640
errASTerminologyNestingTooDeep constant 639
errIANoErr constant 2421
Error Callback User-Information String 1705
Error Handling Options 1807
eScheme 585
Event Class Constants 585
Event Fields 1610
Event Filter Masks 1618
Event Flags 1618
Event Handler Flags 586
Event ID Constants 586
Event Source Constants 588
Event Source States 1619
Event Source Token 1620
Event Suppression States 1621
Event Tap Locations 1621
Event Tap Options 1622
Event Tap Placement 1622
Event Type Mask 1626
Event Types 1623
EXIF Auxiliary Dictionary Keys 2314
EXIF Dictionary Keys 2307
ExitToShell function 1445
ext32Device constant 2888
Extension Launch Codes 1463

2984
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

F

Factoring Constants 589
FamRec structure 1214
FBCAddAllVolumesToSession function (Deprecated in

Mac OS X v10.4) 2384
FBCAddVolumeToSession function (Deprecated in Mac

OS X v10.4) 2385
FBCBlindExampleSearch function (Deprecated in Mac

OS X v10.4) 2385
FBCBlindExampleSearchWithCallback function

(Deprecated in Mac OS X v10.4) 2386
FBCCallbackProcPtr callback 2414
FBCCallbackUPP data type 2416
FBCCloneSearchSession function (Deprecated in Mac

OS X v10.4) 2388
FBCCreateSearchSession function (Deprecated in Mac

OS X v10.4) 2388
FBCDeleteIndexFileForFolder function (Deprecated

in Mac OS X v10.4) 2389
FBCDestroySearchSession function (Deprecated in

Mac OS X v10.4) 2390
FBCDestroyWordList function (Deprecated in Mac OS

X v10.4) 2390
FBCDisposeSummary function (Deprecated in Mac OS X

v10.4) 2391
FBCDoCFStringSearch function (Deprecated in Mac OS

X v10.4) 2391
FBCDoExampleSearch function (Deprecated in Mac OS

X v10.4) 2393
FBCDoQuerySearch function (Deprecated in Mac OS X

v10.4) 2394
FBCFindIndexFileFolderForFolder function

(Deprecated in Mac OS X v10.4) 2395
FBCGetHitCount function (Deprecated in Mac OS X

v10.4) 2395
FBCGetHitDocument function (Deprecated in Mac OS X

v10.4) 2396
FBCGetHitDocumentRef function (Deprecated in Mac

OS X v10.4) 2397
FBCGetHitScore function (Deprecated in Mac OS X

v10.4) 2397
FBCGetMatchedWords function (Deprecated in Mac OS

X v10.4) 2398
FBCGetSessionVolumeCount function (Deprecated in

Mac OS X v10.4) 2399
FBCGetSessionVolumes function (Deprecated in Mac

OS X v10.4) 2399
FBCGetSummaryOfCFString function (Deprecated in

Mac OS X v10.4) 2400
FBCGetSummarySentenceCount function (Deprecated

in Mac OS X v10.4) 2400

FBCGetSummarySentences function (Deprecated in Mac
OS X v10.4) 2401

FBCGetTopicWords function (Deprecated in Mac OS X
v10.4) 2402

FBCHitTestProcPtr callback 2415
FBCHitTestUPP data type 2416
FBCIndexItems function (Deprecated in Mac OS X v10.4)

2403
FBCIndexItemsInLanguages function (Deprecated in

Mac OS X v10.4) 2403
FBCReleaseSessionHits function (Deprecated in Mac

OS X v10.4) 2404
FBCRemoveVolumeFromSession function (Deprecated

in Mac OS X v10.4) 2405
FBCSearchSession data type 2416
FBCSetCallback function (Deprecated in Mac OS X

v10.4) 2405
FBCSetHeapReservation function (Deprecated in Mac

OS X v10.4) 2406
FBCSetSessionCallback function (Deprecated in Mac

OS X v10.4) 2406
FBCSetSessionHitTest function (Deprecated in Mac

OS X v10.4) 2407
FBCSetSessionVolumes function (Deprecated in Mac

OS X v10.4) 2408
FBCSummarize function (Deprecated in Mac OS X v10.4)

2408
FBCSummarizeCFString function (Deprecated in Mac

OS X v10.4) 2409
FBCSummaryRef data type 2417
FBCVolumeIndexPhysicalSize function (Deprecated

in Mac OS X v10.4) 2410
FBCVolumeIndexTimeStamp function (Deprecated in

Mac OS X v10.4) 2410
FBCVolumeIsIndexed function (Deprecated in Mac OS

X v10.4) 2411
FBCVolumeIsRemote function (Deprecated in Mac OS X

v10.4) 2411
FBCWordItem data type 2417
FBCWordList data type 2417
Fetch options 1808
FetchFontInfo function (Deprecated in Mac OS X v10.4)

1171
Fidelity Check Constants 1156
Field Attributes 1073
Field Data Tags 1074
Field Data Types 1074
Field Info Record Entries 1076
Field Info Record Types 1077
File Creator Constants 1349
File Specification Header Size 2523
File Specification Header Size (Deprecated) 2523
File Type Constants 2523

2985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Filesharing Privilege Icon Constants 1315
fill constant 2904
FillArc function (Deprecated in Mac OS X v10.4) 2619
FillCArc function (Deprecated in Mac OS X v10.4) 2620
FillCOval function (Deprecated in Mac OS X v10.4) 2621
FillCPoly function (Deprecated in Mac OS X v10.4) 2621
FillCRect function (Deprecated in Mac OS X v10.4) 2622
FillCRgn function (Deprecated in Mac OS X v10.4) 2622
FillCRoundRect function (Deprecated in Mac OS X

v10.4) 2623
FillOval function (Deprecated in Mac OS X v10.4) 2624
FillPoly function (Deprecated in Mac OS X v10.4) 2625
FillRect function (Deprecated in Mac OS X v10.4) 2626
FillRgn function (Deprecated in Mac OS X v10.4) 2626
FillRoundRect function (Deprecated in Mac OS X v10.4)

2627
fixedFont constant 1227
fixedType constant 2891
Flag Mask Definitions for Version 2.x Profiles 983
Flattened Data Font Type Selectors 2046
Flattened Data Format Selectors 2047
Flattened Data Version Numbers 2047
Flattened Style Run Data Options 2047
FlushIconRefs function (Deprecated in Mac OS X v10.3)

1242
FlushIconRefsByVolume function (Deprecated in Mac

OS X v10.3) 1243
FM Filter Format 711
FM Filter Selectors 711
FM Font Technologies 712
FMActivateFonts function (Deprecated in Mac OS X

v10.4) 1172
FMCreateFontFamilyInstanceIterator function

(Deprecated in Mac OS X v10.4) 1173
FMCreateFontFamilyIterator function (Deprecated

in Mac OS X v10.4) 1174
FMCreateFontIterator function (Deprecated in Mac

OS X v10.4) 1175
FMDeactivateFonts function (Deprecated in Mac OS X

v10.4) 1176
FMDisposeFontFamilyInstanceIterator function

(Deprecated in Mac OS X v10.4) 1176
FMDisposeFontFamilyIterator function (Deprecated

in Mac OS X v10.4) 1177
FMDisposeFontIterator function (Deprecated in Mac

OS X v10.4) 1177
FMetricRec structure 1212
FMetricRecHandle data type 1213
FMetricRecPtr data type 1213
FMFilter structure 693
FMFont data type 694
FMFontCallbackFilterProcPtr callback 685
FMFontCallbackFilterUPP data type 694

FMFontContainer data type 1207
FMFontDirectoryFilter structure 695
FMFontFamily data type 695
FMFontFamilyCallbackFilterProcPtr callback 686
FMFontFamilyCallbackFilterUPP data type 696
FMFontFamilyInstance structure 696
FMFontFamilyInstanceIterator structure 696
FMFontFamilyIterator structure 697
FMFontGetCGFontRefFromFontFamilyInstance

function 1178
FMFontInstance structure 1207
FMFontIterator structure 697
FMFontSize data type 698
FMFontSpecification structure 1208
FMFontStyle data type 698
FMGeneration data type 698
FMGetATSFontFamilyRefFromFontFamily function

(Deprecated in Mac OS X v10.4) 1179
FMGetATSFontRefFromFont function 1179
FMGetFontContainer function (Deprecated in Mac OS

X v10.4) 1179
FMGetFontContainerFromFontFamilyInstance

function (Deprecated in Mac OS X v10.4) 1180
FMGetFontFamilyFromATSFontFamilyRef function

(Deprecated in Mac OS X v10.4) 1181
FMGetFontFamilyFromName function (Deprecated in

Mac OS X v10.4) 1181
FMGetFontFamilyGeneration function (Deprecated in

Mac OS X v10.4) 1182
FMGetFontFamilyInstanceFromFont function

(Deprecated in Mac OS X v10.4) 1182
FMGetFontFamilyName function (Deprecated in Mac OS

X v10.4) 1183
FMGetFontFamilyResource function (Deprecated in

Mac OS X v10.4) 1184
FMGetFontFamilyTextEncoding function (Deprecated

in Mac OS X v10.4) 1185
FMGetFontFormat function (Deprecated in Mac OS X

v10.4) 1185
FMGetFontFromATSFontRef function 1186
FMGetFontFromFontFamilyInstance function

(Deprecated in Mac OS X v10.4) 1187
FMGetFontGeneration function (Deprecated in Mac OS

X v10.4) 1187
FMGetFontTable function (Deprecated in Mac OS X

v10.4) 1188
FMGetFontTableDirectory function (Deprecated in

Mac OS X v10.4) 1189
FMGetGeneration function (Deprecated in Mac OS X

v10.5) 1189
FMGetNextFont function (Deprecated in Mac OS X v10.4)

1190

2986
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

FMGetNextFontFamily function (Deprecated in Mac OS
X v10.4) 1190

FMGetNextFontFamilyInstance function (Deprecated
in Mac OS X v10.4) 1191

FMInput structure 1208
FMOutPtr data type 1209
FMOutput structure 1210
FMOutputPtr data type 1212
FMResetFontFamilyInstanceIterator function

(Deprecated in Mac OS X v10.4) 1192
FMResetFontFamilyIterator function (Deprecated in

Mac OS X v10.4) 1193
FMResetFontIterator function (Deprecated in Mac OS

X v10.4) 1194
FMSwapFont function (Deprecated in Mac OS X v10.4)

1195
FNSEnabled function 2427
FNSFeatureFlags data type 2456
FNSFontProfile data type 2457
FNSFontReference data type 2457
FNSMatchDefaultsGet function 2427
FNSProfileAddReference function 2428
FNSProfileClear function 2429
FNSProfileClose function 2430
FNSProfileCompact function 2430
FNSProfileCountReferences function 2431
FNSProfileCreate function 2432
FNSProfileCreateWithFSRef function 2433
FNSProfileGetIndReference function 2434
FNSProfileGetVersion function 2435
FNSProfileMatchReference function 2435
FNSProfileOpen function 2437
FNSProfileOpenWithFSRef function 2438
FNSProfileRemoveIndReference function 2439
FNSProfileRemoveReference function 2440
FNSReferenceCountNames function 2441
FNSReferenceCreate function 2441
FNSReferenceCreateFromFamily function 2442
FNSReferenceDispose function 2444
FNSReferenceFindName function 2444
FNSReferenceFlatten function 2446
FNSReferenceFlattenedSize function 2447
FNSReferenceGetFamilyInfo function 2447
FNSReferenceGetIndName function 2448
FNSReferenceGetVersion function 2450
FNSReferenceMatch function 2451
FNSReferenceMatchFamilies function 2452
FNSReferenceMatchFonts function 2453
FNSReferenceUnflatten function 2454
FNSSysInfo structure 2458
FNSSysInfoGet function 2455
Folder Icon Constants 1315
Font Constants 1225

Font Fallback Methods 2048
Font Filter Selectors 705
Font Filter Versions 706
Font Formats 706
Font ID Constants 1225
Font Profile Constants 2461
Font Query Message ID 708
Font Request Query Keys 706
Font Table Index Values 193
Font Variation Axis Keys 194
FontAssoc structure 1216
FontFamilyID data type 1208
FontInfo structure 2947
FontMetrics function (Deprecated in Mac OS X v10.4)

1195
FontPointSize data type 1213
FontRec structure 1216
FontRecHdl data type 1217
FontRecPtr data type 1217
FontSpec structure 1433
fontWid constant 1227
ForEachIconDo function (Deprecated in Mac OS X v10.5)

1244
ForeColor function (Deprecated in Mac OS X v10.4) 2628
formAbsolutePosition constant 590
Format-Specific Dictionaries 2301
FormatOrder data type 2948
formName constant 591
formPropertyID constant 591
formRange constant 591
formRelativePosition constant 591
formTest constant 591
formUniqueID constant 580
formWhose constant 607
frame constant 2904
FrameArc function (Deprecated in Mac OS X v10.4) 2629
FrameOval function (Deprecated in Mac OS X v10.4) 2630
FramePoly function (Deprecated in Mac OS X v10.4) 2630
FrameRect function (Deprecated in Mac OS X v10.4) 2631
FrameRgn function (Deprecated in Mac OS X v10.4) 2632
FrameRoundRect function (Deprecated in Mac OS X

v10.4) 2633
Front Process Options 1464
fxdFntH constant 1227
fxdFntHW constant 1227
fxdFntW constant 1227

G

GammaTbl structure 2858
gdDevType constant 2891
GDevice structure 2859

2987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GDeviceChanged function (Deprecated in Mac OS X
v10.4) 2633

Gender Constants 1681
genericDocumentIconResource 1320
Geometric Zeroes 2375
Geometrical Null 2375
Get Name By AVID Mask 1156
GetAppFont function (Deprecated in Mac OS X v10.4)

1196
GetBackColor function (Deprecated in Mac OS X v10.4)

2634
GetCCursor function (Deprecated in Mac OS X v10.4)

2635
GetCIcon function (Deprecated in Mac OS X v10.5) 1244
GetClip function 2635
GetCPixel function (Deprecated in Mac OS X v10.4) 2636
GetCTable function (Deprecated in Mac OS X v10.4) 2636
GetCTSeed function (Deprecated in Mac OS X v10.4) 2638
GetCurrentProcess function 1446
GetCursor function (Deprecated in Mac OS X v10.4) 2638
GetCustomIconsEnabled function 1245
GetDefFontSize function (Deprecated in Mac OS X

v10.4) 1197
GetDeviceList function (Deprecated in Mac OS X v10.4)

2639
GetEntryColor function (Deprecated in Mac OS X v10.4)

1367
GetEntryUsage function (Deprecated in Mac OS X v10.4)

1367
GetFNum function (Deprecated in Mac OS X v10.4) 1197
GetFontInfo function (Deprecated in Mac OS X v10.4)

2919
GetFontName function (Deprecated in Mac OS X v10.4)

1198
GetForeColor function (Deprecated in Mac OS X v10.4)

2639
GetFormatOrder function (Deprecated in Mac OS X

v10.4) 2920
GetFrontProcess function 1446
GetGDevice function (Deprecated in Mac OS X v10.4)

2640
GetGray function (Deprecated in Mac OS X v10.4) 1368
GetGWorld function 2640
GetGWorldDevice function (Deprecated in Mac OS X

v10.4) 2641
GetGWorldPixMap function (Deprecated in Mac OS X

v10.4) 2642
GetIcon function (Deprecated in Mac OS X v10.5) 1246
GetIconCacheData function (Deprecated in Mac OS X

v10.5) 1246
GetIconCacheProc function (Deprecated in Mac OS X

v10.5) 1247
GetIconFamilyData function 1248

GetIconFromSuite function (Deprecated in Mac OS X
v10.5) 1249

GetIconRef function 1249
GetIconRefFromComponent function 1250
GetIconRefFromFile function (Deprecated in Mac OS

X v10.5) 1251
GetIconRefFromFileInfo function 1251
GetIconRefFromFolder function 1252
GetIconRefFromIconFamilyPtr function 1253
GetIconRefFromTypeInfo function 1254
GetIconRefOwners function 1255
GetIconRefVariant function 1255
GetIconSizesFromIconRef function (Deprecated in

Mac OS X v10.3) 1256
GetIconSuite function (Deprecated in Mac OS X v10.5)

1257
GetImageSpaceProcPtr callback 870
GetIndImageProfileProcPtr callback 870
GetIndPattern function (Deprecated in Mac OS X v10.4)

2643
GetIndVoice function 1638
GetLabel function (Deprecated in Mac OS X v10.5) 1258
GetMainDevice function (Deprecated in Mac OS X v10.4)

2644
GetMaskTable function (Deprecated in Mac OS X v10.4)

2644
GetMaxDevice function (Deprecated in Mac OS X v10.4)

2644
GetNewPalette function (Deprecated in Mac OS X v10.4)

1369
GetNextDevice function (Deprecated in Mac OS X v10.4)

2645
GetNextProcess function 1447
GetOutlinePreferred function (Deprecated in Mac OS

X v10.4) 1198
GetPalette function (Deprecated in Mac OS X v10.4)

1370
GetPaletteUpdates function (Deprecated in Mac OS X

v10.4) 1371
GetPattern function (Deprecated in Mac OS X v10.4)

2646
GetPen function (Deprecated in Mac OS X v10.4) 2646
GetPenState function (Deprecated in Mac OS X v10.4)

2647
GetPictInfo function (Deprecated in Mac OS X v10.4)

1414
GetPicture function (Deprecated in Mac OS X v10.4)

2648
GetPixBaseAddr function 2648
GetPixBounds function (Deprecated in Mac OS X v10.4)

2649
GetPixDepth function (Deprecated in Mac OS X v10.4)

2650

2988
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetPixel function (Deprecated in Mac OS X v10.4) 2650
GetPixelsState function (Deprecated in Mac OS X

v10.4) 2651
GetPixMapInfo function (Deprecated in Mac OS X v10.4)

1416
GetPixPat function (Deprecated in Mac OS X v10.4) 2651
GetPixRowBytes function (Deprecated in Mac OS X

v10.4) 2652
GetPort function (Deprecated in Mac OS X v10.4) 2652
GetPortBackColor function (Deprecated in Mac OS X

v10.4) 2653
GetPortBackPixPat function (Deprecated in Mac OS X

v10.4) 2653
GetPortBitMapForCopyBits function (Deprecated in

Mac OS X v10.4) 2654
GetPortBounds function (Deprecated in Mac OS X v10.4)

2654
GetPortChExtra function (Deprecated in Mac OS X

v10.4) 2655
GetPortClipRegion function (Deprecated in Mac OS X

v10.4) 2655
GetPortCustomXFerProc function (Deprecated in Mac

OS X v10.4) 2655
GetPortFillPixPat function (Deprecated in Mac OS X

v10.4) 2656
GetPortForeColor function (Deprecated in Mac OS X

v10.4) 2656
GetPortFracHPenLocation function (Deprecated in

Mac OS X v10.4) 2657
GetPortGrafProcs function (Deprecated in Mac OS X

v10.4) 2657
GetPortHiliteColor function (Deprecated in Mac OS

X v10.4) 2658
GetPortOpColor function (Deprecated in Mac OS X

v10.4) 2658
GetPortPenLocation function (Deprecated in Mac OS

X v10.4) 2658
GetPortPenMode function (Deprecated in Mac OS X

v10.4) 2659
GetPortPenPixPat function (Deprecated in Mac OS X

v10.4) 2659
GetPortPenSize function (Deprecated in Mac OS X

v10.4) 2660
GetPortPenVisibility function (Deprecated in Mac

OS X v10.4) 2660
GetPortPixMap function (Deprecated in Mac OS X v10.4)

2660
GetPortSpExtra function (Deprecated in Mac OS X

v10.4) 2661
GetPortTextFace function (Deprecated in Mac OS X

v10.4) 2661
GetPortTextFont function (Deprecated in Mac OS X

v10.4) 2662

GetPortTextMode function (Deprecated in Mac OS X
v10.4) 2662

GetPortTextSize function (Deprecated in Mac OS X
v10.4) 2662

GetPortVisibleRegion function (Deprecated in Mac
OS X v10.4) 2663

GetPreserveGlyph function (Deprecated in Mac OS X
v10.4) 1199

GetProcessBundleLocation function 1447
GetProcessForPID function 1448
GetProcessInformation function 1448
GetProcessPID function 1449
GetQDGlobalsArrow function (Deprecated in Mac OS X

v10.4) 2663
GetQDGlobalsBlack function (Deprecated in Mac OS X

v10.4) 2663
GetQDGlobalsDarkGray function (Deprecated in Mac

OS X v10.4) 2664
GetQDGlobalsGray function (Deprecated in Mac OS X

v10.4) 2664
GetQDGlobalsLightGray function (Deprecated in Mac

OS X v10.4) 2665
GetQDGlobalsRandomSeed function (Deprecated in Mac

OS X v10.4) 2665
GetQDGlobalsScreenBits function (Deprecated in Mac

OS X v10.4) 2665
GetQDGlobalsThePort function (Deprecated in Mac OS

X v10.4) 2666
GetQDGlobalsWhite function (Deprecated in Mac OS X

v10.4) 2666
GetRegionBounds function 2666
GetSpeechInfo function 1638
GetSpeechPitch function 1639
GetSpeechRate function 1640
GetSubTable function (Deprecated in Mac OS X v10.4)

2667
GetSuiteLabel function (Deprecated in Mac OS X v10.5)

1259
GetSysFont function (Deprecated in Mac OS X v10.4)

1199
GetVoiceDescription function 1640
GetVoiceInfo function 1641
GIF Dictionary Keys 2316
Global Scope Option 1226
GlobalToLocal function (Deprecated in Mac OS X v10.4)

2667
Glyph Collection Types 2050
Glyph Direction Selectors 2051
Glyph Origin Selectors 2049
Glyph Property Flags 2051
GlyphID data type 702
GPS Dictionary Keys 2316
Gradient Drawing Options 207

2989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GrafDevice function (Deprecated in Mac OS X v10.4)
2668

GrafPort structure 2861
GrafPtr data type 2861
GrafVars structure 2862
GrafVerb data type 2862
Graphics Context Types 2283
Graphics Device Type Constants 2891
Graphics World Flags 2891
grayishTextOr constant 2901
greenColor constant 2885
gwFlagErr constant 2894
GWorldFlags data type 2863
GWorldPtr data type 2863

H

HandleToRgn function 2668
hardwareConfigErr constant 1468
HasDepth function (Deprecated in Mac OS X v10.4) 1371
Height and Width Constants 1226
HICopyAccessibilityActionDescription function

2076
HICopyAccessibilityRoleDescription function

2077
HideCursor function 2668
HidePen function (Deprecated in Mac OS X v10.4) 2669
Highlight Methods 2053
hilite constant 2902
HiliteColor function (Deprecated in Mac OS X v10.4)

2670
HiliteText function (Deprecated in Mac OS X v10.4)

2921
HIObjectIsAccessibilityIgnored function 2077
HIObjectOverrideAccessibilityContainment

function 2078
HIObjectSetAccessibilityIgnored function 2079
HIObjectSetAuxiliaryAccessibilityAttribute

function 2080
HomographAccent data type 1343
HomographDicInfoRec structure 1344
HomographWeight data type 1344

I

iBeamCursor constant 2886
ICAddMapEntry function 2472
ICAddProfile function 2473
ICAppSpec structure 2510
ICAppSpecList structure 2510

ICBegin function 2473
ICC Profile Versions 985
ICCAddMapEntry function 2473
ICCAddProfile function 2474
ICCBegin function 2474
ICCChooseConfig function 2474
ICCChooseNewConfig function 2474
ICCCountMapEntries function 2475
ICCCountPref function 2475
ICCCountProfiles function 2475
ICCCreateGURLEvent function 2476
ICCDefaultFileName function 2476
ICCDeleteMapEntry function 2476
ICCDeletePref function 2477
ICCDeleteProfile function 2477
ICCEditPreferences function 2477
ICCEnd function 2477
ICCFindConfigFile function 2478
ICCFindPrefHandle function 2478
ICCFindUserConfigFile function 2478
ICCGeneralFindConfigFile function 2479
ICCGetComponentInstance function 2479
ICCGetConfigName function 2479
ICCGetConfigReference function 2480
ICCGetCurrentProfile function 2480
ICCGetDefaultPref function 2480
ICCGetIndMapEntry function 2481
ICCGetIndPref function 2481
ICCGetIndProfile function 2481
ICCGetMapEntry function 2482
ICCGetMappingInterruptSafe function 2482
ICCGetPerm function 2482
ICCGetPref function 2483
ICCGetPrefHandle function 2483
ICCGetProfileName function 2483
ICCGetSeed function 2484
ICCGetSeedInterruptSafe function 2484
ICCGetVersion function 2484
ICCharTable structure 2510
ICChooseConfig function 2485
ICChooseNewConfig function 2485
ICCLaunchURL function 2485
ICCMapEntriesFilename function 2486
ICCMapEntriesTypeCreator function 2486
ICCMapFilename function 2486
ICCMapTypeCreator function 2487
icConfigInappropriateErr constant 2539
icConfigNotFoundErr constant 2539
ICConfigRef structure 2511
ICCountMapEntries function 2487
ICCountPref function 2487
ICCountProfiles function 2488
ICCParseURL function 2488

2990
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ICCreateGURLEvent function 2489
ICCRefreshCaches function 2489
ICCRequiresInterruptSafe function 2489
ICCSendGURLEvent function 2489
ICCSetConfigReference function 2490
ICCSetCurrentProfile function 2490
ICCSetMapEntry function 2490
ICCSetPref function 2491
ICCSetPrefHandle function 2491
ICCSetProfileName function 2491
ICCSpecifyConfigFile function 2492
ICCStart function 2492
ICCStop function 2492
ICDefaultFileName function 2493
ICDeleteMapEntry function 2493
ICDeletePref function 2493
ICDeleteProfile function 2494
ICDirSpec structure 2511
ICEditPreferences function 2494
ICEnd function 2494
ICError data type 2512
ICFileInfo structure 2512
ICFileSpec structure 2512
ICFindConfigFile function 2495
ICFindPrefHandle function 2495
ICFindUserConfigFile function 2496
ICFontRecord structure 2513
ICGeneralFindConfigFile function 2496
ICGetComponentInstance function 2496
ICGetConfigName function 2496
ICGetConfigReference function 2497
ICGetCurrentProfile function 2497
ICGetDefaultPref function 2498
ICGetIndMapEntry function 2498
ICGetIndPref function 2498
ICGetIndProfile function 2499
ICGetMapEntry function 2499
ICGetMappingInterruptSafe function 2499
ICGetPerm function 2500
ICGetPref function 2500
ICGetPrefHandle function 2501
ICGetProfileName function 2501
ICGetSeed function 2501
ICGetSeedInterruptSafe function 2502
ICGetVersion function 2502
ICInstance data type 2513
icInternalErr constant 2538
ICLaunchURL function 2502
ICMapEntriesFilename function 2503
ICMapEntriesTypeCreator function 2503
ICMapEntry structure 2514
ICMapFilename function 2504
ICMapTypeCreator function 2504

icNoMoreWritersErr constant 2539
icNothingToOverrideErr constant 2539
icNoURLErr constant 2539
Icon Alignment Constants 1307
Icon Selector Constants 1310
Icon Services Usage Flag 1314
Icon Transformation Constants 1309
IconActionProcPtr callback 1302
IconActionUPP data type 1306
IconCacheRef data type 1306
IconFamilyToIconSuite function (Deprecated in Mac

OS X v10.5) 1259
IconGetterProcPtr callback 1303
IconGetterUPP data type 1306
IconIDToRgn function (Deprecated in Mac OS X v10.5)

1260
IconMethodToRgn function (Deprecated in Mac OS X

v10.5) 1261
IconRef data type 1306
IconRefContainsCGPoint function 1262
IconRefIntersectsCGRect function 1263
IconRefToHIShape function 1264
IconRefToIconFamily function 1265
IconRefToRgn function (Deprecated in Mac OS X v10.5)

1265
IconSuiteRef data type 1307
IconSuiteToIconFamily function (Deprecated in Mac

OS X v10.5) 1266
IconSuiteToRgn function (Deprecated in Mac OS X

v10.5) 1267
ICParseURL function 2505
icPermErr constant 2538
icPrefDataErr constant 2538
icPrefNotFoundErr constant 2538
icProfileNotFoundErr constant 2539
ICRefreshCaches function 2505
ICRequiresInterruptSafe function 2505
ICSendGURLEvent function 2506
ICServiceEntry structure 2515
ICServices structure 2516
ICSetConfigReference function 2506
ICSetCurrentProfile function 2506
ICSetMapEntry function 2507
ICSetPref function 2507
ICSetPrefHandle function 2508
ICSetProfileName function 2508
ICSpecifyConfigFile function 2508
ICStart function 2509
ICStop function 2509
icTooManyProfilesErr constant 2539
icTruncatedErr constant 2538
ID Constants for the AECreateAppleEvent Function 589
Illuminant Measurement Endocings 986

2991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Image Bitmap Information 227
Image Source Container Properties 2304
Image Source Option Dictionary Keys 250
Image Source Status 249
Include Masks 1157
incompatibleVoice constant 1705
Index2Color function (Deprecated in Mac OS X v10.4)

2670
Individual Image Properties 2304
InitCursor function 2671
InitGDevice function (Deprecated in Mac OS X v10.4)

2671
InitPalettes function (Deprecated in Mac OS X v10.4)

1372
InitPickMethodProcPtr callback 1429
InitPickMethodUPP data type 1434
InsetRect function 2672
InsetRgn function 2673
Installable Options 1808
Internet Icon Constants 1315
internetConfigurationComponent data type 2516
Interpolation Qualities 142
IntlText structure 549
invalColReq 2895
Invalid Font ID Constant 2053
Invalid Values 713
invalidIconRefErr constant 1324
invert constant 2904
InvertArc function (Deprecated in Mac OS X v10.4) 2674
InvertColor function (Deprecated in Mac OS X v10.4)

2675
InvertOval function (Deprecated in Mac OS X v10.4)

2675
InvertPoly function (Deprecated in Mac OS X v10.4)

2676
InvertRect function (Deprecated in Mac OS X v10.4)

2677
InvertRgn function (Deprecated in Mac OS X v10.4) 2678
InvertRoundRect function (Deprecated in Mac OS X

v10.4) 2679
InvokeAECoerceDescUPP function 507
InvokeAECoercePtrUPP function 508
InvokeAEDisposeExternalUPP function 508
InvokeAEEventHandlerUPP function 509
InvokeAEFilterUPP function 509
InvokeAEIdleUPP function 509
InvokeATSCubicClosePathUPP function 1980
InvokeATSCubicCurveToUPP function 1980
InvokeATSCubicLineToUPP function 1981
InvokeATSCubicMoveToUPP function 1981
InvokeATSQuadraticClosePathUPP function 1982
InvokeATSQuadraticCurveUPP function 1982
InvokeATSQuadraticLineUPP function 1983

InvokeATSQuadraticNewPathUPP function 1983
InvokeATSUDirectLayoutOperationOverrideUPP

function 1984
InvokeCalcColorTableUPP function (Deprecated in

Mac OS X v10.4) 1418
InvokeCMBitmapCallBackUPP function (Deprecated in

Mac OS X v10.5) 835
InvokeCMConcatCallBackUPP function (Deprecated in

Mac OS X v10.5) 835
InvokeCMFlattenUPP function (Deprecated in Mac OS

X v10.5) 836
InvokeCMMIterateUPP function (Deprecated in Mac OS

X v10.5) 836
InvokeCMProfileAccessUPP function (Deprecated in

Mac OS X v10.5) 837
InvokeCMProfileFilterUPP function (Deprecated in

Mac OS X v10.5) 837
InvokeCMProfileIterateUPP function (Deprecated in

Mac OS X v10.5) 837
InvokeColorComplementUPP function (Deprecated in

Mac OS X v10.4) 2680
InvokeColorSearchUPP function (Deprecated in Mac

OS X v10.4) 2680
InvokeDeviceLoopDrawingUPP function (Deprecated

in Mac OS X v10.4) 2680
InvokeDisposeColorPickMethodUPP function

(Deprecated in Mac OS X v10.4) 1418
InvokeDMComponentListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1128
InvokeDMDisplayListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1129
InvokeDMDisplayModeListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1129
InvokeDMExtendedNotificationUPP function

(Deprecated in Mac OS X v10.4) 1129
InvokeDMNotificationUPP function (Deprecated in

Mac OS X v10.4) 1130
InvokeDMProfileListIteratorUPP function

(Deprecated in Mac OS X v10.4) 1130
InvokeDragGrayRgnUPP function (Deprecated in Mac

OS X v10.4) 2681
InvokeFBCCallbackUPP function (Deprecated in Mac

OS X v10.4) 2412
InvokeFBCHitTestUPP function (Deprecated in Mac OS

X v10.4) 2413
InvokeFMFontCallbackFilterUPP function 680
InvokeFMFontFamilyCallbackFilterUPP function

680
InvokeIconActionUPP function 1268
InvokeIconGetterUPP function 1268
InvokeInitPickMethodUPP function (Deprecated in

Mac OS X v10.4) 1419
InvokeOSLAccessorUPP function 510

2992
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

InvokeOSLAdjustMarksUPP function 510
InvokeOSLCompareUPP function 511
InvokeOSLCountUPP function 511
InvokeOSLDisposeTokenUPP function 512
InvokeOSLGetErrDescUPP function 512
InvokeOSLGetMarkTokenUPP function 513
InvokeOSLMarkUPP function 513
InvokePMIdleUPP function (Deprecated in Mac OS X

v10.4) 2137
InvokeQDArcUPP function (Deprecated in Mac OS X

v10.4) 2681
InvokeQDBitsUPP function (Deprecated in Mac OS X

v10.4) 2682
InvokeQDCommentUPP function (Deprecated in Mac OS

X v10.4) 2682
InvokeQDGetPicUPP function (Deprecated in Mac OS X

v10.4) 2682
InvokeQDJShieldCursorUPP function (Deprecated in

Mac OS X v10.4) 2683
InvokeQDLineUPP function (Deprecated in Mac OS X

v10.4) 2683
InvokeQDOpcodeUPP function (Deprecated in Mac OS X

v10.4) 2683
InvokeQDOvalUPP function (Deprecated in Mac OS X

v10.4) 2684
InvokeQDPolyUPP function (Deprecated in Mac OS X

v10.4) 2684
InvokeQDPutPicUPP function (Deprecated in Mac OS X

v10.4) 2685
InvokeQDRectUPP function (Deprecated in Mac OS X

v10.4) 2685
InvokeQDRgnUPP function (Deprecated in Mac OS X

v10.4) 2685
InvokeQDRRectUPP function (Deprecated in Mac OS X

v10.4) 2686
InvokeQDStdGlyphsUPP function (Deprecated in Mac

OS X v10.4) 2686
InvokeQDTextUPP function (Deprecated in Mac OS X

v10.4) 2686
InvokeQDTxMeasUPP function (Deprecated in Mac OS X

v10.4) 2687
InvokeRecordColorsUPP function (Deprecated in Mac

OS X v10.4) 1419
InvokeRedrawBackgroundUPP function 1984
InvokeRegionToRectsUPP function (Deprecated in Mac

OS X v10.4) 2687
InvokeSpeechDoneUPP function 1642
InvokeSpeechErrorUPP function 1643
InvokeSpeechPhonemeUPP function 1643
InvokeSpeechSyncUPP function 1644
InvokeSpeechTextDoneUPP function 1644
InvokeSpeechWordUPP function 1645

InvokeStyleRunDirectionUPP function (Deprecated
in Mac OS X v10.4) 2922

IPTC Dictionary Keys 2320
IsAntiAliasedTextEnabled function (Deprecated in

Mac OS X v10.4) 1199
IsDataAvailableInIconRef function 1268
IsIconRefComposite function 1269
IsIconRefMaskEmpty function 1270
IsOutline function (Deprecated in Mac OS X v10.4) 1200
IsPortClipRegionEmpty function (Deprecated in Mac

OS X v10.4) 2687
IsPortColor function (Deprecated in Mac OS X v10.4)

2688
IsPortOffscreen function (Deprecated in Mac OS X

v10.4) 2688
IsPortPictureBeingDefined function (Deprecated in

Mac OS X v10.4) 2688
IsPortPolyBeingDefined function (Deprecated in Mac

OS X v10.4) 2689
IsPortRegionBeingDefined function (Deprecated in

Mac OS X v10.4) 2689
IsPortVisibleRegionEmpty function (Deprecated in

Mac OS X v10.4) 2689
IsProcessVisible function 1450
IsRegionRectangular function 2690
IsValidIconRef function 1270
IsValidPort function (Deprecated in Mac OS X v10.4)

2690
IsValidRgnHandle function 2690
ITab structure 2863
italicBit 2895
Item Flags 1157
Item Value Types 1808
Iteration Precedence Options 708
Iteration Scopes 1227

J

JapanesePartOfSpeech data type 1344
JFIF Dictionary Keys 2326
Job Ticket Keys 1810

K

k1MonochromePixelFormat 2895
kAEAll constant 576
kAEAlwaysInteract constant 568
kAEAND constant 575
kAEAnswer constant 588
kAEAny constant 576

2993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAEApplicationDied constant 588
kAEBeginsWith constant 574
kAECanInteract constant 568
kAECanSwitchLayer constant 568
kAEContains constant 574
kAECoreSuite constant 575
kAEDataArray constant 581
kAEDebugPOSTHeader 608
kAEDefaultTimeout constant 605
kAEDescArray constant 581
kAEDirectCall constant 588
kAEDisplayNotice constant 1149
kAEDisplaySummary constant 1149
kAEDontExecute constant 568
kAEDontReconnect constant 567
kAEDontRecord constant 568
kAEDoObjectsExist 607
kAEEndsWith constant 607
kAEEquals constant 608
kAEFinderEvents constant 608
kAEFirst constant 576
kAEGetPrivilegeSelection 608
kAEGreaterThan constant 608
kAEGreaterThanEquals constant 609
kAEHandleArray 609
kAEHandleArray constant 609
kAEHighPriority constant 602
kAEHTTPProxyHostAttr constant 613
kAEHTTPProxyPortAttr constant 613
kAEIDoMarking constant 572
kAEIDoMinimum constant 572
kAEIDoWhose constant 572
kAEInfo 610
kAEInteractWithAll constant 606
kAEInteractWithLocal constant 606
kAEInteractWithSelf constant 606
kAEInternetSuite 610
kAEISGetURL 610
kAEISHTTPSearchArgs 610
kAEKeyDescArray constant 581
kAELast constant 576
kAELessThanEquals constant 609
kAELocalProcess constant 589
kAELogOut 610
kAEMenuClass 611
kAEMiddle constant 576
kAEMouseClass 611
kAENeverInteract constant 567
kAENext constant 576
kAENoDispatch constant 603
kAENonmodifiable 611
kAENoReply constant 566
kAENormalPriority constant 602

kAENOT constant 576
kAENotifyRecording constant 571
kAENotifyStartRecording constant 571
kAENotifyStopRecording constant 571
kAEOpenApplication constant 587
kAEOpenContents constant 587
kAEOpenDocuments constant 587
kAEOR constant 576
kAEPackedArray constant 581
kAEPrevious constant 576
kAEPrintDocuments constant 587
kAEProcessNonReplyEvents constant 568
kAEQDNotOr 612
kAEQueueReply constant 567
kAEQuitApplication constant 587
kAERemoteProcess constant 589
kAERemoteProcessNameKey constant 602
kAERemoteProcessProcessIDKey constant 603
kAERemoteProcessURLKey constant 602
kAERemoteProcessUserIDKey constant 602
kAEReopenApplication constant 587
kAESameProcess constant 589
kAESetPosition 612
kAEShowPreferences constant 588
kAESocks4Protocol 613
kAEStartRecording constant 570
kAEStopRecording constant 570
kAESystemConfigNotice constant 1149
kAEUnknownSource constant 588
kAEUseHTTPProxyAttr 613
kAEUseHTTPProxyAttr constant 613
kAEUserTerminology 614
kAEUseSocksAttr 614
kAEUseStandardDispatch constant 603
kAEUTHasReturningParam 614
kAEWaitReply constant 567
kAEWantReceipt constant 567
kAEZoomIn 614
kAlignAbsoluteCenter constant 1308
kAlignBottom constant 1308
kAlignBottomLeft constant 1309
kAlignBottomRight constant 1309
kAlignCenterBottom constant 1308
kAlignCenterLeft constant 1308
kAlignCenterRight constant 1309
kAlignCenterTop constant 1308
kAlignHorizontalCenter constant 1308
kAlignLeft constant 1308
kAlignNone constant 1307
kAlignRight constant 1309
kAlignTop constant 1308
kAlignTopLeft constant 1308
kAlignTopRight constant 1309

2994
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAlignVerticalCenter constant 1308
kAllPPDDomains constant 2292
kAnyTransactionID constant 590
kATSBoldQDStretch constant 714
kATSCubicCurveType constant 715
kATSDeletedGlyphcode constant 715
kATSFlatDataUstlCurrentVersion constant 2048
kATSFlatDataUstlVersion0 constant 2047
kATSFlatDataUstlVersion1 constant 2048
kATSFlatDataUstlVersion2 constant 2048
kATSFlattenedFontSpecifierRawNameData constant

2046
kATSFontAutoActivationAsk constant 703
kATSFontAutoActivationDefault constant 703
kATSFontAutoActivationDisabled constant 703
kATSFontAutoActivationEnabled constant 703
kATSFontContainerRefUnspecified constant 704
kATSFontContextGlobal constant 704
kATSFontContextLocal constant 704
kATSFontContextUnspecified constant 704
kATSFontFamilyRefUnspecified constant 705
kATSFontFilterCurrentVersion constant 706
kATSFontFilterSelectorFontApplierFunction

constant 706
kATSFontFilterSelectorFontFamily constant 705
kATSFontFilterSelectorFontFamilyApplierFunction

constant 705
kATSFontFilterSelectorGeneration constant 705
kATSFontFilterSelectorUnspecified constant 705
kATSFontFormatUnspecified constant 706
kATSFontNameTableBytes constant 708
kATSFontNameTableCode constant 707
kATSFontNameTableLanguage constant 708
kATSFontNameTablePlatform constant 707
kATSFontNameTableScript constant 707
kATSFontNotifyActionDirectoriesChanged

constant 709
kATSFontNotifyActionFontsChanged constant 709
kATSFontNotifyOptionDefault constant 709
kATSFontNotifyOptionReceiveWhileSuspended

constant 709
kATSFontRefUnspecified constant 705
kATSGenerationUnspecified constant 704
kATSGlyphInfoAppleReserved constant 2052
kATSGlyphInfoByteSizeMask constant 2053
kATSGlyphInfoHasImposedWidth constant 2052
kATSGlyphInfoIsAttachment constant 2052
kATSGlyphInfoIsLTHanger constant 2052
kATSGlyphInfoIsRBHanger constant 2052
kATSGlyphInfoIsWhiteSpace constant 2052
kATSGlyphInfoTerminatorGlyph constant 2052
kATSInvalidFontAccess constant 716
kATSInvalidFontContainerAccess constant 716

kATSInvalidFontFamilyAccess constant 716
kATSInvalidFontTableAccess constant 716
kATSItalicQDSkew constant 714
kATSIterationCompleted constant 716
kATSIterationScopeModified constant 716
kATSLineAppleReserved constant 2062
kATSLineApplyAntiAliasing constant 2061
kATSLineBreakToNearestCharacter constant 2062
kATSLineDisableAllBaselineAdjustments constant

2062
kATSLineDisableAllGlyphMorphing constant 2062
kATSLineDisableAllJustification constant 2062
kATSLineDisableAllKerningAdjustments constant

2062
kATSLineDisableAllLayoutOperations constant

2062
kATSLineDisableAllTrackingAdjustments constant

2062
kATSLineDisableAutoAdjustDisplayPos constant

2061
kATSLineDisableNegativeJustification constant

2061
kATSLineFillOutToWidth constant 2060
kATSLineFractDisable constant 2060
kATSLineHasNoHangers constant 2059
kATSLineHasNoOpticalAlignment constant 2060
kATSLineIgnoreFontLeading constant 2061
kATSLineImposeNoAngleForEnds constant 2060
kATSLineIsDisplayOnly constant 2059
kATSLineKeepSpacesOutOfMargin constant 2060
kATSLineLastNoJustification constant 2060
kATSLineNoAntiAliasing constant 2061
kATSLineNoLayoutOptions constant 2059
kATSLineNoSpecialJustification constant 2060
kATSLineTabAdjustEnabled constant 2061
kATSLineUseDeviceMetrics constant 2062
kATSLineUseQDRendering constant 2061
kATSNoTracking constant 2058
kATSOptionFlagsComposeFontPostScriptName

constant 702
kATSOptionFlagsDefault constant 702
kATSOptionFlagsDefaultScope constant 710
kATSOptionFlagsDoNotNotify constant 710
kATSOptionFlagsIterateByPrecedenceMask

constant 708
kATSOptionFlagsIterationScopeMask constant 710
kATSOptionFlagsProcessSubdirectories constant

711
kATSOptionFlagsRestrictedScope constant 711
kATSOptionFlagsUnRestrictedScope constant 710
kATSOptionFlagsUseDataFork constant 703
kATSOptionFlagsUseDataForkAsResourceFork

constant 702

2995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kATSOptionFlagsUseResourceFork constant 703
kATSOtherCurveType constant 715
kATSQuadCurveType constant 715
kATSQueryActivateFontMessage constant 708
kATSQueryClientPID constant 707
kATSQueryFontName constant 707
kATSQueryFontNameTableEntries constant 707
kATSQueryFontPostScriptName constant 707
kATSQueryQDFamilyName constant 707
kATSRadiansFactor constant 714
kATSStyleAppleReserved constant 2065
kATSStyleApplyAntiAliasing constant 2065
kATSStyleApplyHints constant 2065
kATSStyleNoAntiAliasing constant 2065
kATSStyleNoHinting constant 2065
kATSStyleNoOptions constant 2065
kATSUAfterWithStreamShiftTag constant 2036
kATSUAscentTag constant 2039
kATSUBackgroundCallback constant 2042
kATSUBackgroundColor constant 2042
kATSUBadStreamErr constant 2070
kATSUBaselineClassTag constant 2037
kATSUBeforeWithStreamShiftTag constant 2036
kATSUBusyObjectErr constant 2070
kATSUByCharacter constant 2043
kATSUByCharacterCluster constant 2043
kATSUByCluster constant 2043
kATSUByTypographicCluster constant 2043
kATSUByWord constant 2043
kATSUCenterAlignment constant 2057
kATSUCenterTab constant 2066
kATSUCGContextTag constant 2034
kATSUClearAll constant 2044
kATSUColorTag constant 2036
kATSUCoordinateOverflowErr constant 2070
kATSUCrossStreamShiftTag constant 2037
kATSUDataStreamUnicodeStyledText constant 2047
kATSUDecimalTab constant 2066
kATSUDecompositionFactorTag constant 2037
kATSUDefaultFontFallbacks constant 2048
kATSUDescentTag constant 2039
kATSUDirectDataAdvanceDeltaFixedArray constant

2045
kATSUDirectDataBaselineDeltaFixedArray

constant 2045
kATSUDirectDataDeviceDeltaSInt16Array constant

2045
kATSUDirectDataLayoutRecordATSLayoutRecordCurrent

constant 2046
kATSUDirectDataLayoutRecordATSLayoutRecordVersion1

constant 2046
kATSUDirectDataStyleIndexUInt16Array constant

2045

kATSUDirectDataStyleSettingATSUStyleSettingRef-
Array constant 2046

kATSUEndAlignment constant 2057
kATSUFlattenOptionNoOptionsMask constant 2047
kATSUFontMatrixTag constant 2040
kATSUFontsMatched constant 2069
kATSUFontsNotMatched constant 2069
kATSUFontTag constant 2035
kATSUForceHangingTag constant 2038
kATSUFromFollowingLayout constant 2067
kATSUFromPreviousLayout constant 2067
kATSUFromTextBeginning constant 2067
kATSUFullJustification constant 2058
kATSUGlyphSelectorTag constant 2039
kATSUHangingInhibitFactorTag constant 2037
kATSUImposeWidthTag constant 2036
kATSUInvalidAttributeSizeErr constant 2069
kATSUInvalidAttributeTagErr constant 2069
kATSUInvalidAttributeValueErr constant 2069
kATSUInvalidCacheErr constant 2069
kATSUInvalidCallInsideCallbackErr constant 2071
kATSUInvalidFontErr constant 2069
kATSUInvalidFontFallbacksErr constant 2070
kATSUInvalidFontID constant 2053
kATSUInvalidStyleErr constant 2069
kATSUInvalidTextLayoutErr constant 2068
kATSUInvalidTextRangeErr constant 2069
kATSUKerningInhibitFactorTag constant 2037
kATSULangRegionTag constant 2036
kATSULanguageTag constant 2041
kATSULastErr constant 2071
kATSULastResortOnlyFallback constant 2048
kATSULayoutOperationAppleReserved constant 2056
kATSULayoutOperationBaselineAdjustment

constant 2056
kATSULayoutOperationCallbackStatusContinue

constant 2055
kATSULayoutOperationCallbackStatusHandled

constant 2055
kATSULayoutOperationJustification constant 2056
kATSULayoutOperationKerningAdjustment constant

2056
kATSULayoutOperationMorph constant 2056
kATSULayoutOperationNone constant 2056
kATSULayoutOperationOverrideTag constant 2034
kATSULayoutOperationPostLayoutAdjustment

constant 2056
kATSULayoutOperationTrackingAdjustment

constant 2056
kATSULeadingTag constant 2039
kATSULeftTab constant 2066
kATSULeftToRightBaseDirection constant 2051
kATSULineAscentTag constant 2033

2996
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kATSULineBaselineValuesTag constant 2033
kATSULineBreakInWord constant 2070
kATSULineDecimalTabCharacterTag constant 2034
kATSULineDescentTag constant 2033
kATSULineDirectionTag constant 2032
kATSULineFlushFactorTag constant 2032
kATSULineFontFallbacksTag constant 2034
kATSULineHighlightCGColorTag constant 2034
kATSULineJustificationFactorTag constant 2032
kATSULineLangRegionTag constant 2033
kATSULineLanguageTag constant 2034
kATSULineLayoutOptionsTag constant 2033
kATSULineRotationTag constant 2032
kATSULineTextLocatorTag constant 2033
kATSULineTruncationTag constant 2033
kATSULineWidthTag constant 2032
kATSULowLevelErr constant 2070
kATSUMaxATSUITagValue constant 2041
kATSUMaxLineTag constant 2034
kATSUMaxStyleTag constant 2041
kATSUNoCaretAngleTag constant 2038
kATSUNoCorrespondingFontErr constant 2069
kATSUNoFontCmapAvailableErr constant 2070
kATSUNoFontScalerAvailableErr constant 2070
kATSUNoJustification constant 2058
kATSUNoLigatureSplitTag constant 2038
kATSUNoOpticalAlignmentTag constant 2038
kATSUNoSelector constant 2063
kATSUNoSpecialJustificationTag constant 2038
kATSUNoStyleRunsAssignedErr constant 2070
kATSUNotSetErr constant 2070
kATSUNumberTabTypes constant 2066
kATSUOutputBufferTooSmallErr constant 2071
kATSUPriorityJustOverrideTag constant 2037
kATSUQDBoldfaceTag constant 2035
kATSUQDCondensedTag constant 2035
kATSUQDExtendedTag constant 2035
kATSUQDItalicTag constant 2035
kATSUQDUnderlineTag constant 2035
kATSUQuickDrawTextErr constant 2070
kATSURGBAlphaColorTag constant 2039
kATSURightTab constant 2066
kATSURightToLeftBaseDirection constant 2051
kATSUseCaretOrigins constant 2049
kATSUseDeviceOrigins constant 2049
kATSUseFractionalOrigins constant 2049
kATSUseGlyphAdvance constant 2057
kATSUseLineHeight constant 2057
kATSUseOriginFlags constant 2049
kATSUSequentialFallbacksExclusive constant 2049
kATSUSequentialFallbacksPreferred constant 2049
kATSUSizeTag constant 2036
kATSUStartAlignment constant 2057

kATSUStronglyHorizontal constant 2068
kATSUStronglyVertical constant 2068
kATSUStyleContainedBy constant 2064
kATSUStyleContains constant 2064
kATSUStyleDoubleLineCount constant 2064
kATSUStyleDropShadowBlurOptionTag constant 2041
kATSUStyleDropShadowColorOptionTag constant

2041
kATSUStyleDropShadowOffsetOptionTag constant

2041
kATSUStyleDropShadowTag constant 2041
kATSUStyleEquals constant 2064
kATSUStyleRenderingOptionsTag constant 2039
kATSUStyleSingleLineCount constant 2064
kATSUStyleStrikeThroughColorOptionTag constant

2040
kATSUStyleStrikeThroughCountOptionTag constant

2040
kATSUStyleStrikeThroughTag constant 2040
kATSUStyleTextLocatorTag constant 2038
kATSUStyleUnderlineColorOptionTag constant 2040
kATSUStyleUnderlineCountOptionTag constant 2040
kATSUStyleUnequal constant 2064
kATSUSuppressCrossKerningTag constant 2038
kATSUToTextEnd constant 2067
kATSUTrackingTag constant 2037
kATSUTruncateEnd constant 2054
kATSUTruncateMiddle constant 2054
kATSUTruncateNone constant 2054
kATSUTruncateSpecificationMask constant 2054
kATSUTruncateStart constant 2054
kATSUTruncFeatNoSquishing constant 2054
kATSUUnflattenOptionNoOptionsMask constant 2068
kATSUUnsupportedStreamFormatErr constant 2070
kATSUUseGrafPortPenLoc constant 2044
kATSUUseLineControlWidth constant 2063
kATSUVerticalCharacterTag constant 2036
kAutoGenerateReturnID constant 589
kAXAllowedValuesAttribute constant 2101
kAXAMPMFieldAttribute constant 2110
kAXApplicationActivatedNotification constant

2118
kAXApplicationDeactivatedNotification constant

2118
kAXApplicationDockItemSubrole constant 2096
kAXApplicationHiddenNotification constant 2118
kAXApplicationRole constant 2088
kAXApplicationShownNotification constant 2118
kAXAscendingSortDirectionValue constant 2120
kAXAttributedStringForRangeParameterizedAttribute

constant 2115
kAXBoundsForRangeParameterizedAttribute

constant 2115

2997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAXBrowserRole constant 2090
kAXBusyIndicatorRole constant 2091
kAXButtonRole constant 2089
kAXCancelAction constant 2116
kAXCancelButtonAttribute constant 2106
kAXCheckBoxRole constant 2089
kAXChildrenAttribute constant 2102
kAXCloseButtonAttribute constant 2104
kAXCloseButtonSubrole constant 2094
kAXColorWellRole constant 2093
kAXColumnHeaderUIElementsAttribute constant

2113
kAXColumnRole constant 2090
kAXColumnsAttribute constant 2112
kAXColumnTitleAttribute constant 2111
kAXComboBoxRole constant 2091
kAXConfirmAction constant 2116
kAXContentsAttribute constant 2110
kAXCreatedNotification constant 2120
kAXDateFieldRole constant 2093
kAXDayFieldAttribute constant 2110
kAXDecrementAction constant 2116
kAXDecrementArrowSubrole constant 2096
kAXDecrementButtonAttribute constant 2110
kAXDecrementPageSubrole constant 2096
kAXDefaultButtonAttribute constant 2105
kAXDescriptionAttribute constant 2103
kAXDialogSubrole constant 2095
kAXDisclosedByRowAttribute constant 2113
kAXDisclosedRowsAttribute constant 2113
kAXDisclosingAttribute constant 2113
kAXDisclosureTriangleRole constant 2092
kAXDockExtraDockItemSubrole constant 2097
kAXDockItemRole constant 2093
kAXDocumentAttribute constant 2109
kAXDocumentDockItemSubrole constant 2096
kAXDrawerCreatedNotification constant 2119
kAXDrawerRole constant 2089
kAXEditedAttribute constant 2108
kAXEnabledAttribute constant 2101
kAXErrorActionUnsupported constant 2121
kAXErrorAPIDisabled constant 2121
kAXErrorAttributeUnsupported constant 2121
kAXErrorCannotComplete constant 2121
kAXErrorIllegalArgument constant 2121
kAXErrorInvalidUIElement constant 2121
kAXErrorInvalidUIElementObserver constant 2121
kAXErrorParameterizedAttributeUnsupported

constant 2122
kAXExpandedAttribute constant 2109
kAXFilenameAttribute constant 2108
kAXFloatingWindowSubrole constant 2095
kAXFocusedApplicationAttribute constant 2114

kAXFocusedAttribute constant 2101
kAXFocusedUIElemenAttribute constant 2107
kAXFocusedUIElementChangedNotification

constant 2118
kAXFocusedWindowAttribute constant 2107
kAXFocusedWindowChangedNotification constant

2117
kAXFolderDockItemSubrole constant 2096
kAXFrontmostAttribute constant 2107
kAXGroupRole constant 2091
kAXGrowAreaAttribute constant 2105
kAXGrowAreaRole constant 2089
kAXHeaderAttribute constant 2107
kAXHelpAttribute constant 2100
kAXHelpTagCreatedNotification constant 2119
kAXHelpTagRole constant 2093
kAXHiddenAttribute constant 2107
kAXHorizontalOrientationValue constant 2120
kAXHorizontalScrollBarAttribute constant 2108
kAXHourFieldAttribute constant 2110
kAXImageRole constant 2089
kAXIncrementAction constant 2116
kAXIncrementArrowSubrole constant 2095
kAXIncrementButtonAttribute constant 2109
kAXIncrementorAttribute constant 2110
kAXIncrementorRole constant 2091
kAXIncrementPageSubrole constant 2096
kAXIndexAttribute constant 2113
kAXInsertionPointLineNumberAttribute constant

2114
kAXIsApplicationRunningAttribute constant 2113
kAXLabelUIElementsAttribute constant 2111
kAXLabelValueAttribute constant 2111
kAXLineForIndexParameterizedAttribute constant

2114
kAXLinkedUIElementsAttribute constant 2112
kAXListRole constant 2091
kAXMainAttribute constant 2104
kAXMainWindowAttribute constant 2107
kAXMainWindowChangedNotification constant 2117
kAXMatteContentUIElementAttribute constant 2113
kAXMatteHoleAttribute constant 2113
kAXMatteRole constant 2093
kAXMaxValueAttribute constant 2101
kAXMenuBarAttribute constant 2107
kAXMenuBarItemRole constant 2092
kAXMenuBarRole constant 2092
kAXMenuButtonRole constant 2090
kAXMenuClosedNotification constant 2119
kAXMenuItemCmdCharAttribute constant 2106
kAXMenuItemCmdGlyphAttribute constant 2106
kAXMenuItemCmdModifiersAttribute constant 2106
kAXMenuItemCmdVirtualKeyAttribute constant 2106

2998
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAXMenuItemMarkCharAttribute constant 2106
kAXMenuItemPrimaryUIElementAttribute constant

2106
kAXMenuItemRole constant 2092
kAXMenuItemSelectedNotification constant 2119
kAXMenuOpenedNotification constant 2119
kAXMenuRole constant 2092
kAXMinimizeButtonAttribute constant 2105
kAXMinimizeButtonSubrole constant 2094
kAXMinimizedAttribute constant 2104
kAXMinimizedWindowDockItemSubrole constant 2096
kAXMinuteFieldAttribute constant 2110
kAXMinValueAttribute constant 2101
kAXModalAttribute constant 2105
kAXMonthFieldAttribute constant 2111
kAXMovedNotification constant 2120
kAXNextContentsAttribute constant 2109
kAXNumberOfCharactersAttribute constant 2103
kAXOrientationAttribute constant 2103
kAXOutlineRole constant 2090
kAXOutlineRowSubrole constant 2095
kAXOverflowButtonAttribute constant 2108
kAXParentAttribute constant 2101
kAXPopUpButtonRole constant 2090
kAXPositionAttribute constant 2102
kAXPressAction constant 2116
kAXPreviousContentsAttribute constant 2109
kAXProcessSwitcherListSubrole constant 2097
kAXProgressIndicatorRole constant 2091
kAXProxyAttribute constant 2105
kAXRadioButtonRole constant 2089
kAXRadioGroupRole constant 2091
kAXRaiseAction constant 2116
kAXRangeForIndexParameterizedAttribute

constant 2115
kAXRangeForLineParameterizedAttribute constant

2114
kAXRangeForPositionParameterizedAttribute

constant 2115
kAXRelevanceIndicatorRole constant 2091
kAXResizedNotification constant 2120
kAXRoleAttribute constant 2100
kAXRoleDescriptionAttribute constant 2100
kAXRowCountChangedNotification constant 2119
kAXRowRole constant 2090
kAXRowsAttribute constant 2112
kAXRTFForRangeParameterizedAttribute constant

2115
kAXScrollAreaRole constant 2090
kAXScrollBarRole constant 2090
kAXSearchFieldSubrole constant 2096
kAXSecondFieldAttribute constant 2110
kAXSecureTextFieldSubrole constant 2094

kAXSelectedAttribute constant 2109
kAXSelectedChildrenAttribute constant 2102
kAXSelectedChildrenChangedNotification

constant 2119
kAXSelectedColumnsAttribute constant 2112
kAXSelectedRowsAttribute constant 2112
kAXSelectedTextAttribute constant 2103
kAXSelectedTextRangeAttribute constant 2103
kAXServesAsTitleForUIElementsAttribute

constant 2112
kAXSharedCharacterRangeAttribute constant 2104
kAXSharedTextUIElementsAttribute constant 2104
kAXSheetCreatedNotification constant 2119
kAXSheetRole constant 2089
kAXShowMenuAction constant 2116
kAXShownMenuUIElementAttribute constant 2111
kAXSizeAttribute constant 2103
kAXSliderRole constant 2091
kAXSortButtonSubrole constant 2096
kAXSortDirectionAttribute constant 2113
kAXSplitGroupRole constant 2092
kAXSplitterRole constant 2093
kAXSplittersAttribute constant 2109
kAXStandardWindowSubrole constant 2095
kAXStaticTextRole constant 2092
kAXStringForRangeParameterizedAttribute

constant 2114
kAXStyleRangeForIndexParameterizedAttribute

constant 2115
kAXSubroleAttribute constant 2100
kAXSystemDialogSubrole constant 2095
kAXSystemFloatingWindowSubrole constant 2095
kAXSystemWideRole constant 2089
kAXTabGroupRole constant 2090
kAXTableRole constant 2090
kAXTableRowSubrole constant 2095
kAXTabsAttribute constant 2108
kAXTextAreaRole constant 2092
kAXTextFieldRole constant 2092
kAXTimeFieldRole constant 2093
kAXTitleAttribute constant 2100
kAXTitleUIElementAttribute constant 2108
kAXToolbarButtonAttribute constant 2105
kAXToolbarButtonSubrole constant 2094
kAXToolbarRole constant 2092
kAXTopLevelUIElementAttribute constant 2102
kAXTrashDockItemSubrole constant 2097
kAXUIElementDestroyedNotification constant 2119
kAXUnknownOrientationValue constant 2120
kAXUnknownRole constant 2089
kAXUnknownSortDirectionValue constant 2121
kAXUnknownSubrole constant 2095
kAXURLAttribute constant 2111

2999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAXURLDockItemSubrole constant 2096
kAXValueAttribute constant 2100
kAXValueChangedNotification constant 2119
kAXValueIncrementAttribute constant 2101
kAXValueIndicatorRole constant 2091
kAXValueWrapsAttribute constant 2108
kAXVerticalOrientationValue constant 2120
kAXVerticalScrollBarAttribute constant 2108
kAXVisibleCharacterRangeAttribute constant 2103
kAXVisibleChildrenAttribute constant 2102
kAXVisibleColumnsAttribute constant 2112
kAXVisibleRowsAttribute constant 2112
kAXWindowAttribute constant 2102
kAXWindowCreatedNotification constant 2118
kAXWindowDeminiaturizedNotification constant

2118
kAXWindowMiniaturizedNotification constant 2118
kAXWindowMovedNotification constant 2118
kAXWindowResizedNotification constant 2118
kAXWindowRole constant 2089
kAXWindowsAttribute constant 2107
kAXYearFieldAttribute constant 2111
kAXZoomButtonAttribute constant 2104
kAXZoomButtonSubrole constant 2094
kBySmallIcon 614
kCalibratorNamePrefix constant 950
kCaretPosition 615
kCGAnnotatedSessionEventTap constant 1622
kCGAnyInputEventType constant 1620
kCGBackstopMenuLevelKey constant 1561
kCGBaseWindowLevelKey constant 1561
kCGBitmapAlphaInfoMask constant 228
kCGBitmapByteOrder16Big constant 228
kCGBitmapByteOrder16Host constant 228
kCGBitmapByteOrder16Little constant 228
kCGBitmapByteOrder32Big constant 228
kCGBitmapByteOrder32Host constant 228
kCGBitmapByteOrder32Little constant 228
kCGBitmapByteOrderDefault constant 228
kCGBitmapByteOrderMask constant 228
kCGBitmapFloatComponents constant 228
kCGBlendModeClear constant 141
kCGBlendModeColor constant 140
kCGBlendModeColorBurn constant 139
kCGBlendModeColorDodge constant 139
kCGBlendModeCopy constant 141
kCGBlendModeDarken constant 139
kCGBlendModeDestinationAtop constant 141
kCGBlendModeDestinationIn constant 141
kCGBlendModeDestinationOut constant 141
kCGBlendModeDestinationOver constant 141
kCGBlendModeDifference constant 140
kCGBlendModeExclusion constant 140

kCGBlendModeHardLight constant 140
kCGBlendModeHue constant 140
kCGBlendModeLighten constant 139
kCGBlendModeLuminosity constant 140
kCGBlendModeMultiply constant 138
kCGBlendModeNormal constant 138
kCGBlendModeOverlay constant 139
kCGBlendModePlusDarker constant 142
kCGBlendModePlusLighter constant 142
kCGBlendModeSaturation constant 140
kCGBlendModeScreen constant 138
kCGBlendModeSoftLight constant 139
kCGBlendModeSourceAtop constant 141
kCGBlendModeSourceIn constant 141
kCGBlendModeSourceOut constant 141
kCGBlendModeXOR constant 141
kCGCaptureNoFill constant 1553
kCGCaptureNoOptions constant 1553
kCGColorBlack constant 41
kCGColorClear constant 41
kCGColorSpaceAdobeRGB1998 constant 57
kCGColorSpaceGenericCMYK constant 57
kCGColorSpaceGenericGray constant 57
kCGColorSpaceGenericRGB constant 57
kCGColorSpaceGenericRGBLinear constant 57
kCGColorSpaceModelCMYK constant 58
kCGColorSpaceModelDeviceN constant 58
kCGColorSpaceModelIndexed constant 58
kCGColorSpaceModelLab constant 58
kCGColorSpaceModelMonochrome constant 58
kCGColorSpaceModelPattern constant 58
kCGColorSpaceModelRGB constant 58
kCGColorSpaceModelUnknown constant 58
kCGColorSpaceSRGB constant 57
kCGColorSpaceUserCMYK constant 60
kCGColorSpaceUserGray constant 60
kCGColorSpaceUserRGB constant 60
kCGColorWhite constant 41
kCGConfigureForAppOnly constant 1555
kCGConfigureForSession constant 1555
kCGConfigurePermanently constant 1556
kCGCursorWindowLevelKey constant 1563
kCGDesktopIconWindowLevelKey constant 1563
kCGDesktopWindowLevelKey constant 1561
kCGDirectMainDisplay constant 1557
kCGDisplayAddFlag constant 1554
kCGDisplayBeginConfigurationFlag constant 1554
kCGDisplayBitsPerPixel constant 1558
kCGDisplayBitsPerSample constant 1558
kCGDisplayBlendNormal constant 1556
kCGDisplayBlendSolidColor constant 1556
kCGDisplayBytesPerRow constant 1558
kCGDisplayDesktopShapeChangedFlag constant 1555

3000
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGDisplayDisabledFlag constant 1555
kCGDisplayEnabledFlag constant 1554
kCGDisplayFadeReservationInvalidToken constant

1557
kCGDisplayHeight constant 1557
kCGDisplayIOFlags constant 1558
kCGDisplayMirrorFlag constant 1555
kCGDisplayMode constant 1558
kCGDisplayModeIsInterlaced constant 1559
kCGDisplayModeIsSafeForHardware constant 1559
kCGDisplayModeIsStretched constant 1559
kCGDisplayModeIsTelevisionOutput constant 1559
kCGDisplayModeUsableForDesktopGUI constant 1558
kCGDisplayMovedFlag constant 1554
kCGDisplayRefreshRate constant 1558
kCGDisplayRemoveFlag constant 1554
kCGDisplaySamplesPerPixel constant 1558
kCGDisplaySetMainFlag constant 1554
kCGDisplaySetModeFlag constant 1554
kCGDisplayUnMirrorFlag constant 1555
kCGDisplayWidth constant 1557
kCGDockWindowLevelKey constant 1562
kCGDraggingWindowLevelKey constant 1562
kCGEncodingFontSpecific constant 146
kCGEncodingMacRoman constant 146
kCGErrorCannotComplete constant 1564
kCGErrorFailure constant 1564
kCGErrorIllegalArgument constant 1564
kCGErrorInvalidConnection constant 1564
kCGErrorInvalidContext constant 1564
kCGErrorInvalidOperation constant 1565
kCGErrorNameTooLong constant 1565
kCGErrorNoCurrentPoint constant 1565
kCGErrorNoneAvailable constant 1565
kCGErrorNotImplemented constant 1565
kCGErrorRangeCheck constant 1565
kCGErrorSuccess constant 1564
kCGErrorTypeCheck constant 1565
kCGEventFlagMaskAlphaShift constant 1618
kCGEventFlagMaskAlternate constant 1618
kCGEventFlagMaskCommand constant 1619
kCGEventFlagMaskControl constant 1618
kCGEventFlagMaskHelp constant 1619
kCGEventFlagMaskNonCoalesced constant 1619
kCGEventFlagMaskNumericPad constant 1619
kCGEventFlagMaskSecondaryFn constant 1619
kCGEventFlagMaskShift constant 1618
kCGEventFlagsChanged constant 1624
kCGEventKeyDown constant 1624
kCGEventKeyUp constant 1624
kCGEventLeftMouseDown constant 1624
kCGEventLeftMouseDragged constant 1624
kCGEventLeftMouseUp constant 1624

kCGEventMaskForAllEvents constant 1626
kCGEventMouseMoved constant 1624
kCGEventMouseSubtypeDefault constant 1627
kCGEventMouseSubtypeTabletPoint constant 1627
kCGEventMouseSubtypeTabletProximity constant

1627
kCGEventNull constant 1623
kCGEventOtherMouseDown constant 1625
kCGEventOtherMouseDragged constant 1625
kCGEventOtherMouseUp constant 1625
kCGEventRightMouseDown constant 1624
kCGEventRightMouseDragged constant 1624
kCGEventRightMouseUp constant 1624
kCGEventScrollWheel constant 1625
kCGEventSourceGroupID constant 1617
kCGEventSourceStateCombinedSessionState

constant 1620
kCGEventSourceStateHIDSystemState constant 1620
kCGEventSourceStateID constant 1617
kCGEventSourceStatePrivate constant 1619
kCGEventSourceUnixProcessID constant 1617
kCGEventSourceUserData constant 1617
kCGEventSourceUserID constant 1617
kCGEventSuppressionStateRemoteMouseDrag

constant 1621
kCGEventSuppressionStateSuppressionInterval

constant 1621
kCGEventTabletPointer constant 1625
kCGEventTabletProximity constant 1625
kCGEventTapDisabledByTimeout constant 1625
kCGEventTapDisabledByUserInput constant 1625
kCGEventTapOptionDefault constant 1622
kCGEventTapOptionListenOnly constant 1622
kCGEventTargetProcessSerialNumber constant 1617
kCGEventTargetUnixProcessID constant 1617
kCGFloatingWindowLevelKey constant 1561
kCGFontIndexInvalid constant 193
kCGFontIndexMax constant 193
kCGFontPostScriptFormatType1 constant 193
kCGFontPostScriptFormatType3 constant 193
kCGFontPostScriptFormatType42 constant 193
kCGFontVariationAxisDefaultValue constant 194
kCGFontVariationAxisMaxValue constant 194
kCGFontVariationAxisMinValue constant 194
kCGFontVariationAxisName constant 194
kCGGlyphMax constant 194
kCGGradientDrawsAfterEndLocation constant 207
kCGGradientDrawsBeforeStartLocation constant

207
kCGHeadInsertEventTap constant 1623
kCGHelpWindowLevelKey constant 1563
kCGHIDEventTap constant 1621
kCGImageAlphaFirst constant 226

3001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGImageAlphaLast constant 226
kCGImageAlphaNone constant 226
kCGImageAlphaNoneSkipFirst constant 226
kCGImageAlphaNoneSkipLast constant 227
kCGImageAlphaOnly constant 226
kCGImageAlphaPremultipliedFirst constant 227
kCGImageAlphaPremultipliedLast constant 227
kCGImageDestinationBackgroundColor constant

238
kCGImageDestinationLossyCompressionQuality

constant 237
kCGImageProperty8BIMDictionary constant 2302
kCGImageProperty8BIMLayerNames constant 2332
kCGImagePropertyCIFFCameraSerialNumber

constant 2333
kCGImagePropertyCIFFContinuousDrive constant

2333
kCGImagePropertyCIFFDescription constant 2332
kCGImagePropertyCIFFDictionary constant 2302
kCGImagePropertyCIFFFirmware constant 2332
kCGImagePropertyCIFFFlashExposureComp constant

2334
kCGImagePropertyCIFFFocusMode constant 2334
kCGImagePropertyCIFFImageFileName constant 2333
kCGImagePropertyCIFFImageName constant 2333
kCGImagePropertyCIFFImageSerialNumber constant

2333
kCGImagePropertyCIFFLensMaxMM constant 2334
kCGImagePropertyCIFFLensMinMM constant 2334
kCGImagePropertyCIFFLensModel constant 2334
kCGImagePropertyCIFFMeasuredEV constant 2334
kCGImagePropertyCIFFMeteringMode constant 2334
kCGImagePropertyCIFFOwnerName constant 2333
kCGImagePropertyCIFFRecordID constant 2333
kCGImagePropertyCIFFReleaseMethod constant 2333
kCGImagePropertyCIFFReleaseTiming constant 2333
kCGImagePropertyCIFFSelfTimingTime constant

2333
kCGImagePropertyCIFFShootingMode constant 2334
kCGImagePropertyCIFFWhiteBalanceIndex constant

2334
kCGImagePropertyColorModel constant 2306
kCGImagePropertyColorModelCMYK constant 2306
kCGImagePropertyColorModelGray constant 2306
kCGImagePropertyColorModelLab constant 2307
kCGImagePropertyColorModelRGB constant 2306
kCGImagePropertyDepth constant 2305
kCGImagePropertyDNGBackwardVersion constant

2331
kCGImagePropertyDNGCameraSerialNumber constant

2331
kCGImagePropertyDNGDictionary constant 2302
kCGImagePropertyDNGLensInfo constant 2331

kCGImagePropertyDNGLocalizedCameraModel
constant 2331

kCGImagePropertyDNGUniqueCameraModel constant
2331

kCGImagePropertyDNGVersion constant 2331
kCGImagePropertyDPIHeight constant 2304
kCGImagePropertyDPIWidth constant 2304
kCGImagePropertyExifApertureValue constant 2310
kCGImagePropertyExifAuxDictionary constant 2303
kCGImagePropertyExifAuxFirmware constant 2316
kCGImagePropertyExifAuxFlashCompensation

constant 2315
kCGImagePropertyExifAuxImageNumber constant

2315
kCGImagePropertyExifAuxLensID constant 2315
kCGImagePropertyExifAuxLensInfo constant 2315
kCGImagePropertyExifAuxLensModel constant 2315
kCGImagePropertyExifAuxLensSerialNumber

constant 2315
kCGImagePropertyExifAuxOwnerName constant 2315
kCGImagePropertyExifAuxSerialNumber constant

2315
kCGImagePropertyExifBrightnessValue constant

2310
kCGImagePropertyExifCFAPattern constant 2313
kCGImagePropertyExifColorSpace constant 2311
kCGImagePropertyExifComponentsConfiguration

constant 2309
kCGImagePropertyExifCompressedBitsPerPixel

constant 2310
kCGImagePropertyExifContrast constant 2314
kCGImagePropertyExifCustomRendered constant

2313
kCGImagePropertyExifDateTimeDigitized constant

2309
kCGImagePropertyExifDateTimeOriginal constant

2309
kCGImagePropertyExifDeviceSettingDescription

constant 2314
kCGImagePropertyExifDictionary constant 2302
kCGImagePropertyExifDigitalZoomRatio constant

2313
kCGImagePropertyExifExposureBiasValue constant

2310
kCGImagePropertyExifExposureIndex constant 2312
kCGImagePropertyExifExposureMode constant 2313
kCGImagePropertyExifExposureProgram constant

2309
kCGImagePropertyExifExposureTime constant 2309
kCGImagePropertyExifFileSource constant 2313
kCGImagePropertyExifFlash constant 2310
kCGImagePropertyExifFlashEnergy constant 2312

3002
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGImagePropertyExifFlashPixVersion constant
2311

kCGImagePropertyExifFNumber constant 2309
kCGImagePropertyExifFocalLength constant 2311
kCGImagePropertyExifFocalLenIn35mmFilm

constant 2313
kCGImagePropertyExifFocalPlaneResolutionUnit

constant 2312
kCGImagePropertyExifFocalPlaneXResolution

constant 2312
kCGImagePropertyExifFocalPlaneYResolution

constant 2312
kCGImagePropertyExifGainControl constant 2313
kCGImagePropertyExifGamma constant 2314
kCGImagePropertyExifImageUniqueID constant 2314
kCGImagePropertyExifISOSpeedRatings constant

2309
kCGImagePropertyExifLightSource constant 2310
kCGImagePropertyExifMakerNote constant 2311
kCGImagePropertyExifMaxApertureValue constant

2310
kCGImagePropertyExifMeteringMode constant 2310
kCGImagePropertyExifOECF constant 2309
kCGImagePropertyExifPixelXDimension constant

2311
kCGImagePropertyExifPixelYDimension constant

2312
kCGImagePropertyExifRelatedSoundFile constant

2312
kCGImagePropertyExifSaturation constant 2314
kCGImagePropertyExifSceneCaptureType constant

2313
kCGImagePropertyExifSceneType constant 2313
kCGImagePropertyExifSensingMethod constant 2312
kCGImagePropertyExifSharpness constant 2314
kCGImagePropertyExifShutterSpeedValue constant

2310
kCGImagePropertyExifSpatialFrequencyResponse

constant 2312
kCGImagePropertyExifSpectralSensitivity

constant 2309
kCGImagePropertyExifSubjectArea constant 2311
kCGImagePropertyExifSubjectDistance constant

2310
kCGImagePropertyExifSubjectDistRange constant

2314
kCGImagePropertyExifSubjectLocation constant

2312
kCGImagePropertyExifSubsecTime constant 2311
kCGImagePropertyExifSubsecTimeDigitized

constant 2311
kCGImagePropertyExifSubsecTimeOrginal constant

2311

kCGImagePropertyExifUserComment constant 2311
kCGImagePropertyExifVersion constant 2309
kCGImagePropertyExifWhiteBalance constant 2313
kCGImagePropertyFileSize constant 2304
kCGImagePropertyGIFDelayTime constant 2316
kCGImagePropertyGIFDictionary constant 2301
kCGImagePropertyGIFHasGlobalColorMap constant

2316
kCGImagePropertyGIFImageColorMap constant 2316
kCGImagePropertyGIFLoopCount constant 2316
kCGImagePropertyGPSAltitude constant 2318
kCGImagePropertyGPSAltitudeRef constant 2318
kCGImagePropertyGPSAreaInformation constant

2320
kCGImagePropertyGPSDateStamp constant 2320
kCGImagePropertyGPSDestBearing constant 2320
kCGImagePropertyGPSDestBearingRef constant 2319
kCGImagePropertyGPSDestDistance constant 2320
kCGImagePropertyGPSDestDistanceRef constant

2320
kCGImagePropertyGPSDestLatitude constant 2319
kCGImagePropertyGPSDestLatitudeRef constant

2319
kCGImagePropertyGPSDestLongitude constant 2319
kCGImagePropertyGPSDestLongitudeRef constant

2319
kCGImagePropertyGPSDictionary constant 2302
kCGImagePropertyGPSDifferental constant 2320
kCGImagePropertyGPSDOP constant 2318
kCGImagePropertyGPSImgDirection constant 2319
kCGImagePropertyGPSImgDirectionRef constant

2319
kCGImagePropertyGPSLatitude constant 2317
kCGImagePropertyGPSLatitudeRef constant 2317
kCGImagePropertyGPSLongitude constant 2318
kCGImagePropertyGPSLongitudeRef constant 2317
kCGImagePropertyGPSMapDatum constant 2319
kCGImagePropertyGPSMeasureMode constant 2318
kCGImagePropertyGPSProcessingMethod constant

2320
kCGImagePropertyGPSSatellites constant 2318
kCGImagePropertyGPSSpeed constant 2318
kCGImagePropertyGPSSpeedRef constant 2318
kCGImagePropertyGPSStatus constant 2318
kCGImagePropertyGPSTimeStamp constant 2318
kCGImagePropertyGPSTrack constant 2319
kCGImagePropertyGPSTrackRef constant 2319
kCGImagePropertyGPSVersion constant 2317
kCGImagePropertyHasAlpha constant 2306
kCGImagePropertyIPTCActionAdvised constant 2323
kCGImagePropertyIPTCByline constant 2324
kCGImagePropertyIPTCBylineTitle constant 2324

3003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGImagePropertyIPTCCaptionAbstract constant
2326

kCGImagePropertyIPTCCategory constant 2322
kCGImagePropertyIPTCCity constant 2325
kCGImagePropertyIPTCContact constant 2326
kCGImagePropertyIPTCContentLocationCode

constant 2323
kCGImagePropertyIPTCContentLocationName

constant 2323
kCGImagePropertyIPTCCopyrightNotice constant

2325
kCGImagePropertyIPTCCountryPrimaryLocationCode

constant 2325
kCGImagePropertyIPTCCountryPrimaryLocationName

constant 2325
kCGImagePropertyIPTCCredit constant 2325
kCGImagePropertyIPTCDateCreated constant 2324
kCGImagePropertyIPTCDictionary constant 2302
kCGImagePropertyIPTCDigitalCreationDate

constant 2324
kCGImagePropertyIPTCDigitalCreationTime

constant 2324
kCGImagePropertyIPTCEditorialUpdate constant

2322
kCGImagePropertyIPTCEditStatus constant 2322
kCGImagePropertyIPTCExpirationDate constant

2323
kCGImagePropertyIPTCExpirationTime constant

2323
kCGImagePropertyIPTCFixtureIdentifier constant

2322
kCGImagePropertyIPTCHeadline constant 2325
kCGImagePropertyIPTCImageOrientation constant

2326
kCGImagePropertyIPTCImageType constant 2326
kCGImagePropertyIPTCKeywords constant 2322
kCGImagePropertyIPTCLanguageIdentifier

constant 2326
kCGImagePropertyIPTCObjectAttributeReference

constant 2322
kCGImagePropertyIPTCObjectCycle constant 2324
kCGImagePropertyIPTCObjectName constant 2322
kCGImagePropertyIPTCObjectTypeReference

constant 2321
kCGImagePropertyIPTCOriginalTransmissionReference

constant 2325
kCGImagePropertyIPTCOriginatingProgram

constant 2324
kCGImagePropertyIPTCProgramVersion constant

2324
kCGImagePropertyIPTCProvinceState constant 2325
kCGImagePropertyIPTCReferenceDate constant 2323

kCGImagePropertyIPTCReferenceNumber constant
2324

kCGImagePropertyIPTCReferenceService constant
2323

kCGImagePropertyIPTCReleaseDate constant 2323
kCGImagePropertyIPTCReleaseTime constant 2323
kCGImagePropertyIPTCSource constant 2325
kCGImagePropertyIPTCSpecialInstructions

constant 2323
kCGImagePropertyIPTCStarRating constant 2326
kCGImagePropertyIPTCSubjectReference constant

2322
kCGImagePropertyIPTCSubLocation constant 2325
kCGImagePropertyIPTCSupplementalCategory

constant 2322
kCGImagePropertyIPTCTimeCreated constant 2324
kCGImagePropertyIPTCUrgency constant 2322
kCGImagePropertyIPTCWriterEditor constant 2326
kCGImagePropertyIsFloat constant 2305
kCGImagePropertyIsIndexed constant 2305
kCGImagePropertyJFIFDensityUnit constant 2327
kCGImagePropertyJFIFDictionary constant 2302
kCGImagePropertyJFIFIsProgressive constant 2327
kCGImagePropertyJFIFVersion constant 2327
kCGImagePropertyJFIFXDensity constant 2327
kCGImagePropertyJFIFYDensity constant 2327
kCGImagePropertyMakerCanonAspectRatioInfo

constant 2338
kCGImagePropertyMakerCanonCameraSerialNumber

constant 2337
kCGImagePropertyMakerCanonContinuousDrive

constant 2337
kCGImagePropertyMakerCanonDictionary constant

2303
kCGImagePropertyMakerCanonFirmware constant

2338
kCGImagePropertyMakerCanonFlashExposureComp

constant 2337
kCGImagePropertyMakerCanonImageSerialNumber

constant 2337
kCGImagePropertyMakerCanonLensModel constant

2337
kCGImagePropertyMakerCanonOwnerName constant

2337
kCGImagePropertyMakerFujiDictionary constant

2303
kCGImagePropertyMakerMinoltaDictionary

constant 2303
kCGImagePropertyMakerNikonCameraSerialNumber

constant 2337
kCGImagePropertyMakerNikonColorMode constant

2335

3004
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGImagePropertyMakerNikonDictionary constant
2303

kCGImagePropertyMakerNikonDigitalZoom constant
2336

kCGImagePropertyMakerNikonFlashExposureComp
constant 2336

kCGImagePropertyMakerNikonFlashSetting
constant 2335

kCGImagePropertyMakerNikonFocusDistance
constant 2336

kCGImagePropertyMakerNikonFocusMode constant
2335

kCGImagePropertyMakerNikonImageAdjustment
constant 2336

kCGImagePropertyMakerNikonISOSelection
constant 2336

kCGImagePropertyMakerNikonISOSetting constant
2335

kCGImagePropertyMakerNikonLensAdapter constant
2336

kCGImagePropertyMakerNikonLensInfo constant
2336

kCGImagePropertyMakerNikonLensType constant
2336

kCGImagePropertyMakerNikonQuality constant 2335
kCGImagePropertyMakerNikonSharpenMode constant

2335
kCGImagePropertyMakerNikonShootingMode

constant 2336
kCGImagePropertyMakerNikonShutterCount

constant 2336
kCGImagePropertyMakerNikonWhiteBalanceMode

constant 2335
kCGImagePropertyMakerOlympusDictionary

constant 2303
kCGImagePropertyMakerPentaxDictionary constant

2304
kCGImagePropertyOrientation constant 2305
kCGImagePropertyPixelHeight constant 2305
kCGImagePropertyPixelWidth constant 2305
kCGImagePropertyPNGChromaticities constant 2328
kCGImagePropertyPNGDictionary constant 2302
kCGImagePropertyPNGGamma constant 2327
kCGImagePropertyPNGInterlaceType constant 2328
kCGImagePropertyPNGsRGBIntent constant 2328
kCGImagePropertyPNGXPixelsPerMeter constant

2328
kCGImagePropertyPNGYPixelsPerMeter constant

2328
kCGImagePropertyProfileName constant 2306
kCGImagePropertyRawDictionary constant 2302
kCGImagePropertyTIFFArtist constant 2330
kCGImagePropertyTIFFCompression constant 2329

kCGImagePropertyTIFFCopyright constant 2330
kCGImagePropertyTIFFDateTime constant 2330
kCGImagePropertyTIFFDictionary constant 2301
kCGImagePropertyTIFFDocumentName constant 2329
kCGImagePropertyTIFFHostComputer constant 2330
kCGImagePropertyTIFFImageDescription constant

2329
kCGImagePropertyTIFFMake constant 2329
kCGImagePropertyTIFFModel constant 2329
kCGImagePropertyTIFFOrientation constant 2329
kCGImagePropertyTIFFPhotometricInterpretation

constant 2329
kCGImagePropertyTIFFPrimaryChromaticities

constant 2331
kCGImagePropertyTIFFResolutionUnit constant

2330
kCGImagePropertyTIFFSoftware constant 2330
kCGImagePropertyTIFFTransferFunction constant

2330
kCGImagePropertyTIFFWhitePoint constant 2330
kCGImagePropertyTIFFXResolution constant 2330
kCGImagePropertyTIFFYResolution constant 2330
kCGImageSourceCreateThumbnailFromImageAlways

constant 251
kCGImageSourceCreateThumbnailFromImageIfAbsent

constant 251
kCGImageSourceCreateThumbnailWithTransform

constant 251
kCGImageSourceShouldAllowFloat constant 250
kCGImageSourceShouldCache constant 251
kCGImageSourceThumbnailMaxPixelSize constant

251
kCGImageSourceTypeIdentifierHint constant 250
kCGImageStatusComplete constant 250
kCGImageStatusIncomplete constant 250
kCGImageStatusInvalidData constant 249
kCGImageStatusReadingHeader constant 250
kCGImageStatusUnexpectedEOF constant 249
kCGImageStatusUnknownType constant 249
kCGInterpolationDefault constant 142
kCGInterpolationHigh constant 143
kCGInterpolationLow constant 143
kCGInterpolationNone constant 143
kCGKeyboardEventAutorepeat constant 1612
kCGKeyboardEventKeyboardType constant 1613
kCGKeyboardEventKeycode constant 1613
kCGLineCapButt constant 143
kCGLineCapRound constant 143
kCGLineCapSquare constant 143
kCGLineJoinBevel constant 144
kCGLineJoinMiter constant 144
kCGLineJoinRound constant 144
kCGMainMenuWindowLevelKey constant 1562

3005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGMaxDisplayReservationInterval constant 1556
kCGMaximumWindowLevelKey constant 1562
kCGMinimumWindowLevelKey constant 1561
kCGModalPanelWindowLevelKey constant 1562
kCGMouseButtonCenter constant 1626
kCGMouseButtonLeft constant 1626
kCGMouseButtonRight constant 1626
kCGMouseEventButtonNumber constant 1612
kCGMouseEventClickState constant 1612
kCGMouseEventDeltaX constant 1612
kCGMouseEventDeltaY constant 1612
kCGMouseEventInstantMouser constant 1612
kCGMouseEventNumber constant 1612
kCGMouseEventPressure constant 1612
kCGMouseEventSubtype constant 1612
kCGNormalWindowLevelKey constant 1561
kCGNullDirectDisplay constant 1557
kCGNumberOfWindowLevelKeys constant 1563
kCGNumReservedWindowLevels constant 1559
kCGOverlayWindowLevelKey constant 1562
kCGPathElementAddCurveToPoint constant 281
kCGPathElementAddLineToPoint constant 281
kCGPathElementAddQuadCurveToPoint constant 281
kCGPathElementCloseSubpath constant 281
kCGPathElementMoveToPoint constant 281
kCGPathEOFill constant 280
kCGPathEOFillStroke constant 280
kCGPathFill constant 280
kCGPathFillStroke constant 280
kCGPathStroke constant 280
kCGPatternTilingConstantSpacing constant 289
kCGPatternTilingConstantSpacingMinimalDistortion

constant 289
kCGPatternTilingNoDistortion constant 289
kCGPDFArtBox constant 359
kCGPDFBleedBox constant 359
kCGPDFContextAllowsCopying constant 312
kCGPDFContextAllowsPrinting constant 311
kCGPDFContextArtBox constant 313
kCGPDFContextAuthor constant 311
kCGPDFContextBleedBox constant 313
kCGPDFContextCreator constant 311
kCGPDFContextCropBox constant 313
kCGPDFContextEncryptionKeyLength constant 312
kCGPDFContextKeywords constant 312
kCGPDFContextMediaBox constant 313
kCGPDFContextOutputIntent constant 312
kCGPDFContextOutputIntents constant 312
kCGPDFContextOwnerPassword constant 311
kCGPDFContextSubject constant 312
kCGPDFContextTitle constant 311
kCGPDFContextTrimBox constant 313
kCGPDFContextUserPassword constant 311

kCGPDFCropBox constant 359
kCGPDFMediaBox constant 359
kCGPDFObjectTypeArray constant 346
kCGPDFObjectTypeBoolean constant 346
kCGPDFObjectTypeDictionary constant 346
kCGPDFObjectTypeInteger constant 346
kCGPDFObjectTypeName constant 346
kCGPDFObjectTypeNull constant 346
kCGPDFObjectTypeReal constant 346
kCGPDFObjectTypeStream constant 347
kCGPDFObjectTypeString constant 346
kCGPDFTrimBox constant 359
kCGPDFXDestinationOutputProfile constant 315
kCGPDFXInfo constant 314
kCGPDFXOutputCondition constant 314
kCGPDFXOutputConditionIdentifier constant 314
kCGPDFXOutputIntentSubtype constant 314
kCGPDFXRegistryName constant 314
kCGPopUpMenuWindowLevelKey constant 1562
kCGRenderingIntentAbsoluteColorimetric

constant 59
kCGRenderingIntentDefault constant 59
kCGRenderingIntentPerceptual constant 59
kCGRenderingIntentRelativeColorimetric

constant 59
kCGRenderingIntentSaturation constant 59
kCGScreenSaverWindowLevelKey constant 1562
kCGScreenUpdateOperationMove constant 1560
kCGScreenUpdateOperationReducedDirtyRectangleCount

constant 1560
kCGScreenUpdateOperationRefresh constant 1560
kCGScrollEventUnitLine constant 1628
kCGScrollEventUnitPixel constant 1628
kCGScrollWheelEventDeltaAxis1 constant 1613
kCGScrollWheelEventDeltaAxis2 constant 1613
kCGScrollWheelEventDeltaAxis3 constant 1613
kCGScrollWheelEventFixedPtDeltaAxis1 constant

1613
kCGScrollWheelEventFixedPtDeltaAxis2 constant

1613
kCGScrollWheelEventFixedPtDeltaAxis3 constant

1613
kCGScrollWheelEventInstantMouser constant 1614
kCGScrollWheelEventIsContinuous constant 1617
kCGScrollWheelEventPointDeltaAxis1 constant

1614
kCGScrollWheelEventPointDeltaAxis2 constant

1614
kCGScrollWheelEventPointDeltaAxis3 constant

1614
kCGSessionConsoleSetKey constant 1564
kCGSessionEventTap constant 1621
kCGSessionLoginDoneKey constant 1564

3006
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCGSessionOnConsoleKey constant 1564
kCGSessionUserIDKey constant 1563
kCGSessionUserNameKey constant 1563
kCGStatusWindowLevelKey constant 1562
kCGTabletEventDeviceID constant 1615
kCGTabletEventPointButtons constant 1614
kCGTabletEventPointPressure constant 1615
kCGTabletEventPointX constant 1614
kCGTabletEventPointY constant 1614
kCGTabletEventPointZ constant 1614
kCGTabletEventRotation constant 1615
kCGTabletEventTangentialPressure constant 1615
kCGTabletEventTiltX constant 1615
kCGTabletEventTiltY constant 1615
kCGTabletEventVendor1 constant 1615
kCGTabletEventVendor2 constant 1615
kCGTabletEventVendor3 constant 1615
kCGTabletProximityEventCapabilityMask constant

1616
kCGTabletProximityEventDeviceID constant 1616
kCGTabletProximityEventEnterProximity constant

1617
kCGTabletProximityEventPointerID constant 1616
kCGTabletProximityEventPointerType constant

1616
kCGTabletProximityEventSystemTabletID constant

1616
kCGTabletProximityEventTabletID constant 1616
kCGTabletProximityEventVendorID constant 1616
kCGTabletProximityEventVendorPointerSerialNumber

constant 1616
kCGTabletProximityEventVendorPointerType

constant 1616
kCGTabletProximityEventVendorUniqueID constant

1616
kCGTailAppendEventTap constant 1623
kCGTextClip constant 145
kCGTextFill constant 145
kCGTextFillClip constant 145
kCGTextFillStroke constant 145
kCGTextFillStrokeClip constant 145
kCGTextInvisible constant 145
kCGTextStroke constant 145
kCGTextStrokeClip constant 145
kCGTornOffMenuWindowLevelKey constant 1562
kCGUtilityWindowLevelKey constant 1563
kCMMCheckBitmap constant 953
kCMMCheckColors constant 953
kCMMCheckPixMap constant 956
kCMMClose constant 952
kCMMConcatenateProfiles constant 953
kCMMConcatInit constant 953
kCMMFlattenProfile constant 955

kCMMGetIndNamedColorValue constant 955
kCMMGetInfo constant 952
kCMMGetNamedColorIndex constant 956
kCMMGetNamedColorInfo constant 955
kCMMGetNamedColorName constant 956
kCMMGetNamedColorValue constant 955
kCMMGetPS2ColorRendering constant 954
kCMMGetPS2ColorRenderingIntent constant 954
kCMMGetPS2ColorRenderingVMSize constant 954
kCMMGetPS2ColorSpace constant 954
kCMMInit constant 955
kCMMMatchBitmap constant 953
kCMMMatchColors constant 953
kCMMMatchPixMap constant 956
kCMMNewLinkProfile constant 954
kCMMOpen constant 952
kCMMUnflattenProfile constant 955
kCMMValidateProfile constant 953
kConnSuite 616
kCoreEventClass constant 586
kCUPSPPDDomain constant 2293
kCurrentProcess constant 1467
kCursorComponentInit 2895
kCursorComponentsVersion 2896
kCursorComponentType 2896
kCursorImageMajorVersion 2896
kDCMAllowListing constant 1078
kDCMAnyFieldTag constant 1080
kDCMAnyFieldType constant 1080
kDCMBasicDictionaryClass constant 1071
kDCMCanAddDictionaryFieldMask constant 1070
kDCMCanCreateDictionaryMask constant 1070
kDCMCanHaveMultipleIndexMask constant 1070
kDCMCanModifyDictionaryMask constant 1070
kDCMCanStreamDictionaryMask constant 1070
kDCMCanUseFileDictionaryMask constant 1069
kDCMCanUseMemoryDictionaryMask constant 1069
kDCMCanUseTransactionMask constant 1070
kDCMDictionaryHeaderSignature constant 1071
kDCMDictionaryHeaderVersion constant 1072
kDCMFindMethodBackwardTrie constant 1079
kDCMFindMethodBeginningMatch constant 1079
kDCMFindMethodContainsMatch constant 1079
kDCMFindMethodEndingMatch constant 1079
kDCMFindMethodExactMatch constant 1079
kDCMFindMethodForwardTrie constant 1079
kDCMFixedSizeFieldMask constant 1074
kDCMHiddenFieldMask constant 1074
kDCMIdentifyFieldMask constant 1074
kDCMIndexedFieldMask constant 1073
kDCMJapaneseAccentType constant 1075
kDCMJapaneseFukugouInfoType constant 1076
kDCMJapaneseHinshiType constant 1075

3007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kDCMJapaneseHyokiType constant 1075
kDCMJapaneseOnKunReadingType constant 1076
kDCMJapanesePhoneticType constant 1075
kDCMJapaneseWeightType constant 1075
kDCMJapaneseYomiType constant 1075
kDCMProhibitListing constant 1078
kDCMReadOnlyDictionary constant 1078
kDCMReadWriteDictionary constant 1078
kDCMRequiredFieldMask constant 1074
kDCMSpecificDictionaryClass constant 1071
kDCMUserDictionaryClass constant 1071
kDefaultCMMSignature constant 977
kDependentNotifyClassDisplayMgrOverride

constant 1154
kDependentNotifyClassDriverOverride constant

1153
kDependentNotifyClassProfileChanged constant

1154
kDependentNotifyClassShowCursor constant 1153
kDepthNotAvailableBit constant 1163
kDeviceToPCS constant 1001
kDictionaryFileType constant 1071
kDisplayModeEntryVersionOne constant 1156
kDisplayModeEntryVersionZero constant 1156
kDisplayModeListNotPreferredBit constant 1155
kDisplayModeListNotPreferredMask constant 1155
kDisplayTimingInfoReservedCountVersionZero

constant 1155
kDisplayTimingInfoVersionZero constant 1155
kDMCantBlock constant 1164
kDMDisplayAlreadyInstalledErr constant 1165
kDMDisplayNotFoundErr constant 1165
kDMDriverNotDisplayMgrAwareErr constant 1164
kDMForceNumbersMask constant 1156
kDMFoundErr constant 1165
kDMGenErr constant 1164
kDMMainDisplayCannotMoveErr constant 1165
kDMMirroringBlocked constant 1164
kDMMirroringNotOn constant 1164
kDMMirroringOnAlready constant 1164
kDMModeListExcludeCustomModesMask constant 1157
kDMModeListExcludeDisplayModesMask constant

1157
kDMModeListExcludeDriverModesMask constant 1157
kDMModeListIncludeAllModesMask constant 1157
kDMModeListIncludeOfflineModesMask constant

1157
kDMModeListPreferSafeModesMask constant 1158
kDMModeListPreferStretchedModesMask constant

1158
kDMNoDeviceTableclothErr constant 1165
kDMNotFoundErr constant 1165
kDMNotifyDependents constant 1160

kDMNotifyDisplayDidWake constant 1161
kDMNotifyDisplayWillSleep constant 1160
kDMNotifyEvent constant 1160
kDMNotifyExtendEvent constant 1160
kDMNotifyInstalled constant 1159
kDMNotifyPrep constant 1160
kDMNotifyRemoved constant 1160
kDMNotifyRequestConnectionProbe constant 1159
kDMNotifyRequestDisplayProbe constant 1160
kDMNotifyResumeConfigure constant 1160
kDMNotifySuspendConfigure constant 1160
kDMSupressNameMask constant 1156
kDMSupressNumbersMask constant 1156
kDMSWNotInitializedErr constant 1164
kDMWrongNumberOfDisplays constant 1164
kDummyDeviceID constant 1154
keepLocal constant 2892
kEndOfSentence constant 1682
kEndOfWord constant 1682
KernEntry structure 1218
KernPair structure 1218
KernTable structure 1218
kEventAccessibleGetAllActionNames constant 2083
kEventAccessibleGetAllAttributeNames constant

2082
kEventAccessibleGetAllParameterizedAttributeNames

constant 2082
kEventAccessibleGetChildAtPoint constant 2081
kEventAccessibleGetFocusedChild constant 2082
kEventAccessibleGetNamedActionDescription

constant 2084
kEventAccessibleGetNamedAttribute constant 2082
kEventAccessibleIsNamedAttributeSettable

constant 2083
kEventAccessiblePerformNamedAction constant

2083
kEventAccessibleSetNamedAttribute constant 2083
kEventClassAccessibility constant 2087
kEventParamAccessibleActionDescription

constant 2087
kEventParamAccessibleActionName constant 2087
kEventParamAccessibleActionNames constant 2087
kEventParamAccessibleAttributeName constant

2086
kEventParamAccessibleAttributeNames constant

2086
kEventParamAccessibleAttributeParameter

constant 2087
kEventParamAccessibleAttributeSettable

constant 2086
kEventParamAccessibleAttributeValue constant

2086
kEventParamAccessibleChild constant 2086

3008
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventParamAccessibleEventQueued constant 2087
kEventParamAccessibleObject constant 2086
kExtendedNotificationProc constant 1161
Key Form and Descriptor Type Object Specifier Constants

590
keyAddressAttr constant 594
keyAEAdjustMarksProc constant 604
keyAEAngle 617
keyAEBaseAddr 617
keyAECompareProc constant 604
keyAECompOperator constant 576
keyAEContainer constant 577
keyAECountProc constant 604
keyAEDesiredClass constant 577
keyAEDoScale 618
keyAEGetErrDescProc constant 605
keyAEHiliteRange 618
keyAEKeyData constant 578
keyAEKeyForm constant 577
keyAEKeyword 618
keyAELaunchedAsLogInItem constant 597
keyAELaunchedAsServiceItem constant 597
keyAELeadingEdge 619
keyAELogicalOperator constant 577
keyAELogicalTerms constant 577
keyAEMarkProc constant 604
keyAEMarkTokenProc constant 604
keyAEObject1 constant 577
keyAEObject2 constant 577
keyAEPropData 619
keyAERangeStart constant 604
keyAERangeStop constant 604
keyAERecorderCount constant 596
keyAESearchText constant 620
keyAESuiteID 621
keyAEVersion constant 596
keyDCMFieldAttributes constant 1076
keyDCMFieldDefaultData constant 1077
keyDCMFieldFindMethods constant 1077
keyDCMFieldName constant 1077
keyDCMFieldTag constant 1076
keyDCMFieldType constant 1076
keyDCMMaxRecordSize constant 1076
keyDeviceDepthMode constant 1151
keyDeviceFlags constant 1151
keyDeviceRect constant 1151
keyDirectObject constant 595
keyDisplayComponent constant 1150
keyDisplayDevice constant 1150
keyDisplayFlags constant 1150
keyDisplayID constant 1150
keyDisplayMirroredId constant 1150
keyDisplayMode constant 1150

keyDisplayModeReserved constant 1150
keyDisplayNewConfig constant 1153
keyDisplayOldConfig constant 1152
keyDisplayReserved constant 1150
keyDisposeTokenProc constant 604
keyDMConfigFlags constant 1150
keyDMConfigReserved constant 1150
keyDMConfigVersion constant 1149
keyErrorNumber constant 595
keyErrorString constant 595
keyEventClassAttr constant 593
keyEventIDAttr constant 594
keyEventSourceAttr constant 594
keyInteractLevelAttr constant 594
keyMenuID 621
keyMiscellaneous 621
keyMissedKeywordAttr constant 594
keyOptionalKeywordAttr constant 594
keyOriginalAddressAttr constant 594
keyPixMapAlignment constant 1152
keyPixMapCmpCount constant 1152
keyPixMapCmpSize constant 1152
keyPixMapColorTableSeed constant 1152
keyPixMapHResolution constant 1151
keyPixMapPixelSize constant 1151
keyPixMapPixelType constant 1151
keyPixMapRect constant 1151
keyPixMapReserved constant 1152
keyPixMapResReserved constant 1152
keyPixMapVResolution constant 1151
keyPreDispatch constant 596
keyProcessSerialNumber constant 595
keyReplyPortAttr 621
keyReplyRequestedAttr constant 594
keyReturnIDAttr constant 593
Keys 2524
keySelectProc constant 596
keySOAPStructureMetaData 622
keySummaryChanges constant 1152
keySummaryMenubar constant 1152
keyTimeoutAttr constant 594
keyTransactionIDAttr constant 593
keyUserNameAttr 622
Keyword Attribute Constants 593
Keyword Parameter Constants 595
kFAServerApp 622
kFBCaccessCanceled constant 2422
kFBCaccessorStoreFailed constant 2422
kFBCaddDocFailed constant 2422
kFBCallocFailed constant 2421
kFBCanalysisNotAvailable constant 2423
kFBCbadIndexFile constant 2422
kFBCbadIndexFileVersion constant 2423

3009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kFBCbadParam constant 2421
kFBCbadSearchSession constant 2423
kFBCcommitFailed constant 2422
kFBCcompactionFailed constant 2422
kFBCdeletionFailed constant 2422
kFBCfileNotIndexed constant 2421
kFBCflushFailed constant 2422
kFBCillegalSessionChange constant 2423
kFBCindexCreationFailed constant 2422
kFBCindexDiskIOFailed constant 2423
kFBCindexFileDestroyed constant 2423
kFBCindexingCanceled constant 2422
kFBCindexingFailed constant 2422
kFBCindexNotAvailable constant 2423
kFBCindexNotFound constant 2422
kFBCmergingFailed constant 2422
kFBCmoveFailed constant 2422
kFBCnoIndexesFound constant 2421
kFBCnoSearchSession constant 2422
kFBCnoSuchHit constant 2423
kFBCnotAllFoldersSearchable constant 2423
kFBCphAccessWaiting constant 2420
kFBCphCanceling constant 2420
kFBCphCompacting constant 2419
kFBCphFlushing constant 2419
kFBCphIdle constant 2420
kFBCphIndexing constant 2419
kFBCphIndexWaiting constant 2419
kFBCphMakingAccessAccessor constant 2420
kFBCphMakingIndexAccessor constant 2419
kFBCphMerging constant 2419
kFBCphSearching constant 2419
kFBCphSummarizing constant 2420
kFBCsearchFailed constant 2423
kFBCsomeFilesNotIndexed constant 2423
kFBCsummarizationCanceled constant 2423
kFBCsummarizationFailed constant 2423
kFBCtokenizationFailed constant 2422
kFBCvalidationFailed constant 2422
kFBCvTwinExceptionErr constant 2421
kFemale constant 1682
kFirstDisplayID constant 1154
kFMCurrentFilterFormat constant 711
kFMDefaultActivationContext constant 1224
kFMDefaultIterationScope constant 1228
kFMDefaultOptions constant 1225
kFMFontCallbackFilterSelector constant 712
kFMFontContainerAccessErr constant 1230
kFMFontContainerFilterSelector constant 712
kFMFontFamilyCallbackFilterSelector constant

712
kFMFontTechnologyFilterSelector constant 712
kFMGenerationFilterSelector constant 712

kFMGlobalActivationContext constant 1224
kFMGlobalIterationScope constant 1228
kFMInvalidFontErr constant 1230
kFMInvalidFontFamilyErr constant 1230
kFMIterationCompleted constant 1230
kFMIterationScopeModifiedErr constant 1230
kFMLocalActivationContext constant 1224
kFMLocalIterationScope constant 1228
kFMPostScriptFontTechnology constant 713
kFMTableAccessErr constant 1230
kFMTrueTypeFontTechnology constant 713
kFNSBadFlattenedSizeErr constant 2464
kFNSBadProfileVersionErr constant 2463
kFNSBadReferenceVersionErr constant 2463
kFNSCreatorDefault constant 2461
kFNSCurSysInfoVersion constant 2462
kFNSDuplicateReferenceErr constant 2463
kFNSInsufficientDataErr constant 2463
kFNSInvalidProfileErr constant 2463
kFNSInvalidReferenceErr constant 2463
kFNSMatchAATLayout constant 2460
kFNSMatchAll constant 2461
kFNSMatchATSUMetrics constant 2460
kFNSMatchDefaults constant 2461
kFNSMatchEncodings constant 2460
kFNSMatchGlyphs constant 2459
kFNSMatchKerning constant 2460
kFNSMatchNames constant 2459
kFNSMatchPrintEncoding constant 2460
kFNSMatchQDMetrics constant 2460
kFNSMatchTechnology constant 2459
kFNSMatchWSLayout constant 2460
kFNSMismatchErr constant 2463
kFNSMissingDataNoMatch constant 2460
kFNSNameNotFoundErr constant 2464
kFNSProfileFileType constant 2462
kFNSVersionDontCare constant 2462
kForceConfirmBit constant 1153
kForceConfirmMask constant 1153
kFullDependencyNotify constant 1161
kFullNotify constant 1161
kGlyphCollectionAdobeCNS1 constant 2050
kGlyphCollectionAdobeGB1 constant 2050
kGlyphCollectionAdobeJapan1 constant 2050
kGlyphCollectionAdobeJapan2 constant 2050
kGlyphCollectionAdobeKorea1 constant 2050
kGlyphCollectionGID constant 2050
kGlyphCollectionUnspecified constant 2051
kHilite constant 2949
kHorizontalConstraint constant 2890
kICArchieAll constant 2525
kICArchiePreferred constant 2525
kICAttrLockedBit constant 2536

3010
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kICAttrLockedMask constant 2536
kICAttrNoChange constant 2536
kICAttrVolatileBit constant 2536
kICAttrVolatileMask constant 2536
kICCharacterSet constant 2525
kICComponentInterfaceVersion constant 2519
kICComponentInterfaceVersion0 constant 2518
kICComponentInterfaceVersion1 constant 2518
kICComponentInterfaceVersion2 constant 2518
kICComponentInterfaceVersion3 constant 2519
kICComponentInterfaceVersion4 constant 2519
kICCreator constant 2523
kICDocumentFont constant 2525
kICDownloadFolder constant 2525
kICEmail constant 2525
kICFileType constant 2523
kICFingerHost constant 2526
kICFTPHost constant 2526
kICFTPProxyAccount constant 2526
kICFTPProxyHost constant 2526
kICFTPProxyPassword constant 2526
kICFTPProxyUser constant 2526
kICGopherHost constant 2526
kICGopherProxy constant 2526
kICHelper constant 2526
kICHelperDesc constant 2527
kICHelperList constant 2527
kICHTTPProxyHost constant 2526
kICInfoMacAll constant 2527
kICInfoMacPreferred constant 2527
kICIRCHost constant 2527
kICLDAPSearchbase constant 2527
kICLDAPServer constant 2527
kICListFont constant 2527
kICMacSearchHost constant 2527
kICMailAccount constant 2527
kICMailHeaders constant 2528
kICMailPassword constant 2528
kICMapBinaryBit constant 2533
kICMapBinaryMask constant 2534
kICMapDataForkBit constant 2533
kICMapDataForkMask constant 2534
kICMapFixedLength constant 2535
kICMapNotIncomingBit constant 2533
kICMapNotIncomingMask constant 2534
kICMapNotOutgoingBit constant 2533
kICMapNotOutgoingMask constant 2534
kICMapping constant 2528
kICMapPostBit constant 2533
kICMapPostMask constant 2534
kICMapResourceForkBit constant 2533
kICMapResourceForkMask constant 2534
kICNewMailDialog constant 2528

kICNewMailFlashIcon constant 2528
kICNewMailPlaySound constant 2528
kICNewMailSoundName constant 2528
kICNewsAuthPassword constant 2528
kICNewsAuthUsername constant 2529
kICNewsHeaders constant 2529
kICNilProfileID constant 2537
kICNNTPHost constant 2528
kICNoProxyDomains constant 2529
kICNTPHost constant 2528
kIconServicesCatalogInfoMask constant 1314
kICOrganization constant 2529
kICPhHost constant 2529
kICPlan constant 2529
kICPrinterFont constant 2529
kICQuotingString constant 2529
kICRealName constant 2529
kICReservedKey constant 2525
kICRTSPProxyHost constant 2529
kICScreenFont constant 2530
kICServices constant 2530
kICServicesTCPBit constant 2537
kICServicesTCPMask constant 2537
kICServicesUDPBit constant 2537
kICServicesUDPMask constant 2537
kICSignature constant 2530
kICSMTPHost constant 2530
kICSnailMailAddress constant 2530
kICSocksHost constant 2530
kICTelnetHost constant 2530
kICUMichAll constant 2530
kICUMichPreferred constant 2530
kICUseFTPProxy constant 2530
kICUseGopherProxy constant 2531
kICUseHTTPProxy constant 2531
kICUsePassiveFTP constant 2531
kICUseRTSPProxy constant 2531
kICUseSocks constant 2531
kICWAISGateway constant 2531
kICWebBackgroundColour constant 2531
kICWebReadColor constant 2531
kICWebSearchPagePrefs constant 2531
kICWebTextColor constant 2532
kICWebUnderlineLinks constant 2532
kICWebUnreadColor constant 2532
kICWhoisHost constant 2532
kICWWWHomePage constant 2531
KillPicture function (Deprecated in Mac OS X v10.4)

2691
KillPoly function (Deprecated in Mac OS X v10.4) 2691
KillProcess function 1450
kImmediate constant 1682
kInjectionSectCoverPage constant 2287

3011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kInjectionSectJob constant 2287
kInjectionSubBeginDefaults constant 2290
kInjectionSubBeginFont constant 2291
kInjectionSubBeginPageSetup constant 2292
kInjectionSubBeginProlog constant 2289
kInjectionSubBeginResource constant 2291
kInjectionSubBeginSetup constant 2289
kInjectionSubBoundingBox constant 2288
kInjectionSubDocCustomColors constant 2290
kInjectionSubDocFonts constant 2290
kInjectionSubDocNeededFonts constant 2290
kInjectionSubDocNeededRes constant 2290
kInjectionSubDocProcessColors constant 2291
kInjectionSubDocSuppliedFonts constant 2290
kInjectionSubDocSuppliedRes constant 2290
kInjectionSubEndComments constant 2289
kInjectionSubEndDefaults constant 2290
kInjectionSubEndFont constant 2291
kInjectionSubEndPageSetup constant 2292
kInjectionSubEndProlog constant 2289
kInjectionSubEndResource constant 2292
kInjectionSubEndSetup constant 2289
kInjectionSubEOF constant 2291
kInjectionSubOrientation constant 2289
kInjectionSubPage constant 2292
kInjectionSubPageOrder constant 2289
kInjectionSubPages constant 2289
kInjectionSubPageTrailer constant 2291
kInjectionSubPlateColor constant 2291
kInjectionSubPSAdobe constant 2288
kInjectionSubPSAdobeEPS constant 2288
kInjectionSubTrailer constant 2291
kInvalidDisplayID constant 1154
kInvalidFont constant 713
kInvalidFontFamily constant 713
kInvalidGeneration constant 713
kInvertHighlighting constant 2053
kLaunchToGetTerminology 623
kLocalPPDDomain constant 2293
kMakeAndModelReservedCount constant 1162
kMale constant 1682
kModeNotResizeBit constant 1163
kNativeEndianPixMap constant 2893
kNCMMConcatInit constant 954
kNCMMInit constant 952
kNCMMNewLinkProfile constant 954
kNetworkPPDDomain constant 2293
kNeuter constant 1681
kNeverShowModeBit constant 1164
kNextBody 623
kNoConstraint constant 2890
kNoEndingProsody constant 1680
kNoProcess constant 1466

kNoSpeechInterrupt constant 1681
kNoSwitchConfirmBit constant 1163
kNoTimeOut constant 605
kNoTransform constant 1001
kOSIZDontOpenResourceFile 623
kPasteboardClientIsOwner constant 1407
kPasteboardClipboard constant 1405
kPasteboardFind constant 1405
kPasteboardFlavorNoFlags constant 1405
kPasteboardFlavorNotSaved constant 1406
kPasteboardFlavorPromised constant 1406
kPasteboardFlavorRequestOnly constant 1406
kPasteboardFlavorSenderOnly constant 1405
kPasteboardFlavorSenderTranslated constant 1406
kPasteboardFlavorSystemTranslated constant 1406
kPasteboardModified constant 1407
kPasteboardPromisedData constant 1407
kPasteboardResolveAllPromises constant 1407
kPasteboardUniqueName constant 1405
kPCSToDevice constant 1001
kPCSToPCS constant 1001
kPDFWorkflowDisplayNameKey constant 2285
kPDFWorkflowFolderURLKey constant 2285
kPDFWorkflowItemsKey constant 2285
kPDFWorkFlowItemURLKey constant 2285
kPlatformDefaultGuiFontID constant 1229
kPLIncludeOfflineDevicesBit constant 1162
kPM8BitCommKey constant 1805
kPM8BitCommStr constant 1805
kPMAdjustedPageRectKey constant 1813
kPMAdjustedPageRectStr constant 1813
kPMAdjustedPaperRectKey constant 1813
kPMAdjustedPaperRectStr constant 1813
kPMApplicationNameKey constant 1810
kPMApplicationNameStr constant 1810
kPMBandingRequestedKey constant 1804
kPMBandingRequestedStr constant 1804
kPMBlackAndWhite constant 2298
kPMBorderKey constant 1819
kPMBorderStr constant 1819
kPMBorderTypeKey constant 1819
kPMBorderTypeStr constant 1819
kPMCancel constant 2297
kPMColor constant 2298
kPMColorDeviceIDKey constant 1802
kPMColorDeviceIDStr constant 1802
kPMColorModeDuotone constant 2298
kPMColorModeKey constant 1820
kPMColorModeSpecialColor constant 2298
kPMColorModeStr constant 1820
kPMColorSyncProfileIDKey constant 1820
kPMColorSyncProfileIDStr constant 1820
kPMColorSyncProfilesKey constant 1802

3012
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPMColorSyncProfilesStr constant 1802
kPMColorSyncSystemProfilePathKey constant 1820
kPMColorSyncSystemProfilePathStr constant 1820
kPMCompiledPPDKey constant 1816
kPMCompiledPPDStr constant 1816
kPMConstraintList constant 1803
kPMConstraintPrivate constant 1803
kPMConstraintRange constant 1803
kPMConstraintUndefined constant 1803
kPMConverterResHorizontalKey constant 1804
kPMConverterResHorizontalStr constant 1804
kPMConverterResVerticalKey constant 1805
kPMConverterResVerticalStr constant 1804
kPMConverterSetupPrelude constant 1804
kPMConverterSetupTicket constant 1831
kPMConverterSetupTicketType constant 1830
kPMCopiesKey constant 1818
kPMCopiesStr constant 1818
kPMCopyCollateDefault constant 1811
kPMCopyCollateKey constant 1818
kPMCopyCollateStr constant 1818
kPMCurrentValue constant 2296
kPMCVColorSyncProfileIDKey constant 1805
kPMDataFormatXMLCompressed constant 2281
kPMDataFormatXMLDefault constant 2280
kPMDataFormatXMLMinimal constant 2280
kPMDefaultResolution constant 2297
kPMDefaultValue constant 2296
kPMDeleteSubTicketFailed constant 1832
kPMDepthSwitchingEnabledKey constant 1804
kPMDepthSwitchingEnabledStr constant 1804
kPMDescriptionFileKey constant 1816
kPMDescriptionFileStr constant 1816
kPMDestinationFax constant 2281
kPMDestinationFile constant 2281
kPMDestinationInvalid constant 2281
kPMDestinationPreview constant 2281
kPMDestinationPrinter constant 2281
kPMDestinationProcessPDF constant 2282
kPMDestinationTicket constant 1831
kPMDestinationTicketType constant 1830
kPMDestinationTypeKey constant 1818
kPMDestinationTypeStr constant 1818
kPMDocumentFormatDefault constant 2282
kPMDocumentFormatPDF constant 2282
kPMDocumentFormatPICT constant 2282
kPMDocumentFormatPICTPS constant 2282
kPMDocumentFormatPostScript constant 2282
kPMDocumentTicket constant 1831
kPMDocumentTicketPrelude constant 1806
kPMDocumentTicketType constant 1830
kPMDoesCopiesKey constant 1823
kPMDoesCopiesStr constant 1823

kPMDoesCopyCollateKey constant 1824
kPMDoesCopyCollateStr constant 1823
kPMDoesReverseOrderKey constant 1824
kPMDoesReverseOrderStr constant 1824
kPMDontFetchItem constant 1808
kPMDontWantBoolean constant 2280
kPMDontWantData constant 2280
kPMDontWantSize constant 2280
kPMDrawingResHorizontalKey constant 1813
kPMDrawingResHorizontalStr constant 1813
kPMDrawingResVerticalKey constant 1813
kPMDrawingResVerticalStr constant 1813
kPMDriverCreatorKey constant 1822
kPMDriverCreatorStr constant 1822
kPMDuplexDefault constant 1807
kPMDuplexingKey constant 1820
kPMDuplexingStr constant 1820
kPMDuplexNone constant 1807, 2282
kPMDuplexNoTumble constant 1807, 2283
kPMDuplexTumble constant 1807, 2283
kPMFirstPageKey constant 1818
kPMFirstPageStr constant 1818
kPMFormattingPrinterKey constant 1814
kPMFormattingPrinterStr constant 1814
kPMGeneralError constant 2299
kPMGraphicsContextCoreGraphics constant 2283
kPMGraphicsContextDefault constant 2283
kPMGraphicsContextQuickdraw constant 2283
kPMGray constant 2298
kPMInputFileTypeListKey constant 1824
kPMInputFileTypeListStr constant 1824
kPMInstallableOptionKey constant 1808
kPMInstallableOptionStr constant 1808
kPMInvalidAllocator constant 2300
kPMInvalidCalibrationTarget constant 2300
kPMInvalidConnection constant 2300
kPMInvalidFileType constant 2300
kPMInvalidIndex constant 2299
kPMInvalidItem constant 2300
kPMInvalidJobTemplate constant 2300
kPMInvalidKey constant 2300
kPMInvalidObject constant 2300
kPMInvalidPageFormat constant 2299
kPMInvalidPaper constant 2300
kPMInvalidPreset constant 2300
kPMInvalidPrinter constant 2299
kPMInvalidPrinterInfo constant 2300
kPMInvalidPrintSession constant 2299
kPMInvalidPrintSettings constant 2299
kPMInvalidReply constant 2300
kPMInvalidSubTicket constant 1832
kPMInvalidTicket constant 2300
kPMInvalidType constant 2300

3013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPMInvalidValue constant 2300
kPMIsBinaryOKKey constant 1805
kPMIsBinaryOKStr constant 1805
kPMItemBooleanType constant 1809
kPMItemCStringType constant 1809
kPMItemCStrListType constant 1809
kPMItemInvalidType constant 1809
kPMItemIsLocked constant 1832
kPMItemPMRectListType constant 1809
kPMItemPMRectType constant 1809
kPMItemSInt32ListType constant 1809
kPMItemSInt32Type constant 1809
kPMJobHoldUntilTimeKey constant 1820
kPMJobHoldUntilTimeStr constant 1820
kPMJobNameKey constant 1810
kPMJobNameStr constant 1810
kPMJobOwnerKey constant 1810
kPMJobOwnerStr constant 1810
kPMJobPriorityKey constant 1820
kPMJobPriorityStr constant 1820
kPMJobStateKey constant 1820
kPMJobStateStr constant 1819
kPMJobTemplateKey constant 1810
kPMJobTemplateStr constant 1810
kPMJobTicket constant 1831
kPMJobTicketPrelude constant 1810
kPMJobTicketType constant 1830
kPMKeyNotFound constant 1832
kPMKeyNotUnique constant 1832
kPMLandscape constant 2284
kPMLastPageKey constant 1819
kPMLastPageStr constant 1818
kPMLayoutColumnsKey constant 1819
kPMLayoutColumnsStr constant 1819
kPMLayoutDirectionKey constant 1819
kPMLayoutDirectionStr constant 1819
kPMLayoutNUpKey constant 1819
kPMLayoutNUpStr constant 1819
kPMLayoutRowsKey constant 1819
kPMLayoutRowsStr constant 1819
kPMLayoutTileOrientationKey constant 1819
kPMLayoutTileOrientationStr constant 1819
kPMLocked constant 1811
kPMLockIgnored constant 2299
kPMMakeAndModelNameKey constant 1823
kPMMakeAndModelNameStr constant 1823
kPMMatchPaperKey constant 1815
kPMMatchPaperStr constant 1814
kPMMaximumValue constant 2296
kPMMaxRange constant 2297
kPMMaxSquareResolution constant 2297
kPMMinimumValue constant 2296
kPMMinRange constant 2296

kPMMinSquareResolution constant 2297
kPMModuleInfoTicket constant 1831
kPMModuleInfoTicketType constant 1830
kPMNoData constant 2279
kPMNoDefaultPrinter constant 2299
kPMNoPageFormat constant 2280
kPMNoPrintSettings constant 2280
kPMNoReference constant 2280
kPMNoSuchEntry constant 2299
kPMNotImplemented constant 2299
kPMObjectInUse constant 2299
kPMOutOfScope constant 2299
kPMOutputFilenameKey constant 1818
kPMOutputFilenameStr constant 1818
kPMOutputTypeKey constant 1811
kPMOutputTypeListKey constant 1824
kPMOutputTypeListStr constant 1824
kPMOutputTypeStr constant 1810
kPMPageBackupRecordDataKey constant 1813
kPMPageBackupRecordDataStr constant 1813
kPMPageBackupRecordHdlKey constant 1813
kPMPageBackupRecordHdlStr constant 1813
kPMPageCustomDialogHdlKey constant 1814
kPMPageCustomDialogHdlStr constant 1813
kPMPageFormatPrelude constant 1812
kPMPageFormatTicket constant 1831
kPMPageFormatTicketType constant 1830
kPMPageOrientationKey constant 1813
kPMPageOrientationStr constant 1813
kPMPageRangeKey constant 1818
kPMPageRangeStr constant 1818
kPMPageScalingHorizontalStr constant 1813
kPMPageScalingVerticalKey constant 1813
kPMPageScalingVerticalStr constant 1813
kPMPageTicket constant 1831
kPMPageTicketPrelude constant 1814
kPMPageTicketType constant 1830
kPMPaperInfoList constant 1829
kPMPaperInfoListStr constant 1829
kPMPaperInfoPrelude constant 1814
kPMPaperInfoTicket constant 1831
kPMPaperInfoTicketType constant 1831
kPMPaperNameKey constant 1814
kPMPaperNameStr constant 1814
kPMPaperSourceKey constant 1820
kPMPaperSourceStr constant 1820
kPMPaperTypeKey constant 1819
kPMPaperTypeStr constant 1819
kPMPhaseAppDrawing constant 1825
kPMPhaseConverting constant 1825
kPMPhaseDialogsUp constant 1824
kPMPhaseKey constant 1810
kPMPhasePostAppDrawing constant 1825

3014
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPMPhasePostConversion constant 1825
kPMPhasePostDialogs constant 1825
kPMPhasePreAppDrawing constant 1825
kPMPhasePreConversion constant 1825
kPMPhasePreDialog constant 1824
kPMPhasePrinting constant 1825
kPMPhaseStr constant 1810
kPMPhaseUnknown constant 1824
kPMPortrait constant 2284
kPMPPDDescriptionType constant 2295
kPMPPDDictKey constant 1822
kPMPPDDictStr constant 1822
kPMPreviewKey constant 1821
kPMPreviewStr constant 1821
kPMPrimaryPaperFeedKey constant 1821
kPMPrimaryPaperFeedStr constant 1821
kPMPrintAllPages constant 2293
kPMPrintBackupRecordDataKey constant 1821
kPMPrintBackupRecordDataStr constant 1821
kPMPrintBackupRecordHdlKey constant 1821
kPMPrintBackupRecordHdlStr constant 1821
kPMPrintCustomDialogHdlKey constant 1821
kPMPrintCustomDialogHdlStr constant 1821
kPMPrinterAddressKey constant 1823
kPMPrinterAddressStr constant 1823
kPMPrinterFontKey constant 1822
kPMPrinterFontStr constant 1822
kPMPrinterIdle constant 2295
kPMPrinterInfoPrelude constant 1823
kPMPrinterInfoTicket constant 1831
kPMPrinterInfoTicketType constant 1830
kPMPrinterIsPostScriptDriverKey constant 1816
kPMPrinterIsPostScriptDriverStr constant 1816
kPMPrinterLongNameKey constant 1823
kPMPrinterLongNameStr constant 1823
kPMPrinterMaxResKey constant 1806
kPMPrinterMaxResStr constant 1806
kPMPrinterMinResKey constant 1806
kPMPrinterMinResStr constant 1806
kPMPrinterModuleFormatKey constant 1806
kPMPrinterModuleFormatStr constant 1806
kPMPrinterProcessing constant 2295
kPMPrinterShortNameKey constant 1823
kPMPrinterShortNameStr constant 1823
kPMPrinterStopped constant 2295
kPMPrinterSuggestedResKey constant 1806
kPMPrinterSuggestedResStr constant 1806
kPMPrintOrientationKey constant 1821
kPMPrintOrientationStr constant 1821
kPMPrintScalingAlignmentKey constant 1821
kPMPrintScalingAlignmentStr constant 1821
kPMPrintScalingHorizontalKey constant 1820
kPMPrintScalingHorizontalStr constant 1820

kPMPrintScalingVerticalKey constant 1820
kPMPrintScalingVerticalStr constant 1820
kPMPrintSettingsPrelude constant 1818
kPMPrintSettingsTicket constant 1831
kPMPrintSettingsTicketType constant 1830
kPMPSErrorHandlerKey constant 1821
kPMPSErrorHandlerStr constant 1821
kPMPSErrorOnScreenKey constant 1821
kPMPSErrorOnScreenStr constant 1821
kPMPSTargetLanguageLevel1 constant 1815
kPMPSTargetLanguageLevel1and2 constant 1815
kPMPSTargetLanguageLevel2 constant 1815
kPMPSTargetLanguageLevel2and3 constant 1815
kPMPSTargetLanguageLevel3 constant 1815
kPMPSTargetLanguageLevelDefault constant 1815
kPMPSTargetLanguageLevelUnknown constant 1815
kPMPSTraySwitchKey constant 1822
kPMPSTraySwitchStr constant 1822
kPMPSTTRasterizerAccept68K constant 1826
kPMPSTTRasterizerNone constant 1826
kPMPSTTRasterizerType42 constant 1826
kPMPSTTRasterizerUnknown constant 1826
kPMQualityBest constant 2294
kPMQualityDraft constant 2294
kPMQualityHighest constant 2294
kPMQualityInkSaver constant 2294
kPMQualityKey constant 1819
kPMQualityLowest constant 2294
kPMQualityNormal constant 2294
kPMQualityPhoto constant 2294
kPMQualityStr constant 1819
kPMRequestedPixelFormatKey constant 1805
kPMRequestedPixelFormatStr constant 1805
kPMRequestedPixelLayoutKey constant 1805
kPMRequestedPixelLayoutStr constant 1805
kPMRequiredBandHeightKey constant 1804
kPMRequiredBandHeightStr constant 1804
kPMReverseLandscape constant 2284
kPMReverseOrderKey constant 1818
kPMReverseOrderStr constant 1818
kPMReversePortrait constant 2284
kPMSecondaryPaperFeedKey constant 1821
kPMSecondaryPaperFeedStr constant 1821
kPMSimplexTumble constant 1807, 2283
kPMSourceProfile constant 2296
kPMSpoolFormatKey constant 1806
kPMSpoolFormatStr constant 1806
kPMStringConversionFailure constant 2299
kPMSubTicketNotFound constant 1832
kPMSupportsColorKey constant 1823
kPMSupportsColorStr constant 1823
kPMTemplateIsLocked constant 1832
kPMTemplatePrelude constant 1829

3015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPMTicketIsLocked constant 1832
kPMTicketList constant 1831
kPMTicketListPrelude constant 1811
kPMTicketListType constant 1830
kPMTicketTypeNotFound constant 1832
kPMTicketTypeUnknown constant 1829
kPMTopLevel constant 1829
kPMTotalMemAvailableKey constant 1812
kPMTotalMemAvailableStr constant 1812
kPMTotalMemInstalledKey constant 1812
kPMTotalMemInstalledStr constant 1812
kPMTransparentCommKey constant 1805
kPMTransparentCommStr constant 1805
kPMUnadjustedPageRectKey constant 1814
kPMUnadjustedPageRectStr constant 1814
kPMUnadjustedPaperRectKey constant 1814
kPMUnadjustedPaperRectStr constant 1814
kPMUnknownDataType constant 1832
kPMUnlocked constant 1811
kPMUpdateTicketFailed constant 1832
kPMUserLanguageKey constant 1810
kPMUserLanguageStr constant 1810
kPMValidateTicketFailed constant 1832
kPMValueArray constant 1828
kPMValueBoolean constant 1827
kPMValueData constant 1827
kPMValueDate constant 1828
kPMValueDict constant 1828
kPMValueDouble constant 1828
kPMValueDoubleRange constant 1828
kPMValueOutOfRange constant 2299
kPMValuePMRect constant 1828
kPMValueSInt32 constant 1827
kPMValueSInt32Range constant 1827
kPMValueString constant 1827
kPMValueTicket constant 1828
kPMValueUInt32 constant 1828
kPMValueUInt32Range constant 1828
kPMValueUndefined constant 1827
kPMWhiteSkippingEnabledKey constant 1804
kPMWhiteSkippingEnabledStr constant 1804
kPMXMLParseError constant 2299
kPreflightThenPause constant 1681
kPrinterFontStatus 2896
kProcessTransformToForegroundApplication

constant 1467
kPSErrorHandler constant 1808
kPSInjectionAfterSubsection constant 2286
kPSInjectionBeforeSubsection constant 2286
kPSInjectionMaxDictSize constant 2286
kPSInjectionPageKey constant 2285
kPSInjectionPlacementKey constant 2285
kPSInjectionPostScriptKey constant 2285

kPSInjectionReplaceSubsection constant 2287
kPSInjectionSectionKey constant 2285
kPSInjectionSubSectionKey constant 2285
kPSNoErrorHandler constant 1807
kPSPageInjectAllPages constant 2286
kQDCorruptPICTDataErr constant 2905
kQDCursorAlreadyRegistered constant 2905
kQDCursorNotRegistered constant 2905
kQDGrafVerbFrame 2896
kQDNoColorHWCursorSupport constant 2905
kQDNoPalette constant 2905
kQDParseRegionFromTop 2896
kQDRegionToRectsMsgInit 2897
kQDUseDefaultTextRendering 2897
kReadExtensionTermsMask 623
kRedrawHighlighting constant 2053
kRenderCursorInHardware 2897
kSelectorAll1BitData constant 1313
kSelectorAll32BitData constant 1313
kSelectorAll4BitData constant 1313
kSelectorAll8BitData constant 1313
kSelectorAllAvailableData constant 1313
kSelectorAllHugeData constant 1313
kSelectorAllLargeData constant 1313
kSelectorAllMiniData constant 1313
kSelectorAllSmallData constant 1313
kSelectorHuge1Bit constant 1312
kSelectorHuge32Bit constant 1313
kSelectorHuge4Bit constant 1312
kSelectorHuge8Bit constant 1312
kSelectorHuge8BitMask constant 1313
kSelectorLarge1Bit constant 1311
kSelectorLarge32Bit constant 1311
kSelectorLarge4Bit constant 1311
kSelectorLarge8Bit constant 1311
kSelectorLarge8BitMask constant 1312
kSelectorMini1Bit constant 1312
kSelectorMini4Bit constant 1312
kSelectorMini8Bit constant 1312
kSelectorSmall1Bit constant 1312
kSelectorSmall32Bit constant 1312
kSelectorSmall4Bit constant 1312
kSelectorSmall8Bit constant 1312
kSelectorSmall8BitMask constant 1312
kSetFrontProcessFrontWindowOnly constant 1464
kShowModeBit constant 1163
kSOAP1999Schema 623
kSpeechCharacterModeProperty constant 1693
kSpeechCommandDelimiterProperty constant 1696
kSpeechCommandPrefix constant 1703
kSpeechCommandSuffix constant 1703
kSpeechCurrentVoiceProperty constant 1696
kSpeechDictionaryAbbreviations constant 1704

3016
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kSpeechDictionaryEntryPhonemes constant 1704
kSpeechDictionaryEntrySpelling constant 1704
kSpeechDictionaryLocaleIdentifier constant 1704
kSpeechDictionaryModificationDate constant 1704
kSpeechDictionaryPronunciations constant 1704
kSpeechErrorCallbackSpokenString constant 1705
kSpeechErrorCFCallBack constant 1698
kSpeechErrorCount constant 1701
kSpeechErrorNewest constant 1701
kSpeechErrorNewestCharacterOffset constant 1701
kSpeechErrorOldest constant 1701
kSpeechErrorOldestCharacterOffset constant 1701
kSpeechErrorsProperty constant 1693
kSpeechInputModeProperty constant 1693
kSpeechModeLiteral constant 1684
kSpeechModeNormal constant 1684
kSpeechModePhoneme constant 1684
kSpeechModeText constant 1684
kSpeechNoEndingProsody constant 1699
kSpeechNoSpeechInterrupt constant 1699
kSpeechNumberModeProperty constant 1694
kSpeechOutputToFileURLProperty constant 1696
kSpeechPhonemeCallBack constant 1698
kSpeechPhonemeInfoExample constant 1702
kSpeechPhonemeInfoHiliteEnd constant 1703
kSpeechPhonemeInfoHiliteStart constant 1702
kSpeechPhonemeInfoOpcode constant 1702
kSpeechPhonemeInfoSymbol constant 1702
kSpeechPhonemeSymbolsProperty constant 1696
kSpeechPitchBaseProperty constant 1694
kSpeechPitchModProperty constant 1695
kSpeechPreflightThenPause constant 1699
kSpeechRateProperty constant 1694
kSpeechRecentSyncProperty constant 1695
kSpeechRefConProperty constant 1697
kSpeechResetProperty constant 1696
kSpeechSpeechDoneCallBack constant 1697
kSpeechStatusNumberOfCharactersLeft constant

1700
kSpeechStatusOutputBusy constant 1700
kSpeechStatusOutputPaused constant 1700
kSpeechStatusPhonemeCode constant 1700
kSpeechStatusProperty constant 1692
kSpeechSyncCallBack constant 1697
kSpeechSynthesizerInfoIdentifier constant 1702
kSpeechSynthesizerInfoProperty constant 1695
kSpeechSynthesizerInfoVersion constant 1702
kSpeechTextDoneCallBack constant 1697
kSpeechVoiceCreator constant 1703
kSpeechVoiceID constant 1703
kSpeechVolumeProperty constant 1695
kSpeechWordCFCallBack constant 1698
kSysSWTooOld constant 1164

kSystemPPDDomain constant 2292
kSystemProcess constant 1467
kTextServiceClass 623
kTextToSpeechSynthType constant 1683
kTextToSpeechVoiceBundleType constant 1683
kTextToSpeechVoiceFileType constant 1683
kTextToSpeechVoiceType constant 1683
kTSMHiliteBlockFillText constant 625
kTSMHiliteCaretPosition 624
kTSMHiliteCaretPosition constant 624
kTSMHiliteConvertedText constant 625
kTSMHiliteNoHilite constant 625
kTSMHiliteOutlineText constant 625
kTSMHiliteRawText constant 625
kTSMHiliteSelectedConvertedText constant 625
kTSMHiliteSelectedRawText constant 625
kTSMHiliteSelectedText constant 625
kTSMOutsideOfBody 626
kUseAtoB constant 1001
kUseBtoA constant 1001
kUseBtoB constant 1001
kUseProfileIntent constant 1002
kUserPPDDomain constant 2293
kVerticalConstraint constant 2890
kXFer1PixelAtATime 2897

L

LAAddNewWord function (Deprecated in Mac OS X v10.5)
1328

LACloseAnalysisContext function (Deprecated in Mac
OS X v10.5) 1329

LACloseDictionary function (Deprecated in Mac OS X
v10.5) 1330

LAContextRef data type 1345
LAContinuousMorphemeAnalysis function (Deprecated

in Mac OS X v10.5) 1330
LACreateCustomEnvironment function (Deprecated in

Mac OS X v10.5) 1332
LADeleteCustomEnvironment function (Deprecated in

Mac OS X v10.5) 1332
laDictionaryNotOpenedErr constant 1354
laDictionaryTooManyErr constant 1354
laDictionaryUnknownErr constant 1354
laEngineNotFoundErr constant 1355
laEnvironmentBusyErr constant 1354
laEnvironmentExistErr constant 1354
laEnvironmentNotFoundErr constant 1354
LAEnvironmentRef data type 1345
laFailAnalysisErr constant 1354
LAGetEnvironmentList function (Deprecated in Mac

OS X v10.5) 1333

3017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LAGetEnvironmentName function (Deprecated in Mac
OS X v10.5) 1334

LAGetEnvironmentRef function (Deprecated in Mac OS
X v10.5) 1334

LAGetMorphemes function (Deprecated in Mac OS X
v10.5) 1335

LAHomograph data type 1345
laInvalidPathErr constant 1354
LALibraryVersion function (Deprecated in Mac OS X

v10.5) 1335
LAListAvailableDictionaries function (Deprecated

in Mac OS X v10.5) 1336
LAMorpheme data type 1345
LAMorphemeAnalysis function (Deprecated in Mac OS

X v10.5) 1337
LAMorphemeBundle data type 1346
LAMorphemePath data type 1346
LAMorphemeRec structure 1347
LAMorphemesArray structure 1348
Language Constants 2418
laNoMoreMorphemeErr constant 1354
LAOpenAnalysisContext function (Deprecated in Mac

OS X v10.5) 1338
LAOpenDictionary function (Deprecated in Mac OS X

v10.5) 1339
laPropertyErr constant 1355
laPropertyIsReadOnlyErr constant 1355
LAPropertyKey data type 1348
laPropertyNotFoundErr constant 1355
LAPropertyType data type 1349
laPropertyUnknownErr constant 1355
laPropertyValueErr constant 1354
LAResetAnalysis function (Deprecated in Mac OS X

v10.5) 1339
LAShiftMorphemes function (Deprecated in Mac OS X

v10.5) 1340
laTextOverFlowErr constant 1354
LATextToMorphemes function (Deprecated in Mac OS X

v10.5) 1341
laTooSmallBufferErr constant 1354
Launch Apple Event Constants 596
Launch Options 1464
launchAllow24Bit constant 1465
LaunchApplication function 1451
launchContinue constant 1465
launchDontSwitch constant 1465
launchInhibitDaemon constant 1466
launchNoFileFlags constant 1465
LaunchParamBlockRec structure 1457
launchUseMinimum constant 1465
Layout Callback Status Values 2055
Layout Operation Selectors 2055
Leading and Trailing Constants 1350

leftCaret constant 2949
leftStyleRun constant 2951
Line Alignment Selectors 2057
Line Cap Styles 143
Line function (Deprecated in Mac OS X v10.4) 2692
Line Height and Font Tracking Selectors 2057
Line Joins 144
Line Justification Selectors 2058
Line Layout Attribute Tags 2058
Line Layout Width Selector 2063
Line Truncation Selectors 2054
LineTo function (Deprecated in Mac OS X v10.4) 2693
List Ticket Keys 1811
Listing Permissions 1077
LMGetCursorNew function (Deprecated in Mac OS X

v10.4) 2693
LMGetDeviceList function (Deprecated in Mac OS X

v10.4) 2694
LMGetFractEnable function (Deprecated in Mac OS X

v10.4) 2694
LMGetHiliteMode function (Deprecated in Mac OS X

v10.4) 2694
LMGetHiliteRGB function (Deprecated in Mac OS X

v10.4) 2695
LMGetLastFOND function (Deprecated in Mac OS X v10.4)

2695
LMGetLastSPExtra function (Deprecated in Mac OS X

v10.4) 2695
LMGetMainDevice function (Deprecated in Mac OS X

v10.4) 2696
LMGetQDColors function (Deprecated in Mac OS X v10.4)

2696
LMGetScrHRes function (Deprecated in Mac OS X v10.4)

2696
LMGetScrVRes function (Deprecated in Mac OS X v10.4)

2697
LMGetTheGDevice function (Deprecated in Mac OS X

v10.4) 2697
LMGetWidthListHand function (Deprecated in Mac OS

X v10.4) 2697
LMGetWidthPtr function (Deprecated in Mac OS X v10.4)

2698
LMGetWidthTabHandle function (Deprecated in Mac OS

X v10.4) 2698
LMSetCursorNew function (Deprecated in Mac OS X

v10.4) 2698
LMSetDeviceList function (Deprecated in Mac OS X

v10.4) 2699
LMSetFractEnable function (Deprecated in Mac OS X

v10.4) 2699
LMSetHiliteMode function (Deprecated in Mac OS X

v10.4) 2699

3018
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LMSetHiliteRGB function (Deprecated in Mac OS X
v10.4) 2700

LMSetLastFOND function (Deprecated in Mac OS X v10.4)
2700

LMSetLastSPExtra function (Deprecated in Mac OS X
v10.4) 2700

LMSetMainDevice function (Deprecated in Mac OS X
v10.4) 2701

LMSetQDColors function (Deprecated in Mac OS X v10.4)
2701

LMSetScrHRes function (Deprecated in Mac OS X v10.4)
2701

LMSetScrVRes function (Deprecated in Mac OS X v10.4)
2702

LMSetTheGDevice function (Deprecated in Mac OS X
v10.4) 2702

LMSetWidthListHand function (Deprecated in Mac OS
X v10.4) 2702

LMSetWidthPtr function (Deprecated in Mac OS X v10.4)
2703

LMSetWidthTabHandle function (Deprecated in Mac OS
X v10.4) 2703

LoadIconCache function (Deprecated in Mac OS X v10.5)
1270

LocalToGlobal function (Deprecated in Mac OS X v10.4)
2703

Lock State 1811
LockPixels function (Deprecated in Mac OS X v10.4)

2704
LockPortBits function (Deprecated in Mac OS X v10.4)

2705

M

Macintosh 68K Trap Word 986
MacPolygon structure 2864
MacRegion structure 2864
magentaColor constant 2886
Magic Cookie Number 987
mainScreen constant 2888
MakeIconCache function (Deprecated in Mac OS X v10.5)

1272
MakeITable function (Deprecated in Mac OS X v10.4)

2706
MakeRGBPat function (Deprecated in Mac OS X v10.4)

2706
MakeVoiceSpec function 1645
Map Constants 2532
Map Entry Flags 2533
Map Entry Masks 2534
Map Fixed Length Constants 2535
mapPix constant 2893

MapPoly function (Deprecated in Mac OS X v10.4) 2707
MapPt function 2708
MapRect function 2709
MapRgn function 2710
Marking Character Constants 1228
Match Flags Field 987
Match Profiles 1.0 989
Match Profiles 2.0 987
MatchImageProcPtr callback 871
Matching Options 2459
MatchRec structure 2865
Maximum Path Size 990
MeasureJustified function (Deprecated in Mac OS X

v10.4) 2923
Measurement Flares 990
MeasureText function (Deprecated in Mac OS X v10.4)

2925
Measurment Geometries 991
medianMethod constant 1440
memFragErr constant 1467
Memory Keys 1812
middleStyleRun constant 2952
Miscellaneous Icon Constants 1316
Mode List Masks 1157
modeLiteral constant 1684
modeNormal constant 1684
modePhonemes constant 1684
modeText constant 1683
Morpheme Key Values 1350
Morpheme Type Analysis Constants 1353
Morpheme Types 1353
MorphemePartOfSpeech data type 1349
Morphemes Array Version 1351
MorphemeTextRange structure 1349
Mouse Buttons 1626
Mouse Subtypes 1627
Move function (Deprecated in Mac OS X v10.4) 2711
MovePortTo function (Deprecated in Mac OS X v10.4)

2711
MoveTo function (Deprecated in Mac OS X v10.4) 2712

N

Name Flags 1159
Named Color Spaces (Deprecated) 60
NameTable structure 1219
NCMBeginMatching function (Deprecated in Mac OS X

v10.4) 838
NCMConcatProfileSet structure 945
NCMConcatProfileSpec structure 945
NCMDeviceProfileInfo structure 946

3019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NCMDrawMatchedPicture function (Deprecated in Mac
OS X v10.4) 840

NCMGetProfileLocation function 841
NCMSetSystemProfile function (Deprecated in Mac OS

X v10.5) 842
NCMUnflattenProfile function (Deprecated in Mac OS

X v10.5) 843
NCMUseProfileComment function (Deprecated in Mac

OS X v10.4) 843
NCWConcatColorWorld function 845
NCWNewColorWorld function 846
NCWNewLinkProfile function 848
Networking Icon Constants 1316
New Engine List Constants 1159
NewAECoerceDescUPP function 514
NewAECoercePtrUPP function 514
NewAEDisposeExternalUPP function 514
NewAEEventHandlerUPP function 515
NewAEFilterUPP function 515
NewAEIdleUPP function 515
NewATSCubicClosePathUPP function 1985
NewATSCubicCurveToUPP function 1985
NewATSCubicLineToUPP function 1986
NewATSCubicMoveToUPP function 1986
NewATSQuadraticClosePathUPP function 1987
NewATSQuadraticCurveUPP function 1987
NewATSQuadraticLineUPP function 1988
NewATSQuadraticNewPathUPP function 1988
NewATSUDirectLayoutOperationOverrideUPP

function 1989
NewCalcColorTableUPP function (Deprecated in Mac

OS X v10.4) 1420
NewCMBitmapCallBackUPP function (Deprecated in Mac

OS X v10.5) 848
NewCMConcatCallBackUPP function (Deprecated in Mac

OS X v10.5) 849
NewCMFlattenUPP function (Deprecated in Mac OS X

v10.5) 849
NewCMMIterateUPP function (Deprecated in Mac OS X

v10.5) 850
NewCMProfileAccessUPP function (Deprecated in Mac

OS X v10.5) 850
NewCMProfileFilterUPP function (Deprecated in Mac

OS X v10.5) 851
NewCMProfileIterateUPP function (Deprecated in Mac

OS X v10.5) 851
NewColorComplementUPP function (Deprecated in Mac

OS X v10.4) 2713
NewColorSearchUPP function (Deprecated in Mac OS X

v10.4) 2713
newDepth constant 2893
NewDeviceLoopDrawingUPP function (Deprecated in

Mac OS X v10.4) 2713

NewDisposeColorPickMethodUPP function (Deprecated
in Mac OS X v10.4) 1420

NewDMComponentListIteratorUPP function
(Deprecated in Mac OS X v10.4) 1130

NewDMDisplayListIteratorUPP function (Deprecated
in Mac OS X v10.4) 1131

NewDMDisplayModeListIteratorUPP function
(Deprecated in Mac OS X v10.4) 1131

NewDMExtendedNotificationUPP function (Deprecated
in Mac OS X v10.4) 1131

NewDMNotificationUPP function (Deprecated in Mac
OS X v10.4) 1131

NewDMProfileListIteratorUPP function (Deprecated
in Mac OS X v10.4) 1132

NewDragGrayRgnUPP function (Deprecated in Mac OS X
v10.4) 2714

NewFBCCallbackUPP function (Deprecated in Mac OS X
v10.4) 2413

NewFBCHitTestUPP function (Deprecated in Mac OS X
v10.4) 2414

NewFMFontCallbackFilterUPP function 680
NewFMFontFamilyCallbackFilterUPP function 681
NewGDevice function (Deprecated in Mac OS X v10.4)

2714
NewGWorld function 2715
NewGWorldFromPtr function (Deprecated in Mac OS X

v10.4) 2718
NewIconActionUPP function 1272
NewIconGetterUPP function 1273
NewIconSuite function (Deprecated in Mac OS X v10.5)

1273
NewInitPickMethodUPP function (Deprecated in Mac

OS X v10.4) 1421
NewOSLAccessorUPP function 516
NewOSLAdjustMarksUPP function 516
NewOSLCompareUPP function 517
NewOSLCountUPP function 517
NewOSLDisposeTokenUPP function 517
NewOSLGetErrDescUPP function 518
NewOSLGetMarkTokenUPP function 518
NewOSLMarkUPP function 518
NewPalette function (Deprecated in Mac OS X v10.4)

1373
NewPictInfo function (Deprecated in Mac OS X v10.4)

1422
NewPixMap function (Deprecated in Mac OS X v10.4) 2719
NewPixPat function (Deprecated in Mac OS X v10.4) 2720
NewPMIdleUPP function (Deprecated in Mac OS X v10.4)

2138
NewQDArcUPP function (Deprecated in Mac OS X v10.4)

2721
NewQDBitsUPP function (Deprecated in Mac OS X v10.4)

2721

3020
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NewQDCommentUPP function (Deprecated in Mac OS X
v10.4) 2721

NewQDGetPicUPP function (Deprecated in Mac OS X
v10.4) 2722

NewQDJShieldCursorUPP function (Deprecated in Mac
OS X v10.4) 2722

NewQDLineUPP function (Deprecated in Mac OS X v10.4)
2722

NewQDOpcodeUPP function (Deprecated in Mac OS X
v10.4) 2723

NewQDOvalUPP function (Deprecated in Mac OS X v10.4)
2723

NewQDPolyUPP function (Deprecated in Mac OS X v10.4)
2723

NewQDPutPicUPP function (Deprecated in Mac OS X
v10.4) 2724

NewQDRectUPP function (Deprecated in Mac OS X v10.4)
2724

NewQDRgnUPP function (Deprecated in Mac OS X v10.4)
2724

NewQDRRectUPP function (Deprecated in Mac OS X v10.4)
2725

NewQDStdGlyphsUPP function (Deprecated in Mac OS X
v10.4) 2725

NewQDTextUPP function (Deprecated in Mac OS X v10.4)
2725

NewQDTxMeasUPP function (Deprecated in Mac OS X
v10.4) 2726

NewRecordColorsUPP function (Deprecated in Mac OS
X v10.4) 1423

NewRedrawBackgroundUPP function 1989
NewRegionToRectsUPP function (Deprecated in Mac OS

X v10.4) 2726
NewRgn function 2726
newRowBytes constant 2893
NewScreenBuffer function (Deprecated in Mac OS X

v10.4) 2727
NewSpeechChannel function 1646
NewSpeechDoneUPP function 1646
NewSpeechErrorUPP function 1647
NewSpeechPhonemeUPP function 1647
NewSpeechSyncUPP function 1648
NewSpeechTextDoneUPP function 1648
NewSpeechWordUPP function 1649
NewStyleRunDirectionUPP function (Deprecated in

Mac OS X v10.4) 2927
NewTempScreenBuffer function (Deprecated in Mac OS

X v10.4) 2728
Nikon Camera Dictionary Keys 2334
No Selectors Option 2063
noDriver constant 2888
noErr constant 1020
noIconDataAvailableErr constant 1325

noMaskFoundErr constant 1324
noMemForPictPlaybackErr constant 2905
noNewDevice constant 2892
noPasteboardPromiseKeeperErr constant 1408
noPortErr constant 636
NoPurgePixels function (Deprecated in Mac OS X v10.4)

2729
normalBit 2897
noSuchIconErr constant 1325
noSynthFound constant 1705
notAppropriateForClassic constant 1468
Notification Actions 708
Notification Messages 1159
Notification Options 709
Notification Types 1161
Notifications 2117
notPasteboardOwnerErr constant 1408
notPatBic constant 2901
notPatCopy constant 2901
notPatOr constant 2901
notPatXor constant 2901
notSrcBic constant 2900
notSrcCopy constant 2900
notSrcOr constant 2900
notSrcXor constant 2900
notTruncated constant 2949
NSetPalette function (Deprecated in Mac OS X v10.4)

1374
nsStackErr constant 2905
Numeric Descriptor Type Constants 597

O

Object Class ID Constants 599
ObscureCursor function 2730
Obsolete Caret Placement Values 2950
Obsolete Color Response Values 991
Obsolete Color Space Signatures 992
Obsolete Device Type Names 992
OffscreenVersion function (Deprecated in Mac OS X

v10.4) 2730
OffsetArray structure 549
OffsetArrayHandle data type 560
OffsetPoly function (Deprecated in Mac OS X v10.4)

2731
OffsetRect function 2732
OffsetRgn function 2732
onlyStyleRun constant 2951
OpColor function (Deprecated in Mac OS X v10.4) 2733
OpenCPicParams structure 2865
OpenCPicture function (Deprecated in Mac OS X v10.4)

2734

3021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OpenCursorComponent function (Deprecated in Mac OS
X v10.4) 2735

OpenPicture function (Deprecated in Mac OS X v10.4)
2736

OpenPoly function (Deprecated in Mac OS X v10.4) 2737
OpenRgn function (Deprecated in Mac OS X v10.4) 2737
Orientations and Sort Directions 2120
OSLAccessorProcPtr callback 533
OSLAccessorUPP data type 560
OSLAdjustMarksProcPtr callback 535
OSLAdjustMarksUPP data type 561
OSLCompareProcPtr callback 536
OSLCompareUPP data type 561
OSLCountProcPtr callback 538
OSLCountUPP data type 561
OSLDisposeTokenProcPtr callback 539
OSLDisposeTokenUPP data type 561
OSLGetErrDescProcPtr callback 541
OSLGetErrDescUPP data type 562
OSLGetMarkTokenProcPtr callback 542
OSLGetMarkTokenUPP data type 562
OSLMarkProcPtr callback 544
OSLMarkUPP data type 562
Other Descriptor Type Constants 601
OutlineMetrics function (Deprecated in Mac OS X

v10.4) 1201
Output Intent Dictionary Keys 314
OverrideIconRef function 1274
OverrideIconRefFromResource function (Deprecated

in Mac OS X v10.5) 1275

P

PackBits function (Deprecated in Mac OS X v10.4) 2739
Page Format Ticket Keys 1812
Page Orientation Constants 2283
Page Ticket Key 1814
paint constant 2904
PaintArc function (Deprecated in Mac OS X v10.4) 2740
PaintOval function (Deprecated in Mac OS X v10.4) 2741
PaintPoly function (Deprecated in Mac OS X v10.4) 2741
PaintRect function (Deprecated in Mac OS X v10.4) 2742
PaintRgn function (Deprecated in Mac OS X v10.4) 2743
PaintRoundRect function (Deprecated in Mac OS X

v10.4) 2743
Palette structure 1387
Palette2CTab function (Deprecated in Mac OS X v10.4)

1375
Panel List Flags 1162
Paper Info Ticket Keys 1814
Parameterized Attributes 2114
Parametric Types 992

pArcAngle 626
Parts of Speech Constants 1351
Parts of Speech Masks 1352
Pasteboard Flavor Flags 1405
Pasteboard Name Constants 1404
Pasteboard Promise Constants 1407
Pasteboard Synchronization Flags 1406
PasteboardClear function 1394
PasteboardCopyItemFlavorData function 1395
PasteboardCopyItemFlavors function 1395
PasteboardCopyName function 1396
PasteboardCopyPasteLocation function 1396
PasteboardCreate function 1397
PasteboardGetItemCount function 1398
PasteboardGetItemFlavorFlags function 1398
PasteboardGetItemIdentifier function 1399
PasteboardItemID data type 1404
PasteboardPromiseKeeperProcPtr callback 1403
PasteboardPutItemFlavor function 1399
PasteboardRef data type 1404
PasteboardResolvePromises function 1400
PasteboardSetPasteLocation function 1401
PasteboardSetPromiseKeeper function 1402
PasteboardSynchronize function 1402
patBic constant 2901
patCopy constant 2900
Path Drawing Modes 279
Path Element Types 280
patOr constant 2901
Pattern structure 2866
patXor constant 2901
PauseSpeechAt function 1649
pDCMAccessMethod constant 1072
pDCMClass constant 1073
pDCMCopyright constant 1073
pDCMListing constant 1072
pDCMLocale constant 1073
pDCMMaintenance constant 1072
pDCMPermission constant 1072
PDF Boxes 359
PDF Object Types 345
PDF Workflow Dictionary Keys 2284
PenMode function (Deprecated in Mac OS X v10.4) 2744
PenNormal function (Deprecated in Mac OS X v10.4) 2745
PenPat function (Deprecated in Mac OS X v10.4) 2746
PenPixPat function (Deprecated in Mac OS X v10.4) 2747
PenSize function (Deprecated in Mac OS X v10.4) 2747
PenState structure 2867
Permission Levels 1078
Permissions 2535
pFormula 626
Phase Values 2418
Phoneme Symbols Keys 1702

3022
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PhonemeDescriptor structure 1671
PhonemeInfo structure 1671
PicComment function (Deprecated in Mac OS X v10.4)

2748
PictInfo structure 1434
PictInfoID data type 1438
pictInfoIDErr constant 1441
pictInfoVerbErr constant 1441
pictInfoVersionErr constant 1441
Picture Comment Kinds 995
Picture Comment Selectors 997
Picture structure 2868
pictureDataErr constant 1441
Pixel Formats 2895
pixelsLocked constant 2893
pixelsPurgeable constant 2893
PixelToChar function (Deprecated in Mac OS X v10.4)

2927
PixelType data type 2869
PixMap structure 2869
PixMap32Bit function (Deprecated in Mac OS X v10.4)

2749
pixMapTooDeepErr constant 2905
PixPat structure 2871
PixPatChanged function (Deprecated in Mac OS X v10.4)

2750
pixPurge constant 2892
pixPurgeBit 2898
Platform Enumeration Values 993
PlotCIcon function (Deprecated in Mac OS X v10.5) 1275
PlotCIconHandle function (Deprecated in Mac OS X

v10.5) 1276
PlotIcon function (Deprecated in Mac OS X v10.5) 1277
PlotIconHandle function (Deprecated in Mac OS X

v10.5) 1278
PlotIconID function (Deprecated in Mac OS X v10.5)

1279
PlotIconMethod function (Deprecated in Mac OS X

v10.5) 1280
PlotIconRef function (Deprecated in Mac OS X v10.5)

1281
PlotIconRefInContext function 1281
PlotIconSuite function (Deprecated in Mac OS X v10.5)

1282
PlotSICNHandle function (Deprecated in Mac OS X

v10.5) 1284
plusCursor constant 2887
pmAllUpdates constant 1391
pmAnimated constant 1389
PmBackColor function (Deprecated in Mac OS X v10.4)

1376
PMBegin function (Deprecated in Mac OS X v10.4) 2138
pmBkUpdates constant 1391

pmBlack constant 1389
PMCGImageCreateWithEPSDataProvider function

2139
PMColorMode data type 2279
PMConvertOldPrintRecord function (Deprecated in

Mac OS X v10.4) 2139
PMCopyAvailablePPDs function 2140
PMCopyLocalizedPPD function 2140
PMCopyPageFormat function 2141
PMCopyPPDData function 2142
PMCopyPrintSettings function 2142
pmCourteous constant 1389
PMCreateGenericPrinter function 2143
PMCreatePageFormat function 2143
PMCreatePageFormatWithPMPaper function 2144
PMCreatePrintSettings function 2144
PMCreateSession function 2145
PMDefaultPageFormat function (Deprecated in Mac OS

X v10.4) 2145
PMDefaultPrintSettings function (Deprecated in Mac

OS X v10.4) 2146
PMDialog data type 2274
PMDisableColorSync function (Deprecated in Mac OS

X v10.4) 2146
PMDisposePageFormat function (Deprecated in Mac OS

X v10.4) 2147
PMDisposePrintSettings function (Deprecated in Mac

OS X v10.4) 2147
pmDithered constant 1389
PMEnableColorSync function (Deprecated in Mac OS X

v10.4) 2148
PMEnd function (Deprecated in Mac OS X v10.4) 2148
PMError function (Deprecated in Mac OS X v10.4) 2148
pmExplicit constant 1389
pmFgUpdates constant 1391
PMFlattenPageFormat function (Deprecated in Mac OS

X v10.5) 2149
PMFlattenPageFormatToCFData function (Deprecated

in Mac OS X v10.5) 2149
PMFlattenPageFormatToURL function (Deprecated in

Mac OS X v10.5) 2150
PMFlattenPrintSettings function (Deprecated in Mac

OS X v10.5) 2150
PMFlattenPrintSettingsToCFData function

(Deprecated in Mac OS X v10.5) 2151
PMFlattenPrintSettingsToURL function (Deprecated

in Mac OS X v10.5) 2152
PmForeColor function (Deprecated in Mac OS X v10.4)

1376
PMGeneral function (Deprecated in Mac OS X v10.4) 2152
PMGetAdjustedPageRect function 2153
PMGetAdjustedPaperRect function 2154
PMGetCollate function 2154

3023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMGetColorMode function (Deprecated in Mac OS X
v10.4) 2155

PMGetCopies function 2155
PMGetDestination function (Deprecated in Mac OS X

v10.5) 2156
PMGetDriverCreator function (Deprecated in Mac OS

X v10.4) 2157
PMGetDriverReleaseInfo function (Deprecated in Mac

OS X v10.4) 2157
PMGetDuplex function 2158
PMGetFirstPage function 2159
PMGetGrafPtr function (Deprecated in Mac OS X v10.4)

2159
PMGetIndexedPrinterResolution function

(Deprecated in Mac OS X v10.4) 2160
PMGetJobName function (Deprecated in Mac OS X v10.4)

2160
PMGetJobNameCFString function (Deprecated in Mac

OS X v10.5) 2161
PMGetLanguageInfo function (Deprecated in Mac OS X

v10.4) 2162
PMGetLastPage function 2162
PMGetOrientation function 2163
PMGetPageFormatExtendedData function 2164
PMGetPageFormatPaper function 2164
PMGetPageRange function 2165
PMGetPhysicalPageSize function (Deprecated in Mac

OS X v10.4) 2166
PMGetPhysicalPaperSize function (Deprecated in Mac

OS X v10.4) 2166
PMGetPrinterResolution function (Deprecated in Mac

OS X v10.4) 2167
PMGetPrinterResolutionCount function (Deprecated

in Mac OS X v10.4) 2168
PMGetPrintSettingsExtendedData function 2168
PMGetResolution function (Deprecated in Mac OS X

v10.5) 2169
PMGetScale function 2170
PMGetUnadjustedPageRect function 2170
PMGetUnadjustedPaperRect function 2171
PMgrVersion function (Deprecated in Mac OS X v10.4)

1377
PMIdleProcPtr callback 2273
PMIdleUPP data type 2274
pmInhibitC2 constant 1390
pmInhibitC4 constant 1390
pmInhibitC8 constant 1390
pmInhibitG2 constant 1390
pmInhibitG4 constant 1390
pmInhibitG8 constant 1390
PMIsPostScriptDriver function (Deprecated in Mac

OS X v10.4) 2172
PMLanguageInfo structure 2274

PMMakeOldPrintRecord function (Deprecated in Mac
OS X v10.4) 2172

PMNewPageFormat function (Deprecated in Mac OS X
v10.4) 2173

PMNewPrintSettings function (Deprecated in Mac OS
X v10.4) 2173

pmNoUpdates constant 1391
PMObject data type 2275
PMPageFormat data type 2275
PMPageFormatCreateDataRepresentation function

2174
PMPageFormatCreateWithDataRepresentation

function 2175
PMPageFormatGetPrinterID function 2175
PMPageScalingHorizontalKey constant 1813
PMPaper data type 2275
PMPaperCreate function (Deprecated in Mac OS X v10.5)

2176
PMPaperCreateCustom function 2177
PMPaperCreateLocalizedName function 2178
PMPaperGetHeight function 2179
PMPaperGetID function 2179
PMPaperGetMargins function 2180
PMPaperGetName function 2180
PMPaperGetPPDPaperName function 2181
PMPaperGetPrinterID function 2182
PMPaperGetWidth function 2182
PMPaperIsCustom function 2183
PMPaperMargins data type 2276
PMPostScriptBegin function (Deprecated in Mac OS X

v10.4) 2183
PMPostScriptData function (Deprecated in Mac OS X

v10.4) 2183
PMPostScriptEnd function (Deprecated in Mac OS X

v10.4) 2184
PMPostScriptFile function (Deprecated in Mac OS X

v10.4) 2184
PMPostScriptHandle function (Deprecated in Mac OS

X v10.4) 2185
PMPreset data type 2276
PMPresetCopyName function 2185
PMPresetCreatePrintSettings function 2186
PMPresetGetAttributes function 2187
PMPrintContext data type 2279
PMPrinter data type 2276
PMPrinterCopyDescriptionURL function 2187
PMPrinterCopyDeviceURI function 2188
PMPrinterCopyHostName function 2188
PMPrinterCopyPresets function 2189
PMPrinterCreateFromPrinterID function 2190
PMPrinterGetCommInfo function 2190
PMPrinterGetDescriptionURL function (Deprecated

in Mac OS X v10.4) 2191

3024
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMPrinterGetDeviceURI function (Deprecated in Mac
OS X v10.4) 2192

PMPrinterGetDriverCreator function 2192
PMPrinterGetDriverReleaseInfo function 2193
PMPrinterGetID function 2193
PMPrinterGetIndexedPrinterResolution function

2194
PMPrinterGetLanguageInfo function 2194
PMPrinterGetLocation function 2195
PMPrinterGetMakeAndModelName function 2195
PMPrinterGetMimeTypes function 2196
PMPrinterGetName function 2197
PMPrinterGetOutputResolution function 2197
PMPrinterGetPaperList function 2198
PMPrinterGetPrinterResolution function

(Deprecated in Mac OS X v10.5) 2199
PMPrinterGetPrinterResolutionCount function

2199
PMPrinterGetState function 2200
PMPrinterIsDefault function 2200
PMPrinterIsFavorite function 2201
PMPrinterIsPostScriptCapable function 2201
PMPrinterIsPostScriptPrinter function 2202
PMPrinterIsRemote function 2202
PMPrinterPrintWithFile function 2203
PMPrinterPrintWithProvider function 2204
PMPrinterSetDefault function 2205
PMPrinterSetOutputResolution function 2205
PMPrinterWritePostScriptToURL function 2206
PMPrintingPhaseType data type 1798
PMPrintSession data type 2277
PMPrintSettings data type 2277
PMPrintSettingsCopyAsDictionary function 2207
PMPrintSettingsCopyKeys function 2207
PMPrintSettingsCreateDataRepresentation

function 2208
PMPrintSettingsCreateWithDataRepresentation

function 2209
PMPrintSettingsGetJobName function 2210
PMPrintSettingsGetValue function 2210
PMPrintSettingsSetJobName function 2211
PMPrintSettingsSetValue function 2212
PMPrintSettingsToOptions function 2213
PMPrintSettingsToOptionsWithPrinterAndPageFormat

function 2213
PMRect structure 2277
PMRectList structure 1799
PMRelease function 2214
PMResolution structure 2278
PMRetain function 2215
PMServer data type 2278
PMServerCreatePrinterList function 2215
PMServerLaunchPrinterBrowser function 2216

PMSessionBeginCGDocumentNoDialog function 2217
PMSessionBeginDocumentNoDialog function

(Deprecated in Mac OS X v10.5) 2218
PMSessionBeginPageNoDialog function 2219
PMSessionConvertOldPrintRecord function

(Deprecated in Mac OS X v10.4) 2220
PMSessionCopyDestinationFormat function 2221
PMSessionCopyDestinationLocation function 2221
PMSessionCopyOutputFormatList function 2222
PMSessionCreatePageFormatList function 2223
PMSessionCreatePrinterList function 2224
PMSessionDefaultPageFormat function 2225
PMSessionDefaultPrintSettings function 2225
PMSessionDisableColorSync function (Deprecated in

Mac OS X v10.5) 2226
PMSessionEnableColorSync function (Deprecated in

Mac OS X v10.5) 2226
PMSessionEndDocumentNoDialog function 2227
PMSessionEndPageNoDialog function 2228
PMSessionError function 2229
PMSessionGeneral function (Deprecated in Mac OS X

v10.4) 2229
PMSessionGetCGGraphicsContext function 2230
PMSessionGetCurrentPrinter function 2231
PMSessionGetDataFromSession function 2231
PMSessionGetDestinationType function 2232
PMSessionGetDocumentFormatGeneration function

(Deprecated in Mac OS X v10.4) 2233
PMSessionGetDocumentFormatSupported function

(Deprecated in Mac OS X v10.4) 2234
PMSessionGetGraphicsContext function (Deprecated

in Mac OS X v10.5) 2234
PMSessionIsDocumentFormatSupported function

(Deprecated in Mac OS X v10.4) 2235
PMSessionMakeOldPrintRecord function (Deprecated

in Mac OS X v10.4) 2236
PMSessionPostScriptBegin function (Deprecated in

Mac OS X v10.4) 2237
PMSessionPostScriptData function (Deprecated in

Mac OS X v10.4) 2238
PMSessionPostScriptEnd function (Deprecated in Mac

OS X v10.4) 2239
PMSessionPostScriptFile function (Deprecated in

Mac OS X v10.4) 2239
PMSessionPostScriptHandle function (Deprecated in

Mac OS X v10.4) 2240
PMSessionSetCurrentPMPrinter function 2241
PMSessionSetCurrentPrinter function (Deprecated

in Mac OS X v10.4) 2242
PMSessionSetDataInSession function 2242
PMSessionSetDestination function 2243
PMSessionSetDocumentFormatGeneration function

(Deprecated in Mac OS X v10.4) 2244

3025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMSessionSetError function 2246
PMSessionSetIdleProc function (Deprecated in Mac

OS X v10.4) 2247
PMSessionSetPSInjectionData function (Deprecated

in Mac OS X v10.4) 2247
PMSessionValidatePageFormat function 2248
PMSessionValidatePrintSettings function 2249
PMSetAdjustedPageRect function (Deprecated in Mac

OS X v10.5) 2250
PMSetCollate function 2251
PMSetColorMode function (Deprecated in Mac OS X

v10.4) 2251
PMSetCopies function 2252
PMSetDuplex function 2253
PMSetError function (Deprecated in Mac OS X v10.4)

2253
PMSetFirstPage function 2254
PMSetIdleProc function (Deprecated in Mac OS X v10.4)

2255
PMSetJobName function (Deprecated in Mac OS X v10.4)

2255
PMSetJobNameCFString function (Deprecated in Mac

OS X v10.5) 2256
PMSetLastPage function 2257
PMSetOrientation function 2257
PMSetPageFormatExtendedData function 2258
PMSetPageRange function 2259
PMSetPhysicalPaperSize function (Deprecated in Mac

OS X v10.4) 2260
PMSetPrintSettingsExtendedData function 2261
PMSetProfile function (Deprecated in Mac OS X v10.5)

2262
PMSetResolution function (Deprecated in Mac OS X

v10.5) 2263
PMSetScale function 2263
PMSetUnadjustedPaperRect function (Deprecated in

Mac OS X v10.5) 2264
PMTemplateCreate function 1714
PMTemplateCreateXML function 1714
PMTemplateDelete function 1715
PMTemplateGetBooleanDefaultValue function 1715
PMTemplateGetCFArrayConstraintValue function

1716
PMTemplateGetCFDataDefaultValue function 1716
PMTemplateGetCFDefaultValue function 1717
PMTemplateGetCFRangeConstraintValue function

1717
PMTemplateGetConstraintType function 1718
PMTemplateGetDoubleDefaultValue function 1719
PMTemplateGetDoubleListConstraintValue function

1719
PMTemplateGetDoubleRangeConstraintValue

function 1720

PMTemplateGetDoubleRangeDefaultValue function
1721

PMTemplateGetDoubleRangesConstraintValue
function 1722

PMTemplateGetListTicketConstraintValue function
1722

PMTemplateGetPMRectDefaultValue function 1723
PMTemplateGetPMRectListConstraintValue function

1724
PMTemplateGetPMTicketDefaultValue function 1724
PMTemplateGetSInt32DefaultValue function 1725
PMTemplateGetSInt32ListConstraintValue function

1726
PMTemplateGetSInt32RangeConstraintValue

function 1726
PMTemplateGetSInt32RangeDefaultValue function

1727
PMTemplateGetSInt32RangesConstraintValue

function 1728
PMTemplateGetValueType function 1729
PMTemplateIsLocked function 1729
PMTemplateLoadFromXML function 1730
PMTemplateMakeEntry function 1731
PMTemplateMakeFullEntry function 1731
PMTemplateMergeTemplates function 1732
PMTemplateRef data type 1799
PMTemplateRemoveEntry function 1733
PMTemplateSetBooleanDefaultValue function 1733
PMTemplateSetCFArrayConstraintValue function

1734
PMTemplateSetCFDataDefaultValue function 1734
PMTemplateSetCFDefaultValue function 1735
PMTemplateSetCFRangeConstraint function 1735
PMTemplateSetDoubleDefaultValue function 1736
PMTemplateSetDoubleListConstraint function 1736
PMTemplateSetDoubleRangeConstraint function

1737
PMTemplateSetDoubleRangeDefaultValue function

1738
PMTemplateSetDoubleRangesConstraint function

1738
PMTemplateSetPMRectDefaultValue function 1739
PMTemplateSetPMRectListConstraint function 1740
PMTemplateSetPMTicketDefaultValue function 1741
PMTemplateSetPMTicketListConstraint function

1741
PMTemplateSetSInt32DefaultValue function 1742
PMTemplateSetSInt32ListConstraint function 1742
PMTemplateSetSInt32RangeConstraint function

1743
PMTemplateSetSInt32RangeDefaultValue function

1744

3026
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMTemplateSetSInt32RangesConstraint function
1744

PMTemplateValidateItem function 1745
PMTicketConfirmTicket function 1746
PMTicketContainsItem function 1746
PMTicketContainsTicket function 1747
PMTicketCopy function 1747
PMTicketCopyItem function 1748
PMTicketCreate function 1749
PMTicketCreateTemplate function 1749
PMTicketDeleteItem function 1750
PMTicketErrors data type 1799
PMTicketFillFromArray function 1751
PMTicketGetAllocator function 1751
PMTicketGetAPIVersion function 1752
PMTicketGetBoolean function 1752
PMTicketGetBytes function 1753
PMTicketGetCFArray function 1754
PMTicketGetCFBoolean function 1755
PMTicketGetCFData function 1755
PMTicketGetCFDate function 1756
PMTicketGetCFDictionary function 1757
PMTicketGetCFNumber function 1758
PMTicketGetCFString function 1758
PMTicketGetCString function 1759
PMTicketGetDouble function 1760
PMTicketGetEnumType function 1760
PMTicketGetIndexPMResolution function 1761
PMTicketGetItem function 1762
PMTicketGetLockedState function 1762
PMTicketGetMetaItem function 1763
PMTicketGetPMRect function 1764
PMTicketGetPMResolution function 1764
PMTicketGetPPDDict function 1765
PMTicketGetPString function 1766
PMTicketGetRetainCount function 1767
PMTicketGetSInt32 function 1767
PMTicketGetTicket function 1768
PMTicketGetType function 1769
PMTicketGetUInt32 function 1769
PMTicketIsItemLocked function 1770
PMTicketItemStruct structure 1800
PMTicketItemType data type 1800
PMTicketLockItem function 1770
PMTicketReadXMLFromFile function 1771
PMTicketRef data type 1801
PMTicketRelease function 1772
PMTicketReleaseAndClear function 1772
PMTicketReleaseItem function 1773
PMTicketRemoveTicket function 1773
PMTicketRetain function 1774
PMTicketSetBoolean function 1774
PMTicketSetBytes function 1775

PMTicketSetCFArray function 1776
PMTicketSetCFBoolean function 1776
PMTicketSetCFData function 1777
PMTicketSetCFDate function 1778
PMTicketSetCFDictionary function 1779
PMTicketSetCFNumber function 1779
PMTicketSetCFString function 1780
PMTicketSetCString function 1781
PMTicketSetCStringArray function 1782
PMTicketSetDouble function 1782
PMTicketSetDoubleArray function 1783
PMTicketSetItem function 1784
PMTicketSetMetaItem function 1785
PMTicketSetPMRect function 1785
PMTicketSetPMRectArray function 1786
PMTicketSetPMResolution function 1787
PMTicketSetPMResolutionArray function 1788
PMTicketSetPString function 1789
PMTicketSetSInt32 function 1789
PMTicketSetSInt32Array function 1790
PMTicketSetTemplate function 1791
PMTicketSetTicket function 1791
PMTicketSetUInt32 function 1792
PMTicketSetUInt32Array function 1793
PMTicketToXML function 1794
PMTicketType data type 1801
PMTicketUnlockItem function 1794
PMTicketValidate function 1795
PMTicketWriteXML function 1795
PMTicketWriteXMLToFile function 1796
pmTolerant constant 1389
PMUnflattenPageFormat function (Deprecated in Mac

OS X v10.5) 2265
PMUnflattenPageFormatWithCFData function

(Deprecated in Mac OS X v10.5) 2266
PMUnflattenPageFormatWithURL function (Deprecated

in Mac OS X v10.5) 2266
PMUnflattenPrintSettings function (Deprecated in

Mac OS X v10.5) 2267
PMUnflattenPrintSettingsWithCFData function

(Deprecated in Mac OS X v10.5) 2268
PMUnflattenPrintSettingsWithURL function

(Deprecated in Mac OS X v10.5) 2268
PMValidatePageFormat function (Deprecated in Mac

OS X v10.4) 2269
PMValidatePrintSettings function (Deprecated in

Mac OS X v10.4) 2270
PMValueType data type 1801
pmWhite constant 1389
PMWorkflowCopyItems function 2270
PMWorkflowSubmitPDFWithOptions function 2271
PMWorkflowSubmitPDFWithSettings function 2272
PMXMLToTicket function 1796

3027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

pNewElementLoc 627
PNG Dictionary Keys 2327
Polygon data type 2873
popularMethod constant 1440
Port List Flags 1162
PortChanged function (Deprecated in Mac OS X v10.4)

2751
PortionLine function (Deprecated in Mac OS X v10.4)

2930
PortSize function (Deprecated in Mac OS X v10.4) 2751
PostScript Data Formats 995
PostScript Injection Dictionary Keys 2285
PostScript Injection Placement Options 2286
PostScript Injection Sections 2287
PostScript Injection Subsections 2287
PostScript Language Level Targets 1815
PostScript Page Injection Options 2286
PostScript Printer Description File Domains 2292
PostScript Printer Description Tags 1816
PostScript Printer Driver Keys 1816
Preference Attribute Bits and Masks 2535
Preference Attribute Masks 2536
Print All Pages Constant 2293
Print Quality Modes 2293
Print Queue States 2294
Print Settings Ticket Keys 1816
Printer Description Types 2295
Printer Driver Creator Code Key 1822
Printer Font Keys 1822
Printer Info Ticket Keys 1822
PrinterFontStatus structure 2873
PrinterScalingStatus structure 2874
PrinterStatusOpcode data type 2874
Printing Phase Types 1824
Priority Constants for the AESend Function (Deprecated

in Mac OS X) 601
Process Identification Constants 1466
Process Mode Flags 1466
Process Transformation Constant 1467
ProcessInfoExtendedRec structure 1460
ProcessInfoRec structure 1459
ProcessInformationCopyDictionary function 1452
ProcessSerialNumber structure 1461
procNotFound constant 1467
Profile Access Procedures 998
Profile Classes 999
Profile Concatenation Values 1001
Profile Flags 1002
Profile IDs 2536
Profile Iteration Constants 1002
Profile Iteration Values 993
Profile Location Sizes 994
Profile Location Type 1003

Profile Options 994
propFont constant 1226
ProtectEntry function (Deprecated in Mac OS X v10.4)

2752
protocolErr constant 1468
prpFntH constant 1227
prpFntHW constant 1227
prpFntW constant 1227
pScheme 627
Pt2Rect function 2753
pTextStyles 627
PtInIconID function (Deprecated in Mac OS X v10.5)

1285
PtInIconMethod function (Deprecated in Mac OS X

v10.5) 1285
PtInIconRef function (Deprecated in Mac OS X v10.5)

1287
PtInIconSuite function (Deprecated in Mac OS X v10.5)

1288
PtInRect function 2753
PtInRgn function 2754
PtToAngle function 2754
Public Tags 1005
Public Type Signatures 1008

Q

QDAddRectToDirtyRegion function (Deprecated in Mac
OS X v10.4) 2755

QDAddRegionToDirtyRegion function (Deprecated in
Mac OS X v10.4) 2756

QDArcProcPtr callback 2837
QDArcUPP data type 2874
QDBeginCGContext function 2756
QDBitsProcPtr callback 2837
QDBitsUPP data type 2874
QDByte data type 2874
QDCommentProcPtr callback 2838
QDCommentUPP data type 2875
QDDisplayWaitCursor function (Deprecated in Mac OS

X v10.4) 2757
QDDisposeRegionBits function (Deprecated in Mac OS

X v10.4) 2757
QDDone function (Deprecated in Mac OS X v10.4) 2758
QDEndCGContext function 2758
QDErr data type 2875
QDError function (Deprecated in Mac OS X v10.4) 2759
QDFlushPortBuffer function (Deprecated in Mac OS X

v10.4) 2760
QDGetCGDirectDisplayID function 2761
QDGetCursorData function (Deprecated in Mac OS X

v10.4) 2761

3028
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

QDGetDirtyRegion function (Deprecated in Mac OS X
v10.4) 2762

QDGetPatternOrigin function (Deprecated in Mac OS
X v10.4) 2762

QDGetPicProcPtr callback 2838
QDGetPictureBounds function (Deprecated in Mac OS

X v10.4) 2762
QDGetPicUPP data type 2875
QDGlobals structure 2876
QDGlobalToLocalPoint function (Deprecated in Mac

OS X v10.4) 2763
QDGlobalToLocalRect function (Deprecated in Mac OS

X v10.4) 2763
QDGlobalToLocalRegion function (Deprecated in Mac

OS X v10.4) 2764
QDIsNamedPixMapCursorRegistered function

(Deprecated in Mac OS X v10.4) 2764
QDIsPortBufferDirty function (Deprecated in Mac OS

X v10.4) 2764
QDIsPortBuffered function (Deprecated in Mac OS X

v10.4) 2765
QDJShieldCursorProcPtr callback 2839
QDJShieldCursorUPP data type 2876
QDLineProcPtr callback 2839
QDLineUPP data type 2876
QDLocalToGlobalPoint function (Deprecated in Mac

OS X v10.4) 2765
QDLocalToGlobalRect function (Deprecated in Mac OS

X v10.4) 2765
QDLocalToGlobalRegion function (Deprecated in Mac

OS X v10.4) 2766
QDOpcodeProcPtr callback 2840
QDOpcodeUPP data type 2876
QDOvalProcPtr callback 2840
QDOvalUPP data type 2877
QDPictCreateWithProvider function 2766
QDPictCreateWithURL function 2767
QDPictDrawToCGContext function 2767
QDPictGetBounds function 2768
QDPictGetResolution function 2769
QDPictRef data type 2877
QDPictRelease function 2769
QDPictRetain function 2770
QDPolyProcPtr callback 2840
QDPolyUPP data type 2878
QDPrinterStatusProcPtr callback 2841
QDPrinterStatusUPP data type 2878
QDProcs structure 2878
QDPutPicProcPtr callback 2841
QDPutPicUPP data type 2879
QDRectProcPtr callback 2842
QDRectUPP data type 2880
QDRegionBitsRef data type 2880

QDRegionParseDirection data type 2880
QDRegionToRects function 2770
QDRegisterNamedPixMapCursor function (Deprecated

in Mac OS X v10.4) 2770
QDRestoreRegionBits function (Deprecated in Mac OS

X v10.4) 2771
QDRgnProcPtr callback 2842
QDRgnUPP data type 2880
QDRRectProcPtr callback 2843
QDRRectUPP data type 2880
QDSaveRegionBits function (Deprecated in Mac OS X

v10.4) 2771
QDSetCursorScale function (Deprecated in Mac OS X

v10.4) 2772
QDSetDirtyRegion function (Deprecated in Mac OS X

v10.4) 2772
QDSetNamedPixMapCursor function (Deprecated in Mac

OS X v10.4) 2772
QDSetPatternOrigin function (Deprecated in Mac OS

X v10.4) 2773
QDStdGlyphsProcPtr callback 2843
QDStdGlyphsUPP data type 2881
QDSwapPort function (Deprecated in Mac OS X v10.4)

2773
QDSwapPortTextFlags function (Deprecated in Mac OS

X v10.4) 2773
QDSwapTextFlags function (Deprecated in Mac OS X

v10.4) 2774
QDTextBounds function (Deprecated in Mac OS X v10.4)

1203
QDTextProcPtr callback 2844
QDTextUPP data type 2881
QDTxMeasProcPtr callback 2844
QDTxMeasUPP data type 2881
QDUnregisterNamedPixMapCursor function

(Deprecated in Mac OS X v10.4) 2774
Quality Flag Values for Version 2.x Profiles 1011
QuickTime User Interface Default Font 1229

R

ramInit constant 2888
Random function (Deprecated in Mac OS X v10.4) 2775
Rasterizer Options 1825
ReadIconFile function (Deprecated in Mac OS X v10.5)

1288
ReadIconFromFSRef function 1289
RealColor function (Deprecated in Mac OS X v10.4) 2775
RealFont function (Deprecated in Mac OS X v10.4) 1203
reallocPix constant 2894
RecordColorsProcPtr callback 1431
RecordColorsUPP data type 1438

3029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

recordComments constant 1441
recordFontInfo constant 1441
RecordPictInfo function (Deprecated in Mac OS X

v10.4) 1424
RecordPixMapInfo function (Deprecated in Mac OS X

v10.4) 1424
RectInIconID function (Deprecated in Mac OS X v10.5)

1289
RectInIconMethod function (Deprecated in Mac OS X

v10.5) 1290
RectInIconRef function (Deprecated in Mac OS X v10.5)

1292
RectInIconSuite function (Deprecated in Mac OS X

v10.5) 1292
RectInRgn function 2776
RectRgn function 2776
redColor constant 2885
RedrawBackgroundProcPtr callback 1999
RedrawBackgroundUPP data type 2030
RegionToRectsProcPtr callback 2845
RegionToRectsUPP data type 2881
RegisterIconRefFromFSRef function 1293
RegisterIconRefFromIconFamily function 1294
RegisterIconRefFromIconFile function (Deprecated

in Mac OS X v10.5) 1295
RegisterIconRefFromResource function (Deprecated

in Mac OS X v10.5) 1295
ReleaseIconRef function 1296
Remote Process Dictionary Keys 602
RemoveIconRefOverride function 1297
Rendering Intent Values for Version 2.x Profiles 1012
ReqListRec structure 2882
Reserved Count Constants 1162
Reserved Window Levels 1559
ReserveEntry function (Deprecated in Mac OS X v10.4)

2777
ResizePalette function (Deprecated in Mac OS X v10.4)

1378
RestoreBack function (Deprecated in Mac OS X v10.4)

1379
RestoreDeviceClut function (Deprecated in Mac OS X

v10.4) 1379
RestoreEntries function (Deprecated in Mac OS X

v10.4) 2778
RestoreFore function (Deprecated in Mac OS X v10.4)

1380
Resume Event Dispatch Constants 603
RetrievePictInfo function (Deprecated in Mac OS X

v10.4) 1425
returnColorTable constant 1440
returnPalette constant 1440
RGBBackColor function (Deprecated in Mac OS X v10.4)

2779

RGBColor structure 2882
RGBForeColor function (Deprecated in Mac OS X v10.4)

2780
RgnHandle data type 2883
RgnToHandle function 2781
rgnTooBigErr constant 2905
rightCaret constant 2949
rightStyleRun constant 2951
Roles 2087

S

SameProcess function 1453
SaveBack function (Deprecated in Mac OS X v10.4) 1381
SaveEntries function (Deprecated in Mac OS X v10.4)

2781
SaveFore function (Deprecated in Mac OS X v10.4) 1381
ScalePt function 2782
Scoping Options 710
Screen Encoding Tags 1013
Screen Update Operations 1559
screenActive constant 2888
screenDevice constant 2888
ScreenRes function (Deprecated in Mac OS X v10.4) 2783
Scrolling Event Units 1627
ScrollRect function (Deprecated in Mac OS X v10.4)

2784
Search Methods 1078
SectRect function 2785
SectRegionWithPortClipRegion function (Deprecated

in Mac OS X v10.4) 2786
SectRegionWithPortVisibleRegion function

(Deprecated in Mac OS X v10.4) 2786
SectRgn function 2786
SeedCFill function (Deprecated in Mac OS X v10.4) 2787
SeedFill function (Deprecated in Mac OS X v10.4) 2788
Services Bits 2537
Services Constants 2535
Services Masks 2537
sessClosedErr constant 636
SetAntiAliasedTextEnabled function (Deprecated in

Mac OS X v10.4) 1204
SetCCursor function (Deprecated in Mac OS X v10.4)

2790
SetClientID function (Deprecated in Mac OS X v10.4)

2790
SetClip function 2791
SetCPixel function (Deprecated in Mac OS X v10.4) 2791
SetCursor function (Deprecated in Mac OS X v10.4) 2792
SetCursorComponent function (Deprecated in Mac OS

X v10.4) 2793
SetCustomIconsEnabled function 1297

3030
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetDepth function 1382
SetDeviceAttribute function (Deprecated in Mac OS

X v10.4) 2793
SetEmptyRgn function 2794
SetEntries function (Deprecated in Mac OS X v10.4)

2794
SetEntryColor function (Deprecated in Mac OS X v10.4)

1383
SetEntryUsage function (Deprecated in Mac OS X v10.4)

1384
SetFractEnable function (Deprecated in Mac OS X

v10.4) 1204
SetFrontProcess function 1454
SetFrontProcessWithOptions function 1455
SetFScaleDisable function (Deprecated in Mac OS X

v10.4) 1205
SetGDevice function (Deprecated in Mac OS X v10.4)

2796
SetGWorld function 2796
SetIconCacheData function (Deprecated in Mac OS X

v10.5) 1298
SetIconCacheProc function (Deprecated in Mac OS X

v10.5) 1299
SetIconFamilyData function 1299
SetIndImageProfileProcPtr callback 872
SetOrigin function (Deprecated in Mac OS X v10.4) 2797
SetOutlinePreferred function (Deprecated in Mac OS

X v10.4) 1206
SetPalette function (Deprecated in Mac OS X v10.4)

1385
SetPaletteUpdates function (Deprecated in Mac OS X

v10.4) 1386
SetPenState function (Deprecated in Mac OS X v10.4)

2798
SetPixelsState function (Deprecated in Mac OS X

v10.4) 2799
SetPort function (Deprecated in Mac OS X v10.4) 2799
SetPortBackPixPat function (Deprecated in Mac OS X

v10.4) 2800
SetPortBits function (Deprecated in Mac OS X v10.4)

2801
SetPortBounds function (Deprecated in Mac OS X v10.4)

2801
SetPortClipRegion function (Deprecated in Mac OS X

v10.4) 2801
SetPortCustomXFerProc function (Deprecated in Mac

OS X v10.4) 2802
SetPortFillPixPat function (Deprecated in Mac OS X

v10.4) 2802
SetPortFracHPenLocation function (Deprecated in

Mac OS X v10.4) 2803
SetPortGrafProcs function (Deprecated in Mac OS X

v10.4) 2803

SetPortOpColor function (Deprecated in Mac OS X
v10.4) 2803

SetPortPenMode function (Deprecated in Mac OS X
v10.4) 2804

SetPortPenPixPat function (Deprecated in Mac OS X
v10.4) 2804

SetPortPenSize function (Deprecated in Mac OS X
v10.4) 2805

SetPortPix function (Deprecated in Mac OS X v10.4)
2805

SetPortTextFace function (Deprecated in Mac OS X
v10.4) 2806

SetPortTextFont function (Deprecated in Mac OS X
v10.4) 2806

SetPortTextMode function (Deprecated in Mac OS X
v10.4) 2806

SetPortTextSize function (Deprecated in Mac OS X
v10.4) 2807

SetPortVisibleRegion function (Deprecated in Mac
OS X v10.4) 2807

SetPreserveGlyph function (Deprecated in Mac OS X
v10.4) 1206

SetPt function 2807
SetQDError function (Deprecated in Mac OS X v10.4)

2808
SetQDGlobalsArrow function (Deprecated in Mac OS X

v10.4) 2808
SetQDGlobalsRandomSeed function (Deprecated in Mac

OS X v10.4) 2809
SetRect function 2809
SetRectRgn function 2810
SetSpeechInfo function 1650
SetSpeechPitch function 1651
SetSpeechProperty function 1651
SetSpeechRate function 1652
SetStdCProcs function (Deprecated in Mac OS X v10.4)

2811
SetStdProcs function (Deprecated in Mac OS X v10.4)

2812
SetSuiteLabel function (Deprecated in Mac OS X v10.5)

1300
ShieldCursor function 2813
ShowCursor function 2813
ShowHideProcess function 1455
ShowPen function (Deprecated in Mac OS X v10.4) 2814
singleDevices constant 2889
singleDevicesBit 2898
SInt32List structure 1801
SizeResourceRec structure 1462
SlopeFromAngle function 2814
smBreakChar constant 2950
smBreakOverflow constant 2950
smBreakWord constant 2950

3031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

smHilite constant 2951
smLeftCaret constant 2951
smLeftStyleRun constant 2952
smMiddleStyleRun constant 2952
smNotTruncated constant 2950
smOnlyStyleRun constant 2952
smRightCaret constant 2951
smRightStyleRun constant 2952
smTruncated constant 2950
smTruncEnd constant 2953
smTruncErr constant 2950
smTruncMiddle constant 2953
soCharacterMode constant 1687
soCommandDelimiter constant 1689
soCurrentA5 constant 1689
soCurrentVoice constant 1689
soErrorCallBack constant 1691
soErrors constant 1686
soInputMode constant 1687
soNumberMode constant 1687
soOutputToFileWithCFURL constant 1692
soPhonemeCallBack constant 1691
soPhonemeSymbols constant 1689
soPitchBase constant 1688
soPitchMod constant 1688
soRate constant 1687
soRecentSync constant 1688
soRefCon constant 1690
soReset constant 1689
soSoundOutput constant 1691
soSpeechDoneCallBack constant 1690
soStatus constant 1686
soSyncCallBack constant 1690
soSynthExtension constant 1691
soSynthType constant 1688
soTextDoneCallBack constant 1690
Source, Pattern, and Arithmetic Transfer Mode Constants

2898
soVoiceDescription constant 1685
soVoiceFile constant 1685
soVolume constant 1688
soWordCallBack constant 1691
SpaceExtra function (Deprecated in Mac OS X v10.4)

2932
SpeakBuffer function 1652
SpeakCFString function 1653
SpeakString function 1654
SpeakText function 1655
Special Folder Icon Constants 1317
Special Handler Callback Constants 603
Speech Dictionary Keys 1704
Speech Error Keys 1700
Speech Status Keys 1699

Speech Synthesis Manager Operating System Types 1682
Speech Synthesizer Information Keys 1701
Speech-Channel Information Constants 1685
Speech-Channel Modes 1683
Speech-Channel Modes for Core Foundation-based

Functions 1684
Speech-Channel Properties 1692
SpeechBusy function 1656
SpeechBusySystemWide function 1656
SpeechChannelRecord structure 1672
SpeechDoneProcPtr callback 1662
SpeechDoneUPP data type 1673
SpeechErrorCFProcPtr callback 1663
SpeechErrorInfo structure 1673
SpeechErrorProcPtr callback 1664
SpeechErrorUPP data type 1674
SpeechManagerVersion function 1657
SpeechPhonemeProcPtr callback 1665
SpeechPhonemeUPP data type 1674
SpeechStatusInfo structure 1674
SpeechSyncProcPtr callback 1666
SpeechSyncUPP data type 1675
SpeechTextDoneProcPtr callback 1667
SpeechTextDoneUPP data type 1676
SpeechVersionInfo structure 1676
SpeechWordCFProcPtr callback 1668
SpeechWordProcPtr callback 1669
SpeechWordUPP data type 1677
SpeechXtndData structure 1677
Spot Function Values 1013
SProcRec structure 2883
srcBic constant 2900
srcCopy constant 2899
srcOr constant 2899
srcXor constant 2899
Standard Finder Icon Constants 1318
Standard Icon Badge Constants 1319
Standard Icon Resources 1321
Standard Oberver 1014
StandardGlyphs function (Deprecated in Mac OS X

v10.4) 2933
startupFolderIconResource 1322
StdArc function (Deprecated in Mac OS X v10.4) 2815
StdBits function (Deprecated in Mac OS X v10.4) 2816
StdComment function (Deprecated in Mac OS X v10.4)

2817
StdGetPic function (Deprecated in Mac OS X v10.4) 2817
StdLine function (Deprecated in Mac OS X v10.4) 2818
StdOpcode function (Deprecated in Mac OS X v10.4) 2819
StdOval function (Deprecated in Mac OS X v10.4) 2819
StdPoly function (Deprecated in Mac OS X v10.4) 2820
StdPutPic function (Deprecated in Mac OS X v10.4) 2820
StdRect function (Deprecated in Mac OS X v10.4) 2821

3032
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

StdRgn function (Deprecated in Mac OS X v10.4) 2822
StdRRect function (Deprecated in Mac OS X v10.4) 2822
StdText function (Deprecated in Mac OS X v10.4) 2933
stdtext function (Deprecated in Mac OS X v10.4) 2934
StdTxMeas function (Deprecated in Mac OS X v10.4) 2934
Stop Speech Locations 1682
StopSpeech function 1657
StopSpeechAt function 1658
stretchPix constant 2894
StringWidth function (Deprecated in Mac OS X v10.4)

2936
StuffHex function (Deprecated in Mac OS X v10.4) 2823
Style Comparison Options 2063
Style Line Break Values 2950
Style Line Count Types 2064
Style Rendering Options 2065
Style Run Position Constants 2951
StyledLineBreak function (Deprecated in Mac OS X

v10.4) 2937
StyleRunDirectionProcPtr callback 2946
StyleRunDirectionUPP data type 2948
StyleTable structure 1219
subOver constant 2902
subPin constant 2902
SubPt function 2824
Subroles 2093
Summary Change Flags 1163
suppressBlackAndWhite constant 1441
svLarge1Bit 1323
SwapPortPicSaveHandle function (Deprecated in Mac

OS X v10.4) 2824
SwapPortPolySaveHandle function (Deprecated in Mac

OS X v10.4) 2825
SwapPortRegionSaveHandle function (Deprecated in

Mac OS X v10.4) 2825
Switch Flags 1163
SyncCGContextOriginWithPort function (Deprecated

in Mac OS X v10.4) 2826
Synthesizer Option Keys 1698
synthNotReady constant 1705
synthOpenFailed constant 1705
System and Application Fonts 1229
System Icon Constant 1314
systemFont constant 1229
systemMethod constant 1440

T

Tab Positioning Options 2066
Tag Constants 2295
Tag Type Information 1015
Technology Tag Descriptions 1015

Template Entry Data Types 1826
Template Strings 1828
Termination Options 1463
TestDeviceAttribute function (Deprecated in Mac OS

X v10.4) 2826
Text Buffer Convenience Constants 2067
Text Drawing Modes 144
Text Encodings 146
TextFace function (Deprecated in Mac OS X v10.4) 2939
TextFont function (Deprecated in Mac OS X v10.4) 2939
TextMode function (Deprecated in Mac OS X v10.4) 2940
TextRange structure 550
TextRangeArray structure 550
TextSize function (Deprecated in Mac OS X v10.4) 2941
TextToPhonemes function 1659
TextWidth function (Deprecated in Mac OS X v10.4) 2941
tfAntiAlias constant 2952
tfUnicode constant 2952
Ticket Levels 1829
Ticket Type Strings 1831
Ticket Types 1829
TIFF Dictionary Keys 2328
Tiling Patterns 289
Timeout Constants 605
Toolbar Icons 1316
TransformProcessType function 1456
transparent constant 2903
truncated constant 2949
Truncation Positions 2953
Truncation Status Values 2949
truncEnd constant 2953
truncErr constant 2950
truncMiddle constant 2953
TruncString function (Deprecated in Mac OS X v10.4)

2943
TruncText function (Deprecated in Mac OS X v10.4) 2943
TScriptingSizeResource structure 550
ttNone 1324
txFlag Constants 2952
type128BitFloatingPoint constant 599
typeAbsoluteOrdinal constant 592
typeAEList constant 582
typeAERecord constant 582
typeAEText 628
typeAlias constant 583
typeAppleEvent constant 582
typeApplicationBundleID 628
typeApplicationBundleID constant 628
typeApplicationURL constant 584
typeApplSignature constant 584
typeAppParameters constant 583
typeBoolean constant 601
typeChar constant 601

3033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

typeComp constant 633
typeCompDescriptor constant 592
typeCString constant 635
typeCurrentContainer constant 592
typeDCMFieldAttributes constant 1077
typeDCMFindMethod constant 1077
typeDecimalStruct constant 599
typeEncodedString constant 635
typeEnumerated constant 583
typeExtended constant 634
typeFalse constant 582
typeFileURL constant 583
typeFinderWindow 629
typeFloat constant 634
typeFSRef constant 583
typeFSS constant 583
typeHIMenu 629
typeIEEE32BitFloatingPoint constant 598
typeIEEE64BitFloatingPoint constant 598
typeIndexDescriptor constant 592
typeInteger constant 633
typeIntlText constant 629
typeKernelProcessID 629
typeKernelProcessID constant 630
typeKeyword constant 583
typeLogicalDescriptor constant 592
typeLongFloat constant 634
typeLongInteger constant 633
typeMachPort 630
typeMachPort constant 630
typeMagnitude constant 633
typeMeters 631
typeNull constant 584
typeObjectBeingExamined constant 591
typeObjectSpecifier constant 591
typeOSLTokenList constant 593
typePixelMap 631
typeProcessSerialNumber constant 584
typeProperty constant 583
typePString constant 636
typeRangeDescriptor constant 592
typeRelativeDescriptor constant 592
typeReplyPortAttr 632
typeSectionH constant 584
typeSessionID 632
typeSessionID constant 632
typeShortFloat constant 634
typeShortInteger constant 633
typeSInt16 constant 598
typeSInt32 constant 598
typeSInt64 constant 598
typeSMFloat constant 634
typeSMInt 632

typeSMInt constant 633
typeStyledText constant 632
typeStyledUnicodeText constant 635
typeTargetID constant 632
typeTIFF 635
typeToken constant 592
typeTrue constant 582
typeType constant 583
typeUInt16 constant 598
typeUInt32 constant 598
typeUInt64 constant 598
typeUnicodeText 635
typeUnicodeText constant 635
typeUTF16ExternalRepresentation constant 635
typeUTF8Text constant 635
typeWildCard constant 584

U

UnembedImageProcPtr callback 873
Unflattened Style Run Data Options 2067
UnionRect function 2827
UnionRgn function 2828
UnlockPixels function (Deprecated in Mac OS X v10.4)

2829
UnlockPortBits function (Deprecated in Mac OS X

v10.4) 2829
UnpackBits function (Deprecated in Mac OS X v10.4)

2830
UnregisterIconRef function 1301
Update Constants 1390
UpdateGWorld function (Deprecated in Mac OS X v10.4)

2831
UpdateIconRef function 1301
updPixMemErr constant 2904
Usage Constants 1388
Use Types 1018
UseDictionary function 1660
User Cancellation Constant 2297
User Interaction Constants 2538
User Interaction Level Constants 605
User Interaction Masks 2538
Users and Groups Icon Constants 1320
UseSpeechDictionary function 1661
useTempMem constant 2892

V

vAEBuildAppleEvent function 519
vAEBuildDesc function 520

3034
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

vAEBuildParameters function 521
ValidateImageProcPtr callback 873
ValidateSpaceProcPtr callback 874
Verb Constants 2904
Version Constants 2462, 2538
Vertical Character Types 2068
Video Card Gamma Signatures 1020
Video Card Gamma Storage Types 1018
Video Card Gamma Tags 1019
VisibleLength function (Deprecated in Mac OS X v10.4)

2944
Voice Information Selectors 1685
VoiceDescription structure 1677
VoiceFileInfo structure 1679
voiceNotFound constant 1705
VoiceSpec structure 1679

W

WakeUpProcess function 1456
watchCursor constant 2887
whiteColor constant 2885
Whose Test Constants 607
WidEntry structure 1220
WidTable structure 1220
WidthTable structure 1220
WidthTableHdl data type 1223
WidthTablePtr data type 1224
Wild Card Values 1080
Window Level Keys 1560
Window Server Session Properties 1563
WindowPtr data type 2883
WriteIconFile function (Deprecated in Mac OS X v10.5)

1302
WritingCode structure 551
wrongApplicationPlatform constant 1468

X

xColorSpec structure 2884
xCSpecArray data type 2884
XorRgn function 2833

Y

yellowColor constant 2886

3035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Application Services Framework Reference
	Contents
	Figures and Tables
	Introduction
	Part I: Opaque Types
	CGBitmapContext Reference
	Overview
	Functions by Task
	Creating Bitmap Contexts
	Getting Information About Bitmap Contexts

	Functions
	CGBitmapContextCreate
	CGBitmapContextCreateImage
	CGBitmapContextGetAlphaInfo
	CGBitmapContextGetBitmapInfo
	CGBitmapContextGetBitsPerComponent
	CGBitmapContextGetBitsPerPixel
	CGBitmapContextGetBytesPerRow
	CGBitmapContextGetColorSpace
	CGBitmapContextGetData
	CGBitmapContextGetHeight
	CGBitmapContextGetWidth

	CGColor Reference
	Overview
	Functions by Task
	Getting a Constant Color
	Retaining and Releasing Color Objects
	Creating Quartz Colors
	Getting Information about Quartz Colors

	Functions
	CGColorCreate
	CGColorCreateCopy
	CGColorCreateCopyWithAlpha
	CGColorCreateGenericCMYK
	CGColorCreateGenericGray
	CGColorCreateGenericRGB
	CGColorCreateWithPattern
	CGColorEqualToColor
	CGColorGetAlpha
	CGColorGetColorSpace
	CGColorGetComponents
	CGColorGetConstantColor
	CGColorGetNumberOfComponents
	CGColorGetPattern
	CGColorGetTypeID
	CGColorRelease
	CGColorRetain

	Data Types
	CGColorRef

	Constants
	Constant Colors

	CGColorSpace Reference
	Overview
	Functions by Task
	Creating Device-Independent Color Spaces
	Creating Generic or Device-Dependent Color Spaces
	Creating Special Color Spaces
	Getting Information About Color Spaces
	Retaining and Releasing Color Spaces

	Functions
	CGColorSpaceCopyICCProfile
	CGColorSpaceCreateCalibratedGray
	CGColorSpaceCreateCalibratedRGB
	CGColorSpaceCreateDeviceCMYK
	CGColorSpaceCreateDeviceGray
	CGColorSpaceCreateDeviceRGB
	CGColorSpaceCreateICCBased
	CGColorSpaceCreateIndexed
	CGColorSpaceCreateLab
	CGColorSpaceCreatePattern
	CGColorSpaceCreateWithName
	CGColorSpaceCreateWithPlatformColorSpace
	CGColorSpaceGetBaseColorSpace
	CGColorSpaceGetColorTable
	CGColorSpaceGetColorTableCount
	CGColorSpaceGetModel
	CGColorSpaceGetNumberOfComponents
	CGColorSpaceGetTypeID
	CGColorSpaceRelease
	CGColorSpaceRetain

	Data Types
	CGColorSpaceRef

	Constants
	Color Space Names
	Color Space Models
	Color Rendering Intents
	Named Color Spaces (Deprecated)

	CGContext Reference
	Overview
	Functions by Task
	Managing Graphics Contexts
	Saving and Restoring the Current Graphics State
	Getting and Setting Graphics State Parameters
	Constructing Paths
	Painting Paths
	Getting Information About Paths
	Modifying Clipping Paths
	Setting Color, Color Space, and Shadow Values
	Transforming User Space
	Using Transparency Layers
	Drawing an Image to a Graphics Context
	Drawing PDF Content to a Graphics Context
	Drawing With a Gradient
	Drawing With a Shading
	Setting Up a Page-Based Graphics Context
	Drawing Glyphs
	Drawing Text
	Converting Between Device Space and User Space

	Functions
	CGContextAddArc
	CGContextAddArcToPoint
	CGContextAddCurveToPoint
	CGContextAddEllipseInRect
	CGContextAddLines
	CGContextAddLineToPoint
	CGContextAddPath
	CGContextAddQuadCurveToPoint
	CGContextAddRect
	CGContextAddRects
	CGContextBeginPage
	CGContextBeginPath
	CGContextBeginTransparencyLayer
	CGContextBeginTransparencyLayerWithRect
	CGContextClearRect
	CGContextClip
	CGContextClipToMask
	CGContextClipToRect
	CGContextClipToRects
	CGContextClosePath
	CGContextConcatCTM
	CGContextConvertPointToDeviceSpace
	CGContextConvertPointToUserSpace
	CGContextConvertRectToDeviceSpace
	CGContextConvertRectToUserSpace
	CGContextConvertSizeToDeviceSpace
	CGContextConvertSizeToUserSpace
	CGContextDrawImage
	CGContextDrawLinearGradient
	CGContextDrawPath
	CGContextDrawPDFDocument
	CGContextDrawPDFPage
	CGContextDrawRadialGradient
	CGContextDrawShading
	CGContextDrawTiledImage
	CGContextEndPage
	CGContextEndTransparencyLayer
	CGContextEOClip
	CGContextEOFillPath
	CGContextFillEllipseInRect
	CGContextFillPath
	CGContextFillRect
	CGContextFillRects
	CGContextFlush
	CGContextGetClipBoundingBox
	CGContextGetCTM
	CGContextGetInterpolationQuality
	CGContextGetPathBoundingBox
	CGContextGetPathCurrentPoint
	CGContextGetTextMatrix
	CGContextGetTextPosition
	CGContextGetTypeID
	CGContextGetUserSpaceToDeviceSpaceTransform
	CGContextIsPathEmpty
	CGContextMoveToPoint
	CGContextPathContainsPoint
	CGContextRelease
	CGContextReplacePathWithStrokedPath
	CGContextRestoreGState
	CGContextRetain
	CGContextRotateCTM
	CGContextSaveGState
	CGContextScaleCTM
	CGContextSelectFont
	CGContextSetAllowsAntialiasing
	CGContextSetAlpha
	CGContextSetBlendMode
	CGContextSetCharacterSpacing
	CGContextSetCMYKFillColor
	CGContextSetCMYKStrokeColor
	CGContextSetFillColor
	CGContextSetFillColorSpace
	CGContextSetFillColorWithColor
	CGContextSetFillPattern
	CGContextSetFlatness
	CGContextSetFont
	CGContextSetFontSize
	CGContextSetGrayFillColor
	CGContextSetGrayStrokeColor
	CGContextSetInterpolationQuality
	CGContextSetLineCap
	CGContextSetLineDash
	CGContextSetLineJoin
	CGContextSetLineWidth
	CGContextSetMiterLimit
	CGContextSetPatternPhase
	CGContextSetRenderingIntent
	CGContextSetRGBFillColor
	CGContextSetRGBStrokeColor
	CGContextSetShadow
	CGContextSetShadowWithColor
	CGContextSetShouldAntialias
	CGContextSetShouldSmoothFonts
	CGContextSetStrokeColor
	CGContextSetStrokeColorSpace
	CGContextSetStrokeColorWithColor
	CGContextSetStrokePattern
	CGContextSetTextDrawingMode
	CGContextSetTextMatrix
	CGContextSetTextPosition
	CGContextShowGlyphs
	CGContextShowGlyphsAtPoint
	CGContextShowGlyphsAtPositions
	CGContextShowGlyphsWithAdvances
	CGContextShowText
	CGContextShowTextAtPoint
	CGContextStrokeEllipseInRect
	CGContextStrokeLineSegments
	CGContextStrokePath
	CGContextStrokeRect
	CGContextStrokeRectWithWidth
	CGContextSynchronize
	CGContextTranslateCTM

	Data Types
	CGContextRef

	Constants
	Blend Modes
	Interpolation Qualities
	Line Cap Styles
	Line Joins
	Text Drawing Modes
	Text Encodings

	CGDataConsumer Reference
	Overview
	Functions by Task
	Creating Data Consumers
	Getting the CFType ID
	Retaining and Releasing Data Consumers

	Functions
	CGDataConsumerCreate
	CGDataConsumerCreateWithCFData
	CGDataConsumerCreateWithURL
	CGDataConsumerGetTypeID
	CGDataConsumerRelease
	CGDataConsumerRetain

	Callbacks
	CGDataConsumerPutBytesCallback
	CGDataConsumerReleaseInfoCallback

	Data Types
	CGDataConsumerCallbacks
	CGDataConsumerRef

	CGDataProvider Reference
	Overview
	Functions
	CGDataProviderCopyData
	CGDataProviderCreate
	CGDataProviderCreateDirect
	CGDataProviderCreateDirectAccess
	CGDataProviderCreateSequential
	CGDataProviderCreateWithCFData
	CGDataProviderCreateWithData
	CGDataProviderCreateWithFilename
	CGDataProviderCreateWithURL
	CGDataProviderGetTypeID
	CGDataProviderRelease
	CGDataProviderRetain

	Callbacks by Task
	Sequential-Access Data Provider Callbacks
	Direct-Access Data Provider Callbacks

	Callbacks
	CGDataProviderGetBytePointerCallback
	CGDataProviderGetBytesAtOffsetCallback
	CGDataProviderGetBytesAtPositionCallback
	CGDataProviderGetBytesCallback
	CGDataProviderReleaseBytePointerCallback
	CGDataProviderReleaseDataCallback
	CGDataProviderReleaseInfoCallback
	CGDataProviderRewindCallback
	CGDataProviderSkipBytesCallback
	CGDataProviderSkipForwardCallback

	Data Types
	CGDataProviderRef
	CGDataProviderCallbacks
	CGDataProviderDirectAccessCallbacks
	CGDataProviderDirectCallbacks
	CGDataProviderSequentialCallbacks

	CGFont Reference
	Overview
	Functions by Task
	Retaining and Releasing a CGFont Object
	Creating a CGFont Object
	Working With PostScript Fonts
	Working With Font Tables
	Getting Font Information

	Functions
	CGFontCanCreatePostScriptSubset
	CGFontCopyFullName
	CGFontCopyGlyphNameForGlyph
	CGFontCopyPostScriptName
	CGFontCopyTableForTag
	CGFontCopyTableTags
	CGFontCopyVariationAxes
	CGFontCopyVariations
	CGFontCreateCopyWithVariations
	CGFontCreatePostScriptEncoding
	CGFontCreatePostScriptSubset
	CGFontCreateWithDataProvider
	CGFontCreateWithFontName
	CGFontCreateWithPlatformFont
	CGFontGetAscent
	CGFontGetCapHeight
	CGFontGetDescent
	CGFontGetFontBBox
	CGFontGetGlyphAdvances
	CGFontGetGlyphBBoxes
	CGFontGetGlyphWithGlyphName
	CGFontGetItalicAngle
	CGFontGetLeading
	CGFontGetNumberOfGlyphs
	CGFontGetStemV
	CGFontGetTypeID
	CGFontGetUnitsPerEm
	CGFontGetXHeight
	CGFontRelease
	CGFontRetain

	Data Types
	CGFontRef
	CGFontIndex
	CGGlyph

	Constants
	CGFontPostScriptFormat
	Font Table Index Values
	Font Variation Axis Keys

	CGFunction Reference
	Overview
	Functions by Task
	Creating a CGFunction Object
	Retaining and Releasing CGFunction Objects
	Getting the CFType ID

	Functions
	CGFunctionCreate
	CGFunctionGetTypeID
	CGFunctionRelease
	CGFunctionRetain

	Callbacks
	CGFunctionEvaluateCallback
	CGFunctionReleaseInfoCallback

	Data Types
	CGFunctionRef
	CGFunctionCallbacks

	CGGLContext Reference
	Overview
	Functions
	CGGLContextCreate
	CGGLContextUpdateViewportSize

	CGGradient Reference
	Overview
	Functions by Task
	Creating a CGGradient Object
	Retaining and Releasing a CGGradient Object
	Getting the Type ID for a CGGradient Object

	Functions
	CGGradientCreateWithColorComponents
	CGGradientCreateWithColors
	CGGradientGetTypeID
	CGGradientRelease
	CGGradientRetain

	Data Types
	CGGradientRef

	Constants
	Gradient Drawing Options

	CGImage Reference
	Overview
	Functions by Task
	Creating Bitmap Images
	Creating an Image Mask
	Retaining and Releasing Images
	Getting the CFType ID
	Getting Information About an Image

	Functions
	CGImageCreate
	CGImageCreateCopy
	CGImageCreateCopyWithColorSpace
	CGImageCreateWithImageInRect
	CGImageCreateWithJPEGDataProvider
	CGImageCreateWithMask
	CGImageCreateWithMaskingColors
	CGImageCreateWithPNGDataProvider
	CGImageGetAlphaInfo
	CGImageGetBitmapInfo
	CGImageGetBitsPerComponent
	CGImageGetBitsPerPixel
	CGImageGetBytesPerRow
	CGImageGetColorSpace
	CGImageGetDataProvider
	CGImageGetDecode
	CGImageGetHeight
	CGImageGetRenderingIntent
	CGImageGetShouldInterpolate
	CGImageGetTypeID
	CGImageGetWidth
	CGImageIsMask
	CGImageMaskCreate
	CGImageRelease
	CGImageRetain

	Data Types
	CGImageRef

	Constants
	Alpha Information for Images
	Image Bitmap Information

	CGImageDestination Reference
	Overview
	Functions by Task
	Creating Image Destinations
	Adding Images
	Getting Type Identifiers
	Setting Properties
	Finalizing an Image Destination

	Functions
	CGImageDestinationAddImage
	CGImageDestinationAddImageFromSource
	CGImageDestinationCopyTypeIdentifiers
	CGImageDestinationCreateWithData
	CGImageDestinationCreateWithDataConsumer
	CGImageDestinationCreateWithURL
	CGImageDestinationFinalize
	CGImageDestinationGetTypeID
	CGImageDestinationSetProperties

	Data Types
	CGImageDestinationRef

	Constants
	Destination Properties

	CGImageSource Reference
	Overview
	Functions by Task
	Creating an Image Source
	Creating Images From an Image Source
	Updating an Image Source
	Getting Information From an Image Source

	Functions
	CGImageSourceCopyProperties
	CGImageSourceCopyPropertiesAtIndex
	CGImageSourceCopyTypeIdentifiers
	CGImageSourceCreateImageAtIndex
	CGImageSourceCreateIncremental
	CGImageSourceCreateThumbnailAtIndex
	CGImageSourceCreateWithData
	CGImageSourceCreateWithDataProvider
	CGImageSourceCreateWithURL
	CGImageSourceGetCount
	CGImageSourceGetStatus
	CGImageSourceGetStatusAtIndex
	CGImageSourceGetType
	CGImageSourceGetTypeID
	CGImageSourceUpdateData
	CGImageSourceUpdateDataProvider

	Data Types
	CGImageSourceRef

	Constants
	Image Source Status
	Image Source Option Dictionary Keys

	CGLayer Reference
	Overview
	Functions by Task
	Creating Layer Objects
	Drawing Layer Content
	Retaining and Releasing Layers
	Getting the CFType ID for a Layer
	Getting Layer Information

	Functions
	CGContextDrawLayerAtPoint
	CGContextDrawLayerInRect
	CGLayerCreateWithContext
	CGLayerGetContext
	CGLayerGetSize
	CGLayerGetTypeID
	CGLayerRelease
	CGLayerRetain

	Data Types
	CGLayerRef

	CGPath Reference
	Overview
	Functions by Task
	Creating and Managing Paths
	Modifying Quartz Paths
	Getting Information about Quartz Paths

	Functions
	CGPathAddArc
	CGPathAddArcToPoint
	CGPathAddCurveToPoint
	CGPathAddEllipseInRect
	CGPathAddLines
	CGPathAddLineToPoint
	CGPathAddPath
	CGPathAddQuadCurveToPoint
	CGPathAddRect
	CGPathAddRects
	CGPathApply
	CGPathCloseSubpath
	CGPathContainsPoint
	CGPathCreateCopy
	CGPathCreateMutable
	CGPathCreateMutableCopy
	CGPathEqualToPath
	CGPathGetBoundingBox
	CGPathGetCurrentPoint
	CGPathGetTypeID
	CGPathIsEmpty
	CGPathIsRect
	CGPathMoveToPoint
	CGPathRelease
	CGPathRetain

	Callbacks
	CGPathApplierFunction

	Data Types
	CGPathRef
	CGMutablePathRef
	CGPathElement

	Constants
	Path Drawing Modes
	Path Element Types

	CGPattern Reference
	Overview
	Functions by Task
	Creating a Pattern
	Getting the CFType ID
	Retaining and Releasing a Pattern

	Functions
	CGPatternCreate
	CGPatternGetTypeID
	CGPatternRelease
	CGPatternRetain

	Callbacks
	CGPatternDrawPatternCallback
	CGPatternReleaseInfoCallback

	Data Types
	CGPatternRef
	CGPatternCallbacks

	Constants
	Tiling Patterns

	CGPDFArray Reference
	Overview
	Functions
	CGPDFArrayGetArray
	CGPDFArrayGetBoolean
	CGPDFArrayGetCount
	CGPDFArrayGetDictionary
	CGPDFArrayGetInteger
	CGPDFArrayGetName
	CGPDFArrayGetNull
	CGPDFArrayGetNumber
	CGPDFArrayGetObject
	CGPDFArrayGetStream
	CGPDFArrayGetString

	Data Types
	CGPDFArrayRef

	CGPDFContentStream Reference
	Overview
	Functions by Task
	Creating a PDF Content Stream Object
	Getting Data from a PDF Content Stream Object
	Retaining and Releasing a PDF Content Stream Object

	Functions
	CGPDFContentStreamCreateWithPage
	CGPDFContentStreamCreateWithStream
	CGPDFContentStreamGetResource
	CGPDFContentStreamGetStreams
	CGPDFContentStreamRelease
	CGPDFContentStreamRetain

	Data Types
	CGPDFContentStreamRef

	CGPDFContext Reference
	Overview
	Functions by Task
	Creating a Context
	Beginning and Ending Pages
	Working with Destinations
	Closing a PDF Context

	Functions
	CGPDFContextAddDestinationAtPoint
	CGPDFContextBeginPage
	CGPDFContextClose
	CGPDFContextCreate
	CGPDFContextCreateWithURL
	CGPDFContextEndPage
	CGPDFContextSetDestinationForRect
	CGPDFContextSetURLForRect

	Constants
	Auxiliary Dictionary Keys
	Box Dictionary Keys
	Output Intent Dictionary Keys

	CGPDFDictionary Reference
	Overview
	Functions by Task
	Applying a Function to All Entries
	Getting Data from a Dictionary

	Functions
	CGPDFDictionaryApplyFunction
	CGPDFDictionaryGetArray
	CGPDFDictionaryGetBoolean
	CGPDFDictionaryGetCount
	CGPDFDictionaryGetDictionary
	CGPDFDictionaryGetInteger
	CGPDFDictionaryGetName
	CGPDFDictionaryGetNumber
	CGPDFDictionaryGetObject
	CGPDFDictionaryGetStream
	CGPDFDictionaryGetString

	Callbacks
	CGPDFDictionaryApplierFunction

	Data Types
	CGPDFDictionaryRef

	CGPDFDocument Reference
	Overview
	Functions by Task
	Creating PDF Document Objects
	Retaining and Releasing PDF Documents
	Getting the CFType ID for a PDF Document Object
	Getting Information About Quartz PDF Documents
	Managing Encryption
	Getting Page Information

	Functions
	CGPDFDocumentAllowsCopying
	CGPDFDocumentAllowsPrinting
	CGPDFDocumentCreateWithProvider
	CGPDFDocumentCreateWithURL
	CGPDFDocumentGetArtBox
	CGPDFDocumentGetBleedBox
	CGPDFDocumentGetCatalog
	CGPDFDocumentGetCropBox
	CGPDFDocumentGetID
	CGPDFDocumentGetInfo
	CGPDFDocumentGetMediaBox
	CGPDFDocumentGetNumberOfPages
	CGPDFDocumentGetPage
	CGPDFDocumentGetRotationAngle
	CGPDFDocumentGetTrimBox
	CGPDFDocumentGetTypeID
	CGPDFDocumentGetVersion
	CGPDFDocumentIsEncrypted
	CGPDFDocumentIsUnlocked
	CGPDFDocumentRelease
	CGPDFDocumentRetain
	CGPDFDocumentUnlockWithPassword

	Data Types
	CGPDFDocumentRef

	CGPDFObject Reference
	Overview
	Functions
	CGPDFObjectGetType
	CGPDFObjectGetValue

	Data Types
	CGPDFObjectRef
	CGPDFBoolean
	CGPDFInteger
	CGPDFReal

	Constants
	PDF Object Types

	CGPDFOperatorTable Reference
	Overview
	Functions by Task
	Creating a PDF Operator Table
	Setting Callback Functions
	Retaining and Releasing a PDF Operator Table

	Functions
	CGPDFOperatorTableCreate
	CGPDFOperatorTableRelease
	CGPDFOperatorTableRetain
	CGPDFOperatorTableSetCallback

	Callbacks
	CGPDFOperatorCallback

	Data Types
	CGPDFOperatorTableRef

	CGPDFPage Reference
	Overview
	Functions by Task
	Retaining and Releasing a PDF Page
	Getting the CFType ID
	Getting Page Information

	Functions
	CGPDFPageGetBoxRect
	CGPDFPageGetDictionary
	CGPDFPageGetDocument
	CGPDFPageGetDrawingTransform
	CGPDFPageGetPageNumber
	CGPDFPageGetRotationAngle
	CGPDFPageGetTypeID
	CGPDFPageRelease
	CGPDFPageRetain

	Data Types
	CGPDFPageRef

	Constants
	PDF Boxes

	CGPDFScanner Reference
	Overview
	Functions by Task
	Creating a PDF Scanner Object
	Retaining and Releasing PDF Scanner Objects
	Parsing Content
	Getting PDF Objects from the Scanner Stack

	Functions
	CGPDFScannerCreate
	CGPDFScannerGetContentStream
	CGPDFScannerPopArray
	CGPDFScannerPopBoolean
	CGPDFScannerPopDictionary
	CGPDFScannerPopInteger
	CGPDFScannerPopName
	CGPDFScannerPopNumber
	CGPDFScannerPopObject
	CGPDFScannerPopStream
	CGPDFScannerPopString
	CGPDFScannerRelease
	CGPDFScannerRetain
	CGPDFScannerScan

	Data Types
	CGPDFScannerRef

	CGPDFStream Reference
	Overview
	Functions
	CGPDFStreamCopyData
	CGPDFStreamGetDictionary

	Data Types
	CGPDFStream

	Constants
	CGPDFDataFormat

	CGPDFString Reference
	Overview
	Functions by Task
	Converting PDF Strings
	Getting PDF String Data

	Functions
	CGPDFStringCopyDate
	CGPDFStringCopyTextString
	CGPDFStringGetBytePtr
	CGPDFStringGetLength

	Data Types
	CGPDFStringRef

	CGPSConverter Reference
	Overview
	Functions
	CGPSConverterAbort
	CGPSConverterConvert
	CGPSConverterCreate
	CGPSConverterGetTypeID
	CGPSConverterIsConverting

	Callbacks by Task
	Performing Custom Tasks at the Document Level
	Performing Custom Tasks at the Page Level
	Reporting Progress and Messages
	Performing Custom Clean-up Tasks

	Callbacks
	CGPSConverterBeginDocumentCallback
	CGPSConverterBeginPageCallback
	CGPSConverterEndDocumentCallback
	CGPSConverterEndPageCallback
	CGPSConverterMessageCallback
	CGPSConverterProgressCallback
	CGPSConverterReleaseInfoCallback

	Data Types
	CGPSConverterRef
	CGPSConverterCallbacks

	CGShading Reference
	Overview
	Functions by Task
	Creating Shading Objects
	Retaining and Releasing Shading Objects
	Getting the CFType ID

	Functions
	CGShadingCreateAxial
	CGShadingCreateRadial
	CGShadingGetTypeID
	CGShadingRelease
	CGShadingRetain

	Data Types
	CGShadingRef

	Part II: Managers
	Apple Event Manager Reference
	Overview
	Functions by Task
	Adding Items to Descriptor Lists
	Adding Parameters and Attributes to Apple Events and Apple Event Records
	Coercing Descriptor Types
	Counting the Items in Descriptor Lists
	Creating an Apple Event
	Creating and Duplicating Descriptors
	Creating, Calling, and Deleting Universal Procedure Pointers
	Creating Descriptor Lists and Apple Event Records
	Creating Object Specifiers
	Deallocating Memory for Descriptors
	Deallocating Memory for Tokens
	Deleting Descriptors
	Dispatching Apple Events
	Getting, Calling, and Removing Object Accessor Functions
	Getting Data or Descriptors From Apple Events and Apple Event Records
	Getting Information About the Apple Event Manager
	Getting Items From Descriptor Lists
	Getting the Sizes and Descriptor Types of Descriptors
	Initializing the Object Support Library
	Locating Processes on Remote Computers
	Managing Apple Event Dispatch Tables
	Managing Coercion Handler Dispatch Tables
	Managing Special Handler Dispatch Tables
	Operating On Descriptor Data
	Requesting More Time to Respond to Apple Events
	Requesting User Interaction
	Resolving Object Specifiers
	Sending an Apple Event
	Creating Apple Event Structures in Memory
	Creating Apple Event Structures Using Streams
	Working With Lower Level Apple Event Functions
	Serializing Apple Event Data
	Suspending and Resuming Apple Event Handling
	Miscellaneous

	Functions
	AEBuildAppleEvent
	AEBuildDesc
	AEBuildParameters
	AECallObjectAccessor
	AECheckIsRecord
	AECoerceDesc
	AECoercePtr
	AECountItems
	AECreateAppleEvent
	AECreateDesc
	AECreateDescFromExternalPtr
	AECreateList
	AECreateRemoteProcessResolver
	AEDecodeMessage
	AEDeleteItem
	AEDeleteKeyDesc
	AEDeleteParam
	AEDisposeDesc
	AEDisposeRemoteProcessResolver
	AEDisposeToken
	AEDuplicateDesc
	AEFlattenDesc
	AEGetArray
	AEGetAttributeDesc
	AEGetAttributePtr
	AEGetCoercionHandler
	AEGetDescData
	AEGetDescDataRange
	AEGetDescDataSize
	AEGetEventHandler
	AEGetInteractionAllowed
	AEGetKeyDesc
	AEGetKeyPtr
	AEGetNthDesc
	AEGetNthPtr
	AEGetObjectAccessor
	AEGetParamDesc
	AEGetParamPtr
	AEGetRegisteredMachPort
	AEGetSpecialHandler
	AEGetTheCurrentEvent
	AEInitializeDesc
	AEInstallCoercionHandler
	AEInstallEventHandler
	AEInstallObjectAccessor
	AEInstallSpecialHandler
	AEInteractWithUser
	AEManagerInfo
	AEObjectInit
	AEPrintDescToHandle
	AEProcessAppleEvent
	AEProcessMessage
	AEPutArray
	AEPutAttributeDesc
	AEPutAttributePtr
	AEPutDesc
	AEPutKeyDesc
	AEPutKeyPtr
	AEPutParamDesc
	AEPutParamPtr
	AEPutPtr
	AERemoteProcessResolverGetProcesses
	AERemoteProcessResolverScheduleWithRunLoop
	AERemoveCoercionHandler
	AERemoveEventHandler
	AERemoveObjectAccessor
	AERemoveSpecialHandler
	AEReplaceDescData
	AEResetTimer
	AEResolve
	AEResumeTheCurrentEvent
	AESend
	AESendMessage
	AESetInteractionAllowed
	AESetObjectCallbacks
	AESetTheCurrentEvent
	AESizeOfAttribute
	AESizeOfFlattenedDesc
	AESizeOfKeyDesc
	AESizeOfNthItem
	AESizeOfParam
	AEStreamClose
	AEStreamCloseDesc
	AEStreamCloseList
	AEStreamCloseRecord
	AEStreamCreateEvent
	AEStreamOpen
	AEStreamOpenDesc
	AEStreamOpenEvent
	AEStreamOpenKeyDesc
	AEStreamOpenList
	AEStreamOpenRecord
	AEStreamOptionalParam
	AEStreamSetRecordType
	AEStreamWriteAEDesc
	AEStreamWriteData
	AEStreamWriteDesc
	AEStreamWriteKey
	AEStreamWriteKeyDesc
	AESuspendTheCurrentEvent
	AEUnflattenDesc
	CreateCompDescriptor
	CreateLogicalDescriptor
	CreateObjSpecifier
	CreateOffsetDescriptor
	CreateRangeDescriptor
	DisposeAECoerceDescUPP
	DisposeAECoercePtrUPP
	DisposeAEDisposeExternalUPP
	DisposeAEEventHandlerUPP
	DisposeAEFilterUPP
	DisposeAEIdleUPP
	DisposeOSLAccessorUPP
	DisposeOSLAdjustMarksUPP
	DisposeOSLCompareUPP
	DisposeOSLCountUPP
	DisposeOSLDisposeTokenUPP
	DisposeOSLGetErrDescUPP
	DisposeOSLGetMarkTokenUPP
	DisposeOSLMarkUPP
	InvokeAECoerceDescUPP
	InvokeAECoercePtrUPP
	InvokeAEDisposeExternalUPP
	InvokeAEEventHandlerUPP
	InvokeAEFilterUPP
	InvokeAEIdleUPP
	InvokeOSLAccessorUPP
	InvokeOSLAdjustMarksUPP
	InvokeOSLCompareUPP
	InvokeOSLCountUPP
	InvokeOSLDisposeTokenUPP
	InvokeOSLGetErrDescUPP
	InvokeOSLGetMarkTokenUPP
	InvokeOSLMarkUPP
	NewAECoerceDescUPP
	NewAECoercePtrUPP
	NewAEDisposeExternalUPP
	NewAEEventHandlerUPP
	NewAEFilterUPP
	NewAEIdleUPP
	NewOSLAccessorUPP
	NewOSLAdjustMarksUPP
	NewOSLCompareUPP
	NewOSLCountUPP
	NewOSLDisposeTokenUPP
	NewOSLGetErrDescUPP
	NewOSLGetMarkTokenUPP
	NewOSLMarkUPP
	vAEBuildAppleEvent
	vAEBuildDesc
	vAEBuildParameters

	Callbacks by Task
	Callbacks When Resolving Remote Processes
	Callbacks When Creating Apple Events
	Callbacks When Sending Apple Events
	Coercing Apple Event Data Callbacks
	Handling Apple Events Callbacks
	Object Accessor Callbacks
	Object Callback Functions

	Callbacks
	AECoerceDescProcPtr
	AECoercePtrProcPtr
	AEDisposeExternalProcPtr
	AEEventHandlerProcPtr
	AEFilterProcPtr
	AEIdleProcPtr
	AERemoteProcessResolverCallback
	OSLAccessorProcPtr
	OSLAdjustMarksProcPtr
	OSLCompareProcPtr
	OSLCountProcPtr
	OSLDisposeTokenProcPtr
	OSLGetErrDescProcPtr
	OSLGetMarkTokenProcPtr
	OSLMarkProcPtr

	Data Types
	AEArrayData
	AEBuildError
	AEDesc
	AEKeyDesc
	AERemoteProcessResolverContext
	ccntTokenRecord
	IntlText
	OffsetArray
	TextRange
	TextRangeArray
	TScriptingSizeResource
	WritingCode
	AEAddressDesc
	AEArrayDataPointer
	AEArrayType
	AECoerceDescUPP
	AECoercePtrUPP
	AECoercionHandlerUPP
	AEDataStorage
	AEDataStorageType
	AEDescList
	AEEventSource
	AEDisposeExternalUPP
	AEEventClass
	AEEventHandlerUPP
	AEEventID
	AEFilterUPP
	AEIdleUPP
	AEKeyword
	AERecord
	AERemoteProcessResolverRef
	AEReturnID
	AESendOptions
	AESendPriority
	AEStreamRef
	AETransactionID
	AppleEvent
	DescType
	OffsetArrayHandle
	OSLAccessorUPP
	OSLAdjustMarksUPP
	OSLCompareUPP
	OSLCountUPP
	OSLDisposeTokenUPP
	OSLGetErrDescUPP
	OSLGetMarkTokenUPP
	OSLMarkUPP
	AEInteractAllowed

	Constants
	AEBuild Error Codes
	AESendMode
	Apple Event Recording Event ID Constants
	cAEList
	Callback Constants for the AEResolve Function
	cInsertionLoc
	cKeystroke
	Comparison Operator Constants
	Constants for Object Specifiers, Positions, and Logical and Comparison Operations
	cURL
	cVersion
	Data Array Constants
	Descriptor Type Constants
	eScheme
	Event Class Constants
	Event Handler Flags
	Event ID Constants
	Event Source Constants
	Factoring Constants
	ID Constants for the AECreateAppleEvent Function
	Key Form and Descriptor Type Object Specifier Constants
	Keyword Attribute Constants
	Keyword Parameter Constants
	Launch Apple Event Constants
	Numeric Descriptor Type Constants
	Object Class ID Constants
	Other Descriptor Type Constants
	Priority Constants for the AESend Function (Deprecated in Mac OS X)
	Remote Process Dictionary Keys
	Resume Event Dispatch Constants
	Special Handler Callback Constants
	Timeout Constants
	User Interaction Level Constants
	Whose Test Constants
	kAEDoObjectsExist
	kAEDebugPOSTHeader
	kAEGetPrivilegeSelection
	kAEHandleArray
	kAEInfo
	kAEInternetSuite
	kAEISGetURL
	kAEISHTTPSearchArgs
	kAELogOut
	kAEMenuClass
	kAEMouseClass
	kAENonmodifiable
	kAEQDNotOr
	kAESetPosition
	kAESocks4Protocol
	kAEUseHTTPProxyAttr
	kAEUserTerminology
	kAEUseSocksAttr
	kAEUTHasReturningParam
	kAEZoomIn
	kBySmallIcon
	kCaretPosition
	kConnSuite
	keyAEAngle
	keyAEBaseAddr
	keyAEDoScale
	keyAEHiliteRange
	keyAEKeyword
	keyAELeadingEdge
	keyAEPropData
	keyAESuiteID
	keyMenuID
	keyMiscellaneous
	keyReplyPortAttr
	keySOAPStructureMetaData
	keyUserNameAttr
	kFAServerApp
	kLaunchToGetTerminology
	kNextBody
	kOSIZDontOpenResourceFile
	kReadExtensionTermsMask
	kSOAP1999Schema
	kTextServiceClass
	kTSMHiliteCaretPosition
	kTSMOutsideOfBody
	pArcAngle
	pFormula
	pNewElementLoc
	pScheme
	pTextStyles
	typeAEText
	typeApplicationBundleID
	typeFinderWindow
	typeHIMenu
	typeKernelProcessID
	typeMachPort
	typeMeters
	typePixelMap
	typeReplyPortAttr
	typeSessionID
	typeSMInt
	typeTIFF
	typeUnicodeText

	Result Codes
	Gestalt Constants

	Apple Type Services for Fonts Reference
	Overview
	Functions by Task
	Activating and Deactivating Fonts
	Working With Font Families
	Working With Fonts
	Setting Up Notifications and Queries
	Creating, Calling, and Deleting Universal Procedure Pointers

	Functions
	ATSCreateFontQueryRunLoopSource
	ATSFontActivateFromFileReference
	ATSFontActivateFromFileSpecification
	ATSFontActivateFromMemory
	ATSFontApplyFunction
	ATSFontDeactivate
	ATSFontFamilyApplyFunction
	ATSFontFamilyFindFromName
	ATSFontFamilyFindFromQuickDrawName
	ATSFontFamilyGetEncoding
	ATSFontFamilyGetGeneration
	ATSFontFamilyGetName
	ATSFontFamilyGetQuickDrawName
	ATSFontFamilyIteratorCreate
	ATSFontFamilyIteratorNext
	ATSFontFamilyIteratorRelease
	ATSFontFamilyIteratorReset
	ATSFontFindFromContainer
	ATSFontFindFromName
	ATSFontFindFromPostScriptName
	ATSFontGetAutoActivationSettingForApplication
	ATSFontGetContainer
	ATSFontGetContainerFromFileReference
	ATSFontGetFileReference
	ATSFontGetFileSpecification
	ATSFontGetFontFamilyResource
	ATSFontGetGeneration
	ATSFontGetGlobalAutoActivationSetting
	ATSFontGetHorizontalMetrics
	ATSFontGetName
	ATSFontGetPostScriptName
	ATSFontGetTable
	ATSFontGetTableDirectory
	ATSFontGetVerticalMetrics
	ATSFontIsEnabled
	ATSFontIteratorCreate
	ATSFontIteratorNext
	ATSFontIteratorRelease
	ATSFontIteratorReset
	ATSFontNotificationSubscribe
	ATSFontNotificationUnsubscribe
	ATSFontNotify
	ATSFontSetAutoActivationSettingForApplication
	ATSFontSetEnabled
	ATSFontSetGlobalAutoActivationSetting
	ATSGetGeneration
	DisposeFMFontCallbackFilterUPP
	DisposeFMFontFamilyCallbackFilterUPP
	InvokeFMFontCallbackFilterUPP
	InvokeFMFontFamilyCallbackFilterUPP
	NewFMFontCallbackFilterUPP
	NewFMFontFamilyCallbackFilterUPP

	Callbacks by Task
	ATS Callbacks
	FM Callbacks

	Callbacks
	ATSFontApplierFunction
	ATSFontFamilyApplierFunction
	ATSFontQueryCallback
	ATSNotificationCallback
	FMFontCallbackFilterProcPtr
	FMFontFamilyCallbackFilterProcPtr

	Data Types
	ATS Data Types
	ATSFontContainerRef
	ATSFontFamilyIterator
	ATSFontFamilyRef
	ATSFontFilter
	ATSFontIterator
	ATSFontMetrics
	ATSFontNotificationInfoRef
	ATSFontNotificationRef
	ATSFontQuerySourceContext
	ATSFontRef
	ATSFontSize
	ATSGeneration
	ATSOptionFlags

	FM Data types
	FMFilter
	FMFont
	FMFontCallbackFilterUPP
	FMFontDirectoryFilter
	FMFontFamily
	FMFontFamilyCallbackFilterUPP
	FMFontFamilyInstance
	FMFontFamilyInstanceIterator
	FMFontFamilyIterator
	FMFontIterator
	FMFontSize
	FMFontStyle
	FMGeneration

	ATSUI Data Types
	ATSGlyph
	ATSGlyphIdealMetrics
	ATSGlyphRef
	ATSGlyphScreenMetrics
	ATSUCurvePath
	ATSUCurvePaths
	GlyphID

	Constants
	ATS Constants
	Assorted Options
	Automatic Activation Settings
	Context Options
	Data Not Specified Constants
	Font Filter Selectors
	Font Filter Versions
	Font Formats
	Font Request Query Keys
	Font Query Message ID
	Iteration Precedence Options
	Notification Actions
	Notification Options
	Scoping Options

	Font Manager Constants
	FM Filter Format
	FM Filter Selectors
	FM Font Technologies
	Invalid Values

	ATSUI Constants
	Convenience Constants
	Curve Types
	Deleted Glyph Code

	Result Codes

	ColorSync Manager Reference
	Overview
	Functions by Task
	Accessing Profiles
	Iterating Installed Profiles
	Creating Profiles
	Accessing Special Profiles
	Accessing Profile Elements
	Accessing Profile Descriptions
	Accessing Name-Class Profiles
	Working With ColorWorlds
	Converting Colors
	Working With CMMs
	Working With PostScript
	Working With QuickDraw
	Registering Devices
	Accessing Default Devices
	Accessing Devices Profiles
	Accessing Device State and Information
	Iterating Over Devices and Device Profiles
	Working With Image Files
	Working With Video Card Lookup Tables
	Miscellaneous
	Working With Universal Procedure Pointers
	Not Recommended

	Functions
	CMCalibrateDisplay
	CMCloneProfileRef
	CMCloseProfile
	CMConvertFixedXYZToXYZ
	CMConvertHLSToRGB
	CMConvertHSVToRGB
	CMConvertLabToXYZ
	CMConvertLuvToXYZ
	CMConvertRGBToGray
	CMConvertRGBToHLS
	CMConvertRGBToHSV
	CMConvertXYZToFixedXYZ
	CMConvertXYZToLab
	CMConvertXYZToLuv
	CMConvertXYZToXYZ
	CMConvertXYZToYxy
	CMConvertYxyToXYZ
	CMCopyProfile
	CMCopyProfileDescriptionString
	CMCopyProfileLocalizedString
	CMCopyProfileLocalizedStringDictionary
	CMCountImageProfiles
	CMCountProfileElements
	CMCreateProfileIdentifier
	CMDisposeProfileSearch
	CMEmbedImage
	CMEnableMatchingComment
	CMEndMatching
	CMFlattenProfile
	CMGetColorSyncFolderSpec
	CMGetColorSyncVersion
	CMGetCWInfo
	CMGetDefaultDevice
	CMGetDefaultProfileBySpace
	CMGetDefaultProfileByUse
	CMGetDeviceDefaultProfileID
	CMGetDeviceFactoryProfiles
	CMGetDeviceInfo
	CMGetDeviceProfile
	CMGetDeviceProfiles
	CMGetDeviceState
	CMGetGammaByAVID
	CMGetImageSpace
	CMGetIndImageProfile
	CMGetIndNamedColorValue
	CMGetIndProfileElement
	CMGetIndProfileElementInfo
	CMGetNamedColorIndex
	CMGetNamedColorInfo
	CMGetNamedColorName
	CMGetNamedColorValue
	CMGetPartialProfileElement
	CMGetPreferredCMM
	CMGetProfileByAVID
	CMGetProfileDescriptions
	CMGetProfileElement
	CMGetProfileHeader
	CMGetProfileLocation
	CMGetProfileMD5
	CMGetProfileRefCount
	CMGetPS2ColorRendering
	CMGetPS2ColorRenderingIntent
	CMGetPS2ColorRenderingVMSize
	CMGetPS2ColorSpace
	CMGetScriptProfileDescription
	CMGetSystemProfile
	CMIterateCMMInfo
	CMIterateColorDevices
	CMIterateColorSyncFolder
	CMIterateDeviceProfiles
	CMLaunchControlPanel
	CMLinkImage
	CMMakeProfile
	CMMatchImage
	CMNewProfile
	CMNewProfileSearch
	CMOpenProfile
	CMProfileElementExists
	CMProfileIdentifierFolderSearch
	CMProfileIdentifierListSearch
	CMProfileModified
	CMProofImage
	CMRegisterColorDevice
	CMRemoveProfileElement
	CMSearchGetIndProfile
	CMSearchGetIndProfileFileSpec
	CMSetDefaultDevice
	CMSetDefaultProfileBySpace
	CMSetDefaultProfileByUse
	CMSetDeviceDefaultProfileID
	CMSetDeviceFactoryProfiles
	CMSetDeviceProfile
	CMSetDeviceProfiles
	CMSetDeviceState
	CMSetGammaByAVID
	CMSetIndImageProfile
	CMSetPartialProfileElement
	CMSetProfileByAVID
	CMSetProfileDescriptions
	CMSetProfileElement
	CMSetProfileElementReference
	CMSetProfileElementSize
	CMSetProfileHeader
	CMSetProfileLocalizedStringDictionary
	CMSetSystemProfile
	CMUnembedImage
	CMUnregisterColorDevice
	CMUpdateProfile
	CMUpdateProfileSearch
	CMValidateProfile
	CMValidImage
	CWCheckBitmap
	CWCheckColors
	CWCheckPixMap
	CWConcatColorWorld
	CWDisposeColorWorld
	CWFillLookupTexture
	CWMatchBitmap
	CWMatchColors
	CWMatchPixMap
	CWNewLinkProfile
	DisposeCMBitmapCallBackUPP
	DisposeCMConcatCallBackUPP
	DisposeCMFlattenUPP
	DisposeCMMIterateUPP
	DisposeCMProfileAccessUPP
	DisposeCMProfileFilterUPP
	DisposeCMProfileIterateUPP
	InvokeCMBitmapCallBackUPP
	InvokeCMConcatCallBackUPP
	InvokeCMFlattenUPP
	InvokeCMMIterateUPP
	InvokeCMProfileAccessUPP
	InvokeCMProfileFilterUPP
	InvokeCMProfileIterateUPP
	NCMBeginMatching
	NCMDrawMatchedPicture
	NCMGetProfileLocation
	NCMSetSystemProfile
	NCMUnflattenProfile
	NCMUseProfileComment
	NCWConcatColorWorld
	NCWNewColorWorld
	NCWNewLinkProfile
	NewCMBitmapCallBackUPP
	NewCMConcatCallBackUPP
	NewCMFlattenUPP
	NewCMMIterateUPP
	NewCMProfileAccessUPP
	NewCMProfileFilterUPP
	NewCMProfileIterateUPP

	Callbacks
	CMBitmapCallBackProcPtr
	CMConcatCallBackProcPtr
	CMCountImageProfilesProcPtr
	CMEmbedImageProcPtr
	CMFlattenProcPtr
	CMGetImageSpaceProcPtr
	CMGetIndImageProfileProcPtr
	CMIterateDeviceInfoProcPtr
	CMIterateDeviceProfileProcPtr
	CMLinkImageProcPtr
	CMMatchImageProcPtr
	CMMIterateProcPtr
	CMProfileAccessProcPtr
	CMProfileFilterProcPtr
	CMProfileIterateProcPtr
	CMProofImageProcPtr
	CMSetIndImageProfileProcPtr
	CMUnembedImageProcPtr
	CMValidImageProcPtr
	CountImageProfilesProcPtr
	EmbedImageProcPtr
	GetImageSpaceProcPtr
	GetIndImageProfileProcPtr
	MatchImageProcPtr
	SetIndImageProfileProcPtr
	UnembedImageProcPtr
	ValidateImageProcPtr
	ValidateSpaceProcPtr

	Data Types
	CalibratorInfo
	CM2Header
	CM2Profile
	CM4Header
	CMAccelerationCalcData
	CMAccelerationCalcDataPtr
	CMAccelerationCalcDataHdl
	CMAccelerationTableData
	CMAccelerationTableDataPtr
	CMAccelerationTableDataHdl
	CMAdaptationMatrixType
	CMAppleProfileHeader
	CMBitmap
	CMBitmapCallBackProc
	CMBitmapCallBackUPP
	CMBufferLocation
	CMCMYColor
	CMCMYKColor
	CMColor
	CMConcatCallBackUPP
	CMConcatProfileSet
	CMCurveType
	CMCWInfoRecord
	CMDataType
	CMDateTime
	CMDateTimeType
	CMDeviceData
	CMDeviceDataPtr
	CMDeviceID
	CMDeviceInfo
	CMDeviceName
	CMDeviceNamePtr
	CMDeviceProfileArray
	CMDeviceProfileID
	CMDeviceProfileInfo
	CMDeviceProfileScope
	CMDeviceScope
	CMDeviceSpec
	CMDeviceSpecPtr
	CMDeviceState
	CMDisplayIDType
	CMError
	CMFileLocation
	CMFixedXYColor
	CMFixedXYZColor
	CMFlattenUPP
	CMGrayColor
	CMHandleLocation
	CMHeader
	CMHLSColor
	CMHSVColor
	CMIntentCRDVMSize
	CMIString
	CMLabColor
	CMLut16Type
	CMLut8Type
	CMLuvColor
	CMMakeAndModel
	CMMakeAndModelType
	CMMatchFlag
	CMMatchOption
	CMMatchRef
	CMMeasurementType
	CMMInfo
	CMMInfoRecord
	CMMIterateUPP
	CMMultichannel5Color
	CMMultichannel6Color
	CMMultichannel7Color
	CMMultichannel8Color
	CMMultiFunctCLUTType
	CMMultiFunctLutA2BType
	CMMultiFunctLutB2AType
	CMMultiFunctLutType
	CMMultiLocalizedUniCodeEntryRec
	CMMultiLocalizedUniCodeType
	CMNamedColor
	CMNamedColor2EntryType
	CMNamedColor2Type
	CMNamedColorType
	CMNativeDisplayInfo
	CMNativeDisplayInfoType
	CMParametricCurveType
	CMPathLocation
	CMProcedureLocation
	CMProfile
	CMProfileAccessUPP
	CMProfileChromaticities
	CMProfileFilterProc
	CMProfileFilterUPP
	CMProfileIdentifier
	CMProfileIterateData
	CMProfileIterateUPP
	CMProfileLocation
	CMProfileMD5
	CMProfileName
	CMProfileNamePtr
	CMProfileRef
	CMProfileResponse
	CMProfileSearchRecord
	CMProfileSearchRef
	CMProfileSequenceDescType
	CMProfLoc
	CMPS2CRDVMSizeType
	CMPtrLocation
	CMRGBColor
	CMS15Fixed16ArrayType
	CMScreeningChannelRec
	CMScreeningType
	CMSearchRecord
	CMSignatureType
	CMTagElemTable
	CMTagRecord
	CMTextDescriptionType
	CMTextType
	CMU16Fixed16ArrayType
	CMUcrBgType
	CMUInt16ArrayType
	CMUInt32ArrayType
	CMUInt64ArrayType
	CMUInt8ArrayType
	CMUnicodeTextType
	CMVideoCardGamma
	CMVideoCardGammaFormula
	CMVideoCardGammaTable
	CMVideoCardGammaType
	CMViewingConditionsType
	CMWorldRef
	CMXYZColor
	CMXYZComponent
	CMXYZType
	CMYKColor
	CMYxyColor
	NCMConcatProfileSet
	NCMConcatProfileSpec
	NCMDeviceProfileInfo

	Constants
	Abstract Color Space Constants
	Calibrator Name Prefix
	Channel Encoding Format
	Chromatic Adaptation Values
	CMM Function Selectors
	Color Management Module Component Interface
	Color Packing for Color Spaces
	Color Responses
	Color Space Constants With Packing Formats
	Color Space Signatures
	Color Space Masks
	ColorSync Scripting AppleEvent Errorsl
	Current Device Versions
	Current Info Versions
	Current Major Version Mask
	Data Transfer Commands
	Data Type Element Values
	Default CMM Signature
	Default IDs
	Device Attribute Values for Version 2.x Profiles
	Device Classes
	Device and Media Attributes
	Device States
	Device Types
	Element Tags and Signatures for Version 1.0 Profiles
	Embedded Profile Flags
	Embedded Profile Identifiers
	Flag Mask Definitions for Version 2.x Profiles
	ICC Profile Versions
	Illuminant Measurement Endocings
	Macintosh 68K Trap Word
	Magic Cookie Number
	Match Flags Field
	Match Profiles 2.0
	Match Profiles 1.0
	Maximum Path Size
	Measurement Flares
	Measurment Geometries
	Obsolete Color Response Values
	Obsolete Color Space Signatures
	Obsolete Device Type Names
	Parametric Types
	Platform Enumeration Values
	Profile Iteration Values
	Profile Location Sizes
	Profile Options
	PostScript Data Formats
	Picture Comment Kinds
	Picture Comment Selectors
	Profile Access Procedures
	Profile Classes
	Profile Concatenation Values
	Profile Flags
	Profile Iteration Constants
	Profile Location Type
	Public Tags
	Public Type Signatures
	Quality Flag Values for Version 2.x Profiles
	Rendering Intent Values for Version 2.x Profiles
	Screen Encoding Tags
	Spot Function Values
	Standard Oberver
	Tag Type Information
	Technology Tag Descriptions
	Use Types
	Video Card Gamma Storage Types
	Video Card Gamma Tags
	Video Card Gamma Signatures

	Result Codes

	Dictionary Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Obtaining the Version Number
	Working With a List of Dictionaries
	Obtaining Access Method Information
	Working With a Dictionary File
	Changing Access Privileges
	Getting and Setting Dictionary Properties
	Working With Dictionary Records
	Working With Fields in a Single Record

	Functions
	DCMAddRecord
	DCMCloseDictionary
	DCMCompactDictionary
	DCMCountObjectIterator
	DCMCountRecord
	DCMCountRecordIterator
	DCMCreateAccessMethodIterator
	DCMCreateDictionaryIterator
	DCMCreateFieldInfoRecord
	DCMDeleteDictionary
	DCMDeleteRecord
	DCMDeriveNewDictionary
	DCMDisposeObjectIterator
	DCMDisposeRecordIterator
	DCMFindRecords
	DCMGetAccessMethodIDFromName
	DCMGetDictionaryFieldInfo
	DCMGetDictionaryIDFromFile
	DCMGetDictionaryIDFromRef
	DCMGetDictionaryProperty
	DCMGetDictionaryPropertyList
	DCMGetDictionaryWriteAccess
	DCMGetFieldAttributes
	DCMGetFieldData
	DCMGetFieldDefaultData
	DCMGetFieldFindMethods
	DCMGetFieldMaxRecordSize
	DCMGetFieldTagAndType
	DCMGetFileFromDictionaryID
	DCMGetNextRecord
	DCMGetNthRecord
	DCMGetPrevRecord
	DCMGetRecordSequenceNumber
	DCMIterateFoundRecord
	DCMIterateObject
	DCMLibraryVersion
	DCMNewDictionary
	DCMOpenDictionary
	DCMRegisterDictionaryFile
	DCMReleaseDictionaryWriteAccess
	DCMReorganizeDictionary
	DCMResetObjectIterator
	DCMSetDictionaryProperty
	DCMSetFieldData
	DCMUnregisterDictionary

	Callbacks
	DCMProgressFilterProcPtr

	Data Types
	DCMAccessMethodID
	DCMAccessMethodIterator
	DCMDictionaryHeader
	DCMDictionaryID
	DCMDictionaryIterator
	DCMDictionaryRef
	DCMFieldTag
	DCMFieldType
	DCMFoundRecordIterator
	DCMObjectID
	DCMObjectIterator
	DCMObjectRef
	DCMProgressFilterUPP
	DCMUniqueID

	Constants
	Access Method Features
	Dictionary Classes
	Dictionary Information Constants
	Dictionary Properties
	Field Attributes
	Field Data Tags
	Field Data Types
	Field Info Record Entries
	Field Info Record Types
	Listing Permissions
	Permission Levels
	Search Methods
	Wild Card Values

	Result Codes

	Display Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Adding and Removing Video Devices From the Device List
	Changing Display Modes and Display Configurations
	Determining Display Modes and Display Configurations
	Getting Video Devices
	Registering and Unregistering Your Program
	Working With Universal Procedure Pointers for Display Manager Callbacks
	Miscellaneous

	Functions
	DisposeDMComponentListIteratorUPP
	DisposeDMDisplayListIteratorUPP
	DisposeDMDisplayModeListIteratorUPP
	DisposeDMExtendedNotificationUPP
	DisposeDMNotificationUPP
	DisposeDMProfileListIteratorUPP
	DMAddDisplay
	DMBeginConfigureDisplays
	DMBlockMirroring
	DMCanMirrorNow
	DMCheckDisplayMode
	DMConfirmConfiguration
	DMDisableDisplay
	DMDisposeAVComponent
	DMDisposeDisplay
	DMDisposeList
	DMDrawDesktopRect
	DMDrawDesktopRegion
	DMEnableDisplay
	DMEndConfigureDisplays
	DMGetAVPowerState
	DMGetDeskRegion
	DMGetDeviceAVIDByPortAVID
	DMGetDeviceComponentByAVID
	DMGetDisplayComponent
	DMGetDisplayIDByGDevice
	DMGetDisplayMode
	DMGetEnableByAVID
	DMGetFirstScreenDevice
	DMGetGDeviceByDisplayID
	DMGetGraphicInfoByAVID
	DMGetIndexedComponentFromList
	DMGetIndexedDisplayModeFromList
	DMGetNameByAVID
	DMGetNextMirroredDevice
	DMGetNextScreenDevice
	DMGetPortComponentByAVID
	DMIsMirroringOn
	DMMirrorDevices
	DMMoveDisplay
	DMNewAVDeviceList
	DMNewAVEngineList
	DMNewAVIDByDeviceComponent
	DMNewAVIDByPortComponent
	DMNewAVPanelList
	DMNewAVPortListByDeviceAVID
	DMNewAVPortListByPortType
	DMNewDisplay
	DMNewDisplayModeList
	DMQDIsMirroringCapable
	DMRegisterExtendedNotifyProc
	DMRegisterNotifyProc
	DMRemoveDisplay
	DMRemoveExtendedNotifyProc
	DMRemoveNotifyProc
	DMResolveDisplayComponents
	DMSaveScreenPrefs
	DMSendDependentNotification
	DMSetAVPowerState
	DMSetDisplayComponent
	DMSetDisplayMode
	DMSetEnableByAVID
	DMSetMainDisplay
	DMUnblockMirroring
	DMUnmirrorDevice
	InvokeDMComponentListIteratorUPP
	InvokeDMDisplayListIteratorUPP
	InvokeDMDisplayModeListIteratorUPP
	InvokeDMExtendedNotificationUPP
	InvokeDMNotificationUPP
	InvokeDMProfileListIteratorUPP
	NewDMComponentListIteratorUPP
	NewDMDisplayListIteratorUPP
	NewDMDisplayModeListIteratorUPP
	NewDMExtendedNotificationUPP
	NewDMNotificationUPP
	NewDMProfileListIteratorUPP

	Callbacks
	DMComponentListIteratorProcPtr
	DMDisplayListIteratorProcPtr
	DMDisplayModeListIteratorProcPtr
	DMExtendedNotificationProcPtr
	DMNotificationProcPtr
	DMProfileListIteratorProcPtr

	Data Types
	AVLocationRec
	AVPowerStatePtr
	AVPowerStateRec
	DependentNotifyRec
	DisplayListEntryRec
	DMComponentListEntryRec
	DMComponentListIteratorUPP
	DMDepthInfoBlockRec
	DMDepthInfoRec
	DMDisplayListIteratorUPP
	DMDisplayModeListEntryRec
	DMDisplayModeListIteratorUPP
	DMDisplayTimingInfoRec
	DMExtendedNotificationUPP
	DMFidelityType
	DMListIndexType
	DMListType
	DMMakeAndModelRec
	DMModalFilterUPP
	DMNotificationUPP
	DMProcessInfoPtr
	DMProfileListEntryRec
	DMProfileListIteratorUPP

	Constants
	Active Device Only Values
	Apple Event Notification Keywords
	Confirm Flags
	Dependent Notification Constants
	Display/Device ID Constants
	Display Gestalt Constants
	Display Mode Flags
	Display Version Values
	Fidelity Check Constants
	Get Name By AVID Mask
	Include Masks
	Item Flags
	Mode List Masks
	Name Flags
	New Engine List Constants
	Notification Messages
	Notification Types
	Panel List Flags
	Port List Flags
	Reserved Count Constants
	Summary Change Flags
	Switch Flags

	Result Codes
	Gestalt Constants

	Font Manager Reference
	Overview
	Functions by Task
	Activating and Deactivating Fonts
	Accessing Font Objects
	Accessing Font Containers
	Accessing Font Family Objects
	Enumerating Font Data
	Converting Font Data
	Getting Font Information
	Working With Outline Fonts
	Working with Antialiased Text
	Working With Font Measurements and Scaling
	Using the Current, System, and Application Fonts

	Functions
	FetchFontInfo
	FMActivateFonts
	FMCreateFontFamilyInstanceIterator
	FMCreateFontFamilyIterator
	FMCreateFontIterator
	FMDeactivateFonts
	FMDisposeFontFamilyInstanceIterator
	FMDisposeFontFamilyIterator
	FMDisposeFontIterator
	FMFontGetCGFontRefFromFontFamilyInstance
	FMGetATSFontFamilyRefFromFontFamily
	FMGetATSFontRefFromFont
	FMGetFontContainer
	FMGetFontContainerFromFontFamilyInstance
	FMGetFontFamilyFromATSFontFamilyRef
	FMGetFontFamilyFromName
	FMGetFontFamilyGeneration
	FMGetFontFamilyInstanceFromFont
	FMGetFontFamilyName
	FMGetFontFamilyResource
	FMGetFontFamilyTextEncoding
	FMGetFontFormat
	FMGetFontFromATSFontRef
	FMGetFontFromFontFamilyInstance
	FMGetFontGeneration
	FMGetFontTable
	FMGetFontTableDirectory
	FMGetGeneration
	FMGetNextFont
	FMGetNextFontFamily
	FMGetNextFontFamilyInstance
	FMResetFontFamilyInstanceIterator
	FMResetFontFamilyIterator
	FMResetFontIterator
	FMSwapFont
	FontMetrics
	GetAppFont
	GetDefFontSize
	GetFNum
	GetFontName
	GetOutlinePreferred
	GetPreserveGlyph
	GetSysFont
	IsAntiAliasedTextEnabled
	IsOutline
	OutlineMetrics
	QDTextBounds
	RealFont
	SetAntiAliasedTextEnabled
	SetFractEnable
	SetFScaleDisable
	SetOutlinePreferred
	SetPreserveGlyph

	Data Types
	Font and Font Family Data Structures
	FMFontContainer
	FMFontInstance
	FMFontSpecification
	FontFamilyID

	Font Input and Output Structures
	FMInput
	FMOutPtr
	FMOutput
	FMOutputPtr

	Font Measurements
	FMetricRec
	FMetricRecHandle
	FMetricRecPtr
	FontPointSize

	Deprecated Data Types
	AsscEntry
	FamRec
	FontAssoc
	FontRec
	FontRecHdl
	FontRecPtr
	KernEntry
	KernPair
	KernTable
	NameTable
	StyleTable
	WidEntry
	WidTable
	WidthTable
	WidthTableHdl
	WidthTablePtr

	Constants
	Activation Contexts
	Default Options
	Font ID Constants
	Font Constants
	Global Scope Option
	Height and Width Constants
	Iteration Scopes
	Marking Character Constants
	QuickTime User Interface Default Font
	System and Application Fonts

	Result Codes

	Icon Services and Utilities Reference
	Overview
	Functions by Task
	Converting an Icon Mask to a Region
	Creating an Icon Suite
	Determining Whether a Point Is Within an Icon
	Determining Whether a Rectangle Intersects an Icon
	Disposing of Icon Suites
	Disposing of Icons
	Drawing Icons From an Icon Suite
	Drawing Icons From Resources
	Enabling and Disabling Custom Icons
	Flushing IconRef Data
	Getting and Setting the Label for an Icon Suite
	Getting Label Information
	Getting Icons From an Icon Suite
	Getting Icons From Resources That Don’t Belong to an Icon Family
	IconRef Reference Counting
	Modifying IconRef Data
	Obtaining Icon Data
	Obtaining IconRef Values
	Performing Operations on Icons in an Icon Suite
	Reading, Copying, and Converting Icon Data
	Registering and Unregistering IconRef Values
	Using IconRef Data
	Working With Icon Caches
	Creating and Managing Universal Procedure Pointers

	Functions
	AcquireIconRef
	AddIconToSuite
	CompositeIconRef
	DisposeCIcon
	DisposeIconActionUPP
	DisposeIconGetterUPP
	DisposeIconSuite
	FlushIconRefs
	FlushIconRefsByVolume
	ForEachIconDo
	GetCIcon
	GetCustomIconsEnabled
	GetIcon
	GetIconCacheData
	GetIconCacheProc
	GetIconFamilyData
	GetIconFromSuite
	GetIconRef
	GetIconRefFromComponent
	GetIconRefFromFile
	GetIconRefFromFileInfo
	GetIconRefFromFolder
	GetIconRefFromIconFamilyPtr
	GetIconRefFromTypeInfo
	GetIconRefOwners
	GetIconRefVariant
	GetIconSizesFromIconRef
	GetIconSuite
	GetLabel
	GetSuiteLabel
	IconFamilyToIconSuite
	IconIDToRgn
	IconMethodToRgn
	IconRefContainsCGPoint
	IconRefIntersectsCGRect
	IconRefToHIShape
	IconRefToIconFamily
	IconRefToRgn
	IconSuiteToIconFamily
	IconSuiteToRgn
	InvokeIconActionUPP
	InvokeIconGetterUPP
	IsDataAvailableInIconRef
	IsIconRefComposite
	IsIconRefMaskEmpty
	IsValidIconRef
	LoadIconCache
	MakeIconCache
	NewIconActionUPP
	NewIconGetterUPP
	NewIconSuite
	OverrideIconRef
	OverrideIconRefFromResource
	PlotCIcon
	PlotCIconHandle
	PlotIcon
	PlotIconHandle
	PlotIconID
	PlotIconMethod
	PlotIconRef
	PlotIconRefInContext
	PlotIconSuite
	PlotSICNHandle
	PtInIconID
	PtInIconMethod
	PtInIconRef
	PtInIconSuite
	ReadIconFile
	ReadIconFromFSRef
	RectInIconID
	RectInIconMethod
	RectInIconRef
	RectInIconSuite
	RegisterIconRefFromFSRef
	RegisterIconRefFromIconFamily
	RegisterIconRefFromIconFile
	RegisterIconRefFromResource
	ReleaseIconRef
	RemoveIconRefOverride
	SetCustomIconsEnabled
	SetIconCacheData
	SetIconCacheProc
	SetIconFamilyData
	SetSuiteLabel
	UnregisterIconRef
	UpdateIconRef
	WriteIconFile

	Callbacks
	IconActionProcPtr
	IconGetterProcPtr

	Data Types
	CIcon
	IconRef
	IconActionUPP
	IconGetterUPP
	IconCacheRef
	IconSuiteRef

	Constants
	Icon Alignment Constants
	Icon Transformation Constants
	Icon Selector Constants
	Catalog Information Bitmask
	System Icon Constant
	Icon Services Usage Flag
	Alert Icon Constants
	Filesharing Privilege Icon Constants
	Folder Icon Constants
	Internet Icon Constants
	Toolbar Icons
	Miscellaneous Icon Constants
	Networking Icon Constants
	Special Folder Icon Constants
	Standard Finder Icon Constants
	Standard Icon Badge Constants
	Users and Groups Icon Constants
	genericDocumentIconResource
	Standard Icon Resources
	startupFolderIconResource
	atNone
	svLarge1Bit
	ttNone

	Result Codes
	Gestalt Constants

	Language Analysis Manager Reference
	Overview
	Functions by Task
	Getting The Library Version
	Handling Environments
	Opening and Closing Contexts
	Managing Dictionaries
	Analyzing Text

	Functions
	LAAddNewWord
	LACloseAnalysisContext
	LACloseDictionary
	LAContinuousMorphemeAnalysis
	LACreateCustomEnvironment
	LADeleteCustomEnvironment
	LAGetEnvironmentList
	LAGetEnvironmentName
	LAGetEnvironmentRef
	LAGetMorphemes
	LALibraryVersion
	LAListAvailableDictionaries
	LAMorphemeAnalysis
	LAOpenAnalysisContext
	LAOpenDictionary
	LAResetAnalysis
	LAShiftMorphemes
	LATextToMorphemes

	Data Types
	HomographAccent
	HomographDicInfoRec
	HomographWeight
	JapanesePartOfSpeech
	LAContextRef
	LAEnvironmentRef
	LAHomograph
	LAMorpheme
	LAMorphemeBundle
	LAMorphemePath
	LAMorphemeRec
	LAMorphemesArray
	LAPropertyKey
	LAPropertyType
	MorphemePartOfSpeech
	MorphemeTextRange

	Constants
	File Creator Constants
	Analysis Engine Keywords
	Analysis Results Constants
	Morpheme Key Values
	All Morphemes Constant
	Leading and Trailing Constants
	Converting Mask
	Morphemes Array Version
	Conjugation Constants
	Parts of Speech Constants
	Parts of Speech Masks
	Engine Limitations
	Analysis Engine Type Definitions
	Morpheme Types
	Morpheme Type Analysis Constants
	Default Environment Names

	Result Codes

	Palette Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Animating Palettes
	Changing the Pixel Depth for a Video Device
	Drawing With Color Palettes
	Initializing and Allocating Palettes
	Initializing the Palette Manager
	Interacting With the Window Manager
	Manipulating Palette Entries
	Manipulating Palettes and Color Tables
	Miscellaneous

	Functions
	ActivatePalette
	AnimateEntry
	AnimatePalette
	CopyPalette
	CTab2Palette
	DisposePalette
	Entry2Index
	GetEntryColor
	GetEntryUsage
	GetGray
	GetNewPalette
	GetPalette
	GetPaletteUpdates
	HasDepth
	InitPalettes
	NewPalette
	NSetPalette
	Palette2CTab
	PmBackColor
	PmForeColor
	PMgrVersion
	ResizePalette
	RestoreBack
	RestoreDeviceClut
	RestoreFore
	SaveBack
	SaveFore
	SetDepth
	SetEntryColor
	SetEntryUsage
	SetPalette
	SetPaletteUpdates

	Data Types
	ColorInfo
	Palette

	Constants
	Usage Constants
	Update Constants

	Pasteboard Manager Reference
	Overview
	Functions by Task
	Creating and Using Pasteboards
	Manipulating Pasteboard Flavor Data

	Functions
	PasteboardClear
	PasteboardCopyItemFlavorData
	PasteboardCopyItemFlavors
	PasteboardCopyName
	PasteboardCopyPasteLocation
	PasteboardCreate
	PasteboardGetItemCount
	PasteboardGetItemFlavorFlags
	PasteboardGetItemIdentifier
	PasteboardPutItemFlavor
	PasteboardResolvePromises
	PasteboardSetPasteLocation
	PasteboardSetPromiseKeeper
	PasteboardSynchronize

	Callbacks
	PasteboardPromiseKeeperProcPtr

	Data Types
	PasteboardRef
	PasteboardItemID

	Constants
	Pasteboard Name Constants
	Pasteboard Flavor Flags
	Pasteboard Synchronization Flags
	Pasteboard Promise Constants

	Result Codes

	Picture Utilities Reference (Not Recommended)
	Overview
	Functions by Task
	Collecting Picture Information
	Using Universal Procedure Pointers

	Functions
	DisposeCalcColorTableUPP
	DisposeDisposeColorPickMethodUPP
	DisposeInitPickMethodUPP
	DisposePictInfo
	DisposeRecordColorsUPP
	GetPictInfo
	GetPixMapInfo
	InvokeCalcColorTableUPP
	InvokeDisposeColorPickMethodUPP
	InvokeInitPickMethodUPP
	InvokeRecordColorsUPP
	NewCalcColorTableUPP
	NewDisposeColorPickMethodUPP
	NewInitPickMethodUPP
	NewPictInfo
	NewRecordColorsUPP
	RecordPictInfo
	RecordPixMapInfo
	RetrievePictInfo

	Callbacks
	CalcColorTableProcPtr
	DisposeColorPickMethodProcPtr
	InitPickMethodProcPtr
	RecordColorsProcPtr

	Data Types
	CalcColorTableUPP
	CommentSpec
	DisposeColorPickMethodUPP
	FontSpec
	InitPickMethodUPP
	PictInfo
	PictInfoID
	RecordColorsUPP

	Constants
	Color Bank Type
	Color Selection Method
	Color Information Type

	Result Codes

	Process Manager Reference
	Overview
	Functions by Task
	Getting Process Information
	Starting and Terminating Processes
	Modifying Processes

	Functions
	CopyProcessName
	ExitToShell
	GetCurrentProcess
	GetFrontProcess
	GetNextProcess
	GetProcessBundleLocation
	GetProcessForPID
	GetProcessInformation
	GetProcessPID
	IsProcessVisible
	KillProcess
	LaunchApplication
	ProcessInformationCopyDictionary
	SameProcess
	SetFrontProcess
	SetFrontProcessWithOptions
	ShowHideProcess
	TransformProcessType
	WakeUpProcess

	Data Types
	AppParameters
	LaunchParamBlockRec
	ProcessInfoRec
	ProcessInfoExtendedRec
	ProcessSerialNumber
	SizeResourceRec

	Constants
	Control Panel Result Codes
	Extension Launch Codes
	Control Panel Message Codes
	Termination Options
	Front Process Options
	Launch Options
	Process Mode Flags
	Process Identification Constants
	Process Transformation Constant

	Result Codes

	Quartz Display Services Reference
	Overview
	Functions by Task
	Finding Displays
	Capturing and Releasing Displays
	Configuring Displays
	Getting the Display Configuration
	Registering for Notification of Display Configuration Changes
	Retrieving Display Parameters
	Using Display Modes
	Adjusting the Display Gamma
	Working With Color Palettes
	Display Fade Effects
	Beam Position
	Controlling the Mouse Cursor
	Getting Window Server Information
	Getting Information About Refresh and Move Operations

	Functions
	CGAcquireDisplayFadeReservation
	CGAssociateMouseAndMouseCursorPosition
	CGBeginDisplayConfiguration
	CGCancelDisplayConfiguration
	CGCaptureAllDisplays
	CGCaptureAllDisplaysWithOptions
	CGCompleteDisplayConfiguration
	CGConfigureDisplayFadeEffect
	CGConfigureDisplayMirrorOfDisplay
	CGConfigureDisplayMode
	CGConfigureDisplayOrigin
	CGConfigureDisplayStereoOperation
	CGCursorIsDrawnInFramebuffer
	CGCursorIsVisible
	CGDisplayAddressForPosition
	CGDisplayAvailableModes
	CGDisplayBaseAddress
	CGDisplayBeamPosition
	CGDisplayBestModeForParameters
	CGDisplayBestModeForParametersAndRefreshRate
	CGDisplayBestModeForParametersAndRefreshRateWithProperty
	CGDisplayBitsPerPixel
	CGDisplayBitsPerSample
	CGDisplayBounds
	CGDisplayBytesPerRow
	CGDisplayCanSetPalette
	CGDisplayCapture
	CGDisplayCaptureWithOptions
	CGDisplayCopyColorSpace
	CGDisplayCurrentMode
	CGDisplayFade
	CGDisplayFadeOperationInProgress
	CGDisplayGammaTableCapacity
	CGDisplayGetDrawingContext
	CGDisplayHideCursor
	CGDisplayIDToOpenGLDisplayMask
	CGDisplayIOServicePort
	CGDisplayIsActive
	CGDisplayIsAlwaysInMirrorSet
	CGDisplayIsAsleep
	CGDisplayIsBuiltin
	CGDisplayIsCaptured
	CGDisplayIsInHWMirrorSet
	CGDisplayIsInMirrorSet
	CGDisplayIsMain
	CGDisplayIsOnline
	CGDisplayIsStereo
	CGDisplayMirrorsDisplay
	CGDisplayModelNumber
	CGDisplayMoveCursorToPoint
	CGDisplayPixelsHigh
	CGDisplayPixelsWide
	CGDisplayPrimaryDisplay
	CGDisplayRegisterReconfigurationCallback
	CGDisplayRelease
	CGDisplayRemoveReconfigurationCallback
	CGDisplayRestoreColorSyncSettings
	CGDisplayRotation
	CGDisplaySamplesPerPixel
	CGDisplayScreenSize
	CGDisplaySerialNumber
	CGDisplaySetPalette
	CGDisplaySetStereoOperation
	CGDisplayShowCursor
	CGDisplaySwitchToMode
	CGDisplayUnitNumber
	CGDisplayUsesOpenGLAcceleration
	CGDisplayVendorNumber
	CGDisplayWaitForBeamPositionOutsideLines
	CGGetActiveDisplayList
	CGGetDisplaysWithOpenGLDisplayMask
	CGGetDisplaysWithPoint
	CGGetDisplaysWithRect
	CGGetDisplayTransferByFormula
	CGGetDisplayTransferByTable
	CGGetLastMouseDelta
	CGGetOnlineDisplayList
	CGMainDisplayID
	CGOpenGLDisplayMaskToDisplayID
	CGPaletteCreateCopy
	CGPaletteCreateDefaultColorPalette
	CGPaletteCreateFromPaletteBlendedWithColor
	CGPaletteCreateWithByteSamples
	CGPaletteCreateWithCapacity
	CGPaletteCreateWithDisplay
	CGPaletteCreateWithSamples
	CGPaletteGetColorAtIndex
	CGPaletteGetIndexForColor
	CGPaletteGetNumberOfSamples
	CGPaletteIsEqualToPalette
	CGPaletteRelease
	CGPaletteSetColorAtIndex
	CGRegisterScreenRefreshCallback
	CGReleaseAllDisplays
	CGReleaseDisplayFadeReservation
	CGReleaseScreenRefreshRects
	CGRestorePermanentDisplayConfiguration
	CGScreenRegisterMoveCallback
	CGScreenUnregisterMoveCallback
	CGSessionCopyCurrentDictionary
	CGSetDisplayTransferByByteTable
	CGSetDisplayTransferByFormula
	CGSetDisplayTransferByTable
	CGShieldingWindowID
	CGShieldingWindowLevel
	CGUnregisterScreenRefreshCallback
	CGWaitForScreenRefreshRects
	CGWaitForScreenUpdateRects
	CGWarpMouseCursorPosition
	CGWindowLevelForKey
	CGWindowServerCFMachPort

	Callbacks
	CGDisplayReconfigurationCallBack
	CGScreenRefreshCallback
	CGScreenUpdateMoveCallback

	Data Types
	CGBeamPosition
	CGByteValue
	CGDeviceByteColor
	CGDeviceColor
	CGDirectDisplayID
	CGDirectPaletteRef
	CGDisplayBlendFraction
	CGDisplayConfigRef
	CGDisplayCoord
	CGDisplayCount
	CGDisplayErr
	CGDisplayFadeInterval
	CGDisplayFadeReservationToken
	CGDisplayReservationInterval
	CGError
	CGGammaValue
	CGMouseDelta
	CGOpenGLDisplayMask
	CGPaletteBlendFraction
	CGRectCount
	CGRefreshRate
	CGScreenUpdateMoveDelta
	CGTableCount
	CGWindowLevel

	Constants
	Display Capture Options
	Display Configuration Change Flags
	Display Configuration Scopes
	Display Fade Blend Fractions
	Display Fade Constants
	Display ID Defaults
	Display Mode Standard Properties
	Display Mode Optional Properties
	Reserved Window Levels
	Screen Update Operations
	Window Level Keys
	Window Server Session Properties

	Result Codes

	Quartz Event Services Reference
	Overview
	Functions by Task
	Working With Quartz Events
	Working With Quartz Event Taps
	Working With Quartz Event Sources
	Obsolete Functions

	Functions
	CGEnableEventStateCombining
	CGEventCreate
	CGEventCreateCopy
	CGEventCreateData
	CGEventCreateFromData
	CGEventCreateKeyboardEvent
	CGEventCreateMouseEvent
	CGEventCreateScrollWheelEvent
	CGEventCreateSourceFromEvent
	CGEventGetDoubleValueField
	CGEventGetFlags
	CGEventGetIntegerValueField
	CGEventGetLocation
	CGEventGetSource
	CGEventGetTimestamp
	CGEventGetType
	CGEventGetTypeID
	CGEventGetUnflippedLocation
	CGEventKeyboardGetUnicodeString
	CGEventKeyboardSetUnicodeString
	CGEventMaskBit
	CGEventPost
	CGEventPostToPSN
	CGEventSetDoubleValueField
	CGEventSetFlags
	CGEventSetIntegerValueField
	CGEventSetLocation
	CGEventSetSource
	CGEventSetTimestamp
	CGEventSetType
	CGEventSourceButtonState
	CGEventSourceCounterForEventType
	CGEventSourceCreate
	CGEventSourceFlagsState
	CGEventSourceGetKeyboardType
	CGEventSourceGetLocalEventsFilterDuringSuppressionState
	CGEventSourceGetLocalEventsSuppressionInterval
	CGEventSourceGetPixelsPerLine
	CGEventSourceGetSourceStateID
	CGEventSourceGetTypeID
	CGEventSourceGetUserData
	CGEventSourceKeyState
	CGEventSourceSecondsSinceLastEventType
	CGEventSourceSetKeyboardType
	CGEventSourceSetLocalEventsFilterDuringSuppressionState
	CGEventSourceSetLocalEventsSuppressionInterval
	CGEventSourceSetPixelsPerLine
	CGEventSourceSetUserData
	CGEventTapCreate
	CGEventTapCreateForPSN
	CGEventTapEnable
	CGEventTapIsEnabled
	CGEventTapPostEvent
	CGGetEventTapList
	CGInhibitLocalEvents
	CGPostKeyboardEvent
	CGPostMouseEvent
	CGPostScrollWheelEvent
	CGSetLocalEventsFilterDuringSuppressionState
	CGSetLocalEventsSuppressionInterval

	Callbacks
	CGEventTapCallBack

	Data Types
	CGButtonCount
	CGCharCode
	CGEventMask
	CGEventRef
	CGEventSourceKeyboardType
	CGEventSourceRef
	CGEventTapInformation
	CGEventTapProxy
	CGEventTimestamp
	CGKeyCode
	CGWheelCount

	Constants
	Event Fields
	Event Filter Masks
	Event Flags
	Event Source States
	Event Source Token
	Event Suppression States
	Event Tap Locations
	Event Tap Options
	Event Tap Placement
	Event Types
	Event Type Mask
	Mouse Buttons
	Mouse Subtypes
	Scrolling Event Units

	Speech Synthesis Manager Reference
	Overview
	Functions by Task
	Changing Speech Attributes
	Converting Text To Phonemes
	Installing a Pronunciation Dictionary
	Managing Speech Channels
	Obtaining Information About Speech and Speech Channels
	Getting Information About Voices
	Starting, Stopping, and Pausing Speech
	Creating, Invoking, and Disposing Universal Procedure Pointers

	Functions
	ContinueSpeech
	CopyPhonemesFromText
	CopySpeechProperty
	CountVoices
	DisposeSpeechChannel
	DisposeSpeechDoneUPP
	DisposeSpeechErrorUPP
	DisposeSpeechPhonemeUPP
	DisposeSpeechSyncUPP
	DisposeSpeechTextDoneUPP
	DisposeSpeechWordUPP
	GetIndVoice
	GetSpeechInfo
	GetSpeechPitch
	GetSpeechRate
	GetVoiceDescription
	GetVoiceInfo
	InvokeSpeechDoneUPP
	InvokeSpeechErrorUPP
	InvokeSpeechPhonemeUPP
	InvokeSpeechSyncUPP
	InvokeSpeechTextDoneUPP
	InvokeSpeechWordUPP
	MakeVoiceSpec
	NewSpeechChannel
	NewSpeechDoneUPP
	NewSpeechErrorUPP
	NewSpeechPhonemeUPP
	NewSpeechSyncUPP
	NewSpeechTextDoneUPP
	NewSpeechWordUPP
	PauseSpeechAt
	SetSpeechInfo
	SetSpeechPitch
	SetSpeechProperty
	SetSpeechRate
	SpeakBuffer
	SpeakCFString
	SpeakString
	SpeakText
	SpeechBusy
	SpeechBusySystemWide
	SpeechManagerVersion
	StopSpeech
	StopSpeechAt
	TextToPhonemes
	UseDictionary
	UseSpeechDictionary

	Callbacks
	SpeechDoneProcPtr
	SpeechErrorCFProcPtr
	SpeechErrorProcPtr
	SpeechPhonemeProcPtr
	SpeechSyncProcPtr
	SpeechTextDoneProcPtr
	SpeechWordCFProcPtr
	SpeechWordProcPtr

	Data Types
	DelimiterInfo
	PhonemeDescriptor
	PhonemeInfo
	SpeechChannelRecord
	SpeechDoneUPP
	SpeechErrorInfo
	SpeechErrorUPP
	SpeechPhonemeUPP
	SpeechStatusInfo
	SpeechSyncUPP
	SpeechTextDoneUPP
	SpeechVersionInfo
	SpeechWordUPP
	SpeechXtndData
	VoiceDescription
	VoiceFileInfo
	VoiceSpec

	Constants
	Control Flags Constants
	Gender Constants
	Stop Speech Locations
	Speech Synthesis Manager Operating System Types
	Speech-Channel Modes
	Speech-Channel Modes for Core Foundation-based Functions
	Voice Information Selectors
	Speech-Channel Information Constants
	Speech-Channel Properties
	Synthesizer Option Keys
	Speech Status Keys
	Speech Error Keys
	Speech Synthesizer Information Keys
	Phoneme Symbols Keys
	Current Voice Keys
	Command Delimiter Keys
	Speech Dictionary Keys
	Error Callback User-Information String

	Result Codes
	Gestalt Constants

	Ticket Services Reference
	Overview
	Functions by Task
	Managing Tickets
	Setting Ticket Items
	Getting Ticket Items
	Managing Templates
	Setting Template Items
	Getting Template Items
	Converting To and From XML
	Deprecated Functions

	Functions
	PMTemplateCreate
	PMTemplateCreateXML
	PMTemplateDelete
	PMTemplateGetBooleanDefaultValue
	PMTemplateGetCFArrayConstraintValue
	PMTemplateGetCFDataDefaultValue
	PMTemplateGetCFDefaultValue
	PMTemplateGetCFRangeConstraintValue
	PMTemplateGetConstraintType
	PMTemplateGetDoubleDefaultValue
	PMTemplateGetDoubleListConstraintValue
	PMTemplateGetDoubleRangeConstraintValue
	PMTemplateGetDoubleRangeDefaultValue
	PMTemplateGetDoubleRangesConstraintValue
	PMTemplateGetListTicketConstraintValue
	PMTemplateGetPMRectDefaultValue
	PMTemplateGetPMRectListConstraintValue
	PMTemplateGetPMTicketDefaultValue
	PMTemplateGetSInt32DefaultValue
	PMTemplateGetSInt32ListConstraintValue
	PMTemplateGetSInt32RangeConstraintValue
	PMTemplateGetSInt32RangeDefaultValue
	PMTemplateGetSInt32RangesConstraintValue
	PMTemplateGetValueType
	PMTemplateIsLocked
	PMTemplateLoadFromXML
	PMTemplateMakeEntry
	PMTemplateMakeFullEntry
	PMTemplateMergeTemplates
	PMTemplateRemoveEntry
	PMTemplateSetBooleanDefaultValue
	PMTemplateSetCFArrayConstraintValue
	PMTemplateSetCFDataDefaultValue
	PMTemplateSetCFDefaultValue
	PMTemplateSetCFRangeConstraint
	PMTemplateSetDoubleDefaultValue
	PMTemplateSetDoubleListConstraint
	PMTemplateSetDoubleRangeConstraint
	PMTemplateSetDoubleRangeDefaultValue
	PMTemplateSetDoubleRangesConstraint
	PMTemplateSetPMRectDefaultValue
	PMTemplateSetPMRectListConstraint
	PMTemplateSetPMTicketDefaultValue
	PMTemplateSetPMTicketListConstraint
	PMTemplateSetSInt32DefaultValue
	PMTemplateSetSInt32ListConstraint
	PMTemplateSetSInt32RangeConstraint
	PMTemplateSetSInt32RangeDefaultValue
	PMTemplateSetSInt32RangesConstraint
	PMTemplateValidateItem
	PMTicketConfirmTicket
	PMTicketContainsItem
	PMTicketContainsTicket
	PMTicketCopy
	PMTicketCopyItem
	PMTicketCreate
	PMTicketCreateTemplate
	PMTicketDeleteItem
	PMTicketFillFromArray
	PMTicketGetAllocator
	PMTicketGetAPIVersion
	PMTicketGetBoolean
	PMTicketGetBytes
	PMTicketGetCFArray
	PMTicketGetCFBoolean
	PMTicketGetCFData
	PMTicketGetCFDate
	PMTicketGetCFDictionary
	PMTicketGetCFNumber
	PMTicketGetCFString
	PMTicketGetCString
	PMTicketGetDouble
	PMTicketGetEnumType
	PMTicketGetIndexPMResolution
	PMTicketGetItem
	PMTicketGetLockedState
	PMTicketGetMetaItem
	PMTicketGetPMRect
	PMTicketGetPMResolution
	PMTicketGetPPDDict
	PMTicketGetPString
	PMTicketGetRetainCount
	PMTicketGetSInt32
	PMTicketGetTicket
	PMTicketGetType
	PMTicketGetUInt32
	PMTicketIsItemLocked
	PMTicketLockItem
	PMTicketReadXMLFromFile
	PMTicketRelease
	PMTicketReleaseAndClear
	PMTicketReleaseItem
	PMTicketRemoveTicket
	PMTicketRetain
	PMTicketSetBoolean
	PMTicketSetBytes
	PMTicketSetCFArray
	PMTicketSetCFBoolean
	PMTicketSetCFData
	PMTicketSetCFDate
	PMTicketSetCFDictionary
	PMTicketSetCFNumber
	PMTicketSetCFString
	PMTicketSetCString
	PMTicketSetCStringArray
	PMTicketSetDouble
	PMTicketSetDoubleArray
	PMTicketSetItem
	PMTicketSetMetaItem
	PMTicketSetPMRect
	PMTicketSetPMRectArray
	PMTicketSetPMResolution
	PMTicketSetPMResolutionArray
	PMTicketSetPString
	PMTicketSetSInt32
	PMTicketSetSInt32Array
	PMTicketSetTemplate
	PMTicketSetTicket
	PMTicketSetUInt32
	PMTicketSetUInt32Array
	PMTicketToXML
	PMTicketUnlockItem
	PMTicketValidate
	PMTicketWriteXML
	PMTicketWriteXMLToFile
	PMXMLToTicket

	Data Types
	ConstCStrList
	ConstPMRectList
	ConstSInt32List
	CStrList
	PMPrintingPhaseType
	PMRectList
	PMTemplateRef
	PMTicketErrors
	PMTicketItemStruct
	PMTicketItemType
	PMTicketRef
	PMTicketType
	PMValueType
	SInt32List

	Constants
	ColorSync Options
	Constraint Types
	Converter Setup Ticket Keys
	Data Transmission Keys
	Document Ticket Keys
	Drawing Resolution Keys
	Duplex Options
	Error Handling Options
	Fetch options
	Installable Options
	Item Value Types
	Job Ticket Keys
	Default Copy/Collate Value
	List Ticket Keys
	Lock State
	Memory Keys
	Page Format Ticket Keys
	Page Ticket Key
	Paper Info Ticket Keys
	PostScript Language Level Targets
	PostScript Printer Description Tags
	PostScript Printer Driver Keys
	Print Settings Ticket Keys
	Printer Driver Creator Code Key
	Printer Font Keys
	Printer Info Ticket Keys
	Printing Phase Types
	Rasterizer Options
	Template Entry Data Types
	Template Strings
	Ticket Levels
	Ticket Types
	Ticket Type Strings

	Result Codes

	Part III: Other References
	ATSUI Reference
	Overview
	Functions by Task
	Creating and Initializing Style Objects
	Manipulating Style Attributes
	Manipulating Font Features
	Manipulating Font Variations
	Creating and Initializing Text Layout Objects
	Manipulating Text Layout Attributes
	Manipulating Line Attributes
	Manipulating Line Breaks
	Substituting Fonts
	Identifying Fonts
	Drawing and Highlighting Text
	Supporting User Interaction With Onscreen Text
	Obtaining Text Metrics
	Working With Tabs
	Accessing Glyph Data
	Flattening and Parsing Style Data
	Creating, Calling, and Deleting Universal Procedure Pointers
	Not Recommended

	Functions
	ATSUBatchBreakLines
	ATSUBreakLine
	ATSUCalculateBaselineDeltas
	ATSUClearAttributes
	ATSUClearFontFeatures
	ATSUClearFontVariations
	ATSUClearLayoutCache
	ATSUClearLayoutControls
	ATSUClearLineControls
	ATSUClearSoftLineBreaks
	ATSUClearStyle
	ATSUCompareStyles
	ATSUCopyAttributes
	ATSUCopyLayoutControls
	ATSUCopyLineControls
	ATSUCopyToHandle
	ATSUCountFontFeatureSelectors
	ATSUCountFontFeatureTypes
	ATSUCountFontInstances
	ATSUCountFontNames
	ATSUCountFontTracking
	ATSUCountFontVariations
	ATSUCreateAndCopyStyle
	ATSUCreateAndCopyTextLayout
	ATSUCreateFontFallbacks
	ATSUCreateStyle
	ATSUCreateTextLayout
	ATSUCreateTextLayoutWithTextHandle
	ATSUCreateTextLayoutWithTextPtr
	ATSUDirectAddStyleSettingRef
	ATSUDirectGetLayoutDataArrayPtrFromLineRef
	ATSUDirectGetLayoutDataArrayPtrFromTextLayout
	ATSUDirectReleaseLayoutDataArrayPtr
	ATSUDisposeFontFallbacks
	ATSUDisposeStyle
	ATSUDisposeTextLayout
	ATSUDrawGlyphInfo
	ATSUDrawText
	ATSUFindFontFromName
	ATSUFindFontName
	ATSUFlattenStyleRunsToStream
	ATSUFONDtoFontID
	ATSUFontCount
	ATSUFontIDtoFOND
	ATSUGetAllAttributes
	ATSUGetAllFontFeatures
	ATSUGetAllFontVariations
	ATSUGetAllLayoutControls
	ATSUGetAllLineControls
	ATSUGetAttribute
	ATSUGetContinuousAttributes
	ATSUGetFontFallbacks
	ATSUGetFontFeature
	ATSUGetFontFeatureNameCode
	ATSUGetFontFeatureSelectors
	ATSUGetFontFeatureTypes
	ATSUGetFontIDs
	ATSUGetFontInstance
	ATSUGetFontInstanceNameCode
	ATSUGetFontVariationNameCode
	ATSUGetFontVariationValue
	ATSUGetGlyphBounds
	ATSUGetGlyphInfo
	ATSUGetIndFontName
	ATSUGetIndFontTracking
	ATSUGetIndFontVariation
	ATSUGetLayoutControl
	ATSUGetLineControl
	ATSUGetNativeCurveType
	ATSUGetObjFontFallbacks
	ATSUGetRunStyle
	ATSUGetSoftLineBreaks
	ATSUGetStyleRefCon
	ATSUGetTabArray
	ATSUGetTextHighlight
	ATSUGetTextLayoutRefCon
	ATSUGetTextLocation
	ATSUGetTransientFontMatching
	ATSUGetUnjustifiedBounds
	ATSUGlyphGetCubicPaths
	ATSUGlyphGetCurvePaths
	ATSUGlyphGetIdealMetrics
	ATSUGlyphGetQuadraticPaths
	ATSUGlyphGetScreenMetrics
	ATSUHighlightInactiveText
	ATSUHighlightText
	ATSUIdle
	ATSULeftwardCursorPosition
	ATSUMatchFontsToText
	ATSUMeasureText
	ATSUMeasureTextImage
	ATSUNextCursorPosition
	ATSUOffsetToCursorPosition
	ATSUOffsetToPosition
	ATSUOverwriteAttributes
	ATSUPositionToCursorOffset
	ATSUPositionToOffset
	ATSUPreviousCursorPosition
	ATSURightwardCursorPosition
	ATSUSetAttributes
	ATSUSetFontFallbacks
	ATSUSetFontFeatures
	ATSUSetHighlightingMethod
	ATSUSetLayoutControls
	ATSUSetLineControls
	ATSUSetObjFontFallbacks
	ATSUSetRunStyle
	ATSUSetSoftLineBreak
	ATSUSetStyleRefCon
	ATSUSetTabArray
	ATSUSetTextHandleLocation
	ATSUSetTextLayoutRefCon
	ATSUSetTextPointerLocation
	ATSUSetTransientFontMatching
	ATSUSetVariations
	ATSUStyleIsEmpty
	ATSUTextDeleted
	ATSUTextInserted
	ATSUTextMoved
	ATSUUnderwriteAttributes
	ATSUUnflattenStyleRunsFromStream
	ATSUUnhighlightText
	DisposeATSCubicClosePathUPP
	DisposeATSCubicCurveToUPP
	DisposeATSCubicLineToUPP
	DisposeATSCubicMoveToUPP
	DisposeATSQuadraticClosePathUPP
	DisposeATSQuadraticCurveUPP
	DisposeATSQuadraticLineUPP
	DisposeATSQuadraticNewPathUPP
	DisposeATSUDirectLayoutOperationOverrideUPP
	DisposeRedrawBackgroundUPP
	InvokeATSCubicClosePathUPP
	InvokeATSCubicCurveToUPP
	InvokeATSCubicLineToUPP
	InvokeATSCubicMoveToUPP
	InvokeATSQuadraticClosePathUPP
	InvokeATSQuadraticCurveUPP
	InvokeATSQuadraticLineUPP
	InvokeATSQuadraticNewPathUPP
	InvokeATSUDirectLayoutOperationOverrideUPP
	InvokeRedrawBackgroundUPP
	NewATSCubicClosePathUPP
	NewATSCubicCurveToUPP
	NewATSCubicLineToUPP
	NewATSCubicMoveToUPP
	NewATSQuadraticClosePathUPP
	NewATSQuadraticCurveUPP
	NewATSQuadraticLineUPP
	NewATSQuadraticNewPathUPP
	NewATSUDirectLayoutOperationOverrideUPP
	NewRedrawBackgroundUPP

	Callbacks
	ATSCubicClosePathProcPtr
	ATSCubicCurveToProcPtr
	ATSCubicLineToProcPtr
	ATSCubicMoveToProcPtr
	ATSQuadraticClosePathProcPtr
	ATSQuadraticCurveProcPtr
	ATSQuadraticLineProcPtr
	ATSQuadraticNewPathProcPtr
	ATSUDirectLayoutOperationOverrideProcPtr
	RedrawBackgroundProcPtr

	Data Types
	Core Data Types
	ATSUAttributeInfo
	ATSLayoutRecord
	ATSUStyleSettingRef
	ATSUAttributeValuePtr
	ConstATSUAttributeValuePtr
	ATSURGBAlphaColor
	ATSUBackgroundColor
	ATSUBackgroundData
	ATSUCaret
	ATSUFontFeatureType
	ATSUFontFeatureSelector
	ATSUFontVariationAxis
	ATSUFontVariationValue
	ATSUFontFallbacks
	ATSUFontID
	ATSUGlyphInfo
	ATSUGlyphInfoArray
	ATSUGlyphSelector
	ATSJustPriorityWidthDeltaOverrides
	ATSJustWidthDeltaEntryOverride
	ATSULayoutOperationOverrideSpecifier
	ATSULineRef
	ATSUStyle
	ATSUStyleRunInfo
	ATSUTab
	ATSUTextLayout
	ATSUTextMeasurement
	ATSTrapezoid
	ATSUUnhighlightData

	USTL Data Structure Data Types
	ATSFlatDataMainHeaderBlock
	ATSFlatDataTextLayoutDataHeader
	ATSFlatDataLayoutControlsDataHeader
	ATSFlatDataLineInfoHeader
	ATSFlatDataLineInfoData
	ATSFlatDataStyleRunDataHeader
	ATSFlatDataStyleListHeader
	ATSFlatDataStyleListStyleDataHeader
	ATSFlatDataStyleListFeatureData
	ATSFlatDataStyleListVariationData
	ATSFlatDataFontNameDataHeader
	ATSFlatDataFontSpecRawNameDataHeader
	ATSFlatDataFontSpecRawNameData

	Universal Procedure Pointers
	ATSUDirectLayoutOperationOverrideUPP
	ATSCubicClosePathUPP
	ATSCubicCurveToUPP
	ATSCubicLineToUPP
	ATSCubicMoveToUPP
	ATSQuadraticClosePathUPP
	ATSQuadraticCurveUPP
	ATSQuadraticLineUPP
	ATSQuadraticNewPathUPP
	RedrawBackgroundUPP

	Constants
	Attribute Tags
	Background Data Types
	Caret Movement Types
	Convenience Constants
	Direct Data Selectors
	Flattened Data Font Type Selectors
	Flattened Data Format Selectors
	Flattened Style Run Data Options
	Flattened Data Version Numbers
	Font Fallback Methods
	Glyph Origin Selectors
	Glyph Collection Types
	Glyph Direction Selectors
	Glyph Property Flags
	Highlight Methods
	Invalid Font ID Constant
	Line Truncation Selectors
	Layout Callback Status Values
	Layout Operation Selectors
	Line Alignment Selectors
	Line Height and Font Tracking Selectors
	Line Justification Selectors
	Line Layout Attribute Tags
	Line Layout Width Selector
	No Selectors Option
	Style Comparison Options
	Style Line Count Types
	Style Rendering Options
	Tab Positioning Options
	Text Buffer Convenience Constants
	Unflattened Style Run Data Options
	Vertical Character Types

	Result Codes
	Gestalt Constants

	Carbon Accessibility Reference
	Overview
	Who Should Read This Document?
	Organization of This Document
	See Also

	Functions
	AXNotificationHIObjectNotify
	AXUIElementCreateWithHIObjectAndIdentifier
	AXUIElementGetHIObject
	AXUIElementGetIdentifier
	HICopyAccessibilityActionDescription
	HICopyAccessibilityRoleDescription
	HIObjectIsAccessibilityIgnored
	HIObjectOverrideAccessibilityContainment
	HIObjectSetAccessibilityIgnored
	HIObjectSetAuxiliaryAccessibilityAttribute

	Constants
	Accessibility Events
	Accessibility Event Constants
	Accessibility Event Parameters
	Accessibility Event Class

	Accessibility Object Constants
	Roles
	Subroles
	Attributes
	Parameterized Attributes
	Actions
	Notifications
	Orientations and Sort Directions

	Result Codes

	Core Printing Reference
	Overview
	Functions by Task
	Releasing and Retaining Printing Objects
	Creating and Using Page Format Objects
	Accessing Data in Page Format Objects
	Creating and Using Print Settings Objects
	Accessing Data in Print Settings Objects
	Creating Printing Session Objects
	Accessing Data in Printing Session Objects
	Using Printer Presets
	Creating and Using Paper Objects
	Accessing Data in Paper Objects
	Print Loop Functions
	Accessing the Print Job Destination
	Creating Printer Objects
	Accessing Information About a Printer
	Submitting a Print Job to a Printer
	Accessing PostScript Printer Description Files
	Printing with PostScript Data
	Using PDF Workflow Items
	Matching Color With ColorSync
	Converting and Saving Old Print Records
	Creating, Calling, and Deleting Universal Procedure Pointers
	Legacy Core Printing Functions

	Functions
	DisposePMIdleUPP
	InvokePMIdleUPP
	NewPMIdleUPP
	PMBegin
	PMCGImageCreateWithEPSDataProvider
	PMConvertOldPrintRecord
	PMCopyAvailablePPDs
	PMCopyLocalizedPPD
	PMCopyPageFormat
	PMCopyPPDData
	PMCopyPrintSettings
	PMCreateGenericPrinter
	PMCreatePageFormat
	PMCreatePageFormatWithPMPaper
	PMCreatePrintSettings
	PMCreateSession
	PMDefaultPageFormat
	PMDefaultPrintSettings
	PMDisableColorSync
	PMDisposePageFormat
	PMDisposePrintSettings
	PMEnableColorSync
	PMEnd
	PMError
	PMFlattenPageFormat
	PMFlattenPageFormatToCFData
	PMFlattenPageFormatToURL
	PMFlattenPrintSettings
	PMFlattenPrintSettingsToCFData
	PMFlattenPrintSettingsToURL
	PMGeneral
	PMGetAdjustedPageRect
	PMGetAdjustedPaperRect
	PMGetCollate
	PMGetColorMode
	PMGetCopies
	PMGetDestination
	PMGetDriverCreator
	PMGetDriverReleaseInfo
	PMGetDuplex
	PMGetFirstPage
	PMGetGrafPtr
	PMGetIndexedPrinterResolution
	PMGetJobName
	PMGetJobNameCFString
	PMGetLanguageInfo
	PMGetLastPage
	PMGetOrientation
	PMGetPageFormatExtendedData
	PMGetPageFormatPaper
	PMGetPageRange
	PMGetPhysicalPageSize
	PMGetPhysicalPaperSize
	PMGetPrinterResolution
	PMGetPrinterResolutionCount
	PMGetPrintSettingsExtendedData
	PMGetResolution
	PMGetScale
	PMGetUnadjustedPageRect
	PMGetUnadjustedPaperRect
	PMIsPostScriptDriver
	PMMakeOldPrintRecord
	PMNewPageFormat
	PMNewPrintSettings
	PMPageFormatCreateDataRepresentation
	PMPageFormatCreateWithDataRepresentation
	PMPageFormatGetPrinterID
	PMPaperCreate
	PMPaperCreateCustom
	PMPaperCreateLocalizedName
	PMPaperGetHeight
	PMPaperGetID
	PMPaperGetMargins
	PMPaperGetName
	PMPaperGetPPDPaperName
	PMPaperGetPrinterID
	PMPaperGetWidth
	PMPaperIsCustom
	PMPostScriptBegin
	PMPostScriptData
	PMPostScriptEnd
	PMPostScriptFile
	PMPostScriptHandle
	PMPresetCopyName
	PMPresetCreatePrintSettings
	PMPresetGetAttributes
	PMPrinterCopyDescriptionURL
	PMPrinterCopyDeviceURI
	PMPrinterCopyHostName
	PMPrinterCopyPresets
	PMPrinterCreateFromPrinterID
	PMPrinterGetCommInfo
	PMPrinterGetDescriptionURL
	PMPrinterGetDeviceURI
	PMPrinterGetDriverCreator
	PMPrinterGetDriverReleaseInfo
	PMPrinterGetID
	PMPrinterGetIndexedPrinterResolution
	PMPrinterGetLanguageInfo
	PMPrinterGetLocation
	PMPrinterGetMakeAndModelName
	PMPrinterGetMimeTypes
	PMPrinterGetName
	PMPrinterGetOutputResolution
	PMPrinterGetPaperList
	PMPrinterGetPrinterResolution
	PMPrinterGetPrinterResolutionCount
	PMPrinterGetState
	PMPrinterIsDefault
	PMPrinterIsFavorite
	PMPrinterIsPostScriptCapable
	PMPrinterIsPostScriptPrinter
	PMPrinterIsRemote
	PMPrinterPrintWithFile
	PMPrinterPrintWithProvider
	PMPrinterSetDefault
	PMPrinterSetOutputResolution
	PMPrinterWritePostScriptToURL
	PMPrintSettingsCopyAsDictionary
	PMPrintSettingsCopyKeys
	PMPrintSettingsCreateDataRepresentation
	PMPrintSettingsCreateWithDataRepresentation
	PMPrintSettingsGetJobName
	PMPrintSettingsGetValue
	PMPrintSettingsSetJobName
	PMPrintSettingsSetValue
	PMPrintSettingsToOptions
	PMPrintSettingsToOptionsWithPrinterAndPageFormat
	PMRelease
	PMRetain
	PMServerCreatePrinterList
	PMServerLaunchPrinterBrowser
	PMSessionBeginCGDocumentNoDialog
	PMSessionBeginDocumentNoDialog
	PMSessionBeginPageNoDialog
	PMSessionConvertOldPrintRecord
	PMSessionCopyDestinationFormat
	PMSessionCopyDestinationLocation
	PMSessionCopyOutputFormatList
	PMSessionCreatePageFormatList
	PMSessionCreatePrinterList
	PMSessionDefaultPageFormat
	PMSessionDefaultPrintSettings
	PMSessionDisableColorSync
	PMSessionEnableColorSync
	PMSessionEndDocumentNoDialog
	PMSessionEndPageNoDialog
	PMSessionError
	PMSessionGeneral
	PMSessionGetCGGraphicsContext
	PMSessionGetCurrentPrinter
	PMSessionGetDataFromSession
	PMSessionGetDestinationType
	PMSessionGetDocumentFormatGeneration
	PMSessionGetDocumentFormatSupported
	PMSessionGetGraphicsContext
	PMSessionIsDocumentFormatSupported
	PMSessionMakeOldPrintRecord
	PMSessionPostScriptBegin
	PMSessionPostScriptData
	PMSessionPostScriptEnd
	PMSessionPostScriptFile
	PMSessionPostScriptHandle
	PMSessionSetCurrentPMPrinter
	PMSessionSetCurrentPrinter
	PMSessionSetDataInSession
	PMSessionSetDestination
	PMSessionSetDocumentFormatGeneration
	PMSessionSetError
	PMSessionSetIdleProc
	PMSessionSetPSInjectionData
	PMSessionValidatePageFormat
	PMSessionValidatePrintSettings
	PMSetAdjustedPageRect
	PMSetCollate
	PMSetColorMode
	PMSetCopies
	PMSetDuplex
	PMSetError
	PMSetFirstPage
	PMSetIdleProc
	PMSetJobName
	PMSetJobNameCFString
	PMSetLastPage
	PMSetOrientation
	PMSetPageFormatExtendedData
	PMSetPageRange
	PMSetPhysicalPaperSize
	PMSetPrintSettingsExtendedData
	PMSetProfile
	PMSetResolution
	PMSetScale
	PMSetUnadjustedPaperRect
	PMUnflattenPageFormat
	PMUnflattenPageFormatWithCFData
	PMUnflattenPageFormatWithURL
	PMUnflattenPrintSettings
	PMUnflattenPrintSettingsWithCFData
	PMUnflattenPrintSettingsWithURL
	PMValidatePageFormat
	PMValidatePrintSettings
	PMWorkflowCopyItems
	PMWorkflowSubmitPDFWithOptions
	PMWorkflowSubmitPDFWithSettings

	Callbacks
	PMIdleProcPtr

	Data Types
	PMDialog
	PMIdleUPP
	PMLanguageInfo
	PMObject
	PMPageFormat
	PMPaper
	PMPaperMargins
	PMPreset
	PMPrinter
	PMPrintSession
	PMPrintSettings
	PMRect
	PMResolution
	PMServer
	PMPrintContext
	PMColorMode

	Constants
	Data Not Wanted Constants
	Data Representation Formats
	Destination Types
	Document Format Strings
	Duplex Modes
	Graphics Context Types
	Page Orientation Constants
	PDF Workflow Dictionary Keys
	PostScript Injection Dictionary Keys
	PostScript Page Injection Options
	PostScript Injection Placement Options
	PostScript Injection Sections
	PostScript Injection Subsections
	PostScript Printer Description File Domains
	Print All Pages Constant
	Print Quality Modes
	Print Queue States
	Printer Description Types
	Tag Constants
	User Cancellation Constant
	Color Modes

	Result Codes

	CGImageProperties Reference
	Overview
	Constants
	Format-Specific Dictionaries
	Camera Maker Dictionaries
	Image Source Container Properties
	Individual Image Properties
	Color Model Values
	EXIF Dictionary Keys
	EXIF Auxiliary Dictionary Keys
	GIF Dictionary Keys
	GPS Dictionary Keys
	IPTC Dictionary Keys
	JFIF Dictionary Keys
	PNG Dictionary Keys
	TIFF Dictionary Keys
	DNG Dictionary Keys
	8BIM Dictionary Keys
	CIFF Dictionary Keys
	Nikon Camera Dictionary Keys
	Canon Camera Dictionary Keys

	CGAffineTransform Reference
	Overview
	Functions by Task
	Creating an Affine Transformation Matrix
	Modifying Affine Transformations
	Applying Affine Transformations
	Evaluating Affine Transforms

	Functions
	CGAffineTransformConcat
	CGAffineTransformEqualToTransform
	CGAffineTransformInvert
	CGAffineTransformIsIdentity
	CGAffineTransformMake
	CGAffineTransformMakeRotation
	CGAffineTransformMakeScale
	CGAffineTransformMakeTranslation
	CGAffineTransformRotate
	CGAffineTransformScale
	CGAffineTransformTranslate
	CGPointApplyAffineTransform
	CGRectApplyAffineTransform
	CGSizeApplyAffineTransform

	Data Types
	CGAffineTransform

	Constants
	CGAffineTransformIdentity

	CGGeometry Reference
	Overview
	Functions by Task
	Creating a Geometric Primitive From a Dictionary Representation
	Creating a Dictionary Representation From a Geometric Primitive
	Creating a Geometric Primitive From Values
	Modifying Rectangles
	Comparing Values
	Checking for Membership
	Getting Min, Mid, and Max Values
	Getting Height and Width
	Checking Rectangle Characteristics

	Functions
	CGPointCreateDictionaryRepresentation
	CGPointEqualToPoint
	CGPointMake
	CGPointMakeWithDictionaryRepresentation
	CGRectContainsPoint
	CGRectContainsRect
	CGRectCreateDictionaryRepresentation
	CGRectDivide
	CGRectEqualToRect
	CGRectGetHeight
	CGRectGetMaxX
	CGRectGetMaxY
	CGRectGetMidX
	CGRectGetMidY
	CGRectGetMinX
	CGRectGetMinY
	CGRectGetWidth
	CGRectInset
	CGRectIntegral
	CGRectIntersection
	CGRectIntersectsRect
	CGRectIsEmpty
	CGRectIsInfinite
	CGRectIsIntegral
	CGRectIsNull
	CGRectMake
	CGRectMakeWithDictionaryRepresentation
	CGRectOffset
	CGRectStandardize
	CGRectUnion
	CGSizeCreateDictionaryRepresentation
	CGSizeEqualToSize
	CGSizeMake
	CGSizeMakeWithDictionaryRepresentation

	Data Types
	CGPoint
	CGRect
	CGSize

	Constants
	CGRectInfinite
	Geometric Zeroes
	Geometrical Null
	CGRectEdge
	CGFloat Informational Macros

	Find By Content Reference (Not Recommended)
	Overview
	Functions by Task
	Working With Indexes
	Setting Up a Search Session Object
	Executing a Search
	Getting Information About Search Session Hits
	Deallocating Hit Lists and Search Sessions
	Summarizing Text
	Working with Universal Procedure Pointers
	Deprecated Functions

	Functions
	DisposeFBCCallbackUPP
	DisposeFBCHitTestUPP
	FBCAddAllVolumesToSession
	FBCAddVolumeToSession
	FBCBlindExampleSearch
	FBCBlindExampleSearchWithCallback
	FBCCloneSearchSession
	FBCCreateSearchSession
	FBCDeleteIndexFileForFolder
	FBCDestroySearchSession
	FBCDestroyWordList
	FBCDisposeSummary
	FBCDoCFStringSearch
	FBCDoExampleSearch
	FBCDoQuerySearch
	FBCFindIndexFileFolderForFolder
	FBCGetHitCount
	FBCGetHitDocument
	FBCGetHitDocumentRef
	FBCGetHitScore
	FBCGetMatchedWords
	FBCGetSessionVolumeCount
	FBCGetSessionVolumes
	FBCGetSummaryOfCFString
	FBCGetSummarySentenceCount
	FBCGetSummarySentences
	FBCGetTopicWords
	FBCIndexItems
	FBCIndexItemsInLanguages
	FBCReleaseSessionHits
	FBCRemoveVolumeFromSession
	FBCSetCallback
	FBCSetHeapReservation
	FBCSetSessionCallback
	FBCSetSessionHitTest
	FBCSetSessionVolumes
	FBCSummarize
	FBCSummarizeCFString
	FBCVolumeIndexPhysicalSize
	FBCVolumeIndexTimeStamp
	FBCVolumeIsIndexed
	FBCVolumeIsRemote
	InvokeFBCCallbackUPP
	InvokeFBCHitTestUPP
	NewFBCCallbackUPP
	NewFBCHitTestUPP

	Callbacks
	FBCCallbackProcPtr
	FBCHitTestProcPtr

	Data Types
	FBCCallbackUPP
	FBCHitTestUPP
	FBCSearchSession
	FBCSummaryRef
	FBCWordItem
	FBCWordList

	Constants
	Language Constants
	Phase Values
	Deprecated Language Constants

	Result Codes

	FontSync Reference
	Overview
	Functions by Task
	Determining Availability, Version, and Feature Information
	Providing User Interface Support
	Searching by Font Reference
	Working With FontSync Profiles
	Working With FontSync References

	Functions
	FNSEnabled
	FNSMatchDefaultsGet
	FNSProfileAddReference
	FNSProfileClear
	FNSProfileClose
	FNSProfileCompact
	FNSProfileCountReferences
	FNSProfileCreate
	FNSProfileCreateWithFSRef
	FNSProfileGetIndReference
	FNSProfileGetVersion
	FNSProfileMatchReference
	FNSProfileOpen
	FNSProfileOpenWithFSRef
	FNSProfileRemoveIndReference
	FNSProfileRemoveReference
	FNSReferenceCountNames
	FNSReferenceCreate
	FNSReferenceCreateFromFamily
	FNSReferenceDispose
	FNSReferenceFindName
	FNSReferenceFlatten
	FNSReferenceFlattenedSize
	FNSReferenceGetFamilyInfo
	FNSReferenceGetIndName
	FNSReferenceGetVersion
	FNSReferenceMatch
	FNSReferenceMatchFamilies
	FNSReferenceMatchFonts
	FNSReferenceUnflatten
	FNSSysInfoGet

	Data Types
	FNSFeatureFlags
	FNSFontProfile
	FNSFontReference
	FNSSysInfo

	Constants
	Matching Options
	Font Profile Constants
	Version Constants

	Result Codes

	Internet Config Reference
	Overview
	Functions by Task
	Starting and Stopping Internet Config
	Getting Information About an Instance
	Preparing to Read and Write Preferences
	Reading and Writing Preferences
	Enumerating All Preferences
	Accessing the User Interface
	URL Functions
	Mapping-Database High-Level Functions
	Mapping-Database Mid-Level Functions
	Mapping-Database Low-Level Functions
	Profile Functions
	Deprecated functions
	Unsupported Functions

	Functions
	ICAddMapEntry
	ICAddProfile
	ICBegin
	ICCAddMapEntry
	ICCAddProfile
	ICCBegin
	ICCChooseConfig
	ICCChooseNewConfig
	ICCCountMapEntries
	ICCCountPref
	ICCCountProfiles
	ICCCreateGURLEvent
	ICCDefaultFileName
	ICCDeleteMapEntry
	ICCDeletePref
	ICCDeleteProfile
	ICCEditPreferences
	ICCEnd
	ICCFindConfigFile
	ICCFindPrefHandle
	ICCFindUserConfigFile
	ICCGeneralFindConfigFile
	ICCGetComponentInstance
	ICCGetConfigName
	ICCGetConfigReference
	ICCGetCurrentProfile
	ICCGetDefaultPref
	ICCGetIndMapEntry
	ICCGetIndPref
	ICCGetIndProfile
	ICCGetMapEntry
	ICCGetMappingInterruptSafe
	ICCGetPerm
	ICCGetPref
	ICCGetPrefHandle
	ICCGetProfileName
	ICCGetSeed
	ICCGetSeedInterruptSafe
	ICCGetVersion
	ICChooseConfig
	ICChooseNewConfig
	ICCLaunchURL
	ICCMapEntriesFilename
	ICCMapEntriesTypeCreator
	ICCMapFilename
	ICCMapTypeCreator
	ICCountMapEntries
	ICCountPref
	ICCountProfiles
	ICCParseURL
	ICCreateGURLEvent
	ICCRefreshCaches
	ICCRequiresInterruptSafe
	ICCSendGURLEvent
	ICCSetConfigReference
	ICCSetCurrentProfile
	ICCSetMapEntry
	ICCSetPref
	ICCSetPrefHandle
	ICCSetProfileName
	ICCSpecifyConfigFile
	ICCStart
	ICCStop
	ICDefaultFileName
	ICDeleteMapEntry
	ICDeletePref
	ICDeleteProfile
	ICEditPreferences
	ICEnd
	ICFindConfigFile
	ICFindPrefHandle
	ICFindUserConfigFile
	ICGeneralFindConfigFile
	ICGetComponentInstance
	ICGetConfigName
	ICGetConfigReference
	ICGetCurrentProfile
	ICGetDefaultPref
	ICGetIndMapEntry
	ICGetIndPref
	ICGetIndProfile
	ICGetMapEntry
	ICGetMappingInterruptSafe
	ICGetPerm
	ICGetPref
	ICGetPrefHandle
	ICGetProfileName
	ICGetSeed
	ICGetSeedInterruptSafe
	ICGetVersion
	ICLaunchURL
	ICMapEntriesFilename
	ICMapEntriesTypeCreator
	ICMapFilename
	ICMapTypeCreator
	ICParseURL
	ICRefreshCaches
	ICRequiresInterruptSafe
	ICSendGURLEvent
	ICSetConfigReference
	ICSetCurrentProfile
	ICSetMapEntry
	ICSetPref
	ICSetPrefHandle
	ICSetProfileName
	ICSpecifyConfigFile
	ICStart
	ICStop

	Data Types
	ICAppSpec
	ICAppSpecList
	ICCharTable
	ICConfigRef
	ICDirSpec
	ICError
	ICFileInfo
	ICFileSpec
	ICFontRecord
	ICInstance
	ICMapEntry
	ICServiceEntry
	ICServices
	internetConfigurationComponent

	Constants
	Apple Event Constants
	Attribute Constants
	Component Identifiers
	Component Identifiers (Deprecated)
	Component Interface Version
	Component Selectors
	Component Selector Proc Information
	Edit Preference Constants
	File Specification Header Size
	File Specification Header Size (Deprecated)
	File Type Constants
	Keys
	Map Constants
	Map Entry Flags
	Map Entry Masks
	Map Fixed Length Constants
	Services Constants
	Permissions
	Preference Attribute Bits and Masks
	Preference Attribute Masks
	Profile IDs
	Services Bits
	Services Masks
	User Interaction Constants
	User Interaction Masks
	Version Constants

	Result Codes

	QuickDraw Reference
	Overview
	Functions by Task
	Drawing QuickDraw Pictures in a Quartz Context
	Using Quartz 2D to Draw in a Graphics Port
	Other Quartz-Related Functions in QuickDraw
	Calculating Black-and-White Fills
	Calculating Color Fills
	Changing Black-and-White Cursors
	Changing Color Cursors
	Changing the Background Bit Pattern
	Changing the Background Pixel Pattern
	Compressing and Decompressing Data
	Converting Between Angle and Slope Values
	Copying Images
	Creating, Altering, and Disposing of Offscreen Graphics Worlds
	Creating and Disposing of Color Tables
	Creating and Disposing of Pictures
	Creating and Disposing of Pixel Patterns
	Creating and Managing Polygons
	Creating and Managing Rectangles
	Creating and Managing Regions
	Creating, Setting, and Disposing of GDevice Records
	Creating, Setting, and Disposing of Pixel Maps
	Customizing Color QuickDraw Operations
	Customizing QuickDraw Operations
	Determining Current Colors and Best Intermediate Colors
	Determining the Characteristics of a Video Device
	Determining Whether QuickDraw Has Finished Drawing
	Drawing Arcs and Wedges
	Drawing Lines
	Drawing Ovals
	Drawing Pictures
	Drawing Polygons
	Drawing Rectangles
	Drawing Regions
	Drawing Rounded Rectangles
	Drawing With Color QuickDraw Colors
	Drawing With the Eight-Color System
	Getting Pattern Resources
	Getting the Available Graphics Devices
	Hiding and Showing Cursors
	Managing a Color Graphics Pen
	Managing an Offscreen Graphics World’s Pixel Image
	Managing Bitmaps, Port Rectangles, and Clipping Regions
	Managing Color Tables
	Managing Colors
	Managing the Graphics Pen
	Manipulating Points in Graphics Ports
	Obtaining a Pseudorandom Number
	Operations on Search and Complement Functions
	Reporting Data Structure Changes to QuickDraw
	Retrieving Color QuickDraw Result Codes
	Saving and Restoring Graphics Ports
	Saving and Restoring Graphics Ports and Offscreen Graphics Worlds
	Scaling and Mapping Points, Rectangles, Polygons, and Regions
	Miscellaneous

	Functions
	AddComp
	AddPt
	AddSearch
	AllocCursor
	AllowPurgePixels
	AngleFromSlope
	BackColor
	BackPat
	BackPixPat
	BitMapToRegion
	CalcCMask
	CalcMask
	ClipCGContextToRegion
	ClipRect
	CloseCursorComponent
	ClosePicture
	ClosePoly
	CloseRgn
	Color2Index
	ColorBit
	CopyBits
	CopyDeepMask
	CopyMask
	CopyPixMap
	CopyPixPat
	CopyRgn
	CreateCGContextForPort
	CreateNewPort
	CreateNewPortForCGDisplayID
	CTabChanged
	CursorComponentChanged
	CursorComponentSetData
	DelComp
	DelSearch
	DeltaPoint
	deltapoint
	DeviceLoop
	DiffRgn
	DisposeCCursor
	DisposeColorComplementUPP
	DisposeColorSearchUPP
	DisposeCTable
	DisposeDeviceLoopDrawingUPP
	DisposeDragGrayRgnUPP
	DisposeGDevice
	DisposeGWorld
	DisposePixMap
	DisposePixPat
	DisposePort
	DisposeQDArcUPP
	DisposeQDBitsUPP
	DisposeQDCommentUPP
	DisposeQDGetPicUPP
	DisposeQDJShieldCursorUPP
	DisposeQDLineUPP
	DisposeQDOpcodeUPP
	DisposeQDOvalUPP
	DisposeQDPolyUPP
	DisposeQDPutPicUPP
	DisposeQDRectUPP
	DisposeQDRgnUPP
	DisposeQDRRectUPP
	DisposeQDStdGlyphsUPP
	DisposeQDTextUPP
	DisposeQDTxMeasUPP
	DisposeRegionToRectsUPP
	DisposeRgn
	DisposeScreenBuffer
	DrawPicture
	EmptyRect
	EmptyRgn
	EqualPt
	EqualRect
	EqualRgn
	EraseArc
	EraseOval
	ErasePoly
	EraseRect
	EraseRgn
	EraseRoundRect
	FillArc
	FillCArc
	FillCOval
	FillCPoly
	FillCRect
	FillCRgn
	FillCRoundRect
	FillOval
	FillPoly
	FillRect
	FillRgn
	FillRoundRect
	ForeColor
	FrameArc
	FrameOval
	FramePoly
	FrameRect
	FrameRgn
	FrameRoundRect
	GDeviceChanged
	GetBackColor
	GetCCursor
	GetClip
	GetCPixel
	GetCTable
	GetCTSeed
	GetCursor
	GetDeviceList
	GetForeColor
	GetGDevice
	GetGWorld
	GetGWorldDevice
	GetGWorldPixMap
	GetIndPattern
	GetMainDevice
	GetMaskTable
	GetMaxDevice
	GetNextDevice
	GetPattern
	GetPen
	GetPenState
	GetPicture
	GetPixBaseAddr
	GetPixBounds
	GetPixDepth
	GetPixel
	GetPixelsState
	GetPixPat
	GetPixRowBytes
	GetPort
	GetPortBackColor
	GetPortBackPixPat
	GetPortBitMapForCopyBits
	GetPortBounds
	GetPortChExtra
	GetPortClipRegion
	GetPortCustomXFerProc
	GetPortFillPixPat
	GetPortForeColor
	GetPortFracHPenLocation
	GetPortGrafProcs
	GetPortHiliteColor
	GetPortOpColor
	GetPortPenLocation
	GetPortPenMode
	GetPortPenPixPat
	GetPortPenSize
	GetPortPenVisibility
	GetPortPixMap
	GetPortSpExtra
	GetPortTextFace
	GetPortTextFont
	GetPortTextMode
	GetPortTextSize
	GetPortVisibleRegion
	GetQDGlobalsArrow
	GetQDGlobalsBlack
	GetQDGlobalsDarkGray
	GetQDGlobalsGray
	GetQDGlobalsLightGray
	GetQDGlobalsRandomSeed
	GetQDGlobalsScreenBits
	GetQDGlobalsThePort
	GetQDGlobalsWhite
	GetRegionBounds
	GetSubTable
	GlobalToLocal
	GrafDevice
	HandleToRgn
	HideCursor
	HidePen
	HiliteColor
	Index2Color
	InitCursor
	InitGDevice
	InsetRect
	InsetRgn
	InvertArc
	InvertColor
	InvertOval
	InvertPoly
	InvertRect
	InvertRgn
	InvertRoundRect
	InvokeColorComplementUPP
	InvokeColorSearchUPP
	InvokeDeviceLoopDrawingUPP
	InvokeDragGrayRgnUPP
	InvokeQDArcUPP
	InvokeQDBitsUPP
	InvokeQDCommentUPP
	InvokeQDGetPicUPP
	InvokeQDJShieldCursorUPP
	InvokeQDLineUPP
	InvokeQDOpcodeUPP
	InvokeQDOvalUPP
	InvokeQDPolyUPP
	InvokeQDPutPicUPP
	InvokeQDRectUPP
	InvokeQDRgnUPP
	InvokeQDRRectUPP
	InvokeQDStdGlyphsUPP
	InvokeQDTextUPP
	InvokeQDTxMeasUPP
	InvokeRegionToRectsUPP
	IsPortClipRegionEmpty
	IsPortColor
	IsPortOffscreen
	IsPortPictureBeingDefined
	IsPortPolyBeingDefined
	IsPortRegionBeingDefined
	IsPortVisibleRegionEmpty
	IsRegionRectangular
	IsValidPort
	IsValidRgnHandle
	KillPicture
	KillPoly
	Line
	LineTo
	LMGetCursorNew
	LMGetDeviceList
	LMGetFractEnable
	LMGetHiliteMode
	LMGetHiliteRGB
	LMGetLastFOND
	LMGetLastSPExtra
	LMGetMainDevice
	LMGetQDColors
	LMGetScrHRes
	LMGetScrVRes
	LMGetTheGDevice
	LMGetWidthListHand
	LMGetWidthPtr
	LMGetWidthTabHandle
	LMSetCursorNew
	LMSetDeviceList
	LMSetFractEnable
	LMSetHiliteMode
	LMSetHiliteRGB
	LMSetLastFOND
	LMSetLastSPExtra
	LMSetMainDevice
	LMSetQDColors
	LMSetScrHRes
	LMSetScrVRes
	LMSetTheGDevice
	LMSetWidthListHand
	LMSetWidthPtr
	LMSetWidthTabHandle
	LocalToGlobal
	LockPixels
	LockPortBits
	MakeITable
	MakeRGBPat
	MapPoly
	MapPt
	MapRect
	MapRgn
	Move
	MovePortTo
	MoveTo
	NewColorComplementUPP
	NewColorSearchUPP
	NewDeviceLoopDrawingUPP
	NewDragGrayRgnUPP
	NewGDevice
	NewGWorld
	NewGWorldFromPtr
	NewPixMap
	NewPixPat
	NewQDArcUPP
	NewQDBitsUPP
	NewQDCommentUPP
	NewQDGetPicUPP
	NewQDJShieldCursorUPP
	NewQDLineUPP
	NewQDOpcodeUPP
	NewQDOvalUPP
	NewQDPolyUPP
	NewQDPutPicUPP
	NewQDRectUPP
	NewQDRgnUPP
	NewQDRRectUPP
	NewQDStdGlyphsUPP
	NewQDTextUPP
	NewQDTxMeasUPP
	NewRegionToRectsUPP
	NewRgn
	NewScreenBuffer
	NewTempScreenBuffer
	NoPurgePixels
	ObscureCursor
	OffscreenVersion
	OffsetPoly
	OffsetRect
	OffsetRgn
	OpColor
	OpenCPicture
	OpenCursorComponent
	OpenPicture
	OpenPoly
	OpenRgn
	PackBits
	PaintArc
	PaintOval
	PaintPoly
	PaintRect
	PaintRgn
	PaintRoundRect
	PenMode
	PenNormal
	PenPat
	PenPixPat
	PenSize
	PicComment
	PixMap32Bit
	PixPatChanged
	PortChanged
	PortSize
	ProtectEntry
	Pt2Rect
	PtInRect
	PtInRgn
	PtToAngle
	QDAddRectToDirtyRegion
	QDAddRegionToDirtyRegion
	QDBeginCGContext
	QDDisplayWaitCursor
	QDDisposeRegionBits
	QDDone
	QDEndCGContext
	QDError
	QDFlushPortBuffer
	QDGetCGDirectDisplayID
	QDGetCursorData
	QDGetDirtyRegion
	QDGetPatternOrigin
	QDGetPictureBounds
	QDGlobalToLocalPoint
	QDGlobalToLocalRect
	QDGlobalToLocalRegion
	QDIsNamedPixMapCursorRegistered
	QDIsPortBufferDirty
	QDIsPortBuffered
	QDLocalToGlobalPoint
	QDLocalToGlobalRect
	QDLocalToGlobalRegion
	QDPictCreateWithProvider
	QDPictCreateWithURL
	QDPictDrawToCGContext
	QDPictGetBounds
	QDPictGetResolution
	QDPictRelease
	QDPictRetain
	QDRegionToRects
	QDRegisterNamedPixMapCursor
	QDRestoreRegionBits
	QDSaveRegionBits
	QDSetCursorScale
	QDSetDirtyRegion
	QDSetNamedPixMapCursor
	QDSetPatternOrigin
	QDSwapPort
	QDSwapPortTextFlags
	QDSwapTextFlags
	QDUnregisterNamedPixMapCursor
	Random
	RealColor
	RectInRgn
	RectRgn
	ReserveEntry
	RestoreEntries
	RGBBackColor
	RGBForeColor
	RgnToHandle
	SaveEntries
	ScalePt
	ScreenRes
	ScrollRect
	SectRect
	SectRegionWithPortClipRegion
	SectRegionWithPortVisibleRegion
	SectRgn
	SeedCFill
	SeedFill
	SetCCursor
	SetClientID
	SetClip
	SetCPixel
	SetCursor
	SetCursorComponent
	SetDeviceAttribute
	SetEmptyRgn
	SetEntries
	SetGDevice
	SetGWorld
	SetOrigin
	SetPenState
	SetPixelsState
	SetPort
	SetPortBackPixPat
	SetPortBits
	SetPortBounds
	SetPortClipRegion
	SetPortCustomXFerProc
	SetPortFillPixPat
	SetPortFracHPenLocation
	SetPortGrafProcs
	SetPortOpColor
	SetPortPenMode
	SetPortPenPixPat
	SetPortPenSize
	SetPortPix
	SetPortTextFace
	SetPortTextFont
	SetPortTextMode
	SetPortTextSize
	SetPortVisibleRegion
	SetPt
	SetQDError
	SetQDGlobalsArrow
	SetQDGlobalsRandomSeed
	SetRect
	SetRectRgn
	SetStdCProcs
	SetStdProcs
	ShieldCursor
	ShowCursor
	ShowPen
	SlopeFromAngle
	StdArc
	StdBits
	StdComment
	StdGetPic
	StdLine
	StdOpcode
	StdOval
	StdPoly
	StdPutPic
	StdRect
	StdRgn
	StdRRect
	StuffHex
	SubPt
	SwapPortPicSaveHandle
	SwapPortPolySaveHandle
	SwapPortRegionSaveHandle
	SyncCGContextOriginWithPort
	TestDeviceAttribute
	UnionRect
	UnionRgn
	UnlockPixels
	UnlockPortBits
	UnpackBits
	UpdateGWorld
	XorRgn

	Callbacks
	ColorComplementProcPtr
	ColorSearchProcPtr
	CustomXFerProcPtr
	DeviceLoopDrawingProcPtr
	DragGrayRgnProcPtr
	QDArcProcPtr
	QDBitsProcPtr
	QDCommentProcPtr
	QDGetPicProcPtr
	QDJShieldCursorProcPtr
	QDLineProcPtr
	QDOpcodeProcPtr
	QDOvalProcPtr
	QDPolyProcPtr
	QDPrinterStatusProcPtr
	QDPutPicProcPtr
	QDRectProcPtr
	QDRgnProcPtr
	QDRRectProcPtr
	QDStdGlyphsProcPtr
	QDTextProcPtr
	QDTxMeasProcPtr
	RegionToRectsProcPtr

	Data Types
	BitMap
	Bits16
	CCrsr
	CGrafPort
	CGrafPtr
	ColorComplementUPP
	ColorSearchUPP
	ColorSpec
	ColorTable
	ConstPatternParam
	CProcRec
	CQDProcs
	CSpecArray
	Cursor
	CursorImageRec
	CursorInfo
	CustomXFerRec
	CWindowPtr
	DeviceLoopDrawingUPP
	DeviceLoopFlags
	DialogPtr
	DragConstraint
	DragGrayRgnUPP
	GammaTbl
	GDevice
	GrafPort
	GrafPtr
	GrafVars
	GrafVerb
	GWorldFlags
	GWorldPtr
	ITab
	MacPolygon
	MacRegion
	MatchRec
	OpenCPicParams
	Pattern
	PenState
	Picture
	PixelType
	PixMap
	PixPat
	Polygon
	PrinterFontStatus
	PrinterScalingStatus
	PrinterStatusOpcode
	QDArcUPP
	QDBitsUPP
	QDByte
	QDCommentUPP
	QDErr
	QDGetPicUPP
	QDGlobals
	QDJShieldCursorUPP
	QDLineUPP
	QDOpcodeUPP
	QDOvalUPP
	QDPictRef
	QDPolyUPP
	QDPrinterStatusUPP
	QDProcs
	QDPutPicUPP
	QDRectUPP
	QDRegionBitsRef
	QDRegionParseDirection
	QDRgnUPP
	QDRRectUPP
	QDStdGlyphsUPP
	QDTextUPP
	QDTxMeasUPP
	RegionToRectsUPP
	ReqListRec
	RGBColor
	RgnHandle
	SProcRec
	WindowPtr
	xColorSpec
	xCSpecArray

	Constants
	chunky
	Color Constants
	colorXorXFer
	Cursor ID Constants
	cursorDoesAnimate
	Device Attribute Constants
	Device Loop Flags
	deviceIsIndirect
	Drag Constraint Constants
	Graphics Device Type Constants
	Graphics World Flags
	invalColReq
	italicBit
	Pixel Formats
	k1MonochromePixelFormat
	kCursorComponentInit
	kCursorComponentsVersion
	kCursorComponentType
	kCursorImageMajorVersion
	kPrinterFontStatus
	kQDGrafVerbFrame
	kQDParseRegionFromTop
	kQDRegionToRectsMsgInit
	kQDUseDefaultTextRendering
	kRenderCursorInHardware
	kXFer1PixelAtATime
	normalBit
	pixPurgeBit
	singleDevicesBit
	Source, Pattern, and Arithmetic Transfer Mode Constants
	Verb Constants

	Result Codes

	QuickDraw Text Reference (Not Recommended)
	Overview
	Functions by Task
	Determining the Caret Position, and Selecting and Highlighting Text
	Drawing Text
	Laying Out a Line of Text
	Measuring Text
	Setting Text Characteristics
	Truncating Strings and Breaking Lines
	Working With Universal Procedure Pointers

	Functions
	CharExtra
	CharToPixel
	CharWidth
	DisposeStyleRunDirectionUPP
	DrawChar
	DrawJustified
	DrawString
	DrawText
	GetFontInfo
	GetFormatOrder
	HiliteText
	InvokeStyleRunDirectionUPP
	MeasureJustified
	MeasureText
	NewStyleRunDirectionUPP
	PixelToChar
	PortionLine
	SpaceExtra
	StandardGlyphs
	StdText
	stdtext
	StdTxMeas
	StringWidth
	StyledLineBreak
	TextFace
	TextFont
	TextMode
	TextSize
	TextWidth
	TruncString
	TruncText
	VisibleLength

	Callbacks
	StyleRunDirectionProcPtr

	Data Types
	FontInfo
	FormatOrder
	StyleRunDirectionUPP

	Constants
	Caret Direction Constants
	Truncation Status Values
	Style Line Break Values
	Obsolete Caret Placement Values
	Style Run Position Constants
	txFlag Constants
	Truncation Positions

	Revision History
	Index
	Numerals
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

